60
•1~ CEFET-MG CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Apostila ANÁLISE DE CIRCUITOS.EM CORRENTE AL TERNADA Curso: Eletrôn ica o rganização: Prof. José Antônio 2006 Rosa r ‘ti módulo ( ~- ~jJ / Belo Horizónte -

Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

Embed Size (px)

Citation preview

Page 1: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

•1~

CEFET-MG CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICADE MINAS GERAIS

Apostila

ANÁLISE DE CIRCUITOS.EMCORRENTE AL TERNADA

Curso: Eletrôn ica

o rganização: Prof. José Antônio

2006

Rosa

r

‘ti

2° módulo

( ~-

~jJ

/

Belo Horizónte -

Page 2: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

Tensão e Corrente Variáveis: são aquelas cujos valores variam com o tempo.

Tensão e Corrente Periódicas: são as variáveis cujos valores repetem

periodicamente ao longo do tempo.

Tensão e Corrente Alternadas: são as periódicas com polaridade variáveis.

Um sinal alternado ( tensão ou corrente) recebe a denominação genérica de CA

(corrente alternada) ou AC ( alternate current).

Ondas são as tensões ou correntes alternadas periódicas.

*Forma de Onda é o gráfico que representa a onda.

Geradores de CA ou Alternadores são sistemas elétricos que produzem um sinal CA

por meios eletromecânicos.

Geradores de Áudiofreqüência (AF), Geradores de Rádiofreqüência (RF) e os

Conversores CC-CA são équi~ámehto~ eletrônicos que produzem um sinal CA a partir

de um sinal CC (corrente contínua).

Símbolos:

Obs.: Embora a tensão alterne a suapolaridade e a corrente alterne seusentido periodicarnente sãorepresentadas por setas unidirecionais,considerando que todo circuito possuium ponto de referência para as

2

TENSÃO E CORRENTE ALTERNADAS

DEFINIÇÕES GERAIS

+

Gerador de Tensão QA Gerador de Corrente CA

Anãlise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 3: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

_________________________________ ~ í~ (c. ~€ ~ç

CEFET-MG CENTRO FEDERAL bE EDUCAÇÃO TECNOLÓGICADE MINAS GERAIS

Apostila

~ ANÁLISE DE CIRCUITOS EMCORRENTE AL TERNADA

r

2° módulo

~~

ç:J Curso: Eletronica

Organização: Prof. José Antônio Rosa

Belo Horizónte - 2006

Page 4: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

2

DEFINIÇÕES GERAIS

TENSÃO E CORRENTE ALTERNADAS

Tensão e Corrente Variáveis: são aquelas cujas vaiares variam com o tempo.

Tensão e Corrente Periódicas: são as variáveis cujos valores repetem

periodicamente ao longo do tempo.

Tensão e Corrente Alternadas: são as periódicas com polaridade variáveis.

Um sinal alternado ( tensão ou corrente) recebe a denominação genérica de CA

(corrente alternada) ou AC ( alternate current).

Ondas são as tensões ou correntes alternadas periódicas.

Forma de Onda é o gráfico que representa a onda.

Geradores de CA ou Alternadores são sistemas elétricos que produzem um sinal CA

por meios eletromecânicos.

Geradores de Áudiofreqüência (AF), Geradores de Rádiofreqüência (RF) e os

Conversores CC-CA são equi~ámerilo~ eletrônicos que produzem um sinal CA a partir

de um sinal CC (corrente contínua).

Símbolos:

Dbs.: Embora a tensão alterne a suapolaridade e a corrente alterne seusentido periodicamente sãorepresentadas por setas unidirecionais.considerando que todo circuito possuium ponto de referência para astens6ns

+

Gerador de Tensão QA Gerador de Corrente CA

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 5: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

3

Exemplos de formas de onda de tensões periódicas.

v(t)

As formas de onda das tensões senoidal e quadrada são negativas, ou estão abaixo do

eixo dos tempos para metade de cada período. Durante este tempo, as tensões

correspondentes têm polaridades opostas às polaridades de referência. Acima do eixo

dos tempos, elas possuem as mesmas polaridades que as referências (positivas).

As formas de onda de corrente seguem às de tensão.

~:~!

-T 04 2Tt

,I~ , ‘,4~ A ,A~

, 1 ~, 1’ ~

, ‘, ,. 11 1

-T -T12 O T/2 T 3T12 2T t

v(t)1

1 ~ 1

-T12 9 T/2 TI ST/2 t

v(t)—— %~

( 3T/4 T

Dente de Serra

Triangular

Q uad rad a

Senoidal

-T -TI2~ or

Análise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 6: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

4

Ondas Senoidais

ONDAS COSSENOIDAIS E SENOIDAIS

Sistema básico de um alternador ou gerador de CA para gerar uma tensãosenoidal

Eixo de

Principio de Funcionamentq.

O enrolamento e consequentemente os condutores giram (desenho à seguir),acionados por energia mecânica, com velocidade angularrn em [rad Is]. O ângulo evaria com. o tempo t, em [si, conforme a expressão e = cot. Portanto afluxo magnético(p), também varia com o tempo.

O valor da tensão alternada induzida segundo a lei de Faraday é proporcional avariação do fluxo magnético v=_N~!l. Logo a tensão induzida varia de zero quando o

condutor ‘A” está na horizontal, para um valor máximo, quando o condutor está navertical.No tempo t= O s o condutor está na horizontal (referência) e a tensão induzida v ézero. Ela começa aumentar até atingir o ri-iáximo no tempo t t2. De t2 até t4 vdecresce até zero, pois o condutor “A” girou 180°. A partir de t4 v inverte suapolaridade em relação a referência e decresce até atingir seu valor máximo negativoem t6 com 8 270°. A partir de t6 v cresce e retorna a zero em t8 com e = 360°,completando-se assim um ciclo. A partir daí inicia-se um novo ciclo.

Ncondutor A da bobina

E

5

anéis coletorescondutor 8 da bobina.

v(t)

84 =1800 B grausradianos.

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 7: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

5

Parâmetros:

Ciclo —> é a menor parte que não se repete em uma forma de onda periádica.

Período (T) da onda —* é o tempo de duração de um ciclo da onda.

Freqüência (f) —> é o número de ciclos por segundo, ou seja, o número de vezes por

segundo que~ ~

A unidade de freqüência é ciclos por segundo, chamado de hertz. [Hz].

Relação entre período e freqüência.

f=1/T-2—

Os valores da tensão induzida varia segundo a expressãc{ v(t) = Vm senø = Vm sen~wt)

Vm ou Vp = valor máximo ou valor de pico ou amplitude:

seri —> indica um onda senoidal.

cot é o argumento.

co é a freqüência radiana, velocidade angular ou freqüência angular. Unidade no SI: -~

[rad Is].~- t

As freqüências f e co estão relacionadas por co = 2icf. ) ~ ~iT~.\ -

Cor~versão de radianos em graus e graus em radianos~~

1 [radj radiano é o ângulo subentendido por um arco na circunferência de um círculo, seo arco tem um comprimento igual ao raio.

irad -r360° - 27tr ~ 1 rad = 360°I2it = 180°Iit = 5730

Logo ic[rad]180°

Exemplos: 1) vi = 20 sen (377t) IV].

Argumento = 377tValor de pico ou amplitude é Vm= Vp 20V, porque o valor máxima de sen 377t é um.Freqüência radiana ou freqüência angular ou velocidade angular co = 377 rad/s o quecorresponde a f = co/2n =~f377/2n 60 Hz.

Período T= 1/60 = 16,7ms.

2) v2 = 20 sen (377t + 30°) [V].argumento = 377t ÷ 30° Obs.: Para somar os dois termos devem ser convertidos namesma unidade graus ou radianos. -

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 8: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

6

Fase de um Sinal Alternado

Um sinal alternado não precisa ser, necessariamente, zero no instante t = O. Issosignifica que ele pode iniciar o seu ciclo adiantado ou atrasado de um intervalo ál,chamado de fase iniciaLou simplesmente fase e. Logo as expressões para esses sinais

--.

[v(t) Vm sen co:;t +0v) ouExemplos:

Li~o = lp s~ (wt - ei)

Sinal adiantado ( O positivo

Á

Relação entre fases, Diferença entre fases ou Defasagem

Duas ondas senoidais ou cossenoidais de mesma freqüência têm relação entre fasesdeterminadas pela diferença angular entre os seus argumentos, para isso as amplitudesdeven,possuir o mesmo sinal e serem ambas senoidais ou ambas cossenoidais.

Exemplos de formas de ondas defasadas

a) vl(t) = 20 sen (377t) lvi.

b) v2(t) = 20 sen (377t ~ 300) ~~/J

c) v3(t)= 20 cos (377) [V].= 20 sen (377ti-90°) [V].

[ms]cot [radj

[graus]

t[msj

t [ms]

