38
ELETRICIDADE Profª. Bárbara Taques CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE JOINVILLE DEPARTAMENTO DE DESENVOLVIMENTO DE ENSINO CURSO TÉCNICO EM ELETROELETRÔNICA

Apostila Eletricidade

Embed Size (px)

Citation preview

Page 1: Apostila Eletricidade

ELETRICIDADE

Profª. Bárbara Taques

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINAUNIDADE JOINVILLE DEPARTAMENTO DE DESENVOLVIMENTO DE ENSINO CURSO TÉCNICO EM ELETROELETRÔNICA

Page 2: Apostila Eletricidade

2

REFERÊNCIAS BIBLIOGRÁFICAS REFERÊNCIAS BIBLIOGRÁFICAS ............................................................................. 2 CAPÍTULO 1 – GRANDEZAS ELÉTRICAS................................................................. 3

1.1 TENSÃO .......................................................................................................... 3 1.2 CORRENTE ELÉTRICA................................................................................. 4 1.3 POTÊNCIA ELÉTRICA .................................................................................. 4

CAPÍTULO 2 – ELEMENTOS ATIVOS E PASSIVOS................................................. 7 2.1 FONTES DE TENSÃO E CORRENTE .......................................................... 7 2.2 LEI DE OHN PARA CORRENTE CONTÍNUA ............................................ 8 2.2 RESISTÊNCIA ELÉTRICA ............................................................................ 9 2.3 EQUIVALENTES PARA CIRCUITOS RESISTIVOS EM SÉRIE E/OU PARALELO ............................................................................................................... 10

CAPÍTULO 3 – LEIS DE KIRCHHOFF....................................................................... 13 3.1 LEI DE KIRCHHOFF DAS CORRENTES................................................... 13 3.2 LEI DE KIRCHHOFF DAS TENSÕES ........................................................ 13 3.3 DIVISOR DE TENSÃO................................................................................. 16 3.4 DIVISOR DE CORRENTE ........................................................................... 17

CAPÍTULO 4 – MÉTODOS DE ANÁLISE DE CIRCUITOS ..................................... 20 4.1 ANÁLISE DE MALHAS............................................................................... 20 4.2 ANÁLISE NODAL ........................................................................................ 24

REFERÊNCIAS BIBLIOGRÁFICAS ........................................................................... 29

Page 3: Apostila Eletricidade

3

CAPÍTULO 1 – GRANDEZAS ELÉTRICAS

1.1 TENSÃO Uma partícula (carga pontual) qualquer, carregada, que é representada pela

letra q (valor variável) ou Q (valor constante), e tem como unidade Coulomb* (C), possui uma energia potencial interna (U), dada como a capacidade desta partícula em realizar trabalho.

Os átomos que compõem um material condutor possuem elétrons livres, os quais podem mover-se aleatoriamente. Se provocarmos uma força eletromotriz entre os terminais A e B de um elemento, um trabalho é realizado sobre estas cargas, e sua energia potencial é alterada, causando uma diferença de energia potencial entre os pontos A e B.

baba UUW −=→ Este trabalho realizado para mover uma unidade de carga (+1C) através de um

elemento, de um terminal a outro, é conhecido como diferença de potencial, ou tensão (v ou V) “sobre” um elemento, e sua unidade é conhecida como volt (V) e dada como 1J/C.

abba V

qW

=→

A convenção de polaridade (+, -) usada, é mostrada na figura 1.1. Ou seja, o

terminal A é V volts positivos em relação ao terminal B. Em termos de diferença de potencial, o terminal A está v volts acima do terminal B.

Fig. 1.1 – Convenção da polaridade da tensão Com referência à figura 1.1, uma queda de tensão de V volts ocorre no

movimento de A para B. Por outro lado, uma elevação de V volts ocorre no movimento de B para A.

Como exemplos, nas figuras 1.2 (a) e (b) existem duas representações da mesma tensão. Em (a), o terminal A está +2 V acima do terminal B e em (b) o terminal B está –2 V acima do terminal A (ou +2 V abaixo de A).

(a) (b)

Fig. 1.2 – Duas representações equivalentes da tensão

Outra forma de designar o potencial elétrico é empregar a notação de sub-índice duplo para V, do ponto a com relação ao ponto b. Neste caso, geralmente

baab VV −= . [*] A carga de 1C possui 6,24x1018 elétrons.

A B

+ v -

A B

+ 2 V -

A B

- -2 V +

Page 4: Apostila Eletricidade

4

1.2 CORRENTE ELÉTRICA A Corrente Elétrica é o movimento de cargas elétricas, e é denotada pelas

letras i (para corrente variável) ou I (para corrente constante). Em um fio condutor existe um grande número de elétrons livres. Estes elétrons

estando sob a ação de uma força elétrica, sendo eles livres, entrarão imediatamente em movimento. Como os elétrons possuem carga negativa, este movimento terá sentido do terminal negativo para o positivo. Porém, durante o século VIII, Benjamin Franklin estabeleceu, por convenção, a corrente elétrica como o movimento de cargas positivas, portanto trafegava do positivo para o negativo. Hoje, sabendo que o movimento é feito pelas cargas negativas e não positivas, é importante distinguir a corrente convencional (o movimento de cargas positivas), que é usada na teoria de redes elétricas, e a corrente eletrônica.

Formalmente, corrente é a taxa de variação no tempo da carga e é dada por:

tqi∆∆

=

Sua unidade básica é o ampère (A), que é igual a 1 coulomb por segundo:

sCA 11 =

1.3 POTÊNCIA ELÉTRICA

Quando há transferência de cargas através de um elemento, uma quantidade de energia é fornecida ou absorvida por este elemento. Se uma corrente positiva entra no terminal positivo, então uma força externa deve estar excitando a corrente, logo entregando energia ao elemento. Neste caso, o elemento está absorvendo energia. Se por outro lado, uma corrente positiva sai pelo terminal positivo (entra pelo negativo), então o elemento está fornecendo energia ao circuito externo.

