184
iii ANÁLISE DE CUSTOS AO LONGO DO CICLO DE VIDA DE PONTES FERROVIÁRIAS RESUMO A dissertação tem como principal objectivo fazer um ponto de situação da construção das obras de arte na rede ferroviária do norte de Portugal, com análise dos custos dessas obras relacionando-os com as condições de execução, tendo presente que as mesmas decorreram em dois cenários completamente diferentes, sem circulação de tráfego ferroviário ou com condicionamentos introduzidos pela exploração ferroviária. Faz-se referência ao normativo que regula o projecto das obras de arte ferroviárias em Portugal. Caracterizam-se, do ponto de vista técnico, as obras de arte construídas na década de 1990 e nos primeiros anos do século XXI, nas Linhas do Douro, Minho, Guimarães e Ramal de Braga, no âmbito da modernização do caminho de ferro. Faz-se um ponto de situação da inspecção de pontes em Portugal, na Grã - Bretanha e no Estados Unidos da América. Apresentam-se alguns casos de trabalhos de reabilitação ou de conservação de obras de arte de alvenaria, de uma ponte com tabuleiro metálico e de reposicionamento de aparelhos de apoio de uma ponte em betão armado pré - esforçado. Por último, faz-se uma abordagem da análise de ciclo de vida das pontes, referindo-se aspectos que condicionam essa análise, apresentando-se em relação a alguns conjuntos de obras, os custos de projecto, de fiscalização e de construção, comparando-se obras da mesma natureza construídas em diferentes linhas ferroviárias, em alturas distintas. Palavras – chave: obras de arte ferroviárias, pontes ferroviárias, projecto, inspecção, manutenção, conservação, reabilitação, análise de custos, ciclo de vida.

ANÁLISE DE CUSTOS AO LONGO DO CICLO DE VIDA DE …repositorium.sdum.uminho.pt/bitstream/1822/7969/1/DISSERTAÇÃO... · Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

Embed Size (px)

Citation preview

iii

ANÁLISE DE CUSTOS AO LONGO DO CICLO DE VIDA DE PONTES

FERROVIÁRIAS

RESUMO A dissertação tem como principal objectivo fazer um ponto de situação da construção das obras de

arte na rede ferroviária do norte de Portugal, com análise dos custos dessas obras relacionando-os

com as condições de execução, tendo presente que as mesmas decorreram em dois cenários

completamente diferentes, sem circulação de tráfego ferroviário ou com condicionamentos

introduzidos pela exploração ferroviária.

Faz-se referência ao normativo que regula o projecto das obras de arte ferroviárias em Portugal.

Caracterizam-se, do ponto de vista técnico, as obras de arte construídas na década de 1990 e nos

primeiros anos do século XXI, nas Linhas do Douro, Minho, Guimarães e Ramal de Braga, no

âmbito da modernização do caminho de ferro.

Faz-se um ponto de situação da inspecção de pontes em Portugal, na Grã - Bretanha e no Estados

Unidos da América. Apresentam-se alguns casos de trabalhos de reabilitação ou de conservação de

obras de arte de alvenaria, de uma ponte com tabuleiro metálico e de reposicionamento de

aparelhos de apoio de uma ponte em betão armado pré - esforçado.

Por último, faz-se uma abordagem da análise de ciclo de vida das pontes, referindo-se aspectos que

condicionam essa análise, apresentando-se em relação a alguns conjuntos de obras, os custos de

projecto, de fiscalização e de construção, comparando-se obras da mesma natureza construídas em

diferentes linhas ferroviárias, em alturas distintas.

Palavras – chave: obras de arte ferroviárias, pontes ferroviárias, projecto, inspecção, manutenção,

conservação, reabilitação, análise de custos, ciclo de vida.

iv

RAILWAY BRIDGES LIFE-CYCLE COSTS ANALYSIS

ABSTRACT This master thesis is mainly aimed to make a presentation about the construction of bridges in the

railway network of the north of Portugal, with cost analysis of this structures, connected to the

construction restrictions. These works took place in two different sceneries, one without railway

traffic and another with railway traffic obstructions.

It refers to the codes that concerns the Portuguese railway bridges design. The bridges constructed

at the railways renewal, in the nineties and in the early twenty first century years, in Douro, Minho,

Guimarães and Braga’s lines are characterized, by the technical point of view.

It mentions the bridges inspections in Portugal, Britain and The USA. It contains specific information

about repairs, rehabilitation works of a masonry bridge, metallic deck bridge and a new location of a

prestressed concrete bridge supports.

At least, it approaches a bridges life-cycle costs analysis, concerning several aspects, that restrain

this analysis, that are related to some works, design, supervision and construction costs, in

comparison with similar works, but in different lines and occasions.

Key-words: railways works, railways bridges, design, inspection, maintenance, rehabilitation, cycle-

analysis, life-cycle.

v

AGRADECIMENTOS Á REFER, pelas facilidades concedidas na frequência deste Curso de Mestrado e pela liberdade de

acesso à documentação da empresa.

Aos colegas da empresa, da Delegação Norte e Departamento de Pontes e Passagens Desniveladas,

por sempre disponibilizarem o seu conhecimento e experiência profissional.

Ao Professor Paulo Cruz, meu orientador científico, pela confiança depositada em mim, desde que

manifestei a vontade de desenvolver este trabalho. A sua capacidade de trabalho, disponibilidade,

apoio e ajuda, foi um estímulo para a elaboração desta dissertação.

À minha família e amigos pelo apoio e incentivo.

À minha mãe pela sua preocupação e apoio.

À minha mulher Mariana e aos meus filhos Pedro e João, pelo apoio amigo que sempre prestaram,

pela paciência que tiveram comigo, sobretudo na fase final em que foram mais penalizados e a

quem dedico esta dissertação.

vi

LISTA DE ABREVIATURAS

ACCVP Análise de custos de ciclo de vida de pontes

BMS Bridge Management System

CP CP – Caminhos de Ferro de Portugal, EP

FEUP Faculdade de Engenharia da Universidade do Porto

FHWA Federal Highway Administration

FRA Federal Railroad Administration

GOA Sistema de Gestão de Obras de Arte

GOA Gestão de Obras de Arte

ISTEA Intermodal Surface Transportation

LABEST Laboratório de Tecnologia do Betão e do Comportamento Estrutural da Faculdade de Engenharia do Porto

LNEC Laboratório Nacional de Engenharia Civil

NBIS National Bridge Inspection Standard

PDL Ensaio de Penetrómetro Ligeiro

PI Passagem inferior

PIA Passagem inferior agrícola

PS Passagem superior

PSR Passagem superior rodoviária

REBAP Regulamento de Estruturas de Betão Armado e Pré-Esforçado

REFER Rede Ferroviária Nacional, REFER, EP

RSA Regulamento de Segurança e Acções para Edifícios e Pontes

SCMI Structures Condition Marking Índex

UIC Union Internationale des Chemins de Fer

vii

ÍNDICE

1. INTRODUÇÃO.................................................................... 1

1.1. Generalidades .................................................................................................................... 1 1.2. Objectivos .......................................................................................................................... 2 1.3. Organização da Dissertação ............................................................................................... 3 1.4. Breve introdução histórica .................................................................................................. 4 1.5. A modernização do caminho de ferro na Região Norte ........................................................ 5 1.6. As obras de arte construídas no contexto da modernização operada ................................. 10 1.7. Classificação das Linhas em função das cargas máximas admissíveis, segundo a Ficha UIC 700-0...................................................................................................................................... 11

2. A CONSTRUÇÃO DE PONTES FERROVIÁRIAS...................14

2.1. O Projecto ........................................................................................................................ 14 2.1.1. Condicionamentos ferroviários, topográficos, geotécnicos e hidráulicos ...................... 14 2.1.2. A Normalização na Construção de Pontes Ferroviárias............................................... 15

2.1.2.1. Antecedentes históricos das Normas da REFER.................................................. 15 2.2.2.2. As Normas de obras de arte da REFER............................................................... 16 2.1.2.3. Outras Normas REFER aplicáveis às obras de arte.............................................. 21

2.1.3. O Projecto de Suspensão de Via ................................................................................ 25 2.1.4. Caracterização das obras de arte estudadas.............................................................. 25

2.1.4.1. Tipo de obras e soluções estruturais .................................................................. 25 2.1.4.2. Estruturas de betão. Materiais e recobrimento das armaduras.......................... 35

2.2. CONSTRUÇÃO ................................................................................................................. 35 2.2.1. A construção de passagens Inferiores por lançamento incrementado. ........................ 35

2.2.1.1. Introdução ......................................................................................................... 35 2.2.1.2. – Método “Keller”.............................................................................................. 36 2.2.1.3. O Método da “Tecnimpulso” .............................................................................. 37 2.2.1.4. Método da “ATROS” .......................................................................................... 40

2.2.2. A construção de passagens inferiores por escavação mineira..................................... 40 2.2.3. A construção de passagens Inferiores por estacas tangentes ..................................... 41 2.2.4. As Fundações das obras de arte................................................................................ 44 2.2.5. O Pré-esforço nas obras de arte ................................................................................ 46 2.2.6. Tipos de aparelhos de apoio mais utilizados .............................................................. 46

2.2.6.1 Apoios elastoméricos .......................................................................................... 47 2.2.6.2. Apoios de neoprene em caixa fixa ...................................................................... 47

2.2.7. Tipos de juntas de dilatação mais utilizadas............................................................... 50 2.2.8. A pré - fabricação de obras de arte ferroviárias .......................................................... 54

2.2.8.1. Problemas e patologias em passagens superiores de peões ............................... 54 2.2.8.2. Passagem Superior Rodoviária. Erros de construção e soluções de reparação..... 58 2.2.7. Construção de Passagens Superiores de Peões tipo “Ponte Catenária”.................. 72 2.2.7.1. Concepção Estrutural......................................................................................... 72

viii

2.2.7.2. O Processo Construtivo ...................................................................................... 73 2.2.8. Ensaios de carga em pontes e viadutos ..................................................................... 75

2.2.8.1. Ensaios da Ponte de Caniços ............................................................................. 77 2.2.8.2. Sistema de medição instalado........................................................................... 78 2.2.8.3. Condução do Ensaio de carga............................................................................ 79 2.2.8.4. Resultados e Conclusões ................................................................................... 80 2.2.8.5. Ensaio de Vibração Ambiental ............................................................................ 82

2.2.9. – A fiscalização das obras de arte ............................................................................. 83 2.2.10. Telas Finais e a Compilação Técnica ....................................................................... 85

3. A INSPECÇÃO DE PONTES FERROVIÁRIAS ......................88

3.1. Antecedentes históricos.................................................................................................... 88 3.2. A Inspecção de obras de arte pela REFER......................................................................... 90

3.2.1. Inspecção das obras de arte no troço Valongo/Cete da Linha do Douro ................. 92 3.3. A Inspecção de Pontes nos Estados Unidos ...................................................................... 96

3.3.1. Compilação Técnica.............................................................................................. 98 3.3.2. Inspecções Periódicas........................................................................................... 98 3.3.3. Inspecções sub - aquáticas ................................................................................... 99 3.3.4. Inspecções Especiais ............................................................................................ 99 3.3.5. Relatórios das Inspecções ..................................................................................... 99 3.3.6. Inspectores e Engenheiros .................................................................................. 100

3.4. A inspecção de pontes pelos caminhos de ferro britânicos .............................................. 100 3.4.1. Frequência e preparação das inspecções ................................................................ 100

3.4.1.1. Inspecções Detalhadas .................................................................................... 100 3.4.1.2. Inspecções Visuais........................................................................................... 102

3.4.2. Inspecções Detalhadas............................................................................................ 103 3.4.2.1. Objectivo ......................................................................................................... 103 3.4.2.2. A Inspecção..................................................................................................... 103

3.4.3. Inspecções Visuais ................................................................................................. 107 3.4.4. Inspecções Adicionais ............................................................................................. 107 3.4.5. Relatórios de Inspecção .......................................................................................... 108 3.4.6. Índice do Estado de Conservação das Obras de Arte................................................ 108

3.4.6.1. Visão geral do Sistema..................................................................................... 109

4. A CONSERVAÇÃO DE PONTES FERROVIÁRIAS ...............111

4.1. A manutenção preventiva ............................................................................................... 111 4.2. Trabalhos de Reparação................................................................................................. 113

4.2.1. A reparação das pontes em alvenaria ...................................................................... 114 4.2.1.1. As causas das infiltrações ................................................................................ 114 4.2.1.2. A reparação do sistema de recolha de águas.................................................... 115

4.2.2. A reparação de pontes metálicas............................................................................. 115 4.2.3. A reparação de pontes em betão armado pré - esforçado......................................... 116 4.2.4. O reposicionamento de aparelhos de apoio num pilar da Ponte Ferroviária de S. João......................................................................................................................................... 117

4.2.4.1. Sistema de Execução ....................................................................................... 119 4.2.4.2. Metodologia de Execução adoptada.................................................................. 120

4.3. A Reabilitação e Reforço de pontes ................................................................................. 123 4.3.1. O Alargamento da Ponte sobre o rio Ferreira ........................................................... 124

ix

4.3.1.1. Concepção das estruturas................................................................................ 125 4.3.1.2. Critérios de dimensionamento.......................................................................... 126 4.3.1.3. Impermeabilização e drenagem ....................................................................... 127

4.3.2. Estabilização e Recuperação de duas Passagens Superiores Rodoviárias ................. 127 4.3.3 - Beneficiação do Viaduto do Rego Lameiro............................................................... 132

5. ANÁLISE DE CUSTOS AO LONGO DO CICLO DE VIDA .....140

5.1. Introdução ..................................................................................................................... 140 5.2. Aspectos que condicionam a análise de custos ao longo do ciclo de vida da ponte .......... 142 5.3 – Os custos das obras objecto de estudo......................................................................... 143 5.4. Comparação de custos do mesmo tipo de obra, a preços actuais.................................... 145

5.4.1. Passagens Inferiores ............................................................................................... 145 5.4.2. Passagens superiores ............................................................................................. 148 5.4.3. Pontes e Viadutos ................................................................................................... 150

5.5. Acções necessárias ao prolongamento do ciclo de vida ................................................... 153 5.6. A utilização da análise de custos de ciclo de vida, na escolha da solução de projecto ...... 155

6. CONCLUSÕES ...............................................................157

6.1 – Considerações finais .................................................................................................... 157 6.2 – Conclusões gerais ........................................................................................................ 159 6.3 – Desenvolvimentos futuros............................................................................................. 161

BIBIOGRAFIA E REFERÊNCIAS...............................................163

PÁGINAS DA INTERNET.........................................................170

x

ÍNDICE DE FIGURAS

CAPÍTULO 1 – INTRODUÇÃO Figura 1.1 - Traçado da Rede Ferroviária da Região Norte ............................................................ 5 Figura 1.2 - Ponte Maria Pia em construção - "Pont du Douro à Porto 2 por G. Eiffel-Clichy, 1879... 6 Figura 1.3 – Construção da Ponte S. João .................................................................................. 6 Figura 1.4 - Traçado da Linha do Douro (Ermesinde – Caíde) ....................................................... 7 Figura 1.5 -Traçado da Linha do Minho (Porto - S. Romão)........................................................... 8 Figura 1.6 - Traçado da Linha do Minho (S. Romão - Nine)........................................................... 8 Figura 1.7 - Traçado da Linha de Guimarães............................................................................... 9 Figura 1.8 -Traçado do Ramal de Braga...................................................................................... 9 Figura 1.9 – Mapa de cargas máximas admissíveis na rede ferroviária nacional (Instrução de Exploração Técnica n.º50) ....................................................................................................... 13 CAPÍTULO 2 - A CONSTRUÇÃO DE PONTES FERROVIÁRIAS Figura 2.1 – Viadutos de Cabeda ............................................................................................. 14 Figura 2.2 - Pormenor de impermeabilização do tabuleiro .......................................................... 18 Figura 2.3 - Modelo de carga 71 da UIC ................................................................................... 22 Figura 2.4 - Modelo de carga SW/O da UIC .............................................................................. 22 Figura 2.5 - Modelo de carga 2000 da UIC ............................................................................... 23 Figura 2.6 – Distribuição por ano de construção das obras analisadas........................................ 25 Figura 2.7 - Passagem Inferior Rodoviária PI 3 ao km 44,894 do Ramal de Braga ....................... 26 Figura 2.8 - Passagem Agrícola - PA 2 ao km 22,415 da Linha do Douro ................................... 27 Figura 2.9 - Passagem Inferior de Peões – PIP 3 ao km 35,172 da Linha do Douro (Estação de Paredes) ................................................................................................................................ 27 Figura 2.10 - Passagem Inferior Rodoviária - PI 2 ao km 44.256 do Ramal de Braga (Exemplo de tabuleiro com aparelhos de apoio)............................................................................................ 27 Figura 2.11 - Passagens Inferiores Rodoviárias - Tipo de Estrutura.............................................. 28 Figura 2.12 - Passagens Inferiores Agrícolas - Tipos de Estrutura................................................ 29 Figura 2.13 – Passagem Superior Rodoviária ao km 32,730 da Linha do Minho .......................... 29 Figura 2.14 - Passagens Superiores Rodoviárias - Tipo de Estrutura ............................................ 30 Figura 2.15 - Passagens Superiores Rodoviárias. Distribuição por número de vãos ...................... 31 Figura 2.16 - Passagens Superiores Rodoviárias - Tipos estruturais em obras de um único vão..... 31 Figura 2.17 - Passagens Superiores Rodoviárias - Tipos estruturais em obras de três tramos........ 32 Figura 2.18 –Passagem superior de peões (metálica) ao km 29,971 da Linha do Douro (Estação de Caíde) .................................................................................................................................... 32 Figura 2.19 – Passagem superior de peões (betão .................................................................... 32 Figura 2.20 – Distribuição das passagens superiores de peões segundo o material de construção 33 Figura 2.21 – Distribuição das passagens superiores de peões segundo as acessibilidades.......... 33 Figura 2.22 – Viaduto Ferroviário ao km 35.740 da Linha do Minho, com 426 m de extensão...... 34 Figura 2.23 - Pontes e Viadutos Ferroviários - Tipos de estrutura ................................................ 34 Figura 2.24 - Sistema de Suspensão de Via "Keller" .................................................................. 36 Figura 2.25 - Sistema "Keller" - Apoio no quadro de betão armado ......................................... 36

xi

Figura 2.26 - Sistema "Keller".Prolongas .................................................................................. 36 Figura 2.27 - Sistema "Keller". Macacos hidráulicos e prolongas ............................................ 36 Figura 2.28 - Quadro deslizante de passagem inferior de peões no troço Caíde- Livração da Linha do Douro................................................................................................................................ 37 Figura 2.29 -Sistema de lançamento hidráulico (macacos hidráulicos e prolongas) ..................... 37 Figura 2.30 - Sistema de suspensão de via ............................................................................... 38 Figura 2.31 - Sistema de Suspensão de via . Apoio das vigas mestras no quadro de betão armado............................................................................................................................................. 38 Figura 2.32 - Esquema de Suspensão de via............................................................................. 38 Figura 2.33 - Laje e muretes de guiamento ............................................................................... 39 Figura 2.34 - Quadro de betão armado. Bisel de ataque............................................................. 39 Figura 2.35 - Aterro de reforço da zona de suspensão de via ...................................................... 39 Figura 2.36 - Passagem inferior rodoviária 6, ao km 44.006 do troço Penafiel – Caíde................. 41 Figura 2.37 – Fase I ............................................................................................................... 41 Figura 2.38 - Fase II................................................................................................................ 42 Figura 2.39 - Fase III ............................................................................................................... 43 Figura 2.40 - Fase IV ............................................................................................................... 43 Figura 2.41 – Fase V............................................................................................................... 44 Figura 2.42 - Aparelho de Apoio Elastométrico refª "Lemitrony".................................................. 47 Figura 2.43 - Aparelho de Apoio tipo "Panela" - Unidireccional (Encontro da Ponte de Caniços) ... 48 Figura 2.44 - Aparelho de Apoio tipo "Panela" - refª Letrony - Unidireccional............................... 48 Figura 2.45 - Aparelho de apoio tipo "Panela" - refª Letrony - Fixo............................................... 48 Figura 2.46 - Tipos de Aparelhos de Apoio ........................................................................ 49 Figura 2.47 – Desenho esquemático de junta de dilatação elastomérica de compressão .............. 50 Figura 2.48 – Pormenor esquemático de junta de dilatação elástica expansível nucleada estrutural (Tipo Jeene) ........................................................................................................................... 51 Figura 2.49 – Desenho esquemático de junta de dilatação em monobloco de elastómero e aço ... 51 Figura 2.50 – Desenho de junta de dilatação metálica ............................................................... 52 Figura - 2.51 – Desenho esquemático de junta elastomérica modelar ......................................... 52 Figura 2.52 – Tipos de juntas de dilatação em pontes e viadutos ferroviários .............................. 53 Figura - 2.53 – Desenho esquemático de junta de dilatação em neoprene armado ...................... 53 Figura 2.54 - Betão destacado na zona de fixação da chapa do guarda-corpos.......................... 55 Figura 2.55 - Idem, já com oxidação num dos parafusos............................................................ 55 Figura 2.56.–Destaque do betão na zona da chapa inferior de fixação do guarda - corpos ............ 55 Figura 2.57 - Idem .................................................................................................................. 55 Figura 2.58 - Posicionamento de parafusos de chapa de fixação de guarda corpos em junta de dilatação ................................................................................................................................ 56 Figura 2.59 - Idem .................................................................................................................. 56 Figura 2.60 - Laje de escada de acesso a passagem superior de peões, com fissuras na face inferior. .................................................................................................................................. 56 Figura 2.61 - Fissuras na face inferior da laje de escada, após reparação.................................. 56 Figura 2.62 – Rampa na zona de ligação ao viaduto rodoviário, podendo-se ver o depósito de terras soltas e pedras ....................................................................................................................... 57 Figura 2.63 – Vista, de outro ângulo, do depósito de terras e pedras. ........................................ 57 Figura 2.64 - Deslocamento da rampa em resultado de assentamento diferencial da fundação... 57 Figura 2.65 - Aumento da largura da junta em cerca de 3 cm .................................................. 57 Figura 2.66 - Passagem Superior Rodoviária - km 26,177 da Linha do Douro .............................. 58

xii

Figura 2.67 - Projecto inicial .................................................................................................... 59 Figura 2.68 - Encontro em cofre.Falta de juntas de dilatação..................................................... 62 Figura 2.69 - Encontro Perdido. Falta de juntas de dilatação ...................................................... 62 Figura 2.70 - Aparelho de apoio no Encontro Perdido ................................................................ 62 Figura 2.71 - Rotura das ligações do passeio ao muro avenida .................................................. 63 Figura 2.72 - Fracturação dos passeios .................................................................................... 63 Figura 2.73 - Fractura no banzo inferior da "Viga longarina"....................................................... 63 Figura 2.74 - Fissuras e mau acabamento do betão (Encontro em cofre).................................... 64 Figura 2.75 - Fissura (Encontro em cofre) ................................................................................. 64 Figura 2.76 - Passeio em falso, por falta de aterro no encontro perdido...................................... 64 Figura 2.77 – Falta de aterro no encontro perdido..................................................................... 64 Figura 2.78 – Rotação do passeio relativamente ao muro avenida .............................................. 65 Figura 2.79 - Parafusos de fixação da chapa do guarda corpos em junta..................................... 65 Figura 2.80 - Erosão do talude do Encontro em cofre................................................................. 66 Figura 2.81 – Falta de Caleiras de drenagem............................................................................ 66 Figura 2.82 - Caleiras de drenagem deslocadas ou partidas ....................................................... 66 Figura 2.83 - Betão aparente no encontro com irregularidades .................................................. 67 Figura 2.84 – Betão aparente no tabuleiro com irregularidades ................................................. 67 Figura 2.85 - Reposição da ligação do passeio ao muro avenida. Caleira de drenagem complementar ........................................................................................................................ 71 Figura 2.86 – Caleira da drenagem complementar .................................................................... 71 Figura 2.87 - Pormenor do muro de gabiões contendo o muro de betão armado ....................... 72 Figura 2.88 - Muros de gabiões norte e nascente ...................................................................... 72 Figura 2.89 - Passagem inferior de peões ao km 30,780 da Linha do Douro .............................. 72 Figura 2.90 – Vista inferior do tabuleiro da passagem inferior de peões .................................. 72 Figura 2.91 - Execução do Encontro E1 .................................................................................... 74 Figura 2.92 - Aplicação de pré-esforço no Encontro E2 .............................................................. 74 Figura 2.93 - Instalação dos cabos de pré-esforço do tabuleiro ................................................. 74 Figura 2.94 – Pré - laje do tabuleiro ......................................................................................... 74 Figura 2.95 - Colocação de pré-lajes suspensas dos cabos de pré-esforço .................................. 75 Figura 2.96 – Vão entre o encontro esquerdo e o pilar com todas as pré-lajes já instaladas .......... 75 Figura 2.97 - Montagem de pré – lajes na zona sobre a plataforma ferroviária em período de interdição nocturna de via e corte de tensão ............................................................................. 75 Figura 2.98 - Armaduras de aço já colocadas no tabuleiro, para início da betonagem do tabuleiro, em período nocturno............................................................................................................... 75 Figura 2.99 - Ponte de Caniços ao km 35,364 da Linha de Guimarães ..................................... 77 Figura 2.100 – Vista da via férrea da Ponte de Caniços ............................................................. 77 Figura 2.101 - A ponte antiga de via estreita, transformada em atravessamento pedonal e a nova Ponte de Caniços.................................................................................................................... 77 Figura 2.102 - Sensor de deslocamento, LVDT (Costa et al, 2004) ........................................... 78 Figura 2.103 - Comparador eléctrico (Costa et al, 2004)............................................................ 78 Figura 2.104 - Instalação de inclinómetro. (Costa et al, 2004 ).................................................. 79 Figura 2.105 - LVDT instalado no Encontro E1, para medir a abertura da junta de dilatação(Costa et al, 2004)................................................................................................................................ 79 Figura 2.106 - Laboratório móvel de estruturas sob o terceiro tramo, durante a realização do ensaio. (Costa et al, 2004) ...................................................................................................... 80

xiii

Figura 2.107 - Locomotiva utilizada no ensaio.(Costa et al, 2004 ) ............................................ 80 Figura 2.108 - Posicionamento do veículo na Posição 1, durante o ensaio. (Costa et al, 2004 ) .... 80 CAPÍTULO 3 - A INSPECÇÃO DE PONTES FERROVIÁRIAS Figura 3.1- Silver Bridge, Point Pleasant, West Virginia, 1967 .................................................... 89 Figura 3.2 – Passagem Inferior Rodoviária ao km 31,786 da Linha do Douro .............................. 92 Figura 3.3 – Fissuras na face inferior com abertura máxima de 2 mm. Extensão total das fissuras 15 m. .................................................................................................................................... 92 Figura 3.4 – Tampa de caleira técnica partida na Ponte em betão armado pré - esforçado sobre o Rio Ferreira (via ascendente).................................................................................................... 93 Figura 3.5 – Falta de tampas na caleira técnica no passeio do tabuleiro metálico da ponte antiga sobre o Rio Ferreira (via descendente) ...................................................................................... 93 Figura 3.6 – Após a inspecção, instalação de cantoneira, na zona em alvenaria e betão, da ponte antiga, para evitar o roubo das tampas ..................................................................................... 93 Figura 3.7– Após a inspecção, instalação de chapa de aço sobre a zona de passeio e da caleira , na zona do tabuleiro metálico, para evitar o roubo de tampas. ................................................... 93 Figura 3.8 – Juntas entre pedras da alvenaria, abertas no sentido vertical.............................. 94 Figura 3.9 – Juntas abertas e fissuras com 3 mm de abertura. Escorrências da drenagem, por inexistência de tubos de queda ................................................................................................ 94 Figura 3.10 – Classificação em termos de índice de gravidade por tipo de obra........................... 94 CAPÍTULO 4 - A CONSERVAÇÃO DE PONTES FERROVIÁRIAS Figura 4.1 - Aparelhos de apoio do Pilar E7 da Ponte S João (Janeiro 2007) ............................. 117 Figura 4.2 - Aparelho de apoio móvel do pilar E7 – Alçado lateral ............................................. 117 Figura 4.3 – Estrutura de apoio para levantamento do tabuleiro. Macacos laterais ..................... 120 Figura 4.4 - Sistema de segurança e controle de movimentação dos pêndulos........................... 122 Figura 4.5 - Ponte antiga sobre o Rio Ferreira, após o alargamento (Via Descendente) ............... 124 Figura 4.6 - Projecto de alagamento da Ponte sobre o rio Ferreira ............................................ 124 Figura 4.7 - Corte esquemático do novo tabuleiro em betão armado na zona dos arcos de alvenaria........................................................................................................................................... 126 Figura 4.8 - Alargamento dos passeios no tabuleiro metálico.................................................... 126 Figura 4.9 – Passagem Superior ao km 9,078 da Linha de Leixões, antes da recuperação....... 127 Figura 4.10 - Passagem Superior ao km 14,300 da Linha de Leixões, antes da recuperação .... 127 Figura 4.11 - P.S. km 9.300 da Linha de Leixões Armaduras a descoberto, com corrosão em viga e pilar. .................................................................................................................................... 128 Figura 4.12 – Idem, num pilar. .............................................................................................. 128 Figura 4.13 – P.S. ao km 14,300 da Linha de Leixões. Armaduras de viga com corrosão....... 128 Figura 4.14 – Idem ............................................................................................................... 128 Figura 4.15 - P.S. ao km 9,078 da Linha de Leixões, durante os trabalhos de reabilitação........ 130 Figura 4.16 – Idem ............................................................................................................... 130 Figura 4.17 – Passagem superior rodoviária ao km 14,300 da Linha de Leixões, durante os trabalhos de reabilitação ....................................................................................................... 130 Figura 4.18 - Passagem superior rodoviária ao km 14,300 da Linha de Leixões – 2 ª fase dos trabalhos de reabilitação ....................................................................................................... 130

xiv

Figura 4.19 – Desenho de pormenor da Protecção das sapatas das Passagens Superiores (Projecto do Gabinete de Estudos e Geotecnia, Lda.) ............................................................................. 131 Figura 4.20 – P.S. ao km 9.078 da Linha de Leixões. Obra já reabilitada. ................................. 131 Figura 4.21 – P.S. ao km 14.300.Obra já reabilitada. .............................................................. 131 Figura 4.22 – Corte Longitudinal do Antigo Viaduto Rego Lameiro, ao km 0,489 da Linha do Minho (Desenho elaborado com base no projecto original) ................................................................. 132 Figura 4.23 – Alçado Sul do Viaduto do Rego Lameiro já com o novo viaduto em betão armado (Projecto do Professor Edgar Cardoso).................................................................................... 132 Figura 4.24 – Construção do novo viaduto em betão armado pré-esforçado .............................. 133 Figura 4.25– Andaime de inspecção ao viaduto do Rego Lameiro. Inicio da construção do novo viaduto................................................................................................................................. 133 Figura 4.26– Aspecto do viaduto do Rego Lameiro, antes dos trabalhos de beneficiação ......... 133 Figura 4.27 – Desenho de levantamento das patologias existentes nos viadutos. A junta entre as duas obras, neste pilar atingia no fecho 4 cm de abertura. ...................................................... 134 Figura 4.28 – Aspecto das alvenarias dos viadutos antes das obras de beneficiação. ............... 134 Figura 4.29 – Execução dos trabalhos de embasamento dos pilares dos viadutos...................... 135 Figura 4.30 – Pilar do viaduto após a execução dos trabalhos de reforço ................................. 135 Figura 4.31 – Desenho de pormenor do tratamento das juntas da alvenaria.............................. 136 Figura 4.32 – Desenho de pormenor de tratamento da juntas entre os tímpano e a abóbada ..... 137 Figura 4.33 – Pormenor da ligação do novo viaduto de betão armado, ao viaduto de alvenaria ... 138 CAPÍTULO 5 - ANÁLISE DE CUSTOS AO LONGO DO CICLO DE VIDA Figura 5.1 – Comparação de custos de passagens inferiores rodoviárias, a preços actuais......... 148 Figura 5.2 – Comparação de custos de passagens superiores rodoviárias, a preços actuais ....... 150 Figura 5.3 – Comparação de custos de pontes ou viadutos construídos com duas ou mais vias ferroviárias, a preços actuais ................................................................................................ 151 Figura 5.4 – Comparação de custos de pontes e viadutos, a preços actuais .............................. 152

xv

ÍNDICE DE TABELAS CAPÍTULO 2 – CONSTRUÇÃO DE PONTES FERROVIÁRIAS Tabela 2.1 – Comparação entre frequências naturais calculadas e frequências identificadas nos ensaios ....................................................................................................................................... 83 CAPÍTULO 3 - A INSPECÇÃO DE PONTES FERROVIÁRIAS Tabela 3.1 – Índice de classificação de avarias em pontes, utilizado pela REFER .......................... 91 CAPÍTULO 5 - ANÁLISE DE CUSTOS AO LONGO DO CICLO DE VIDA Tabela 5.1 - Custos à data da conclusão, das Passagens Inferiores Rodoviárias construídas no ramal de Braga ................................................................................................................................... 145 Tabela 5.2 – Custos, à data da conclusão, das Passagens Inferiores Agrícolas construídas no ramal de Braga ................................................................................................................................... 146 Tabela 5.3 – Custos, à data da conclusão, das Passagens inferiores rodoviárias construídas no troço Valongo – Cete Linha do Douro ........................................................................................ 146 Tabela 5.4 – Custos, à data da conclusão, das passagens inferiores agrícolas no troço Valongo – Cete da Linha do Douro ............................................................................................................. 147 Tabela 5.5 – Custos, à data da conclusão, de algumas das passagens inferiores rodoviárias construídas nos troços Cete – Penafiel e Penafiel – Caíde da Linha do Douro............................ 147 Tabela 5.6 – Custos, à data da conclusão, de algumas das passagens superiores rodoviárias construídas no troço Penafiel – Caíde da Linha do Douro ........................................................... 149 Tabela 5.7 – Custos, à data da conclusão, das passagens superiores rodoviárias construídas no ramal de Braga.......................................................................................................................... 149 Tabela 5.8 – Custos das pontes ou viadutos construídas para duas ou mais vias, a preços actuais................................................................................................................................................. 150 Tabela 5.9 – Custos de algumas pontes ou viadutos, construídas para uma única via, a preços actuais ...................................................................................................................................... 151

xvi

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

1

1. INTRODUÇÃO

1.1. Generalidades

A modernização do caminho de ferro, na Região Norte, considerando que esta região é balizada a

sul por Vila Nova de Gaia, é um processo já longo, que teve início em 1985 e ainda decorre,

prevendo-se que não fique concluída antes do final da primeira década do século XXI.

Nesta Região Norte considera-se como eixos ferroviários principais o troço final da Linha do Norte,

entre a cidade de Vila Nova de Gaia e o Porto, a Linha do Minho entre o Porto e Valença, a Linha de

Guimarães entre Lousado, (estação da Linha do Minho onde tem início a Linha de Guimarães) e

Guimarães, o Ramal de Braga, entre Nine, (estação da Linha do Minho, onde tem início o ramal de

Braga) e Braga, a Linha do Douro entre o Porto e Pocinho e a Linha de Leixões entre a cidade do

Porto e o porto de Leixões.

Até meados da década de 80 a construção de obras de arte, nesta rede ferroviária, era pontual,

pertencendo normalmente a iniciativa da sua execução a outras entidades, nomeadamente

autarquias e entidades gestoras de estradas e auto-estradas e destinando-se as mesmas a executar

novos atravessamentos ao caminho de ferro, ou a eliminar passagens de nível existentes.

Com a construção de um novo atravessamento ferroviário sobre o Rio Douro, teve início a

construção, pela entidade gestora da infra-estrutura ferroviária, de novas pontes, viadutos,

passagens superiores e inferiores rodoviárias, passagens inferiores e superiores de peões e

passagens hidráulicas, obras necessárias para a modernização das linhas de caminho de ferro atrás

referidos.

É sobretudo na década de 1990 do século XX, e nos primeiros anos do século XXI, que no âmbito

da modernização das vias ferroviárias, ocorre a construção de um número apreciável e variado de

obras de arte, com o objectivo de aumentar não só a velocidade de circulação, mas também a

capacidade de circulação e a sua segurança.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

2

São construídas várias obras de atravessamento das vias férreas não só nos locais onde existiam

passagens de nível que são totalmente eliminadas, mas também em locais onde entretanto, em

face da expansão urbanística, se verifica a necessidade sentida pelas populações e pelos

responsáveis autárquicos de criar novos atravessamentos ao caminho de ferro, com novos

restabelecimentos rodoviários e melhoria da própria rede viária envolvente aos mesmos.

Aproveitando a oportunidade de num espaço de tempo relativamente curto, terem sido construídas

mais de três centenas de obras de arte, procedeu-se a um levantamento e a uma análise das obras

de arte construídas nas Linhas do Minho, Linha de Guimarães, Linha do Douro e Ramal de Braga,

num total de duzentas e cinquenta e quatro obras, bem como de cinco obras já existentes que

foram reabilitadas e alargadas.

No sentido de ilustrar o desenvolvimento da dissertação, são também apresentados alguns casos

práticos, de obras de arte ferroviárias que não fazem parte do grupo atrás referido, e cuja

construção decorreu antes desse período, ou estão ainda em construção.

1.2. Objectivos

Pretende-se fazer uma abordagem de todas as fases do ciclo de vida das obras de arte construídas

no âmbito da modernização do caminho de ferro, do seu projecto, da sua construção, da

fiscalização, da sua inspecção e manutenção, não só do ponto de vista técnico mas também dos

respectivos custos.

A partir da análise de um conjunto de obras de arte construídas na Rede Ferroviária da Região

Norte, pretende-se mostrar a própria evolução do projecto das obras de arte, desde os

condicionamentos específicos dos projectos para caminho de ferro, materiais utilizados e processos

construtivos específicos desta área.

Tendo por base o conhecimento dos custos das obras analisadas, nas suas componentes de

projecto, fiscalização e construção, pretende-se comparar custos de obras do mesmo tipo

relacionando com as condições de execução.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

3

1.3. Organização da Dissertação

A Dissertação está organizada em seis capítulos. No capítulo 1, faz-se uma introdução ao tema, enquadrando historicamente a modernização

operada no caminho de ferro na Região Norte.

