28
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE LICENCIATURA EM FÍSICA II Encontro Catarinense do PIBID Univali-Itajai (21 e 22/072014) OFICINA: Momento da Física Alex Bellucco do Carmo, Tatiane Flores, Mario H. Calegari, Paulo H. Zancan, David Willian, Eduardo L. Brugnago, OdirleiForster e GeovanaNarloch. II Encontro Catarinense do PIBID Univali-Itajai (21 e 22/072014)

Apostila II EC

  • Upload
    lekiet

  • View
    228

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

II Encontro

Catarinense

do PIBID Univali-Itajai (21 e 22/072014)

OFICINA:

Momento da Física

Alex Bellucco do Carmo, Tatiane Flores, Mario H. Calegari, Paulo H. Zancan, David Willian,

Eduardo L. Brugnago, OdirleiForster e GeovanaNarloch.

II Encontro

Catarinense

do PIBID Univali-Itajai (21 e 22/072014)

Page 2: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Conteúdo O Minicurso e as Atividades Investigativas ........................................................................................................................ 3 Disco Flutuante ................................................................................................................................................................... 4 Periscópio ............................................................................................................................................................................ 8 Lâmpada de Lava .............................................................................................................................................................. 11 O olho que tudo inverte ..................................................................................................................................................... 16 Anel de Thompson ............................................................................................................................................................ 21 Lata Ioiô ............................................................................................................................................................................ 24 Câmara Escura .................................................................................................................................................................. 26

Page 3: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

O Minicurso e as Atividades Investigativas

O minicurso “Momento da Física – Atividades Experimentais Investigativas” é resultado

do trabalho dos acadêmicos do curso de licenciatura em física da Universidade do Estado de Santa

Catarina (UDESC), no Programa Institucional de Iniciação à Docência (PIBID), que visa

aperfeiçoar e valorizar a formação docente no Brasil1.

Nesse programa,os estudantes recebem bolsas para desenvolver e aplicar atividades

voltadas para ensino, junto com um professor orientador da instituição e um professor supervisor de

uma escola conveniada da rede pública.Dentre as diferentes atividades realizadas, tais como

embasamento teórico, acompanhamento de regências, monitorias etc., construímos propostas de

ensino experimentais a partir de uma perspectiva de ensino por investigação.

Essa concepção de ensino tem por objetivo desencadear uma aprendizagem mais eficaz

aproximando os estudantes do processo de construção da ciência, diminuindo assim a distância

entre a física e a sala de aula. Dessa forma, com elas busca-se trazer para a escola parte das formas

como os cientistas aprendem e constroemnovosconhecimentos.

Tanto na física quanto na sala de aula, as atividades investigativas envolvem as seguintes

características:

Desenvolvimento de uma questão de pesquisa;

Elaboração e testes de hipóteses;

Argumentação;

Solução do problema, produzindo uma explicação;

Construção do raciocínio proporcional do tipo “se, então, portanto”, o que envolve a seleção

e a relação de variáveis relevantes à solução do problema e à necessidade de uma nova

palavra/conceito.

No contexto da sala de aula deve-se considerar os seguintes conhecimentos para que os

alunos se envolvam nessas situações de ensino:

A relevância de um problema para um início da construção do conhecimento;

A passagem da ação manipulativa para a ação intelectual;

A importância da tomada de consciência dos próprios atos para a construção do

conhecimento;

As diferentes etapas das explicações científicas.

O estímulo à participação ativa do estudante;

A importância da relação aluno-aluno;

O papel do professor como elaborador de questões;

A criação de um ambiente encorajador;

O ensino a partir do conhecimento que o aluno traz para a sala de aula;

O conteúdo (o problema) tem que ser significativo para o aluno;

A relação ciência, tecnologia e sociedade;

A passagem da linguagem cotidiana para a linguagem científica.

A seguir apresentamos algumas atividades experimentais investigativas construídas pelo

grupo de bolsistas2.

1 Para maiores informações acesse: http://www.capes.gov.br/educacao-basica/capespibid.

2 Para maiores informações sobre o subprojeto de física do PIBID-UDESC acesse a: http://www.cct.udesc.br/?id=1250.

Page 4: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Disco Flutuante

Objetivo

Demonstrar a força de atrito

Material

1 balão;

1 CD ou DVD;

Super Bonder;

1 rolha de cortiça;

1 prego;

Martelo;

Procedimento Experimental

1 Usando o martelo e o prego, faça um furo no meio da rolha de cortiça;

2 Passe cola na rolha cortiça e cole no centro do CD/DVD;

Page 5: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

3 Encha o balão com ar e enrole o bico para evitar que o ar escape;

4 Prenda o bico do balão à rolha;

5 Coloque o disco sobre uma mesa, com o balão para cima. Desenrole o bico do balão para

que o ar comece a ser soprado pelo furo na rolha de cortiça e dê um pequeno impulso no

disco.