Se a tensão através do elemento é v e uma pequena carga ∆q se move através do elemento do terminal positivo para o terminal negativo, então a energia absorvida pelo elemento ∆w, é dada por:

∆w=v∆q

Considerando agora, a velocidade com que o trabalho é executado, ou a

energia w é dissipada, pode-se dizer que:

tqv

tw

∆∆

=∆∆

Visto que, por definição, a velocidade com que uma energia é dissipada é a

potência, denotada por p, tem-se que:

vitwp =∆∆

=

Page 5: Apostila Eletricidade

5

Pode-se observar que, as unidade de v e i, já vistas anteriormente são dadas por J/C e C/s, respectivamente, resultando com sua multiplicação em W=(J/C)(C/s)=J/s, que é a unidade de potência vista no capítulo 1.

Então, como pode se observar na figura 1.3, o elemento está absorvendo energia, dada por p=vi. Se a polaridade de v ou a de i for invertida, então o elemento estará entregando potência para o circuito externo.

Fig. 1.3 – elemento típico com tensão e corrente.

EXERCÍCIOS

1. Se a diferença de potencial entre dois pontos é 42V, qual o trabalho necessário para levar 6C de um ponto a outro?

2. Supondo que uma carga positiva q=2.10-7 C se desloque de um ponto A

para um ponto B, e que o trabalho realizado pela força elétrica, sobre ela, seja WAB=5.10-3 J. Qual a diferença de potencial VAB entre A e B?

3. Calcular o valor da carga Q que precisa de 96J de energia para ser movida

ao longo de uma diferença de potencial de 16V.

4. Uma diferença de potencial entre dois pontos A e B é dada por VAB=-3V, qual é tensão dada por –VBA?

5. A carga total que entra por um terminal de um elemento é dada por:

a. q=(3t+1) µC b. q=(2t) mC c. q=(5t+3) µC

Calcule o valor da corrente i entre t1=1s e t2=4s. 6. Supondo que a fosse possível contar ao número de elétrons que passam

através de uma secção de um condutor no qual se estabeleceu uma corrente elétrica. Se durante um intervalo de tempo ∆t=10s passam 2.1020 elétrons nesta secção, qual a intensidade da corrente (em ampère) que passa na secção do condutor?

7. A intensidade da corrente que foi estabelecida em um fio metálico é

i=400mA. Supondo que esta corrente foi mantida, no fio, durante 10 minutos, calcule:

a. A quantidade total da carga que passou através de uma secção do fio.

b. O número de elétrons que passou através desta secção.

i

+ v -

Page 6: Apostila Eletricidade

6

8. Considerando que o elemento da figura 1.3 esteja absorvendo uma potência de p=18mW, com uma corrente I passando por ele de 6mA, qual a tensão V entre seus terminais?

9. Com relação ao elemento da figura 1.3, qual a energia entregue à ele, entre

2 e 4s, se I=3A e V=6V?

10. Qual é a potência entregue por uma bateria de 6V se a taxa de fluxo de carga é 48C/min?

Page 7: Apostila Eletricidade

7

CAPÍTULO 2 – ELEMENTOS ATIVOS E PASSIVOS

Os elementos de um circuito, estudados até aqui, podem ser classificados em duas categorias gerais, elementos passivos e elementos ativos, considerando se a energia é fornecida para ou por eles. Portanto, um elemento é dito passivo se a energia total entregue a ele pelo resto do circuito é sempre positiva. Isto é:

∆W=V.I.∆t ≥ 0

As polaridades de V e de I são como mostradas na figura 2.3. Como será

estudado posteriormente, exemplo de elementos passivos são resistores, capacitores e indutores. Já exemplos de elementos ativos são geradores, baterias, e circuitos eletrônicos que requerem uma fonte de alimentação.

2.1 FONTES DE TENSÃO E CORRENTE

Uma fonte independente de tensão é um elemento de dois terminais, como

uma bateria ou um gerador, que mantém uma dada tensão entre seus terminais. A tensão é completamente independente da corrente fornecida. O símbolo para uma fonte de tensão que tem V volts entre seus terminais é mostrado na figura 2.4. A polaridade é como mostrada, indicando que o terminal a está V volts acima do terminal b. Desta forma, se V>0, então o terminal a está num potencial maior que o terminal b. Já se, V<0, quer dizer que o terminal b está num potencial maior que o terminal a.

Na figura 2.4, pode-se observar dois símbolos que podem ser empregados para representar uma fonte de tensão com valor constante. Pode-se observar que as indicações de polaridade na figura 2.4 (b) são redundantes, visto que a polaridade pode ser definida pela posição dos traços curtos e longos.

(a) (b)

Fig. 2.4 – Fonte de tensão independente. Uma fonte de corrente independente é um elemento de dois terminais através

do qual flui uma corrente de valor especificado. O valor da corrente é independente da tensão sobre o elemento. O símbolo para uma fonte de corrente independente é mostrado na figura 2.5, onde I é a corrente especificada. O sentido da corrente é indicado pela seta.

Fontes independentes são usualmente empregadas para fornecer potência ao circuito externo e não para absorvê-la. Desta forma, se V é a tensão entre os terminais da fonte, e se sua corrente I está saindo do terminal positivo, então a fonte estará

a a + + V _ V _ b b

Page 8: Apostila Eletricidade

8

fornecendo uma potência, dada por P=VI, para o circuito externo. De outra forma, estará absorvendo energia.

Fig. 2.5- Fonte independente de corrente As fontes que foram apresentadas aqui, bem como os elementos de circuito a

serem considerados posteriormente, são elementos ideais, isto é, modelos matemáticos que se aproximam de elementos físicos reais apenas sob certas condições.