v(t)Vm

i(t)Ip

Dv-vm

Sinal atrasado ( O negativo

ei-Ip

20

o~tí 99Õ

-20

16,72t

360°900 180* 2700

20

16,7

20

-20

o 12,5 16,7

Análise Prof.: José Antônio Rosa

Page 9: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

7

Exemplos: 1) v2 = 20 sen (377t+30°)V e vi = 20 sen(377t)V.(ver formas de onda figurasaebanterior. •1

~~~o ~~bAmbas possuem a mesma f~qüência angular co= 377 rad Is e, portanto a mesmafreqüência

-~ f = 377 / 2t. Logo a relação entre fases entre v2 e vi é dada por (377t+30°- 377t) =~30°, ou estão300 defasadas, Os 300 é o ângulo de defasagem.Diz-se que v2 está avançada ou avança vi de 300, ou vi está atrasada ou atrasa v2 de3Q0

2) v3 = 20 cos (377t)V e vi = 20 sen (377t)V (ver formas de onda figuras a e cacima)

v3 = 20 cos (377t)V = 20 sen (377t + 90°)V logo o ângulo de defasagem = 90°.

Conclusão: v3 avança vi de 900 ou vi atrasa v3 de 90°.

Observações1 Quando a diferença de fase for 0° as ondas estão em fase.

Quando vi e v2 estão defasadas de 180°, o ângulo de defasagem ~ de 180°, comomostrado abaixo.

Pela relação trigonométrica sen(x ± 180°) = - sen x.

Ondas Cossenoidais

• São indicadas por cos.

• Possuem formas de onda do mesmo formato que as formas de onda senoidais masestão avançadas 90° ou n12 radianos. Ver gráfico figura “c “ anterior. Observa-se,comparando as formas de onda das figuras “c” e “a” anteriores, que os valores daonda cossenoidal v3 ocorrem um quarto de período mais cedo do que aquelescorreàpondentes da onda senoidal vi.

• Alguns autores denominam de ~L~óides às ondas senoidais, cossenoidais esenoidais e cossenoidais defasadas.

Análise de circuitos em corrente AlternadaProf.: José Antônio Rosa

Page 10: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

8

Exemplos: 1) Calcular os períodos das tensões periódicas de freqüências:

238ns4,2 x 106

=83,3us— 12x

2) Calcular as freqüências da corrente periódica que tem T= 5045.1 =20kHz

50 x 10—6

3) Calcular o período e a freqüência de uma tensão periádica que tem 12 ciclos em46 ms.

~= 12 =261Hz46 < 1 o~ T=~_=3,83ms

.4) Achar a expressão para a forma de onda periódica mostrada a seguir

55 t(ms)

A forma de anda passa por zero e crescepositivamente. Logo é uma senoidal defasada

v = Vm sen(cot+O) V. -

(1/4)T= l5ms ~ T = 4 x l5ms = 60 ms.

O valor máximo ou de pico ou amplitudeVm=12V

co =27;. f =

/ 60x10lOSrad/s

a) f=12kHz~T b) f = 4,2 MHz

v(t)

12

-1

-12 s~i

notempot= -5 ms tem-se V(-Sms)= 12 sen(105 .~—5x103+ 9)= 0,logo (-O,525÷9)=Oentão ~ ~ ~jjz ~.

9=0,525 rad.=~.r=(18o° 0,S25)/wr,~r=3oo__~6 ~4:. ~

Portanto v(t) 12 s&i ( 105t + 300) V 12 sem (105 t + n16) V.

\-~ ~ ~ e zC,s~;ïí~JCp ( .~

- :~ ~ ~j C

- . . )

‘Cc’.JL

Análise de Circuitos em Corrente Alternada1’

-

~] 4~

Prof.; José Antônio Rosa

Page 11: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

9

VALORES MÉDIOS E EFICAZES

Valor Médio - É o quociente entre a área de uma onda periádica e o tempo durante

um período. A área é aquela compreendida entre a forma de onda e o eixo dos tempos.

As áreas~ deradas positivas e abaixo negativas. A

área total é a soma algébrica das duas. Logo, o valor médio de uma onda senoidal e

cossenoidal é zero em um período. Mas para alguns fins, no cálculo do valor médio

dessas ondas usa-se 2/ir ou 0,637 do valor dcp, que corresponde a média de um

21910 PP-~JtiYQ-A média de uma função periódica y(t) de período T é dada pela expressão:

3’med +5~Y(t.~1t

Exemplo: 1) Calcqlar o valor médio de uma t~nsão senoidalLQ~fflQ?4?4Q2!i~SO42,que tem um pico de 12V. Essa onda consiste apenas em meios ciclôs positivos datensão senoidal. Ela é zero durante os semiciclos negativos.

Pela definição: Para um sinusóide completoteremos: Vn,ed = (2/ir) . 12 = 7,64V.Para metade do sinusóide teremos -

Vmed 7,64V/2 = 3,82V.

A forma de onda da tensãosenoidal está sobre uma tensãoconstante de 3V.O valor médio é o valor da áreahachúrada [área sob o sinusóidemais área sob o retângulo (3V xT)] dividido pelo período T. Vistoque a área sob o sinusóide ézero, o valor médio é constante3 V sob o retângulo.

O valor médio é a área sob a forma de onda(hachurada) dividida pelo período. Logo:De t=Os até T/2 a área será (T/2) x 8 = 4T

De t=T/2 até T a área será T/2 xi = O,5T.

Portanto a área total será: 4,ST.Logo o valor médio (4,5T) 1 T 4,5 V

12V

a)

2) Calcular os valores médios das formas de onda a seguir:

vi [VI

5

o

b)

v2[V1

T 2T

8

Vmed=4,

1

o t

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 12: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

I0

Valor Eficaz, Efetivo ou RMS de Corrente ou Tensão Periódicas

Símbolos: Vef, Vrms ou V e lef, lrms ou 1.

O valor eficaz ou RMS’ (Root Mean Square ou Raiz Média Quadrática) corresponde aovalor de uma tensão ou corrente alternadas, que se fosse aplicado a uma resistênciaelétrica, dissiparia uma potência média, em watt, igual ao valor numérico de umatensão ou corrente contínuas aplicado à mesma resistência.

j1TConsidere uma,função temporal periódica y(t) Seu valoreficaz é: Yrms=41__1y2(t).citvTo

Para sinais alternados senoidais ou cossenoidais, a expressão do valor eficaz pode serconvertida para o domínio angular, considerando o período T equivalente a 2t rad, ouseja:

iYrms= I—f~2it ~

y2(e)•de. Considerando a tensão v(9)= Vm.cos(e), a fórmula de seu

valor eficaz pode ser deduzida:

v=. /-J_21tv 2 ~cos2(Q).d0= /Vm2 (2it sen4icOsen0’~ JV2~~2u0 m ~2~tÇ2 4 2 4) V2n

Os valores eficazescossenoidais são osamperímetros de CA.

alternados de tensão e correntes senoidais eindicados, respectivamente, pelos voltímetros e

Exemplo: 1) Calcular a tensão de pico numa tomada elétrica cujo valor medido é 120V.120V ~ o valor eficaz da tensão senoidal na tomada.

v±.V/r~V =V-~=12O.~~v~17ov

Exercícios propostos:

3)Calcular o período e261 Hz

4) Encontre o período,abaixo:

12

12

t(ms)

Prof.: José Antônio Rosa

de sinaisvalores

__i~1) Calcular os períodos das tensões periódicas que têm freqüências de: a- 0,2Hz4,2MHz

Resp: a) 5s;. b) 83,3gà; c) 238 ns

2) Calcular as freqüências das correntes periódicas que possuem períodos de:42ms c-lh

a) 20kHz; b)23,8 Hz; c) 0,278mHz

b-I2KHz c

a- 5Ops b

v(V

a freqüência de uma tensão periádica com 12 ciclos em 46ms. Resp.:

a freqüência e o número de ciclos mostrados para a onda mostrada

Análise de circuitos em corrente Alternada

j

Page 13: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

11

5) Dado o gráfico de uma tensão em função do tempo a seguir, pede-se:a) período em ms;b) freqüência em Hz;c) o valor de pico ou máximo em vo.lts;d) o valor eficaz Vef ou Vrms em volts;e) a potência média dissipada sobre um resistor de 11(0 em mW;f) o valor da tensão no tempo t = 3Oms. Resp.: 2092V

v(V)

6) Converter os seguintes ângulos em graus para ângulos em radianos: a- 490 b- 1300 c- 4350

a) 0,855 rad; b) -2,27 rad c) 7,59 rad

7) Converter os seguintes ângulos em radianos para ângulos em graus: a- 3-~—rad b- — 0,562rad

c- 4radResp.: a) 10° b) -32,2° c) 229

8) Encontre o período e a freqüência das correntes senoidais que possuem as sebuintes2 freqüências radianas: a- 9mad/s b- 0,O42rad/s c- l3Mrad/s Resp.: a) 0,222s; b)

iSca c)0,483~s

9) Encontre a amplitude e a freqüência de: a- 42,lsen(377t + 30°) b- —6,39 cos(i o5 t — 20°)Resp.: a) 60Hz b) 159 kHz

10) Calcular a freqüência de uma onda senoidal de tensão que tem um• pico de 45V e que aumentacontinuamente de 0V em t = O seg. Para 24V em t = 46,2niseg. Resp.: 1,94 Hz

11) Uma onda cossenoidal de tensão fem um pico de 20V em t = O seg. e se esta tensão demora ummínimo de 0,123 seg. para diminuir de 20V para 17V, calcular a tensão em t = 4,12 seg. Resp.:193V

12) Se 43,7V é a tensão de pico induzida no condutor de um alternador, calcular a tensão induzidadepois que o condutor girou através de um ângulo de 430 em relação a sua posição horizontal.Resp.:29,8V

13) Se o condutor de um alternador está girando em 400Hz e se a tensão induzida tem um pico de23V, calcule a tensão induzida 0,23 mseg depois que o condutor passar por sua posição vertical.Resp.: 19,2V

14) Calcule: a- v 200x sen[33931 +~]. V e b- 1 = 67 x cos(3016t — 42°). mÁ em É =1,lms

Resp.: a) -172V; b) -56,9 mA.

15) Esboce um ciclo de v 30 x sen(754t + 60°). V para o período iniciando em Oseg. Indique astrês unidades da abscissa — tempo, radianos e graus.

16) Calcular as relações de fases para os seguintes pares de senóide:

17) a- V= 6xsen(30t—40j’Vi i =sen[301_}mÁ Resp.:v avança i em 20°

b- vl=._8xsen(40t_80°>V v2=_lOxsen(40t_50°).V Resp.: vi atrasav2 em 30°c- i1=4xcos(70.t—40°)~fl1A , i2=_óxcos(70t+80°).mA. Resp.: ii avançai2em 60°.d- v = 150 cos(377t +45°)V, e 1 4,55 sen(377t ÷ 45°)A Resp. : v avança i em 90°.

Análise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 14: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

12

ANÁLISE MATEMÁTJCA.DE SINAIS ALTERNADOS

Revisão de Álgebra Complexa e Fasores

Os números complexosimaginários.

são formados pelos números reais e os números

Números Imaginários são como os reais comuns. Os números imaginários foraminventados quando se tornou necessário ter números que fossem raízes quadradasde números negativos.

Utiliza-se a representaçãoji=~/ET Togo j2=~CT.

do número imaginário a letra i senda

Regras para operações matemáticas com

• Soma e subtração. j3 + j9 = j1 2;

• Multiplicação e divisão.

números imaginários.

j4 . (-j3) = 12; -j5 . (-j4) =j5 . j4 = -20

-j5,5 .(4)=-j22,0

j2 = -1~ pois j2 = = —1;j3 = j2~ ~1 -i i4 =yil)=y-i)=1

Números Complexos na Forma Retangular

Exemplos: 3 + j4;

t ~‘Real Imaginária

Essa é a melhor forma para somar e subtrair números complexos.

Representação no Plano Complexo.

2° Quadrante

3° Quadrante