Dicas

Ao furar a rolha com o prego é aconselhável ficar passando o prego no furo várias vezes,

pois esse processo repetitivo retira restos da rolha dentro do furo, o que impede parcialmente

a passagem do ar.

Não empurrar com muita força no instante de realizar o experimento, pequenos petelecos

são o suficientes.

O que observar?

Inicialmente o disco sem o balão tem uma força de atrito característico entre o disco e a

superfície, ao ser colocado o balão expulsando ar por baixo do disco observa-se uma redução nessa

força de atrito entre o disco e a superfície.

Questões para a discussão

Porque alguns objetos “deslizam” mais que os outros?

O que é o atrito?

Page 6: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Qual a importância do atrito?

Refletindo e Concluindo

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Conteúdo

Quando empurramos ou puxamos um corpo qualquer de massa m, percebemos que existe

certa dificuldade; e, em alguns casos, percebe-se que o corpo não entra em movimento. Qual a

explicação para isso? O que acontece é que toda vez que puxamos ou empurramos um corpo,

aparece uma força que é contrária ao movimento. Essa força é chamada de força de atrito. A

definição de força de atrito é a força natural que atua sobre os corpos quando estes estão em contato

com outros corpos e sofrem a ação de uma força que tende a colocá-lo em movimento, e ela é

sempre contrária ao movimento ou à tendência de movimento. A força de atrito aparece em razão

das rugosidades existentes nas superfícies dos corpos. O atrito depende da força normal entre o

objeto e a superfície de apoio; quanto maior for a força normal, maior será a força de atrito.Passar

um dedo pelo tampo de uma mesa pode ser usado como exemplo prático: ao pressionar-se com

força o dedo sobre o tampo, o atrito aumenta e é mais difícil manter o dedo se movendo pela

superfície.

Ao contrário do que se poderia imaginar, mantidas as demais variáveis constantes, a força de

atrito não depende da área de contato entre as superfícies, apenas da natureza destas superfícies e da

força normal que tende a fazer uma superfície "penetrar" na outra, pois a força de atrito é gerada

pela rugosidade dos corpos. Ao ampliarmos as superfícies percebe-se que elas possuem uma certa

rugosidade, por mais que pareça as superfícies não são totalmente lisas. A figura a seguir ilustra

essa superfície ampliada, mostrando a rugosidade que gera o atrito.

Page 7: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

A energia dissipada pelo atrito é, geralmente, convertida em energia térmica e/ou quebra de

ligações entre moléculas, como ocorre ao lixar alguma superfície.

Referências 1. http://www.pontociencia.org.br/experimentos-interna.php?experimento=343

Acessado em 26/06/2013.

2. http://www.brasilescola.com/fisica/forca-atrito.htm

Acessado em 26/06/2013.

Page 8: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Periscópio

Objetivos

Mostrar como se pode enxergar acima de uma superfície (mar, muro, etc.);

Apresentar os conceitos referentes ao conteúdo de Reflexão em espelhos planos.

Material

Dois espelhos pequenos

Cano de PVC ou embalagem de papelão

Dois joelhos (PVC) de 90º

Epóxi

Procedimento Experimental 1. Cortar a curva dos joelhos de PVC com uma inclinação de 45º.

2. Com o Epóxi, cole os espelhos no recorte dos joelhos, com o lado espelhado para dentro.

Dicas

O ideal é que o espelho seja cortado no tamanho do corte feito nos joelhos. Caso utilize um

espelho retangular, tome cuidado com as bordas. É aconselhável levar os espelhos numa vidraçaria

para cortá-los no formato e poli-los.

O que observar? O periscópio é um acessório fundamental dos submarinos, usados para captar imagens acima

da água. Também teve largo uso em guerras, para observar o movimento inimigo de dentro de

trincheiras.

Questões para a discussão

“Com base no experimento, tente justificar a utilização deste instrumento em submarinos

e trincheiras.”

“O que acontece no experimento? Porque isso acontece?”

“Porque o ângulo utilizado no experimento foi de 45º? E se o ângulo fosse de 60º o que

aconteceria?”

“Porque a imagem vista pelo observador não está invertida, uma vez que é lida através

de espelhos?”

Refletindo e Concluindo

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Page 9: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Conteúdo

Espelhos

A maior parte dos espelhos que utilizamos é fabricada com uma das faces de uma placa de

vidro, que recebe uma fina camada de prata ou alumínio, sendo coberta por uma substância

protetora. Os espelhos que utilizamos para “ver” imagens ou produzir a sensação de espaços mais

amplos são planos, mas também existem os de superfícies curvas, como é o caso de faróis de

automóveis.