No Capítulo 2, são introduzidas as normas de projecto para a construção de pontes ferroviárias,

bem como do projecto de suspensão de via, necessário para a construção de atravessamentos

inferiores ao caminho de ferro em vias férreas que se mantêm em exploração. Faz-se uma

caracterização das obras estudadas, do ponto de vista estrutural. Em relação às obras em betão

estrutural, é apresentada uma análise dos materiais e recobrimentos das armaduras propostos nos

projectos. No sub - capítulo referente à construção, apresentam-se os processos construtivos mais

utilizados na construção de obras de arte inferiores ao caminho de ferro.

No Capítulo 3, é dado conhecimento de como é realizada a inspecção de pontes ferroviárias em

Portugal, pela REFER , sendo apresentados os resultados das inspecções de rotina efectuadas no

troço entre Valongo e Cete da Linha do Douro. É dada uma panorâmica geral das práticas de

inspecções de pontes nos Estados Unidos da América e nos Caminhos de Ferro Britânicos.

O Capítulo 4, trata de conservação de pontes, sendo referida a manutenção preventiva e os

trabalhos de reparação mais frequentes em pontes de alvenaria, metálicas e de betão armado pré-

esforçado. É apresentado o caso da substituição de aparelhos de apoio num pilar da Ponte S. João,

pouco tempo após a sua entrada em serviço. São apresentados casos de reabilitação e reforço de

obras de arte: o alargamento da ponte metálica sobre o rio Ferreira, a estabilização e recuperação

de duas passagens superiores rodoviárias na Linha de Leixões e a beneficiação do viaduto de

alvenaria do Rego Lameiro.

No capítulo 5, sobre análise de custos de ciclo de vida de pontes ferroviárias, faz-se uma introdução

a esta temática, situando-a historicamente e apresentando a forma como esses custos podem ser

quantificados. Refere-se os aspectos que condicionam os custos das obras. Apresentam-se os

custos de projecto, custos previstos de construção, custos reais de construção, custos de

fiscalização e custos totais de execução, para passagens inferiores rodoviárias, passagens

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

4

superiores rodoviárias, pontes e viadutos, em diferentes troços e linhas ferroviárias. Comparam-se a

preços actuais obras de natureza semelhante. Faz-se referência a algumas acções que podem ser

levadas a efeito para prolongar o ciclo de vida das obras de arte. Aborda-se a análise de custos de

ciclo de vida na perspectiva de escolha da solução de projecto.

No capítulo 6 são apresentadas as conclusões gerais da dissertação, resumindo as principais

características da análise efectuada e dos factores que influenciam o custo das obras de arte

ferroviárias. São sugeridos alguns pontos que se considera poderem ser investigados nesta área.

1.4. Breve introdução histórica

Quando em 1867, nove anos após a inauguração do primeiro troço de via férrea, entre Lisboa e o

Carregado, o Governo propôs às Câmaras a construção da Linha do Minho entre o Porto e Valença

com ligação a Braga e da Linha do Douro entre o Porto e o Pinhão, tinha sido definitivamente

adoptada a bitola da via de 1,667 m, facto para o qual contribuiu decisivamente a sua adopção pela

Espanha.

No entanto só em Julho de 1872, tiveram início os trabalhos de construção da Linha do Minho,

tendo-se verificado a sua entrada em serviço por troços intermédios. A abertura à exploração até

Braga ocorreu em 1875.

Na Linha do Douro, cuja construção enfrentou maiores dificuldades, sobretudo à medida que os

trabalhos avançavam para montante do rio, os trabalhos iniciaram-se apenas em 1873, tendo sido

aberto à exploração o troço Ermesinde – Penafiel em 1875 e, estabelecida a ligação à Régua

apenas em 1879.

A ligação do Caminho de Ferro a Guimarães, teve origem na concessão feita em 11 de Julho de

1871 a Simão Gattai, para a construção dum caminho de ferro do tipo americano sobre estrada,

ligando Porto e Braga, passando por Santo Tirso e Guimarães, com uma bitola de 1,00 m.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

5

Em Outubro de 1874 a concessão foi trespassada a uma companhia inglesa, tendo-se a construção

arrastado morosamente, sendo de notar que em 1879, apenas tinham sido construídos seis

quilómetros de via férrea.

Em 1897, após a rescisão deste contrato devido a falência dessa empresa, foi concessionada a

construção de uma via larga entre Bougado e Guimarães a uma empresa portuguesa. Contudo em

1880, foi satisfeito o pedido da empresa para que a construção se fizesse em bitola de 1.00 m,

como tinha sido estabelecido inicialmente. Foi aberto à exploração até Guimarães em 1884.

1.5. A modernização do caminho de ferro na Região Norte

A rede ferroviária atrás referida, construída no fim do século XIX e princípios do século XX, foi

durante muito tempo o principal sistema de comunicações e a base do desenvolvimento agrícola,

sendo responsável pela expansão do comércio em locais que antes da chegada do comboio eram

completamente isolados.

Linh

a do

Min

ho

Linh

a do

Min

ho

Linh

a do

Min

ho

Linh

a do

Min

ho

Linh

a do

Min

hoRa

mal de

Bra

ga

Ramal

de B

raga

Ramal

de B

raga

Ramal

de B

raga

Ramal

de B

raga

Linha de Guimarães

Linha de Guimarães

Linha de Guimarães

Linha de Guimarães

Linha de Guimarães

Linha do Tâmega

Linha do Tâmega

Linha do Tâmega

Linha do Tâmega

Linha do Tâmega

Linha do Corgo

Linha do Corgo

Linha do Corgo

Linha do Corgo

Linha do Corgo

Linha do T

Linha do Tu

Linha do T

Linha do TLinha do T

Ramal de Famalicão

Ramal de Famalicão

Ramal de Famalicão

Ramal de Famalicão

Ramal de Famalicão

Linha do Douro

Linha do Douro

Linha do Douro

Linha do Douro

Linha do DouroLinha do Tâmega

Linha do Tâmega

Linha do Tâmega

Linha do Tâmega

Linha do Tâmega

Linh

a do

Cor

go

Linh

a do

Cor

go

Linh

a do

Cor

go

Linh

a do

Cor

go

Linh

a do

Cor

go

Figura 1.1 - Traçado da Rede Ferroviária da Região Norte Durante mais de um século, não houve, praticamente, investimento nesta rede ferroviária,

mantendo-se os traçados e as infra-estrutura quase sem alterações até ao início da modernização,

que teve lugar apenas na última década do século XX.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

6

Figura 1.2 - Ponte Maria Pia em construção - "Pont du Douro à Porto 2 por G. Eiffel-Clichy, 1879

A modernização da rede ferroviária do norte ocorreu na sequência da construção da nova Ponte

ferroviária Sobre o Rio Douro, a Ponte S. João (1985/1991), que integrou um conjunto de vários

obras de arte, num novo traçado em via dupla, com uma extensão de cerca de 3,4 km.

Figura 1.3 – Construção da Ponte S. João

A Ponte S. João substituiu a centenária Ponte D. Maria Pia, de via única, projectada por Théophile

Seyrig e Gustave Eiffel, inaugurada em Novembro de 1877 mas, que desde sempre impôs fortes

restrições de velocidade (máximo de 20 km/h) e de carga (16 toneladas por eixo e 3,8 toneladas

por metro), penalizando fortemente o tráfego de passageiros e de mercadorias entre as duas

principais cidades do País.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

7

A talhe de foice, refira-se que a Casa Eiffel, foi em Portugal responsável pela construção de 33

pontes metálicas ferroviárias, entre 1875 e 1892, algumas delas nas linhas do Minho e Douro.

Dessas pontes apenas duas se mantêm em serviço, a Ponte de Alviela, na Linha do Norte,

reabilitada em 1892 e a Ponte rodo - ferroviária, sobre o rio Lima, em Viana do Castelo, na Linha do

Minho, com 645 m de comprimento.

Esta ponte inaugurada em Junho de 1878, foi objecto na década de 1960, de trabalhos de reforço

do tabuleiro inferior ferroviário, tendo sido realizados em 1986, trabalhos de consolidação das

alvenarias dos pilares, através de ancoragens e injecções. O tabuleiro do viaduto de acesso do lado

norte, foi integralmente substituído, tendo contudo sido mantida a traça original.

Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)

Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)

Porto-São Bento( PK: 2,6)Porto-São Bento( PK: 2,6)Porto-São Bento( PK: 2,6)Porto-São Bento( PK: 2,6)Porto-São Bento( PK: 2,6)

to-Contumil( PK: 2,3)

o-Contumil( PK: 2,3)

o-Contumil( PK: 2,3)

o-Contumil( PK: 2,3)

o-Contumil( PK: 2,3)

Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Travagem( PK: 9,7)Travagem( PK: 9,7)Travagem( PK: 9,7)Travagem( PK: 9,7)Travagem( PK: 9,7)

Leandro( PK: 11,8)Leandro( PK: 11,8)Leandro( PK: 11,8)Leandro( PK: 11,8)Leandro( PK: 11,8)

São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)

São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

Vila M( PK: Vila M( PK: Vila M( PK: Vila M( PK: Vila M( PK:

Oleiros( PK: 33,1)Oleiros( PK: 33,1)Oleiros( PK: 33,1)Oleiros( PK: 33,1)Oleiros( PK: 33,1)

Suzão( PK: 14,3)Suzão( PK: 14,3)Suzão( PK: 14,3)Suzão( PK: 14,3)Suzão( PK: 14,3)

Valongo( PK: 16,0)Valongo( PK: 16,0)Valongo( PK: 16,0)Valongo( PK: 16,0)Valongo( PK: 16,0)

São Martinho do Campo( PK: 18,6)São Martinho do Campo( PK: 18,6)São Martinho do Campo( PK: 18,6)São Martinho do Campo( PK: 18,6)São Martinho do Campo( PK: 18,6)

Terronhas( PK: 21,8)Terronhas( PK: 21,8)Terronhas( PK: 21,8)Terronhas( PK: 21,8)Terronhas( PK: 21,8) Recarei - Sobreira

( PK: 25,3)Recarei - Sobreira( PK: 25,3)Recarei - Sobreira( PK: 25,3)Recarei - Sobreira( PK: 25,3)Recarei - Sobreira( PK: 25,3)

Parada( PK: 28,1)Parada( PK: 28,1)Parada( PK: 28,1)Parada( PK: 28,1)Parada( PK: 28,1)

Cête( PK: 30,2)Cête( PK: 30,2)Cête( PK: 30,2)Cête( PK: 30,2)Cête( PK: 30,2)

Paredes( PK: 34,9)Paredes( PK: 34,9)Paredes( PK: 34,9)Paredes( PK: 34,9)Paredes( PK: 34,9)

Penafiel( PK: 38,0)Penafiel( PK: 38,0)Penafiel( PK: 38,0)Penafiel( PK: 38,0)Penafiel( PK: 38,0)

Bustelo( PK: 40,8)Bustelo( PK: 40,8)Bustelo( PK: 40,8)Bustelo( PK: 40,8)Bustelo( PK: 40,8)

Meinedo( PK: 43,1)Meinedo( PK: 43,1)Meinedo( PK: 43,1)Meinedo( PK: 43,1)Meinedo( PK: 43,1)

Caíde( PK: 46,0)Caíde( PK: 46,0)Caíde( PK: 46,0)Caíde( PK: 46,0)Caíde( PK: 46,0)

Oliveira( PK: 48,8)Oliveira( PK: 48,8)Oliveira( PK: 48,8)Oliveira( PK: 48,8)Oliveira( PK: 48,8)

R( R( R( R( R(

General Torres( PK: 333 3)General Torres( PK: 333 3)General Torres( PK: 333 3)General Torres( PK: 333,3)General Torres( PK: 333 3)

FELGUEIRAS

GONDOMAR

LOUSADA

MAIA

MARCO DE CANAVE

PAÇOS DE FERREIRA

PAREDES

PENAFIEL

SANTO TIRSO

VALONGO

Figura 1.4 - Traçado da Linha do Douro (Ermesinde – Caíde)

Com excepção de um pequeno troço da Linha do Minho, na zona de Contumil, na sequência da

construção no início de 1991 do complexo oficinal de Contumil, apenas em Novembro de 1993 foi

consignada a primeira empreitada de duplicação e electrificação do troço Ermesinde – Valongo, da

Linha do Douro, numa extensão de cerca de 7,6 Km. O último troço objecto de estudo na Linha do

Douro, entre Penafiel e Caíde, ficou concluído em Outubro de 2002.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

8

Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)Vila Cova( PK: 3,7)

Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)Pedrouços da Maia( PK: 7,6)

Arroteia( PK: 11,6)Arroteia( PK: 11,6)Arroteia( PK: 11,6)Arroteia( PK: 11,6)Arroteia( PK: 11,6)

Custió-Araújo( PK: 14,3)Custió-Araújo( PK: 14,3)Custió-Araújo( PK: 14,3)Custió-Araújo( PK: 14,3)Custió-Araújo( PK: 14,3)

Porto-Contumil( PK: 2,3)Porto-Contumil( PK: 2,3)Porto-Contumil( PK: 2,3)Porto-Contumil( PK: 2,3)Porto-Contumil( PK: 2,3)

Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)Águas Santas( PK: 6,4)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Palmilheira( PK: 6,7)

Travagem( PK: 9,7)Travagem( PK: 9,7)Travagem( PK: 9,7)Travagem( PK: 9,7)Travagem( PK: 9,7)

Leandro( PK: 11,8)Leandro( PK: 11,8)Leandro( PK: 11,8)Leandro( PK: 11,8)Leandro( PK: 11,8)

São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)São Frutuoso( PK: 13,1)

São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

São Romão( PK: 15,4)

Portela( PK: 18,4)Portela( PK: 18,4)Portela( PK: 18,4)Portela( PK: 18,4)Portela( PK: 18,4)

Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)Ermesinde( PK: 8,4)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

Ermesinde - B( PK: 0,8)

InfestaPK: 10,0)Infesta

PK: 10,0)Infesta

PK: 10,0)Infesta

PK: 10,0)Infesta

PK: 10,0)

Suzão( PK: Suzão( PK: 1Suzão( PK: Suzão( PK: Suzão( PK:

ha d

o M

inho

ha d

o M

inho

a do

Min

hoha

do

Min

hoha

do

Min

hoMAIA

PORTO

SAN

VALONG

DE TROFA

Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)

Barrimau( PK: 30,2)Barrimau( PK: 30,2)Barrimau( PK: 30,2)Barrimau( PK: 30,2)Barrimau( PK: 30,2)

Famalicão( PK: 32,1)Famalicão( PK: 32,1)Famalicão( PK: 32,1)Famalicão( PK: 32,1)Famalicão( PK: 32,1)

Mouquim( PK: 34,9)Mouquim( PK: 34,9)Mouquim( PK: 34,9)Mouquim( PK: 34,9)Mouquim( PK: 34,9)

Trofa( PK: 22,9)Trofa( PK: 22,9)Trofa( PK: 22,9)Trofa( PK: 22,9)Trofa( PK: 22,9)

Nine( PK: 39,0)Nine( PK: 39,0)Nine( PK: 39,0)Nine( PK: 39,0)Nine( PK: 39,0)

Senhora das Dores( PK: 20,8)Senhora das Dores( PK: 20,8)Senhora das Dores( PK: 20,8)Senhora das Dores( PK: 20,8)Senhora das Dores( PK: 20,8)

LouroPK: 36,8)

LouroPK: 36,8)

LouroPK: 36,8)

LouroPK: 36,8)

LouroPK: 36,8)

Lousado( PK: 25,5)Lousado( PK: 25,5)Lousado( PK: 25,5)Lousado( PK: 25,5)Lousado( PK: 25,5)

São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)São Romão - A( PK: 14,7)

mão5,4)

mão5,4)

mão5,4)

mão5,4)

mão5,4)

Portela( PK: 18,4)Portela( PK: 18,4)Portela( PK: 18,4)Portela( PK: 18,4)Portela( PK: 18,4)

Caniços( PK: 34,9)Caniços( PK: 34,9)Caniços( PK: 34,9)Caniços( PK: 34,9)Caniços( PK: 34,9)

Vila das Ave( PK: 38,0)

Vila das Ave( PK: 38,0)

Vila das Ave( PK: 38,0)

Vila das Ave( PK: 38,0)

Vila das Ave( PK: 38,0)Santo Tirso

( PK: 30,4)Santo Tirso( PK: 30,4)Santo Tirso( PK: 30,4)Santo Tirso( PK: 30,4)Santo Tirso( PK: 30,4)

Lo( PK

Lo( PK

Lo( PK

Lo( PK

Lo( PK

BRAGA

PAÇOS

SANTO TIRSO

OFA

Figura 1.5 -Traçado da Linha do Minho (Porto - S. Romão)

Figura 1.6 - Traçado da Linha do Minho (S. Romão - Nine)

A modernização da Linha do Minho teve início com o troço Ermesinde – S. Romão, em Agosto de

1994, cuja empreitada ficou concluída em Maio de 1997. Prosseguiu com o troço S. Romão –

Lousado, que ficou concluído em Junho de 2000.

O último troço a ser modernizado na linha do Minho, decorreu entre a Estação de Lousado e a

Estação de Nine, tendo-se iniciado em Janeiro de 2002 e concluído em Janeiro de 2004.

Neste troço da Linha do Minho, há contudo um pequeno segmento entre o Apeadeiro da Senhora

das Dores e a Trofa, numa extensão de cerca de 3 km, que não está modernizado, dado que vai ser

substituído pela chamada “Variante da Trofa” que tem um desenvolvimento de 3,555 m, e da qual

consta um túnel com uma extensão de 1,404 m, bem como a nova Estação da Trofa, obras que

serão iniciadas durante o corrente ano de 2007.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

9

Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)Esmeriz( PK: 29,0)

Barrimau( PK: 30,2)Barrimau( PK: 30,2)Barrimau( PK: 30,2)Barrimau( PK: 30,2)Barrimau( PK: 30,2)

Famalicão( PK: 32,1)Famalicão( PK: 32,1)Famalicão( PK: 32,1)Famalicão( PK: 32,1)Famalicão( PK: 32,1)

Mouquim( PK: 34,9)Mouquim( PK: 34,9)Mouquim( PK: 34,9)Mouquim( PK: 34,9)Mouquim( PK: 34,9)

Trofa( PK: 22,9)Trofa( PK: 22,9)Trofa( PK: 22,9)Trofa( PK: 22,9)Trofa( PK: 22,9)

Louro( PK: 36,8)Louro( PK: 36,8)Louro( PK: 36,8)Louro( PK: 36,8)Louro( PK: 36,8)

Lousado( PK: 25,5)Lousado( PK: 25,5)Lousado( PK: 25,5)Lousado( PK: 25,5)Lousado( PK: 25,5)

ousadoK: 24,1)usado

K: 24,1)usado

K: 24,1)usado

K: 24,1)usado

K: 24,1)

Vizela( PK: 47,7)Vizela( PK: 47,7)Vizela( PK: 47,7)Vizela( PK: 47,7)Vizela( PK: 47,7)

Nespereira( PK: 50,5)Nespereira( PK: 50,5)Nespereira( PK: 50,5)Nespereira( PK: 50,5)Nespereira( PK: 50,5)

Caniços( PK: 34,9)Caniços( PK: 34,9)Caniços( PK: 34,9)Caniços( PK: 34,9)Caniços( PK: 34,9)

Vila das Aves( PK: 38,0)Vila das Aves( PK: 38,0)Vila das Aves( PK: 38,0)Vila das Aves( PK: 38,0)Vila das Aves( PK: 38,0)

Pereirinhas( PK: 46,2)

Pereirinhas( PK: 46,2)

Pereirinhas( PK: 46,2)

Pereirinhas( PK: 46,2)

Pereirinhas( PK: 46,2)

Santo Tirso( PK: 30,4)Santo Tirso( PK: 30,4)Santo Tirso( PK: 30,4)Santo Tirso( PK: 30,4)Santo Tirso( PK: 30,4)

Giestera( PK: 39,6)Giestera( PK: 39,6)Giestera( PK: 39,6)Giestera( PK: 39,6)Giestera( PK: 39,6) Lordelo

( PK: 42,3)Lordelo( PK: 42,3)Lordelo( PK: 42,3)Lordelo( PK: 42,3)Lordelo( PK: 42,3)

Covas( PK: 53,3)Covas( PK: 53,3)Covas( PK: 53,3)Covas( PK: 53,3)Covas( PK: 53,3)

Guimarães( PK: 55,7)Guimarães( PK: 55,7)Guimarães( PK: 55,7)Guimarães( PK: 55,7)Guimarães( PK: 55,7)

Linh

a do

Min

ho

Linh

a do

Min

ho

Linh

a do

Min

ho

Linh

a do

Min

ho

Linh

a do

Min

ho

RCELOS

FAFE

GUIMARÃES

FELGUEIRAS

LOUSADAPAÇOS DE FERREIRA

SANTO TIRSO

Figura 1.7 - Traçado da Linha de Guimarães

Na Linha de Guimarães, a primeira intervenção de reconversão da via estreita em via larga, apenas

teve início em 1997, com o troço entre Lousado e Santo Tirso. Este troço com uma extensão de 6

km, entrou em exploração em 1998. O troço entre Santo – Tirso e Lordelo, teve início em Dezembro

de 2001, tendo ficado concluído em Outubro de 2003. A reconversão desta linha ficou concluída

em Janeiro de 2004, com a abertura à exploração do último troço entre Lordelo e Guimarães.

Carreira( PK: 43,1)Carreira( PK: 43,1)Carreira( PK: 43,1)Carreira( PK: 43,1)Carreira( PK: 43,1)

Nine( PK: 39,0)Nine( PK: 39,0)Nine( PK: 39,0)Nine( PK: 39,0)Nine( PK: 39,0)

Midões( PK: 46,0)Midões( PK: 46,0)Midões( PK: 46,0)Midões( PK: 46,0)Midões( PK: 46,0)

Barcelos( PK: 50,3)Barcelos( PK: 50,3)Barcelos( PK: 50,3)Barcelos( PK: 50,3)Barcelos( PK: 50,3)

Braga( PK: 53,9)Braga( PK: 53,9)Braga( PK: 53,9)Braga( PK: 53,9)Braga( PK: 53,9)

Arentim( PK: 44,4)Arentim( PK: 44,4)Arentim( PK: 44,4)Arentim( PK: 44,4)Arentim( PK: 44,4)

Ruílhe( PK: 45,7)Ruílhe( PK: 45,7)Ruílhe( PK: 45,7)Ruílhe( PK: 45,7)Ruílhe( PK: 45,7)

Tadim( PK: 47,4)Tadim( PK: 47,4)Tadim( PK: 47,4)Tadim( PK: 47,4)Tadim( PK: 47,4)

Aveleda( PK: 49,2)Aveleda( PK: 49,2)Aveleda( PK: 49,2)Aveleda( PK: 49,2)Aveleda( PK: 49,2)

Ferreiros( PK: 51,8)Ferreiros( PK: 51,8)Ferreiros( PK: 51,8)Ferreiros( PK: 51,8)Ferreiros( PK: 51,8)

Couto de Cambeses( PK: 42,3)Couto de Cambeses( PK: 42,3)Couto de Cambeses( PK: 42,3)Couto de Cambeses( PK: 42,3)Couto de Cambeses( PK: 42,3)

Mazagão( PK: 50,3)Mazagão( PK: 50,3)Mazagão( PK: 50,3)Mazagão( PK: 50,3)Mazagão( PK: 50,3)

BRAGABRAGABRAGABRAGABRAGA

VILA NOVA DE FAMALICÃOVILA NOVA DE FAMALICÃOVILA NOVA DE FAMALICÃOVILA NOVA DE FAMALICÃOVILA NOVA DE FAMALICÃO

GUIMARÃESGUIMARÃESGUIMARÃESGUIMARÃESGUIMARÃES

Figura 1.8 -Traçado do Ramal de Braga

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

10

O Ramal de Braga da Linha do Minho, entre Nine e Braga, foi duplicado e electrificado, tendo para o

efeito, sido desenvolvidas duas empreitadas em paralelo, uma entre Nine e Tadim e outra entre

Tadim e Braga, que tiveram início em Agosto de 2002 e ficaram concluídas em Fevereiro de 2004.

1.6. As obras de arte construídas no contexto da modernização operada

As obras de modernização nas Linhas do Minho, Douro, Guimarães e Ramal de Braga, com

excepção da execução de pequenos troços variante na Linha do Minho e Ramal de Braga, são obras

de “reabilitação ferroviária” enquadradas em renovações, reabilitações, reconversões e duplicação

de vias.

São vias, que devido à manutenção do traçado ferroviário do século XIX e ao desenvolvimento que

se foi gerando na sua proximidade, atravessam zonas densamente urbanizadas, mas também com

morfologia de terrenos acidentada e de geologia complexa.

No caso da duplicação das Linhas do Douro e do Minho, as obras foram executadas sem

interromper as circulações da via única existente, para além de períodos de interdição de via

nocturnos o que introduziu condicionamentos, ao nível da concepção das obras de arte e dos seus

processos construtivos, sobretudo no que se refere às passagens superiores e inferiores ao caminho

de ferro.

Já em relação à Linha de Guimarães e ao Ramal de Braga, estas vias foram completamente

desactivadas durante a realização das obras, o que facilitou a execução das obras de arte, embora

nestes casos outros condicionamentos fossem mais significativos.

No caso da Linha de Guimarães, a realização dos trabalhos foi muito condicionada pela existência

de instalações fabris muito próximas do canal ferroviário, o qual é muito estreito, algumas delas até

atravessadas pelo próprio canal, bem como pela existência de múltiplos aglomerados populacionais

muito próximos da linha e pela própria orografia envolvente à mesma.

Na Linha do Minho, no troço entre Lousado e Nine, para melhorar as condições de exploração da

nova via dupla, permitindo a elevação da velocidade de circulação para 140 km/h, foram

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

11

construídas variantes, uma das quais implicou a construção de um viaduto com uma extensão de

426 m.

Em relação ao Ramal de Braga, a necessidade também de melhorar as condições de exploração da

nova linha, para além da eliminação das passagens de nível, com a construção de várias obras de

arte inferiormente e superiormente à via férrea, implicou a construção de um troço variante que

obrigou à construção de um viaduto ferroviário com uma extensão de 114 m.

1.7. Classificação das Linhas em função das cargas máximas admissíveis, segundo a

Ficha UIC 700-0

A classificação das linhas em função das cargas admissíveis, divide-se em categorias de A a D de

acordo com a I.E.T. n.º 52 (Instrução de Exploração Técnica n.º 50) do Instituto Nacional do

Transporte Ferroviário, conforme a tabela n.º 1.1

Tabela 1.1 – Classificação das linhas em função das cargas máximas admissíveis

Classificação das linhas Toneladas por eixo Toneladas por metro linear

A 16 5,0

B1

B2 18

5,0

6,4

C2

C3

C4

20

6.4

7,2

8,0

D2

D3

D4

22,5

6,4

7,2

8,0

Todas os troços de linha que foram objecto de modernização, incluindo as respectivas obras de arte

são da categoria D, preparadas para cargas de 22, 5 t/eixo e 8,9 t/ ml, com excepção do troço

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

12

Cete – Caíde. Este troço embora já renovado e preparado para estas cargas, por se integrar em

termos de exploração, num troço mais alargado Cete – Livração, no qual o traçado Caíde – Livração

ainda não foi modernizado, está classificado como D2, (Figura 1.9) e está ainda a ser objecto de

eliminação de passagens de nível, através da construção de várias obras de arte.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

13

Figura 1.9 – Mapa de cargas máximas admissíveis na rede ferroviária nacional (Instrução de Exploração Técnica n.º50)

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

14

2. A CONSTRUÇÃO DE PONTES FERROVIÁRIAS

2.1. O Projecto

2.1.1. Condicionamentos ferroviários, topográficos, geotécnicos e hidráulicos

As pontes que estavam em serviço, antes do início das obras de modernização ferroviária,

essencialmente pontes em arco de alvenaria, ou com tabuleiro metálico, mas com pilares e

encontros em alvenaria, eram obras em bom estado de conservação, mercê dos programas de

manutenção existentes na REFER.

São obras com cerca de um século, de grande interesse arquitectónico e patrimonial, de grande

nível de qualidade de exigência técnica e de arquitectura, com uma excelente integração ambiental

e paisagística. Estas obras mantêm-se, continuando a funcionar como atravessamento para uma

das vias, adaptadas às actuais exigências de tráfego, nomeadamente cargas e velocidade, pelo que

foram objecto de reabilitação, reforço ou até alargamento.

A inserção de uma segunda via implicou portanto a construção de uma nova ponte, também apenas

para uma via, mas cuja concepção teve que minimizar o impacto sobre a obra de arte existente.

Esses condicionamentos reflectem-se na implantação da obra, através da limitação da distância à

ponte existente, bem como na própria modelação e esbelteza dos pilares.

Figura 2.1 – Viadutos de Cabeda

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

15

A geometria da nova ponte fica deste modo sujeita aos condicionamentos topográficos, que são

dados pelo mínimo afastamento ao traçado antigo, minimizando o afastamento da nova à via

existente, de modo a limitar a ocupação de novos terrenos (Figura 2.1).

A análise do comportamento das obras existentes, necessária para o estudo da sua adaptação às

novas condições de tráfego, torna-se, também, num contributo importante para um primeiro

conhecimento das condições geotécnicas e hidráulicas do local de implantação da nova ponte.

Esse conhecimento não dispensa, contudo, a realização de prospecção e ensaios geotécnicos e de

ensaios hidráulicos, no próprio local de implantação da nova ponte.

Contudo, a extensão destas obras e a dificuldade de acessos, bem como a existência de vegetação

e de outros obstáculos, não permitem uma caracterização geotécnica rigorosa antes da elaboração

do projecto. Por isso, grande parte da caracterização geotécnica deve ser desenvolvida durante a

obra.

A execução de escavações na proximidade dos aterros dos encontros dessas pontes antigas, obriga

a especiais cuidados, recorrendo-se nomeadamente à observação e monitorização das mesmas,

podendo inclusivamente ser necessário proceder ao reforço desses maciços de aterro, devido à total

permeabilidade vertical do suporte da via (balastro sob as travessas).

2.1.2. A Normalização na Construção de Pontes Ferroviárias

2.1.2.1. Antecedentes históricos das Normas da REFER

Em Portugal para dimensionamento de obras de arte ferroviárias, recorre-se, ainda, ao Regulamento

de Segurança e Acções em Estruturas de Edifícios e Pontes, ao Regulamento de Estruturas de

Betão Armado e Pré-esforçado e o Regulamento de Estruturas de Aço para Edifícios e a EN 206 –

Betão Comportamento, Produção, Colocação e Critérios de Conformidade.

No entanto, tem vindo cada vez mais, a ser utilizada a legislação Europeia, fundamentalmente o

Eurocódigo 1 – Bases de Projecto e Acções em Estruturas, o Eurocódigo 2 – Projecto de Estruturas

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

16

de Betão, o Eurocódigo 3 – Projecto de Estruturas de Aço, o Eurocódigo 4 – Projecto de Estruturas

mistas aço – betão e o Eurocódigo 7 – Projecto Geotécnico.

Esta legislação é por demais conhecida pelo meio técnico nacional, pelo que não nos vamos deter

sobre a mesma, contudo o projecto ferroviário tem condicionamentos específicos, como já foi atrás

referido, pelo que a própria entidade gestora das infra-estruturas, tem vindo a publicar normas, que

estabelecem critérios de dimensionamento que permitem a execução de obras adequadas às infra-

estruturas ferroviárias: via, catenária, telecomunicações e sinalização, com exigências de qualidade

que se prendem sobretudo com a preocupação da durabilidade das mesmas.

Estas Normas têm antecedentes históricos nos chamados “Condicionamentos para a elaboração

dos projectos de passagens desniveladas”, fornecidos aos projectistas a partir da década de 1980,

pela CP, empresa que então geria também a infra-estrutura ferroviária.

Neste documento constavam os condicionamentos propriamente ditos para elaboração desses

projectos e do mesma faziam parte três capítulos designados respectivamente por

“Condicionamentos para a Elaboração dos Projectos de Passagens Desniveladas”, “Processamento

da Aprovação dos Projectos” e “Directiva “JAN 88” da Divisão de Pontes”. Esta Directiva fornecia

elementos para a “Concepção e Dimensionamento de Estruturas ameaçadas por choques de

veículos ferroviários”, baseada numa proposta dos Caminhos de Ferro Suíços.

Esta “Directiva” estabelecia procedimentos para a “Concepção de Construções ameaçadas por

choques de veículos ferroviários”, baseada em proposta dos Caminhos de Ferro da Suiça e cujo

objectivo era assegurar a segurança de pessoas em caso de choques contra estruturas, bem como

limitar os danos resultantes desses choques.

2.2.2.2. As Normas de obras de arte da REFER

Em 1997, foi publicado o documento “Condicionamentos para a Elaboração de projectos de

Passagens Desniveladas” sub-dividido em dois capítulos, passagens inferiores e passagens

superiores.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

17

No final de 2003, a REFER publicou as Normas IT.OAP.001.01 – “Impermeabilização de Tabuleiros

em Pontes e Viadutos”, IT.OAP.002.01 – “Condicionamentos para Projectos de Passagens

Inferiores Rodoviárias, ao Caminho de Ferro”, e IT.OAP.003.01 – “Condicionamentos para

Projectos de Passagens Superiores Rodoviárias, ao Caminho de Ferro”.

A Norma IT.OAP.001.01 – Impermeabilização de Tabuleiros em Pontes e Viadutos

A norma de impermeabilização de tabuleiros, estabelece uma metodologia para a especificação de

membranas betuminosas e dos respectivos sistemas de impermeabilização por elas constituídos,

sendo os seus principais objectivos aumentar a durabilidade e a eficiência das obras de arte.

Esta norma teve por base uma nota técnica elaborada pelo LNEC, no âmbito de um protocolo de

colaboração LNEC/REFER.

Nela se recomenda que as membranas betuminosas sejam constituídas com base em betumes

polímeros, integrando nas respectivas misturas betuminosas resinas de polipropileno atáctico (APP)

ou de estireno-betadieno-estireno (SBS), em oposição às que utilizam apenas betume oxidado na

sua mistura (sistema tradicional).

O sistema de impermeabilização preconizado (figura 2.29), deve ter uma camada primária

constituída à base de uma emulsão betuminosa a frio, com 5 mm de espessura.

A camada intermédia de impermeabilização pode ser de camada única (uma única membrana) ou

de dupla camada, com duas membranas totalmente aderentes entre si, aplicadas por acção de

soldadura por meio de chama.

Nos sistemas com camada única sem auto - protecção em granulado mineral, a membrana deve ter

uma massa nominal de pelo menos 4 kg/m2, a que corresponde uma espessura de 4 mm. Quando

o acabamento da membrana é formado por granulado mineral, a massa por unidade de superfície

deve ser de pelo menos 5 kg/m2. Em sistemas de dupla camada a espessura de cada uma das

membranas não deve ser inferior a 3 mm.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

18

A impermeabilização deverá ter uma camada superior de protecção, em betão betuminoso, com

uma espessura mínima de 30 mm de espessura.

São definidas as características das membranas betuminosas, no que se refere a espessura, massa

por unidade de superfície, resistência à tracção, alongamento na rotura, resistência ao rasgamento,

resistência ao punçoamento estático e resistência ao punçoamento dinâmico.

Figura 2.2 - Pormenor de impermeabilização do tabuleiro

A Norma IT.OAP.002.01 – Condicionamentos para Projectos de Passagens Inferiores

Rodoviárias, ao Caminho de Ferro

Esta norma especifica os gabarits ferroviários de via larga (única ou dupla), em recta ou curva.

Estabelece critérios para apresentação ao nível de projecto de um corte transversal, com

representação dos muretes guarda-balastro do tabuleiro, com altura pelo menos ao nível da face

superior das travessas, com caleiras para alojamento de cabos de sinalização e telecomunicações,

incorporadas nos passeios.

A norma também define uma camada de balastro com a espessura mínima de 0,30 m, entre a face

inferior das travessas da via, passeios no mesmo plano, sem ressaltos, com guardas exteriores de

1,00 m de altura, com indicação da camada superior de impermeabilização do tabuleiro, e muretes

guarda-balastro, de acordo com a norma de impermeabilização de tabuleiros, atrás referida.

1 – Camada primária de preparação (emulsão betuminosa)

2 – Camada intermédia com utilização de membranas

3 – Camada superior de protecção (betão betuminoso)

4 – Betão fino projectado

5 – Rede

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

19

É exigida uma altura livre mínima de 5,00 m entre a rasante da via rodoviária e o elemento mais

exposto do tabuleiro.

Em relação ao processo construtivo a norma exige que o mesmo minimize as interferências com as

circulações ferroviárias, nomeadamente a não interrupção do tráfego ferroviário e a minimização da

penalização da velocidade, assegurando o nível de segurança existente antes da execução da obra.

Estabelece ainda a necessidade de antes do início da empreitada ser apresentado o projecto de

suspensão de via, se o mesmo for necessário para a execução da obra.

Quanto a materiais para betão armado a aplicar no tabuleiro, exige-se pelo menos a aplicação de

betão da classe C30/37 e aço A400 NR.

Em relação ao recobrimento das armaduras e para efeito de aplicação do REBAP, para o tabuleiro

deve ser sempre considerado, nas superfícies que estão impermeabilizadas e que recebem o

balastro, que as mesmas estão sujeitas a um ambiente muito agressivo.

Para evitar a utilização de aparelhos de dilatação da via, a estrutura deverá ter comprimentos

dilatáveis inferiores a 90 m.

No tardoz dos encontros das obras de arte deverão ser efectuados aterros de acordo com uma

Norma que será brevemente publicada pela REFER, “Execução de Blocos Técnicos junto a

Encontros de Obras de Arte”. “Blocos Técnicos” são estruturas que permitem assegurar a transição

entre os aterros e as obras de arte, de modo a reduzir os assentamentos diferenciais e, a assegurar

a variação progressiva do módulo de rigidez, entre as duas estruturas.

Tendo em vista a manutenção/substituição dos aparelhos de apoio, devem ser previstos locais

próprios para aplicação de macacos hidráulicos.