Números complexosconjugados.4 ~- j2 conjugado de 4-j2ou vice-versa

j12,5-j3,5=jg,o j6,25-j8,4=-j2,15

Imaginário x Imaginário = Real : j2 . j6 = -12;

Real x Imaginário = Imaginário: 3 . j5 = JI 5;

Imaginário! Imaginário = Real: j8 /j4=2;

Real / Imaginário e Imaginário [Real = Imaginário:

Potenciação

~20) 1 (-uDO) = -0,2

016)14=14; 20/(j5)=-4

6 - j8

-4 +1° Quadrante

4~j2

-2 - j3 4° Quadrante

Análise de circuitos em corrente AlternadaProf.: José António Rosa

Page 15: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

13

Operações Matemáticas

• somaesubtração:(3+j4)+(2+j6)5+i1O;(3+i7)-(4-i2)-l +j9

• Multiplicação:(2+j4)x(3+j4)6+i8+i12-16-1O+J20(3+j4)(3-j4) = 9 + 16 = 32 + 42 = 25

• Divisão: 1O+j24 (10+j24)x(è—j4)6+j4 (6 +j4)(6 —j4)

156 +j104 156 +j104— 62+42 — 52

3 +j2

Números Complexos na Forma Polar e Exponencial

A e~9 = A ze —. forma polart forma exponencial

A = Módulo do N°. ComplexoO = Ângulo II

e = 2,718 n° de Euler (base do logarítmo natural ouneperiano)

Exemplos: 4 e~5° = 4/45°; — 8e~60° = —8/60°

As formas polar e exponencial são as melhores formas para multiplicar e dividir.

Representação no Plano Complexo

Ae~° =AZ9

7 e~30~ = 7/30°

Eixo Imaginário

Relações Trigonométricas

coso=(x/A) =~x=A . cose =7. cos3O°=~x=6,06

senø=(yIA)=’ y=A.senO=7.sen30°~’y3,5

A2 =x2 ~y2 ~A=4x2 ÷~2

Eixo real

sen OtgO=

cos Otg9=~:. tg9=X~ o = tg’ sendo “ y” imaginário e “x” real.

x +jy= 6,06 +j3,5

y

7

x

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 16: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

14

Conversão da forma polar ou exponencial na forma retangularIdentidade de Euler:

Ae~° =A/9—A.cosø+jA.senø

Ex’ A e~0 =A /0 =A.cosü +jA.senø (forma geral)7 e~30° = 7/30° = 7. cos 3Q° + j7 sen3O° = 6,06 + j3,5

Conversão da forma retangular em polar ou exponencial

Exemplo: Dada a forma retangular 6,06 ÷ 1 3,5 converter nas formas polar eexponencial.

Módulo: A=Jx2 ~2 :.A=,J6,062 ~352 .‘.A~~J4~:.A=7

Ângulo: tge=X~e=tg_1(X)~e=tg~~j]:.e=ioo

Logo 6,06 +j 3,5 = 7/30°=7e~30°

x +j y = AL0=A&° formageral

Operações Matemáticas

• Multiplicação:

Sejaniosn°.complexos: Ae~0 e

A e B e ~= AB ~j(9+P) ~. AZO • BL~ = A.azo + f3

Exemplo: (3/25°) x (4L~6O0 = 3.4 L25°+(-60°) = 12L-35°

• Divisão:

Ae3e÷BaeJ1~=~e ~(~ç~) A/O ~~/9~J3B B/~B

Exemplo: (81/45°) (3/16°) (81+3) L45°-16°) 27 /29°

Os números complexos conjugados - partes reais iguais e imaginárias iguais emmódulo e sinais contrários ( ângulos iguais em módulo e sinais contrários).

4L

jS ._~ 6+j5=7,81 /39,80

X~ ~39,80

-j5 .., N~ 6-j5 7,81/-39.8°

Análise de circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 17: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

15

Representações Temporal, Fasorial e Complexa de um Sinal CA

Um sinal alternado senoidal pode ser convertido diretamente nas representaçõesfasorial e complexa equivalentes.

Mas, se a sua expressão for cossenoidal, ela deve ser convertida em senoidal pormeio da identidãdõ tii~onométrica cos x =sen(x+9Q°) antes das conversões.

Exemplos:

Temporal: Forma de Onda: Expressão : v(t) = 20. ‘~J5 sen(377t+30°) V

[rns]

Fasor - E’ um número complexo associado a uma onda senoidal defasada.

Usaremos V e 1 em negrita ou “e para os simbolos fasoriais de tensão e corrente.

O fasor correspondente a onda v(t)~ 20. 45 sen(377t+30°) V será V = 20 /30° V.o módulo do fasor é o valor(eficaz(rms) do sinal alternado senoidal e seu ânguloé a fase da onda senoidal defasada.

Exemplo: A expressão senoidal para a corrente de freqüência f =

representada pelo fasor 1 = 0,439 /-27° A será i(t) = 0,621 sen(754t - 27°)=lmi -.J~ =0,439 ~ lm=0,439. -.J~ =0,621 Ae ~=2.~.f=2.~.120~ ~-754rad/s

Notações:

• 1 = 1 = 1 representam o módulo do fasor• Alguns autores utilizam o valor de pico para o módulo dos fasores tensão e

corrente, que correspondem às ondas cossenoidais.• VeV* representam o conjugado de um n°. complexo.

• É errado expressar 3/30° 34’~sen(ot+30°), mas 3/30D= 3J~sen(øt+30°).Fasores podem ser expressos na forma polar, retangular (algébrica) ou emqualquer uma das formas de números complexos.Nem todos os números complexos são fasores.

v(t)[V]

20j~14,14

-20

120 HzA, pois, 1

oooooooo

Análise de circuitos em corrente Alternada Prof.: José António Rosa

Page 18: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

16

Fasorial: Diagrama Fasorial ou Diagrama do Fasor

Tensão Eficaz:Fase:co = 377 radls

20V30° adiantada

rad/s

20V

ref

Complexa: V = 20/30° co = 377 rad/s

Im

20V

‘~Re

Adição e Subtração entre Sinais CÁ.

Consideremos duas tensões senoidais de mesma freqüência:

via). = 141 .sen (377t + W4)Vv2a) = 99 sen (377t + 5W6)V

Vi = 100V; 01 = 45°V2 =70V;02=150°

Vi=1 00/ 45°[V]V2=70/150 °[Vj

oooooooooo

Essas operações podem ter resoluções descritas à seguir:

Temporal Gráfica - É necessário que os gráficos das formas de onda estejam emescala para que as formas de onda resultantes possam obtidas pela adição epela subtração de diversos valores instantâneos, como rfrnstram as figuras aseguir:

Adição Gráfica: va(t) = vi(t) + v2(t)

oOOOo

v(t) N

150

100

50

vi

-50

-100

-150

t(ms)

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 19: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

-50

-100

-150

-200

• Temporal Analítica

Para realizar essas mesmas operações analiticamente, é necessário utilizaridentidades trigonométricas, tornando os cálculos muito trabalhosos. A seguir sãomostrados os resultados após os desenvolvimentos matemáticos:

Adição analítica:5it/6) =~

Va(Q = vi(t) + v2a,) ~ Va = 141 seri(377t + it/4) + 99sen(377t +

Va = 150,2 sen(377t ÷ 1,48 mci) = 150,2 sen(377t + 84,6°) V

Subtração analítica:vb(t) = via) - v2(t) ~ Vb = 141 sen(377t - irJ4) - 99sen(377t + 5it/6)~ vb = 192,5 sen(377t + 0,27 rad) = 192,5 sen(377t + 15,21°) V

Resolução por Composição Fasorial

Adição Gráfica: Va = VI + V2

Subtração Gráfica: Vb = VI - V2

vi

Ref.

Ref.

17

vb

Subtração Gráfica : vb(t) = vi(t) - v2(t)

v(t) [V

150

100

50o t(ms)

Vay Va

V2 150’

v2x Vax Vi

vi VI

V2 150’Vb

V2y vbx

-v2

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 20: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

18

Resolução por Números Complexos

Consideremos os fasores Vi e V2 na forma complexa.

Adição analítica: Va = VI + V2 ~ Va = 100/45° + 70/160° ~ Va = 70,7-bj70,7 + (-

60,62 + 135)

Va = 10,08 ±j105,7 => Va = 106,18/84,6°f’.’].

Subtração analítica:

Vb = VI - V2 =~ Vb = 100/45° - 70/150° ~ Vb = 70,7+ j70,7 -(-60,62 + j35)

Vb = 131,32 + j35,7 z~ Vb = 136,09/1 5,21°[V].

Convertendo Vb em vb(t): vb(t) = 192,5 sen(377t+15,21°) [VJ = 192,5 sen(377t+Q,27rad)tV]

Observações: -.

• As operações podem ser realizadas com mais segurança e de modo mais prático

por meio dos números complexos.

• Após os cálculos as forma~ de onda poderão ser representadas, para se ter

noção do que será visualizado no osciloscópio.

• A adição e subtração de sinais alternados ( tensão e corrente ) de mesma

freqüência co produzem como resultado a mesma grandeza elétrica e com a

mesma freqüência co. Portanto, os operadores e o resultado da operação podem

ser rêpresentados em um mesrho diagrama fasorial.

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 21: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

19

RESPOSTAS DO RESISTOR, CAPACITOR E INDUTOR EM CORRENTEALTERNADA

Resistor

A seguir é representada a resposta temporal do resistor quando submetido a umatens ãov(t) = Vm sen (cot+O°) V

O resistor quando submetido a uma tensão alternada possui um comportamentoôhmico resistivo e não reage às vailações da tensão como acontece com o capacitore indutor. A sua resistência é uma constante R em ohms [Qj, independente davelocidade de variação da tensão aplicada, ou seja, de sua freqüência.

A corrente iR(t) no resistoracompanha a tensão da fonte v(t) ouvR(t), como mostram as figuras aolado.

Portanto, num circuito puramenteresistivo, a defasagem

e°v - e°i= o~.

iR(t)

v(t)

Temporal

+

vR(t)

v(t)

VmDevido a isso,estão sempreou seja, O°v = 09.

a tensão e a correnteem fase no resistor,

t

iR(t)

lRm

T

vR

t

Análise de circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 22: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

20

Análise Matemática do Comportamento do Resistor em CA.

Se um resistor de R ohms tem uma tensão v = Vm sen (cot + 90) sobre ele, segundoa lei de Ohm teremos i = vIR = (Vm/R) sen (ot + 0°).

(VmIR) = Im é o valor máximo ou de pico da corrente sobre o resistor.

A potência instantânea dissipada pelo resistor é:

p = v.i = [Vm sen(cot÷0)]x [Im sen(cot+e)]= Vm ~Im sen2(o~t +0).

A potência de pico é pm = Vm Im ocorre sempre que sen2(cot + 0) = ±1.Temos sen2x=(1—cos2x)/2.

Logo a expressão da potência instantânea é:

Vm.Im Vm.Im2 — 2 .eos(2o~t+20)

Vrnlm . .O valor medio e Pmed= 2 pois a potencia media do 2° termo e igual a zero.

Capacitor

O capacitor e o indutor reagem às variações de corrente e tensão sobre eles. Por

isso são, considerados dispositivos reativos. São, ainda, duais pois têm

comportamentos opostos em relação à variação da tensão e corrente.

A oposição (reação) às variações de corrente no capacitor e no indutor é

denominada reatância X, cuja unidade é o ohm [~2].

No capacitor, a reatância Xc surge devido à capacidade de armazenamento de

cargas, de modo que a tensão entre as suas placas não atinge o valor máximo

instantaneamente.

Quando ocorre uma variação de tensão sobre o capacitor inicialmente varia a

corrente e em seguida varia tensão.

Quanto mais brusca a variação da corrente, menor é a reatância capacWva Xc.

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 23: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