Um espelho plano possui uma superfície plana e lisa, que reflete regularmente a luz

incidente, ou seja, raios que incidem paralelamente na mesma direção, sofrendo, portanto uma

reflexão regular.

Leis da Reflexão

1ª Lei: O raio incidente (i), a reta normal (N) e o raio refletido (r) estão contidos em um mesmo

plano.

2ª Lei: Os ângulos de incidência e de reflexão são congruentes.

Associação de dois Espelhos Planos

Dois espelhos planos podem ser associados defrontando-se suas superfícies refletoras,

formando um ângulo α entre eles, variando de 0º a 180º.

O periscópio

Com o periscópio é possível olhar ao redor e por cima dos muros sem ser visto, isso é

possível devido às leis da reflexão. Por isso, os submarinos, quando viajam debaixo da água, podem

enxergar acima da superfície com a ajuda do periscópio.

Porém, o periscópio utilizado nos submarinos não usa os simples espelhos planos, usa

prismas ópticos construídos com as modernas técnicas de engenharia, mas utiliza também os

princípios básicos de óptica geométrica que estamos estudando.

Um periscópio básico utiliza dois espelhos paralelos, a certa distância um do outro. Os

espelhos devem estar num ângulo de 45°, pois, caso contrário, a imagem não ficará perfeita. Os

raios luminosos atingem o primeiro espelho, que os reflete para o segundo espelho; daí são

novamente refletidos para o visor.

O trajeto completo da luz possui a forma aproximada da letra "S", onde por uma das

extremidades a luz refletida pelos corpos a serem observados entra, e pela outra ela atinge os olhos

do observador, possibilitando que este veja o que, a princípio, estaria fora do seu alcance de visão.

O periscópio teria sido concebido primeiramente pelo russo Drzewiecki, em 1863.

Entretanto, o primeiro aparelho de que se tem notícia foi construído só em 1894, pelo italiano

Ângelo Salmoiraghi. O nome vem do grego periskopein, que significa “ver em volta”.

Page 10: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Por que acontece?

Porque a luz da imagem entra pela abertura de cima, atinge o espelho que reflete a luz para o

espelho de baixo. O espelho de baixo reflete a luz para o furo no qual você vê a imagem.

Referências

1. FUKE, Luis Felipe. Física para Ensino Médio, volume 3 – 1ª Edição – São Paulo: Saraiva,

2010.

2. http://www.feiradeciencias.com.br/sala09/09_14.asp

Acessado em 04/07/2013.

3. http://www.mundofisico.joinville.udesc.br/index.php?idSecao=8&idSubSecao=&idTexto=1

82

Acessado em 04/07/2013.

4. http://www.cienciamao.usp.br/tudo/exibir.php?midia=pmd&cod=_pmd2005_0801

Acessado em 11/07/2013.

Page 11: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Lâmpada de Lava

Objetivo

Ilustrar o fenômeno de dilatação dos líquidos

Material

1 vidro de conserva vazio com tampa metálica de 800mL;

Álcool de limpeza 46°;

Giz de cera colorido;

Óleo de soja;

Lâmpada incandescente 40W;

Lata metálica de achocolatado vazia;

Bocal de lâmpada;

Cabo de força (rabicho);

Procedimento Experimental

1. Em uma panela, derreta 80mL de óleo de soja com raspas de giz de cera (qualquer cor),

mexer bem até todo o giz de cera se dissolver e colorir o óleo. Deixe a mistura esfriar em

temperatura ambiente;

2. Limpe bem o frasco de conserva usando água e sabão. Seque-o bem com ajuda de um pano

seco e limpo;

3. Adicione o óleo colorido ao frasco e complete com álcool de limpeza, deixe um pequeno

espaço vazio de ar no interior do frasco;

4. Feche bem o vidro com a tampa metálica, e ponha frasco na vertical. Aguarde até todo o

óleo repousar no fundo no do frasco ;

5. Faça dois furos pequenos na lata de achocolatado em pó, um no fundo e o outro na lateral;

Page 12: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

6. Com uma chave de fenda e parafuso, prenda o bocal da lâmpada no fundo da lata usando o

furo feito anteriormente;

7. Passe a extremidade do cabo de força no furo lateral da lata. Descasque as pontas dos fios e

prenda-os na base do bocal;

8. Coloque a lâmpada no bocal;

Page 13: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

9. Coloque o vidro de conserva com a tampa para baixo na boca superior da lata de

achocolatado;

10. Ligue o cabo de força na tomada e aguarde 10 minutos;

Dicas

Tomar cuidado com a isolação do cabo de força no interior da lata, este nunca deve estar

livre para encostar no interior daquela. Certifique-se que está bem preso a base do bocal.

Use álcool de limpeza com a graduação indicada, outras graduações não funcionaram.

Evite de chacoalhar muito o vidro com o álcool e óleo, manuseie com cautela.

O que observar?