No caso de serem executadas juntas de dilatação, por forma a protegê-las dos efeitos da acção do

balastro, a norma refere que as mesmas devem ser preenchidas por um perfil metálico em forma

de “Tê”, devendo os bordos da laje ser protegidos por cantoneiras metálicas.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

20

Em relação à drenagem do tabuleiro define que a face superior do tabuleiro deverá ter uma

inclinação longitudinal e/ou transversal de 1.5 % a 3 %. Qualquer órgão de drenagem, não poderá

ficar situado a uma profundidade inferior a 0,30 m, medida a partir da face inferior da travessa, de

modo a garantir que as máquinas atacadeiras de via não danificam estes elementos.

Prevendo eventuais alterações do traçado das vias férreas, o projectista deve prever a hipótese de

alteração da posição das vias sobre o tabuleiro, admitindo esses cenários no cálculo do tabuleiro.

A norma IT.OAP.003.01 - Condicionamentos para Projectos de Passagens Superiores

Rodoviárias, ao Caminho de Ferro

Em relação ao processo construtivo a norma exige a apresentação do projecto do cimbre, o qual

deve garantir um espaço livre para a passagem de circulações ferroviárias de pelo menos 2,30 m,

para ambos os lados dos carris exteriores. O espaço livre entre o plano de rolamento e a estrutura

do cimbre deve ser superior a 5,00 m em linhas não electrificadas, enquanto que em linhas

electrificadas o cimbre terá que estar a uma cota superior à da catenária em pelo menos 0,50 m.

São impostas algumas medidas no que se refere à segurança no tabuleiro, nomeadamente

contemplar guarda rodas ou lancis não galgáveis, entre ao passeios e as faixas de rodagem,

prolongados para ambos os lados da obra de arte, para evitar a queda de veículos à via férrea. Deve

também ser considerada a protecção à catenária de acordo com a norma europeia EN-50122-1 e

pela norma da REFER IT.CAT.34.04 de 2004.

O sistema de drenagem do tabuleiro deverá impedir a queda directa de águas pluviais sobre a via

férrea, as quais devem ser conduzidas para fora da plataforma ferroviária, não sendo admitido a

ligação da rede de drenagem da rodovia à drenagem do caminho de ferro.

Os pilares da obra de arte devem ficar localizados a uma distância superior a 5,00 m do eixo da via

férrea mais próxima. Quando não for possível cumprir esta distância, os pilares terão que ser

dimensionados de acordo com as recomendações da Ficha UIC 777-2R, a que nos referiremos

mais à frente.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

21

2.1.2.3. Outras Normas REFER aplicáveis às obras de arte

No caso de passagens superiores rodoviárias e pedonais, a Norma de catenária IT.CAT.034.04,

Linhas áreas para tracção eléctrica 25 kV-50 Hz. Especificações Técnicas estabelece que devem

ser montados dispositivos que impeçam contactos acidentais com equipamentos em tensão

eléctrica da catenária, bem como o vandalismo sobre esses equipamentos e sobre o material

circulante. Sempre que possível esses painéis devem ser verticais.

No sentido de minimizar o efeito de retorno das correntes de tracção da catenária, na aceleração da

corrosão das armaduras, foi publicada em 2003, a Norma IT.GER.002-7.05 – Retorno da Corrente

de Tracção, Terras e Protecções. Esta norma define nomeadamente a forma como deve ser feita a

ligação à terra das estruturas de betão.

É referido nesta norma, relativamente a elementos estruturais paralelos à via, que deve ser

adicionada uma armadura de aço de 200 mm ² de secção transversal, em cada secção de um

elemento estrutural, que será integrada nas armaduras normais da estrutura. No princípio e no fim

de uma secção e a cada 50 metros, deve ser soldada uma placa de terra à armadura adicional.

Essas placas de terra são ligadas ao sistema geral de terras.

Em Abril do corrente ano, vai entrar em vigor a Instrução de Exploração Técnica nº 77 – Normas e

Procedimentos de Segurança em Trabalhos na Infra-Estrutura Ferroviária, Publicada pelo Instituto

Nacional do Transporte Ferroviário, que substitui anterior regulamentação de segurança para a

execução de trabalhos na via férrea.

Esta Instrução estabelece nomeadamente para os diversos trabalhos de inspecções, manutenção,

conservação, fundações e substituição de tabuleiros de pontes as medidas de segurança a impor

em função da velocidade de circulação nessa via.

São definidas duas categorias de risco: a categoria de risco I, para velocidade inferiores a 140 km/h

e a categoria de risco II, para velocidades de circulação superiores a 140km/h.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

22

2.1.2.4. As Fichas da UIC

Nas normas da REFER, são mencionadas como documentos de referência as Fichas da União

Internacional dos Caminhos de Ferro, (UIC) quando se revelem de interesse para o assunto em

causa e não colidam com a regulamentação portuguesa em vigor.

Vamos fazer referência às Fichas UIC, que são mais utilizadas no dimensionamento das obras de

arte ferroviárias.

A Ficha UIC 702 “Modelos de Carga a adoptar no calculo de obras ferroviárias em

linhas Internacionais”.

A Ficha UIC 702, “Modelos de Carga a adoptar no cálculo de obras ferroviárias em linhas

Internacionais”, define e estabelece as regras de aplicação dos chamados Modelos de carga 71,

SW/O e 2000. O modelo de carga 71, (figura 2.3) é igual ao modelo previsto no Regulamento de

Segurança e Acções em Edifícios e Pontes.

Figura 2.3 - Modelo de carga 71 da UIC Segundo a UIC, no caso de vigas contínuas e estruturas semelhantes, deve ser seguido o modelo

SW/O, apresentado na figura 2.4, em detrimento do modelo 71.

Figura 2.4 - Modelo de carga SW/O da UIC

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

23

O modelo de carga 2000, (figura 2.5), destina-se a ter em conta o crescimento futuro das

sobrecargas ferroviárias nos traçados internacionais. Este modelo cobre os modelos de carga

anteriores. Este diagrama de cargas deve ser colocado na posição mais desfavorável, na estrutura

em causa. Para as futuras construções na rede de mercadorias ferroviária internacional, em lugar

da aplicação deste modelo recomenda-se a aplicação do modelo 71, afectado de um coeficiente no

valor de 1,33.

Figura 2.5 - Modelo de carga 2000 da UIC

A Ficha UIC 776-1R , “ Cargas a considerar no cálculo de pontes ferroviárias”

Esta ficha define combinações de cargas que devem ser tomadas em consideração no cálculo das

pontes, determinação das próprias cargas, combinações de cargas e factores de carga aplicáveis.

Permite a determinação de coeficientes dinâmicos, em função do comprimento característico dos

diferentes elementos da ponte, sendo apresentados três tipos de coeficientes, que dependem da

qualidade de manutenção que é exigida à via e do tipo de esforço a que se aplica, momento flector

ou esforço transverso.

Através desta ficha é também possível determinar os coeficientes dinâmicos que devem ser

aplicados, aos esforços em função da velocidade de circulação sobre a ponte. Este cálculo é

utilizado sobretudo em situações de construção de pontes, utilizando “estruturas de suspensão de

via” em que os comboios passam a velocidades baixas, da ordem de 10 a 40 km/h, em que os

efeitos dinâmicos sobre a estrutura são inferiores às condições de serviço para as quais a ponte é

dimensionada.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

24

A determinação de acções de acidente pode também ser efectuada por esta ficha, nomeadamente,

a verificação às acções de acidente provocadas por um descarrilamento.

A Ficha UIC 777-1R

A Ficha UIC 777-1R, estabelece medidas para prevenir os efeitos do choque de veículos rodoviários

sobre pontes ferroviárias bem como para impedir a entrada desses veículos na via férrea.

São definidas as cargas estáticas equivalentes que devem ser consideradas para o cálculo dos

elementos de apoio, quando não for possível a aplicação de medidas passivas de protecção.

Definem-se também as cargas estáticas equivalentes que devem ser consideradas no cálculo do

tabuleiro, quando a altura livre for inferior a 6,00 m.

A Ficha 777-2 R

A Ficha 777-2 R faz recomendações de medidas que permitam reduzir os efeitos do choque

acidental de um veículo ferroviário contra as construções situadas nas proximidades da via,

nomeadamente elementos de apoio de obras de arte.

A Ficha 774-3R

A Ficha 774-3R, trata da interacção entre a via e a ponte, ou seja as consequências do

comportamento de um deles sobre o outro, o qual se manifesta devido às ligações que existem

entre os dois, quer se trate de uma via balastrada ou de uma via aplicada directamente sobre o

tabuleiro.

Esta interacção traduz-se pela existência de esforços sobre os carris, bem como sobre o tabuleiro,

os seus apoios e, claro, por deslocamentos de uns em relação aos outros.

Esta ficha fornece os métodos de cálculo que permitem calcular os esforços e os deslocamentos

ligados aos fenómenos de interacção.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

25

2.1.3. O Projecto de Suspensão de Via O chamado processo de suspensão de via, tem por objectivo permitir a continuação do

funcionamento da via férrea durante a construção de uma obra de arte sob a via ou vias férreas,

embora com afrouxamento da velocidade de circulação. O projecto do sistema de suspensão de via

está deste modo, ligado ao próprio processo construtivo, que vai ser adoptado na obra de arte.

Nas obras em análise foram três os principais processos utilizados na construção de passagens

inferiores com a via férrea em serviço, que serão abordados em detalhe no sub - capítulo referente à

construção.

2.1.4. Caracterização das obras de arte estudadas

2.1.4.1. Tipo de obras e soluções estruturais Foram estudadas todas as obras de arte cuja conclusão teve lugar entre 1995 e 2004, entre o km

8,700 e o km 39,810 da linha do Minho, entre o km 8,700 e o km 46,230 da Linha do Douro e em

toda a Linha de Guimarães e Ramal de Braga, com a distribuição por ano de construção indicada

na figura 2.6.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

818 20 27 72 74 75

111

208

254

8 102 7 45

2 1 3697

46

0

50

100

150

200

250

300

QUANTIDADES DE OBRASACUMULADO DE OBRAS

Figura 2.6 – Distribuição por ano de construção das obras analisadas

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

26

As Passagens inferiores rodoviárias

Figura 2.7 - Passagem Inferior Rodoviária PI 3 ao km 44,894 do Ramal de Braga

A modernização das vias ferroviárias passa hoje pela criação de um canal devidamente vedado,

eliminando os atravessamentos pedonais ou rodoviários de nível, as chamadas passagens de nível,

de modo a impedir a possibilidade de ocorrência de acidentes por erro humano, com veículos e

pessoas, que existe mesmo no caso de passagens automatizadas, por não respeito da sinalização.

Deste modo, essas passagens são substituídas, conforme as condições topográficas do local e a

rede rodoviária existente, por passagens inferiores ou passagens superiores ao caminho de ferro.

Em relação às passagens inferiores, distinguem-se em caminho de ferro os seguintes tipos

principais:

- Passagens inferiores rodoviárias;

- Passagens inferiores pedonais;

- Passagens inferiores agrícolas

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

27

Figura 2.8 - Passagem Agrícola - PA 2 ao km 22,415 da

Linha do Douro Figura 2.9 - Passagem Inferior de Peões – PIP 3 ao km

35,172 da Linha do Douro (Estação de Paredes)

No que diz respeito às passagens inferiores rodoviárias foram analisadas cinquenta e sete, que se

agregam em quatro grandes grupos estruturais:

- Quadro fechado;

- Pórtico monolítico;

- Tabuleiro com vigas de coroamento apoiadas sobre estacas;

- Tabuleiro apoiado através de aparelhos de apoio sobre muros de encontro

Figura 2.10 - Passagem Inferior Rodoviária - PI 2 ao km 44.256 do Ramal de Braga (Exemplo de tabuleiro com aparelhos de apoio)

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

28

A distribuição das obras segundo esses tipos estruturais é a que se apresenta na figura 2.11, sendo

claramente dominante o “Quadro Fechado”.

26; 46%

19; 33%

8; 14%

4; 7%

QUADRO FECHADO

PÓRTICO

TABULEIRO SOBREESTACASTABULEIRO COMAPARELHOS DE APOIO

Figura 2.11 - Passagens Inferiores Rodoviárias - Tipo de Estrutura

Passagens inferiores agrícolas

Podemos classificar como passagens inferiores agrícolas, os atravessamentos Inferiores ao caminho

de ferro, cujos restabelecimentos são vias secundárias em zona rurais e, cuja largura não

ultrapassa na generalidade os 6,00 m. Foram construídas na zona em causa vinte destas obras de

arte, que podemos classificar nos seguintes grupos:

- Quadro fechado;

- Pórtico monolítico;

- Tabuleiro com vigas de coroamento apoiadas sobre estacas;

No caso destas obras, devido às suas dimensões, não há qualquer estrutura, com tabuleiro com

aparelhos de apoio, sendo a existência de estruturas do tipo “Quadro Fechado” ligeiramente inferior

às chamadas passagens inferiores rodoviárias.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

29

8; 40%

8; 40%

4; 20%

QUADRO FECHADO

PÓRTICO

TABULEIRO SOBREESTACAS

Figura 2.12 - Passagens Inferiores Agrícolas - Tipos de Estrutura

Passagens Inferiores de Peões São cinquenta e nove as obras que podem ser classificadas como passagens inferiores de peões.

Trata-se de estruturas em betão armado, normalmente em quadro fechado e na sua grande maioria

foram construídas em estações ou apeadeiros de caminho de ferro.

Passagens Superiores Rodoviárias

Figura 2.13 – Passagem Superior Rodoviária ao km 32,730 da Linha do Minho

As passagens superiores rodoviárias, construídas no período em causa, por eliminação de

passagens de nível, são obras de arte que podem ter entre um e nove vãos. Segundo alguns

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

30

autores, a partir de cinco vãos deve ser adoptada a designação de viaduto. No nosso caso dado o

pequeno número de obras nessas condições, classificamos neste mesmo grupo.

Foram construídas cinquenta e duas obras, que podemos classificar nos seguintes tipos estruturais:

- Pórtico monolítico;

- Pórtico com laje de uma nervura, apoiada nos encontros;

- Pórtico com laje de duas nervuras, apoiada nos encontros;

- Quadro fechado

- Laje com vigas pré-fabricadas I,;

- Laje com vigas pré-fabricadas U;

- Laje de uma nervura apoiada em encontros;

- Laje em caixão unicelular, apoiada em pilares e encontros;

- Laje com uma nervura apoiada nalguns pilares e encontros;

14; 27%

8; 15%

10; 19%

1; 2%

12; 23%

3; 6%

1; 2%

1; 2%

2; 4%PÓRTICO MONOLÍTICO

PÓRTICO - LAJE DE UMANERVURA - AP. ENCONTROSPÓRTICO - LAJE DE DUASNERVURA - AP. ENCONTROSQUADRO FECHADO

LAJE -VIGAS PRÉ-FABRICADAS ILAJE -VIGAS PRÉ-FABRICADAS ULAJE - CAIXÃO UNICELULARAP. PILARES E ENCONTROSLAJE DE UMA NERVURA AP.PILARES E ENCONTROSLAJE DE UMA NERVURAAPOIADA EM ENCONTROS

Figura 2.14 - Passagens Superiores Rodoviárias - Tipo de Estrutura

Como se verifica pela figura 2.14 o tipo estrutural mais corrente é o Pórtico Monolítico (27%)

seguido pelas obras com tabuleiro com vigas pré-fabricadas I.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

31

0

5

10

15

20

25

1 VÃO 3 VÃOS 4 VÃOS 5 VÃOS 6 VÃOS 7 VÃOS 8 VÃOS 9 VÃOS

NÚM

ERO

DE

OBR

AS

Figura 2.15 - Passagens Superiores Rodoviárias. Distribuição por número de vãos Considerando apenas as obras com um único tramo, verifica-se a distribuição por tipos estruturais

que se representa na figura 2.16.

7; 35%

1; 5%7; 35%

3; 15%

2; 10%

PÓRTICO MONOLÍTICO

QUADRO FECHADO

LAJE -VIGAS PRÉ-FABRICADAS ILAJE -VIGAS PRÉ-FABRICADAS ULAJE-UMA NERVURA AP. EMENCONTROS

Figura 2.16 - Passagens Superiores Rodoviárias - Tipos estruturais em obras de um único vão

Considerando apenas as obras de três tramos, constata-se a distribuição por tipos estruturais que

se representa na figura 2.17.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

32

7; 33%

5; 24%

5; 24%

4; 19%

PÓRTICO MONOLÍTICO

PÓRTICO - LAJE UMANERVURA AP. ENCONTROSPÓRTICO - LAJE DUASNERVURAS AP. ENCONTROSLAJE -VIGAS PRÉ-FABRICADAS I

Figura 2.17 - Passagens Superiores Rodoviárias - Tipos estruturais em obras de três tramos Passagens Superiores de Peões

Figura 2.18 –Passagem superior de peões (metálica)

ao km 29,971 da Linha do Douro (Estação de Caíde)

Figura 2.19 – Passagem superior de peões (betão pré-fabricado), ao km 39,450 da Linha do

Douro

Foram construídas trinta e sete obras que podem ser classificadas como passagens superiores de

peões. Na sua maioria são estruturas em betão pré-fabricado, com tabuleiro constituído por vigas

pré-fabricadas e, com acessos por rampas, conforme se pode concluir a partir dos gráficos

representados nas figuras 2.20 e 2.21.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

33

24; 63%

13; 34%

1; 3% BETÃO PRÉ-FABRICADO

ESTRUTURA METÁLICA

BETÃO "IN SITU"/BETÃO PRÉ-FABRICADO/ESTRUTURAMETÁLICA

Figura 2.20 – Distribuição das passagens superiores de peões segundo o material de construção

2 11 2 1

11

10

10

0

510

15

2025

30

PSP BETÃOPRÉ-

FABRICADO

PSPMETÁLICAS

PSP BETÃOIN SITU /

BETÃO PRÉ-FABRICADO /

METÁLICA

ESCADASRAMPAS E ESCADAS RAMPASNÍVEL

Figura 2.21 – Distribuição das passagens superiores de peões segundo as acessibilidades

Conforme se pode observar na figura 2.21 as passagens superiores com acessos por rampas e

escadas foram na sua totalidade construídas em betão pré-fabricado. A solução em estrutura

metálica é na sua maioria utilizada, quando a acessibilidade se faz apenas por escadas. Importa

referir que nos dois casos em que foram construídas passagens superiores metálicas, com acesso

apenas por rampas, estes acessos foram construídas em betão.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

34

Pontes e Viadutos Ferroviários

Figura 2.22 – Viaduto Ferroviário ao km 35.740 da Linha do Minho, com 426 m de extensão

Foram construídas quinze pontes ou viadutos ferroviários, cujo critério de classificação escolhido foi

o tipo estrutural do tabuleiro, verificando-se de acordo com a figura 2.24, que a maioria tem o seu

tabuleiro em laje maciça ou de uma nervura com vazamento.

Em relação a estas obras de arte, apenas quatro recebem via dupla, caracterizando-se duas destas

por serem em laje maciça e as outras em laje de duas nervuras com vazamento.

5; 33%

3; 20%2; 13%

1; 7%

2; 13%

1; 7%1; 7%

LAJE MACIÇA

LAJE DE UMA NERVURAC/VAZAMENTOLAJE DE DUAS NERVURASC/VAZAMENTOLAJE COM VIGAS PRÉ-FABRICADASLAJE VIGADA

VIGA CAIXÃO UNICELULAR

VIGAS METÁLICAS C/ TABUL.EM BETÃO

Figura 2.23 - Pontes e Viadutos Ferroviários - Tipos de estrutura

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

35

2.1.4.2. Estruturas de betão. Materiais e recobrimento das armaduras Em relação às passagens inferiores ou superiores ao caminho de ferro, não há grande variação

quanto às classes de betões, que foram utilizadas nas várias obras que foram construídas,

independentemente do ano, do projectista ou da sua localização. Já quanto aos aços utilizados nas

estruturas de betão estrutural, verifica-se que em relação às que foram projectadas na década de

90, em todas foi considerado o aço A 400 NR. A partir de 2000, a maior parte destas estruturas já

são projectadas com aço A 500 NR.

Em relação às estruturas de grande porte, pontes e viadutos ferroviários, constata-se, igualmente

que as que foram projectadas na década de 90, foram construídas com o aço A 400 NR, enquanto

que as mais recentes são sobretudo projectadas com o aço A 500 NR.

Há casos em que na mesma obra de arte se utilizam os dois tipos de aço: o A 400 NR em estacas

e pilares e o A 500 NR nos restantes elementos estruturais (Viaduto IX, km 20,970 da Linha de

Guimarães, 1998, e viaduto ferroviário ao km 35,742 da Linha do Minho, 2001). Quanto às classes

de betões, constata-se que nestas obras de maior envergadura construídas recentemente, foram

utilizados betões de classes mais elevadas, verificando-se casos de aplicação no tabuleiro, de

betões da classe C40/50.

2.2. CONSTRUÇÃO

2.2.1. A construção de passagens Inferiores por lançamento incrementado.

2.2.1.1. Introdução O lançamento incrementado é um processo que permite a realização da obra sem interrupção das

circulações ferroviárias, com perturbação controlada desse tráfego. Tem grandes vantagens

relativamente a outros métodos construtivos, por se melhorar a segurança dos trabalhos, permitir a

continuidade das circulações ferroviárias, reduzindo-se os prazos e optimizando-se os custos.

Nos Estados Unidos da América há registos de realização de obras com utilização de cravação

horizontal de tubos nos finais do século XIX, sendo apenas nos finais da década de 1950 que esta

técnica se desenvolve na Europa. Em paralelo com a evolução da técnica de cravação de tubos

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

36

horizontais desenvolveu-se a construção de passagens inferiores com utilização de deslize de

quadros pré-fabricados de betão armado com o auxílio de macacos hidráulicos.

2.2.1.2. – Método “Keller”

A primeira obra de introdução de um quadro sob a via férrea teve lugar na Alemanha, em 1957,

pela empresa Keller. Nessa altura o equipamento de cravação e o processo de escavação utilizados

na cravação de tubos e no deslize eram praticamente idênticos.

Enquanto que no caso de tubos, são os mesmos justapostos e vão sendo introduzidos à medida

que se avança, no caso das passagens inferiores há um único elemento, o quadro de betão

armado, que é introduzido directamente sob a estrutura de suspensão da via.

Figura 2.24 - Sistema de Suspensão de Via "Keller"

Figura 2.25 - Sistema "Keller" - Apoio no quadro de betão armado

Figura 2.26 - Sistema "Keller".Prolongas

Figura 2.27 - Sistema "Keller". Macacos hidráulicos

e prolongas

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

37

Em 1957, para um quadro de 3,20 x 3,20 m ², a velocidade de avanço era de apenas 16 cm/hora,

sendo possível actualmente atingir velocidades de avanço da ordem de 120 cm/hora. Em relação a

secções, a construção de quadros bi-celulares horizontais iniciou-se em 1977, enquanto que a partir

de 1980 passou a ser corrente a construção de quadros bi-celulares verticais .

2.2.1.3. O Método da “Tecnimpulso”

Figura 2.28 - Quadro deslizante de passagem inferior de peões no troço Caíde- Livração da Linha do Douro

Figura 2.29 -Sistema de lançamento hidráulico (macacos hidráulicos e prolongas)

O “quadro deslizante” é construído ao lado do aterro da via férrea (figura nº 2.28) e é colocado na

posição final através de deslize provocado por um ou dois conjuntos de macacos hidráulicos

consoante se trate de uma passagem inferior de peões, como é o caso das figuras nº 2.28 e 2.29,

ou de uma passagem inferior rodoviária.

Os macacos hidráulicos apoiam em “muros de reacção”, que mobilizam o impulso passivo do

aterro que é construído no tardoz desses muros. Para cada conjunto de macacos é utilizada uma

estrutura metálica constituída por várias peças denominadas “prolongas”, que são colocadas entre

o sistema hidráulico e o quadro deslizante. A progressão do quadro é efectuada por avanços de

1,00 m.

O “quadro deslizante” é concebido de forma a permitir o seu avanço sem comprometer a

estabilidade da via férrea, permitindo a consolidação do solo de fundação na sua dianteira.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

38

Figura 2.30 - Sistema de suspensão de via

Figura 2.31 - Sistema de Suspensão de via . Apoio das vigas mestras no quadro de betão armado

O sistema de suspensão de via utilizado pela Tecnimpulso é constituído por um conjunto de vigas

metálicas ortogonais, com capacidade resistente para suportar a passagem dos comboios a

velocidade reduzida, e com a rigidez horizontal necessária para evitar a deslocação lateral da via,

durante a introdução, debaixo desta, do quadro deslizante. O sistema de fixação entre carlingas e

longarinas é realizado através de parafusos de alta resistência, aplicados através de furação

adequada nos banzos dos respectivos elementos.

Figura 2.32 - Esquema de Suspensão de via O conjunto de vigas apoia-se no próprio quadro deslizante, que terá elementos complementares de

apoio, se necessário, tais como cabos com tensores. Do lado oposto apoia-se na própria plataforma

da via férrea que disporá, se necessário, também de estruturas provisórias de reforço.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

39

Figura 2.33 - Laje e muretes de guiamento Figura 2.34 - Quadro de betão armado. Bisel de ataque

Antes da realização do quadro é construída uma laje com muretes de guiamento, que vai servir de

guia base, para a progressão do quadro deslizante, de modo a evitar a ocorrência de

assentamentos. Entre essa laje e o quadro é interposto um material que impede a aderência entre

ambos. No caso ilustrado na figura 2.33, foi colocado uma placa de contraplacado tipo “platex”.

A frente do quadro (figura 2.34) tem duas lâminas de ataque, chamadas “bisel de ataque”, que

facilitam o deslizamento do quadro, cortando e contendo o solo subjacente à via férrea.

Figura 2.35 - Aterro de reforço da zona de suspensão de via

Do lado da frente de ataque, quando o aterro da plataforma ferroviária é de fraca qualidade, recorre-

se à colocação de um aterro ao lado da zona de suspensão da via e numa extensão de alguns

metros de comprimento a montante e a jusante dessa zona, para evitar a instabilização da

plataforma e, consequentemente, da própria via, (figura 2.35).

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

40

2.2.1.4. Método da “ATROS”

Este método utiliza roletes entre o quadro e as vigas mestras, para diminuir o atrito entre estes

elementos, facilitando o deslize. A progressão do quadro deslizante faz-se de forma não uniforme,

ou seja, a distância dos avanços nem sempre tem o mesmo valor, uma vez que o prolongamento

do sistema de apoio é feito entre o muro de reacção e o sistema hidráulico.

O sistema de fixação das carlingas às longarinas é efectuado através de uma estrutura metálica, na

qual a carlinga fica solidária com a longarina, sem se recorrer ao aparafusamento e portanto à

furação de ambas.

2.2.2. A construção de passagens inferiores por escavação mineira

Quando o terreno onde vai ser construída a passagem inferior tem características rochosas é

possível utilizar um método construtivo baseado na escavação do tipo mineira, que é também um

processo construtivo que não impede a circulação ferroviária.

Foi o caso da passagem inferior ao km 24,298 da Linha do Minho, construída no âmbito da

empreitada de modernização do troço entre S. Romão e Lousado, concluída em 1999.

Foi construída a partir da execução prévia de dois pequenos túneis paralelos, de avanços

perpendiculares à linha, mas, deixando sempre pilares centrais de rocha por desmontar. A estrutura

final de suporte foi betonada por pequenos troços.

Neste caso, por se tratar de um maciço em xisto foi necessário proceder ao reforço das paredes de

escavação com pregagens provisórias. Foi deixado um pilar central que também foi necessário

reforçar com pregagens provisórias.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

41

2.2.3. A construção de passagens Inferiores por estacas tangentes

Figura 2.36 - Passagem inferior rodoviária 6, ao km 44.006 do troço Penafiel – Caíde A construção de passagens inferiores ao caminho de ferro, por estacas tangentes é um processo

construtivo que foi bastante utilizado na execução destas obras na Linha do Douro. É exemplo de

aplicação deste processo construtivo a obra da passagem inferior ao km 44,006 da Linha do Douro

(troço Penafiel – Caíde), figura 2.36, que foi construída em cinco fases.

Figura 2.37 – Fase I

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

42

Na fase I, (figura 2.37), enquanto os comboios continuam a circular na via existente, na zona da

plataforma destinada à nova via são executadas oito estacas. Neste caso foram executadas quatro

estacas na zona de implantação de cada uma das paredes da futura passagem. Sobre cada um

desses conjuntos de estacas foram executadas as respectivas vigas de coroamento do tabuleiro,

que foram betonadas contra o terreno.

Após a execução do tabuleiro sobre estas vigas de coroamento, são construídos os muros de

suporte de terras dos aterros.

Figura 2.38 - Fase II Na fase II,(figura 2.38), os comboios passam a circular sobre a zona do tabuleiro já construído,

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

43

Figura 2.39 - Fase III

Na fase III, (figura 2.39) são executados na zona da via existente (via ascendente), os trabalhos

indicados na primeira fase,

Figura 2.40 - Fase IV

Na fase IV (figura 2.40) é realizada a escavação sob o tabuleiro.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

44

Figura 2.41 – Fase V

Na fase V (figura 2.41), é executada a drenagem vertical e o capeamento das estacas.

2.2.4. As Fundações das obras de arte A elaboração de qualquer projecto de uma obra de arte é precedida do respectivo reconhecimento

geotécnico. Numa primeira fase deve ser feito um reconhecimento preliminar em que é efectuada

uma pesquisa, recolha e organização de toda a informação existente sobre as condições do terreno

de implantação da obra. No caso de existirem estruturas na vizinhança da obra é também

necessário obter informações sobre o comportamento das mesmas.

Este reconhecimento preliminar permite reduzir nomeadamente o número de sondagens com

recolha de amostras inalteradas e ensaios de penetração normalizados (SPT) e consequente

redução dos custos de projecto.

A prospecção geotécnica é normalmente realizada através de furos de sondagem, poços e da

utilização de métodos geofísicos. Segundo a Especificação LNEC E 217 – 1968, a disposição e

espaçamento das sondagens devem ser tais que permitam conhecer qualquer modificação da

espessura, profundidade, estrutura ou propriedades das formações interessadas.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

45

Segundo Teng W. C. citado por (Silvério Coelho, 1996), pode-se indicar como ordem de grandeza

grosseira, como espaçamento entre sondagens, para fundações de pilares e encontros de pontes o

seguinte:

• Estratificação horizontal média – 30 m;

• Estratificação horizontal errática – 7 m;

• Uma a duas sondagens por cada fundação isolada.

A maior parte das obras de arte objecto da nossa análise, estavam integradas num traçado de

remodelação de via, o qual foi objecto de um estudo geral geológico e de geotecnia, dando origem a

relatório geral.

A título de exemplo podemos referir o caso da obra de reconversão em via larga e electrificação do

troço entre Lordelo e Guimarães, da Linha de Guimarães, numa extensão de 12,8 km, em que na

fase de projecto foram executados os seguintes trabalhos de reconhecimento geotécnico:

• 20 trados de reconhecimento;

• 12 poços de reconhecimento;

• 10 auscultações de plataforma (poços de prospecção/ensaios de penetrómetro ligeiro)

• 34 ensaios com penetrómetro dinâmico ligeiro;

• 20 ensaios com penetrómetro dinâmico pesado;

• 26 sondagens mecânicas

• 10 perfis sísmicos de refracção;

• Ensaios laboratoriais

Tendo por base essa caracterização geológica e geotécnica foi efectuada uma análise específica

para cada local de implantação das obras, sendo definida a solução de fundação. Nessa análise

referem-se nomeadamente as tensões de contacto que podem ser praticadas para as disposições

geométricas previstas para a obra.

Nalguns casos, face à natureza, ao desenvolvimento da obra de arte, ou ao carácter irregular

associado à alteração das formações atravessadas por sondagens, é recomendado no projecto, que

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

46

em fase de obra se proceda à verificação das condições geotécnicas através da realização de

sondagens mecânicas complementares, em locais definidos em plantas de projecto.

Quando estão previstas fundações indirectas, por exemplo por estacas, são indicados comprimentos

expectáveis, mas recomenda-se também a execução de sondagens complementares para fazer um

ajustamento em obra dos comprimentos das estacas previstos em projecto.

2.2.5. O Pré-esforço nas obras de arte Nos projectos das obras de arte, normalmente no desenho de apresentação do faseamento

construtivo, são indicados o traçado genérico e os valores de pré-esforço inicial ao longo do

tabuleiro, com a localização das juntas de betonagem e do início e do fim dos cabos.

O caderno de encargos, destas obras estabelece que o adjudicatário da empreitada deve submeter

à aprovação da Fiscalização o sistema de pré-esforço que se propõe utilizar, bem como o respectivo

projecto de aplicação de pré-esforço.

Nesse projecto de aplicação de pré-esforço, para além da respectiva memória descritiva, dos

cálculos, da descrição do sistema de pré-esforço, do plano de tensão, devem também constar os

certificados de controle de qualidade dos seus componentes, dos aços de pré-esforço, bem como os

desenhos com os traçados dos cabos em perfil e em planta, os pormenores das ancoragens, as

bainhas, a localização das respectivas purgas e as armaduras de reforço. O projecto deve também

incluir a verificação das tensões locais de compressão do betão, bem como a resistência

característica mínima do betão à data de aplicação do pré-esforço.

2.2.6. Tipos de aparelhos de apoio mais utilizados Os aparelhos de apoio têm como função, controlar as deformações que o tabuleiro transmite aos

pilares ou aos encontros, bem como as deformações que também podem ser transmitidas por

estes órgãos ao tabuleiro, de modo a eliminar ou atenuar determinados esforços que têm origem na

compatibilidade das deformações entre os vários elementos constituintes da obra de arte (Manterola

e Cruz, 2004).

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

47

As obras em estudo têm sobretudo aparelhos de apoio que podem ser integrados em dois grandes

grupos: apoios elastoméricos e apoios de neoprene em caixa fixa.

2.2.6.1 Apoios elastoméricos Podem ser constituídos por um conjunto de placas de neoprene, associadas a um conjunto de

placas de aço, por meio de adesivos, e nesse caso são chamados aparelhos de neoprene cintados.

Podem não ter placas de aço e nesse caso são chamados aparelhos de apoio simples em

neoprene, que têm reduzida utilização em obras de arte.

Os blocos elastométricos podem ser cintados com uma estrutura metálica, como no caso dos

aparelhos Letrony, cujo objectivo é restringir movimentos ou permitir deslocamentos superiores aos

elásticos , através da introdução de guias metálicas para travamento, ou de superfície de deslize em

teflon/aço inoxidável.

1 – Coxim superior em aço 2 – Goussets em aço 3 – Coxim inferior em aço 4 – Parafusos de fixação em aço 5 – P.T.F.E. (Teflon) 6 – Bloco de neoprene cintado 7 – Chapa de deslizamento em aço inox 8 – Aro de retenção 9 – Barra em bronze 10 – Varão de ancoragem em aço

Figura 2.42 - Aparelho de Apoio Elastométrico refª "Lemitrony"

2.2.6.2. Apoios de neoprene em caixa fixa Os blocos elastoméricos sem qualquer cintagem encontram-se dentro de uma caixa de aço, na qual

entre a tampa e o neoprene existe uma junta, ficando este completamente constrangido,

comportando-se como um fluído viscoso. São conhecidos por “pot bearings”, aparelhos tipo panela

ou marmita. Estes aparelhos podem ser fixos, unidireccionais ou multidireccionais.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

48

Figura 2.43 - Aparelho de Apoio tipo "Panela" - Unidireccional (Encontro da Ponte de Caniços)

1 – Chapa superior em aço 2 – Pistão em aço 3 – Panela em aço 4 – Barra guia em aço 5 – Varão de ancoragem em aço 6 – Parafusos de fixação da barra guia guia em aço 7 – Parafusos de fixação em aço 8 – Chapa de deslizamento em aço inox 9 – Barra em bronze 10 – P.T.F.E. Puro 11 – Disco elastómero 12 – Anel de selagem 13 – Vedante em borracha microcelular

Figura 2.44 - Aparelho de Apoio tipo "Panela" - refª Letrony - Unidireccional

1 – Chapa superior em aço 2 – Pistão em aço 3 – Panela em aço 4 – Disco elastomérico 5 – Varão de ancoragem em aço 6 – P.T.F.E. Puro 7 – Parafusos de fixação em aço 8 – Anel de selagem 9 – Vedante em borracha microcelular

Figura 2.45 - Aparelho de apoio tipo "Panela" - refª Letrony - Fixo

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

49

Distribuição de aparelhos de apoio por tipo de obra

Nas obras de arte em causa podemos encontrar os seguintes tipos de aparelhos de apoio :

- Aparelhos de apoio de neoprene simples;

- Aparelhos de apoio de neoprene cintado:

- Aparelhos de apoio de neoprene cintado e ancorado;

- Aparelhos de apoio tipo Panela;

- Aparelhos de apoio tipo Panela e aparelhos em neoprene cintado no mesmo encontro da obra;

- Aparelhos de apoio tipo Panela (pilares) e aparelhos de apoio em neoprene cintado e ancorado

(encontros);

- Aparelhos de apoio em neoprene cintado (encontros) e aparelhos de apoio em neoprene cintado e

ancorado (pilares);

Na Figura 2.46 apresenta-se a incidência dos vários tipos de aparelhos de apoio, por tipo de obra.

NEOPRENESIMPLES NEOPRENE

CINTADO NEOP. CINTADOE ANCORADO NEOP. CINT. +

NEOP. CINT. EANCOR.

PANELAPANELA +NEOPRENECINTADO

PANELA +NEOP. CINT. E

ANCOR.

P.I.

P.S.R.

PONT. VIAD.

12

1

5

9

4

3

13

2

1 10

2

4

6

8

10

12

14

P.I.P.S.R.PONT. VIAD.

Figura 2.46 - Tipos de Aparelhos de Apoio

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

50

2.2.7. Tipos de juntas de dilatação mais utilizadas As juntas de dilatação nas obras de arte são dispositivos que permitem, movimentos relativos entre

duas partes da estrutura, normalmente entre o tabuleiro e o encontro ou entre tabuleiros em obras

extensas de estruturas múltiplas, em condições de segurança, comodidade e durabilidade.

