Tecnicas Fundacao UEMA MA

Preview:

DESCRIPTION

Fundações da uema

Citation preview

Bibliografia referencial:NBR 6122 – NBR 6484Fundações Teoria e Prática – ABMS / ABEFManual de Fundações da ABEF

UNIVERSIDADE ESTADUAL DO MARANHÃOCENTRO DE CIÊNCIAS TECNOLÓGICAS

Prof. DANILO ROSENDO

INTRODUÇÃO AO PROJETO DE FUNDAÇÕES

SOLOS - PROPRIEDADES

Os solos são constituídos de um conjunto de partículas com água e ar nos espaços intermediários.

As partículas de maneira geral se encontram livres para deslocarem.

Solos com grãos perceptíveis a olho nu: pedregulhos e areias solos granulares

Se 50% é retido na peneira 0,075 solo granular

EM UM SOLO CONVIVEM PARTÍCULAS DE TAMANHOS DIVERSOS

Tamanhos das partículas

Solos com grãos finos: quando molhados transformam-se em pasta solos finos

Se 50% passa na peneira 0,075 solo fino

• Pedregulho: > 4,8 mm

• Areias: 0,06 mm a 4,8 mm

• Silte: 0,005 mm a 0,06 mm

• Argila: < 0,005 mm

Limites das frações de solo pelo tamanho dos grãos

Sub-divisão das areias: grossa, média e fina.

Solos argilososBastante plástico quando misturados com água. Se secos transformam em torrões duros.

Solos siltososSão suaves no manuseio quando no manuseio em presença de água. Se seco se esfarelam.

Solos residuais

Originários da decomposição das rochas que se encontram no mesmo local.

Origem dos solos

Solo saprolito

Mantém a estrutura original da rocha mãe (veios, fissuras, xistosidade), mas perdeu a consistência da rocha. Chamado também de alteração de rocha.

Rocha alteradaAlteração progrediu ao longo de fraturas, ficando intacto grandes blocos de rocha.

Solos coluvionaresFora transportados de outro local pela ação da gravidade.

Solos aluvionaresForam transportados de outro local pela ação da água.

Solos eólicosForam transportados de outro local pela ação do vento.

* Identificar e classificar as diversas camadas do substrato

* Avaliar as propriedades das camadas

Investigações geotécnicas

Condição básica para elaborar um projeto de fundação:

CONHECIMENTO ADEQUADO DO SOLO

Ensaios in situ

• Determinar o tipo do solo atravessado(retira uma amostra a cada metro perfurado)

Sondagem de simples reconhecimento a percussão NBR 6484

SPT (Standart Penetration Test)

Finalidades:

Consiste basicamente na cravação de um amostrador padrão através da queda livre na altura de 75 cm de um peso de 65 kg.

• Determinar a resistência do solo (N)(pela cravação do amostrador padrão)

• Determinar a posição do nível de água(durante a perfuração)

1 – Monta-se na posição determinada um tripé com roldana no topo onde passa uma corda que servirá para manuseio da hastes e do martelo.

Operação em linhas gerais:

2 – Em uma extremidade de uma haste 1’’ acopla o amostrador padrão com o diâmetro de 2’’. Este é apoiado no fundo do furo.

3 – Ergue-se o martelo até 75 cm acima do topo da haste e deixa cair.

4 – Este procedimento é realizado sucessivamente até que a haste é penetrada 45 cm. Conta-se o número de golpes necessários para a penetração de cada 15 cm.

Operação em linhas gerais:

5 – A soma dos golpes para penetrar os últimos 30 cm do amostrador é chamada de N.

6 – Quando é retirado o amostrador do furo a amostra contida em seu bico é recolhida para identificação das características do solo.

1 – Próximos aos pontos de projeção.

2 – Pontos de maior concentração de cargas.

3 – Em geral distâncias de 15 a 30 metros.

4 – Evite pontos alinhados.

5 – Evite um único furo.