Após alguns minutos, gotas de óleo sobem para o topo do frasco, e retornam a

base de tempos em tempos.

Questões para a discussão

Por que álcool e óleo não se misturam?

Por que o óleo repousa no fundo do frasco?

Por que as gotas de óleo sobem e depois de certo tempo descem no interior do frasco?

Refletindo e Concluindo

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Page 14: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Conteúdo

Como funciona a lâmpada de lava? Duas leis físicas governam o funcionamento da lâmpada

de lava, elas explicam seu comportamento e também descrevem como este fenômeno ocorre

(descrição matemática) e seu porquê (explicação física). A seguir examinaremos a explicação física

da lâmpada de lava, sem abordar aspectos matemáticos. Da química, sabemos que o álcool e o óleo

são imiscíveis e não se misturam devido as suas peculiaridades associadas às ligações químicas

(polar e apolar, para o álcool e óleo respectivamente). A densidade de um corpo (no nosso caso, dos

líquidos) é a razão da massa de um corpo pelo seu volume. A densidade do óleo (densidade = 0,91

g/cm3) é ligeiramente maior do que o álcool (densidade = 0,79 g/cm3).

Entretanto, se as densidades são diferentes os líquidos deverão formar fases no interior do frasco, de

modo que o líquido com densidade maior tenderá para o fundo enquanto o líquido com densidade

menor tenderá à superfície. Este resultado é conhecido como lei de Arquimedes, no caso mais geral.

Desta lei podemos inferir o seguinte resultado para ao analisar o comportamento do óleo no interior

da lâmpada:

Se densidade do óleo diminui ----> flutua

Se densidade do óleo aumenta ----> afunda

Lembrando que o óleo tende a ficar no fundo da lâmpada de lava quando ela está desligada,

e isto ocorre porque a densidade do óleo é ligeiramente maior que a densidade do álcool. Porém

sabemos que o volume de um líquido pode variar com a temperatura. Em geral a variação de um

volume de líquido é diretamente proporcional a variação de temperatura deste líquido. Este

resultado é conhecido como lei de dilatação térmica dos líquidos. Desta lei podemos inferir o

seguinte resultado para ao analisar o comportamento do óleo no interior da lâmpada:

Se a temperatura do óleo aumenta ----> volume do óleo aumenta

Se a temperatura do óleo diminui ----> volume do óleo diminui

Combinando as preposições inferidas da lei de Arquimedes e lei da dilatação dos líquidos, podemos

concluir que, para o óleo no interior do frasco:

Variação da temperatura do óleo ---> variação de volume do óleo ----> variação de

densidade do óleo.

Já que a densidade depende, em princípio, do volume. Mas como acorre esta variação? Sabemos, da

química, que a densidade é uma quantidade que é inversamente proporcional ao volume, isso

significa que:

Se volume do óleo aumenta -----> densidade do óleo diminui

Se volume do óleo diminui ------> densidade do óleo aumenta

Combinando os resultados das inferências acima, chegamos à conclusão que para o óleo no interior

do frasco:

Page 15: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Se temperatura aumenta ---> volume aumenta-----> densidade diminui----> flutua

Se temperatura diminui ---->volume diminui ------> densidade aumenta----> afunda

Na lâmpada de lava estabelecemos uma diferença de temperatura entre o topo e o fundo do frasco,

onde se encontra o óleo, devido a irradiação de calor da lâmpada incandescente. No fundo do frasco

a temperatura é maior do que no topo, onde o calor se perde para o ambiente por irradiação. Então,

considerando o resultado acima, podemos observar que o óleo ao ser aquecido no fundo do frasco

flutua até a superfície, quando chega a superfície este resfria-se e novamente retorna ao fundo. Este

ciclo se repete desde que exista diferença de temperatura entre os extremos da lâmpada de lava.

Referências

1. Ramalho, Nicolau e Toledo. Os Fundamentos da Física, Vol. 02, 7ª Ed. Editora Moderna;

2. Antônio Máximo e Beatriz Alvarenga. Física (Ensino Médio), Vol.02, 1ª Ed. Editora

Scipione;

3. Helou, Gualter e Newton. Tópicos de Física, Vol. 02, 16ª Ed. Editora Saraiva.

Page 16: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

O olho que tudo inverte

Objetivo

Relacionar o experimento “O olho que tudo inverte” com o funcionamento do globo ocular e

os defeitos de visão.

Material

Bola de isopor (oca) com 15,00 cm de diâmetro;

Lente de uma lupa de aproximadamente 4,00 cm de diâmetro;

Copo plástico (do tipo chá matte, de fundo branco/ preto);

Papel vegetal;

Cola quente e cola branca;

Estilete e tesoura;

Canetas coloridas (preto, vermelho, azul, verde, marrom), lápis e compasso;

Tampa de garrafa pet;

Lixa

Procedimento Experimental

1. Com o auxílio de uma tampa de garrafa pet, desenhar um círculo de 3,00 cm numa metade

da bola de isopor. Na outra metade da bola, utilize o compasso para auxiliar no desenho de

outro círculo com 6,50 cm. Esse tamanho pode variar de acordo com o copo que será

encaixado no isopor.