2.2 LEI DE OHN PARA CORRENTE CONTÍNUA

Em 1827, George Simon Ohm demonstrou com uma fonte de FEM (Força

Eletromotriz) variável ligada a um condutor que à medida que variava a tensão sobre o condutor variava também a intensidade de corrente que circulava no mesmo. Em seus registros, Ohm percebeu que o quociente entre a tensão e a corrente, se mantinham constantes.

De acordo com a figura 2.1, se for aplicada uma tensão V no condutor, surge uma corrente I. Se esta tensão for variada para V1, a corrente será I1, e do mesmo modo se o valor de tensão mudar para V2, a corrente será I2, de tal maneira que:

IV

IV

IV

==2

2

1

1 =constante

Fig. 2.1 – Relação tensão/corrente sobre um elemento E a essa constante foi dado o nome de resistência elétrica e é representada

pela letra R. Portanto:

IVR =

Onde: I=intensidade de corrente em (A) V=tensão elétrica em volts(V) R=resistência elétrica em Ohms (Ω)

+ I V _

a I b

Page 9: Apostila Eletricidade

9

Então, resistência elétrica é o quociente entre a diferença de potencial e a

corrente elétrica em um condutor. Os símbolos utilizados para representar resistência elétrica são mostrados na figura 2.2:

Fig. 2.2 – Símbolos utilizados para resistência elétrica O inverso da resistência é uma grandeza chamada condutância. A condutância

representa a facilidade que um condutor apresenta à passagem da corrente elétrica. É representado por G e sua unidade é o Siemens (S):

RG 1=

GR 1=

2.2 RESISTÊNCIA ELÉTRICA

Todos os materiais possuem resistência elétrica, uns mais, outros menos.

Inclusive os chamados bons condutores de eletricidade apresentam resistência elétrica, é claro de baixo valor. Os isolantes, por sua vez, por impedirem a passagem da corrente elétrica, são elementos que apresentam resistência muito alta.

Quanto ao significado físico de resistência elétrica, podemos dizer que advém da estrutura atômica do elemento em questão. Isso quer dizer que um material que possua poucos elétrons livres dificultará a passagem da corrente, pois essa depende dos elétrons livres para se processar (nos sólidos). No entanto, também os bons condutores de eletricidade apresentam uma certa resistência elétrica, apesar de terem elétrons livres em abundância. A explicação para essa oposição à passagem da corrente elétrica nesses materiais é que apesar de existirem elétrons livres em grande número, eles não fluem livremente pelo material. Ou seja, no seu trajeto, eles sofrem constantes colisões com os núcleos dos átomos, o que faz com que o seu deslocamento seja dificultado.

Em um condutor filamentar, a resistência depende basicamente de três fatores: do comprimento do fio, da área da seção transversal do fio, e do material. Experiências mostram que quanto maior o comprimento de um condutor, maior sua resistência e quanto maior a seção de um condutor, menor sua resistência. Também pode se provar que condutores de mesmo comprimento e mesma seção, mas de materiais diferentes, possuem resistências diferentes.

A Equação matemática que determina o valor da resistência em função do comprimento, da seção e do material é dada por:

SlR ⋅

Onde: R=resistência elétrica do condutor em ohms (Ω) l=comprimento do condutor em metros (m) S=área da seção transversal em metros quadrados (m2) ρ=constante do material, que chamamos de resistividade ou resistência

específica, em ohm.metro (Ω.m)

R R

Page 10: Apostila Eletricidade

10

2.2.1 Resistividade Elétrica A resistividade é um valor característico de cada material, e na verdade

representa a resistência que um condutor desse material apresenta tendo 1m de comprimento e 1m2 de área de seção transversal. A seguir será mostrada uma tabela com os valores de resistividade de alguns materiais:

Material ρ(Ω.m) Cobre 1,7.10-8 Alumínio 2,9.10-8 Prata 1,6.10-8 Mercúrio 98.10-8 Platina 11.10-8 Ferro 10.10-8 Tungstênio 5,6.10-8 Constantan 50.10-8 Níquel-cromo 110.10-8 Carbono 6000.10-8

Zinco 6.10-8 Níquel 10.10-8

Tabela 1 – resistividade de alguns materiais elétricos

2.3 EQUIVALENTES PARA CIRCUITOS RESISTIVOS EM SÉRIE E/OU PARALELO

Agora que já foi apresentada a Lei de Ohm, pode-se definir uma ligação em

série e paralelo entre elementos. Elemento são ditos ligados em série quando todos são percorridos pela mesma corrente. Já elementos ligados em paralelo, estão ligados ao mesmo terminal, com uma determinada diferença de potencial.

Na figura 2.3, os resistores R1 e R2, estão ligados em série, isto é, estão sendo percorridos pela mesma corrente elétrica. Já na figura 2.4, os resistores estão ligados em paralelo, possuindo entre eles a mesma diferença de potencial (tensão) entre seus terminais.

Fig. 2.3 – Associação em série de n resistores

R1 V Rn I

Page 11: Apostila Eletricidade

11

Fig. 2.4 – Associação em paralelo de n resistores Tanto resistores em série, como resistores em paralelo podem ser substituídos,

para fins de cálculo, por um único resistor, chamado de resistor equivalente série ou paralelo, respectivamente. E seus valores podem ser dados através das seguintes equações:

2.3.1 Resistor Série Req=R1+R2+...+Rn 2.3.2 Resistor em Paralelo:

neq RRRR1...111

21

+++=

Exercícios: 1. Calcule as potências a serem fornecidas pelas fontes mostradas. 2. Se uma corrente I= 0,4A está entrando pelo terminal positivo de uma

bateria cuja tensão é V=12V, então a bateria está em processo de carga (está absorvendo ao invés de fornecer potência). Calcule (a) a energia fornecida à bateria e (b) a carga total entregue à bateria em 2h (horas). Note a consistência das unidades 1V=1J/C.