Escolha dos locais da sondagem

É comum a variação de resistência e tipos de solos em áreas pequenas

Dados geotécnicos

PROJETOS DE FUNDAÇÕES

Informações Necessárias

Dados topográficos

Levantamento topográfico (planialtimétrico) Informações sobre taludes e encostasDados sobre erosões

Investigação do subsoloAerofotogramétrico, mapas e experiência anterior

Dados da estrutura

Tipo e uso Sistema estrutural Cargas e ações sobre a fundação

• ações permanentes• ações variáveis (variação no uso)• ações excepcionais (colisões, terremotos...)

Tipos das estruturas e fundações Existência de subsolo Desempenho das fundações Conseqüências da nova obra

Dados da vizinhança

Segurança quanto ao colapso do solo

Aspectos a observar em um Projeto de Fundação

Segurança quanto às deformações

Segurança quanto ao colapso de elementos

estruturais

Determina-se as características de compressibilidade e resistência ao cisalhamento do solo.

A pressão admissível (σa) é determinada através de teorias da Mecânica dos Solos.

Coeficientes de segurança nunca devem ser inferiores a 3. δa = σ f / F (3)

Métodos para determinar a tensão admissível sobre solos

• Métodos teóricos

Ensaio em modelo reduzido de uma sapata

Placa de ∅ 80 cm é carregada em estágios por macaco hidráulico.

Cargas são aplicadas até: ruptura do solo ou dobro da tensão admissível presumida do solo ou para um recalque julgado excessivo.

• Prova de carga sobre placas – NBR 6489

As propriedades dos materiais são estimados com base em correlações.

São usadas teorias da Mecânica dos Solos.

• Métodos semi-empíricos

Chega-se à pressão admissível com base na descrição do terreno (SPT)

Utiliza-se para cargas inferiores a 1.000 KN.

Tensão admissível σ a = 0,02 N (Mpa) p / 5 ≤ N ≤ 20.

• Métodos empíricos

Estimativa de N médio

Prova de Carga sobre Placas

Prova de Carga sobre Placas

muito molemolemédia(o)rija(o)dura(o)

Estados de compacidade e de consistência

Índice de resistência à penetração (N)

areias e siltes arenosos

N ≤ 45 a 8

9 a 1819 a 40

> 40

fofa(o)pouco compacta(o)medianamente compacta(o)compacta(o)muito compacta(o)

argilas e siltes argilosos

N ≤ 23 a 5 6 a 1011 a 19N > 19

Solo Designação

Tensões básicas segundo NBR 6122/94

Classe Descrição Valores (MPa)

1 Rocha sã, maciça, sem laminações ou sinal de decomposição 3,0

2 Rochas laminadas, com pequenas fissuras, estratificadas 1,5

3 Rochas alteradas ou em decomposição ver nota (c)

4 Solos granulares concrecionados, conglomerados 1,0

5 Solos pedregulhosos compactos a muito compactos 0,6

6 Solos predregulhosos fofos 0,3

7 Areias muito compactas 0,5

8 Areias compactas 0,4

9 Areias medianamente compactas 0,2

10 Argilas duras 0,3

11 Argilas rijas 0,2

12 Argilas médias 0,1

13 Siltes duros (muito compactos) 0,3

14 Siltes rijos (compactos) 0,2

15 Siltes médios (medianamente compactos) 0,1

Notas: a) Para a descrição dos diferentes tipos de solo, deve-se seguir as definições da NBR 6502.b) No caso de calcário ou qualquer outra rocha cárstica, devem ser feitos estudos especiais.c) Para rochas alteradas, ou em decomposição, tem que se levar em conta a natureza da rocha matriz e o grau de decomposição ou alteração.

• Aquelas cujas cargas da estrutura são transmitidas diretamente às fundações sem elementos intermediários.

• Aquelas cujo mecanismo de ruptura de base atinge a superfície (ruptura atinge até duas vezes a menor dimensão da base) – Limitadas a três metros.

Tipos de Fundações

Dois grandes grupos:

Fundações superficiais (ou direta ou rasa)

Fundações profundas

• Aquelas cujas cargas da estrutura são transmitidas às fundações através de elementos intermediários.

• Aquelas cujas bases estão assentadas em profundidade acima de duas vezes sua menor dimensão e pelo menos a três metros.

b) Sapata – elemento de concreto armado cujas armaduras combatem os esforços de tração.