2. Com os dois círculos desenhados, utilize o estilete para cortar o isopor. Em seguida, lixe os

dois orifícios.

3. Com a tesoura corte o fundo do copo plástico.

4. Utilizando a cola branca, cole o papel vegetal na parte com a abertura maior do copo de

plástico, no mesmo formato. Espere secar.

5. Retire a lente da lupa. No orifício menor, cole com a cola quente a lente da lupa.

6. Encaixe o copo plástico no orifício maior de modo que a abertura maior do copo fique para

o lado de fora. Ajuste o copo até que se se obtenha uma imagem nítida.

7. Personalize o olho com as canetas coloridas.

Dicas

O copo plástico pode ser substituído por um rolo de costura ou qualquer outro material em

formato cônico e que se encaixe no orifício do isopor.

Page 17: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Com o experimento pronto, tente ajustar o copo em posições diferentes, de forma a

possibilitar a observação dos problemas de visão (miopia e hipermetropia). Caso seja

necessário, aumente o tamanho do diâmetro da bola de isopor.

O ideal é que esse experimento seja aplicado durante o dia, de preferência em uma área

externa.

O que observar? A partir das observações e concepções sobre o aparato experimental, a imagem fica mais ou menos

nítida, será possível realizar a sistematização do funcionamento do olho humano, relacionando a

lente convergente do experimento com a lente convergente do globo ocular, o cristalino. Também,

será possível relacionar a formação de imagem do movimento do copo no experimento com os

principais problemas de visão (miopia, hipermetropia, astigmatismo, presbiopia).

Questões para a discussão 1. “O que você observou no olho mágico ao mexer o copo?”

2. “Porque a imagem está invertida?”

3. “Qual a relação do experimento com o olho humano?”

4. “Como podemos associar esse conceito com os defeitos da visão?”

Refletindo e Concluindo

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Conteúdo

- Por que vemos a imagem invertida? Qual a relação com o olho humano?

A lente de nosso olho, chamada de cristalino, é convergente. As imagens que essa lente forma sobre

a retina são invertidas em relação aos objetos vistos. O cérebro se encarrega de fazer a interpretação

normal dessa imagem e não percebemos a inversão. Portanto, se uma imagem não invertida se

formar sobre a retina, o cérebro vai interpretá-la como invertida. É o que acontece com o que vemos

com o nosso experimento “olho que tudo inverte”.

A luz incide na córnea e converge até a retina, formando as imagens. Para esta formação de

imagem, acontecem vários fenômenos fisiológicos, no entanto, para o estudo da óptica podemos

considerar o olho como uma lente convergente, com distância focal variável. Sendo representado:

Page 18: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Os olhos são praticamente esféricos e por isso recebem o nome de globos e estão alojados

e protegidos dentro das cavidades orbitais da face. A estrutura do globo ocular é constituída de

diversos elementos, mas vamos ver basicamente os principais para o nosso estudo.

Córnea: é a membrana transparente que está na parte da frente do olho, onde vemos o

branco do olho e a íris.

Íris: é o círculo que determina a cor de cada olho.

Pupila: é a abertura central da íris, por onde a luz entra, e seu diâmetro varia conforme a

intensidade da luz que recebe.

Cristalino: é uma estrutura com formato de uma lente convergente, que focaliza toda a luz

que entra no olho, formando as imagens na retina.

Retina: Local onde a imagem é formada, composta por células sensíveis, que transformam a

energia luminosa em sinais nervosos, que são enviados ao cérebro, através do nervo óptico.

- Como podemos associar esse conceito com os defeitos da visão?

Page 19: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

A diferença entre esses três problemas que atrapalham a visão está no lugar do olho em que os raios

de luz convergem para formar a imagem. "Em uma pessoa normal, os raios de luz passam pela

córnea, que é a primeira lente do nosso olho, e quando chegam à outra lente, a retina, eles

convergem - ou seja, se juntam em um mesmo ponto para formar a imagem"[6].

MIOPIA

Problema: Dificuldade de enxergar de longe. O olho do míope é longo e a imagem se forma antes

da retina.

Solução: Usar as chamadas lentes côncavas negativas, que fazem os raios convergirem mais para

trás, sobre a retina.

HIPERMETROPIA

Problema: Dificuldade de enxergar de perto. O olho é pequeno e a imagem se forma depois da

retina.

Solução: Usar as chamadas lentes convexas positivas, que fazem os raios convergirem à frente —

de novo, na retina.