Estes movimentos são sobretudo motivados por efeitos térmicos e de retracção, mas também

podem ter origem na frenagem dos comboios ou ser consequência de um sismo. Nas obras objecto

de análise não temos juntas abertas, apenas juntas fechadas que impedem o seu atravessamento

por água ou detritos.

São os seguintes os tipos de juntas mais frequentes nestas obras:

• Juntas elastoméricas de compressão;

Figura 2.47 – Desenho esquemático de junta de dilatação elastomérica de compressão

São constituídas (figura 2.47), por um bloco rectangular de neoprene, com aberturas

alveolares. As aberturas permitem que o bloco de neoprene, inserido sob compressão e

trabalhando sempre comprimido, possa acompanhar os movimentos de expansão e

contracção da obra de arte. A junta de compressão deve ser posicionada entre cantoneiras

de aço ou zonas especiais de betão armado.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

51

• Juntas tipo “JEENE” – Junta elástica expansível nucleada estrutural

Figura 2.48 – Pormenor esquemático de junta de dilatação elástica expansível nucleada estrutural (Tipo Jeene)

É um tipo especial de junta elastomérica de compressão. É constituída (figura 2.48), por

três elementos, uma câmara elástica, geralmente de elastómero, policloropreno ou

neoprene, com uma ou mais cavidades, conforme os deslocamentos permitidos, um

adesivo de natureza epoxídica e por um núcleo isobárico. Este núcleo por pressurização e

nucleação obriga a junta a dilatar-se contra as paredes de betão, comprimindo o adesivo.

• Juntas em monobloco de elastómero e aço

Figura 2.49 – Desenho esquemático de junta de dilatação em monobloco de elastómero e aço

São fabricadas em monobloco de elastómero e aço, (figura 2.49), com grande flexibilidade

e resiliência. A flexão no sentido longitudinal é devida às sub - divisões das chapas de aço

que estão embutidas no bloco de elastómero. São juntas de expansão e vedação para

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

52

grandes movimentos estruturais. São conhecidas pelos nomes comerciais que tomaram,

Transflex. e juntaflex.

• Juntas em placas de aço deslizantes;

Figura 2.50 – Desenho de junta de dilatação metálica

Estas juntas (figura 2.50), são compostas por duas placas sobrepostas, em que uma

desliza sobre a outra. Permitem movimentos até cerca de 10 cm. O vedante em neoprene

é que permite que a junta seja classificada com uma junta fechada.

• Juntas elastoméricas modulares

Figura - 2.51 – Desenho esquemático de junta elastomérica modelar

São constituídas (figura 2.51), por blocos vazados de neoprene, interligados por peças de

aço e suportados por um sistema estrutural próprio. São das mais indicadas para suportar

as cargas das rodas dos veículos. Normalmente permitem deslocamentos entre 10 cm e 60

cm.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

53

13; 86%

1; 7%1; 7%

JUNTAS METÁLICAS

JUNTAS ARMADAS DENEOPRENE

JUNTAS METÁLICAS +JUNTAS ELASTOMÉRICAS DECOMPRESSÃO

Figura 2.52 – Tipos de juntas de dilatação em pontes e viadutos ferroviários

Na maioria das pontes e viadutos objecto de análise, foram aplicadas juntas de dilatação metálicas.

Apenas se identificou a aplicação de juntas armadas de neoprene na Ponte sobre o Rio Este, ao km

38,659 da Linha do Minho. Nesse caso foram aplicadas juntas do tipo Algaflex, indicadas para

pontes ferroviárias.

Figura - 2.53 – Desenho esquemático de junta de dilatação em neoprene armado

O único caso de aplicação de juntas de dilatação metálicas e juntas elastoméricas de compressão

teve lugar na obra de alargamento da ponte sobre o rio Leça, ao km 9,215 da Linha do Minho, em

que foi construída uma nova ponte em betão armado pré-esforçado ao lado de uma ponte existente

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

54

em alvenaria de pedra. As juntas elastoméricas de compressão foram aplicadas no encontro móvel

da nova ponte e longitudinalmente entre os dois tabuleiros.

No caso das passagens inferiores, quando o tabuleiro apoia em aparelhos de apoio, verifica-se que

as respectivas juntas de dilatação são também metálicas.

Em relação às passagens superiores, nas obras que dispõem de juntas de dilatação, foram

aplicadas juntas de elastómero e aço, concretamente juntas em neoprene armado, de vários

fabricantes e tipos, nomeadamente juntas tipo “Transflex”, tipo “Monoflex 20 ou 100”, “Uniblok 75

“ e “VSL tipo 40”.

Apenas no caso da Ponte Rodoviária de Santo Tirso, que é um atravessamento sobre a Linha de

Guimarães, na Estação de Santo Tirso e sobre o Rio Ave, e que foi construída no âmbito da

remodelação do troço entre Lousado e Santo Tirso, na Linha de Guimarães, identificamos juntas

elásticas de compressão no encontro fixo e juntas elásticas modelares no encontro móvel.

2.2.8. A pré - fabricação de obras de arte ferroviárias

2.2.8.1. Problemas e patologias em passagens superiores de peões Com base na experiência de acompanhamento de algumas destas obras, sobretudo após a

construção, enumeram-se algumas das patologias mais correntes, cujas causas são sobretudo

resultado de erros de construção e em menor incidência de erros de projecto:

i) Nas zonas de fixação das chapas dos guarda-corpos, o betão das vigas de bordadura

apresenta-se fissurado e por vezes mesmo esmagado (figuras 2.54 e 2.55);

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

55

Figura 2.54 - Betão destacado na zona de fixação da chapa do guarda-corpos

Figura 2.55 - Idem, já com oxidação num dos parafusos

ii) Em vigas de bordadura de secção transversal, muito reduzida, por exemplo, com a

largura de 135 mm, em que mesmo com a utilização de uma chapa inferior, os

parafusos do lado exterior da viga, têm um recobrimento muito reduzido, verificando-se

o destaque do betão inferior da zona externa, (figuras 2.56 e 2.57).

Figura 2.56.–Destaque do betão na zona da chapa inferior de fixação do guarda - corpos

Figura 2.57 - Idem

iii) Aplicação de parafusos de chapas de fixação de guarda - corpos, na proximidade ou

mesmo nas próprias juntas de dilatação das peças pré-fabricadas. Nessas situações

verifica-se, nomeadamente, chapas não niveladas, oxidação dos respectivos parafusos,

esmagamento e/ou destacamento de betão, (figuras 2.58 e 2.59).

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

56

Figura 2.58 - Posicionamento de parafusos de chapa de fixação de guarda corpos em junta de dilatação

Figura 2.59 - Idem

iv) Falta de juntas de dilatação em guarda-corpos.

v) Fissuras estruturais na face inferior de lajes pré-fabricadas de escadas, por manuseamento

indevido em fase de desmoldagem e volteio (figuras 2.60 e 2.61);

Figura 2.60 - Laje de escada de acesso a passagem superior de peões, com fissuras na face inferior.

Figura 2.61 - Fissuras na face inferior da laje de escada, após reparação

vi) Acabamento irregular e não homogéneo do piso de uma laje, em forma de U ;

Mas, também podem ocorrer patologias em estruturas pré-fabricadas, com origem em factores

externos. É o caso das anomalias verificadas numa passagem pedonal, que faz a ligação entre um

caminho pedonal paralelo à via e uma passagem superior rodoviária. Esta obra pré-fabricada é

constituída por lajes em rampas e patamares, apoiadas sobre pilares, com fundação por sapatas

isoladas, em solos compressíveis, (figuras 2.62 e 2.63);

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

57

Figura 2.62 – Rampa na zona de ligação ao viaduto rodoviário, podendo-se ver o depósito de terras soltas e pedras

Figura 2.63 – Vista, de outro ângulo, do depósito de terras e pedras.

Neste caso, um proprietário confinante executou um depósito de terras soltas e pedras, com uma

altura máxima de cerca de 5,00 m na proximidade do viaduto, atingindo uma altura entre 1,00 m e

2,30 m na zona das sapatas dos dois pilares mais altos da rampa (figuras 2.62 e 2.63). Esta

situação provocou as seguintes anomalias:

i) A abertura da junta de dilatação, entre o patamar da estrutura de acesso pedonal e a

passagem superior, aumentou de 2 cm para 5 cm, em consequência do afastamento

lateral da laje de patamar (figuras 2.64 e 2.65);

Figura 2.64 - Deslocamento da rampa em resultado de assentamento diferencial da fundação

Figura 2.65 - Aumento da largura da junta em cerca de 3 cm

ii) Assentamento da laje de patamar, em cerca de 5 cm;

iii) Assentamento do topo do pilar de apoio dessa laje, em cerca de 1 cm, na extremidade

do lado do depósito de terras e pedras.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

58

O encosto das terras de uma forma não simétrica em relação ao eixo das sapatas, que são

fundadas sobre solos muito compressíveis, introduziu acções não consideradas no

dimensionamento das sapatas, agravando significativamente as tensões de contacto entre a sapata

e o solo e introduzindo necessariamente assentamentos diferenciais nas sapatas.

Neste tipo de estruturas, constituídas por peças isostáticas, a introdução de pequenos

assentamentos diferenciais não prejudica o seu funcionamento, no entanto a continuidade desta

nova situação pode agravar com o tempo os danos já existentes nas rampas.

Face ao atrás referido foram adoptadas as seguintes medidas:

i) Retirada imediata do aterro sobre as sapatas, afastando-o pelo menos de 6,5 m, dos respectivos

eixos, de modo a deixarem de ter influência sobre a fundação das estruturas. Após a limpeza do

terreno deve ser feita a monitorização da obra, para verificar se os assentamentos estabilizaram;

ii) Eliminação do degrau e da abertura da junta, existentes entre o patamar da rampa e a

passagem superior, através da realização de um enchimento do patamar ou, em alternativa

instalação de uma peça metálica, fixa unicamente à passagem superior, de modo a garantir a

concordância entre o patamar e o passeio.

2.2.8.2. Passagem superior rodoviária. Erros de construção e soluções de reparação

Figura 2.66 - Passagem Superior Rodoviária - km 26,177 da Linha do Douro

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

59

O Projecto Na sequência da supressão de uma passagem de nível existente ao km 25.995 da Linha do Douro,

inserida no troço entre Valongo e Cete, foi posta a concurso a execução de uma passagem superior

rodoviária ao km 26,177.

A solução de projecto era constituída por uma estrutura em betão armado pré-esforçado, tipo laje

com duas nervuras, ligadas monolíticamente a pilares de secção rectângular de três tramos,

apoiada nos encontros através de aparelhos de apoio em neoprene cintado, (figura 2.67).

Figura 2.67 - Projecto inicial A empresa responsável pela sua construção apresentou proposta de projecto variante, em solução

pré-fabricada pesada. Esta solução previa um tabuleiro apoiada em pilares, que submetida à

aprovação da entidade gestora da infra-estrutura ferroviária, impôs algumas alterações, que foram

no sentido de garantir a segurança da estrutura ao impacto de um comboio, no caso de um

descarrilamento.

Deste modo, na solução aprovada, os pilares constituíam um conjunto monolítico, com as sapatas e

a viga de encabeçamento, tendo os pilares sido dimensionados para a acção de acidente

correspondente ao choque.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

60

A Construção No decorrer da execução da obra, o projectista da solução variante, em visita de rotina, detectou

diferenças entre o que estava a ser executado e o projecto, a saber:

Nos Encontros

- As carlingas tinham sido betonadas contra as pré – lajes do muro de testa, tendo sido eliminada a

junta que estava prevista entre a carlinga e esse muro;

- As carlingas foram betonadas contra a face superior da viga de encabeçamento do encontro sem

espaço entre a face inferior da carlinga e a face superior da viga de encabeçamento do encontro;

Nos Pilares

- As carlingas dos apoios intermédios (pilares) foram betonadas contra as respectivas vigas de

encabeçamento

- Existia um “painel de corticite” entre as carlingas intermédias, não tendo contudo sido possível

confirmar se o mesmo acompanhava toda altura das carlingas;

- As carlingas não passam para o exterior das longarinas, embora estas últimas apresentem furação

para a passagem da armadura longitudinal da carlinga.

Para resolução destas anomalias o projectista propunha duas soluções alternativas, a demolição

das carlingas ou o estabelecimento de continuidade do tabuleiro com os encontros e pilares,

aumentando a armadura negativa sobre os apoios centrais, retirando as pré - lajes duplas previstas

para as vigas de testa e execução das novas vigas de testa afastadas 5 cm, em cada um dos

encontros para permitir a dilatação do tabuleiro.

Na sequência da adopção da segunda solução, a obra de arte foi concluída em Março de 2002,

sem contudo terem sido executados os acessos, da responsabilidade da autarquia, pelo que a obra

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

61

não foi colocada em serviço. O facto de não terem sido realizados os acessos contribuiu para a

rápida alteração e degradação dos cofres dos aterros e dos próprios taludes.

As Inspecções

Decorridos cerca de 15 meses, em Julho de 2003, numa vistoria de rotina foram detectadas

diversas anomalias na obra de arte, que embora sem acessos era utilizada por camiões, pelo que

numa primeira fase foram instaladas peças pré-fabricadas de grande porte, para impedir o acesso

de viaturas a esta estrutura.

Em Novembro de 2003, foi realizada por um especialista e projectista com larga experiência (Reis,

Beirão, 2004) uma inspecção de carácter genérico e sumário, para detectar eventuais deficiências

que pudessem pôr em causa a segurança da circulação ferroviária, tendo sido elaborado um

relatório preliminar, que concluiu pela existência de diversos defeitos mas, que não punham em

causa a sua resistência e estabilidade.

Tendo sido proposto a realização de inspecções mais minuciosas, estas foram levadas a efeito pelo,

Eng.º Beirão Reis, tendo sido realizadas três inspecções, em Fevereiro de 2004, a segunda das

quais foi efectuada em período nocturno de interdição de circulação e corte de tensão, com

utilização de um veículo ferroviário, “dresine” com plataforma elevatória.

As Deficiências de Construção

Foi adoptada uma classificação que estabelece dois tipos de deficiências de construção (Reis,

Beirão, 2004):

Tipo 1 – Deficiências causadas pelo incumprimento dos pormenores de projecto e que são

impossíveis de reparar ou reverter.

Pode ser possível tomar medidas para diminuir os seus efeitos negativos ou aplicar soluções

alternativas às previstas no projecto que foram deficientemente construídas, desde que sejam

compatíveis com o existente.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

62

Tipo 2 – Deficiências causadas por má execução dos trabalhos, as quais na generalidade podem

ser reparadas.

Deficiências Tipo 1

1 - Falta das juntas de dilatação, previstas em projecto, entre o tabuleiro e as estruturas de apoio,

ou seja entre o tabuleiro e os encontros e entre o tabuleiro e os pilares intermédios (figuras 2.68 e

2.69).

Figura 2.68 - Encontro em cofre.Falta de juntas de dilatação

Figura 2.69 - Encontro Perdido. Falta de juntas de dilatação

Estas anomalias foram devidas à betonagem das carlingas directamente contra o coroamento das

“vigas de encabeçamento”, encontros e pilares intermédios, sem a interposição prévia de qualquer

material separador (corticite ou semelhante), que fizesse a protecção dos aparelhos de apoio, que

estavam instalados sobre essas vigas de coroamento (figura 2.70).

Figura 2.70 - Aparelho de apoio no Encontro Perdido

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

63

2 - Roturas das ligações dos “passeios” aos “muros de avenida” do “encontro em cofre”, devida à

não aplicação das armaduras de ligação previstas no projecto. Esta anomalia provocou o

abatimento, deslocação e fracturação múltipla dos passeios (figuras 2.71 e 2.72).

Figura 2.71 - Rotura das ligações do passeio

ao muro avenida

Figura 2.72 - Fracturação dos passeios

Deficiências Tipo 2

1 – Fractura no banzo inferior de uma “viga longarina” do tabuleiro, do lado do “encontro perdido”

com destacamento de betão (figura 2.73);

Figura 2.73 - Fractura no banzo inferior da "Viga longarina"

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

64

2 – Fissuras, em diversos pontos, nas paredes do “encontro em cofre” (figuras 2.74 e 2.75) ;

Figura 2.74 - Fissuras e mau acabamento do betão (Encontro em cofre)

Figura 2.75 - Fissura (Encontro em cofre)

3 – Aterros no interior do “encontro perdido”, desagregados e arrastados pelas águas pluviais, não

dando continuidade e deixando em falso o passeio do lado nascente (figuras 2.76 e 2.77);

Figura 2.76 - Passeio em falso, por falta de aterro no encontro perdido

Figura 2.77 – Falta de aterro no encontro perdido

4 – Aterros no interior do “encontro em cofre” com assentamentos elevados, retirando apoio aos

passeios;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

65

Figura 2.78 – Rotação do passeio relativamente ao muro avenida 5 – Passeios, (figura 2.78), sobre o “encontro em cofre” abatidos, deslocados lateralmente e

rodados em relação aos “muros de avenida”, com diversas fracturas em diagonal, ao longo do seu

comprimento. Situação que é consequência da rotura da ligação aos “muros de avenida” e de

assentamento dos aterros que lhes poderiam ainda dar apoio;

6 – Fixação do “Guarda - corpos” às vigas de bordadura, pelo lado do passeio, ao longo do muro de

avenida, do lado poente do “encontro em cofre”, não garantindo a necessária solidez (figura 2.79);

Figura 2.79 - Parafusos de fixação da chapa do guarda corpos em junta

7 – Taludes nos encontros mal executados e mal regularizados, com pendentes mal definidas ou

excessivas, com reduzida estabilidade, permitindo que detritos erodidos ou arrastados pelas águas

pluviais atinjam a plataforma da via férrea (figura 2.80);

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

66

Figura 2.80 - Erosão do talude do Encontro em cofre

8 – “Caleiras de drenagem” das águas pluviais abatidas, deslocadas ou partidas, em consequência

da deficiente execução dos aterros e da falta de fundação capaz (figuras 2.81 e 2.82);

Figura 2.81 – Falta de Caleiras de drenagem Figura 2.82 - Caleiras de drenagem deslocadas ou partidas

9 – “Betonilhas esquarteladas” de acabamento dos passeios em mau estado, com fissuras e

destacamentos de argamassas;

10 – “Betão aparente” de muito má qualidade, com superfícies mal acabadas, com buracos e

arestas quebradas, nomeadamente nas “carlingas” do tabuleiro e nos “acrotérios”. Existência de

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

67

diversas peças de betão pré-fabricadas, com irregularidades por corrigir e furações por colmatar e

disfarçar, nomeadamente em muros e vigas de bordadura (figuras 2.83 e 2.84).

Figura 2.83 - Betão aparente no encontro com irregularidades

Figura 2.84 – Betão aparente no tabuleiro com irregularidades

A Correcção das Deficiências de Construção

Deficiências do tipo 1

Juntas de dilatação

- Segundo o REBAP, (artigos 31º e 32º) as estruturas de betão armado, devem ter juntas de

dilatação, afastadas em planta não mais de 30 m, quando se pretende não ter em consideração, na

análise da estabilidade dessa estrutura os efeitos conjugados das acções das “variações uniformes

de temperatura” e da “retracção do betão” na sua conjugação mais desfavorável.

A conjugação mais desfavorável destas acções ocorrerá no Inverno após a conclusão do processo

da retracção, com um valor de ( - 15 º C)

Dado que o valor da variação da temperatura é metade do valor teórico, é perfeitamente justificável

que a distância máxima entre juntas de dilatação possa ser o dobro de 30 m, ou seja 60 m.

Como o comprimento total deste tabuleiro não ultrapassa os 38 m, conclui-se que não existem

efeitos gravosos para as estruturas desta obra, decorrentes da falta de juntas de dilatação.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

68

Nas inspecções efectuadas, ocorridas mais de dois anos após a betonagem do tabuleiro, não são

visíveis sinais que demonstrem que a falta das juntas de dilatação tenham ocasionado roturas,

fragilizações ou deteriorações da obra de arte.

As ligações das carlingas às vigas de encabeçamento é realizada por ferrolhos em aço. Estes

ferrolhos vêm previamente embebidos no betão das vigas de encabeçamento, encontram-se soltos

no interior de tubos de diâmetro folgado, em todos os apoios, com excepção do apoio sobre o muro

de testa do encontro perdido, em que estão envolvidos e fixados pelo betão da carlinga. Há,

portanto, aderência, sem continuidade estrutural, entre o betão das carlingas e o betão das vigas de

encabeçamento.

As ligações das vigas de encabeçamento aos apoios é também materializada por ferrolhos em aço,

que vindos previamente embebidos no betão dos apoios, encontram-se fixados em furações

tubulares, previamente deixadas nas vigas de encabeçamento, posteriormente preenchidas, após a

colocação destas, com argamassa de alta resistência.

Dado que os apoios do tabuleiro, tanto nos muros como nos pilares estão dotados de armaduras

longitudinais bastante superiores aos referidos ferrolhos, é razoável admitir que os esforços

horizontais que possam surgir nos extremos superiores dos apoios devido às variações de

comprimento em consequência das acções das “variações uniformes de temperatura” e “retracção

do betão”, se diluam pela ligeira rotação, das vigas de encabeçamento, permitida pelos ferrolhos.

Este fenómeno designado por “efeito pendular nas ligações do tabuleiro aos apoios” tem um efeito

dissipador nos esforços, sendo benéfico para os apoios do tabuleiro.

Foi deste modo concluído que a inexistência de juntas de dilatação entre o tabuleiro e as estruturas

de apoio, que estavam previstas em projecto não tem consequências que possam pôr em risco a

estabilidade da obra de arte, pelo que não foram adoptadas medidas específicas.

Rotura das ligações dos passeios aos muros de avenida

Os passeios devem ser integralmente demolidos, reconstruídos em betão armado e dotados de

maciços de fundação nos extremos adjacentes às abas dos muros de avenida. Os passeios devem

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

69

ser ligados aos muros de avenida através da inclusão de armaduras de ligação que vão rodear os

varões das armaduras destes muros, que devem ser colocadas a descoberto, por picagem do

betão.

Deficiências do tipo 2

Fractura numa viga longarina e fissuras em paredes

Quer a fractura existente na banzo inferior de uma viga longarina do tabuleiro, quer as diversas

fissuras existentes nas paredes do encontro em cofre devem ser tratadas e colmatadas por meio de

injecções de “resina epoxy”.

Aterros no Encontro Perdido e no Encontro em Cofre

Os aterros no interior dos dois encontros deverão ser convenientemente refeitos. No caso do

encontro perdido, deve ser dada a necessária continuidade ao passeio do lado nascente,

preenchendo-se o espaço em falso sob este com betão.

Passeios no Encontro em Cofre

Devem ser demolidos e reconstruídos de acordo com o ponto “Rotura das ligações dos passeios aos

muros de avenida”.

Fixação do Guarda – Corpos

As fixações do “guarda – corpos” às vigas de bordadura na zona do muro de avenida do lado

poente do encontro em cofre, devem ser substituídas por novas fixações adequadamente

posicionadas e executadas. Os vazios das fixações abandonadas devem ser preenchidos com

material de soldadura e pintura.

Taludes nos Encontros

Os taludes devem ser convenientemente arranjados, com acerto das pendentes para valores que

garantam a sua estabilidade, regularizando-se as superfícies de modo a torná-las o mais possível

planas.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

70

Como medida de melhoria, quer da estabilidade global, quer da resistência à erosão, quer do

próprio aspecto visual, foi sugerido o revestimento dos taludes com pendente mais acentuada ou

com maior proximidade à via férrea com “grelhas de enrelvamento”.

Caleiras de Drenagem de Águas Pluviais

Estas caleiras devem ser reconstruídas na íntegra, mas em betão ligeiramente armado, com caixas

nas mudanças de direcção.

Betonilhas Esquarteladas em Passeios

As betonilhas esquarteladas de acabamento dos passeios deverão ser integralmente refeitas,

devendo ser utilizado para o efeito argamassas de qualidade.

Betão Aparente

Todas as superfícies visíveis do betão da obra, devem ser convenientemente tratadas e reparadas

de modo a ficarem com aspecto aceitável, com base no seguinte esquema:

- rebarbar excrescências e escorrências

- preencher cavidades com “argamassas de reparação” não retráctil á base de resinas epoxídicas.

Como medida de melhoria da durabilidade e do aspecto visual, foi proposto a pintura do betão

aparente com tinta à base de resinas acrílicas ou epoxídicas.

Drenagem Complementar

Tendo por base o diagnóstico formulado com base nas inspecções à obra de arte e zona envolvente,

o dono de obra contratou um projecto de drenagem complementar, (Baptista, 2004) e em

consequência a realização desses trabalhos.

Face ao cenário de existência de erosão hídrica acelerada e prematura dos taludes de escavação

junto a esta obra de arte, causada por caudais de ponta de elevada velocidade média, de regime

torrencial, provocados pela alteração da morfologia a montante da área em questão, foi beneficiado

o sistema de drenagem (figuras 2.85 e 2.86), e de estabilização de taludes, tendo sido criadas

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

71

condições de franca captação, encaminhamento e evacuação desses caudais para a boca de

entrada de uma passagem hidráulica existente.

Em termos gerais foi executado um canal na crista do talude, do lado Encontro Norte, de captação e

condução das águas pluviais para a passagem hidráulica existente, tendo sido reconstruída a valeta

em meia cana (figura 2.86), existente sensivelmente a meia altura do talude, que foi também

estabilizado.

Essa estabilização foi conseguida através da “criação de uma caixa”, por escavação manual, tendo

sido estendida uma manta de geotêxtil de características essencialmente hidráulicas com forte

permeabilidade segundo a vertical ao plano do geotêxtil, sobre o qual foi espalhada uma camada de

pedra com espessura média de 0,40m, arrumada à mão e assente com argamassa de cimento e

areia.

De modo a que este revestimento não se tornasse impermeável, foram deixados vazios da ordem de

5 a 10%, relativamente à superfície de talude intervencionada.

Figura 2.85 - Reposição da ligação do passeio ao muro avenida. Caleira de drenagem complementar

Figura 2.86 – Caleira da drenagem complementar

Muros de Contenção de Taludes do Encontro Sul (Encontro Perdido)

Para estabilizar o talude do encontro Sul, foi construído um muro em gabiões, que teve em

consideração a existência já de um muro de pé de talude em betão armado e a necessidade de

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

72

fazer desaparecer um caminho de acesso à passagem de nível existente no local antes da

construção da passagem superior.

Este muro de gabiões foi construído quer do lado norte, quer do lado nascente, neste caso contendo

no seu interior esse muro de pé de talude em betão armado já existente (figuras 2.85 e 2.86).

Figura 2.87 - Pormenor do muro de gabiões contendo o muro de betão armado

Figura 2.88 - Muros de gabiões norte e nascente

2.2.7. Construção de Passagens Superiores de Peões tipo “Ponte Catenária”

Figura 2.89 - Passagem inferior de peões ao km 30,780 da Linha do Douro

Figura 2.90 – Vista inferior do tabuleiro da passagem inferior de peões

2.2.7.1. Concepção Estrutural Esta passagem superior de peões (figuras 2.89 e 2.90), situada ao km 30,780 da Linha do Douro,

junto à Estação Ferroviária de Paredes, estabelece uma nova ligação entre o Centro e o Sul da

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

73

Cidade, vencendo um desnível natural de 5,00 m existente entre os arruamentos a que dá acesso.

Tem um desenvolvimento entre paramentos de encontros de 53 m, sendo os acessos à obra de

arte realizados por rampas em aterro, pelo que a obra tem um desenvolvimento total de 95 m.

O tabuleiro desta obra de arte tem dois tramos de 26,5 m cada, apoiados num pilar metálico

intermédio e em dois encontros extremos e tem uma altura máxima de 7,50 m, em relação ao carril

mais elevado, em consequência da altura a que se situam as instalações fixas de tracção eléctrica,

“catenária”.

A base da concepção estrutural, (Fonseca, 2002), é de uma banda esticada, ou seja uma estrutura

laminar, de pequena espessura, 0,15 m, em betão armado com cabos de pré-esforço, tracionados

entre os dois apoios.

A forma côncava apresentada pelo tabuleiro, resulta do equilíbrio estático das forças gravíticas e

dos esforços nos cabos, durante a construção. A espessura da laje foi condicionada pelo

comportamento estrutural na direcção transversal e resulta também das características dinâmicas

pretendidas para a passagem, isto é das cargas permanentes indispensáveis para conseguir uma

frequência própria fundamental relativamente baixa.

Os encontros são de betão armado, em forma de “cofre”, realizando as rampas de acesso,

contendo uma “viga” horizontal superior para ancoragem dos cabos do tabuleiro e transmissão dos

respectivos esforços às ancoragens e ao solo.

O pilar central é metálico e constituído por um tubo vertical de 0,22 m de diâmetro que se bifurca a

certa altura da base, em quatro ramos mais delgados, com 0,17m de diâmetro. A sela superior é

realizada com chapas de aço, formando uma grelha de perfis compostos alinhados sob os cabos

longitudinais.

2.2.7.2. O Processo Construtivo Dada as características geotécnicas dos solos, baseadas num reconhecimento geotécnico das

condições locais, que identificava um estrato de solo residual granítico e o afloramento de um

maciço de rocha granítica em certas zonas, foram previstas fundações directas no pilar e nos

encontros. No entanto estes são dotados de ancoragens ao solo, para uma carga global de cerca de

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

74

4800 kN, do lado de Encontro E1 e de cerca de 7200 kN do lado de Encontro E2, sendo inclinadas

relativamente á vertical de 30º no primeiro caso e de 45 º no segundo caso.

Figura 2.91 - Execução do Encontro E1

Figura 2.92 - Aplicação de pré-esforço no Encontro E2

Reveste particular interesse o processo de execução do tabuleiro, que compreendeu as seguintes

fases:

i) Pré - fabricação de pré - lajes com as dimensões de 3,3 x 1,0 m2 e espessura de 0,04 m (figura

2.94);

ii) Instalação e esticamento de cabos até 750 KN cada um (figura 2.93);

iii) Colocação das pré - lajes por suspensão aos cabos (figuras 2.95, 2.96 e 2.97);

iv) Colocação de armaduras sobre as pré – lajes (figura 2.98);

v) Betonagem da laje;

vi) Selagem das juntas das pré - lajes;

vii) Segunda fase de esticamento dos cabos e respectiva injecção.

Figura 2.93 - Instalação dos cabos de pré-esforço do tabuleiro

Figura 2.94 – Pré - laje do tabuleiro

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

75

Figura 2.95 - Colocação de pré-lajes suspensas dos cabos de pré-esforço

Figura 2.96 – Vão entre o encontro esquerdo e o pilar com todas as pré-lajes já instaladas

Figura 2.97 - Montagem de pré – lajes na zona sobre a plataforma ferroviária em período de interdição nocturna de via e corte de tensão

Figura 2.98 - Armaduras de aço já colocadas no tabuleiro, para início da betonagem do tabuleiro, em período nocturno

2.2.8. Ensaios de carga em pontes e viadutos Os ensaios de carga destinam-se a verificar a efectiva conformidade da estrutura com o previsto em

projecto, mediante a caracterização do seu comportamento.

As provas de carga clássicas, em geral apenas contemplam a circulação de um comboio a

velocidade reduzida para obter as linhas de influência das grandezas interessadas.

Contudo, no caso das obras de arte, o valor das cargas envolvidas nos testes não permite muitas

vezes aferir sobre o real comportamento global da estrutura e das componentes que a integram,

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

76

sendo muito útil a obtenção de linhas de influência experimentais, que confrontadas com as que

são obtidas da análise numérica, permitem avaliar correctamente a resposta da obra ensaiada,

(Costa et al, 2004).

Face ao atrás referido tornou-se necessário levar a efeito outros ensaios, pelo que o LABEST -

Laboratório de Tecnologia do Betão e do Comportamento Estrutural, da Faculdade de Engenharia

da Universidade do Porto, nos ensaios de carga que levou a efeito, em 2003 nos viadutos e pontes

construídos nas Linhas do Minho de Guimarães, adoptou na generalidade a seguinte metodologia :

a) Sequência de posições estáticas dos veículos, por forma a obter os valores mais elevados

das grandezas medidas;

b) Circulação de um comboio de carga com velocidade reduzida, para obtenção das linhas de

influência das grandezas interessadas;

c) Frenagem dos veículos sobre o tabuleiro após aceleração até uma velocidade pré-definida.

Este ensaio permite avaliar o desempenho dos aparelhos de apoio e das juntas de

dilatação, através da quantificação aproximada das forças envolvidas e da própria influência

do conjunto carris - balastro na sua transmissão ao tabuleiro;

d) Monitorização durante um período não inferior a 48 horas. Através desta monitorização é

possível verificar o funcionamento dos elementos de ligação da super à infra-estrutura. Por

outro lado através da medição das grandezas que caracterizam o comportamento local,

nomeadamente deformações e abertura de fendas, é possível avaliar a importância relativa

das várias acções que actuam sobre a estrutura.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

77

2.2.8.1. Ensaios da Ponte de Caniços

Figura 2.99 - Ponte de Caniços ao km 35,364 da Linha de Guimarães

Figura 2.100 – Vista da via férrea da Ponte de Caniços

A Ponte de Caniços, (figuras 2.99 e 2.100) construída no âmbito da empreitada de reconversão

para via larga do troço entre Santo Tirso e Lordelo, é constituída por um tabuleiro contínuo, em

betão armado pré-esforçado, com um comprimento de 176 m entre eixos dos aparelhos de apoio

nos encontros e tem 7 tramos, que entre eixos de pilares medem respectivamente 17m, 22 m, 30

m, 38 m, 30 m, 22 m e 17 m.

Figura 2.101 - A ponte antiga de via estreita, transformada em atravessamento pedonal e a nova Ponte de Caniços

A secção transversal do tabuleiro é em viga caixão, (figura 2.101), com altura constante de 2,20 m,

cujas almas têm uma espessura de 0,45 m sobre os apoios e de 0,30 m no vão.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

78

2.2.8.2. Sistema de medição instalado

O ensaio de carga estático realizou-se durante um período aproximado de seis dias, tendo sido

medidas cinco tipos de grandezas, conforme Relatório de Observação, Dezembro 2004:

a) Extensão superficial do betão em dez pontos representativos de seis secções do tabuleiro;

b) Deslocamentos verticais a meio vão dos 7 tramos do tabuleiro;

c) Rotações em duas secções de extremidade de um vão;

d) Abertura das juntas de dilatação do tabuleiro nas suas extremidades e deslocamentos

relativos entre este e o apoio do Pilar P2;

e) Temperatura.

Foi utilizado um sistema de aquisição e registo integrado, que permitia a medição automática e

simultânea dessas grandezas. Todos os sensores utilizados eram eléctricos, alimentados

directamente a partir do sistema de aquisição, no caso dos inclinómetros, clip-gages e

comparadores e com alimentação própria no caso dos LVDT’s (transdutores indutivos).

A medição das extensões do betão nas superfícies inferior e superior do tabuleiro, foi obtida por

transdutores resistivos (clip-gages) e indutivos (LVDT’s), em seis secções do tabuleiro, localizadas a

meio vão dos tramos 2, 3, 4 e 5, (nos tramos 3 e 5 centradas nos vãos de 24 m) e sobre os dois

nós de apoio do pilar P3, em dez pontos distintos. Deste modo foram obtidas distribuições

transversais dos esforços no intradorso e extradorso e nas secções mais solicitadas a meio vão e

apoios.

Para medir os deslocamentos verticais foram utilizados transdutores indutivos em tensão (LVDT’s),

semelhantes aos empregues nas medições das deformações no tabuleiro, bem como comparadores

eléctricos e sensores de pressão (figuras 2.102 e 2.103).

Figura 2.102 - Sensor de deslocamento, LVDT (Costa et al, 2004)

Figura 2.103 - Comparador eléctrico (Costa et al, 2004)

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

79

Baseado no sistema de nivelamento hidrostático, foi instalado um circuito hidráulico constituído por

um reservatório, fixo ao guarda-balastro de intradorso na zona de apoio do tramo 4 do tabuleiro no

pilar P3 (foi desprezado inicialmente o deslocamento vertical) e um conjunto de condutores e outros

acessórios que conduziam o fluído entre o reservatório e os pontos onde se pretendia medir os

deslocamentos verticais.

Foram também medidas as rotações das secções de apoio do tramo 3, com utilização de

inclinómetros eléctricos. Os inclinómetros foram instalados na face exterior da alma do caixão,

apoiados em cantoneiras de aço (figura 2.104).

Figura 2.104 - Instalação de inclinómetro. (Costa et al,

2004 ) Figura 2.105 - LVDT instalado no Encontro E1, para

medir a abertura da junta de dilatação(Costa et al, 2004)

A abertura das juntas de dilatação foi medida com recurso a dois transdutores indutivos de

deslocamento (LVDT’s), (figura 2.105), com instalação de um em cada encontro.

2.2.8.3. Condução do Ensaio de carga Na realização do ensaio de carga foi utilizada uma locomotiva, (figuras 2.106 e 2.107), que é

normalmente utilizada pelo sub-empreiteiro de via para rebocar os vagões balastreiros, que

transportam os inertes (balastro) que serve de apoio à via férrea.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

80

Figura 2.106 - Laboratório móvel de estruturas sob o terceiro tramo, durante a realização do ensaio. (Costa et al, 2004)

Figura 2.107 - Locomotiva utilizada no ensaio.(Costa et al, 2004 )

Foram consideradas nove casos de carga, (figura 2.108), escolhidos por induzirem os valores mais

elevados das grandezas a medir mas secções instrumentadas, a que correspondiam igual número

de posições do veículo imobilizado sobre o tabuleiro.

Figura 2.108 - Posicionamento do veículo na Posição 1, durante o ensaio. (Costa et al, 2004 )

Além do ensaio de carga estático, fez-se circular a locomotiva a velocidade baixa, para obter as

linhas de influência das várias grandezas medidas associadas a este sistema de cargas. Procedeu--

se também à frenagem da locomotiva sobre o tabuleiro após aceleração até uma velocidade

estabelecida previamente.

2.2.8.4. Resultados e Conclusões

O registo das medições quando a estrutura estava descarregada (situação de vazio) permitiu

observar o efeito da variação da temperatura sobre a estrutura e sobre o próprio sistema de

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

81

medição e detectar eventuais deformações residuais devidas a comportamento não elástico da

ponte.