Fundações Superficiais

a) Bloco – elemento em concreto simples onde as tensões de tração são resistidas pelo próprio concreto.

a) Viga de fundação – elemento que recebe pilares alinhados. Podem ser armados ou sem armação (baldrames). Se recebem carga distribuída linear recebem o nome de sapata corrida.

d) Radier – elemento tipo placa de concreto armado monolítica que recebe todos pilares da obra e/ou cargas lineares.

e) Sapata associada – elemento que recebe vários pilares que não estejam alinhados. Conhecido também por radier parcial.

Fundações Profundas

Estacas

Transmitem as cargas ao terreno pela base (resistência de ponta), por sua superfície lateral (resistência de fuste) ou pela combinação das duas.

Tubulão

Elemento executado por equipamentos ou ferramentas não ocorrendo a descida de operário durante a sua execução.

Elemento de forma cilíndrica que na sua execução ocorre a descida de operário. Pode ser executado com ou sem revestimento e a céu aberto ou sob ar comprimido.

Estacas

a) Metálicab) Pré-moldada de concreto

vibradoc) Pré-moldada de concreto

centrifugadod) Tipo Franki e tipo Strausse) Tipo raizf) Escavadas

Alguns tipos de fundações profundas

g) A céu aberto, sem revestimento

h) A céu aberto, com revestimento de concreto

i) A céu aberto, com revestimento de aço

Tubulões

Alguns tipos de fundações profundas

Tubulões São elementos estruturais de fundação profunda constituídos da concretagem de um poço usualmente de forma cilíndrica, escavado em um terreno, geralmente dotado de uma base alargada.

• exeqüível somente acima do NA• altura da basenão deve ser superior a 2,00 m• concretagem da base não deve ultrapassar 24h após

escavação• fuste geralmente de forma circula - Ø > 70 cm• despreza o atrito lateral entre o fuste e o terreno• não recebem armação quando as cargas são somente

verticais• área da base = carga atuante: taxa do terreno

Tubulões a céu aberto

A

V=0,2. Ab+H−0,23

(A¿ f +√Ab . A f )volume da base

Tubulões a ar comprimido (pneumático)

• altura limitada a 34 m – pressão de 3,4 atm• equipe de socorro médico disponível• câmara de descompressão na obra• manter compressores e reservatório de ar

reserva• renovação de ar garantida

São indicados quando as escavações são abaixo do lenço freático e não se consiga esgotar a água por perigo de desmoronamento. Atualmente tem sido utilizado somente com camisa de concreto e em obras de arte especiais.

Tubulão com camisa de concreto

Principais tipos de estacas considerando o método executivo

1 – Grandes deslocamentos (cravadas)

• Concreto pré-moldadas cravadas a percussão

cravadas por prensagem

moldadas in situ

tipo Franki

tubo de ponta fechada

• Madeira

• Aço

• Perfis de aço

2 – Pequenos deslocamentos

• Concreto moldadas in situ com pré-furo tipo Strauss

tipo raizpré-moldada com pré-furo

3 – Sem deslocamentos (escavadas)

• Concreto Ferramentas rotativas sem suporte

com uso de lama

com revestimento

diafragmadora com uso de lama

Após fazer a escolha considerando:

No estudo de fundações deve-se analisar, desde que possível, mais de uma opção.

Deve-se considerar: volumes de escavação e aterro

quantidade de concreto e aço dos blocos

facilidades executivas

menor customenor prazo

• argilas muito moles não utilizar estaca de concreto moldadas in situ

• solos resistentes (compactos ou pedregulho) não utilizar estacas de concreto pré-moldadas

• solo com matacão não utilizar estacas cravadas de qualquer tipo

• NA elevado não utilizar estacas de concreto moldadas in situ sem revestimento

• aterro recente possibilidade de atrito negativo utilizar estacas com superfície mais lisa ou com tratamento betuminoso

Na escolha do tipo de estaca deve-se observar:

1 – Características do subsolo

• topografia local que pode dificultar acesso dos equipamentos

• limitações de altura dificultando acesso dos equipamentos

• distância que onera o transporte dos equipamentos• interferência com serviços públicos• possibilidade de ocorrer erosões

2 – Esforços nas fundações

• nível de carga dos pilares

• outras solicitações além das compressões (trações, torções etc.)