ASTIGMATISMO

Problema: O astigmata apresenta um defeito na córnea, com raios de curvatura irregulares,

ocasionando uma visão embaçada/manchada dos objetos.

Solução: Usar as chamadas lentes cilíndricas, que fazem os raios desses dois planos convergirem no

mesmo ponto.

PRESBIOPIA Problema: Apresenta como defeito o endurecimento da lente do olho, e portanto, a perda da

capacidade de acomodação visual. É popularmente conhecida como “vista cansada”.

Solução: Feita com o uso de lentes convergentes, como na hipermetropia.

Calculando o Grau do óculos

Popularmente, chama-se de "grau" o poder de óculos e lentes de mudar o ponto de convergência

dos raios de luz. Para os míopes, a conta é simples: grau = 1 / d, onde "d" é a distância em metros

até onde a pessoa tem visão nítida. Alguém que só enxerga bem até 0,5 metro, por exemplo, precisa

usar óculos de dois graus (1 / 0,5 = 2). Para a hipermetropia e o astigmatismo, o grau depende da

capacidade do olho de se ajustar ao problema ou do plano que se enxerga com mais nitidez.[6]

Page 20: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Referências

1. http://www.cienciamao.usp.br/tudo/exibir.php?midia=pmd&cod=_pmd2005_i3201

Acessado em 11/07/2013.

2. http://www.searadaciencia.ufc.br/sugestoes/fisica/oti3.htm

Acessado em 11/07/2013.

3. http://www.sofisica.com.br/conteudos/Otica/Instrumentosoticos/olhohumano.php

Acessado em 11/07/2013.

4. http://www.ensinodefisica.net/2_Atividades/flu-ilusao_de_optica.pdf

Acessado em 11/07/2013.

5. http://mundoestranho.abril.com.br/materia/qual-e-a-diferenca-entre-miopia-hipermetropia-e-

astigmatismo

Acessado em 11/07/2013.

6. FUKE, Luiz Felipe. YAMAMOTO, Kazuhito. Física para o Ensino Médio, volume 2 – 1 ed.

– São Paulo: Saraiva 2010.

7. http://www.portalsaofrancisco.com.br/alfa/corpo-humano-olho-humano

Acessado em 11/07/2013.

Page 21: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Anel de Thompson

Objetivos

Abordar o conceito de Indução Magnética a partir de um aparato experimental;

Contextualizar o experimento com dia a dia dos participantes;

Material

2 Bobinas (primária e secundária – ANEL);

Fonte de tensão alternada;

Núcleo de ferro.

Procedimento Experimental

1. O experimento consistirá em uma bobina de 360 voltas, ou um número próximo a esse, de

fio de cobre esmaltado, uma fonte de tensão de 220V;

2. uma haste - um núcleo de ferro em formato de “U”;

3. um anel de alumínio (ou cobre);

4. um interruptor para a função de “liga-desliga” do experimento (conforme a figura abaixo).

Ao ligar a bobina a uma força eletromotriz passa-se uma corrente elétrica pelo fio de cobre

enrolado. O uso da bobina consiste nessa passagem de energia, armazenando-a em forma de um

campo magnético, criando assim um fluxo magnético onde tende a se aumentar e induzir um objeto

próximo, no caso o anel, deixando-o com uma carga de mesmo sentido que o campo magnético da

bobina.

Dicas

Vale ressaltar que a fonte deve ser de tensão alternada, isso porque a Lei de Faraday diz que a

variação temporal de fluxo magnético gera uma corrente elétrica induzida, então temos que ter um campo

magnético variando, o que acontece se a tensão for alternada.

O que observar?

1) Observar o campo magnético formado nas proximidades. O que acontece com o ímã quando

não há tensão. E quando há tensão (aumenta a força magnética);

2) Observar que, assim que ligarmos a tensão alternada, o anel é repelido e “voa”;

3) Observar o anel flutuando;

4) Observar o calor no anel (enquanto flutua).

Questões para a discussão

O que acontece se eu aproximar um ímã do experimento (com tensão)?

O que vai acontecer quando ‘ligar’ a tensão?

Por que isso acontece?

Page 22: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Funciona com qualquer bobina secundária? Por quê?

Refletindo e Concluindo

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Conteúdo

Em 1820, Örsted descobriu que uma agulha magnética era desviada pela corrente elétrica.

Foi o ponto de partida para a descoberta do eletromagnetismo.

Quando Örsted mostrou que uma corrente elétrica gera um campo magnético à sua

volta,muitos físicos da época começaram a pensar no modo contrário, isto é, começaram a imaginar

se um campo magnético poderia gerar uma corrente elétrica. A questão era saber como isso poderia

ser feito, foi então que Faraday conseguiu provar que o inverso acontecia, isto é, Faraday provou

que era possível um campo magnético gerar uma corrente elétrica.