3. A tensão sobre um resistor de 10kΩ é 50V. Calcular:

a. A condutância b. A corrente e c. A potência absorvida pelo resistor

V R1 Rn I

3A 4A + + + _ 12V 10V 2A 6V _ -9V _ 5A

Page 12: Apostila Eletricidade

12

4. Para o circuito abaixo, calcular a corrente I e a potência entregue ao resistor.

5. Calcular a resistência de um condutor de constantan que possui 5m de

comprimento e área da seção transversal igual a 1,5mm2. 6. Calcular qual deve ser o diâmetro de um condutor circular de cobre para

que apresente uma resistência de 2Ω, quando o comprimento do fio é 100m.

S=(πφ2)/4

7. Um condutor de níquel-cromo de 10m de comprimento e seção 0,5mm2 é submetido a uma tensão de 12V. Qual o valor da intensidade de corrente no condutor?

8. Calcular a tensão nos extremos de uma barra de cobre de 15m de

comprimento e seção 12mm2, quando esta for percorrida por uma corrente de 130A. Qual a potência absorvida por esta barra de cobre?

9. Achar o resistor equivalente entre os pontos A e B dos circuitos abaixo:

a) b) c) d) 10. Se uma corrente de 4A sai da fonte de tensão Vi, no circuito abaixo, qual é

o valor da potência fornecida por esta fonte?

2Ω A

3Ω 3Ω 1Ω B

50Ω 10Ω 20Ω 30Ω 15Ω 40Ω 10Ω A B

6Ω 2Ω A 3Ω 4Ω 12Ω 3Ω 4Ω 6Ω 2Ω B

1Ω 4Ω A 22Ω 90Ω 8Ω 4Ω 4Ω B

8Ω 2Ω 4Ω 30V 10Ω 4Ω

100V 5MΩ I

Page 13: Apostila Eletricidade

13

CAPÍTULO 3 – LEIS DE KIRCHHOFF Além da lei de Ohm, têm-se também duas leis estabelecidas pelo físico

germânico Gustav Kirchhoff (1824-1887), que em conjunto com as características dos vários elementos dos circuitos, permitem sistematizar métodos de solução para qualquer rede elétrica. Estas duas leis são formalmente conhecidas como Lei de Kirchhoff das correntes (LKC) e lei de Kirchhoff das tensões (LKT).

Um ponto de conexão de dois ou mais elementos de circuitos é chamado de nó. Enquanto que um percurso fechado de um circuito onde os elementos estão contidos é chamado de malha.

3.1 LEI DE KIRCHHOFF DAS CORRENTES

A lei de Kirchhoff das correntes (LKC) estabelece que: A soma algébrica das correntes que entram em um nó qualquer é igual a

soma das correntes que saem deste nó. Exemplo: Dado o circuito abaixo, achar i1 e i2.

3A+2A-i1=0 i3-2A+i4=0 i1=3A+2A i3=2A-i4 i1=5A i3=2A+7A i3=9A -2A-i4-5A=0 i4=-2A-5A i1-i2-i3=0 i4=-7A i2=i1-i3 i2=1A-5A

i2=-4A 3.2 LEI DE KIRCHHOFF DAS TENSÕES

A lei de Kirchhoff das tensões (LKT) estabelece que: A soma algébrica das tensões ao longo de qualquer percurso fechado é

zero. Exemplo: -15V+v+10V+2V=0 v=15V-10V-2V v=3V

i2 i1 3A i3 5Ω 6V 2A 2Ω 2A i4 5A

+ v - 15V 10V - 2V +

Page 14: Apostila Eletricidade

14

Exercícios:

1. Calcular a tensão V e a corrente I, dado o circuito abaixo: 2. Determinar as grandezas desconhecidas nos circuitos mostrados abaixo:

a) b) c) d)

4Ω + V - I 14V 6Ω 4A

+ V - +80V- 20Ω I R 120V

- 8V + -V1+ 2,2Ω 4,7 Ω - V V2 + I

P1=8W R1 I R2 V 1 Ω P2 =4W RT=16 Ω

+ V1 - +V2- 2Ω 1A 1 Ω + V R V3 - P3=21W

Page 15: Apostila Eletricidade

15

3. Usando a lei de Kirchhoff das correntes, encontrar o valor das correntes I1, I2, I3 e I4, para o circuito abaixo:

4. Determinar as grandezas desconhecidas nos circuitos mostrados abaixo: a) b) c) d)

6µA I2 2µA I3 I4 0,5µA I1

3A 2A I2 10V R1 R2

I 2A I2 I3 V 6Ω 9 Ω R P3=12W RT=

100mA I1 I3 64V 1kΩ R 4kΩ I

I1 I3 V 30Ω R2 R3=R2 P1=30W P2 2A

Page 16: Apostila Eletricidade

16

3.3 DIVISOR DE TENSÃO Considerando as leis de Ohm e Kirchhoff vistas aqui, esta seção começará

com circuitos simples, descritos por uma única equação, para demonstrar alguns procedimentos de análise.

Fig. 3.1 – Circuito de laço único A figura 3.1 é composta de dois resistores e uma fonte independente de tensão.

O primeiro passo no procedimento de análise será o de atribuir correntes e tensões em todos os elementos da rede. Pode-se escolher arbitrariamente a direção (sentido horário ou anti-horário) percorrida pela corrente i. Pode-se, então fazer a aplicação da LKT:

V=V1+V2

onde pela lei de Ohm V1=R1I e V2=R2I

Combinado estas equações: V=R1I+R2I

Isolando a corrente I, fica

21 RRVI+

=

Substituindo este valor nas equações da lei de Ohm, pode-se obter:

VRR

RV

21

11 += e V

RRR

V21

22 +=

O potencial V da fonte divide-se entre as resistências R1 e R2 em proporção

direta ao valor de suas resistências, demonstrando o princípio da divisão de tensão para dois resistores em série. Por esta razão, o circuito da figura 3.1 é dito um divisor de tensão.