3 – Características do local

4 – Características das edificações vizinhas

• profundidade e tipo das fundações

• existência de subsolo

• sensibilidade a vibrações

• problemas já existentes nas edificações

• existência de contenções nas divisas

Estacas moldadas no local

Tipo Franki

Origem Edgard Frankignoul (Bélgica – início do século XX). Patente de domínio público a partir de 1960.

Idéia Cravar um tubo no solo através de golpes de um pilão, em queda livre, numa bucha de concreto seco colocada na extremidade inferior do tubo.

Características gerais

• estacas de carga elevada• necessário equipamento específico• necessário mão-de-obra

especializada

Bate-estaca típico

Tipos de bate-estacas

Categoria / Característica Tipo 1 Tipo 2 Tipo 3

torre (m) 13.5 20 30

guincho (kN) 70 a 100 120 a 150 180

tubos (cm) 30 a 52 30 a 60 30 a 60

profundidades da estaca (m) 15 a 18 20 a 25 30

Tubos e pilões

diâmetro do tubo (cm) 30 35 40 52 60

peso do tubo (kN/m) 1.4 1.74 2.25 3.65 4.50

pilão (kN) 10 15 20 28 35

diâmetro do pilão (cm) 18 22 25 31 38

Método executivo

1 – Posicionamento do tubo de revestimento

2 – Formação da bucha (brita e areia) dentro do tubo

3 – Compacta-se a bucha com o pilão de maneira a fazê-la aderir ao tuboaltura da bucha: 1,5 a 2,0 vezes o diâmetro do tubo

4 – Crava-se o tubo no terreno através do impacto do pilão na bucha

5 – A profundidade é definida pela nega do tubop/ queda de 1,0 m no pilão (10 golpes): nega entre 5 e 20 mmp/ queda de 5,0 m (1 golpe): nega entre 5 e 20 mm

6 – Prende-se o tubo na torre

7 – Expulsa-se a bucha para iniciar a base alargada

8 – Alarga-se a base pelo apiloamento de pequenas quantidades de concreto quase seco

9 – Coloca-se a armação e compacta-se volume adicional de concreto para fixá-la

10 – Inicia-se a concretagem do fuste com pequenas quantidades de concretoconcreto Fck > 20 MPa, baixo fator água/cimento e ‘slump’ zero

11 – Recupera-se o tubo à medida que o concreto é apiloado

12 – Marcações no cabo do pilão controlam a altura das camadas de concreto

Quando há problema para a penetração do tubo tais como ocorrência de matacões ou camadas

de solo muito resistente pode-se utilizar tubo aberto na cravação. Neste caso utiliza-se bate-estaca adequado e ferramentas especiais como piteira

(sonda), pilão e trépano.

Alternativa na cravação

Fases de execução da estaca tipo Franki usando cravação com tubo aberto

• A cravação com ponta fechada isola o tubo evitando a entrada de água do subsolo

• A base alargada dá maior resistência de ponta

• Em solos arenosos o apiloamento da base os compacta e aumenta o diâmetro da base

• Em solos argilosos o apiloamento expele a água que é absorvida pelo concreto seco

• O apiloamento do concreto do fuste compacta o solo e aumenta o atrito lateral

• O comprimento da estaca pode ser facilmente ajustado durante a cravação

Características executivas que diferenciam a estaca

Estaca escavada com o emprego de uma sonda,

revestida por uma camisa metálica recuperada

que é cravada em toda sua profundidade.

O revestimento garante a estabilidade da

perfuração e permite que não ocorra mistura

com o solo durante a concretagem.