Podemos dizer que com uma simples movimentação de um ímã próximo a uma espira, isto

é, a um circuito elétrico fechado, é possível produzir corrente elétrica. A produção de corrente

elétrica por campos magnéticos recebeu o nome de indução eletromagnética e a corrente gerada

por meio desse processo é chamada de corrente induzida.

O procedimento experimental utiliza-se dessa descoberta de Öersted, funcionando

semelhante a um transformador no qual a bobina secundária consiste em apenas uma volta de fio –

de fato, um anel metálico. Quando a bobina primária é conectada através de uma fonte de tensão

alternada, a corrente induzida no anel secundário é alta e um forte campo magnético é gerado em

volta dele. Pela Lei de Lenz, o sentido da corrente induzida no anel secundário tende a ser oporao

campo magnético que lhe deu origem, ou seja, o campo gerado no anel irá se opor àquele produzido

pela bobina primária, e o anel é repelido fortemente.

APLICAÇÕES DO EXPERIMENTO

TRANSFORMADORES

Os transformadores de tensão são dispositivos capazes de aumentar ou reduzir valores de

tensão.

Um transformador é constituído por um núcleo, feito de um material altamente imantável, e duas

bobinas com número diferente de espiras isoladas entre si, chamadas primário (bobina que recebe a

tensão da rede) e secundário (bobina em que sai a tensão transformada).

O seu funcionamento é baseado na criação de uma corrente induzida no secundário, a partir

da variação de fluxo magnético gerada pelo primário.

A tensão de entrada e de saída são proporcionais ao número de espiras em cada bobina.

Sendo:

Com: é a tensão no primário;

é a tensão no secundário;

Page 23: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

é o número de espiras do primário;

é o número de espiras do secundário.

Por esta proporcionalidade concluímos que um transformador reduz a tensão se o

número de espiras do secundário for menor que o número de espiras do primário e vice-versa.

DISJUNTOR

O disjuntor é um componente essencial na atualidade e um importante mecanismo de segurança no

interior de uma casa. Sempre que a fiação elétrica recebe corrente muito elevada o disjuntor corta a

energia até que alguém possa resolver o problema. Sem os disjuntores (ou, como alternativa, os

fusíveis), a eletricidade doméstica seria impraticável, devido ao perigo potencial de

incêndios, danos resultantes de problemas na fiação elétrica ou falhas de equipamento.

Um disjuntor básico consiste de um simples interruptor, conectado a uma lâmina

bimetálica ou a um eletroímã. O diagrama abaixo mostra a configuração de um eletromagneto.

O fio fase no circuito conecta-se às duas extremidades do interruptor. Quando o interruptor é

ligado, a eletricidade pode fluir do terminal inferior através de um eletromagneto, subindo até um

contato móvel, depois, através de um contato fixo e saindo pelo terminal superior.

A eletricidade magnetiza o eletromagneto. O aumento da corrente ativa a força magnética

do eletromagneto, e a diminuição da corrente a reduz. Quando a corrente salta a níveis de risco, o

eletromagneto baixa uma alavanca metálica conectada ao mecanismo do interruptor; este se

desloca, separando o contato móvel do contato fixo e quebrando o circuito. A eletricidade, então, é

desligada.

Referências

1. http://eletronicos.hsw.uol.com.br/disjuntores.htmacessado 02/07/2014.

2. http://www.brasilescola.com/fisica/a-inducao-eletromagnetica.htm acessado 02/07/2014.

3. www.sofisica.com.br/conteudos/Eletromagnetismo/InducaoMagnetica/transformadores.

php acessado 02/07/2014.

4. http://www.brasilescola.com/fisica/a-lei-lenz.htm acessado 02/07/2014.

5. http://br.answers.yahoo.com/question/index?qid=20061010032804AAoePTS acessado

02/07/2014.

Page 24: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Lata Ioiô Objetivos

Abordar o conceito de conservação de energia a partir de um aparato experimental;

Ilustrar a transformação de energia cinética em energia potencial elástica e vice-versa;

Material

Uma lata com tampa (pode ser de achocolatado, leite em pó, suco ou semelhante);

Elástico;

Dois pregos (ou palitos de dentes);

E um parafuso com porca ou algum material alternativo (uma pilha, uma pedra).

Procedimento Experimental 1. Faça dois furos na lata, um no fundo e um na tampa;

2. Prenda o parafuso no meio do elástico;

3. Prenda as pontas do elástico em cada um dos furos com o auxílio dos pregos;

4. Agora é só rolar a lata e ver o que acontece!

Dicas

É importante que os furos estejam bem no centro da tampa e do fundo da lata.

O que observar?

A partir de um impulso, a lata entra em movimento e depois de um tempo, a mesma para e inicia o

retorno.