Face às medições apresentadas, nos vários transdutores instalados e durante o ensaio de carga

estático, reconhece-se o efeito que a temperatura tem no comportamento da estrutura embora não

se manifeste de uma forma preponderante.

Verifica-se que o efeito provocado pelas acções ambientais nas juntas de dilatação e aparelhos de

apoio é bastante superior ao registado para os carregamentos estáticos mais desfavoráveis. Há uma

boa concordância entre a ocorrência dos valores extremos de temperatura e os deslocamentos

máximos, que devido à inércia térmica da ponte são desfasados no tempo.

Apesar da simetria do sistema de cargas, da geometria da estrutura e condições de apoio

relativamente aos deslocamentos horizontais, o comportamento diferenciado das juntas pode

indiciar uma deficiência nas juntas de dilatação ou respectivos aparelhos de apoio.

O ensaio de carga gerou esforços máximos no tabuleiro ligeiramente superiores aos obtidos a partir

de um modelo numérico, com elementos finitos de casca, para a combinação quase permanente da

sobrecarga regulamentar e que corresponde a cerca de 50 % do esforço máximo no vão para

combinações raras da referida sobrecarga regulamentar.

Da comparação dos resultados das medições efectuadas na obra com os valores das flechas e

rotações obtidos com recurso ao modelo de cálculo simplificado, constata-se que a estrutura

construída apresenta ligeiramente mais rigidez e integridade global do que a fornecida pelo modelo

de cálculo, dado que os valores são em geral semelhantes.

As deformações medidas nas fibras inferiores do tabuleiro a meio-vão dos dois tramos

instrumentados também apresentam valores iguais ou inferiores aos calculados, pelo que não

induziram, em princípio, fendilhação nas secções mais esforçadas do tabuleiro.

Contudo os alongamentos medidos no topo do guarda - balastro, numa secção sobre o

apoio, são consideravelmente superiores aos obtidos através do modelo numérico.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

82

2.2.8.5. Ensaio de Vibração Ambiental Além dos ensaios atrás referidos, o Laboratório de Vibrações e Monitorização de Estruturas,

também da FEUP, efectuou um ensaio de vibração ambiental, com o objectivo de determinar de

forma experimental os parâmetros mais representativos do comportamento dinâmico da Ponte.

Foram determinadas as frequências naturais e modos de vibração, através da medição da resposta

dinâmica da estrutura à acção do vento.

Segundo o Relatório do Ensaio de Vibração Ambiental da Ponte de Caniços, Dezembro de 2004,

foram considerados 27 pontos de medida sobre o tabuleiro, tendo-se recorrido a quatro

sismógrafos, munidos de acelerómetros triaxiais do tipo “force-balance” e conversores analógico-

digitais de 18 bit.

Em cada “set up”, um dos sismógrafos foi posicionado de forma fixa sobre o ponto 8, como sensor

de referência, enquanto os outros três funcionaram como sensores móveis, sendo sucessivamente

colocados ao longo dos restantes 26 pontos de medida.

A aquisição de dados foi efectuada com uma frequência de amostragem de 100 Hz e por períodos

suficientemente prolongados, por forma a obter estimativas espectrais com resolução em

frequência adequada, face à gama de frequências de maior interesse.

Para analisar o grau de correlação verificado entre os parâmetros modais, identificados

experimentalmente, e os calculados numericamente, foi utilizado o modelo numérico atrás referido

desenvolvido pelo LABEST, para realizar uma análise modal de modo a extrair frequências naturais

e modos de vibração.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

83

Tabela 2.1 – Comparação entre frequências naturais calculadas e frequências identificadas nos ensaios

Frequência Calculada (Hz) Frequência Identificada (Hz) Tipo de Modo

6.55 7.1 1º vertical

7.77 8.57 2º vertical

8.25 9.45 3º vertical

1.63 2.34 1º transversal

1.93 2.59 2º transversal

2.98 3.78 3º transversal

Conforme demonstra a tabela 2.1, verifica-se que as frequências medidas são ligeiramente

superiores às obtidas numericamente, havendo contudo uma evolução coerente entre valores

identificados e calculados.

Apesar das diferenças ao nível de frequências naturais, regista-se no referido relatório, uma

excelente correspondência entre configurações modais identificadas e calculadas, principalmente as

que estão relacionadas com os modos de flexão vertical do tabuleiro.

2.2.9. – A fiscalização das obras de arte

A maioria destas obras de arte foram construídas integradas em grandes empreitadas, de

renovação de troços de linha de caminho de Ferro, cuja fiscalização foi assegurada na sequência de

concurso púbico, por empresas especializadas em fiscalização de grandes empreitadas públicas.

As equipas de fiscalização, dimensionadas pelo dono de obra, REFER, de acordo com a dimensão

da obra, suas especialidades e duração, eram constituídas por elementos com habilitações e

experiência, exigida em caderno de encargos, em fiscalização de obras semelhantes.

No que se relaciona com as obras de arte, podemos referir que a sua fiscalização era assegurada

para além do chefe de equipa, engenheiro – chefe da fiscalização, (engenheiro civil com pelo menos

10 anos de experiência profissional), pelo chefe da construção civil, (engenheiro civil, com pelo

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

84

menos cinco anos de experiência), por fiscais de construção civil, técnicos com formação média em

construção civil e com experiência de pelo menos dez anos.

Esta fiscalização era ainda enquadrada pelo chefe de controlo de custos (engenheiro civil) e por

orçamentistas, pelo chefe de planeamento, (engenheiro civil), com especialização e experiência na

área do planeamento, pelo chefe de controle de qualidade (engenheiro civil, com especialização e

experiência na área da qualidade), que assegurava o cumprimento dos vários procedimentos de

qualidade, nomeadamente a realização dos ensaios previstos contratualmente. Fazia parte ainda

desta equipa um coordenador de segurança e saúde no trabalho, (engenheiro civil, com

especialização e experiência na área da segurança no trabalho), auxiliado por técnicos de segurança

no trabalho.

Estas equipas, que no início da década de 1990, com algumas excepções, caso nomeadamente de

pessoas que trabalharam na fiscalização da Ponte Ferroviária de S. João, tinham apenas a

experiência de construção de obras rodoviárias, dada a pouca tradição até essa altura na

construção de obras ferroviárias, foram adquirindo experiência na área específica das obras de arte

ferroviárias, à medida que se iam desenvolvendo os trabalhos das várias empreitadas.

Pode-se deste modo dizer que a eficiência da fiscalização foi melhorando, à medida que as obras

iam avançando no tempo, devido não só à maior experiência ferroviária das equipas mas, também

com a importância que a qualidade e a segurança da obra iam adquirindo, na sequência da

implementação de legislação na área da segurança e da qualidade, que ia sendo reflectida nas

exigências dos cadernos de encargos das obras. As próprias empresas de fiscalização foram sendo

objecto de certificação de qualidade.

Os procedimentos da fiscalização com o preenchimento de registos normalizados, que foram sendo

introduzidos, permitem um mais eficaz controlo de qualidade, sendo a “qualidade” interpretada

num sentido global de toda a obra, contemplando nomeadamente o próprio planeamento e controlo

de custos.

A qualidade não se mede só pela realização de uma obra, no cumprimento do projecto, das

especificações técnicas do caderno de encargos e das normas de construção, mas também pelo

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

85

cumprimento dos prazos constantes do planeamento geral da obra e dos custos previstos no mapa

de trabalhos e quantidades.

No sentido da melhoria da qualidade de execução das obras, há hoje uma maior exigência na

escolha das empresas de fiscalização, procurando admitir equipas com pessoas experientes na

execução de obras de natureza semelhante, nas várias especialidades presentes na construção

deste tipo de obras.

É hoje, atribuída maior relevância à coordenação de segurança e saúde, quer na fase de projecto

com o estudo das soluções de menores riscos, quer ao nível da fiscalização da obra, com a

contratação de um coordenador de segurança e saúde e de um técnico de segurança, para

acompanhamento permanente da execução dos trabalhos, no sentido do cumprimento do plano de

segurança e saúde aprovado pelo dono de obra.

Deste modo, minimizam-se os riscos não só para os trabalhadores, como para a própria infra-

estrutura ferroviária e para os próprios utentes do caminho de ferro, com a execução de obras em

coexistência com a circulação dos comboios.

Os registos tomados pela Fiscalização são muito importantes para a chamada compilação técnica

da obra, devendo ser consultados sempre que necessário durante a vida da obra de arte, pelos

inspectores das obras e pelos responsáveis pela sua manutenção e conservação.

2.2.10. Telas Finais e a Compilação Técnica As telas finais devem retratar com fidelidade a obra que foi executada, pelo que são considerados

elementos fundamentais na caracterização da infra-estrutura.

Na REFER, há uma Norma que define procedimentos que devem ser considerados relativamente à

recepção e distribuição de telas finais.

A responsabilidade pela elaboração das telas finais é do empreiteiro, que deve entregá-las ao órgão

adjudicante no prazo estabelecido no caderno de Encargos. Actualmente as telas finais devem ser

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

86

entregues no final da obra, sendo condição necessária para a realização da respectiva recepção

provisória.

O Órgão da REFER responsável pela obra, deve fazer a sua verificação. No caso da existência de

fiscalização externa a verificação das telas finais é feita por essa entidade, sendo no entanto a

validação das mesmas efectuada pelo referido órgão da REFER.

O órgão técnico da engenharia da empresa, da especialidade respectiva, analisa a coerência das

telas finais, aprovando-as para divulgação. Este órgão envia as telas finais para o órgão de cadastro

e arquivo técnico para arquivo e divulgação. No caso das obras de arte é enviado pelo órgão de

cadastro um exemplar em suporte digital ao órgão responsável pela respectiva conservação.

A chamada “Compilação Técnica” tem início já na fase de projecto. É uma peça do projecto, que

será completada no final da obra, onde é feita a identificação do empreendimento, dos

intervenientes e onde é dada uma caracterização descritiva das obras do projecto, incluindo os

respectivos materiais e produtos que vão ser aplicados.

Faz ainda parte da compilação técnica a “Informação técnica” a disponibilizar, onde é feita

referência às fichas técnicas dos materiais e equipamentos instalados na obra, que devem ser

anexados à Compilação Técnica pelo Coordenador de Segurança e Saúde da Obra, como por

exemplo a ficha técnica do aço utilizado na armadura, a ficha técnica dos betões aplicados em obra

ou a ficha técnica dos aparelhos de apoio aplicados em obra.

Consta também da Compilação Técnica a “Análise de riscos para a fase de exploração”, matriz de

avaliação onde se discriminam as operações de manutenção e conservação, os materiais e

equipamentos a utilizar, caracterizando-se os respectivos riscos e técnicas de prevenção.

Por último, importa referir que o Coordenador de Segurança e Saúde da Obra deve juntar um

exemplar completo das Telas Finais à Compilação.

Actualmente está a funcionar o “Sistema de Gestão Integrada de Documentação Técnica”, com

utilização do software do SAP-DMS, na rede Intranet da empresa, que permite fazer o

acompanhamento “on line”, desde a criação das peças do projecto, até à validação das telas Finais,

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

87

e à introdução da compilação técnica, encontrando-se a qualquer momento acessíveis aos

interessados.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

88

3. A INSPECÇÃO DE PONTES FERROVIÁRIAS

3.1. Antecedentes históricos

Em 1918, a Associação Americana de Engenharia Ferroviária, publicou um artigo editorial, “Estudo

de colapsos de estruturas de betão” com o sub-título “ A compilação dos colapsos de estruturas de

betão e o que deve ser feito no futuro”. Este estudo cobriu um período de 25 anos e concluiu com a

seguinte mensagem, (Feld and Carper, 1997), que se traduz do seguinte modo:

“ Uma coisa se pode concluir a partir do conhecimento destes colapsos, é que toda a boa

construção em betão deve ser sujeita a uma inspecção rígida. Deve-se insistir em que o Inspector

obrigue o empreiteiro a cumprir as especificações até ao mínimo detalhe. Ele deverá certificar-se

que os materiais utilizados são adequados, correctamente misturados e colocados, que as

cofragens são suficientemente resistentes e que não são retiradas antes do betão estar endurecido.

Acredita-se que só através deste tipo de inspecção é possível prevenir o colapso das estruturas de

betão”.

É claro, que não se tratava ainda de realizar inspecções durante a vida da estrutura mas, face aos

inúmeros colapsos já ocorridos, já tinha sido interiorizada a necessidade de realizar inspecções

rigorosas durante a sua construção para evitar o colapso das estruturas de betão durante a sua vida

útil.

Após a Segunda Guerra Mundial o Estado do Texas, nos Estados Unidos da América, levou a efeito

um extenso programa de construção de novas estradas, pelo que durante quase duas décadas a

maior parte dos departamentos que geriam as infra-estruturas rodoviárias reduziram os seus

esforços quer na inspecção das pontes quer na própria manutenção preventiva.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

89

Figura 3.1- Silver Bridge, Point Pleasant, West Virginia, 1967

Em 1967, ocorreu o colapso súbito da “Silver Bridge”, ponte suspensa, com cerca de 40 anos,

sobre o rio Ohio em Point Pleasant, West Virgínia, no qual perderam a vida 46 pessoas. Em

consequência deste acidente, em 1968 uma lei federal, deu início a um programa nacional de

inspecção de pontes, que reconhecia a necessidade de serem realizadas inspecções periódicas

consistentes. Em 1971 são publicadas as primeiras normas nacionais de inspecção de pontes.

(NBIS – National Bridge Inspection Standard).

Mais tarde, em 1983, o colapso da “Mianus River Bridge” in Connecticut, levantou maiores

preocupações no que se refere à existência de fadiga e fracturas criticas para as pontes. Na

sequência deste colapso foi desenvolvida investigação e estabelecida a obrigatoriedade de

realização de inspecções tendo em vista detectar fracturas criticas.

Em Abril de 1987, a “Schoharie Creek Bridge”, em Nova York colapsou em consequência da erosão

dos solos sob a base das fundações dos pilares. A partir dessa altura foram lançados programas de

inspecções sub-aquáticas.

As normas NBIS, atrás referidas estabeleciam a obrigatoriedade de serem efectuadas inspecções

com intervalos de dois anos. No entanto, a autoridade responsável pelas obras de arte do Estado de

Nova York, seguia um programa mais rigoroso, com inspecções anuais de todas as pontes e

inspecções sub-aquáticas, de cinco em cinco anos.

Contudo a “Schoharie Creek Bridge”, ainda não tinha sido objecto de qualquer inspecção sub -

aquática, embora estivesse agendada a primeira para o ano em que ocorreu o colapso.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

90

Em Abril de 1985, a inspecção então realizada tinha concluído que a mesma se encontrava em

“boas condições”. As fundações não foram nessa altura inspeccionados porque os inspectores

consideraram que o nível da água estava bastante elevado para realizar uma inspecção sub -

aquática.

As pontes são vulneráveis a vários riscos, contudo a erosão tem sido responsável por maior número

de colapsos do que todos os outros riscos naturais. Só na Primavera de 1987, 17 pontes

colapsaram devido a fenómenos de erosão, nos estados americanos do nordeste, quantificando-se

em 500 o número de colapsos, desde 1950, nos Estados Unidos.

Em Portugal, em Março de 2001, o trágico acidente da Ponte Hintze Ribeiro, em Entre–Rios,

também em consequência da erosão da fundação de um dos pilares, lançou na altura o debate no

sentido de definir novas estratégias no domínio da investigação, do projecto e da execução, a fim de

serem evitadas no futuro estas infelizes ocorrências.

3.2. A Inspecção de obras de arte pela REFER

As inspecções nas pontes ferroviárias, levadas a efeito pela entidade gestora da infra-estrutura

ferroviária, destinam-se a conhecer o estado real das obras, através da detecção das anomalias

manifestadas e identificando as causas dessas anomalias. O estado real da obra é comparado com

o estado de referência.

Actualmente, segundo (Clemente, 2001), são realizados os seguintes tipos de inspecções:

• Inspecção de rotina – Inspecção anual a toda a estrutura para detecção de anomalias

evidentes. Esta inspecção é realizada conjuntamente com as acções de manutenção

preventiva corrente;

• Inspecções Principais – Inspecção realizada de cinco em cinco anos que inclui

reconhecimento detalhado de toda a estrutura, nivelamento topográfico se a dimensão e o

tipo de estrutura o justificar, nivelamento batimétrico no caso de rios caudalosos,

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

91

mapeamento e medição de fendas. É elaborado um relatório final com classificação em

índice de estado por componente e global da estrutura;

• Inspecções Especiais – Inspecções realizadas com periodicidade curta (3 meses, seis

meses, um ano) ou de carácter ocasional, em pontes com avarias, comportamentos

anómalos ou após condições climatéricas adversas, sendo envolvidos meios de observação

complementares, residentes ou pontuais. É também elaborado um relatório final e feita

uma classificação em índice de estado por componente e global da estrutura.

Toda a informação produzida nas inspecções alimenta o módulo de inspecção do sistema de gestão

de obras de arte da REFER, ficando ligado aos módulos técnico e administrativo, que constituem a

base de dados cadastral de todas as pontes da rede ferroviária.

O índice de classificação de avarias em pontes que está em vigor na REFER, foi estabelecido com

base nos trabalhos desenvolvidos pela UIC, conforme consta da sua publicação, Défauts des ponts

ferroviaires et mesures à prendre em vue de l`entretien et du renforcement de ces ouvrages, 1989 ,

tendo sido segundo Clemente, 2001 , adoptada a seguinte tabela:

Tabela 3.1 – Índice de classificação de avarias em pontes, utilizado pela REFER

ÍNDICE DEFINIÇÃO ACÇÕES DE SEGUIMENTO

0 Estado Normal

1 Existência de avarias sem importância cujo tratamento pode ser feito mais tarde, sem inconveniente

Registo para comparação com futuras informações da mesma obra.

2 Avarias sem repercussão a curto prazo na estabilidade da estrutura, mas implicando a médio prazo custos de manutenção cada vez mais elevados, carecendo de intervenção quando possível.

Realização de inspecções de acompanhamento frequentes, podendo incluir a colocação de meios permanentes de medição

3 Avarias importantes, susceptíveis de provocar, a curto prazo, restrições às circulações, carecendo de intervenção, logo que possível.

Inspecção detalhada imediata, seguida de vigilância permanente e de trabalhos de reparação

4 Avarias que impõem actuação imediata. Trabalhos de reparação imediatos.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

92

3.2.1. Inspecção das obras de arte no troço Valongo/Cete da Linha do Douro Analisou-se os resultados das inspecções anuais realizadas em 2006, com enfoque no troço

Valongo – Cete da Linha do Douro, mas abrangendo também uma obra localizada a montante deste

troço na própria Estação de Valongo, e sete obras já no troço entre Cete e Penafiel, num total de

15,858 km de via dupla e 50 obras de arte.

Foram as seguintes as anomalias encontradas por tipo de obras:

Passagens Inferiores Rodoviárias

• Descasque de betão na zona inferior do tabuleiro, devido à passagem de cargas elevadas;

• Fissuras na zona inferior do tabuleiro, com abertura máxima de 2 mm;

Figura 3.2 – Passagem Inferior Rodoviária ao km 31,786 da Linha do Douro

Figura 3.3 – Fissuras na face inferior com abertura máxima de 2 mm. Extensão total das fissuras 15 m.

Passagens Inferiores Agrícolas

• Tampas de caleira de telecomunicações e sinalização partidas ;

• Falta de tampas de caleira de telecomunicações e sinalização ;

Pontes

• Falta de tampas de caleira de telecomunicações e sinalização (figura 3.4);

• Tampas de caleira de telecomunicações e sinalização partidas (figura 3.5);

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

93

• Juntas entre pedras de alvenaria aparelhada abertas no sentido vertical (figura 3.8);

• Fissuras em pedras de alvenaria aparelhada, com a largura de 3 mm de espessura (figura

3.9);

• Escada de acesso a passeio de visita de tabuleiro metálico, solta;

• Rebites de fixação, de corrimão a prumos do guarda – corpos, ocos;

• Falta de cabeça de rebite de ligação de prumos a guarda – corpos.

Figura 3.4 – Tampa de caleira técnica partida na Ponte em betão armado pré - esforçado sobre o Rio Ferreira (via ascendente)

Figura 3.5 – Falta de tampas na caleira técnica no passeio do tabuleiro metálico da ponte antiga sobre o Rio Ferreira (via descendente)

Figura 3.6 – Após a inspecção, instalação de cantoneira,

na zona em alvenaria e betão, da ponte antiga, para evitar o roubo das tampas

Figura 3.7– Após a inspecção, instalação de chapa de aço sobre a zona de passeio e da caleira , na zona do tabuleiro metálico, para evitar o roubo de tampas.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

94

Figura 3.8 – Juntas entre pedras da alvenaria, abertas

no sentido vertical

Figura 3.9 – Juntas abertas e fissuras com 3 mm de abertura. Escorrências da drenagem, por inexistência de tubos de queda

Pontões

• Eflorescências nas alvenarias;

• Quebra – águas partido.

Passagens Hidráulicas

• Manilha fissurada;

• Densa vegetação sobre o parapeito

Na figura 3.10, apresenta-se a distribuição em termos de índice de gravidade por tipo de obra.

108

6 7 7

1 12

2

2

2 2

0

2

4

6

8

10

12

PONTES

P.S.R.

P.I.R.

P.A.P.I.P

P.S.P.

PONTÕESP.H

.

ÍNDICE 1ÍNDICE 0

Figura 3.10 – Classificação em termos de índice de gravidade por tipo de obra

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

95

No caso das inspecções atrás referidas, o inspector no final de cada vistoria atribuiu um índice de

gravidade de anomalias para a globalidade da estrutura.

Desde o segundo semestre de 2006, está em vigor um novo sistema em que o inspector atribui

uma classificação também entre 0 e 4 a cada um dos quinze ou dezasseis componentes da obra de

arte, consoante seja uma obra de alvenaria ou uma obra metálica ou de betão estrutural.

No caso de obras de alvenaria, temos os seguintes componentes de obra:

• 01 – Obra de arte;

• 02 – Muros;

• 03 – Taludes;

• 04 - Hasteais;

• 05 – Tímpanos;

• 06 – Pilares;

• 07 – Abóbada;

• 08 – Moldura;

• 09 – Via;

• 10 – Murete guarda – balastro

• 11 – Passeios;

• 12 – Guarda Corpos;

• 13 – Drenagem;

• 14 – Juntas de dilatação;

• 15 – Outro componente.

Em obras metálicas e de betão estrutural, são os seguintes os componentes de obra:

• 01 – Obra de arte;

• 02 – Muros;

• 03 – Taludes;

• 04 – Encontros;

• 05 – Aparelhos de apoio;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

96

• 06 – Pilares;

• 07 – Tabuleiro;

• 08 – Estrutura de suporte do tabuleiro;

• 09 – Via;

• 10 – Muro Guarda – balastro;

• 11 – Passeios;

• 12 – Guarda – Corpos;

• 13 – Drenagem;

• 14 – Juntas de dilatação;

• 15 – Protecção de superfície;

• 16 – Outros componentes.

Posteriormente o engenheiro responsável pelo núcleo das inspecções, verifica os relatórios, no caso

de subsistirem dúvidas vai ao local, e faz a validação final das inspecções com a atribuição de uma

classificação final da Ponte, com um índice variando entre 0 e 4.

A informação recolhida nas inspecções alimenta o módulo de inspecção do sistema de gestão de

pontes, (GOA), ficando agregada aos dados existentes nos módulos técnico e administrativo, que

constituem a base de dados cadastral de todas as obras de arte da rede.

Através de um módulo de apoio à decisão, com base nos índices obtidos nas inspecções, são

relacionadas as intervenções necessárias, de acordo com sua gravidade, sendo definida a sua

prioridade, gerando a partir de um “catálogo de anomalias tipo” e respectivos custos unitários de

reparação, um programa de intervenções que serve de apoio à elaboração dos orçamentos anuais

dos trabalhos.

3.3. A Inspecção de Pontes nos Estados Unidos

A rede ferroviária nos Estados Unidos da América, com cerca de 220.000 quilómetros, dispõe de

cerca de 100.000 pontes. A segurança de um parque de pontes com esta dimensão é assegurada

pela FRA, Federal Railroad Administration (Administração federal de caminho de ferro), através do

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

97

cumprimento de um programa de que protege os utilizadores dos riscos que podiam advir da

ocorrência de deficiências nas pontes.

O objectivo deste programa é assegurar que as pontes mantenham a sua integridade estrutural, que

não sofram roturas catastróficas, ou qualquer falha que possa causar danos em pessoas, acidentes

com comboios ou danos ambientais.

As autoridades federais americanas utilizam os seguintes métodos, para garantir essa segurança:

i) As pontes são classificadas em vários níveis. Mantém-se ao corrente das práticas de

gestão das redes estaduais de caminho de ferro. Grande parte dessa informação é

obtida pela pessoal operacional das FRA através de contactos regulares com o pessoal

do caminho de ferro que faz a gestão, inspecção e manutenção das pontes;

ii) Os inspectores de via férrea das FRA, têm oportunidade de observar regulamente as

pontes ferroviárias, no decorrer das inspecções regulares à via férrea. Uma

irregularidade na via férrea de uma ponte é sinal do desenvolvimento de um problema

estrutural na ponte, que deve ser comunicado aos responsáveis da ponte, os quais

poderão encontrar outros problemas na ponte a necessitar de correcção;

iii) Os Inspectores de via, vistoriam a via das pontes no decurso de inquéritos de

conformidade ou de acidentes. Nesses casos os inspectores são requisitados para fazer

uma rápida avaliação da gravidade das condições relatadas numa reclamação ou até

sobre o possível envolvimento das condições da ponte nas causas de um acidente.

A FRA mantém um registo público dos processos de gestão e manutenção utilizados nas pontes

ferroviárias.

Os elementos que devem ser obtidos e guardados pelos responsáveis do programa de gestão de

pontes ferroviárias são os seguintes:

• Frequência de inspecções dos vários tipos de estruturas;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

98

• Nomeação e qualificação dos inspectores;

• O modo como é efectuado o “inventário de pontes”, o seu nível de detalhe e a política de

actualizações;

• Os tipos de relatórios que são elaborados para os vários tipos de inspecção;

• A utilização de processamento de informação automática, na inspecção e no inventário

dessa informação;

• O processo de distribuição, revisão e avaliação dos relatórios de inspecção;

• O modo como é assumida a responsabilidade pelas decisões que afectam a integridade das

estruturas: inspecção, avaliação, classificação, reparações e modificações.

Tendo presente o anexo C “Track Safety Standards”, que estabelece regras para a segurança das

pontes, destacamos o seguinte relativamente a esta temática:

3.3.1. Compilação Técnica

A organização responsável pela segurança da ponte deve guardar registos do projecto, construção,

manutenção e registos de reparação sempre acessíveis, de modo a permitir o cálculo das cargas de

segurança.

A organização responsável pela rede ferroviária deverá ter disponível cópias dos desenhos e de

todos os registos escritos, e proteger e ter conhecimento da localização dos respectivos originais.

3.3.2. Inspecções Periódicas

As inspecções periódicas são efectuadas por inspectores qualificados para determinar se a

estrutura está em conformidade com o projecto, e a sua classificação em termos de estado de

conservação, ou no caso de não estar para indicar o seu grau de não conformidade.

A prática existente nas empresas de caminho de ferro é proceder a inspecções pelo menos anuais.

Dependendo da natureza da obra, do seu estado de conservação ou da própria intensidade dos

níveis de tráfego pode ser conveniente efectuar inspecções com maior frequência.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

99

3.3.3. Inspecções sub - aquáticas

Estas inspecções devem efectuar medidas e registos do estado das infra-estruturas de fundação que

estejam sujeitas a erosão devido às correntes do rio.

O fundo do rio muitas vezes não é visível a não ser através de ensaios de ressonância ou

sondagens. Registos frequentes do perfil do fundo, são a melhor informação para detectar

alterações repentinas. Se através desses métodos não for possível aferir da integridade das

fundações, devem ser feitas inspecções recorrendo a mergulhadores.

3.3.4. Inspecções Especiais

Devem ser conduzidas após qualquer ocorrência que possa ter reduzido a capacidade da ponte,

como por exemplo uma cheia, um sismo ou um descarrilamento, ou uma acção de choque sobre a

obra de arte.

É claro que, quando uma obra de arte sofre danos, são logo de imediato impostas restrições, por

exemplo de velocidade, até que seja feita uma inspecção e avaliação das condições de segurança

da ponte.

3.3.5. Relatórios das Inspecções

A informação obtida no relatório de inspecção deve alimentar o programa de gestão das obras de

arte. Os vários relatórios, realizados em diferentes alturas, sobre a mesma obra, devem ser

mantidos, dado que permitem verificar as tendências e as taxas de degradação dos vários

componentes da ponte.

O relatório deve ser o mais claro e compreensível, de modo a estabelecer a comunicação entre o

inspector e o engenheiro, que vai fazer a análise final da ponte, sem ser necessário recorrer à

interpretação do inspector.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

100

3.3.6. Inspectores e Engenheiros

As inspecções devem ser levadas a efeito por técnicos com experiência em detectar e registar

indicações de problemas em pontes.

Os inspectores devem fazer medidas exactas e recolha de toda a informação que seja importante

para determinar o estado de conservação da ponte, com o detalhe necessário, que permita ao

engenheiro de estruturas, o qual tem a capacidade necessária para avaliar a resistência da ponte,

possa proceder à avaliação da sua segurança estrutural. A qualidade desta avaliação depende muito

da comunicação existente entre os dois técnicos.

3.4. A inspecção de pontes pelos caminhos de ferro britânicos

A inspecção de pontes nos Caminhos de Ferro Britânicos obedece a especificações próprias,

nomeadamente a Especificação “Examination of Structures - RT/CE/S/017” e “Structures

Condition Marking Índex Handbook, 2002”.

A especificação “Examination of Structures” define os requisitos necessários para a realização de

inspecções de estruturas, os registos e relatos das conclusões das inspecções e o fornecimento de

informação para o relatório regular.

3.4.1. Frequência e preparação das inspecções

3.4.1.1. Inspecções Detalhadas Antes da realização de inspecções detalhadas deve ser verificada toda a informação considerada

pertinente, incluindo relatórios de inspecções visuais, inspecções detalhadas, manuais de

manutenção, no sentido de identificar qualquer defeito, anomalia ou requisito que seja necessário

inspeccionar.

Deverá ser realizada uma visita prévia de reconhecimento, para verificar o seguinte:

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

101

• Registar a existência de vegetação, detritos, lixos vários, ou qualquer obstrução, na

estruturas ou proximidade, para informar o responsável pela obra no sentido de remover

esses elementos para facilitar a inspecção;

• Identificar a dificuldade ou falta de acessos, a eventual necessidade de autorizações de

acesso;

• Identificar os riscos inerentes à realização da inspecção;

• Obter tabela de marés, no caso de obras em cursos de água, para evitar ser apanhado pelo

fluxo da maré;

• Localizar a eventual existência de câmaras de acesso a galerias ou outras estruturas

enterradas;

• Identificar tampas de acesso, portas ou grelhas que seja necessário remover antes da

inspecção;

• Identificar a presença de atravessamentos estruturais ao longo da ponte em madeira, caso

em que o responsável da obra deve ser avisado;

• Identificar e informar o responsável da estrutura, sobre a ocultação (vegetação, reduzida

iluminação), de partes de estrutura e obter confirmação desse responsável quanto à

necessidade de as expor para a inspecção;

• Informar o responsável da estrutura quanto à necessidade de remover protecções contra o

fogo, de modo a programar a sua remoção e reinstalação, e se necessário estabelecer

medidas para minimizar os riscos durante a inspecção.

• Informar sobre a necessidade de efectuar ensaios ou retirar amostras, e da realização de

pequenas reparações, no sentido de conjugar esses trabalhos com a realização da

inspecção;

• Identificar as necessidades quanto à utilização de ferramentas, outros equipamentos, ou

qualquer tipo de assistência durante as inspecções;

• Identificar zonas onde o acesso está restringido por questões de segurança, protecção ou

operacionais, tendo em vista efectuar acordos com o responsável da estrutura ou da infra-

estrutura ferroviária;

• Identificar galerias de acesso que estejam bloqueadas, ou cujo depósito de sedimentos

impeça uma inspecção detalhada;

• Identificar os constrangimentos existentes do ponto de vista ambiental, científico ou de

património histórico, que possam condicionar as inspecções;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

102

• Fazer a demarcação das estruturas adjacentes, procurando a sua clarificação da parte do

responsável pela estrutura;

• Identificar qualquer informação necessária levar para a inspecção, nomeadamente registos,

relatórios, desenhos, registos de observações monitorizadas;

• No caso de se aplicar o Índice do estado de conservação da obra, verificar a exactidão do

esboço ou da lista definitiva dos elementos da estrutura, ou, caso não existam, preparar

esse esboço ou lista definitiva

• Elaborar um registo da visita de reconhecimento e de qualquer informação que seja

considerada relevante para a inspecção.

Esta visita deve ser feita com a necessária antecedência relativamente à inspecção detalhada, de

modo a permitir nomeadamente o desenvolvimento e aprovação do método de inspecção, a retirada

de vegetação ou outro tipo de obstáculos, obter autorização de acessos, estabelecer acessibilidades

e obter registos ou informação necessária à inspecção.

3.4.1.2. Inspecções Visuais

O objectivo das inspecções visuais é detectar e registar qualquer alteração visível que possa

provocar alterações ou indícios de alterações iminentes, no estado geral da estrutura.

O intervalo entre inspecções visuais deve ser proporcional ao estado de deterioração ou

vulnerabilidade da estrutura a danos acidentais ou por má utilização.

O intervalo máximo entre inspecções para as obras de arte deve ser de 12 meses, não devendo em

qualquer caso ultrapassar os 15 meses.

De qualquer modo a primeira inspecção visual deverá ocorrer doze meses após a sua entrada em

serviço.

Mesmo no caso de estruturas que estão fora de serviço, não existindo observações de rotina, são

também efectuadas inspecções com um intervalo de pelo menos doze meses.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

103

3.4.2. Inspecções Detalhadas

3.4.2.1. Objectivo Trata-se de efectuar uma inspecção detalhada de todas as partes da obra acessíveis, incluindo

elementos submersos, tendo em vista obter o seguinte:

• Estabelecer o índice do estado geral de conservação;

• Identificar a natureza, severidade e extensão dos defeitos;

• Verificar a taxa de deterioração relativamente às inspecções anteriores;

• Identificar a envergadura, extensão, urgência e custos estimados das acções de reparação

que se tornem necessárias.

3.4.2.2. A Inspecção

Qualquer inspecção deve identificar o seguinte:

• Qualquer deformação da estrutura;

• Partes da estrutura com falta de verticalidade, inclinação, curvatura, desalinhamento,

deformação, ou qualquer distorção;

• Fissuras, fendas ou rasgos em elementos da estrutura;

• Elementos da estrutura em falta;

• Movimento, distorção e estado das ligações da estrutura;

• Estado de conservação da pintura, galvanização e de outros tratamentos de protecção;

• Corrosão das chapas dos aparelhos de apoio e dos parafusos, segurança das fixações e

existência de fissuras nas soldaduras;

• Estado de conservação das zonas inferiores das fundações ou estacas que não estão

enterradas;

• Sinais de movimentos da fundação, deslizamento ou assentamento que possam afectar a

estrutura;

• Sinais de abaixamento, elevação, alinhamento deficiente, fendas ou movimentos do solo, da

via ou de estruturas adjacentes;

• Indicação de defeitos nos sistemas de impermeabilização;

• Movimentos nas juntas de construção;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

104

• Deterioração do betão, madeira ou outros materiais;

• Excessiva degradação devido à acção do tempo ou do uso;

• Sinais de perda, deslocamento, ou falta de balastro, outros materiais ou equipamentos,

• Defeitos na ligação dos equipamentos à estrutura;

• Acesso de manutenção perigoso ou facilidade de quedas;

• Danos acidentais significativos incluindo os devido a colisões na ponte;

• Presença de vegetação que afecta a estrutura;

• Presença de cheias ou sinais das mesmas;

• Sinais de excesso de carga devido ao armazenamento de materiais sobre a estrutura;

• Risco para a estrutura da acumulação de entulhos, armazenamento de combustíveis, ou

resíduos perigosos;

• Obstrução de zonas de abrigo;

• Falta ou anomalias nos sinais de indicação de necessidade de ter espaço livre nos acessos

e refúgios;

• Existência de vandalismo, graffitis e entrada sem autorização;

• Existência de qualquer reparação, renovação de pintura, ou trabalho de reabilitação, desde

a última inspecção detalhada ou qualquer trabalho em curso, ou alteração da construção,

que não estava previamente registado;

• Alterações na natureza ou extensão do uso da estrutura ou evidência de construção ou

desenvolvimento de trabalhos em zonas adjacentes;

• Alterações ambientais que possam conduzir a uma rápida deterioração da estrutura ou

afectar a sua segurança;

• Qualquer alteração significativa na taxa de deterioração ou de evolução de defeitos;

• Qualquer trabalho pedido antes da próxima inspecção;

• Quaisquer outros factores que possam colocar em risco a segurança da estrutura, tráfego

na via férrea, na estrada ou no rio, equipamento, pessoas ou propriedade, antes da

realização da próxima inspecção;

• Leitura de equipamentos de monitorização e alterações significativas relativamente a

registos anteriores.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

105

Todas as partes acessíveis das estruturas devem ser observadas e o seu estado identificado e

registado. Todos os defeitos significativos devem ser quantificados e fotografados. Devem ser

elaborados desenhos esquemáticos para ampliar e descrever os defeitos existentes.

As estruturas devem ser observadas sob a acção do tráfego normal, conforme o caso, ferroviário,

automóvel ou pedestre no sentido de observar e registar o seguinte:

• Qualquer movimento anormal ou evidência de assentamento na camada de balastro,

aparelhos de apoio, ou outros suportes;

• Flexão excessiva, torção, folga ou vibração;

• Qualquer movimento diferencial ou de separação de partes da estrutura;

• Qualquer viga que se eleve em relação aos aparelhos de apoio;

• Quais os elementos da estrutura que foram observados;

• Qualquer outra observação relevante.