Estacas moldadas no local

Strauss

• Guincho com motor acoplado

• Chassi de madeira (para movimentar a máquina)

• Tripé metálico com carretilha no topo

• Guincho manual para levantamento dos tubos

• Tubos de aço de 2,5 m com roscas macho e fêmea

• Sonda, piteira ou soquete com lastro de chumbo > 300 Kg (possui válvula mecânica que permite a entrada da escavação)

Equipamentos Utilizados

1 – Inicia-se com um pré-furo feito com a sonda

2 – Posiciona-se o primeiro tubo com extremidade inferior dentada

3 – Posiciona-se a sonda internamente ao tubo

4 – A sonda é manobrada para cima e para baixo cortando o terreno

5 – É jogado água internamente e externamente ao tubo

6 – A sonda é retirada e o material escavado é descarregado pelas janelas

7 – Tendo escavado o comprimento de um tubo, inicia-se manobra conjunta tubo/sonda. Coloca-se uma haste de aço na seção superior do tubo. Com a sonda ele é percutido para dentro do furo escavado

8 – Rosqueia-se novo tubo e continua o procedimento

Método Executivo

Perfuração

Concretagem da estaca

1 – Lava-se o tubo internamente retirando-se lama/água com a sonda

2 – O soquete é lavado e posicionado

3 – O concreto é lançado através de funil. Fck > 15 Mpa – ‘slump’ > 8 cm. Consumo de cimento > 300 kg/m3

4 – Apiloa-se o concreto com o soquete formando-se um bulbo na base

5 – Na concretagem do fuste vai-se retirando o tubo à medida que o concreto é socado. Cada camada de concreto deve ter 1,0 m

6 – Deve-se manter uma coluna de seis metros de concreto a fim de evitar solapamentos e mistura com solo

7 – Coloca-se no topo a ferragem de espera

Obs.: A estaca pode ser armada

Vantagens

1 – Equipamento leve e econômico – adapta-se em terrenos pequenos

2 – Ausência de vibrações

3 – Possibilidade de executar a estaca do tamanho projetado

4 – Possibilidade de verificar corpos estranhos no solo

5 – Possibilidade de verificar a natureza do solo

6 – Possibilidade de executar a estaca próximo a divisas

7 – Estacas econômicas para cargas leves

Limitações

1 – Com elevada vazão não se consegue esgotar a água com a sonda. Não é recomendada nestes casos

2 – Em argilas moles ou areias submersas o risco de seccionamento é muito grande. Não é recomendada nestes casos

3 – Deve-se ter um controle rigoroso na concretagem (falhas) e na retirada do tubo

4 – Indicadas para comprimentos máximos de 25,0 m

É executada por meio de escavação com um trado contínuo e injeção de concreto, sob pressão controlada, através da haste central do trado simultaneamente à sua retirada do terreno.

Estacas Escavadas

Hélice Contínua

• Originária nos EUA e aplicada na Europa e Japão na década de 1980.

• No Brasil desde 1987.

Método Executivo

Perfuração

1 – Posiciona-se a hélice espiral que na parte inferior possui dentes que facilitam a escavação

2 – Crava-se a hélice por meio de uma mesa rotativa

3 – O tubo central é vedado na parte inferior, com uma tampa de proteção, para evitar a entrada do solo

4 – A perfuração é contínua para não permitir alívio significativo das tensões do terreno. Isto torna a execução possível em solos coesivos e arenosos, na presença ou não do lenço freático

Vantagens

1 – Elevada produtividade

2 – Adaptável à maioria dos terrenos. Exceto rocha e matacões

3 – Não causa vibrações e descompressão no terreno

4 – Não usa lama betonítica

5 – Cargas leves ou pesadas

Limitações

1 – Equipamento de grande porte, necessita de áreas planas

2 – Necessita de pá carregadeira para remoção do material escavado

3 – Custo de mobilização elevado. Número mínimo de estacas

4 – Limitadas a 24 metros de profundidade

Concretagem

1 – Atingida a profundidade determinada inicia-se a concretagem através do tubo central.

2 – À medida que vai bombeando o concreto a hélice vai sendo retirada. O tampão é expulso pelo concreto.

3 – Concreto Fck ≥ 20 MPa – ‘slump’ 200 mm – consumo de cimento 350 a 450 kg/m3.

Armação

1 – As estacas submetidas somente a esforços de compressão normalmente não são armadas.

2 – A armação, quando necessária, é colocada após a concretagem, com as dificuldades inerentes.