21

A seguir é representada a resposta temporal dotensãov(t) = Vm sen (oat+O°) V.

A corrente do capacitor estáadiantada em relação a tensãoem 900, ou a corrente avança atensão em 90~.

A corrente ic(t) no capacitoracompanha a tensão da fonte v(t),como mostram as figuras ao lado.

Portanto, num circuito puramentecapacitivo, a defasagem

0°v - 001= ~9Q0•

ic(t)

capacitor quando submetido a uma

++

Temporal

vc (t)

v(t)

Vm

t

ic(t)

cm

vc

90°L.4_ T/2

Análise de Circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 24: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

22

- Análise Matemática do Comportamento do Capacitor em CA.

Se um capacitor de C farads tem uma tensão v = Vm sen (cot + 9°) sobre ele, terá

ic(t) = = c. d[Vm . senQnt + e)]uma corrente dada por dt dt

ic(t) = (DCVm. cos(0t + o) = cOCVm.SenQnt + o + 9o°)

O valor máximo ou de pico da corrente sobre o capacitor (Im).

= coCVm~ .YE!~ = ~ (Vmflm) é o valor da reatância capacitiva ‘Xc’.‘m (DC

A expressão da reatância capacitiva é x0 = —1-- ou = Unidade ohm [C2].(DC oC

O sinal negativo refere-se a defasagem da corrente em relação a tensão.

A potência instantânea absorvida pelo ‘capacitor é:

p =•v.i = [Vm sen(oyt + O)] x [Im cos(cot + 9)] = Vm Im sen (cot + O). cosQot + e)mas 2sen(x).cos(x)=sen2x.

• Vrn~ImLogo p = vi = 2 .sen (2cot+20). ou p = VRMSJRMS sen (2cot+29)

A potência média absorvida pelo capacitor é zeiã~ Em um período o capâcitor liberaa mesma energia que ele absorve

Indutor

A oposição (reação) às variações de corrente no indutor é denominada reatância X,

cuja unidade é o ohm [C2j.

No indutor, a reatância XL surge devido a oposição às variações de corrente que

circula no mesmo, com o objetivo de opor às variações do campo magnético no seu

interior.

Quando ocorre uma variação de tensão sobre o indutor, inicialmente varia a tensão

e em seguida varia a corrente.

Quanto mais brusca for a variação da tensão, maior é a reatância indutiva XL.

Análise de Circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 25: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

23

A seguir é representada a resposta temporal do indutor quando submetido a umatensãov(t) = Vm sen (cot+9°) V.

A corrente no indutor estáatrasada em relação a tensão em900, ou a tensão avança a correnteem 900.

Portanto, num circuito puramenteindutivo, a defasagem

e0v - 9°i 900.

1L(t)

++

v(t)

Temporal

vL(t)

v(t)

vm

1L(t)

T12 t

A tensão vL(t) noacompanha a tensão dacomo mostram as figuras

indutorfonte v(t),ao lado.

vL

t

Análise de Circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 26: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

24

• Análise Matemática do Comportamento do Indutor em CA.

Se um indutor de L henry tem uma corrente i = Im sen (0t + 0°) passando por ele,terá uma tensão dada por: -

vL(o=L.~_=L.[md~~

VL (t) = Lci)I~.cos(o)t + e)= wLlmsen(wt + e +90°)

O valor máximo ou de pico da tensão sobre o indutor (Vm) é:

V ~-

V,~ =úLIm~—~-=cL, (Vm/Im) é o valorda reatânciaeapasltWa’XL’.

A expressão da reatância indutiva é XL = coL. Unidade ohm [fli.

A potência instantânea absorvida pelo indutor é:

p =v.i = [Vm cos(cot + 0)]x [Im sen(cot + 0)] = Vm Im sen (cot + e). cosQot + o)mas 2sen(x).cos(x) = sen2x.

Vm•ImLogo p = vi = 2 . sen (2cot + 20). ou p = VRMS ~‘RMS sen (2wt + 20)

Um indutor excitado senoidalmente absorve potência média zero, pois o valor médiode uma senóide é zero.

Quando a senóide for positiva o indutor absorve energia e quando for negativa oindutor devolve a energia absorvida ao circuito e funciona como fonte. Num períodoele libera tanta energia quanto absbrve.

Exercícios resolvidos:

1) A tensão sobre um único componente de um circuito é v = 40 sen(400t + 10°)V e a corrente-que passa por ele é i = 34,1 sen (400t + 10°) mA.

a) Identificar o componente.b) Calcular o seu valor.

Solução:

a) A corrente e a tensão estão em fase, logo o componente é um resistor.

b) R=Vm/lm R= 4Q ~ R=1,17kQ.34,1x103

(é-) ~ /‘

Análise de circuftos em Corrente Alternada •- Prof.: José Antônio Rosa

Page 27: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

252) A tensão sobre um resistor de 62 (2 é v = 30 sen(377t + 300) V. Calcular:a) A corrente que circula sobre o resistor.b) A potência média absorvida por ele.a) Im = (Vrfl/R) ~ Im = 30/62 ~ Im = 0,484A =,i = 0,484 sen(377t + 30°)Ab) Pmrl = (1/2). (Vm2/ R) ~ Pm = (1/2). (302)162 ~ Pm = 7,26W.

3) Calcule a corrente eficaz que passa sobre um capacitor de 0,1 iF e que tem 200Veficaz em 400Hz sobre ele.1m (Vm /Xc) ~ 1 =(lm 1 ~.J5J) ~ 1 = [(Vm)/(1/coC)] +

= (Vm/~J~). coC ~ 1 = 200 x 2jt.400 x 0,1 x106 ~ 1 = 50,3 mA.

4) A tensão v = 30 sen (200irt+30°)V está sobre um capacitor que tem reatância de 62(2. Mostrar a expressão da corrente.Im = Vm/Xc ~‘ Im = 30/62 =‘lm = 0,484 A

A corrente está adiantada em relação a tensão em 90°, logo a expressão da correnteserá:= 0,484 sen (2007tt+30°+90°)A ~ i = 0,484 cos(200ict+30°)A

5) Calcular a tensão eficaz sobre um indutor de 30 mH que tem um corrente de 40 mA e60 Hz passando por ele.A corrente eficaz é 4OmA.Vm=XL.lm =~(Vm/4~)Om/.~h).oxL V=l.coi

V = 4ox10~.2..n.G0.30x103 ~ V = 0,452V

6) A tensão v = 30 sen (200itt + 30°) V está sobre um indutor que tem uma reatância de62 (2. Determinar a expressão da corrente no indutor.

Vm=XL. lm =, Im=Vm/XL 1m30/62 =~‘ Im =0,484A.

No indutor a corrente está atrasada em relação a tensão em 90°, portanto aexpressão da corrente será:

= 0,484 sen (200itt + 30°-90°) = 0,484 sen (200~’tt - 60°) A

7) Abaixo estão escritos três pares de expressões de tensão e corrente de três circuitosdiferentes alimentados por tensões alternadas. Cada um deles tem ou resistor oucapacitor ou indutor. Identifique e escreva o circuito resistivo puro, indutivo puro oucapacitivo puro, por meio de seus pares de expressões e justifique.

Circuito a) v = 150 sen(377t -it/6)V ei 4,55 sen(377t + 60°)A.Diferença entre fases: (377t - 30°) - (377t + 60°) - 900. v atrasa i e.m 90° ~ CircuitoCapacitivo Puro

Circuito b) v = 150 cos(377t +45°)V e i 4,55 sen(377t + 45°)A.Passando v para a forma senoidal: v = 150 sen(377t + 45°+90°) 150 sen(377t + 135°)Diferença entre fases: (377t + 135°) - (377t + 45°) 90°. v adianta i em 90° ~ CircuitoIndutivo Puro

Circuito c) v 150 cos(377t +itI4)V e i = 4,55 cos(377t + 45°)A.Diferença entre fases: (377t + 45°) - (377t + 45°) = 0° . v em fase com i.~ Circuito ResistivoPuro

Anãlise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 28: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

26Exercícios Propostos

1) calcule a potência média absorvida por um componente de uni circuito que tem uma tensão v= 10V aplicada sobre ele quando uma corrente i = 5 + 6cos33t A circula por ele. Resp.:50W.calcule os valores máximo e mínimo da corrente. Resp. lmax = 1 lA, mm. = -1 A.

2) Calcule a condutância de um resistor que tem uma tensão v= 50,lsen(200itt + 30°)V sobreele quando uma corrente = 6,78 sen(200tt + 30°)mA circula por ele. Resp.:1 35 jiS

3) Calcule a corrente sobre um resistor de 33 kQ, se a tensão sobre ele év150 cos(377t+45°)~~’~ Resp.:i = 4,55 cos(377t +45°)mA.

4) Calcular a potência média absorvida por um resistor de 910 f2 que uma tem uma corrente

= 9,76 sen(754t - 36°) passando por ele. Resp.:43,3 mW

5) Calcular a leitura de um amperímetro de corrente alternada que está em série com umresistor de 4700 e que tem uma tensão v = 150 cos(377t + 30°)V sobre ele. Resp.: 226mA.

6) Calcular a freqüência na qual um capacitor de 0,1j.tF e um indutor de 120 mH têm a mesmagrandeza de reatância. Resp.:1 45kHz

7) calcular a capacitância de um capacitor que solicita 150 rnA quando ligado a uma fonte detensão de 400 Hz e 100V. Resp.:0,597 1.zF

8) Calcular as correntes que passam por capacitor de 0,5 1.tF para as tensões do capacitor de:a) v = 190 sen(377t + 1 5°)V; b) v = 200 cos(1 000t - 40°)V

Resp.:a) i = 35,8 cos(377t + 1 5°)mA b) i = 0,1 cos(l000t + 50°) A

9) Calcular as tensôes sobre um capacitor de 2p.F para as correntes de a) i = 7 sen(754t + 1 5°)mA eb) i = 250 cos( 10~ t - 30°)mA. Resp.: a) v = 4,64 sen (754t-75°)V, b) v = 125 sen(103t -30°)

V

10) Calcular a corrente rms que passa por um indutor de 80 mH que tem l2OVrms e 60Hz sobre ele.Resp.:3,98 A

11) Calcular as correntes que passam num indutor de 500 mH para as tensões no do indutor de:a) v = 170 sen(400t + tI6)V e b) v = 156 cos(1 000 + 1 0°)V.

Resp.:a) i = 0,85 sen(400t - 60°)A, b) i = 0,312 sen(l000t + 10°)

Análise de circuitos em corrente Alternada - Prof.: José Antônio Rosa

Page 29: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

27

IMPEDÂNCIA- ANÁLISE DE CIRCUITO SÉRIE EM CA

Na análise de um circuito de corrente alternada, os fasores da tensãosão usados com resistências e reatáncias, da mesma maneira quecorrente são usadas com resistências na análise de um circuitocontínua.

e da correntea tensão e a

de corrente

O circuito original de corrente alternada no domínio do tempo é transformadoem um circuito no domínio da freqüência.

Características de um circuito no domínio da freqüência:

> Usa -se fasores de tensão e corrente ao invés de correntes e tensões~ Troca-se as indutâncias e capacitâncias pela suas respectivas

indutivas e iDy!s~.~ As resistências permanecem inalteradas.~ Na análise de circuitos CA, resistências e reatâncias combinam-se

maneira com que os resistores se combinam numa análise de circuitocontínua.

> Todos os conceitos da análise de circuitos em CC se aplicamàircuitos CA no domínio da freqüência, mas são usados númerosinvés de números reais.

Elementos de circuito no domínio da freqüência

Resistores

senoidais.reatâncias

da mesmade corrente —

a análise decomplexos ao