Considerando a análise para um circuito com N resistores em série e uma fonte de independente de tensão, tem-se:

VRR

Vs

NN ⋅= ,

onde ∑=

=N

nns RR

1

I

+ V1 R1 V - + V2 R2 -

Page 17: Apostila Eletricidade

17

3.4 DIVISOR DE CORRENTE Outro circuito simples importante é o circuito com um só par de nós.

Elementos são conectados em paralelo quando a mesma tensão é comum a todos eles. Na figura 3.2 pode-se ver o circuito com um só par de nós, formado por dois resistores em paralelo e uma fonte de corrente independente, todos com a mesma tensão V.

Fig. 3.2 – Circuito com um só par de nós.

Aplicando a LKC ao nó superior, I=I1+I2

onde, pela lei de Ohm I1=G1V e I2=G2V

Combinando estas equações: I=G1V+G2V

Isolando a tensão V:

21 GGIV+

=

Substituindo este valor nas equações da lei de Ohm, pode-se obter:

IGG

GI ⋅

+=

21

11 e I

GGG

I21

22 +=

Ou, em termos de valores de resistências, e não de condutâncias:

IRR

RI

21

21 += e I

RRR

I21

12 +=

Considerando a análise para um circuito com N resistores em série e uma fonte

de independente de tensão, tem-se:

IRR

IN

pN = ,

onde ∑=

=N

n np RR 1

11

I1 I2 + I G1 G2 V -

Page 18: Apostila Eletricidade

18

2Ω 4Ω

24V R3 P3=24W

Exercícios:

1. Encontrar o valor da corrente I1 e tensão V2; usar os resultados para achar R1.

2. Calcular V, dado o circuito abaixo:

3. Calcular as tensões V1, V2 e a corrente I, para o circuito abaixo:

4. No divisor de tensão mostrado, a potência entregue pela fonte é de 8mW, calcular as tensões V e V1.

5. Encontrar o valor da resistência R para o circuito abaixo:

8A R1

I1 + 80V 8Ω 56Ω V -

4Ω 32Ω

+ 27V 9Ω 40Ω V -

I 2Ω 6Ω

+ V1 - +

6V 4Ω V2 -

2kΩ +

8kΩ V1 V - 4kΩ 4kΩ

Page 19: Apostila Eletricidade

19

6. Em relação ao circuito abaixo, encontrar as correntes, IT, I1, I2, I3 e I4.

7. Usando divisor de corrente, encontrar as correntes desconhecidas para os seguintes circuitos:

a) b) c) d)

I1=6A 4Ω I2 12Ω IT IT I3 2Ω I4 40Ω

12A I1 I2

6Ω 3Ω

6A I1 I2

I3 I4 8Ω 8Ω 6Ω 6Ω 6Ω

I1 1Ω 500mA I4 2Ω I2 3Ω I3

I2 I1 4Ω 12Ω I3 18Ω I4=4A

Page 20: Apostila Eletricidade

20

CAPÍTULO 4 – MÉTODOS DE ANÁLISE DE CIRCUITOS Neste capítulo, será considerado a formulação de métodos sistemáticos para

equacionar e solucionar as equações que aparecem na análise de circuitos mais complicados. Serão vistos dois métodos gerais, um baseado originalmente na lei de Kirchhoff das correntes e outro na lei de Kirchhoff das tensões. Geralmente a LKC conduz a equações cujas variáveis desconhecidas são tensões, enquanto a LKT conduz equações onde a variáveis desconhecidas são correntes. 4.1 ANÁLISE DE MALHAS

Nesta secção será visto o método conhecido como análise de malhas, no qual

se aplica a LKT em volta de um percurso fechado do circuito. Neste caso as incógnitas normalmente serão as correntes.

Exemplo: Como exemplo, será mostrado uma análise para o circuito abaixo: Va=9A;

Ω= 21R ; Vb=-5A;

Ω= 42R ;

Ω= 33R ;

i3=i1-i2

( )( )

( )( )⎩

⎨⎧

++−=−−+=

⇒⎩⎨⎧

+−−=−−+=

⇒⎩⎨⎧

−+=−+=

32213

32311

22213

32111

3322

3311

RRiiRVRiRRiV

RiiiRVRiiRiV

RiRiVRiRiV

b

a

b

a

b

a

REGRA DE CRAMER

( )( ) ⎥

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡+−

−+⎥⎦

⎤⎢⎣

b

a

VV

RRRRRR

ii

323

331

2

1

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡−

−⎥⎦

⎤⎢⎣

⎡59

7335

2

1

ii

Determinante de coef.: 267335=

−−

=∆

267875

39

1 =∆

=i 265253

95

1 =∆

−=i

i1=3V; i2=2V

R1 R2 Va R3 Vb i1 i2

Page 21: Apostila Eletricidade

21

Exercícios:

1. Usando análise de malhas, encontrar i1 e i2 para o circuito abaixo:

Va=16V R1=2Ω Vb=9V R2=6Ω Vc=6V R3=3Ω

2. Dado o circuito abaixo determinar as equações de malha.

3. Através da análise de malhas, encontrar a tensão v para o circuito abaixo:

Va=4V R1=3Ω Vb=24V R2=6Ω Vc=30V R3=4Ω

R4=8Ω

4. Usando análise de malhas, calcular a corrente i.

I=1A R1=4Ω Va=24V R2=4Ω Vb=8V R3=2Ω

R4=4Ω R5=4Ω

R1 R2 R3 Va i1 i2 Vc Vb

R1 R2 R5 Va Vb R3 R6

Vb R1 R2 - v + R4 Va R3 Vc

I R1 R3 R5 Va R2 R4 Vb

Page 22: Apostila Eletricidade

22

5. Determinar as correntes de malha do circuito a seguir.

6. Determinar as correntes de malha do circuito a seguir.

7. Determinar as correntes de i1, i2 e i3 do circuito abaixo.

8. Determinar a corrente i0 através do método das correntes de malha.

Page 23: Apostila Eletricidade

23

9. Encontrar as correntes I1, I2 e I3, para o circuito abaixo:

Va=20V Vb=5V R1=2Ω R2=3Ω R3=4Ω R4=5Ω R5=6Ω

10. Calcular as correntes de malha para o circuito abaixo:

Va=-18V Vb=-3V R1=2,2kΩ R2=9,1kΩ R3=7,5kΩ R4=6,8kΩ R5=3,3kΩ

R1 R3 R5 Va R2 R4 Vb

R3 R2 Vb R1 R4 Va R5

Page 24: Apostila Eletricidade

24

4.2 ANÁLISE NODAL A análise nodal consiste em um método de análise de circuitos nos quais

tensões são as incógnitas a serem determinadas. Desde que uma tensão é definida como existindo entre dois nós, é conveniente escolher um nó na rede para ser o “nó de referência” e então associar uma tensão ou um potencial como cada um dos outros nós. Freqüentemente o nó de referência é escolhido como aquele onde está conectado o maior número de ramos, e chamado como terra. O nó de referência está, então, no potencial do terra ou no potencial zero e os outros nós podem ser considerados como um potencial acima de zero.

As tensões sobre os elementos podem ser uma tensão de nó (se um nó do elemento está aterrado) ou a diferença de potencial entre dois nós, como mostra o exemplo abaixo.

Como exemplo pode-se observar a figura 4.1, onde o nó de referência é o nó 3 com potencial zero ou de terra. Os nós 1 e 2 são tensões de nó v1 e v2.

Fig. 4.1 – Circuito com um só par de nós.

Então v12, com a polaridade mostrada, é:

v12=v1-v2

As tensões nos outros elementos são: v13 = v1-0 = v1 e v23 = v2-0 = v2

Para finalizar a análise, será aplicada a LKC para cada nó de não-referência

para obter as equações nodais, e então escolher um método de solução simultânea de equações. Entre estes métodos podem ser citados: a regra de Cramer, que emprega determinantes e a eliminação de Gauss.

Exemplo: Como exemplo, será mostrado uma análise para o circuito abaixo:

Ia=7A; Ω=31

1R ;

Ib=5A; Ω= 12R ;

Ic=17A Ω=31

3R ;

Ω=21

4R ;

nó 1: Ia – i1 – i2 – Ib= 0 Ω= 15R ;

nó 2: Ib + i2 – i3 – i4 = 0 Ω=41

6R

nó 3: i4 – i3 - i6 + Ic = 0

v1 + v12 - v2 1 2 + + v13 v23 - - 3

Ib i2 i4 v3 v1 v2 R2 R4 i1 i3 i5 i6 Ia R1 R3 R5 R6 Ic Nó de referência

Page 25: Apostila Eletricidade

25

111

11 Gv

Rvi == ( ) 432

4

324 Gvv

Rvv

i −=−

=

2212

212 )( Gvv

Rvvi −=

−= 53

5

35 Gv

Rv

i ==

323

23 Gv

Rvi == 63

6

36 Gv

Rv

i ==

( )( ) ( )

( )

( )( )( )⎪

⎪⎨

+++−=−+++−=

−+=−⇒

⎪⎩

⎪⎨

−−+=−−−+=

+−+=

456342

43243221

22211

4325363

22143232

22111

GGGvGvIGvGGGvGvI

GvGGvII

GvvGvGvIGvvGvvGvI

IGvvGvI

c

b

ba

c

b

ba

REGRA DE CRAMER

( )( )

( ) ⎥⎥⎥

⎢⎢⎢

⎡ −=

⎥⎥⎥

⎢⎢⎢

++−−++−

−+

⎥⎥⎥

⎢⎢⎢

c

b

ba

II

II

GGGGGGGGG

GGG

vvv

6544

44322

221

3

2

1

0

0

⎥⎥⎥

⎢⎢⎢

⎡=

⎥⎥⎥

⎢⎢⎢

−−−

⎥⎥⎥

⎢⎢⎢

1752

720261

014

3

2

1

vvv

Determinante de coef.:

145720261

014=

−−−

−=∆

1451457217

265012

1 =∆

−−

=v 1452907170

251024

2 =∆

−−

=v

1454351720

561214

3 =∆

−−

=v

v1=1V; v2=2V e v3=3V

Page 26: Apostila Eletricidade

26

Exercícios:

1. Usando análise nodal, calcular v1 e v2 dos respectivos circuitos:

a. Ia=1A

Ib=-2A R1=4Ω

R2=4Ω R3=8Ω

b.

Ia=4A

Ib=7A R1=4Ω

R2=8Ω R3=12Ω

2. Calcular a tensão v, dado o circuito abaixo:

V1=4V V2=30V R1=3Ω

R2=6Ω R3=4Ω

3. Usando o método tensão-nó, calcular V1, V2 , i1, i2, i3 e i4 do circuito a seguir.

v1 i2 R2 v2 i1 i3 Ia R1 R3 Ib

Ib v1 R2 v2 Ia R1 R3

R1 R2 - v + V1 R3 V2

Page 27: Apostila Eletricidade

27

4. Usando o método tensão-nó, calcular Va, Vb , Vc , i1, i2, i3, i4 e i5 do circuito a seguir.

5. Usar análise nodal para determinar as tensões nos nós do circuito a seguir.

6. Usar a análise nodal para determinar todas as correntes nos ramos do circuito da figura a seguir:

7. Resolver o exercício 4 de análise de malhas por análise nodal.

Page 28: Apostila Eletricidade

28

8. Determinar as tensões de nós para os circuitos abaixo: a)

Ia=5A Ib=4A V1=12V R1=3Ω R2=3Ω R3=3Ω R4=3Ω

b)

Ia=6A Ib=7A R1=2Ω R2=3Ω R3=5Ω R4=4Ω R5=8Ω

v1 R3 v2 V1 R1 Ia R2 R4 Ib

R1 R2 Ia R3 Ib R4 R5

Page 29: Apostila Eletricidade

29

REFERÊNCIAS BIBLIOGRÁFICAS

1 JOHNSON, DE; HILBURN, JL; JOHNSON, JR. Fundamentos de Análise de Circuitos Elétricos. Rio de Janeiro:Livros Técnicos e Científicos Editora SA, 4 Ed., 2000.

