12
CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS Curso: Engenharia Mecânica Disciplina: Desenho III Período: 7º Professor: Sérgio Rolla Guimarães Acoplamentos por Interferência Introdução Os acoplamentos da forma eixo/cubo desmontáveis são normalmente com chavetas. Os rasgos de chaveta no eixo e cubo enfraquecem as peças e são elementos concentradores de tensão. Os acoplamentos não desmontáveis, a não ser excepcionalmente, podem ser executados com montagens forçadas com interferência, onde o furo é menor do que o eixo. As tensões elásticas provocadas pela interferência no conjunto eixo/cubo geram uma aderência nas superfícies de contato capaz de resistir a torques elevados, conforme ilustra a figura 1. FIGURA 1 Para facilitar a montagem o cubo é aquecido ou o eixo é resfriado, ou ambas as operações simultâneas são executadas. Os acoplamentos ou assentos por interferência compreendem dois tipos: a) Assentos forçados longitudinalmente (vide figura 2) – A montagem é feita à temperatura ambiente com auxilio de uma prensa e superfícies lubrificadas. Estas montagens são usadas em peças de menor porte. Para facilitar a montagem o eixo deve ter um chanfro de 5 a 10º x 2,5 mm.

Acoplamentos por Interferência

Embed Size (px)

Citation preview

Page 1: Acoplamentos por Interferência

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS

Curso: Engenharia Mecânica Disciplina: Desenho III Período: 7º Professor: Sérgio Rolla Guimarães Acoplamentos por Interferência Introdução

Os acoplamentos da forma eixo/cubo desmontáveis são normalmente com chavetas. Os rasgos de chaveta no eixo e cubo enfraquecem as peças e são elementos concentradores de tensão. Os acoplamentos não desmontáveis, a não ser excepcionalmente, podem ser executados com montagens forçadas com interferência, onde o furo é menor do que o eixo. As tensões elásticas provocadas pela interferência no conjunto eixo/cubo geram uma aderência nas superfícies de contato capaz de resistir a torques elevados, conforme ilustra a figura 1.

FIGURA 1

Para facilitar a montagem o cubo é aquecido ou o eixo é resfriado, ou ambas as operações simultâneas são executadas. Os acoplamentos ou assentos por interferência compreendem dois tipos:

a) Assentos forçados longitudinalmente (vide figura 2) – A montagem é feita à temperatura ambiente com auxilio de uma prensa e superfícies lubrificadas. Estas montagens são usadas em peças de menor porte. Para facilitar a montagem o eixo deve ter um chanfro de 5 a 10º x 2,5 mm.

Page 2: Acoplamentos por Interferência

FIGURA 2

b) Assentos forçados transversalmente (vide figura 3) – Nessas montagens existe uma

folga temporária entre as peças provocada por diferentes processos de dilatação (térmica ou mecânica). A cessação ou inversão da causa das dilatações provoca o aperto do cubo no eixo.

FIGURA 3

Cálculo das Interferências

Considerações gerais

A resistência oferecida ao deslizamento axial ou giro relativo das duas peças nos acoplamentos por interferência depende dos seguintes fatores:

1) Características dos esforços que atuam no acoplamento – O esforço necessário para afrouxar o acoplamento é maior do que o esforço para manter o deslizamento já iniciado, este é 70% do primeiro. Quando as cargas são variáveis ou alternadas, o esforço para afrouxamento diminui para valores próximos ao esforço de deslizamento. Normalmente no cálculo utiliza-se o esforço ao deslizamento como fator de maior segurança.

2) Rugosidades das superfícies de assento – Existe um alisamento nos vértices das superfícies rugosas, especialmente nas montagens longitudinais, que promovem a

Page 3: Acoplamentos por Interferência

redução da interferência. O valor das perdas por alisamento é função do acabamento superficial das peças, sendo mais fino o acabamento, menor será o alisamento. Portanto, recomendam-se superfícies retificadas e polidas. Para compensar as perdas por alisamento, as interferências calculadas são acrescidas de uma quantidade ∆u, cujo valor depende da rugosidade das superfícies (DIN 7190).