No domínio do tempo:

v(t) = Vm sen(cot + O) V

No domínio datreqüência:

+

iR(t) =Im sen(cot + O) A

+

vR(t) = Rim sen(ot + O) V

Relação entre o fasor tensãb e o fasor corrente:

• R.Im~90

v~Ji• iEzeo

~X=R

1

Representação Fasorial

VR V

Ref.

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 30: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

28

• Indutores:

No domínio do tempo:

v(t) = Vm cos(o* + e) V

No domínio da freqüência:

+vL(t) = XLIm cos(cot + O) V ~v(t) = XLIm sen(cnt + O+9O°)V

Relação entre o fasor tensão e o fasor corrente no indutor:. .

No circuito v(t) = VL(t) ~ V = Vi

xLImZOO900VL= ‘Ji~

= X~Z9O°Ç2 = coLZ9O°fl —* forma polar

ILmas coL/90°fl = coL(cos900 + jsen9O°) = joLf2 = JXL

b~JcÜLQJX

IL

—* forma retangular

Representação Fasorial

VLj

a Capacitores:

Ref.IL

No domínio do tempo:

v(t) Vm cos(cot + O) V

1m cos(cot + e) A coCVm sen((cot + e + 9Q0) A

+vC(t) Vm sen (cot + O) V

1m sen(cot + O) A

XLImIm

ZO0+9O0~~O0

Análise de Circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 31: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

29

No domínio da freqüência:

Relação entre o fasor tensão e o fasor corrente no capacitor:

Vm~90

=YE.~ï~0c_0o_90o=-Y!L~_9o~• 1m790 90° ~ Im Vm‘C 7= + Xc

= XcZ — 90°Q = — 90°Q ~ forma polar

mas — 90°0 = —1—(cos—90° ÷jsen— 9oj= _~_L0 = —jXc0)0 coO coC

= = —jXcfl ~ forma retangular

Representação Fasorial

Ic) r Ref.

~‘(p =..900

vc’’co

Observações:

a) A fase das reatáncias indutiva e capacitiva corresponde à defasagem pprovocadas por elas entre a tensão e a corrente fornecidas pela fonte comomostraram as representações temporal e fasorial anteriores.

b) Em circuito CA enquanto o indutor adianta a tensão, o capacitor a atrasa esuas reatâncias possuem fases contrárias.

c) A reatância indutiva aumenta com a freqüência, enquanto a reatânciacapacitiva diminui.

d) Devido a esses motivos, o indutor e capacitor são ditos de comportamentosduais. Essa dualidade propociona inúmeras aplicações desses dispositivos.

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 32: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

Exemplo de análise de circuito em série em CÁ.

L=2H

+VR____ +

v40 ..Jisen(4t+20°)V Vc_r C1l16F

Circuito no Domínio do Tempo

XLtjo)L ~‘ XLJ4x2 ~ XLj8Q

=~ Xc-j40

Aplicando a lei das tensões de Kirchhoff (LVK):

V = Vr~ + VL ÷ Vc e substituindo VR = 6 1,

40/20° = 61 +j8 I-j4l =(6+j4)I

logo 1 = (40/20°) ÷ (7,21 /33,7°)

\ Portanto,VR = 6 x5,547 /-13,7°

VL = 8/90° ~5,547 /-13,7° ~

Vc = 4 /-9O°~5,547 /-13,7° r~

VL=j81, Vc=-j41

~‘ 40/20° = 7,21 /33,7°l,

= 5,547 /-13,7° A~

~ VR33,3/~13,7°V~

VL=44,4/76,3°V

Vc = 22,2 2-103,7v~

tem-se:

IMPEDÂNCIA

Conceito : A impedância Z ounúmero complexo que refletealternada e a defasagem total

z, em ohm [O], de um dispositivo ou circuito é uma oposição total oferecida a passagem da correnteprovocada entre a tensão e a corrente.

Símbolo: Z ou Z A impedância possue umresistência R e uma partereatância X.

parte real denominadaimaginária denominada

Z = R + jX (forma retangular)

Z Z /(p (forma polar)

30

R=6Q j8f2

-j4K2

Xc-jl/(coC) =~

Circuito no Domínio da Freqüência

Xc=-j1 /[fx(1/1~)]

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 33: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

31

ImZ=4R2+X2=~...móduhdeZ

te zZ/’ (p=arctgj—I=’ fasedeZ

JX ~ ÇR)L /)(p R=Zcosç e X=ZsenqRe

R

Enquanto o módulo de Z é responsável pela oposição à corrente alternada, a fase cpé responsável pela defasagem da tensão em relação à corrente. Conhecendo emdetalhes uma impedância torna possível prever o comportamento elétrico de umdispositivo ou circuito, bem como da fonte de alimentação.

A resistência é devida a oposição natural dos materiais à passagem da corrente.Refere-se ao resistores.

A reatância é a reação, isto é, oposição à variação, da corrente, sendo umacaracterística dos indutores e capacitores.

o nbme impedância tem origem no verbo impedir e significa a oposição tanto àpassagem quanto à variação da corrente, sendo uma característica geral~~ det~ualquer circuito elétrico em CA formado, em principio, por resistores, indutores ecapacitores.

A componente resistiva R da impedância, somente assume valores positivos.

A componente reativa x é resultado da soma das reatâncias indutiva JXL e capacitiva-jXc, ou seja, jX = j (XL - Xc) e pode assumir valores positivos ou negativos.Através do sinal do ângulo de fase da impedância pode-se concluir:

• Se a Fase for positiva significa jX> O ~ XL >Xc~ sendo o circuito indutivo, logo atensão de entrada adianta à corrente de éntrada

• Se a Fase for negativa significa que jX < O ~ XL < Xc, séndo o circuito capacitivo,logo a tensão de entrada atrasa à corrente de entrada.

• Se a Fase for zero significa que jX = O z~ XL = Xc, sendo o circuito resistivo, logoa tensão de entrada está em fase com a corrente de entrada.

• Representação no plano complexo.

Im~ Impedância Indutiva

1 Q<~<9QO

zNJImpedância Capacitiva

..9Q0 < (p < O

(p

Análise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 34: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

32

• Lei de Ohm parã Circuito CA

Considerando o Circuito CA

VouV

A Lei de Ohm aplicada ao circuito édada por:

ZouZ • V

Z = Vil ~ módulo da impedância Z.

• Associação Série de Impedâncias.

A corrente 1 é a mesma em todas as impedâncias em série, mas a tensão V sesubdivide entre elas, de modo que, pela Lei de Kirchhoff para as tensões CA:

V = VI + V2 +V3.+..+ Vii

Logo a impedância equivalente Zeq = ZI + Z2 + Z3 + + Zn

. Divisor de Tensãoe

+V1 ouVi4

li ou Zi±1 +

VOuVH Z2ouZ2 ~ou~

• Associação Paralela de Impedâncias.

(1/Zeq )= (1/ZI)+ (1/Z2) + (1/Z3) + ...Z+ ( 1/Zn)

Para dois componentes em paralelo,

Zeq (ZI . Z2) 1 ( ZI + Z2)

e Divisor de Corrente.

1.4’ 12

Z2 ouZ2

1 ou 1+

.

z=—.

Considerando a tensão complexa genérica e a corrente complexa genérica, a lei deOhm resulta:

vze vZ= V=_z(ev_ei)~zzzP,

lZG~ p =.( 0v-O i)~fase da impedância Z.

~1

Zl+Z2

.

V2=( Z2Zi+ Z2

• •• Z2 • z~Ii =( • • ). 1; 12 ( • •

Zj+Z2 z1+z2

Análise de Circuitos em corrente Alternada ProL: José Ant6nio Rosa

Page 35: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

33

Exemplo: No circuito série mostrado anteriormente a impedância total será

ZT= 6 +j (8-4) ~ ZT= 6 +j4f2 = 721 /33,7° £2.

O fasor corrente será dado por 1 = V/ Z =~ 1 = (40/20°) 1(7,21 /33,7°) ~

= 5,547 /-13,27° A

Diagrama de Impedâncias

A seguir está representado o diagrama da impedância ZT anterior.

1° quadrante ( circuito indutivo )

6 ~R[f2]

4° quadrante ( circuito capacitivo)

Triângulo de Impedância - Contem os vetores que representam R, jX e Z.

jX

Exemplo: 1)z = 6+j8 = 10/53,1°Q 2) z=6 -j8 O = 10/-53,1°O

Z= 1OZ-531°Q

6≤2

-jS

Exemplo. 1) Dados v = 311 sen ( 2.500t + 170°) V e i = 15,5 sen (2500t - 145°) A.

a) Os diagramas de fasores.b) O diagrama de impedância.c) Calcular os componentes do circuito.

a) Fasores: V• 311

= —/170° 220/170°V,

v

-7- 145°

• 155l=—~--/—145°=11/—145°A

co 2.500 rad/s

ref.

j4

o

z Z= 10Z53,1°C2 j8Q

R

Anãlise de circuitos em corrente Alternada ProL: José Antônio Rosa

Page 36: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

34

b)= 220/1700 ~ Z = 20L315°Q ~ Z = 20/—45°Q = 14J4—j14J4 O

11/—145°

jX[ü] 14,140R[üJ

450

-j14,14[01 •~~J.~gqoe

z

c) A corrente está adiantada em relação a tensão. Logo o circuito é capacitivo RC.

R = 14,14 O Xc = 1/ wC = 14,14 O ~ C = lI(oXc)=~~

C1/(2500. 14,14) ~ C28,3,uF

• Exercícios propostos

1) Considere um circuito com v = 50 sen(2000t - 25°) V e i = 8 sen(2000t + 5°) A. Traceutilizando os eixos abaixo:

a) o diagrama de fasores;b) o diagrama de impedância.

Obs: traçado sem escalas;o traçado dos ângulos e dos módulos podem ser aproximados;o valor dos módulos devem ser escritos junto aos fasores.

lrn 900(_2700) jX(fl)

180°(-180°) Ref 0°R(Q)

90°(270°)

2) Um circuito C.A tem uma impedância total Z = 20 + ii 00 ((2). Determine:

a) a defasagem entre a tensão e a corrente provocada pela impedância;

b) escreva se o circuito é indutivo, capacitivo ou resistivo.

3) Estão em série um resistor de 300(2, um indutor de 1H e um capacitor de 11.tF. Calcule aimpedância na forma polar e escreva se o circuito é indutivo capacitivo ou resistivo para:

a) co= 833 rad/s; b) co 1000 rad/s c) co 1200 rad/sResp. a) 474Z-50,8°f2, capacitivo; b) 300Z0°≤2, c) 474Z50,7°Q, indutivo.

Análise de circuitos em Corrente Alternada ProL: José Antônio Rosa

Page 37: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

35

4) 1, ia caiga tem uma tensão de 240/75° V e uma corrente de 20/60°A numa freqüência de60 Hz. Calcular os elementos em série que a carga poderia ser.

Resp.: resistor de 1160 e um indutor de 824 mH.

5) Dois elementos de um circuito em série solicitam uma corrente de i = 16 sen(200t + 35°) A emresposta a uma tensão aplicada de v = 80 cos(200t)V. Determine os dois elementos.

Resp.: resistor de 2,870 e um indutor de 20,5 mH.

6) Para o circuito mostrado à seguir, calcular os fasores 1, VR e Vc e as quantidades senoidaiscorrespondentes se a freqüência é de 50 Hz. Calcular a potência média liberada pela fonte.

Resp.:l=7,5/81,3°AVc1 87/-8,66°VVR 150/81 ,3°VvR 212sen(314t+ 81,3°)V

= 10,6 sem(314t + 81 ,3°)Avc = 26Ssem(314t -8,66°)V

7) Uma fonte de tensão de 340 sen(l000t + 25°)V, um resistor de 20, um indutor de 1H e umcapacitor de 1 LIF estão em série. Calcule a corrente do circuito e as quedas de tensão doresistor, do indutor e do capacitor.

Resp. vR = 340 sen(l000t + 25°)V= 170 sen(1 000t + 25°)A

vc =170 sen(l000t - 65°)kVvL =170 sen(l000t + 65°)kV