2 BOYLESTAD, RL. Introdução a Análise de Circuitos. Prentice-Hall do

Brasil, 8ª Edição, 1998.

3 BONJORNO, JR; RAMOS, C. Temas de Física. FTD, São Paulo, 1997.

4 GASPAR, A. Física, vol. 3. Ática, São Paulo, 2005.

5 GUSSOW, M. Eletricidade Básica. Coleção Schaum. Makron Books, 2ªEdição, 2007.

6 LOURENÇO, AC; CRUZ, ECA E CHOUERI JÚNIOR, S. Circuitos em

Corrente Contínua. 5ª Edição, 2002.

Page 30: Apostila Eletricidade

30

ANEXO I -EXCITAÇÃO SENOIDAL

Uma excitação senoidal é dada da forma: ( ) ( )ϕω += tsenVtv m , onde:

v(t): Tensão instantânea [V]; Vm: Amplitude da senóide [V]; ω: Frequência angular, onde fπω 2= [rad/s];

f: Freqüência dada em Hertz, onde T

f 1= [Hz];

T: Período de tempo na qual a onda repete seu valor, sendo ( ) ( )Ttvtv += , e dado em segundos [s]; ϕ: Ângulo de fase, que é o deslocamento da onda em relação ao seu eixo, dado em

graus [º].

Um exemplo de uma onda com excitação senoidal, dada pela função seno, é mostrada na figura 3.1.

Fig. 3.1 – Gráfico da expressão senoidal )...2sen(.)( ϕπ += tfVtv m

Outro modo de expressar uma excitação senoidal é na forma de uma função

cosseno, como mostra a figura 3.2.

Fig. 3.2 – Gráfico da expressão senoidal )...2cos(.)( tfVtv m π=

Pois a expressão da função cosseno, nada mais é que, a expressão da função

seno, deslocada de ω

π2 segundos:

cos(ωt)=sen(ωt+π/2) sen(ωt)=cos(ωt-π/2) Exemplo: Quanto a senóide ( ) ( )o302cos1 += ttv está defasada de ( ) ( )o18222 +−= tsentv ?

Vm ( )tVm ωcos

( )tsenVm ω

ω

π2 t

-Vm

Vm )( ϕω +tsenVm

( )tsenVm ω

ωϕ t

-Vm

Page 31: Apostila Eletricidade

31

( ) ( )o180+=− tsentsen ωω

( ) ( ) ( )ooooo 90180182cos218018222 +++=++= ttsentv ( ) ( )o1082cos22 += ttv

I.1 RELAÇÕES TRIGONOMÉTRICAS Para o gráfico da figura 3.3, pode se tirar as seguintes relações:

( )ϕsenBAB 22 += e ( )ϕcos22 BAA += ;

( )( ) ( )ϕϕϕ tan

cos==

senAB → ⎟

⎠⎞

⎜⎝⎛= −

AB1tanϕ

)cos()()cos( 22 ϕωωω ++=+ tBAtBsentA

Fig. 3.3 – Relações Trigonométricas I.2 RELAÇÃO COM NÚMEROS COMPLEXOS Lembrando que um número complexo Nc, pode ser representado no plano

cartesiano como mostra a figura 3.4, sua representação matemática é dada por: Nc=A+jB Sendo: ( )ϕsenBAB 22 += e ( )ϕcos22 BAA += ;

v2(t) v1(t)

ω

o78ω

o30 t

22 BA + B φ A

Page 32: Apostila Eletricidade

32

Onde: cNBA =+ 22 e ϕ=∠=⎟⎠⎞

⎜⎝⎛−

cNAB1tan

Fig. 3.4 – Representação de um número complexo no plano cartesiano. A representação deste número na forma polar é dada por:

( ) ( ) ϕϕϕ jccc eNsenNjN =+cos

Exercícios: 1. Calcular o período das seguintes senóides: a) ( )o335cos4 +t

b) ⎟⎠⎞

⎜⎝⎛ −+⎟

⎠⎞

⎜⎝⎛ +

623

42cos ππ tsent

c) ( )tπ2cos6 2. Calcular a amplitude e a fase da seguinte senóide: a) ( ) ( )tsent 242cos3 + 3. Dada a tensão ( ) ( )o45400cos100 += ttv π , deerminar: a) sua amplitude; b) seu período; c) seu ângulo de fase, em radianos e graus; d) sua freqüência, em Hertz e rad/s; e) quantos graus ela está adiantada ou atrasada da corrente

( ) ( )o17400cos2 −= tti π A. 4. Converter as seguintes funções para funções cosseno com amplitudes

positivas: a) ( )o1526 +tsen ; b) ( )o104cos2 +− t ; c) ( ) ( )tsent 5155cos8 − . 5. Determinar a defasagem de v1(t) em relação a v2(t). a) ( ) ( )o304cos31 −= ttv , ( ) ( )tsentv 452 = ;

Im Nc B φ A Re

Page 33: Apostila Eletricidade

33

b) ( ) ( )ttv 4cos101 = , ( ) ( ) ( )tsenttv 4124cos52 += ; c) ( ) ( ) ( )( )tsenttv 4834cos201 += , ( ) ( ) ( )tsenttv 444cos32 += ;

Page 34: Apostila Eletricidade

34

ANEXO II - FASORES Uma senóide também pode ser representada pela forma fasorial. Se

( ) ( )ϕω += tVtv m cos , então V fasorial será dada por

ϕϕ ∠==•

mj

m VeVV Como ( ) ( ) ( )[ ] [ ]tjj

mtj

mm eeVeVtVtv ωϕϕωϕω ReRecos ==+= + , então: Neste caso, trabalha-se com o número complexo inteiro (parte real e

imaginária), pois assim o valor fica uma forma mais compacta; só no valor final é retirada a parte real do número complexo.