3) Pressão de contato no assento – Esta pressão por sua vez depende de vários fatores: grandeza da interferência, características mecânicas do material e do tamanho das peças. Este último fator tem grande importância nos limites elásticos das peças, cuja influência no coeficiente de aderência é decisiva. Para valores de Q = 0,75 (vide figura 4), os valores de aderência reduzem-se para a metade aproximadamente. Para valores de Q > 0,75 deve-se atuar com cuidado na escolha da interferência. Para valores de “Q” pequenos aumenta-se a certeza do coeficiente de aderência.

FIGURA 4

4) Coeficiente de aderência – Apresenta importância decisiva nas montagens por

interferência e seu valor depende de fatores tais como: tipo de material, lubrificação e tipo de montagem. Quando a pressão atuante nas superfícies de montagem das peças atinge valores muito altos, a resultante das tensões tangencial σtg e radial σr ultrapassa o limite de escoamento do material, produzindo um estado elasto-plástico que reduz o coeficiente de aderência em relação aos valores usuais. É recomendável executar as montagens com interferência com valores das tensões abaixo do limite de escoamento. As figuras 5 e 6 apresentam a distribuição das tensões e zonas elasto-plásticas, respectivamente.

Page 4: Acoplamentos por Interferência

FIGURA 5

FIGURA 6

O coeficiente de aderência estático é maior do que o cinemático, explicando o fator descrito no item 1. Nos cálculos se adota o menor para maior segurança.

Page 5: Acoplamentos por Interferência

Seqüência de Cálculo

1) Força F atuante nas superfícies do assento.

22

axtg FFF += onde F

ttg

D

MF

2=

F = Força tangencial em N ou Kgf; Mt = Torque em Nm ou Kgm; Fax = Força axial em N ou Kgf (freqüentemente Fax = zero). O valor de F deverá ser corrigido para F’ em função das características do carregamento (alternado, reverso, pulsante).

2) Pressão p mínima necessária no acoplamento.

LD

Fp

F ×××=

πη

'

min, onde

pmin = Pressão mínima em N/mm2 ou Kgf/mm2 η = Coeficiente de aderência (vide tabela em anexo) L = Comprimento útil da montagem em mm 3) Coeficiente de alongamento – São usadas as fórmulas de Bach para tubos de parede

grossa.

( ) ( )

( )22

1

11

RRR

RRRR

QEm

Qmm

−×

×−++=α (mm2/N) ( ) ( )

( )22

1

11

WWW

WWWW

QEm

Qmm

−×

×++−=α (mm2/N)

mR = Inverso do coeficiente de Poisson do material do cubo mW = Inverso do coeficiente de Poisson do material do eixo ER = Módulo de elasticidade do material do cubo em N/mm2 EW = Módulo de elasticidade do material do eixo em N/mm2

A

FR

D

DQ =

F

OW

D

DQ =

4) Interferência mínima necessária para produzir Fa ≥ F’

( ) uDpI FWR ∆+×+= 3

minmin 10αα (µm)

∆u é o valor do alisamento superficial, estimado em (0,6 x R), sendo R a rugosidade das superfícies de montagem.

Page 6: Acoplamentos por Interferência

5) Pressões máximas admissíveis nas duas peças (cubo/eixo) em função do limite de escoamento do material de cada uma das peças.

R

R

RR e

Q

Qpadm σ

2

2

1

1

+

−= , (N/mm2), onde

σeR = Limite de escoamento do material do cubo em N/mm2

WW

W eQ

padm σ2

12

−= , (N/mm2), onde

σeW = Limite de escoamento do material do eixo em N/mm2 Nota: padmW é aplicada na circunferência interna do furo do eixo. Quando o eixo é maciço, corresponderá ao cubo a menor pressão admissível. 6) Interferência máxima admissível (Imax). Esta será calculada com o menor valor

encontrado no item anterior.