8) Um tensão que tem um fasor de 200/40° V é aplicada sobre um resistor e um capacitor queestão em série. Se a tensão rms do capacitor é de 120V, determine o fasor tensão do resistor.

Resp.: 160Z-3,13° V

9) Calcule a corrente 1 para o circuito mostrado.

+

v

Resp.: 1 = 9,52/458° A

10) Use o divisor de tensão duas vezes para calcular V no circuito do exercício n.° 9.Resp.: V 81,20/6,04° V/

200

+

240/30°V Vc

Pmed = 1,12kW

1 -j200 3500

Análise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 38: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

36

ADMITÂNCIA - ANÁLISE DE CIRCUITO PARALELO EM CA

Exemplo de análise de circuito em paralelo em CA.

lc1000~2

Circuito no Domínio do Tempo

XL = j ~L = j (5.000 x 0,5 ) = j 2.6000

Circuito no Domínio da Freqüência

Xc=-j(1/o)C)=-j(1/5000x0,2x106)=-jl0000

Aplidando a Lei das Correntes de Kirchhoff temos: 1 = IR + IL + lc

ADMITÂNCIA

( i i ‘1~]+1 +~j2.500 —j1.000jj

L_.í~

1(t) = 10 ‘Ji~sen5000tA +

R=1000fl —~-— c = 0,2 ~aF e

L=0,5H’

.3, .3’ __ __10/00= + + =Vx[1.000 j2.500, —j1.000 1.000

1ozoo=~x[o.oo1+(_J4x1o—4÷i1o_3)~

10400 10/0°.

logo

[o,ooi +j0,0006j 1166x103Z31°

10/00 = Vx [0,001 + j 0,00061—e

=8,6x10~Z—31° V e

V =8,6Z—31°kV

v=8,6.-&sen(5000t-31°)kV=12,l6sen(S000t-31°)kV

A admitância é o inverso ( recíproco ) da impedância:

YouY= 1 /Z[siemensjou[S]. Portanto seV=Z.I=>I=V/Z

A admitância em CA corresponde a condutância em CC.

Expressão geral : Y = G + jB —* Forma retangularY Yflp —÷ Forma polar

A parte real G é a condutância.

-~ c

~1Expressão: G = 1 1 R

A parte imaginária B é a ~Liscetância. Capacitiva: jBc = .j wC-1 -~ ~ Indutiva : -iBL = - ii 1 wL

Análise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 39: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

37

Para o circuito dci exemplo anterior• 1 (1 1+1 +

1.000 ~J 2.500 —i 1.000 G = 0,001 Se 6 = 0,0006S

Y = 0,001 + j0,0006 5

Admitância expressa na forma polar: 3ç~C2

~=4G2+s2ztg1(B/~) q, •~AA

Dmódulodaadmitância Y =~G2 +B2.

O ângulo de fase da admitância p = tg1 (%)v = 4(o,ooi)~ +(o,0006)2z tg_1(0.000,%’001)

-r

.Y=1,166x1C3 /31° 5

Sendo a admitância a recíproca da impedância o ângulo de fase da admitância é onegativo do ângulo de fase da impedância. Através do sinal do ângulo de fase daadmitância pode-se concluir:

• Se a Fase for positiva significa que o circuito é capacitivo.

• Se a Fase for negativa significa que o circuito é indutivo.

• Se a Fase for zero o circuito é r~sistivo.-- N

• Representação no plano complexo.

ImAdmitância capacitiva

‘1’ O<cp<9O°

cp~Y ~l

Admitância indutiva à-9O°<cp<O

• Assoàiação de admitâncias em paralelo.

Logo a admitância equivalente Yeq Y1 + Y2 + Y3 + + Yn

Anãlise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 40: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

38

Divisor de Corrente.

1.+ 12

Y2 ou Y2

Associação Série de Admitâncias. ‘4(1/Yeq)(1/Y1)+(1/Y2)+(1/Y3)+

Para dois componentes em série,

Yeq=(Y1 .Y2)I(Y1 +Y2)

+( 1/Yn)

• Pode -se traçares diagramas de admitâncias e os triângulos de admitâncias.

• Exemplo: Usar o divisor de corrente para calcular a corrente lY2 no ramo, de5/30°S do circuito representado a seguir.

1 =4Z30°A

YT = 6/-70° + 5/30° + 7/50° + 9/450 ~

9/450 S

YT = (2,05 - j5,64) + ( 4,33 + j2,5) + ( 3,5 + j6,06 ) + (6,36 + j6,36) ~

Y’r= 16,24+j 9,28 = 18,7 / 29,7° 5

lY2 = ( ‘(2/ YT) x 1 ~ 1Y2 = ( 5/30°)/18,7/ 29,7°) x 4/ 30° =~

DDD

lv2=1,07/30,03°A

Análise de circuitos em Corrente Alternada Prof.: José Antônio Rosa

-* e ee

~=(-~‘~ )‘T; I2(~~)IYT - YT

oOOO

Page 41: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

39

Exercícios propostos:

1. Um resistor de lkD, um indutor de 1 H e um capacitor de 14F estão em paralelo. Calcular aadmitância total na forma polar em a) 500 radls, b) l000radJs, c) 5000 rad/s.

a) 18/-563° mS b) 1/0° mS c)4,9 /782° rnS

2. Um indutor e um resistor em paralelo têm uma admitância de 100z-30° mS em 400 Hz.Calcular a indutância e a resistência. Resp. 796 mH, 11,5 (2.

3. Dado o circuito paralelo à seguir, calcular:

a) a admitância de entrada Y em [S];

b) a corrente 1 em [A].

c) a corrente sobre indutor usando o divisor de corrente.

V=120/0°Çy 4 5(2 ~3J2r21-J4o

4. Dois elementos em um circuito paralelo têm uma admitância de 2,5 /30° mS em 400Hz. Calculeos dois elementos. Resp.: resistor de 4620 e um capacitor de 0497 psF.

Análise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 42: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

40

POTÊNCIA EM CIRCUITOS EM CORRENTE ALTERNADA

Absorção de Potência

1(t) Im sen((cot ) A

v(t) = Vm sen(cot + p) VZLpQ

A potência instantânea absorvida pelo circuito representado acima será:

p = v.i = Vm sen(cot + p) x Im sen(cot)

Das relações trigonométricas temos:

cos(a - b) = cosa. cosb + sena . senb

cos(a + b) = cosa . cosb - sena . senb

cos( a - b ) - cos (a + b) = 2 sena senb

logo sena~ senb=[cos(a-b)-cos(a + b)1/2 ,se a=wt+9 eb—ojt então,

p = (Vm Irn)/2 [cos Qp) - cos (2cot+ p).

Vm•lm Vm Im -

Mas, = . — = Vrms Irms entao a potencia nstantanea pode ser2

expressa por:

p = Vrms.lrms [cos ~ - cos (2cot + cp)]

Potência Complexa - 5

Símbolo: S ou 5 Unidade: volt - amperê [VA]

Consideremos um gerador V = V Z 9v, fornecendo uma corrente 1 = 1 / Gi a umaimpedânciaZR±jX ouZZ/±9.

1=1/ei

VV/Ov.

Vx

+

VR

+

Análise de circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 43: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

41

A Potência Complexa pode ser obtida multiplicando o fasor

pelo conjugado do fasor tensão V

*.

ouV.

corrente de entrada 1

Desenvolvendo a expressão da potência complexa, temos:*

. . .

s=v~

.

S = V~ Irn,sZ — cp OU

S = vi cos(—p) + JV .I~ sen(—w) z~ S = VI. coe p — jV .1. sen cp.5 =P—jQ

Outras expressões para a Potência Complexa:

OU

Y

A fase de S corresponde numericamente à fase p da impedânciainvertido ou a defasagem entre .V e 1 com o sinal invertido.

com o sinal

O módulo de S é o produto dos módulos de V e 1, ou seja, Vrms e Irms.

A componente real de S é a potência ativa P Portanto: PVrms.lrms.cosw

A componente imaginária de S é a potência reativa Q. Portanto

rJ=-Vrms.lrms.senQ 1O módulo de S é a potência aparente N. Portanto:

Portanto: S=NZ-q 1HiI = N = Vrms. lrms 1

Potência Média, Ativa, Real, ou Útil - P

A potência média, é conhecida como potência ativa ou potência realcircuito sendo simbolizada por P.

ou útil de um

O valor médio de p Vrms.lrms [cos ~ - cos (2cot + p)], é igual a soma dos valoresmédios dos dois termos. O primeiro termo é uma constante, mas o valor médio dosegundo termo é zero por ser cossenoidal, portando a potência média será:

vrms.irms cos ~ 1 Vrms tensão eficaz de entrada

Unidade: watts [W 1cp ângulo de defasagem entre tensão e corrente. Para um circuito que não possuifontes independéntes é o mesmo ângulo da impedância.

lrms corrente eficaz de entrada

Análise de circuitos em corrente AlternadaProf.: José Antônio Rosa

Page 44: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

42Quando o circuito for resistivo puro, p = 00 ~ cos 00 = 1

~ P = Vrms.Irms cos (~ = Vrms.lrms ou Simplesmehte P = VI.

• Quando o circuito for indutivo puro, p = 90° ~ cos 900 =

~ P = Vrms.lrms cos cp = O W. Portanto o circuito não absorve potência média.

• Quando o circuito for capacitivo puro, p = -90° ~ cos ~9O° =

=~ P = Vrms.lrms cos cp = O W . Portanto o circuito não absorve potência média.

• Fator de Potência

O cos cp é chamado de fator de potência de símbolo FPO cp chama-se ângulo do FP sendo o ângulo da impedância. O ângulo do fator depotência tem sinais diferentes para circuitos indutivos e capacitivos, mas comocos p = cos (-p), conclui-se:

• Para circuitos indutivos o FP é chamado de fator de retardamento da pot4nçia,• FP indutivo ou atrasado.

• Para circuitos capacitivos o E? de potência é chamado de fator de avanço dapotência, FP capacitivo ou adiantado.

Potência Ativa - P

A potência ativa P, em watt [Wj, é obtida do produto da corrente pela parcela datensão de entrada em fase com elá. Portanto:P = V.l . cos q, mas como VR = V. cos ~. Portanto:

P=VRJ_j ou PR.l2 ou J PV2R,.R

Diagrama Esquemático

v

• A parcela ativa da potência total fornecida pela fonte CA é consumida pelacomponente resistiva da impedância.

• A potência ativa é convertida em calor por efeito Joule, sendo utilizada pararealizar trabalho.

• A potência ativa total fornecida pela fonte CA é a soma das potências ativasdissipadas pelas componentes resistivas do circuito.

• A potência ativa pode ser medida por um instrumento chamado wattímetro.

1=1

Vx

Análise de circuitos em corrente Alternada Prof.: José Antõnio Rosa

Page 45: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

43

Potência Reativa - O

Símbolo Q - Unidade: volt - ampère reativo [VAR 1É obtida pelo produto da corrente com a parcela da tensão em quadratura com ela.

r~ = - Vrms.lrms sen

Diagrama Esquemático

Vrms = tensão eficaz de entradaIrms = corrente eficaz de entrada

= ângulo do fator de potênciasen p = Fator Reativo - FR, sendo positivo paracargas indutivas e negativo para as cargascapacitivas.

Q=-VL.IL ou Q=~XL.lL2 ou Q=-VL2IXL

• A reatância capacitiva armazena energia sob a forma de campo elétrico. Sendo cpnegativa, provoca um avanço na corrente, logo no armazenamento de energia.Portanto, a potência reativa capacitiva é positiva e expressa por:

FQ=+vc.lc ou Q=÷Xc.1c2 ou Q=÷Vc2lXc

• A potência reativa total fornecida pela fonte CA é a soma algébrica das potênciasreativas dissipadas pelas componentes reativas do circuito.

• Alguns autores representam a potência reativa por PREAT ou PQ

v

..__~ 1=1+ç~_ P~4

VR “

+

X Vx