Elementos susceptíveis à fadiga Os elementos susceptíveis à fadiga devem ser examinados, especialmente no que se refere às

fendas visíveis. Deve ser registada a extensão das fendas, através de um desenho esquemático com

identificação das medições e fotografias que mostrem a sua relação com os elementos adjacentes.

Deve ser dada particular atenção às estruturas compósitas, onde a presença de excessiva flexão

vertical ou movimentos de corte longitudinais sob o as cargas estáticas e móveis ou sinais de

infiltração de água, podem indicar defeitos de fadiga.

Juntas de Dilatação e Aparelhos de Apoio Deve ser verificado e registado o seguinte:

• Qualquer sinal de deterioração, distorção, ou inadequado funcionamento das juntas de

dilatação e aparelhos de apoio;

• Deslocamento para fora do seu alinhamento, ou perda de óleo por bombagem;

• Curso insuficiente dos aparelhos de apoio para os respectivos movimentos admissíveis;

• Deterioração do estado de conservação das juntas de dilatação e dos aparelhos de apoio;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

106

• Mau funcionamento, qualquer assentamento local ou problema nos suportes;

• Evidência de espaço insuficiente para a junta de dilatação funcionar;

• Folga ou deslocamento vertical de uma parte relativamente à outra na junta;

• Percolação de água;

• Perda de enchimento ou de selante.

Observação da obra sob a acção das cargas móveis

O comportamento da estrutura sob a acção do tráfego corrente, deve ser observado, e registado o

seguinte:

• Qualquer evidência de assentamento em bases de apoios, aparelhos de apoio, treliças, etc;

• Excessiva deflecção, torção, folgas e vibrações;

• Qualquer separação ou movimentos diferenciais de partes da estrutura, verticais ou

horizontais;

• Qualquer viga que saia fora dos seus apoios;

• As peças da estrutura observadas sob a acção das cargas;

• Quaisquer outras observações relevantes.

Observação da via férrea

Na vistoria deve ser observado qual o tipo de via que está aplicado sobre a o tabuleiro, se é

balastrada, não balastrada em laje, ou não balastrada mas fixa por exemplo através de travessas a

vigas longitudinais. Deve ser observado se existem juntas nos carris, aparelhos de mudança de via,

aparelhos de dilatação, carris soldados (barra longa soldada) ou se há qualquer alteração na

drenagem da via.

Deve ser observada a posição vertical e horizontal dos carris através de medição e de fotografia.

Qualquer alteração na posição da via férrea, alteração de velocidade, ou de cargas permitidas,

desde a última inspecção, deve ser registada.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

107

3.4.3. Inspecções Visuais

As inspecções visuais devem ser realizadas a partir de locais seguros, utilizando escadas ou

passadiços existentes. A estrutura deve também ser examinada a partir do solo adjacente à

estrutura e observada de todos os lados em que for possível, com a luz do dia, com a ajuda de

binóculos, outros equipamentos ópticos, câmara fotográfica e lanternas de iluminação.

Em estruturas, como é o caso das obras de arte, que são sujeitas a inspecções detalhadas,

qualquer defeito observável que não tenha sido identificado nas vistorias das inspecções detalhadas,

ou subsequente relatórios de inspecções visuais, deve ser registado na inspecção visual.

As inspecções visuais devem identificar e registar:

• O desenvolvimento de novos defeitos ou o agravamento de defeitos já existentes, dando

particular atenção a defeitos já conhecidos, para avaliar se a taxa de deterioração se

alterou;

• Qualquer acção ou trabalho que possa ser necessário levar a efeito antes da próxima

inspecção, mesmos que essa acção ou trabalho tenham sido identificados em relatórios

anteriores;

• Qualquer alteração significativa nas leituras de equipamentos de monitorização;

• Quaisquer factores que possam alterar ou colocar em risco a segurança da ponte, caminho

de ferro, as pessoas ou equipamentos .

3.4.4. Inspecções Adicionais Devem ser levadas a efeito inspecções adicionais quando se verificarem as seguintes

circunstâncias:

• Quando a inspecção detalhada efectuada em conjugação com a avaliação, onde seja

necessário, seja insuficiente para avaliar a segurança da estrutura;

• Quando o relatório de inspecção e a avaliação posterior tenham identificado elementos

críticos que requeiram uma inspecção específica ou a monitorização da estrutura;

• Após a ocorrência de um incidente que possa ter afectado a segurança da estrutura;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

108

• Após a ocorrência acidental ou deliberada de danos na estrutura ou em partes da estrutura;

• Quando um relatório recebido pelo responsável da estrutura indique que a segurança ou a

integridade da estrutura tenham sido comprometidas;

• Quando o conhecimento sobre a segurança da estrutura tenha sido alterado em

consequência do avanço tecnológico da engenharia.

3.4.5. Relatórios de Inspecção Todas as páginas do relatório de inspecção devem conter a seguinte informação:

• O Órgão da empresa de empresa de infra-estrutura ferroviária responsável pela estrutura;

• Uma identificação própria da estrutura;

• A data e o tipo de inspecção;

• A identificação da organização responsável pela inspecção

3.4.6. Índice do Estado de Conservação das Obras de Arte A especificação “The Structures Condition Marquing Índex Handbook, 2001” , permite estabelecer

para qualquer obra de arte, inferior ou superior ao caminho de ferro, um índice que reflecte o seu

estado geral de conservação, o chamado SCMI, (Structures Condition Marking Índex). Pode ser

aplicado a todas as obras que são sujeitas a inspecções detalhadas.

Através do SCMI uma obra de arte pode ser classificada numa escala que varia entre 0 e 100, (o

valor 100 corresponde a uma estrutura em perfeitas condições), em função do estado de

conservação das partes visíveis da estrutura, com base numa inspecção detalhada. Não de trata de

um índice de segurança, dado que não reflecte a suficiência estrutural da obra. Substituiu um

sistema que apenas classificava as estruturas em três classes, mau, razoável ou bom.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

109

3.4.6.1. Visão geral do Sistema

A obra de arte é sub - dividida nos seus elementos principais, por exemplo tabuleiro, encontros e

pilares. Por sua vez estes elementos são sub – divididos em elementos secundários, por exemplo

aparelhos de apoio e vigas transversais.

Os elementos principais e secundários são identificados e registados usando tabelas de

classificação existentes na referida especificação. Os elementos secundários podem ser

identificados individualmente ou em grupos de elementos do mesmo tipo.

Os elementos principais considerados são:

• Tabuleiro

• Apoios extremos

• Apoios intermédios

Como elementos secundários, considerados individualmente, temos: encontros, muros ala, pilares

com travamentos, pilares simples, arcos, vigas longitudinais exteriores, vigas longitudinais interiores,

face dos tímpanos e face de paredes, em estruturas de alvenaria, parapeitos (guardas).

Como elementos secundários, considerados colectivamente, temos pedras de apoio, aparelhos de

apoio, elementos longitudinais secundários exteriores (sem carga rolante), elementos secundários

interiores, vigas transversais de extremidade, vigas transversais interiores, treliças, tabuleiros

suportados por vigas, elementos de reforço.

Quanto aos materiais, o sistema limita a quatro tipos: metal, alvenaria, betão armado ou pré -

esforçado e madeira.

Todos os elementos são catalogados e registados, bem como os seus materiais constituintes. São

classificados de acordo com a severidade e extensão dos seus piores defeitos visíveis, segundo

tabelas que atribuem por um lado a classificação em função da severidade do defeito e tabelas que

atribuem a classificação em função da extensão do defeito.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

110

O estado de conservação de cada elemento é registado através de um código alfa/numérico no

relatório detalhado do SCMI. A empresa de gestão de infra-estruturas recepciona este relatório em

formato electrónico, sendo os códigos carregados numa base de dados, onde um algoritmo calcula

o SCMI da estrutura, tendo em consideração o número e tipos de elementos, bem como a sua

importância na estrutura.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

111

4. A CONSERVAÇÃO DE PONTES FERROVIÁRIAS

4.1. A manutenção preventiva

A manutenção compreende todas as actividades necessárias para manter a ponte nas condições

inerentes ao estado de serviço, estabelecido em projecto e também destinadas a controlar a

potencial futura deterioração.

Inclui trabalhos que devem ser realizados para prevenir danos ou a rápida deterioração da ponte,

que no caso de não serem realizados, torna necessário dispor mais tarde, de verbas mais elevados,

para repor a ponte nas condições iniciais.

Implica a reparação de pequenos ou potenciais problemas, para evitar proceder a substituições de

elementos da ponte, que envolvem maiores custos.

A manutenção preventiva pode ser dividida em dois grupos:

• Manutenção realizada em intervalos específicos;

• Manutenção realizada quando necessário, para prevenir a futura deterioração ou o

desenvolvimento dos defeitos.

No primeiro grupo os intervalos de manutenção variam de acordo com os trabalhos ou actividade.

Estão neste caso por exemplo a limpeza dos sistemas de drenagem, das juntas de dilatação ou das

peças constituintes dos aparelhos de apoio.

No segundo grupo, estão por exemplo a selagem de fissuras no tabuleiro de betão, a pintura de

elementos metálicos ou a retirada de gelo.

Podemos referir como trabalhos mais correntes de manutenção, os seguintes (UIC, 1989):

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

112

• Trabalhos que não estão ligados directamente à estabilidade da obra, como a retirada

de vegetação sobre os paramentos de alvenaria, substituição de pedras ou tijolos no

caso de danos pontuais, reparação de irregularidades no betão;

• Nas estruturas de alvenaria, o preenchimento de juntas, injecções, aplicação de

camadas de revestimento, no caso de avarias superficiais generalizadas;

• A limpeza de zonas das estruturas metálicas que constituem pontos de acumulação de

detritos que favorecem a oxidação do aço (excrementos, ninhos de pássaros, terra,

areia, etc.)

• No caso de tabuleiros metálicos a substituição parcial ou total da pintura após a

eliminação da ferrugem, de acordo com uma periodicidade que é função da

agressividade do meio ambiente, a substituição de rebites que se encontrem

fragilizados, o aperto de parafusos,

• A manutenção da eficácia dos dispositivos de drenagem das alvenarias afim de evitar

infiltrações ou esforços prejudiciais;

• A manutenção corrente dos dispositivos de recolha e evacuação das águas;

• A manutenção dos aparelhos de apoio.

A maioria dos países europeus utiliza sistemas de gestão de pontes, (BMS) que incluem bases de

dados informatizados. No entanto segundo o relatório Decision on repair/replacement – Deliverable-

D7, 2000), e estamos a fazer referência às pontes integradas nas redes de estradas, apenas dois

países europeus, Dinamarca e Finlândia e os Estados Unidos da América utilizam um sistema de

manutenção de pontes (BMS), totalmente automático, de decisão entre reparação e substituição. A

Dinamarca utiliza um programa que estabelece prioridades de intervenção e a Finlândia um sistema

baseado num índice de reparações.

No Estados Unidos utilizam-se vários programas automáticos de gestão de pontes, sendo os mais

conhecidos e usados o “PONTIS” e o “BRIDGIT”.

O “PONTIS” é o sistema mais evoluído e é utilizado na maior parte dos estados americanos.

O PONTIS, suporta o ciclo completo de gestão de pontes, incluindo as inspecções, dados de

inventário e respectiva análise, modelo de previsão de deterioração futura e módulo de optimização

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

113

da manutenção, prevendo a necessidade de intervenções e desenvolvendo projectos, que são

incluídos no respectivo plano de investimentos.

Neste sistema de gestão as pontes são avaliadas em função dos resultados das inspecções visuais

dos seus elementos, sendo estabelecida uma classificação discreta em termos de índice de

condição. A taxa de deterioração da ponte é determinada usando processos de Markov.

O BRIDGIT, tem como objectivo minimizar os custos do ciclo de vida esperado de uma ponte para

um plano com um horizonte de 20 anos. São consideradas as sequências óptimas de acções e o

período óptimo para cada acção. São desencadeadas acções de melhoria ou de substituição, para

alterar estados de condição inaceitáveis. Neste sistema são também determinados benefícios e

custos de uso.

4.2. Trabalhos de Reparação

Ainda segundo (UIC,1989), podemos referir como trabalhos de reparação :

• Em obras metálicas a substituição de peças metálicas avariadas, fecho de fissuras, através

da instalação de cobre - juntas com a utilização de rebites ou de parafusos de alta

resistência;

• Reposição de paramentos através da colocação em obra de betão, argamassas projectadas,

ou betão colado;

• Substituição da camada de impermeabilização, execução de novos sistemas de evacuação

de água;

• Reposição de juntas de dilatação;

• Tratamento de fissuras por injecções, calafetagem, cobre – juntas, pregagens e grampos;

• Injecções e colocação em obra de tirantes passivos e activos;

• A substituição ou regeneração de materiais cujas características já sejam insuficientes para

o desempenho esperado dos mesmos;

• A substituição de aparelhos de apoio completos ou de elementos constituintes de aparelhos

de apoio; a injecção de resina sintética sob as placas de apoio, substituição ou reparação

de plintos de aparelhos de aparelhos de apoio;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

114

• Paragem de movimentos de rotação de muros, através de escoramento.

4.2.1. A reparação das pontes em alvenaria

Estas obras são muito antigas, normalmente com mais de 100 anos e não dispõem de dispositivos

de estanquidade, quanto muito têm um dispositivo sumário aplicado no extradorso das abóbadas.

As águas das chuvas, que são cada vez mais agressivas, penetram no balastro e nos aterros

permeáveis chegando ao extradorso das abóbadas e aos aterros dos encontros. Estas águas

penetram nas juntas da alvenaria lavando as argamassas de preenchimento. A acção das águas das

chuvas manifesta-se pela existência de depósitos, de marcas de humidade, de infiltrações, sinais

que são visíveis nas abóbadas, nos encontros ou nos pilares.

Este fenómeno é ampliado quer pelos ciclos de gelo – degelo, quer pelas grandes variações de

temperatura.

4.2.1.1. As causas das infiltrações

As causas destas infiltrações residem sobretudo no seguinte:

• Defeitos na impermeabilização ou inexistência da mesma;

• Fissuração, deformação ou assentamentos da obra que provocam anomalias na própria

impermeabilização. Esta instabilidade da infra-estrutura tem origem na insuficiente ou falta

de caracterização geotécnica, com base em sondagens ou ensaios de penetração do solo.

As fissuras são devidas sobretudo aos abatimentos diferenciais das extremidades das

abóbadas relativamente ao seu eixo;

• Defeitos no sistema de recolha e evacuação de águas, devido à existência de obstruções no

mesmo;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

115

4.2.1.2. A reparação do sistema de recolha de águas

A realização de trabalhos de reparação, ou de execução de novo, de um sistema de

impermeabilização da plataforma, deve ser acompanhado da execução de um sistema de recolha e

evacuação de águas pluviais.

A camada de impermeabilização deve ser executada de modo a que as águas se concentrem nos

pontos mais baixos, onde se devem localizar esses dispositivos de drenagem, os quais devem ter

uma grande permeabilidade, impedindo que sejam colmatados pelas partículas do aterro, através

da utilização de geotêxtil envolvendo o dreno.

4.2.2. A reparação de pontes metálicas

No caso das pontes metálicas, é ainda mais pertinente a realização de uma análise prévia das

causas e da natureza das anomalias, antes de se decidir sobre a reparação ou substituição do

elementos que estão avariados, podendo nalguns casos colocar-se até a questão da substituição da

própria ponte.

Em pontes com elementos fixos por rebites, em que os materiais não estejam convenientemente

identificados será necessário proceder à determinação prévia das características dos metais por

meio de ensaios de laboratório. No caso de metais com reduzida ductilidade terá que haver

cuidados especiais ao retirar os rebites.

Quando aparecem fissuras, as mesmas só devem ser reparadas, com utilização de chapa cobre-

juntas, após ter a garantia de que as fissuras estão estabilizadas, procedendo-se à abertura de

furos, que devem ter um diâmetro de pelos menos 20 mm. Essas chapas podem ser ligadas por

rebites ou por parafusos de alta resistência

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

116

4.2.3. A reparação de pontes em betão armado pré - esforçado As causas das anomalias neste tipo de pontes têm origem sobretudo em erros de concepção e

defeitos de execução, utilização de materiais de construção não adequados ou a combinação de

vários destes factores.

A maior parte dos defeitos têm origem na má execução dos trabalhos ou na deficiente fiscalização

dos mesmos. Mas, também há casos de defeitos com origem em erros de concepção.

Podemos considerar como causa secundária de deterioração a utilização de materiais de

construção não apropriados.

No sentido de assegurar uma melhoria da qualidade destas obras devem ser seguidas as seguintes

recomendações:

• Dimensionamento das obras com elevada percentagem de pré-esforço;

• Execução cuidadosa das ancoragens e dos acoplamentos;

• Verificação do recobrimento das armaduras, utilizando métodos apropriados, antes e depois

das betonagens;

• Controle de qualidade, com registos das operações de tensionamento dos cabos de pré-

esforço, das caldas de injecção e da injecção das bainhas;

• Fiscalização dos trabalhos por pessoal com formação e experiência adequada;

• Formação contínua dos engenheiros projectistas e dos engenheiros das empresas que

aplicam o pré-esforço.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

117

4.2.4. O reposicionamento de aparelhos de apoio num pilar da Ponte Ferroviária de S. João

Figura 4.1 - Aparelhos de apoio do Pilar E7 da Ponte S João (Janeiro 2007)

O apoio do pilar PE 7, do viaduto da margem esquerda da Ponte S. João, o último antes do

Encontro Esquerdo é realizado através de três aparelhos de apoio do tipo “pêndulo”, o qual é

constituído por dois sectores circulares opostos ligados por um troço rectangular (figuras 4.1 e 4.2)

Figura 4.2 - Aparelho de apoio móvel do pilar E7 – Alçado lateral

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

118

Cerca de um ano e meio após a última betonagem do tabuleiro da ponte, correspondente ao fecho

central, ou seja apenas seis meses após a entrada em serviço da Ponte, no Inverno de 1991, estes

“pêndulos” apresentavam inclinações muito acentuadas, atingindo já grande parte da sua

capacidade de deslocamento, no sentido do encurtamento do tabuleiro.

O valor máximo admitido de deslocamento é de ± 17,4 cm, tendo-se medido na altura um valor de

– 12,2 cm e estimando-se que o mesmo tivesse mesmo atingido o valor de – 13,2 cm, para uma

temperatura média no betão de 3,5 º C.

A ocorrência de temperaturas uniformes mínimas de 0 º C, associada ao comportamento reológico

do betão, devido aos fenómenos da fluência e da retracção do betão, que iria continuar nos anos

seguintes, ampliando significativamente os deslocamentos no sentido do encurtamento, foi um

alerta para o facto de ser previsível atingir a breve prazo o deslocamento máximo admissível dos

“pêndulos”.

Face a esta situação, tornava-se necessário proceder a curto prazo ao reposicionamento do

“pêndulo”, tendo sido estudado pelo LNEC, esse novo reposicionamento, (Castanheta, Mário,

1992).

Esse estudo estimou, que os efeitos diferidos, ainda pudessem provocar, por encurtamento a muito

longo prazo, um deslocamento da secção de apoio entre 6 e 10 cm, considerando-se contudo como

mais provável um deslocamento de 8 cm, sendo na altura previsível, que 60 % desse deslocamento

ocorresse nos 10 anos seguintes.

Foi feita uma previsão sobre a evolução dos deslocamentos deste apoio, a partir das observações

da posição do pêndulo e da correspondente temperatura média do tabuleiro, registada num dia em

que foi atingida a posição de 6,5 cm, para uma temperatura média de 18 º C. De referir, que esta

temperatura foi obtida com base nas medições efectuadas em 73 pares termoeléctricos, que foram

instalados no interior de quatro secções do tabuleiro, durante a sua construção.

O LNEC considerou conveniente efectuar um reposicionamento do pilar deslocando-o cerca de 10 a

12 cm.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

119

4.2.4.1. Sistema de Execução

O objectivo foi levantar ligeiramente o tabuleiro sobre o pilar E7, cerca de 1.00 cm, de modo a

possibilitar a retirada da peça intermédia do aparelho de apoio (pêndulo propriamente dito) e

reposicionar a platina superior do aparelho.

O levantamento do tabuleiro, foi efectuado aproveitando as consolas de betão existentes no pilar,

que foram utilizadas para apoio do cimbre móvel aquando da construção. No entanto, dada a

necessidade de actuar com os macacos apenas na zona imediatamente sob as três almas do

tabuleiro, foi utilizada uma estrutura metálica auxiliar, (figura 4.3), que vencendo o vão entre as

duas consolas permitiu posicionar os macacos directamente sob a alma central.

O sistema consistiu na utilização de duas baterias de 10 macacos hidráulicos de 140 toneladas,

cada, uma de cada lado do pilar. Estas baterias, colocadas sobre uma estrutura metálica auxiliar,

foram sub-divididas em dois grupos de três macacos e um grupo de quatro, que ficou sob a alma

central. Entre os êmbolos dos macacos e o tabuleiro, foi instalado um perfil metálico que funcionou

como elemento de rigidez adicional e auxiliar de degradação da carga, de modo a baixar as tensões

directamente transmitidas ao betão do tabuleiro.

Chegou a ser admitida a hipótese de efectuar as operações de reposicionamento em simultâneo

com a circulação dos comboios. Essa hipótese foi abandonada, dado que implicava um aumento da

reacção no apoio de cerca de 26 %, mesmo admitindo a circulação apenas numa das vias. Para

além do aumento da reacção, verificava-se a impossibilidade de calçar provisoriamente o viaduto,

dado que a zona directamente sob as almas estava ocupada pelos aparelhos de apoio e a carlinga

não tem capacidade de carga suficiente para permitir um apoio no seu meio vão. Foi necessário

executar o trabalho em período de interdição nocturna de circulação, com faseamento das várias

operações.

Na determinação da reacção de apoio do tabuleiro sobre o pilar E7, foi considerado o peso próprio

das secções de betão armado pré-esforçado, o peso do betão poroso (ocupa o espaço entre a face

superior do banzo e as vigas - longarinas que suportam os carris) e o efeito hiperstático

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

120

correspondente ao levantamento em 1 cm do tabuleiro. A reacção máxima calculada foi de 23.284

kN.

Embora o tabuleiro apresente uma rigidez transversal bastante elevada, garantindo uma

transmissão uniforme da carga sobre cada macaco, dado que era previsível, pela sua localização,

um ligeiro acréscimo de reacção nos macacos centrais, foi admitido do lado da segurança que o

mesmo era da ordem dos 10 %. Foi admitida uma força em cada macaco lateral de 1230 KN e nos

macacos centrais de 1070 KN.

A estrutura de apoio era constituída por um perfil HEB 400 directamente apoiado sobre as consolas

de betão, mas na parte central entre consolas formava uma asna metálica, com 1,50 m de

distância entre as cordas. Todas as barras da asna são também em perfil HEB 400. Nas zonas

junto dos apoios, onde existiam problemas de esforço transverso, o perfil base foi reforçado com

chapas de alma.

Figura 4.3 – Estrutura de apoio para levantamento do tabuleiro. Macacos laterais

4.2.4.2. Metodologia de Execução adoptada

Face à elevada densidade de armaduras do tabuleiro, a furacão para a nova platina superior, teve

que ser realizada antes da operação de levantamento do tabuleiro, de modo a retirar esta tarefa do

caminho crítico da intervenção. De modo a aproveitar uma das fiadas de pernos já existentes,

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

121

tornou-se aconselhável optar por um valor de deslocamento tão elevado quanto possível, nunca

menor que 11 cm, tendo-se optado, por um deslocamento de 12 cm, o valor máximo sugerido no

parecer do LNEC.

No sentido de efectuar a operação principal num único período de interdição, foram fabricadas

previamente as três platinas superiores, de maiores dimensões para aproveitar umas das fiadas de

furacões existentes. O aproveitamento das platinas existentes, implicava uma interdição estimada

de 24 horas seguidas, que não era compatível com as interdições que podiam na altura ser

concedidas em período de interdição nocturna, que eram de 7 horas num sábado.

Foi a seguinte a sequência de operações:

i) Antes da Interdição

1 – Montagem de um andaime na zona do pilar, para acesso de pessoal e equipamento;

2 – Marcação da nova furacão exterior à platina existente;

3 – Furacão para as novas fixações do lado do encontro;

4 – Ligação dos pêndulos entre si através de perfilados metálicos transversais aparafusados aos

mesmos;

5 – Posicionamento das vigas metálicas de apoio aos macacos hidráulicos em cima das consolas

de betão existentes;

6 – Colocação dos perfis de rigidez em cima de uns calços previamente colocados sobre as vigas

metálicas;

7– Elevação, através de dois macacos hidráulicos, dos perfis de rigidez até à face inferior do

tabuleiro;

8 – Colocação dos cilindros metálicos de 140 toneladas em cima das vigas e ajuste dos mesmos;

9 – Montagem de um sistema de segurança e controle da rotação dos pêndulos para a posição

horizontal (figura 4.4);

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

122

Figura 4.4 - Sistema de segurança e controle de movimentação dos pêndulos ii) Durante o período de interdição nocturna

1 – Elevação do tabuleiro cerca de 10 mm e rotação dos pêndulos para a posição horizontal;

2 – Colocação de um sistema de apoio às platinas superiores.

3 – Desaperto das fixações das platinas superiores;

4 – Abaixamento das platinas superiores até ficarem apoiadas no sistema referido em 2;

5 – Movimentação das platinas para fora da zona de actuação;

6 – Corte dos pernos sobrantes;

7 – Colocação das novas fixações;

8 – Elevação das novas platinas e aperto das mesmas na sua posição definitiva;

9 – Rotação dos pêndulos para a posição quase vertical e posicionamento dos mesmos de acordo

com o definido;

10 – Transferência de carga dos cilindros para os pêndulos;

iii) Após o período de interdição

1 - Desmontagem de todo o sistema

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

123

4.3. A Reabilitação e Reforço de pontes

Os trabalhos de reforço destinam-se essencialmente ao aumento sobre as linhas existentes de:

• Cargas por eixo no tráfego de mercadorias;

• Velocidade tanto no tráfego de mercadorias como no tráfego de passageiros.

No primeiro caso torna-se necessário aumentar a capacidade resistente da obra, enquanto que no

segundo caso é muitas vezes necessário um alargamento da obra.

Em regra apenas as pontes metálicas antigas colocam problemas relativamente às cargas

admissíveis, dado que as novas pontes metálicas, as pontes de betão armado e de betão armado

pré-esforçado, de concepção recente, já foram calculadas para os esquemas de carga que se

utilizam actualmente.

Alguns trabalhos de reforço:

• O pavimento das pontes em alvenaria pode ser reforçada através da execução de novas

lajes em betão e/ou reforço dos muros tímpanos;

• Os tabuleiros pré-esforçados podem ser reforçados através da instalação de pré-esforço

adicional;

• Os tabuleiros metálicos podem ser reforçados através da substituição dos elementos mais

fracos da estrutura, aumento da rigidez de partes da estrutura insuficientes do ponto de

vista da flambeamento e através da aplicação de elementos suplementares;

• Os muros e encontros podem ser reforçados por ancoragens ao terreno, injecção de solos,

e transferência de cargas para micro-estacas;

• Execução de reforços em betão envolvendo as fundações existentes, ou de ensecadeiras,

para proteger e aumentar o encastramento das fundações em zona aquática; as zonas na

proximidade destas fundações podem ser protegidas e estabilizadas por enrocamentos,

gabiões ou colchões drenantes.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

124

4.3.1. O Alargamento da Ponte sobre o rio Ferreira

Figura 4.5 - Ponte antiga sobre o Rio Ferreira, após o alargamento (Via Descendente)

Trata-se de uma ponte situada ao km 18,000 da Linha do Douro, (figura 4.5), constituída por

encontros em alvenaria de pedra, cada um com dois arcos e extensão de 36 m e um tabuleiro

central metálico, (vão de 30,47 m), tipo “viga rótula” com 3,010 m de altura, construída em 1925,

tendo sido objecto de reforço estrutural em 1967. Em planta a ponte está inserida num traçado

curvo, e em perfil contém uma curva côncava (figura 4.6).

Figura 4.6 - Projecto de alagamento da Ponte sobre o rio Ferreira

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

125

Em 1999, no âmbito do empreendimento de duplicação e electrificação do troço Valongo – Cete, da

Linha do Douro, esta ponte foi objecto de alargamento, tendo em vista a sua adaptação ao perfil de

via regulamentar, com a largura de 4,30 m para a composição ferroviária e passeios laterais de

1,20 m.

A partir de 1999, deixou de ser via única, passando a funcionar apenas como via descendente,

dado que foi construída uma nova ponte para servir a via ascendente.

Foi efectuado um estudo geotécnico na zona da Ponte, tendo sido realizada uma campanha de

sondagem à rotação, ensaios de penetrómetro dinâmico ligeiro (PDL) e ainda de prospecção

sísmica.

O ensaio de prospecção sísmica confirmou a existência do maciço de fundação e a inexistência de

grutas que eventualmente pudessem ter resultado da exploração da pedreira que existiu na

proximidade da zona da obra e que poderiam pôr em causa a segurança dos montantes da obra.

Foi verificada a capacidade resistente da obra à nova velocidade de circulação, tendo sido

consideradas as cargas regulamentares preconizadas pelo RSA e algumas das prescrições da UIC.

4.3.1.1. Concepção das estruturas

O alargamento dos passeios na zona dos arcos de alvenaria, foi realizado com um tabuleiro em laje

vigada, com lajes em consola constituindo passeios.

O novo tabuleiro foi ligado aos tímpanos dos arcos através de ferrolhos (2 diâmetros de 20 mm,

com 1,00 m espaçados de 0,50 m), selados na com argamassa epoxídica na alvenaria (figura 4.7).

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

126

Figura 4.7 - Corte esquemático do novo tabuleiro em betão armado na zona dos arcos de alvenaria Na zona da treliça metálica, (figura 4.8), foram aproveitados os elementos existentes, tendo sido

introduzidos novos elementos em aço, Fe 360, para materializar o novos passeios, com a largura de

1,70 m, em lugar dos antigos estreitos passadiços.

Figura 4.8 - Alargamento dos passeios no tabuleiro metálico

4.3.1.2. Critérios de dimensionamento

As estruturas de betão armado foram verificadas aos Estados Limites Últimos e de Utilização, de

acordo com o REBAP.

Os novos elementos em aço foram verificados aos Estados Limites Últimos de tracção, compressão

e encurvadura, de acordo com o Eurocódigo 3.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

127

O tabuleiro metálico existente foi verificado aos Estados Limites Últimos de Tracção, compressão,

encurvadura, flexão e instabilidade por flexão e torção e à fadiga de acordo com Eurocódigo 3.

Todas as ligações foram verificadas ao corte simples ou múltiplo. As ligações pré-esforçadas foram

também verificadas ao arrancamento.

4.3.1.3. Impermeabilização e drenagem

A impermeabilização do tabuleiro foi realizada em três camadas de acordo com seguinte esquema:

• Emulsão betuminosa;

• Tela asfáltica armada colada a quente;

• Betuminoso com 30 mm de espessura.

A drenagem dos tabuleiros de betão armado foi materializada por pendentes transversais

adequadas e drenos de manilha furada na direcção longitudinal e na zona de intradorso da curva.

Esta manilha furada tem tubos de descarga, em PVC de diâmetro de 100 mm, que drenam as

águas para o exterior.

As caixas existentes nos passeios têm pendente no fundo e estão ligadas ao dreno longitudinal por

tubos em PVC de diâmetro 50 mm, espaçadas de 20 m.

4.3.2. Estabilização e Recuperação de duas Passagens Superiores Rodoviárias

Figura 4.9 – Passagem superior ao km 9,078 da Linha de Leixões, antes da recuperação.

Figura 4.10 - Passagem superior ao km 14,300 da Linha de Leixões, antes da recuperação

Uma das passagens superiores situa-se ao km 9,078 da Linha de Leixões, (figura 4.9) que é uma

via férrea dedicada apenas a tráfego de mercadorias, que foi objecto entre 1995 e 1997 de

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

128

trabalhos de renovação integral da via (substituição de carris e travessas), e de obras de

melhoramento de drenagem da plataforma da via, de estabilização de taludes e de electrificação da

via.

Figura 4.11 - P.S. km 9.300 da Linha de Leixões

Armaduras a descoberto, com corrosão em viga e pilar.

Figura 4.12 – Idem, num pilar.

Trata-se de uma obra de arte de três vãos, em laje vigada, pilares em betão armado e encontros em

alvenaria de granito. As vigas (figura 4.11), apresentavam algumas zonas com delaminação do

betão, em consequência da expansão das armaduras, num processo de oxidação antigo, que foi

agravado pelo escorrimento das águas pluviais e também pelos compostos sulfurosos dos fumos

das locomotivas de tracção a vapor.

Figura 4.13 – P.S. ao km 14,300 da Linha de Leixões. Armaduras de viga com corrosão.

Figura 4.14 – Idem

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

129

A outra obra de arte localizada ao km 14,300, (figura 4.10), com um único vão, tem um tabuleiro

em laje vigada e encontros em alvenaria aparelhada de granito. Algumas das vigas (figuras 4.13 e

4.14), apresentavam também delaminação do betão e exposição parcial de armaduras.

Na execução do trabalho foi seguida a seguinte metodologia:

• Montagem de andaime;

• Levantamento da localização e identificação das zonas a reparar;

• Saneamento dessas zonas através de demolição e posterior remoção, do betão deteriorado;

• Limpeza das armaduras e da superfície do betão com jacto de areia húmida;

• Substituição das armaduras que apresentem grau elevado de corrosão. Os estribos a

substituir serão empalmados nas faces visíveis das vigas;

• Barramento das armaduras e da superfície de betão que funcionará como inibidor de

corrosão e como aditivo de colagem do betão. Foi utilizado o “Monotop 610” da SIKA, que

para além do referido provoca um efeito de barreira contra a penetração da água e dos

cloretos;

• Projecção de betão aditivado, numa espessura média de 6 cm. O aditivo utilizado foi o

Sikacrete P, também da SIKA. É um aditivo mineral que associa sílica de fumo a

superplastificantes e causa menor perda de ligante na projecção do betão, conferindo um

carácter isolante ao mesmo;

A execução de instalações de tracção fixa nesta linha, em que a maior parte das obras de arte com

várias décadas de idade, não tinham altura útil necessária para essa instalação, obrigou ao

rebaixamento da plataforma, atingindo um máximo de 1,00 m. Aproveitando o facto dessa

plataforma ter espaço para duas vias, esses trabalhos de rebaixamento foram realizados em duas

fases, para não interromper a circulação ferroviária.

Numa primeira fase foi realizada a escavação da zona livre da plataforma. e em sequência instalada

uma via férrea provisória, por onde se passaram a fazer os movimentos de comboios. Em segunda

fase procedeu-se à retirada da via existente, escavação e colocação do novo balastro, travessas e

carris.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

130

Figura 4.15 - P.S. ao km 9,078 da Linha de Leixões, durante os trabalhos de reabilitação

Figura 4.16 – Idem

Aproveitando este faseamento dos trabalhos ferroviários, a execução dos trabalhos de reabilitação

foi também realizada em duas fases, sendo executada em cada fase o tratamento completo de

metade da obra de arte. A obra foi executada por uma única equipa e teve uma duração global de

12 semanas, ou seja “cada metade” da obra teve uma duração de 3 semanas.

Figura 4.17 – Passagem superior rodoviária ao km 14,300

da Linha de Leixões, durante os trabalhos de reabilitação

Figura 4.18 - Passagem superior rodoviária ao km 14,300 da Linha de Leixões – 2 ª fase dos trabalhos de reabilitação

Dado que o rebaixamento da via, implicou a escavação junto à fundação, cerca de 1,00 m abaixo

do nível existente, dos muros de testa no caso da PSR ao km 14,300, ou da sapata corrida dos

pilares, no caso da PSR ao km 9,078, foi necessário proceder ao recalçamento dessas fundações.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

131

Figura 4.19 – Desenho de pormenor da Protecção das sapatas das Passagens Superiores (Projecto do Gabinete de

Estudos e Geotecnia, Lda.)

Foi executada, uma malha de pregagens, tipo Dywidag R25N, com protecção contra a corrosão,

com comprimento médio de 3,0 m, e inclinação de 15º, constituindo duas linhas afastadas na

horizontal de 1,5 m, seladas com calda de cimento. Contra esses muros de alvenaria ou de betão,

foi betonado um murete com cerca de 0,20 m de espessura, que constitui um dos lados da valeta

de drenagem da plataforma da via, (figura 4.19).

Figura 4.20 – P.S. ao km 9.078 da Linha de Leixões. Obra já reabilitada.

Figura 4.21 – P.S. ao km 14.300.Obra já reabilitada.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

132

4.3.3 - Beneficiação do Viaduto do Rego Lameiro

Figura 4.22 – Corte Longitudinal do Antigo Viaduto Rego Lameiro, ao km 0,489 da Linha do Minho (Desenho elaborado

com base no projecto original)

Trata-se de dois viadutos em alvenaria aparelhada de granito, com cinco arcos, encostados um ao

outro, aparentando ser uma única obra e situação ao km 0,489 da Linha do Minho, na proximidade

da Estação de Campanha, (figuras 4.22 e 4.23).

Figura 4.23 – Alçado Sul do Viaduto do Rego Lameiro já com o novo viaduto em betão armado (Projecto do Professor Edgar Cardoso)

A construção da Ponte S. João, implicou relativamente aos acessos do lado do Porto a construção

de um viaduto paralelo e também encostado a essas estruturas antigas, por forma a permitir

através de aparelhos de mudança de via, a ligação ferroviária entre a nova via dupla entre Porto e

Gaia e a Linha do Minho, no troço Estação de S. Bento/Estação de Campanha.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

133

Figura 4.24 – Construção do novo viaduto em betão armado pré-esforçado O facto desse viaduto de alvenaria receber no seu alçado sul a estrutura do novo viaduto, (figura

4.24) ou seja a laje resistente, a cota mais elevada e ainda uma das fiadas de pilares de betão

armado que ficam encostados às nascenças dos arcos, fez com que o mesmo tivesse que ser

objecto de obras de reabilitação e beneficiação.