Exemplo 1: Fazer a soma das duas tensões alternadas, v1(t)=8cos(2t+30º) e

v2(t)=2cos(2t+15º). ( ) ( ) ( ) ( )oo 152cos4302cos821 +++=+ tttvtv , passando para relação

fasorial:

86,3035,1928,6448 153021 jjeeVV jj +++=+=+••

o659,11035,579,10 ∠=+=

jV ( ) ( )o652cos9,11 += ttv

II.1 RELAÇÃO TENSÃO-CORRENTE PARA FASORES

A relação tensão corrente para fasores é similar a lei de Ohm para

resistores. Porém neste caso, esta relação é conhecida como IMPEDÂNCIA.

( )φϕφϕ

−∠=⇒∠∠

==••

m

m

m

m

IV

ZIV

ZI

V

II.2 IMPEDÂNCIA E ADMITÂNCIA A impedância segue as mesmas regras que a resistência em um circuito

resistivo, e por ter como unidade a relação volts por ampéres, é medida em ohms. E pode ser escrita na forma retangular por:

jXRZ +=•

,

Onde ⎥⎦⎤

⎢⎣⎡ •

ZRe é a componente resistiva, e ⎥⎦⎤

⎢⎣⎡=•

ZX Im é a componente

reativa, ou reatância.

Page 35: Apostila Eletricidade

35

22 XRZ +=•

e •

Z = φ = arctg ⎟⎠⎞

⎜⎝⎛

RX

ϕcos•

= ZR e ϕsenZX•

=

No caso de um resistor, a impedância é puramente resistiva, sendo sua

reatância zero. Impedâncias de indutores e capacitores são reatâncias puras, tendo a componente resistiva zero.

a) Circuito Puramente Resistivo :

••

=VE R

VI

= o0 = R

E•

o0

••

= EE o0

b) Circuito Puramente Indutivo :

•••

== EVE o0 = •

V o0

LjZ L ω=•

LL jXZ =•

LjXVI•

= = LjX

V•

o0 . jj =

LX

Vj•

− . o0 =

LX

V•

- o90 ⇒ Corrente atrasada de

90º em relação à tensão

c) Circuito Puramente Capacitivo :

Page 36: Apostila Eletricidade

36

•••

== EVE o0 = •

V o0

CCC jXC

jjj

CjjXZ −=−==−=

ωω1.1

CjXVI

−=

••

= CjX

V•

− o0 .

jj =

CX

Vj•

. o0 =

CX

V•

o90 ⇒ Corrente adiantada de

90º em relação a tensão

Portanto , no caso geral, pode-se dizer que, se X=0 o circuito é puramente

resistivo, já se X>0, o circuito é puramente indutivo; e se X<0, é o caso em que o circuito e puramente capacitivo.

Obs.: As associações de impedância são feitas da mesma forma que as

associações de resistências:

SÉRIE: NS ZZZZ••••

+++= ...21

PARALELO: •••• +++=NP ZZZZ

1...111

21

Exemplo 2 : Para o circuito a seguir, calcular a corrente e as quedas de tensão, montado o diagrama fasorial.

Ω=== − 4,7510.200.60.22 3ππfLX L

Ω=+=+= 4,964,7560 2222LXRZ

Page 37: Apostila Eletricidade

37

622,04,96

60cos ===ZRϕ o5,51=ϕ

AZEI °−∠=

°∠== 5,5104,1

5,514,96100

VIRVR °−∠=°−∠== 5,514,625,5104,1.60.VIXV LL °∠=°−∠°∠== 5,384,785,5104,1.904,75.

Exercícios:

1. Calcular o valor da corrente num circuito puramente capacitivo, onde a capacitância é 20 µF, e a tensão aplicada 110V/60Hz. Esboce as Respostas Fasorial e Temporal.

2. Determinar o valor da capacitância no circuito abaixo:

3. No circuito abaixo, a fonte possui freqüência ajustável. Calcule o valor da corrente para as seguintes freqüências.

XL VL

|Z| 38,5º E

ϕ R -51,5º

VR

Page 38: Apostila Eletricidade

38

a) 250 Hz b) 60 Hz c) 20 Hz d) 0 Hz (Tensão Contínua)

4. Um circuito C.A. com RL em série tem uma corrente de 1A de

pico com R= 50 Ω e XL = 50Ω . Calcular VR, VL, E. Faça o diagrama de fasores entre E e I. Faça também o diagrama de tempo de i(t),vR(t),vL(t) e e(t).

5. Um circuito RC em série tem uma corrente de pico de 1A com R=50Ω e XC=120Ω. Calcule VR,VC, E. Faça o diagrama de fasores de E e I. Desenhe também o diagrama de tempo i(t),vR(t), vC(t) e e(t).

6. Calcular os valores de i(t) e v(t).

v(t)=4cos(1000t)V

L1=0,05H

L2=0,2H

L3=0,1H

C1=10µF

C2=2,5µF

i(t) L1 L3 L2 + v(t) v1(t) C2 _ C1

+ -