A impedância usa pequena parte dapotência reativa. fornecida pela fontepara armazenar energia em suareatância e a outra parte é devolvida àfonte. Conclui-se que a potêncipreativa Q é totalmente perdida, poisnão realiza trabalho útil.

• A reatância indutiva armazena energia sob a forma de campo magnético. Sendop positiva, provoca um atraso na corrente, logo no armazenamento de energia.Portanto, a potência reativa indutiva é negativa e expressa por:

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 46: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

44

Potência Aparente - N

Símbolo N Unidade: volt - ampère [VA]

A Potência AØarente total fornecida por uma fonte é obtida pelo produto da tensãototal da fonte pela corrente fornecida

N = Vrms.lrms Vrms = tensão eficaz de entradalrms = corrente eficaz de entrada

Triângulo das Potências

Outras expressões para N:

N=Z.12 ou N=V2/Z

• A potência aparente é o módulo dapotência cornplex S. N = 1 S 1

• Alguns autores representam apotência aparente por PAP ou 5.

DDD

As equações das potências média, reativa e aparentegeométricamente pelo triângulo das potências.

Circuito Indutivo

N=4 P2 ~

P = V. 1 coscp

Diagrama Esquemático

—.4. 1 =

+

X Vx

V Icos P = V. 1 co:

N = V.l

• Circuito Capacitivo

podem ser obtidas

lsenw Q-V.lsenpAtrasado

Q = V. 1 sen cp1 sen p Adiantado

PN.coscp Q-N.senç

ooooo

N=V.I

1 cosp

p-arctg(Q/P)

Análise de circuitos em corrente Alternada ProL: José Antônio Rosa

Page 47: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

45

Resumo:

• Potência Complexa - S [VAI

S=V*.l;S=(V2/Z)Z~p; SZ.12L-p

• Potência Aparente - N [VA

N = 1 S 1; N = V. 1; N = J2 Z; N = V2 / Z

• Potência Média; Ativa; Real ou Útil - P [W]

P = V .1 cosp; P = ViU ; P = R.12; P = V2R!.R; P = parte real de S

• Potência Reativa - Q[ VAR 1

Q = - V. 1 sen cp Q = Xc. 12; Q = ~J2/ X; Q = parte imaginária de S

• Fator de Potência - FP

FP = RIZ; FP = P/N ; FP =cosç

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 48: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

46

Exemplo: Dado um circuito de impedância Z = 3 i-j4 [O] e uma tensão aplicadaV = 100/ 30° [V]. Traçar o triângulo das potências.

Solução: Cálculo a corrente: 1 = V/Z = 100/ 30°! 6 / 53,1° =~

= 20 / -23,1°[A].

Método 1

P = R.12 = (20)2. 3 = 1.200 [W]Q = X.i2 = (20)2. 4 = 1.600 [VAR] (atrasada)N = Z.12 = (20)2. 5 = 2.000 [VA]FP = RJZ = 3/5 = 0,6 atrasado

Método 2

N = V.l = 100 . 20 = 2.000 [VA]P = N.cosw 2.000. cos 53,1 °= 1.200 [W]Q N.sernp = 2.000. sen 63,1.° = 1.600 [VAR] (atrasada)F.P = cosp = cos 53,1° =0,6 ( atrasado)

Método 3

S = V~. 1 = 100/ -30° .20 / -23,1° = 2.000/ -53,1°[VA) = 1.200 -i 1.600 [VA]

N = 2.000 [VA]; P = 1.200[W]; Q = 1.600 [VAR] atrasada

FP = P/N ~ FP = 1.200! 2.000 =~ FP = 0.6 (atrasado).

Método 4

VR = 1 . R = 20/ -23,1° . (3) = 60/ -23,1°[V]Vx = 1 . jX = 20/ -23,1° . (4/ 90°) = 80/ 66,9°[V}

P (VR2/ R = 5Q2/3 = 1.200 [W]Q = (Vxy/ ix 802/4 = 1.600 [VAR] atrasadaN = (V)2/Z = 1002/5 = 2.000[VA]

Triângulo das Potências

P = 1.200 [WL\. )w=53,1°

Q = - 1.600 [VAR] (atrasado)

N=2.000[V2}\\~

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 49: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

47

Exercícios Propostos

1) A potência instantânea absorvida por um circuito é p =10+8 sen (377t + 40°)W.

Calcular as potência média, mínima e máxima absorvida.

Resp. 10W, pmin = 2W, pmax 18W

2) Calcular o fator de potência e a potência média absorvida para cada par de tensão e

corrente das cargas:

a) v = 170 sen(SOt -40°) V,

b) v = 340 cos(377t - 50°) V

= 4,3 sen (50t + 10°)A. Resp.: 0,643 avançado, 235W

= 6,1 sen (377t + 30°)A Resp.:0,985 atrasada, 1.037W

3) Considerando o circuito à seguir, calcular: a) as potências ativa P [WJ, reativa Q

[VAR] e aparente N [VA]; Resp.: 300W, 400VAR, 500 VA, 0,6 atrasado

b) o fator de potência FP.

c) Construir o triângulo das pctências.

V =50/- 90°Vf60 Hz

4) Sobre um circuito quando aplicada uma tensão v = 200 sen (cot + 11 0°)V, circula uma

corrente i = 5 sen (cd + 20°)A. Calcular as potências, P , Q e N.

Resp.: 0W, 500VAr atrasada e 500 VA

5) Duas impedâncias ZI = 4/-30°≤2 e Z2 = 5Z60°0 estão em paralelo e submetidas ao

fasor V = 20/0°V. Calcular os FP’s e as potências S, P, Q e N de cada braço e

totais. Resp.: S1 100/30°VA; S280/-60° VA; ST 173,89/43,3°VA

6) Calcular o fator de potência de um motor de indução de 5 HP, completamente

carregado, que opera com um rendimento de 85% e solicita 15A de uma linha de

480V. Resp.: 0,609 atrasado

ooo

Análise de circuitos em Corrente Alternada Prof.: José Antônio Rosa

+

30

j6í2

- j 20

Page 50: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

48

CORREÇÃO DO FATOR DE POTÊNCIA

Nas aplicações residenciais e industriais comuns, as cargas são indutivas e acorrente é atrasada em relação à tensão aplicada. A potência média ou ativa,fornecida à carga, é uma medida do trabalho útil por unidade de tempo que a cargapode executar. Essa potência é fornecida pelas concessionárias de energia elétrica,sendo usualmente transmitida por intermédio de linhas de distribuição etransformadores.Os transformadores são especificados em KVA e utilizados na maioria das vezescom tensão fixa, portanto , os KVA indicam a corrente máxima permitida.Teoricamente um transformador poderia ser totalmente carregado com uma cargaindutiva ou capacitiva pura e, consequentemente a potência média ou ativafornecida seria nula. Essa situação não é desejável pelas concessionárias, pois elasarrecadam pela potência média fornecida.No consumo de uma grande quantidade de potência ativa é desejável um elevadofator de potência, pois, para uma potência ativa P tt’ansmitida, quanto maior for o FPmenor será a corrente ‘i’, já que:

1= ~ __

V•cosp V•FP

Para aumentar, ou seja, corrigir o fator de potência instala-se capacitores sobré alinha, ou em paralelo com a carga, para fornecer os VAR’s consumidos pela cargaindutiva. Esses capacitores fornecem a corrente aos indutores da carga, cujacorrente sem os capacitores, teria de ser suprida pela linha de transmissão

Método para correção do fator de potência.

1. Calcular a Potência Reativa Inicial consumida pela carga - ‘ Q/1Qi = P tg pi, sendo pi o ângulo inicial da impedância da carga.

2. Calcular o ângulo final da impedância ‘ cpf’ para o fator de potência final desejado‘FPf’:

pf cos’(FPf).

3. Calcular a Potência Reativa Final - Qf. A potência média ou ativa permanece amesma.. Logo:

Qf = P . tg cpf

4. Calcular a Potência Reativa que deve ser fornecida pelos capacitores - zlQ.AQ = Qf - Qi o resultado é negativo pois Qf < Qi, portanto para o cálculo do item 5considera-se 1 ~Q 1.

5. Cálculo da Capacitância Total - Ct necessária para fornecer o AQ:V coCtVrms2

coCt

/0) rms

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 51: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

49

6. Cálculo do número ( N ) de capacitores de determinada capacitância - Cnecessários para fornecer a Capacitância Total - Ct será:

N = Ct / C

Exemplos: 1)possui o triânguloapós a correção ev = 100. .ji .sen(377t + 30°)V.

P = 1.200W

Cálculo de Qi

pi = cos1(P/N1)~’ cpl = cos1(1.200/2.000) cpi = 53,1°

Qi = P . tg pi Qi = 1.200 . tg 53,1° Qi = 1.598,25 VAR.

> Cálculã de pf

O Fator de Potência Final desejadocos(pf = 0,9 ~ cpf = cos1 0,9 (~f = 25,84°.

>~ Cálculo de Qf.

A Potência P = 1.200 W não altera.

é FPf = 0,9. Logo

Qf = P . tg cpf ~. Qf = 1.200 . tg 25,84° =~ Qf = 581 VAR.

> Cálculo da Potência fornecida pelos Capacitores.

AQ = Qi - Qf = 1.598,25 - 581 => AQ = 1.017,25 VAR

> Cálculo de CT.O fasor tensão V = 100 Z30°V.

Usando capacitores de C = lOOpF o número (N) de capacitores necessários será:N = CT/C N =269,8/10=> N~3 capacitores

Corrigir para 0,9 atrasado o fator de potência do circuito quede potências mostrado a seguir. Calcular a potência aparente Nfa capacitância total necessária, sabendo-se que:

Ct =~/

/ coVrms

_1.01725/2 /377.1002 z,Ct =269,8jiF

Análise de circuitos em corrente Alternada Prof.: José António Rosa

Page 52: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

50

)> Cálculo da Potêndia Aparente Final - Nf fornecida pela rede de alimentação.

P = Nf. FPf=~ Nf= P/ FPf

:.Nf= 1.200/0,9 Nf 1.333 VA.

Comparando as Potências Aparentes Ni e Nf pode-se concluir sobre as correnteselétricas fornecidas pela rede de alimentação antes e depois da correção do FP:

li = Ni / V Ii = 2.000/100 li = 20 A

lf = Nf / V If = 1.333/100 =~ lf = 13,33 A.

Portanto a mesma Potência Média de 1.200 W pode ser fornecida com umaredução de corrente de 6,67 A, que representa 33,4%.

2) Um transformador de 25 KVA fornece 12 KW a urna carga com o FP = 0,6atrasado. Calcular a porcentagem da carga. nonimal fornecida pelo.transformador.

a) . Desejando-se completar a carga total do transformador, com cargas de fatorde potência unitário, calcular a potência ativa adicional em KW poderá seacrescentada.

b) Calcular o fator de potência após acrescida a carga.

Solução: a) Pi = Ni . coswi =~‘ Ni = 12/0.6=> Ni = 20 KVA.

Como a caga nominal que pode ser fornecida pelo transformador é Nn = 25 KVA,

então (20/25). 100 = 80%Com FP = 0,6 teremos

b) 1_______________________ = cos 0,6 = 53,13°.

~; Q = Ni.sencpi =~ Q = 20 sen53,13°Q=16KVAR

Q não se altera. Logo paraNf =Nn = 25 KVA tem-se:

=Nn Pf=gNfl2_Q2=g252_162

Pf =19,2KWPortanto a carga adicional será: à? = Pf- P1 = 19,2-12 = 7,2 KW.

c) O FPf = Pf/Nn =~ FPf 19,2/25 =~FPf = 0,77 atrasado.

O (Pf = cos1 077 = 39,83°.

Conclui -se que o FP pode, também, ser melhorado acrescentando -se cargascom fator de potência unitário.

Pi AQ

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 53: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

51

Exercícios propostos: 1) Calcular a capacitância CT necessária para corrigirpara 0,95 atrasado o FP do circuito mostrado.