Figura 4.25– Andaime de inspecção ao viaduto do Rego

Lameiro. Inicio da construção do novo viaduto

Figura 4.26– Aspecto do viaduto do Rego Lameiro, antes dos trabalhos de beneficiação

Na posse dos desenhos existentes do projecto destes dois viadutos, a fiscalização do

empreendimento da Ponte S. João e Acessos, fez um levantamento da geometria destas obras e da

localização e identificação das patologias, (figura 4.27) tendo para o efeito sido montado um

andaime para inspecção (figura 4.25).

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

134

Figura 4.27 – Desenho de levantamento das patologias existentes nos viadutos. A junta entre as duas obras, neste pilar atingia no fecho 4 cm de abertura.

Figura 4.28 – Aspecto das alvenarias dos viadutos antes das obras de beneficiação.

Foram levadas a efeito também inspecções visuais que permitiram verificar nomeadamente a

existência de uma junta entre as duas obras, que cresce de baixo para cima atingindo no fecho 2 a

4 cm de abertura, confirmando que as duas obras “desencostaram”, sinal de que as fundações

sofreram pequenos assentamentos.

Verificou-se também que as juntas entre as pedras estavam mal preenchidas de argamassa,

aparecendo no seu interior até lascas de lousa. As superfícies dos tímpanos das abóbadas de

alvenaria encontravam-se desligadas destas e até levantadas em extensas zonas cerca de 1 cm.

Esta patologia era uma consequência das forças geradas nessas juntas ao longo do tempo,

provocadas pelas raízes de arbustos que aí se foram desenvolvendo.

Tendo por base esse levantamento e as inspecções visuais efectuadas pela equipa projectista, foi

elaborado o projecto de reforço e beneficiação (Cardoso, Edgar,1986), que teve em consideração as

novas condições de utilização do viaduto, devido às maiores cargas permanentes, em consequência

do aumento da altura da rasante e às novas sobrecargas ferroviárias, superiores às que tinham sido

consideradas aquando da sua construção, um século atrás.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

135

Este projecto contemplou não só o reforço das fundações mas, também a beneficiação da

superestrutura, bem como o alargamento da plataforma através da construção de uma laje sobre os

mesmos.

Foram desenvolvidos sequencialmente os seguintes trabalhos:

• Abertura de poços para reforço das fundações dos pilares e dos encontros;

• Enchimento de poços de fundação com betão B225, ligeiramente armado, encastrados no

bed-rock, em degraus no caso de a rocha se apresentar inclinada na zona de

encastramento da rocha;

• Execução de cintagens de betão armado (B300) ao nível dos embasamentos dos pilares e

das nascenças das abóbadas, bem como cintagens em U aos mesmos níveis, nos

encontros, de modo a unir e travar as estruturas dos dois viadutos. Previamente à

betonagem, as superfícies de alvenaria foram limpas e saneadas e as juntas alegradas e

refechadas (figuras 4.29 e 4.30);

Figura 4.29 – Execução dos trabalhos de embasamento dos pilares dos viadutos

Figura 4.30 – Pilar do viaduto após a execução dos trabalhos de reforço

• Execução de pilares de betão armado na continuação do reforço das fundações e dos

embasamentos dos pilares e dos encontros, devidamente “pregados” às alvenarias;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

136

• Execução de dormentes de betão armado, ao longo do coroamento dos muros tímpano e de

avenida, para apoio da estrutura do novo viaduto em betão armado e para apoio da consola

de alargamento do lado oposto;

• Execução de uma consola de betão armado, ao longo do muro de tímpano e dos muros de

avenida da face norte, para alargamento da plataforma, de modo a conter o canalete de

infraestruturas de sinalização e telecomunicações e o passeio de serviço;

• Alegramento das juntas de alvenaria aparelhadas, (figura 4.31), na profundidade de 0.10

m, em todas as superfícies vistas dos pilares e dos encontros e seu refechamento com

argamassa de 600 kg de cimento, por m³ de areia, com excepção das juntas horizontais de

intradorso das abóbadas e da junta na ligação dos tímpanos ao extradorso das abóbadas;

Figura 4.31 – Desenho de pormenor do tratamento das juntas da alvenaria

• Execução de atirantamento das abóbadas pelo seu intradorso consistindo na introdução em

cada junta horizontal (equidistantes cerca de 0,40 m) de 3Ø12 de aço A 400 N.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

137

Previamente as juntas foram alegradas na espessura de cerca de 20 mm e na

profundidade de 0,10 m. As juntas foram alegradas, lavadas parcialmente e refechadas na

profundidade de 3 a 5 cm, sendo posteriormente colocados os varões, que foram

previamente pintados com resina epóxica, sendo acabadas de refechar e atacadas com

argamassa de 1000 kg de cimento por m³ de areia;

Figura 4.32 – Desenho de pormenor de tratamento da juntas entre os tímpano e a abóbada

• Alegramento da junta entre a parede dos tímpanos e o extradorso das abóbadas na

profundidade correspondente ao vazio e num mínimo de 0,30 m, seguindo-se a lavagem,

refechamento e atacamento com argamassa de 1000 kg de cimento por m³ de areia. Os

alegramentos, refechamentos e atacamentos eram feitos por trechos da ordem de 1,00 m,

distanciados também no mínimo de 1,00 m. Só se procedia ao trabalho entre os trechos

executados depois destes já terem a argamssa dura;

• Alegramento, refechamento e atacamento da junta entre os dois viadutos. A junta era

alegrada na sua maior profundidade possível, não inferior á altura das aduelas, cerca de

0,65 m. Após a mesma ser alegrada e saneada era pintada com resina epóxica,

imediatamente antes do seu refechamento e atacamento, executados por trechos em

altura. Este refechamento era realizado por injecção;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

138

Figura 4.33 – Pormenor da ligação do novo viaduto de betão armado, ao viaduto de alvenaria

• Execução do apoio da laje do novo viaduto no dormente da face sul, (figura 4.33), sobre

uma chapa de chumbo ao longo de todo o comprimento, com uma espessura de 20 mm

por 70 m de largura, com aglomerado de cortiça. O apoio foi travado com 5 Ø 32 sobre

cada reforço vertical;

• Suspensão das vias existentes utilizando pontaletes de sustentação de betão, colocados

entre travessas, com a secção de 0.25 x 0.50 e altura de 0.75 m para ter em consideração

o alteamento definitivo final.

• Execução de laje tirante entre dormentes dos viadutos, em betão armado sobre um

massame que serve de molde fundo, executado sobre o próprio balastro.

• Criação de pendentes adequadas sobre a laje – tirante, utilizando argamassa de cimento e

areia, e introdução de tubagem de drenagem e respectivos ralos.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

139

• Colocação de novas travessas, de balastro e de novas fixações dos carris;

• Levantamento das vias e ripagens necessárias para materializar o traçado definitivo em

planimetria e altimetria;

• Instalação dos novos postes de catenária e retirada dos existentes;

• Instalação de nova guarda do lado norte, metálica do mesmo tipo da instalada no novo

viaduto;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

140

5. ANÁLISE DE CUSTOS AO LONGO DO CICLO DE VIDA

5.1. Introdução

Enquanto os princípios básicos da análise de custos ao longo do ciclo de vida foram desenvolvidos

durante mais de 100 anos, a utilização sistemática de uma abordagem da análise dos custos de

ciclo de vida de pontes, pavimentos e pontes, apareceu nos Estados Unidos da América apenas nos

últimos 30 anos.

Nos Estados Unidos, a lei referente à eficiência dos transportes intermodais de superfície, de 1991,

(Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA)) exige que sejam considerados os

custos do ciclo de vida na elaboração dos projectos de pontes, túneis e pavimentos.

Embora a análise benefício - custo seja ainda excepção na maioria dos projectos de pontes nos

USA, o uso da análise de ciclo de vida e de comparação benefício - custo é encorajada, sobretudo

nos grandes projectos.

Actualmente a administração federal norte americana das auto estradas, FHWA, exige que seja

considerada a análise de ciclo de vida, no caso de estudos pedidos pelo Congresso dos USA,

geralmente quando se pretende definir “corredores” para auto-estradas que têm pontes.

Entende-se que vida útil é o período de tempo, no qual a estrutura tem condições para

desempenhar as funções para as quais foi projectada.

Nas estruturas de betão estrutural, no caso da deterioração das estruturas por corrosão, podem-se

distinguir três períodos de tempo:

• A vida útil de projecto, que é o período de tempo que vai até à despassivação das

armaduras;

• A Vida útil de serviço ou de utilização, que é o período de tempo que vai até ao

momento em que aparecem manchas na superfície do betão, ou ocorrem fissuras no betão

de recobrimento, ou ainda quando há destacamento do betão de recobrimento;

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

141

• Vida útil última ou total, que é o período de tempo que vai até à ruptura e colapso

parcial ou total da estrutura, correspondendo ao período de tempo em que há uma redução

significativa da secção resistente da armadura ou uma perda da aderência

armadura/betão.

As pontes são investimentos de longo prazo, as obras de arte são dimensionadas para uma vida útil

de pelo menos 50 anos, sendo cada vez mais frequente a consideração de 75 anos. Em França

admite-se que o tempo de vida útil de uma ponte seja de 100 anos. Na Grã-bretanha fixam-se

prazos de duração de 120 anos.

No caso de pontes de grande envergadura, é cada mais frequente exigir períodos de vida útil de

100, 120 ou 150 anos, pelo que os custos da manutenção de rotina e periódica, de reabilitação e

de substituição adquirem cada vez maior importância no contexto das decisões de investimentos

nestas infra estruturas.

Segundo (NCHRP, 2003), o custo do ciclo de vida pode ser expresso pela seguinte expressão:

CCV = CP + CC + CM + CR + CU + CRS

Em que

CCV = Custo de Ciclo de Vida,

CP = Custo de Projecto,

CM = Custo de Construção,

CR = Custo de Reabilitação,

CU = Custo de uso

CRS= Custo residual

A análise de custos de ciclo de vida é usada para optimização temporal das intervenções nas

pontes, e segundo Mohammadi et al. citado em (NCHRP, 2003) um único parâmetro pode ser

usado para quantificar o respectivo processo de decisão, IV, índice de valor da ponte:

IV = F (a,c,t)

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

142

Em que

IV = Índice do valor da ponte,

F = Função objectivo,

a = valor da avaliação da ponte em termos de estado de conservação,

c = custos,

t = tempo de vida útil esperado para a ponte.

A forma proposta para F é:

IV = a *t/c = As /c

Em que As = Área sob a curva de deterioração da ponte

5.2. Aspectos que condicionam a análise de custos ao longo do ciclo de vida da ponte

Para conduzir uma análise de custos ao longo do ciclo de vida, torna-se necessário ter experiência

profissional de utilização de princípios económicos, estar familiarizado com as técnicas de

reparação de pontes e com os respectivos custos, ter acesso a uma base de dados de preços,

conhecer as alternativas mais prováveis que podem ser seguidas no desenvolvimento das

reparações e ter um bom conhecimento do comportamento da ponte ao longo do seu tempo de

vida útil.

Os custos a realizar no futuro são expressos no valor equivalente actual, ou no custo anual uniforme

equivalente, usando formulas de juros compostos.

O valor do factor do pagamento simples actual (FSPP) para uma taxa de desconto i, referente a um

pagamento a ocorrer no ano n, é dado pela seguinte expressão:

FSPPn = 1 / (1+i)n

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

143

Este factor aplica-se por exemplo na conversão do capital a investir na reabilitação e substituição de

uma obra no futuro, mas em valores actuais.

Para ter em atenção a taxa de inflação, a taxa de desconto deve ser calculada utilizando a seguinte

expressão:

i* = (1+ i)(1 + q)/(1+f)

Em que i* = Verdadeira taxa de desconto que incorpora o efeito da inflação,

I = Taxa de desconto corrente,

q = taxa de crescimento de financiamento,

f = taxa esperada de inflação.

Se a taxa esperada de financiamento for igual à taxa de inflação, a taxa de desconto vem igual à

taxa de desconto corrente.

As metodologias de análise incorporam incertezas, que estão relacionadas com a variação tanto dos

próprios custos de reparação, como da altura em que estes vão ocorrer ao longo do tempo de

análise. Esta incerteza também se verifica quando se aplicam novos materiais, cujo comportamento

ao longo do tempo ainda não é conhecido, mas que se pode fazer reflectir na análise através da

admissão de um maior grau de incerteza tanto no seu custo, como no próprio tempo de

durabilidade admitido para esse material.

Os resultados da análise de custos ao longo do ciclo de vida são fortemente influenciados pela taxa

de desconto que for considerada para o período em análise, pela localização nesse período de

tempo de qualquer acção que vai ter lugar (reparação, reabilitação ou substituição) e pelo respectivo

custo que lhe está associado.

5.3 – Os custos das obras objecto de estudo

A maioria das obras analisadas faziam parte de projectos globais e de empreitadas de

modernização de troços de via, em que as obras de arte representavam uma pequena parte da

respectiva empreitada e da qual faziam parte também trabalhos de via, (especialidade com maior

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

144

peso no contexto global), de execução de estruturas de suporte de terras, construção de estações e

apeadeiros e trabalhos de catenária.

Com excepção das empreitadas mais recentes, caso da empreitada entre Lordelo e Guimarães na

Linha de Guimarães e o Ramal de Braga, em que a proposta do custo de projecto dessas

empreitadas, já apresentava o custo de projecto para cada obra de arte prevista, o custo do projecto

era global, não estava discriminado por obra de arte.

Em relação aos custos da fiscalização, contratadas globalmente para toda a empreitada, também

não foram apresentados custos isolados para as obras de arte.

Nestes casos o custo que imputamos ao projecto de uma dada obra de arte reflectiu a relação entre

o custo total da empreitada e o custo total do projecto. O mesmo procedimento utilizamos quanto

ao custo da fiscalização que reflectiu também a relação entre o custo total da empreitada e o custo

total da fiscalização de todo o empreendimento.

Em uma das empreitadas, referente ao troço entre Lousado e Nine, na Linha do Minho, o mapa de

trabalhos não contemplava uma listagem de trabalhos e quantidades para cada obra de arte,

prevista construir nesse troço. Estavam agrupadas globalmente por natureza de atravessamento,

enquanto num capítulo estavam considerados todos os trabalhos necessários à construção de todas

as passagens inferiores e, noutro capítulo foram considerados os respectivos trabalhos necessários

para a construção das passagens superiores.

Em relação a este último caso, os custos imputados a cada obra de arte, foram determinados

proporcionalmente à área de tabuleiro da respectiva obra de arte.

Há também o caso de algumas obras que foram executadas autonomamente, fora das referidas

empreitadas gerais, em que a fiscalização não foi contratada no exterior, tendo sido assegurada por

técnicos do próprio dono de obra. Adoptamos como critério para determinar o respectivo custo da

fiscalização, a assunção de uma percentagem do custo da empreitada semelhante à que resultou

da empreitada geral que teve lugar no respectivo troço de via.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

145

5.4. Comparação de custos do mesmo tipo de obra, a preços actuais

Ao compararmos custos do mesmo tipo de obra temos que ter em atenção não só os parâmetros,

que permitem distinguir as obras entre si, nomeadamente, o seu comprimento e a área de

tabuleiro, mas também as condições em que a mesma foi construída. Ou seja é diferente se a obra

foi executada, com a via ou vias totalmente fora de serviço, ou se pelo contrário foi executada com a

linha em exploração, dado que neste caso, os processos construtivos são outros e os custos são

superiores.

5.4.1. Passagens Inferiores

Em relação aos custos com as passagens inferiores rodoviárias construídas no ramal de Braga,

apresentamos a tabela nº 5.1. Estas obras foram construídas no âmbito de duas empreitadas, que

decorreram simultaneamente, com dois empreiteiros diferentes, tendo as sete primeiras sido

construídas no troço entre Nine e Tadim, e a PI 8, no troço entre Tadim e Braga. O projectista da

PI 8 também não é o mesmo das restantes, o mesmo se passando com a fiscalização, que foi

assegurada por empresas diferentes.

Tabela 5.1 - Custos à data da conclusão, das Passagens Inferiores Rodoviárias construídas no Ramal de Braga

OBRA CUSTO PROJ.

CUSTO PREV.CONST.

CUSTO REAL CONST.

DESVIO CUST.CT CUSTO FISC. CUST.REAL

TOTAL VÃO (m)

ÁREA TAB. (m²)

CUST. UNIT/m DE

VÃO

CUSTO UNIT/m²

TABULEIRO

PI 1 4.489,00 € 161.390,06 € 239.919,04 € 48,66% 11.036,28 € 255.444,32 € 14,30 183 17.863,24 € 1.395,57 €

PI 2 4.489,00 € 890.496,81 € 888.793,32 € -0,19% 40.884,49 € 934.166,81 € 14,64 456,4 63.809,21 € 2.046,64 €

PI 3 4.489,00 € 327.947,41 € 346.655,90 € 5,70% 15.946,17 € 367.091,07 € 13,05 139,9 28.129,58 € 2.623,95 €

PI 4 4.489,00 € 199.766,43 € 222.276,54 € 11,27% 10.224,72 € 236.990,26 € 13,77 177,6 17.210,62 € 1.334,10 €

PI 5 4.489,00 € 418.839,31 € 393.969,08 € -5,94% 18.122,58 € 416.580,66 € 16,00 260,00 26.036,29 € 1.602,23 €

PI 6 4.489,00 € 215.894,33 € 217.813,66 € 0,89% 10.019,43 € 232.322,09 € 11,00 140,80 21.120,19 € 1.650,01 €

PI 7 4.489,00 € 313.989,32 € 445.186,75 € 41,78% 20.478,59 € 470.154,34 € 14,56 214 32.290,82 € 2.196,67 €

PI 8 4.239,78 € 214.661,81 € 459.999,38 € 114,29% 20.239,97 € 484.479,13 € 14,9 192,2 32.515,38 € 2.520,70 €

MÉDIA 4.457,85 € 342.873,19 € 401.826,71 € 27,06% 18.369,03 € 424.653,59 € 14,03 220,51 29.871,92 € 1.921,24 €

Verifica-se que os custos unitários/m de vão, bem como os custos unitários/m ² de tabuleiro, para

passagens inferiores com vãos e áreas de tabuleiros semelhantes, não variam muito face aos

valores médios encontrados.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

146

Apresenta-se na tabela 5.2, os custos referentes às passagens inferiores agrícolas, que foram

construídas também no Ramal de Braga. Apenas a que está referenciada como PIA, foi construída

no âmbito da empreitada de Remodelação da Estação de Nine, enquanto que as três restantes

foram executadas na empreitada do troço Nine – Tadim, com outro empreiteiro e outra fiscalização.

Tabela 5.2 – Custos, à data da conclusão, das Passagens Inferiores Agrícolas construídas no ramal de Braga

OBRA CUSTO PROJ. CUSTO

PREV.CONST. CUSTO REAL

CONST. DESVIO CUST.CT

CUSTO FISC. CUST.REAL

TOTAL VÃO (m)

ÁREA TAB. (m)

CUST. UNIT/m² de

VÃO

CUSTO UNIT/m²

TABULEIRO

PIA 1.004,97 € 105.122,22 € 215.901,36 € 105,38% 15.501,72 € 232.408,05 € 12,30 148,8 18.894,96 € 1.561,57 €

PIA 1 3.990,38 € 137.568,94 € 261.223,42 € 89,89% 12.016,28 € 277.230,08 € 8,4 107,5 33.003,58 € 2.578,40 €

PIA 2 3.990,38 € 118.534,29 € 40.343,04 € -65,97% 1.855,78 € 46.189,20 € 8,4 107,5 5.498,71 € 429,59 €

PIA 3 3.990,38 € 91.636,35 € 106.197,26 € 15,89% 4.885,07 € 115.072,71 € 8,4 109,2 13.699,13 € 1.053,78 €

MÉDIA 3.244,03 € 113.215,45 € 155.916,27 € 37,72% 8.564,71 € 167.725,01 € 9,38 118,27 17.774,10 € 1.405,83 €

Os custos unitários nestas obras variam bastante, em função do tipo de fundações e da extensão

dos muros ala. A PIA 1 tem muros ala com extensão superior às outras obras e fundações por

estacas, o que faz elevar bastante os custos unitários.

Na tabela 5.3 apresenta-se o custo das passagens inferiores construídas na empreitada do troço

Valongo – Cete, com preços à data de conclusão dessas obras.

Tabela 5.3 – Custos, à data da conclusão, das Passagens inferiores rodoviárias construídas no troço Valongo – Cete Linha do Douro

OBRA CUSTO

PROJ. CUSTO

PREV.CONST. CUSTO REAL

CONST. DESVIO CUST.CT

CUSTO FISC.

CUST.REAL TOTAL

VÃO (m)

ÁREA TAB. (m²)

CUST. UNIT/m de VÃO

CUSTO UNIT/m²de

TABULEIRO

PI 1 851,90 € 239.929,38 € 332.994,76 € 38,79% 5.660,91 € 339.507,57 € 14,06 176,4 24.155,64 € 1.924,76 €

PI 2 629,11 € 245.028,18 € 313.597,23 € 27,98% 5.331,15 € 319.557,49 € 13,00 211,1 24.581,35 € 1.513,63 €

PI 3 845,36 € 1.059.864,93 € 1.031.579,25 € -2,67% 17.536,85 € 1.049.961,46 € 12,40 161,2 84.674,31 € 6.513,41 €

PI 4 845,35 € 180.645,79 € 437.997,83 € 142,46% 7.445,96 € 446.289,14 € 6,10 144,3 73.162,15 € 3.092,14 €

PI 6 527,60 € 661.985,47 € 1.028.960,90 € 55,44% 17.492,33 € 1.046.980,83 € 10,09 128,9 103.764,21 € 8.122,43 €

MÉDIA 739,86 € 477.490,75 € 629.025,99 € 31,74,% 10.693,44 € 640.459,30 € 11,13 164,39 62.067,53 € 4.233,27 €

Na tabela 5.4, podem-se verificar os custos de todas as passagens inferiores agrícolas construídas

no troço entre Valongo e Cete da Linha do Douro.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

147

Tabela 5.4 – Custos, à data da conclusão, das passagens inferiores agrícolas no troço Valongo – Cete da Linha do Douro

OBRA CUSTO PROJ.

CUSTO PREV.CONST.

CUSTO REAL CONST.

DESVIO CUST.CT CUSTO FISC. CUST.REAL

TOTAL VÃO (m)

ÁREA TAB. (m²)

CUSTO UNIT/m

CUSTO UNIT/m²

PIA 1 851,90 € 58.136,07 € 74.401,77 € 27,98% 1.264,83 € 76.518,50 € 6,00 84,9 12.753,08 € 901,28 €

PIA 2 629,11 € 56.230,76 € 54.944,95 € -2,29% 934,06 € 56.508,12 € 6,80 84,32 8.310,02 € 670,16 €

PIA 3 845,36 € 68.818,95 € 73.830,42 € 7,28% 1.255,12 € 75.930,90 € 7,36 91,27 10.316,70 € 831,94 €

PIA 4 845,35 € 46.876,96 € 46.078,75 € -1,70% 783,34 € 47.707,44 € 6,80 84,32 7.015,80 € 565,79 €

PIA 5 527,60 € 46.902,32 € 47.695,35 € 1,69% 810,82 € 49.033,77 € 6,20 76,88 7.908,67 € 637,80 €

PIA 6 2.051,55 € 60.554,05 € 179.173,41 € 195,89% 3.045,95 € 184.270,91 € 6,00 74,4 30.711,82 € 2.476,76 €

MÉDIA 958,48 € 56.253,19 € 79.354,11 € 14,11% 1.349,02 € 81.661,61 € 6,53 82,68 12.836,02 € 1.013,95 €

Na tabela 5.5 apresenta-se os custos de algumas das passagens inferiores rodoviárias construídas

nos troços Cete – Penafiel e Caíde – Penafiel da Linha do Douro.

Tabela 5.5 – Custos, à data da conclusão, de algumas das passagens inferiores rodoviárias construídas nos troços Cete – Penafiel e Penafiel – Caíde da Linha do Douro

OBRA CUSTO

PROJ. CUSTO

PREV.CONST. CUSTO REAL

CONST. DESVIO CUST.CT CUSTO FISC. CUST.REAL

TOTAL VÃO (m)

ÁREA TAB. (m2)

CUST. UNIT/m

CUSTO UNIT/m²

PI 2 9.257,40 € 130.705,90 € 349.335,99 € 167,27% 20.156,69 € 378.750,08 € 6,04 149,1 62.706,97 € 2.539,73 €

PI 3 25.048,21 € 727.494,77 € 945.215,57 € 29,93% 54.538,93 € 1.024.802,71 € 11,00 195,4 93.163,88 € 5.245,71 €

PI 4 20.443,57 € 558.759,00 € 771.455,42 € 38,07% 43.972,96 € 835.871,95 € 11,40 142,3 73.322,10 € 5.875,25 €

PI 6 13.432,98 € 180.645,79 € 506.905,06 € 180,61% 28.893,59 € 549.231,63 € 12,00 148,8 45.769,30 € 3.691,07 €

PI 7 15.411,95 € 235.701,51 € 581.583,15 € 146,75% 33.150,24 € 630.145,34 € 12,80 172,3 49.230,10 € 3.656,41 €

MÉDIA 16.718,82 € 366.661,39 € 630.899,04 € 72,07% 36.142,48 € 683.760,34 € 10,65 161,58 64.838,47 € 4.201,64 €

Comparando a tabela de custos das passagens inferiores rodoviárias construídas no troço Valongo –

Cete, que ficaram concluídas em 1999, com o mesmo tipo de obra, mas nos troços Cete – Penafiel

e Penafiel – Caíde da mesma linha, concluídos em 2002, verifica-se um aumento nas parcelas dos

custos de projecto e da fiscalização, sendo mais evidente esta última.

Dado que as obras do Ramal de Braga foram construídas com interrupção total da exploração

ferroviária, enquanto que as obras da Linha do Douro, foram executadas com a exploração de uma

via férrea única, considerou-se que teria interesse comparar entre si os custos das obras executadas

nestas duas linhas.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

148

Deste modo os custos das obras do ramal de Braga e das obras da Linha do Douro, foram

actualizados para 2007, fazendo reflectir as taxas de inflação sobre o período que vai entre a

conclusão das obras e o corrente ano, de modo a poder comparar a preços actualizados os custos

das respectivas obras.

O gráfico da figura 5.1, demonstra que a execução de uma passagem inferior rodoviária para via

dupla, com uma das vias em serviço, tem um custo unitário por m², que varia entre cerca de 2,2 a

2,5 vezes mais o custo de uma obra construída num canal ferroviário sem exploração, como foi o

caso do ramal de Braga.

33.699,96 €

71.353,92 €

4.703,05 €

79.937,31 €

2.144,17 €5.412,14 €

0,00 €

10.000,00 €

20.000,00 €

30.000,00 €

40.000,00 €

50.000,00 €

60.000,00 €

70.000,00 €

80.000,00 €

90.000,00 €

Ramal de Braga L.Douro Valongo- Cete

L. Douro Cete -Penafiel

custo/mcusto/m²

Figura 5.1 – Comparação de custos de passagens inferiores rodoviárias, a preços actuais.

5.4.2. Passagens superiores Com a tabela 5.6, apresenta-se os custos com a construção de algumas passagens superiores

rodoviárias no troço Penafiel – Caíde, da Linha do Douro.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

149

Tabela 5.6 – Custos, à data da conclusão, de algumas das passagens superiores rodoviárias construídas no troço

Penafiel – Caíde da Linha do Douro

OBRA CUSTO PROJ.

CUSTO PREV.CONST.

CUSTO REAL CONST.

DESVIO CUST.CT CUSTO FISC. CUST.REAL

TOTAL COMP.

(m)

ÁREA TAB. (m²)

CUST. UNIT/m

CUSTO UNIT/m²

PS 3 5.673,39 € 107.945,87 € 244.542,54 € 126,54% 20.156,69 € 270.372,62 € 20,17 250 13.404,69 € 1.081,49 €

PS 4 9.784,07 € 141.702,46 € 421.727,10 € 197,61% 24.038,44 € 455.549,61 € 22,00 250,8 20.706,80 € 1.816,39 €

PS 5 5.680,33 € 138.454,90 € 244.841,77 € 76,84% 18.951,88 € 269.473,98 € 22,00 313,5 12.248,82 € 859,57 €

PS 6 7.713,75 € 519.626,37 € 332.489,13 € -36,01% 18.951,88 € 359.154,76 € 22,67 370,7 15.842,73 € 968,83 €

MÉDIA 7.212,89 € 226.932,40 € 310.900,14 € 37,00% 20.524,72 € 338.637,74 € 21,71 296,25 15.550,76 € 1.181,57 €

Na tabela 5.7 apresenta-se os custos com a construção das passagens superiores rodoviárias do

Ramal de Braga.

Tabela 5.7 – Custos, à data da conclusão, das passagens superiores rodoviárias construídas no ramal de Braga

OBRA CUSTO PROJ.

CUSTO PREV.CONST.

CUSTO REAL CONST.

DESVIO CUST.CT

CUSTO FISC.

CUST.REAL TOTAL

COMP (m)

ÁREA TAB.(m)

CUST. UNIT/m

CUSTO UNIT/m²

PS 1 2.725,79 € 204.098,38 € 284.528,90 € 39,41% 13.088,33 € 300.343,02 € 42,30 486,45 7.100,31 € 617,42 €

PS 2 2.275,32 € 196.412,31 € 237.507,00 € 20,92% 10.925,32 € 250.707,64 € 40,64 467,00 6.168,53 € 536,85 €

PS 3 2.492,92 € 176.567,97 € 260.221,39 € 47,38% 11.970,18 € 274.684,49 € 14,50 166,75 18.943,76 € 1.647,28 €

PS 4 2.140,96 € 172.476,97 € 223.482,57 € 29,57% 10.280,20 € 235.903,73 € 42,30 486,45 5.576,92 € 484,95 €

PS 7 10.352,65 € 867.566,18 € 1.080.652,77 € 24,56% 47.548,72 € 1.138.554,15 € 232,00 2900,00 4.907,56 € 392,60 €

PS 8 1.185,28 € 179.394,38 € 123.724,82 € -31,03% 5.443,89 € 130.354,00 € 22,00 275,00 5.925,18 € 474,01 €

PS 10 1.231,95 € 112.020,14 € 128.595,78 € 14,80% 5.658,21 € 135.485,94 € 13,55 169,38 9.998,96 € 799,89 €

PS 11 4.743,85 € 416.108,81 € 495.183,06 € 19,00% 21.788,05 € 521.714,97 € 100 1130 5.217,15 € 461,69 €

MÉDIA 3.393,59 € 290.580,64 € 354.237,04 € 21,91% 15.837,86 € 373.468,49 € 63,41 760,13 7.979,80 € 676,84 €

Procedeu-se a uma actualização dos custos das passagens superiores do troço Penafiel – Caíde da

Linha do Douro e do mesmo tipo de obras do Ramal de Braga, de modo a comparar entre si o custo

destas obras.

Conforme se observa pela figura 5.2, também em relação às passagens superiores rodoviários, se

verifica que para as obras do ramal de Braga, os custos unitários por m² de tabuleiro, são mais

baixos, neste caso são cerca de 2,3 vezes inferiores ao custo de obras do mesmo tipo no troço

Penafiel – Caíde da Linha do Douro.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

150

17.368,42 €

6.567,06 €

547,82 €1.273,25 €

0,00 €

2.000,00 €

4.000,00 €

6.000,00 €

8.000,00 €

10.000,00 €

12.000,00 €

14.000,00 €

16.000,00 €

18.000,00 €

20.000,00 €

custo/m custo/m²

Ramal de Braga

L.Douro Penafiel -Caíde

Figura 5.2 – Comparação de custos de passagens superiores rodoviárias, a preços actuais

5.4.3. Pontes e Viadutos

Na tabela 5.8 apresentam-se os custos de algumas pontes e viadutos construídas para duas ou

mais vias férreas. Em relação a este tipo de obras, destaca-se os valores reduzidos do desvio de

custos reais de construção relativamente ao valor previsto, sendo nalguns casos até inferior ao valor

previsto.

Tabela 5.8 – Custos das pontes ou viadutos construídas para duas ou mais vias, a preços actuais

OBRA CUSTO PROJ.

CUSTO PREV.CONST.

CUSTO REAL CONST.

DESVIO CUST.CT

CUSTO FISC.

CUST.REAL TOTAL COMP. ÁREA

TAB. CUST. UNIT/m

CUSTO UNIT/m²

V.L.MINH0 72.188,51 € 2.097.493,43 € 1.956.328,27 € -6,73% 86.078,44 € 2.114.595,22 € 426,00 5112 4.963,84 € 413,65 €

P.L.MINHO 21.259,80 € 1.089.577,34 € 1.230.312,25 € 12,92% 61.786,28 € 1.313.358,33 € 30,00 915,00 43.778,61 € 1.435,36 €

V.R.BRAGA 8.862,89 € 873.965,10 € 925.145,18 € 5,86% 47.450,70 € 981.458,77 € 114,00 1459,2 8.609,29 € 672,60 €

V.L.GUIM. 26.320,42 € 1.426.889,10 € 1.356.722,75 € -4,92% 59.636,11 € 1.442.679,28 € 187,00 1905 7.714,86 € 757,31 €

MÉDIA 32.157,90 € 1.371.981,24 € 1.367.127,11 € -0,35% 63.737,88 € 1.463.022,90 € 189,25 2.347,80 16.266,65 € 819,73 €

V.L. Minho (Viaduto ao km 35.740 da Linha do Minho), em via dupla

P.L. Minho (Ponte sobre o Rio Este), situa-se à entrada da Estação de Nine e comporta cinco vias

V.R. Braga (Viaduto ao km 43,336 do Ramal de Braga), em via dupla

V.L. Guimarães (Viaduto ao km 55,303 da Linha de Guimarães, á entrada da Estação de Guimarães, com duas/três vias

A ponte sobre o rio Este, na Linha do Minho, é uma ponte, com tabuleiro em laje maciça, embora

com vãos muito curtos, (8 m, 14 m, 8 m) mas com um secção transversal muito larga (30,50 m),

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

151

que comporta cinco vias, o que explica o seu custo unitário bastante elevado relativamente às

outras obras, conforme se observa na figura 5.3.

4.963,84 €

43.778,61 €

8.609,29 € 7.714,86 €

413,65 € 1.435,36 € 672,60 € 757,31 €0,00 €

5.000,00 €

10.000,00 €

15.000,00 €

20.000,00 €

25.000,00 €

30.000,00 €

35.000,00 €

40.000,00 €

45.000,00 €

50.000,00 €

L.MINHO -Viaduto km

35,740

L.MINHO - Pontesobre o rio Este

R.BRAGA -Viaduto km

43,336

L.GUIMARÃES -Viaduto km

53,303

custo/mcusto/m²

Figura 5.3 – Comparação de custos de pontes ou viadutos construídos com duas ou mais vias ferroviárias, a preços actuais

Na tabela 5.9 apresenta-se a estrutura de custos de várias viadutos e pontes de via única. Três

destas obras foram construídas na Linha do Douro, (Viaduto de Cabeda, Ponte sobre o rio Ferreira,

Ponte sobre o rio Sousa). A Ponte sobre o rio Ave foi construída na Linha do Minho e a Ponte de

Caniços e dois viadutos foram construídos na Linha de Guimarães.

Tabela 5.9 – Custos de algumas pontes ou viadutos, construídas para uma única via, a preços actuais

OBRA CUSTO PROJ.

CUSTO PREV.CONST.

CUSTO REAL CONST.

DESVIO CUST.CT

CUSTO FISC.

CUST.REAL TOTAL

COMP. (m)

ÁREA TAB.(m²)

CUST. UNIT/m

CUSTO UNIT/m²

V. CABEDA 32.279,49 € 1.014.257,90 € 1.310.034,96 € 29,16% 92.200,26 € 1.434.514,71 € 172,57 1190,73 8.312,65 € 1.204,74 €

P.R.FERREIRA 53.144,61 € 801.335,81 € 1.092.069,46 € 36,28% 25.787,04 € 1.171.001,10 € 144,00

993,6 8.131,95 € 1.178,54 €

PT Rio SOUSA 10.237,44 € 388.340,83 € 409.497,79 € 5,45% 26.321,62 € 446.056,84 € 51,60 418,8 8.644,51 € 1.065,08 €

P.Rio .AVE 72.506,77 € 1.460.604,02 € 1.294.033,15 € -11,40% 104.245,93 € 1.470.785,85 € 110,00 1177 13.370,78 € 1.249,61 €

V.L.GUIM.1 12.112,04 € 470.389,43 € 526.518,73 € 11,93% 21.096,55 € 559.727,32 € 168,00 1344 3.331,71 € 416,46 €

V.L.GUIM.2 11.722,69 € 569.749,99 € 550.361,26 € -3,40% 22.051,87 € 584.135,83 € 104,60 838,4 5.584,47 € 696,73 €

PT CANIÇOS 42.407,28 € 1.741.772,75 € 1.730.909,42 € -0,62% 76.083,85 € 1.849.400,56 € 176,00 1408 10.507,96 € 1.313,49 €

MÉDIA 33.487,19 € 920.921,53 € 987.632,11 € 7,24% 52.541,02 € 1.073.660,32 € 132,40 1.094,08 8.269,15 € 979,97 €

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

152

Na figura 5.4 comparam-se os custos unitários das pontes e viadutos de via única, atrás referidas.

Refira-se o facto de em relação ao viaduto e pontes da Linha do Douro, os custos unitários por ml e

por m² de tabuleiro serem muito semelhantes, embora as três obras tenham soluções estruturais

diferentes.

O Viaduto de Cabeda tem tabuleiro em laje vigada, (seis vãos que variam entre 24,6 m e 30,7 m).

A Ponte sobre o rio Ferreira, tem tabuleiro com uma nervura com vazamento (seis vãos variando

entre 15 m e 37 m) e a Ponte sobre o rio Sousa, (três vãos, os extremos com 17.05 m e o central

com 17,5 m) tem tabuleiro com vigas pré-fabricadas. Estas obras foram construídas em

empreitadas diferentes, com projectistas e empreiteiros diferentes.

A nova ponte sobre o rio Ave, com tabuleiro metálico e pilares e encontros em betão armado

apresenta os custos unitários mais elevados, destacando-se sobretudo o valor bastante alto do custo

por metro linear de tabuleiro, o que se explica pelo facto de apresentar um vão central de 55 m, o

mais elevado de todas os viadutos e pontes analisados.