3 – As ‘gaiolas’ são com barras de grosso diâmetro e estribos na forma helicoidal soldados nas barras.

Monitoramento

As estacas hélice contínua são monitoradas por sistema de computador alimentado por baterias. O operador monitora da cabine, através de mostradores digitais, diversos

parâmetros da estaca, tais como: profundidade, velocidade de rotação da mesa,

torque, inclinação da estaca, pressão e volumes do concreto etc. Para cada estaca é emitido um relatório com o seu perfil provável.

Estacas cravadas de concreto

Tipo de estaca Dimensão Carga usual (tf) Carga máx. (tf) Obs.

Pré-moldada vibrada

Quadrada

σ = 60 a 90 kgf/cm2

20 x 2025 x 2530 x 3035 x 35

25405580

355580100

Disponíveis até 8 mPodem ser emendadas

Pré-moldada vibradaCircular

σ = 90 a 110 kgf/cm2

φ 22φ 29φ 33

305070

406080

Disponíveis até 10 mPodem ser emendadasPodem ter furo central

Pré-moldada protendidaCircular

σ = 100 a 140 kgf/cm2

φ 20φ 25φ 33

255070

356080

Disponíveis até 12 mPodem ser emendadasCom furo central (ocas)

Pré-moldada centrifugada

σ = 90 a 11 kgf/cm2

φ 20φ 26φ33φ 42φ 50φ 60

25406090

130170

305075115170230

Disponíveis até 12 mPodem ser emendadasCom furo central (ocas) e paredes de 6 a 12 cm

Tipo Frankiσ = 60 a 100 kgf/cm2

φ 35φ 40φ 52φ 60

6075

130170

100130210280

Tubos até 25 m (podem ser emendados)Cargas maiores requerem armaduras/bases especiais

Estacas moldadas in situ com pré-escavação

Tipo de estaca Dimensão(cm)

Carga usual(tf)

Carga máx.(tf)

Obs.

Tipo Strauss

σ = 40 kgf/cm2

φ 25 cm

φ 32 cm

φ 38 cm

φ 45 cm

20

30 – 35

45

65

Não são indicadas na ocorrência de argilas muito moles

Tipo raiz

σ = 100 kgf/cm2

φ 17

φ 22

φ 27

φ 32

30

50

70

100

40

60

90

110

diâmetro acabado 20 cm

diâmetro acabado 25 cm

diâmetro acabado 30 cm

diâmetro acabado 35 cm

Estacas escavadas

Tipo de estaca Dimensão

(cm)

Carga usual

(tf)

Carga máx.

(tf)

Obs.

Tipo “broca”

σ = 40 a 40 kgf/cm2

φ 20

φ 25

10

15

15

20

Executadas até o NA

Escavadas circulares

σ = 30 a 50 kgf/cm2

φ 60

φ 80

φ 100

φ 120

90

150

240

340

140

250

390

560

Escavação estabilizada com lama ou camisa de aço

Estacas diafragmas ou “barretes”

σ = 30 a 50 kgf/cm2

40 x 250

60 x 250

80 x 250

100 x 250

500

750

1000

1250

Escavação estabilizada com lama

Estacas de aço cravadas

Tipo de estaca Tipo / Dimensão Carga máx.(tf)

Peso / Metro(kgt/m)

Trilhos usadosσ = 800 kgf/cm2

TR 25TR 32TR 37TR 45TR 50

2 TR 322 TR 373 TR 323 TR 37

202530354050607590

24,632,037,144,65-,364,074,296,0

111,3

Perfis I e Hσ = 800 kgf/cm2

(correto: descontar 1,5 mm para

corrosão e aplicar σ = 1.200 kgf/cm2)

H 6”I 8”I 10”I 12”

2 I 10”2 I 12”

4030406080

120

37,127,337,760,675,4

121,2

Estacas Escavadas

Injetadas – Tipo Raiz

A técnica de estacas injetadas foi originalmente

desenvolvida para reforço de fundações e

melhoramentos das características mecânicas de

solos. A patente italiana data de 1952 e com o

domínio público na década de 1970 iniciou-se a

comercialização de estacas similares por diversas

empresas. Inicialmente eram denominadas estacas

de pequeno diâmetro ou micro estaca.