+

V=1 20/0°

2) Um transformador de 250 KVA está operando a plena carga com fator depotência total de 0,5 atrasado. O FP é melhorado acrescentando-secapacitores em paralelo com a carga até que o novo FP seja de 0,9 atrasado.Calcular: a) A potência reativa capacitiva necessária. Resp.: 61 KVARb) A capacitância total necessária sabendo que a tensão eficaz no

secundário do transformador é 220V e a freqüência 60 Hz.Resp.: 8.5501.tF

c) A potência aparente final Nf. Resp.: 138,9 kVA

Análise de Circuitos em Corrente Alternada ProL: José Antônio Rosa

Page 54: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

Quase toda energia elétrica é gerada e distribuída por meio de circuitos trifásicos.Os geradores de tensão trifásicos em C.A, também chamados de alternadorestrifásicos, produzem três tensões senoidais idênticas, exceto por uma defasagem de120°. A energia elétrica gerada é transmitida sob três ou quatro fios.

Geração de Tensão Trifásica

A figura a seguir mostra uma seção transversal de um alternador trifásico com umestator estacionário e um rotor que gira no sentido anti-horário. O rotor tem umenrolamento de campo no qual circula uma corrente CC produzindo um campomagnético. Os pólos do campo magnético girante do rotor, passam junto aos trêsenrolamentos do estator, induzindo em cada um deles, uma tensão alternada. O trêsenrolamentos do estator estão distanciados entre si de 120°, portanto as tensõestrifásicas estão defasadas entre si de 1200 conforme mostra a figura a seguir.

vaa’ = Vm sen(cot); vbb’ = Vm sen(cot -120°) ; vcc’ = Vm sen(cot + 120°)

vaa’ Vbb’ Vcc’

enrolamento do estator (bobina)

Fonte cc enrolamento de campo

As ondas atingem seus valores máximos ou de pico com distância de um terço doperíodo ou 120°.

Seqüência de fases - É a ordem na qual as tensões ouvalores máximos.

Na seqüência considerada positiva ABC, a tensão na bobina A (vaa’) atinge omáximo em primeiro lugar, seguida pela bobina B (vbb’) e depois pela C (vcc’) - verdiagrama de fasores à seguir.

Invertendo o sentido de rotação do rotor ou trocando a marca de dois enrolamentosa seqüência de fase torna-se CBA - ver diagrama de fasores à seguir.

52

CIRCUITOS TRIFÁSICOS

Introdução

C

correntes atingem os seu

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 55: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

Diagrama de Fasores

Vaa’ = Vz0°; Vbb = VZ—120°

.

120° Vaa’Ref.

Seqüência CBA

53

= VZO°;. Vbb’ = VZ120°; V~’ = VZ—120°

Vcc’

. . .

• . .Soma Vaa’+Vbb’+Vcc’ =0

Vaa’•__

..\/•Vbb’ ‘* Vcc’

Ligações dos Enrolamentos dos Alternadores

As ligações das extremidades dos enrolamentosligação estrela (Y).As ligações dos enrolamentos A e C’, A’ e Btriângulo (A).

A IL

Ligação Estrela - Y

A’, B’ e C’, ou A, 3 e O resulta na

B’ e C resulta na ligação deita ou

—~* IA

Ligação Triângulo ou Deita - A

O ponto comum às três bobinas na ligação Y é chamado de Neutro (N).

As tensões sobre as bobinas são chamadas Tensões de Fase (VF) e as tensõesentre os terminais (extremos) das bobinas são chamadas Tensões de Linha. (VL).As correntes sobre as bobinas são chamadas Correntes de Fase (iF) e as Correntesque saem dos terminais das bobinas são chamadas Correntes de Linha (IL).

Seqüência ABC

v cc’

Vcc’ = VZ120°

.

120

Vbb’ -120°

Soma Vaa’-i- Vbb’+ Voo’ = O

•Vaa’

•__

..\!.Vaa’ ~* Vbb’

Vbb’

1;

e120° Vaa’

Ref.

-120°

c’ A

lc IL-jc

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 56: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

54

Na ligação Y:

~ As tensões Vr são VAN, VBN e VcN.> As correntes de fase IF ( IAN, IBN e IcN ) são as mesmas correntes de linha IL (IA,

IBe IC).> As tensões VL é a soma fasorial das tensões VF.

Pela representação fasorial acima observa-se qL.ie existefasóres tensão Vsc e VBN sendo VBc = VCN + VBN.

um ângulo de 3Q° entre os

No triângulo retângulo CDNV80/ r

cos3o°= /2 ~~J3_ V3~VcN 2 2VcN VcN

VBc~J~.VcN ou VL=,J~.VF

~ As tensões de fase Vr ( VAN, VBN e VcN ) são as mesmas tensões de linha VL(VAB, VcA e VBc).

~ As correntes IL são a soma fasorial das correntes Ir.

Aplicando-se a LCK em um dos nós da ligação A, tem - se IA = IcA - lAR. O diagramafasorial está representado à seguir

~o12Oo3oG

~ Existe um ângulo de 33Õ entre cada corrente IF e a corrente de linha IL maispróxima, nesse exemplo IA e IAB.

Análise de circuitos em Corrente Alternada Prof.: José Antônio Rosa

BVBc

c

VAB VCA

A

Para circuitos equilibrados os módulos VAN = VcN = VBN, portanto VAB = VAC = Vsc.Logo o triângulo BCN é isósceles, consequentemente vale as relações abaixo.

B c

> As tensões de linha VL são ~ vezes as tensões de fase VF.

Na ligação A:

IA

oooo

Page 57: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

55

Para circuitos equilibrados os módulos IAB = lBC = ICA, portanto IA = IB = Ic.Logo o triângulo é isósceles, consequentemente vale as relações abaixo.

IA/2 No triângulo retângulo

A/ rcos30°=-~~-=$-~-= A

AB 2 2•’AB 1AB

A = ‘J~~AB OU = ~J~.lp

> As correntes de linha IL são 4’ã~ vezes as correntes de fase lF.

CIRCUITO EQUILIBRADO Y

O circuito trifásico equilibrado comporta-se como três circuitos interligados masseparados. A diferença nas respostas dos três circuitos é uma diferença de ângulosde 1200. O método de análise comum consiste achar a tensão ou corrente desejadanuma fase, e usá-la com a seqüência de fase para obter as tensões ou correntescorrespondentes nas outras duas fases. A escolha de umá tensão de referência comângúlo de fase nulo determina os ângulos de fase de todas as outras tensões dossistema. -.

Exemplo: Um sistema CBA trifásico a quatro condutores, 208 V (tensão de linha),alimenta uma carga equilibrada em estrela, constituída por impedâncias 20/ -30° QCalcular as correntes de linha e traçar o diagrama de fasores.

Solução para a seqüência CBA

Para determinar as fases das tensões considera - se para Vsc na referência.

vcA\

vcN ~VBN

vAB

Ref.

11

1‘1

VAN ‘i,

VAB VL /2400 VVBc=VL/O° VVcA=VLZ12O°VVAN=VL/ ‘15 /(240°÷30°)V=VL/ ‘15 /-90°V

VBN=VL/ ‘15 /(O°+30°)V=VL/ ‘15 /30°V

VcN=VL/ .J5 z120°+30°V=VL/ ‘IS /150°V

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 58: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

Cálculo das correntes de linha:

56

208/ /—90°

?A=~N±= ~• 20/—30°z

;~ ~ _________

• 20L—30°z

• VcN •Ic =—;--~ I~

z

• 120 •‘A =- -Z—60° IA =ftO/—60°A

8 = 120 /600 ~ = 6,0/ 60°A

120/150°~ Ic=6,0/180°A

— 20/—30°

IN + IA + IB + lc = O ~. IN = - (IA + Is + lc) ~ lr~i = - ( 6,0/-60° + 6,0/ 60°+6,0/180°)=’lN = 0:

Conclusão: Em circuitos trifásicos com cargas equilibradas a corrente do condutorneutro é igual a zero.

Diagrama de fasores:

VCA

VAS

18

ref.

Observações: - As correntês de linha são iguais às correntes de fase

- As correntes de linha estão equilibradas e adiantadas em relação as tensões defase de 30°, pois as cargas (impedâncias) são capacitivas.

Exercício: Resolver o mesmo sistema considerando a seqüência ABC.

Ângulo de fase das tensões para ABC.

VAB k~

vcN

VcA

As correntes de linha retornam pelo condutor neutro. Aplicando a LCK no ná N:

VcN VBN VcN

30° VAN

VBN

VAN

1

‘1

1

.°JtJ \%%\~ Vsc

Ref.

VAB=VL/120°VVBc=VL/0° VVCA=VL/240°VVANVLb,Jã/(1200_300)=VLb,J~/(900)V

VBN = VLI ~ /(0°- 30°) VL/ J~ /- 30°V

VcN=VLJ 4ã~ /(240°-30°)=VL/ ~ /-150°V

Análise de Circuitos em Corrente Alternada Prof.: José Antônio Rosa

Page 59: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

57

CIRCUITO EQUILIBRADO A

Exemplo: Um sistema ABC trifásico à três condutores, 110V, alimenta uma cargaem triângulo, constituída por três impedâncias iguais de 5Z45°Ç2. Calcular ascorrentes de linha IA, IB e lc. Traçar o diagrama de fasores.

IA

Cálculo das correntes de fase:

z

— 110/120° —

22/75° A =

— 5/45°

isc = Veo = 110/O = 22/ — 45° A =• 5/450z

(5,7 + 12125 )A

(15,56—j15,56)A

VcA 110~2400—22/195°A .(—21,25—j5,69)AIcA = • = 5/45~

z

• .

=IcA—I~c =22/195°—22Z—45°=38,11/165°A

Diagrama de Fasores:

As correntes de linha estãoequilibradas e defasadas de120° e de módulos 1J~ dascorrentes de fase.VF VL eL ,Ji IF

)1

A

VCA110/240°

B

cIc

Aplicação da lei das correntes de Kirchhoff

lA = lAR— lcA =22/75°—22Z195°~38j 1/45° A

lB — AB + lBc = —22/75° + 22/ — 45° = 38,1 IZ — 75° A

lc

VAB

IAVsc

IB

VCA

Análise de circuitos em corrente Alternada Prof.: José Antônio Rosa

Page 60: Apostila Circuitos Corrente Alternada CEFET MG Eletronica 2o Mod 2006

58

POTÊNCIA TRIFÁSICA

A potência total absorvida por uma carga trifásica é a soma das potências individuaisabsorvidas nas impedâncias totais de cada uma das fases, ou seja, é soma dasabsorvidas pelas cargas monofásica~.

As potências ativa, reativa e aparente, desenvolvidas nas cargas monofásicas, jáforam analisadas anteriormente. Resta anahsá-Ias em sistemas trifásicos formadospor cargas em estrela e triângulo.

Relembrando, as cargas indutivas possuemcargas capacitivas possuem potência reativa

Potências Ativas, Reativas e Aparente

Cada impedância da carga trifásicatensão de fase VF e uma corrente de

IF

ZF~F

potência reativa negativa, enquanto aspositiva.

Assim as potências ativa e reativa das fases ou absorvidas pelas impedâncias sãodadas por

PF = VF.IF.coswF e QF = - VF.IF.sen pF

As potências ativas e reativas totais absorvidas pela carga trifásica são dadas pelasoma das respectivas potências nas impedâncias:

PTPF1+PF2+PF3 QT QFI + QF2 + QF3

Finalmente a potência aparente total e o fator de potência total da carga trifásica sãodados por

e FP~=~_____________________ NT

possui uma fase pF e está submetida a umafase IF.

NT=JPT2+QT2

Anáise de Circyitos em corrente Alternada Prof.: José Antônio Rosa