( ) uDpI FWRadm ∆+×+= 3

max 10αα (µm)

7) Enquadramento das interferências calculadas dentro do padrão ISO, considerando os

valores das interferências máxima e mínima calculadas. Quando a interferência do acoplamento:

minmax III −=∆

Apresentar valor “pequeno”, esta não corresponderá com nenhum ajuste padronizado. Neste caso, será indicada a tolerância de usinagem do eixo após ter sido executada a usinagem do cubo. 8) Cálculo da temperatura de aquecimento do cubo para assentos forçados

transversalmente

FD

IItt

×

+∆+=∆

αmax

' (ºC), onde

∆I = Folga de montagem α = Coeficiente de dilatação linear do material t’ = Temperatura ambiente DF = Diâmetro do assento

Page 7: Acoplamentos por Interferência

Considerações Finais

Em geral os acoplamentos por interferência são mais vantajosos do que os de chaveta e são de grande utilidade para a recuperação de peças fraturadas. Apresenta o inconveniente de gerar tensões elevadas nas regiões extremas dos acoplamentos transversais fragilizando o eixo no caso de flexão alternada. Este efeito pode ser parcialmente corrigido ao reduzir a pressão de assento nestas regiões, conforme sugestão apresentada na figura 7.

FIGURA 7

Quando o ambiente de trabalho dos acoplamentos permite variações de temperatura razoáveis e as peças são de materiais de coeficiente de dilatação diferentes, deve-se ter em mente este fator para evitar variações elevadas na pressão do assento. Os acoplamentos por interferência perdem aderência quando desmontados/montados com freqüência. O aquecimento e resfriamento das peças para montagens transversais deve ser efetuado com as mesmas limpas para evitar escamas prejudiciais. A aderência nos acoplamentos transversais pode ser aumentada até valores ~ 0,65 utilizando-se pó de carborundum entre as superfícies de montagem. Um cálculo aproximado de interferência para diâmetros maiores que 500 mm se obtém com as fórmulas abaixo: Para L > 2D I = D x 1,3 x 10-3

Para L < 2D I = D x 2,0 x 10-3 Exemplo de Aplicação - Eixo de mandril fraturado Nas áreas de laminação de chapas, as linhas de processo dispõem de desbobinadeiras e bobinadeiras, que são utilizadas para enrolar bobinas de aço na tração adequada ao processo e assim possibilitar a continuidade operacional.

Page 8: Acoplamentos por Interferência

Desbobinadeira carregada com bobina de aço

Desbobinadeira – Mandril em balanço

Page 9: Acoplamentos por Interferência

Conjunto de bobinadeira com mandril em balanço

Eixo do Mandril – Local da fratura e abaixo seções fraturadas

Page 10: Acoplamentos por Interferência

Projeto de recuperação – Barra montada por interferência

Processo de Montagem – Aquecimento da peça

Page 11: Acoplamentos por Interferência

Processo de Montagem – Introdução da peça

Processo de Montagem – Operação finalizada

Page 12: Acoplamentos por Interferência

Anexos

As normas ISO sugerem os seguintes ajustes para montagem por interferência: Furo Base Aplicações Eixo Base

H7 – z8, z9 H7 – x7, x8 H7 – u6, u7

Para grandes forças de aderência: Cubos de rodas dentadas, Volantes, Flanges em eixo (Z9 para grandes diâmetros e U6 para pequenos)

h6 – Z8, Z9 h6 – X7, X8 h6 – U6, U7

H7 – s6 H7 – r6

Para forças de aderência médias: Cubos de acoplamento, Coroas de Bronze sobre Cubos de FºFº, Casquilhos nos cubos e Rodas

h6 – S7 h6 – R7

Coeficientes de aderência em repouso

Módulos de Elasticidade e Coeficientes de Dilatação Térmica

Materiais E (kg/mm2) α x 10-6

Aço Aço Rápido FºFº FºFº maleável Metais duros Cobre Bronze Latão Alumínio e Ligas Resinas Sintéticas

20.000/21.000 21.000/23.500 7.500/10.500 9.000/10.000 54.000/62.000 12.500 8.500 8.500 6.500/7.500 400/4.700

Aquecimento Resfriamento 11 -8,5 10 -8,0 10 -8,0 5,5 16 -14 17 -15 18 -16 23 -18 40/70

Bibliografia

Normas ISO Normas DIN Toler O. L. A., C. S. R. Antônio, Lanari J., Ajustes, desvios e análise de dimensões Lopes Matos, Metrologia dimensional

Assentos Longitudinais

Superfícies Finas

Assentos Transversais

Superfícies Finas

Aço/aço Normalizados Sem lubrificação

0,15 a 0,175

Aço/aço

0,12 a 0,35

Aço/aço Normalizado Lubrificado

0,12 a 0,15

Aço/FºFº Lubrificado

0,15 a 0,16

Aço/FºFº

0,13 a 0,18