Método Executivo

1 – A perfuração é realizada por meio de perfuratriz rotativa com a descida de tubo de revestimento. Em terrenos resistentes utiliza-se brocas de três asas ou coroa diamantada.

2 – Em solos a perfuração é auxiliada por circulação de água.3 – A armadura é montada na forma de gaiola.4 – Após o término da escavação mantém-se a circulação de

água até a limpeza completa do tubo.5 – Coloca-se tubo 11/2” internamente, procedendo a injeção

de argamassa de baixo para cima. Consumo mínio de 600 kg/m3.

6 – Rosqueia-se na parte superior um tampão e aplica-se golpes de ar comprimido que, auxiliado por macaco hidráulico, retira o revestimento. Completa-se o nível de argamassa.

Cargas admissíveis máximas de estacas-raiz

Estacas Pré-moldadas

Caracterizam-se por serem cravadas no terreno por percussão, prensagem ou vibração. São constituídas por um único elemento estrutural (madeira, aço ou concreto) ou pela associação de dois destes elementos (estacas mistas).

Estacas de madeira

• Em obras definitivas deve-se usar madeira de lei.

• Abaixo do lenço freático a sua duração é ilimitada.

• Atualmente a sua utilização é limitada em razão da dificuldade em obter boas estacas.

• Para evitar danos durante a cravação, as cabeças devem ser protegidas por anel de aço.

• Ο 20 cm ⇒ 150 KN Ο 30 cm ⇒ 300 KN Ο 40 ⇒ 500 KN

Estacas metálicas

• São utilizados perfis de aço I ou H tubos e trilhos (usados).

• Podem ser cravadas em terrenos resistentes sem risco de levantar estacas vizinhas.

• Estando coberta por solo a corrosão é praticamente inexistente.

• Custo elevado devido ao material e pela diferença de comprimento em relação a outras estacas.

Estacas de concreto

• São confeccionadas com concreto armado ou protendido e adensadas por centrifugação ou vibração.

• As seções são quadradas, circulares maciças ou vazadas.

• Comprimento da peça de 12 m devendo ser emendadas através de anéis soldados (tração).

• A carga máxima é indicada pelos fabricantes, porém deve-se observar se o comprimento é compatível com a transferência de carga para o solo.

Cálculo da nega

R = cinco vezes a carga admissível da estacaS - nega (penetração permanente da estaca devido

a um golpe) (medido em dez golpes)

S = W . P . h

R (W + P)(fórmula de Brix)

P – peso da estacaW – peso do pilãoH – altura de quedaR – resistência do solo à penetração

FUNDAÇÕES (Resumo)

• Bloco• Sapata• Radier

Fundações diretas

- tubulão a céu aberto- tubulão a ar comprimido

Fundações profundas

• Tubulões

Fundações profundas

• Estacas

- Sem deslocamento (escavadas)

- Grandes deslocamentos Madeira Pré-moldada de concreto Franki Aço com ponta fechada

- Pequenos deslocamentos Perfis de açoStraussRaizPré-moldada com pré-furo

Com rotativa

Diafragma

tradohélice contínuaraiz

• Argila muito mole – não usar estaca de concreto moldada no local

• Solos resistentes compactos e pedregulho – não usar estacas de concreto pré-moldadas

• Solo com matacão – não usar estacas cravadas

• NA elevado – não usar estaca de concreto moldada in situ e tubulão e céu aberto

• Camadas de areia ou aterro mole – não usar tubulão a céu aberto

APLICAÇÕES

Raiz todo tipo de soloaté 150 T

usada para cargas mais baixas

Madeira usada somente abaixo do NAaté 50 T

Strauss não usada com argila mole ou areia submersaaté 65 T

usada em solos coesivos e arenosos com ou sem presença de água

Hélice contínua

Tipo broca (trado)

Franki até 280 T restrições em casos particulares de

espessas camadas de solo mole produz altas vibrações

não usada abaixo do NA e terrenos arenososaté 20 T

APLICAÇÕES