Figura 5.4 – Comparação de custos de pontes e viadutos, a preços actuais

3.331,71 €

5.584,47 €

10.507,96 €

1.204,74 € 1.065,08 € 1.313,49 €

13.370,78 €

8.644,51 €8.131,95 €8.312,65 €

1.178,74 €696,73 €

416,46 €

1.249,61 €

0,00 €

2.000,00 €

4.000,00 €

6.000,00 €

8.000,00 €

10.000,00 €

12.000,00 €

14.000,00 €

16.000,00 €

L.DOURO -Viaduto deCABEDA

L. DOURO -Ponte sobre oRio Ferreira

L. Douro - Pontesobre o Rio

Sousa

L.M INHO - Pontesobre o Rio Ave

L.GUIM ARÃES -Viaduto Ferrov. 1

L.GUIM ARÃES -Viaduto Ferrov. 2

L. GUIM ARÃESPonte de Caniços

custo/mcusto/m²

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

153

5.5. Acções necessárias ao prolongamento do ciclo de vida

Há vários factores sobre os quais é possível intervir, no sentido de prolongar o tempo de vida útil de

uma ponte, (Calgaro et Lacroix, 1997):

• Natureza dos materiais;

• Qualidade dos materiais;

• Aumento da severidade dos Regulamentos de Cálculo;

• Disposições construtivas;

• Qualidade de execução;

• Vigilância e manutenção.

Em relação à natureza dos materiais as pontes em betão armado pré-esforçado são as mais

vulneráveis, devido à maior sensibilidade do aço de pré-esforço à corrosão.

No que respeita à qualidade dos betões, a utilização de betões de alto desempenho, permite a

realização de betões mais compactos e menos permeáveis, factor muito importante para a

durabilidade dos betões.

A adição de sílica de fumo, no fabrico dos betões, para além do aumento da fluidez do betão na

fase de aplicação, com razão agua - cimento mais reduzida que nos betões convencionais, permite

devida à rápida reacção pozolânica, e ao efeito físico das partículas, que se alcancem rapidamente

resistências mecânicas muito elevadas. Dependendo da percentagem de sílica de fumo, podem-se

fabricar betões com resistências mecânicas até cerca de 100 Mpa, com muito ligeira redução da

percentagem de cimento, melhorando bastante a qualidade global, embora com aumento de

custos.

A utilização de cinzas volantes em substituição de cimento, no fabrico dos betões, permite pelo

contrário uma redução de custos, embora com o inconveniente de se obterem resistências

mecânicas superiores apenas nas idades mais avançadas, embora inferiores aos betões com sílica

de fumo. Torna necessário em obra uma cura mais cuidada, havendo que ter cuidados especiais,

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

154

no caso de aplicação de pré-esforço, em que o período de tempo necessário para o betão adquirir

as resistências mínimas necessárias a essa operação é superior ao de um betão convencional.

Em relação ao aumento da severidade dos regulamentos de cálculo, a aplicação em Portugal dos

eurocódigos, possibilita uma melhor adequação da obra às suas condições de serviço, embora seja

muito importante a adopção das disposições construtivas que os mesmos preconizam e o bom

senso recomenda. Especial atenção deve ser dada aos recobrimentos das armaduras, que devem

ser aplicados em função das peças em causa e das condições ambientais.

A qualidade de execução nas obras de betão estrutural está ligada nomeadamente à qualidade de

preparação das superfícies das cofragens, da vibração, da cura do betão, da injecção das bainhas

dos cabos de pré-esforço, da aplicação do plano de pré-esforço, ou do cumprimento dos

recobrimentos estabelecidos no projecto. A obrigatoriedade de apresentação de planos de gestão da

qualidade, que proporcionam um melhor conhecimento e acompanhamento das várias fases de

intervenção da obra, é uma grande melhoria no sentido do prolongamento da vida útil.

Em relação à fiscalização a mesma deve ser exercida por técnicos habilitados e experientes, que

sejam intervenientes activos, de uma forma constante e que façam o acompanhamento total da

empreitada, no sentido do cumprimento, nomeadamente do projecto e do plano geral de qualidade,

que deve ser uma peça dinâmica, actualizando-se face ao decorrer da obra.

Quanto à manutenção, a mesma deve ter os meios humanos e técnicos necessários para assegurar

a qualidade da obra ao longo da sua vida útil e poder programadamente levar a efeito acções de

reparação e de substituição de elementos da obra de arte. Essa manutenção só pode ter lugar nas

devidas condições se existirem orçamentos de despesas para cada obra, previstos atempadamente

com o detalhe necessário.

Actualmente a REFER, para qualquer nova construção, prevista no plano de investimentos, exige ao

órgão gestor interno da mesma, o correspondente plano de investimentos em manutenção para

essa obra, para os cinco anos sequentes à sua entrada em serviço. Visa-se assegurar a manutenção

da obra no seu prazo de garantia, uma vez que a mesma só contempla a execução de trabalhos de

reparação de defeitos de execução.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

155

5.6. A utilização da análise de custos de ciclo de vida, na escolha da solução de

projecto

A análise de custos de ciclo de vida de pontes, ACCVP, é utilizada tradicionalmente para comparar

na fase de ante-projecto várias opções, no que se refere a qualquer componente da ponte, por

exemplo tipo de aparelhos de apoio ou juntas de dilatação, ou da própria solução geral de ponte,

escolhendo por exemplo entre uma estrutura em betão armado pré-esforçado e uma solução em

estrutura mista aço-betão.

Nos USA, (NCHRP, 2003), foi desenvolvida uma metodologia de análise do ciclo de custos da vida

de pontes, para utilização por organismos responsáveis pela gestão de infra-estruturas rodoviárias,

tendo sido implementado software específico para essa análise, que permite de facto estimar os

custos de ciclo de vida, ensaiando várias soluções.

É uma ferramenta que é utilizada na fase de ante-projecto de uma ponte, permitindo seleccionar a

solução que deve ser desenvolvida em fase de projecto, por ser a que apresenta os custos totais

mais baixos, considerando toda o seu ciclo de vida. Embora tenha sido desenvolvido por um

organismo ligado a infra-estruturas rodoviárias é perfeitamente aplicável a pontes ferroviárias.

Esta análise depende da estimativa de custos, do futuro comportamento das estruturas, da sua

utilização e da eventual ocorrência de acções tais como sismos, vento excepcional, erosão das

fundações ou acções de acidente.

Os custos considerados nesta análise, que são pagos pelas organizações governamentais ou pelos

utilizadores são de dois tipos, custos de rotina, onde se incluem por exemplo os custos de

manutenção e de reparação e custos extraordinários. Nestes incluem-se custos para cobrir

reparações de danos provocados por uma explosão, por um sismo ou pela colisão de um veículo

contra a ponte. Embora estes acontecimentos possam ser raros, os custos inerentes são tão

elevados que representam um factor significativo na ACCVP. Ao valor esperado destes custos

chamam-se “custos vulneráveis”, porque resultam da vulnerabilidade da ponte a esses eventos.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

156

Este modelo reconhece as incertezas da estimativa de custos e da sua ocorrência, pelo que esses

parâmetros são representados por distribuições de probabilidade. Este software utiliza uma

aproximação estocástica.

A relação entre a condição dos componentes da ponte e o tempo são representados por modelos de

deterioração, que prevêem o estado de conservação de um dado componente em função do seu

uso ou utilização. O estado de conservação de um elemento ou da ponte é caracterizado como um

conjunto distinto de possíveis estados e de possíveis transições de um estado para outro estado.

A probabilidade de transição durante um período definido de tempo depende da antecipação das

cargas, das condições ambientais, das acções de gestão e de outros factores que podem em certos

casos ser estimados por modelos similares à decomposição convencional, de uso ou de fadiga. Por

exemplo acções de reparação, podem provocar a transição para um estado de melhor condição.

É utilizado o processo de decisão de Markov, na estimativa das probabilidades de transição de

estado, assumindo que as probabilidades de transição são independentes do estado anterior do

elemento.

Em geral a ACCVP, pode considerar todos os diferentes elementos de uma ponte, com um nível

elevado de detalhe, tais como fundações, pilares, vigas, tabuleiro, aparelhos de apoio, pavimento,

sistemas de drenagem, juntas de dilatação, etc. Na prática este detalhe é dificultado pela falta de

informação e de compreensão dos processos físicos e químicos associados à degradação desses

elementos.

Cada elemento considerado nesta análise é representado por um modelo de deterioração, em que a

condição do elemento é função do tempo, uso e acções de manutenção. Alguns analistas

consideram como detalhe adequado, a consideração de apenas três elementos, a sub-estrutura, o

tabuleiro e a super-estrutura. Geralmente os tipos de acções de manutenção considerados são a

pintura, o revestimento do pavimento e as inspecções sub-aquáticas para verificação da erosão nas

fundações.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

157

6. CONCLUSÕES

6.1 – Considerações finais

A construção destas obras de arte teve lugar em um dos dois cenários seguintes:

• Via férrea encerrada à exploração, com liberdade total para desenvolver os trabalhos de

construção;

• Via férrea em exploração, em via única. Execução de trabalhos para instalação de via

contígua com algumas limitações devido à proximidade da via férrea em exploração.

Intervenção directa na via em exploração, apenas em períodos de interdição nocturna de

tráfego ferroviário. Há apenas possibilidade de intervenção na via férrea existente, quando

há execução de variantes provisórias, ou quando há alteração de traçado.

Com interrupção total de tráfego, ocorreram as obras na Linha de Guimarães em que foi substituída

a via férrea existente em bitola estreita pela bitola larga (ibérica), utilizada em Portugal nos

principais eixos ferroviários e o ramal de Braga, em que foi duplicada a via férrea existente.

No segundo caso encontravam-se as Linha do Douro e do Minho, que foram duplicadas, com estas

vias em exploração. Apenas havia interrupções de tráfego, em período nocturno, para trabalhos que

interferiam directamente sobre a via férrea em exploração. Com excepção do troço entre Ermesinde

e S. Romão da Linha do Minho, que já se encontrava electrificado, estas linhas não estavam

electrificadas, o que a verificar-se se transformaria em mais um condicionamento, que tem reflexo

acentuado no prazo de execução e nos respectivos custos.

A presença de “Instalações Fixas de Catenária”, também conhecidas por “Catenária”, que na rede

ferroviária nacional, funciona em corrente alternada de 25 KV, condiciona a execução de trabalhos

na sua proximidade. É necessário manter uma distância de segurança de pelo menos 3,00 m a

essas instalações, o que impede a execução com essas instalações em serviço, de alguns trabalhos

com utilização de máquinas, empurrando-os para a sua execução em período nocturno.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

158

A própria realização nocturna de trabalhos em vias férreas electrificadas, torna necessário um

acompanhamento por técnicos especializados de catenária, que para além de procederem ao corte

de tensão, têm que estabelecer a ligação à terra dessas instalações, na proximidade da execução

dos trabalhos.

Por outro lado, estas interdições têm que ser programadas com uma antecedência mínima de três

semanas, o que implica que o planeamento da obra seja bem controlado no sentido de evitar, que

os trabalhos não sejam realizados por falta de programação atempada ou que interdições previstas

tenham que ser anuladas por atrasos ocorridos no desenvolvimento dos trabalhos.

As obras cujos custos foram analisados no capítulo 5, foram realizadas sem a via electrificada. Nas

obras analisadas, apenas se verificam alguns casos pontuais, de execução de obras nas actuais

condições de serviço. Foi o caso da construção de uma passagem superior de peões tipo “Ponte

Catenária”, posteriormente à modernização do troço de via em que está inserida, cujo processo

construtivo foi abordado no capítulo 2.2.7.1.

Esta obra sendo pré-fabricada parcialmente, teve algumas dificuldades de execução, que se

reflectiram no seu prazo de execução, devido à necessidade de vários trabalhos serem realizados

em período nocturno. Embora previsto em caderno de encargos, a duração dos períodos nocturnos

que poderiam ser disponibilizados bem como a natureza dos trabalhos que teriam de ser realizados

nessas condições, nomeadamente, instalação dos cabos de pré-esforço, das pré – lajes, dos painéis

de protecção da catenária e a própria betonagem do tabuleiro, ocorreram atrasos

Esses atrasos deveram-se em grande parte, quer à incorrecta estimativa dos trabalhos que podiam

ser realizados em período diurno, quer à estimativa muito optimista de rendimentos de execução

nos escassos períodos nocturnos. Implicaram a anulação de interdições programadas praticamente

na véspera de interdições programadas, o que interferiu com a própria gestão dos meios humanos

de acompanhamento por parte da REFER destes trabalhos, com os consequentes sobrecustos.

O planeamento destas obras tem que ser bastante detalhado e actualizado constantemente, de

modo a evitar as situações atrás referidas, o que deve começar no projectista que deve conceber

soluções que sejam mais adequadas aos condicionamentos ferroviários, passa pela fiscalização que

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

159

deve adequar as ferramentas de controlo e acompanhamento a este tipo de obras e pelos

empreiteiros que também devem adequar os processos construtivos, investindo também na

formação de mão de obra especializada para obras ferroviárias.

6.2 – Conclusões gerais

O caminho de ferro é uma infra-estrutura com especificidades próprias, que se reflectem na própria

construção das várias obras que lhe estão associadas, como é o caso das obras de arte, pelo que

se poderá considerar ser legitimo falar numa “Engenharia ferroviária de pontes”.

Essas características peculiares estão presentes em todos os níveis do ciclo de vida da ponte, como

se procurou demonstrar através desta dissertação, no projecto com normalização própria, na

construção com condicionamento particulares, na construção com processos e tecnologias

construtivas específicas, com a inspecção com procedimentos adequados à natureza destas obras,

com a manutenção adequada à responsabilidade desta infra-estrutura pública, com as reparações e

reabilitações segundo as cargas e a velocidade que se praticam nas vias férreas que são suportadas

por estas obras.

Mesmo naquelas obras de arte que à partida se poderia considerar não ser muito diferente de uma

obra puramente “rodoviária”, como é o caso por exemplo da construção de uma passagem superior

rodoviária, pode dizer-se que assim não o será.

São obras com características distintas das obras rodoviárias, de que destacamos nomeadamente

as seguintes:

• O dimensionamento especifico dos pilares para um choque de um comboio;

• O dimensionamento de armaduras específicas para ligação à terra das armaduras de aço,

para protecção das correntes de tracção da catenária;

• A execução do cimbre de construção do tabuleiro, condicionado pela distância à catenária,;

• A colocação de painéis de protecção das pessoas em relação à catenária;

• Os custos de construção, que são grandemente influenciados pelas próprias condições de

exploração da via férrea.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

160

A normalização nacional a que a REFER tem vindo a proceder, bem como a normalização

internacional ferroviária procura enquadrar a construção destas obras atendendo nomeadamente à

natureza da sua utilização, das construções mais próximas, do comportamento da própria via

férrea, e da garantia da durabilidade da obra.

Na dissertação procurou-se demonstrar que há processos construtivos específicos para as obras de

arte ferroviárias, sobretudo no caso da construção de passagens inferiores ao caminho de ferro, que

permitem executar as obras sem paralisar o tráfego ferroviário, com as necessárias condições de

segurança e custos de construção controlados.

Segurança, é uma palavra fundamental em caminho de ferro, que esteve presente desde o início da

sua exploração, no século XIX, e não é na verdade de menosprezar o facto de se tratar de um

transporte público de grande capacidade, que fez com que essa palavra fosse assimilada por todos

os seus responsáveis e trabalhadores, sendo ainda hoje o transporte mais seguro no nosso planeta.

Face aos riscos elevados existentes nos trabalhos realizados na proximidade das vias férreas, a

segurança é um factor primordial não só na construção, mas também em relação a qualquer

trabalho de inspecção, manutenção ou conservação.

A obrigação conferida pela legislação, desde 2003, quanto à realização de um plano de segurança e

saúde de projecto, implica o projectista no sentido de conceber as soluções mais seguras do ponto

de vista da execução, o que no caso das obras ferroviárias, tem reflexos importantes sobre os

custos e sobre os prazos.

A análise de custos efectuada permite perceber, que o custo com o projecto e a fiscalização têm

vindo a adquirir com o tempo um peso acrescido no custo final das obras. Esta alteração na

constituição dos custos está ligada à maior exigência por parte do dono de obra na escolha dos

projectistas, não sendo o preço já o factor primordial mas a qualidade da proposta e da equipa

projectista.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

161

Quanto à fiscalização, o dono de obra tem vindo a contratar equipas cada vez mais completas, com

mobilização de mais meios humanos e materiais de melhor qualidade, assegurando a presença em

obra de equipas multidisciplinares.

Para além dos condicionamentos ferroviários à execução das obras, com reflexo nos custos, outro

factor com muita influência nos custos, diz respeito ao tipo de fundações da obra de arte,

principalmente no caso de reconhecimentos geotécnicos insuficientes em fase de projecto,

traduzindo-se deste modo em custos imprevistos.

No caso de pontes e viadutos, considera-se factor de maior relevância nos custos iniciais e futuros,

a concepção de obras de arte, adaptadas às condições locais, topografia e solos de fundação, com

uma solução estrutural, que faça um balanço natural entre esbelteza e economia, na escolha dos

vão mais adequados, que permita o fácil acesso aos órgãos mais sensíveis, aparelhos de apoio e

juntas de dilatação, que devem ser limitados em número, e de características semelhantes, na

medida do possível e seleccionados tendo por base a sua durabilidade e facilidade de substituição.

6.3 – Desenvolvimentos futuros

Os troços de linhas que foram modernizados, apresentam hoje condições de serviço, muito

diferentes, maior número de comboios, velocidades mais elevadas, horário de funcionamento das

vias mais alargado, verificando-se que hoje nalguns troços os período de interdição nocturna que

podem ser disponibilizados durante a semana são muito reduzidos, 3 a 4 horas, com ligeiro

aumento ao fim de semana para 5 a 6 horas.

O projecto de novas obras de arte para estas linhas modernizadas, terá portanto que contemplar os

condicionamentos que são introduzidos para a realização dos trabalhos, devido aos períodos cada

vez mais reduzidos que são disponibilizados para a sua realização com a via fora de serviço.

A análise de custos referente à construção de novas obras nestas linhas, tem que contemplar

esses custos directos, devido a menores rendimentos de trabalhos, por realização de trabalhos

nesses períodos, que para além de serem em horário nocturno, são muito curtos.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

162

Mas, há também que considerar os custos indirectos devido à necessidade de utilizar os meios

operacionais da empresa gestora de infra-estrutura que têm de ser envolvidos, para garantir a

segurança na execução dos trabalhos. Há também, nos casos em que tal se torna necessário, que

quantificar os custos que afectam a própria infra-estrutura ferroviária, decorrentes da introdução de

afrouxamentos na velocidade de circulação no local e na proximidade da obra.

As intervenções nestas obras, nomeadamente inspecções principais, em que for necessário utilizar

o veículo de inspecção de pontes, bem como a realização de alguns trabalhos de reparação, são

também condicionadas pelos períodos reduzidos em que não há circulação de comboios.

Mas, no futuro, não são só esses factores a influenciar os custos, a sucessiva entrada em vigor de

novas normas no domínio do projecto e da segurança da construção das obras de arte, vão no

sentido da melhoria da qualidade final da obra, com reflexo no aumento dos custos iniciais, mas

cujo objectivo é aumentar a sua vida útil, diminuindo simultaneamente os custos de manutenção e

conservação ao longo da vida obra.

Trabalhos futuros nesta área podiam abordar os custos previsíveis de manutenção e conservação,

com o parque de obras que foi objecto de estudo, tendo por base os factores e custos atrás

referidos, e a instalação em obras representativas, de equipamento de monitorização da corrosão,

bem como o tratamento adequado dos resultados das inspecções de rotina e detalhadas, que

permitisse construir os respectivos modelos de deterioração, com o objectivo de determinar a vida

útil dessas estruturas, as reparações necessárias, a sua ocorrência no tempo e respectivos custos.

Paralelamente poderiam ser simuladas soluções de materiais e estruturas de reforço ou de

substituição no futuro destas obras, quando atingirem o fim do seu ciclo de vida.

No caso de futuras obras de betão estrutural de maior envergadura, caso das pontes e viadutos,

deve ser encarada a obrigatoriedade de monitorização da corrosão, através da instalação de

equipamentos em fase de construção. Este sistema permite conhecer a corrosividade do betão a

diferentes níveis da camada de recobrimento, saber qual o estado das armaduras e sobre a própria

velocidade de corrosão, conseguindo-se deste modo programar atempadamente as obras de

reparação.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

163

BIBIOGRAFIA E REFERÊNCIAS

A

- Abragão, Frederico Quadros, (1956), Caminhos de Ferro Portugueses, Esboço da Sua História. Vol.1, Companhia dos Caminhos de Ferro Portugueses, Edição do Centenário.

- Afonso, Luís (1992), Obra 14 – Viaduto da margem esquerda. Pêndulo do pilar E7. Cálculo das

posições limite. Nota Técnica. Ferdouro - Construção de Pontes e Ferrovias ACE. - Afonso, Luís (1992), Obra 14 – Viaduto da margem esquerda. Reposicionamento do pêndulo do

pilar E7. Sistema de Execução. Nota de Cálculo 20-00-03. Ferdouro - Construção de Pontes e Ferrovias ACE.

- Afonso, Luís (1992), Obra 14 – Viaduto da margem esquerda. Reposicionamento do pêndulo do

pilar E7. Metodologia de Execução. Nota de Cálculo 20-00-04. Ferdouro - Construção de Pontes e Ferrovias ACE.

B - Bakker, Jaap, Volwerk & Verlaan Jules, (2006) Maintenance Management from an economical

perspective, in Proceedings of the third International Conference on bridge maintenance, safety and management, Porto, Taylor and Francis/Balkema, ISBN 0 415 403154, pp 923-924

- Beirão, Reis (2006), Projecto de suspensão de via da Passagem inferior pedonal 3, do troço

Caíde Livração, da Linha do Douro - Brito, J. e Branco, F.(Junho de 1994) Sistemas de gestão de obras de arte de betão, Revista

Portuguesa de Engenharia de Estruturas, n.º 37, pp 11-16 - Brito, J., Santos, S. e Branco, F,(Fevereiro de 2002) Inspecção e manutenção de obras de arte

em Portugal, Revista Portuguesa de Engenharia de Estruturas, n.º12, pp 69-75

C - Calgaro, Jean-Armand et Lacroix, Roger, (1997), Maintenance et Réparation des Ponts. Presses

de L´École Nationale des Ponts et Chaussés, ISBN 2-85978-278-8 - Cardoso, Edgar (1986), Projecto da Ponte Ferroviária sobre o Rio Douro. Aparelhos de Apoio

Móveis do Pilar E7, Desenho n.º 18.302 - Cardoso, Edgar (1986), Projecto de Beneficiação do Viaduto do Rego Lameiro - Carotis, Ross B., Ellis, J. Hugh and Yang, Mingxiang, (2005) Modeling of risk-based inspection,

maintenance and life-cycle cost with partially observable Markov decision processes, in Structure

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

164

and Infrastructure Engineering, Vol.1, No. 1, Março pág. 75-84 - Castanheta, Mário, (1992), Ponte Ferroviária sobre o Rio Douro. Reposicionamento do Apoio

sobre o Pilar PE7. Nota Técnica 9/92, Núcleo de Observação de Estruturas, Laboratório Nacional de Engenharia Civil, Lisboa.

- Chaperon, A. (2006) Risk based approach of life cycle management systems, in Proceedings of

the third International Conference on bridge maintenance, safety and management, Porto, Taylor and Francis/Balkema, ISBN 0 415 403154, pp 921-922

- Chen, Wai – Fah and Duan, Lin, Edittors, (2003), Bridge Engineering. Construction and Maintenance. CRC Press, ISBN 0-8493-1684-7

- Clemente, José Carlos (2001), Inspecção e Manutenção de Pontes Ferroviárias, Seminário

Segurança e Reabilitação de Pontes em Portugal. Edições FEUP, Colecção Colectâneas 8, Porto, pp.83-89.

- Coelho, A. Silvério, (1996), Tecnologia de Fundações, Escola Profissional Gustave Eiffel, Amadora - Costa, Anibal e Arêde, António, (2001), Inspecção e Avaliação Estrutural de Pontes. Algumas

contribuições da F.E.U.P.,Seminário Segurança e Reabilitação de Pontes em Portugal. Edições FEUP. Porto. Colecção Colectâneas 8, Porto, pp.53-69.

- Costa, B.,Félix, C. e Figueiras, J.,(2002) Provas de Carga em obras de arte correntes: sua

utilidade e recomendações, Encontro Nacional de Betão Estrutural , FEUP Edições, Colecção Colectâneas 15, Porto, pp 873-880

- Costa, Bruno J. Afonso, Félix, Carlos, Sarmento, Ana Maria & Figueiras, Joaquim (2004),

Instrumentação e Observação do Comportamento da Ponte de Caniços na Linha de Guimarães – Relatório de Observação, Laboratório de Tecnologia do Betão e de Comportamento Estrutural, Faculdade de Engenharia da Universidade do Porto.

- CP, EP (1988), Directiva de Janeiro 88 da Divisão de Pontes. - Cruz, João Sérgio (1994), Projecto de Alargamento da Ponte do Rio Ferreira - Cruz, Paulo J.S.,(2003b) Linhas orientadoras de uma política de manutenção, conservação e

inspecção de pontes rodoviárias, Universidade do Minho, Guimarães, Novembro

D - Duarte, Teixeira Luís e Ribeiro, Luís, (1988), Exemplo Prático de Aplicação do Pré-Esforço Num

Viaduto, Comunicações do 2º Encontro Nacional Sobre Estruturas Pré-Esforçadas, Tema 2.1 – Aplicações em Edifícios e Pontes, Grupo Português de Pré-esforçado, Porto, pp 1-21

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

165

E - Ehlen Mark A. (1997), Life-Cycle Costs of new Construction Materials, in Journal of Infrastucture

Systems, December, nº 133

F - Feld, Jacob and Carper, Kenneth L., (1996), Construction Failure, Second Edition, John Wiley &

Sons, Inc, New York, ISBN 0-471-57477-5 - Ferbritas (1993), Projecto de remodelação do troço Ermesinde – Valongo da Linha do Douro - Fonseca, João (2002) Projecto de passagem superior de peões ao km 30, 780 da Linha do Douro

G - Gapres, (2001), Projecto de Remodelação do troço Lordelo – Guimarães da Linha de Guimarães - Gapres/Fase (2001), Projecto de remodelação do Ramal de Braga - Gely, Anne Bernard & Calgaro, Jean- Armand (1994), Conception des ponts, Cours de l`École

National des Ponts et Chaussés, Presses de l`École National des Ponts et Chaussés, Paris, ISBN 2-85978-215-X

- Gervásio, Helena e Silva, Simões L., (2006) New Trends in bridge management systems : Lyfe

cycle assessment analysis, in Proceedings of the third International Conference on bridge maintenance, safety and management, Porto, Taylor and Francis/Balkema, ISBN 0 415 403154, pp 925

- Gibb Portugal, (1999) Projecto de Remodelação do troço Cête – Caíde da Linha do Douro - Gibb Portugal, Ferbritas & P&V (1998) Projecto de Remodelação do troço Valongo – Cete da

Linha do Douro - GIBB Portugal, (2002) Projecto da Passagem Superior ao km 26,177 da Linha do Douro, em

Valinhos

I - Instituto Nacional do Transporte Ferroviário (2004), Classificação das linhas da Rede Ferroviária

Nacional, (Via larga) Instrução de Exploração Técnica n.º 52 - Instituto Nacional do Transporte Ferroviário, Instrução de Exploração Técnica n.º 50, - Instituto Nacional do Transporte Ferroviário,(2007) Normas e Procedimentos de Segurança em

Trabalhos em Infra-estrutura Ferroviária, Instrução de Exploração Técnica n.º 77,

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

166

L - Leonhardt, Fritz, (1979), Princípios Básicos da Construção de Pontes de Concreto. Vol. 6, Merino

J.Luís, Tradutor. Editora Interciência, Ltda, Rio de Janeiro. - Lima, António, (Março de 2006), Juntas de Dilatação em Pontes Rodoviárias. Desenvolvimento

de um Sistema de Gestão, Dissertação para obtenção do grau de mestre em construção, Instituto Superior Técnico.

- Laboratório Nacional de Engenharia Civil (1968), Especificação LNEC E – 217-1968. Fundações Directas Correntes. Recomendações

M

- Magalhães, Filipe, Cunha Álvaro, Caetano, Elsa (2004), Ensaio de Vibração ambiental da Ponte

de Caniços – Relatório, Laboratório de Vibrações e Monitorização de Estruturas, Faculdade de Engenharia da Universidade do Porto.

- Manterola, Javier e Cruz, Paulo, J.S. (2004), Pontes : Apoios, pilares, encontros e fundações, ,

ISBN 972-8692-12-9 - Manterola, Javier e Cruz, Paulo, J.S., Pontes (Maio,2004), Pontes: Construção, ISBN 972-8692-

13-7 - Marecos, J., Observação expedita de estruturas, Revista Portuguesa de Engenharia de Estruturas,

n.º12, Outubro de 1981, pp 215-218 - Mathivat, Jacques (1984),The Cantilever Construction of Prestressed Concrete Bridges.

Emberson, C.J., translated, John Wiley and Sons. ISBN O-471-10343-8 - Matos, A. Campos (2000), Reabilitação de Linhas Férreas. Obras de Geotecnia e Estruturas,

Cursos de Formação e Especialização em Engenharia Civil – Projecto de Estruturas, Faculdade de Engenharia da Universidade do Porto.

- Matos, A.Campos (2001), A Concepção das Soluções. Casos de Obra Seminário Segurança e

Reabilitação de Pontes em Portugal. Edições FEUP, Colecção Colectâneas 8, Porto, pp.147-188. - Mendonça, A., Vieira, A. e Paulo, P., (2004) Sistema de gestão de um parque de obras de arte,

Encontro Nacional de Betão Estrutural, FEUP Edições, Colecção Colectâneas 15, Porto, pp 935-942

N - National Cooperative Highway Research Program, (2002) Report 467.Performance Testing for

modular bridge joint systems, Washington, D.C., Transportation Research Board of the National Academies.

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

167

- National Cooperative Highway Research Program, (2003) Report 483, Bridge Life-Cycle Cost Analysis. Washington, D.C., Transportation Research Board of the National Academies.

P - Pastor, R Astudillo et al (2000), Bridge Management Systems :Decision on repair/replacement,

Deliverable D7, Pl97-2220, Project Funded by The European Commission Under The Transport RTD. Program of The 4 th Framework Program.

- Pavicentro (2000), Projecto de execução da passagem superior rodoviária ao km 26,177 da Linha

do Douro - Pavicentro (2001), Parecer sobre não conformidades relativamente ao projecto da passagem

superior rodoviária - Perloiro, J. (Janeiro de 1978), Aparelhos de apoio em pontes, Revista Portuguesa de Engenharia

de Estruturas, n.º 1, pp 24-35 - Proatkins & Perry da Câmara e Associados (2001), Projecto de remodelação da Estação de

Nine.Projecto de execução das obras de arte. - Proatkins, (2001) Projecto de remodelação do troço Lousado – Nine da Linha do Minho

R - Railtrack PLC,(2001) Assessement of structures, Railtrack Company Specification., London,

Railtrack PLC. - Railtrack PLC, (2002), Examination of Strucutures., Railtrack Company Specification London,

Railtrack PLC - Railtrack PLC, (2001), Railtrack Company Code of Practise, Strucutures Condition Marking Index

Handbook, Railtrack Company Code of Practise, London, Railtrack PLC, 2001 - Railtrack PLC, Recommendations for the safe management of strucutures, London, Railtrack

PLC,2000 - Railtrack PLC, (2001), Standards of competence for examination of structures, Railtrack Line

Specification, London, Railtrack PLC. - Railtrack PLC, (1996)Technical approval requirements for changes to the infrastrucuture, London,

Railtrack PLC. - Railtrack PLC, (2001) The assessment of underbridge capacity, Railtrack Line Code of Practise,

London, Railtrack PLC. - Railtrack PLC, (2001) The management of assessment of structures, Railtrack Company

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

168

Procedure, London, Railtrack PLC. - Railtrack PLC, (2002) The management of bridges strikes from road vehicles and waterborne

vessels, Railtrack Company Specification, London, Railtrack PLC. - REFER, EP (1997), Condicionamentos para a elaboração de projectos de passagens desniveladas,

Direcção de Engenharia, Divisão de via, Construção civil e arquitectura. - REFER, EP (2003), Impermeabilização de Tabuleiros em Pontes e Viadutos, Norma

IT.OAP.001.01. - REFER, EP (2003), Retorno da corrente de tracção, terras e protecções, Norma IT.GER.002-7.05 - REFER, EP, (2003), Condicionamentos para Projectos de Passagens Superiores Rodoviárias, ao

Caminho de Ferro, Norma IT.OAP.003.01. - REFER, EP, (2003) – Condicionamentos para Projectos de Passagens Inferiores Rodoviárias, ao

Caminho de Ferro, Norma IT.OAP.002.01 - REFER, EP, (2003) – Retorno das Correntes de Tracção, Terras e Protecções, Norma IT.GER.002. - REFER, EP, (2004) – Linhas Aéreas para Tracção Eléctrica 25 kV-50Hz. Especificações Técnicas,

Norma IT.CAT.034.04 - Reis, A.J. (1983), Folhas da Disciplina de Pontes e Estruturas Especiais, Instituto Superior Técnico - Reis, Eduardo Beirão (2004), Projecto de muros de contenção de talude do encontro sul da

passagem superior ao km 26,177 da Linha do Douro - Reis, Eduardo Beirão (2004), Relatório final das inspecções efectuadas à passagem superior ao

km 26,177 da Linha do Douro - Reis, Eduardo Beirão (2006), Projecto de Suspensão de Via da PIP 3, do troço Caíde – Livração,

da Linha do Douto

S - Schlaich, Jorg and Scheef, 1982, Concrete Box - Girder Bridges. International Association for

Bridge and Structural Engineering. Zurich. ISBN 3-85748-031-9 - Silva, A.P. & Fernandes, A.A., Probabilistic approach for predicting life cycle costs and

performance of bridges, in Proceedings of the third International Conference on bridge maintenance, safety and Porto, Taylor and Francis/Balkema, 2006, ISBN 0 415 403154, pp 927-928

- Silva, João Ribeiro, (2004) Os Comboios em Portugal – Do vapor à electricidade, Mensagem –

Serviços de recursos editoriais, Lda., ISBN 972-8730-24-1 - Streng (2000), Projecto da Ponte de Caniços

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

169

T - Tecnep & Profico (1997), Projecto de remodelação do troço Ermesinde – S. Romão da Linha do

Minho - Tecnep, Sofrerail & Grid (1996), Projecto de remodelação dos troços S.Romão – Lousado (Linha do Minho) e Lousado – St.Tirso (Linha de Guimarães) - Tecnimpulso, (2006) – Catálogo de deslize por pressão hidráulica - Tiago, A.M. Ferreira, (1999) O Caminho de Ferro na Região do Douro e o Turismo, CP –

Caminhos de Ferro Portugueses, EP, ISBN 972-97046-2-7 - Torres, Carlos Manito, (1935), Caminho de Ferro, I – O Caminho de Ferro em Portugal. Empresa

Nacional de Publicidade.

U - UIC, (1994), Charges à prendre en considération dans le calcul des ponts rails, Code UIC 776 –

1R, 4 e édition. - UIC, (2000), Interaction voie/ouvrage d`art. Recommandations pour les calculs, Code UIC 774 -

3R, 2 e édition. - UIC, (2002), Constructions situées au-dessus des voies ferrées – Dispositions constructives dans

la zone des voies, Code UIC 777-2R, 2 e édition. - UIC, (2002), Mesures pour prévenir les chocs des véhicules routiers contre les ponts – rails et

visant à empêcher la pénétration de véhicules sur la vie ferrée, Code UIC 777-1R, 2 e édition. - UIC, (2003), Modèles de charge à prendre en considération dans le calcul des ouvrages sous rail

sur les lignes internationales, Code UIC 702, 3 e édition, version traduite - UIC, 1989 Défauts des ponts ferroviaires et mesures à prendre en vue de l´entretien et du

renforcement de ces ouvrages. Paris.

V - Vesikari, E., (2006), Lifecycle design module for project level bridge mangement in Proceedings of

the third International Conference on bridge maintenance, safety and management, Porto, Taylor and Francis/Balkema, ISBN 0 415 403154, pp 919-920

Análise de Custos ao Longo do Ciclo de Vida de Pontes Ferroviárias

170

PÁGINAS DA INTERNET Hendel, Alice (2004), A dynamic life cycle assessment tool for comparing bridge deck designs, Center for sustainable bridges, Report nº CSS04-12, University of Michigan <URL http://css.snre.umich.edu Texas Departement of Transportation (2004), Bridge Inspection Manual <URL http://www.dot.state.tx.us/services/general_services/manuals.htm Department s of The Army and The Air Force, USA (1994) Bridge Inspection, maintenance, and repair <URL http://www.army.mil/usapa/eng/DR_pubs/dr_a/pdf/tm5_600.pdf Godart B. and Vassie P.R. (2001), Bridge Management Systems : Extended Review of Existing Systems and Outline framework for a European System, Deliverable D13, Pl97-2220, Project Funded by The European Commission Under The Transport RTD. Program of The 4 th Framework Program <URL http://www.trl.co.uk/brime/index.htm ATROS (2006), Sistema Atros. Esquema de empuxe. Esquema de Suspensão Atros. Obras realizadas em Portugal. <URL http://www.dinos.pt/02.php Chandler, Richard F. (2004), Life-cycle cost model for evaluating the sustainability of bridge decks. A comparision of conventional joints and engineered cimentitious links slabs, Center for sustainable bridges, Report nº CSS04-12, University of Michigan <URL http://css.snre.umich.edu FRA, Federal Railroad Administration (2002), Track Safety Standards Compliance Manual <URL http://www.fra.dot.gov/downloads/Safety/track_compliance_manual/TCM%20TOC.PDF Texas Department of Transportation (2002), Bridge Inspection Manual <URL ftp://ftp.dot.state.tx.us/pub/txdot-info/gsd/manuals/ins/pdf