Questões para a discussão:

Por quê a lata realiza esse movimento?

O que tem na lata que faz com que ela realize esse movimento?

Qual a função do parafuso no sistema?

O que acontece com o elástico?

Refletindo e Concluindo

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

Page 25: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Conteúdo

Ao ser empurrado pra frente o elástico dentro da lata se enrola, pois está preso a um parafuso, que se

encontra parado em relação ao movimento da lata, isso ocorre porquea força de torção do elástico não é suficiente

para girar o parafuso junto com o movimento da lata.. Conforme o elástico vai se enrolando, ele vai acumulando

energia elástica. Ou seja, a energia cinética da lata vai sendo transformada em energia elástica. Após toda

enérgica cinética ser transformada em energia elástica, o carrinho para seu movimento e começa a retornar.

Ao retornar a energia elástica vai aos poucos se transformando novamente em energia cinética, até parar.

Page 26: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Câmara Escura

Objetivo

Entender a construção de uma câmara escura;

Verificar a propagação retilínea da luz;

Compreender o funcionamento de uma máquina fotográfica;

Observar que em uma câmara escura quando a distância entre as lentes ocular e objetiva é

variada o tamanho da imagem também varia e que quando o tamanho do obturador aumenta

perde-se nitidez na imagem;

Estabelecer uma relação entre o funcionamento de uma câmara escura e uma máquina

fotográfica.

Material

Uma folha de papel cartão;

Meia folha de papel vegetal;

Fita adesiva ou cola branca;

Tesoura;

Régua;

Objeto pontudo (agulha, compasso, ponta de lapiseira);

Lente do tipo "lupa" de qualquer tamanho, ou qualquer lente de aumento, mesmo que de

plástico.

Procedimento experimental:

1. Este é um modelo de câmera em duas partes: a objetiva, onde vai a lente (ou o furo) e a

ocular, que é onde está o visor (tela de papel vegetal).

2. Cada um dessas partes é na verdade uma pequena caixa. Se for usado o modelo (ANEXO 1),

simplesmente cole o molde sobre o papel cartão, usando cola bastão. Depois é só recortar e

dobrar, seguindo as instruções.

Objetiva:

3. A objetiva é uma caixa com uma tampa. Uma medida possível é de 6 cm por aresta menor e

15 cm para a maior.

Ocular:

4. A ocular é uma caixa sem tampa que deve ter uma aresta pouco menor que a objetiva (por

exemplo, 5,8 cm) de forma a poder deslizar dentro dela. Na ocular será afixado o papel

vegetal.

Dicas

Page 27: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Sugere-se que se use inicialmente a câmera escura de orifício (sem lente), para perceber que

esta funciona sem a necessidade de uma lente. Para uma boa visualização, deve-se apontar para

objetos fortemente iluminados, por exemplo, para uma paisagem ensolarada na janela ou para as

lâmpadas na sala.

Trabalhando com variáveis

Duas variáveis são importantes na câmera com orifício: o diâmetro do orifício e a distância entre

ocular e objetiva. A primeira pode ser variada aumento-se gradualmente o tamanho do orifício e

verificando o efeito que isso produz. A distância, por sua vez, pode ser variada movendo-se a ocular

no interior da objetiva.

Conteúdo

Em essência, toda máquina fotográfica é uma caixa internamente preta e vazia, provida de um

pequeno orifício por onde a luz, transmitida por um objeto, penetra e impressiona um filme

fotográfico fixado no lado oposto desse orifício.

No século XVI já se sabia projetar uma imagem utilizando uma câmara escura semelhante à da

figura acima, mas não se conhecia a maneira de registrar essa imagem. Isso ocorreu somente três

séculos depois, no ano de 1826, quando o francês Joseph Niepce tirou a primeira fotografia usando

uma câmara escura e um material sensível à luz, o filme fotográfico.

As câmaras escuras foram sendo aperfeiçoadas, atingindo um grau de sofistificação que muitas

vezes chega a esconder a simplicidade da sua função básica: fazer com que a luz, proveniente de um

objeto ou da cena que se deseja fotografar, incida sobre o filme, formando nele uma imagem.

Imagens:

A primeira coisa que se deverá observar é a formação de imagens no papel vegetal, que serão

sempre invertidas (de cabeça para baixo). Para a melhor visualização é importante encostar o olho

na parte aberta da ocular, de maneira que se forme um "ambiente escuro" para o olho.

Luminosidade:

Quando trabalhamos com a câmera sem lente verificamos que quanto maior o orifício, maior a

luminosidade. Porém, o que se ganha em luminosidade, perde-se em nitidez da imagem.

Tamanhos:

Ainda na câmera sem lente percebemos que é possível alterar o tamanho da imagem variando-

se a distância entre ocular e objetiva.

Referências Atividades desenvolvidas por alunos de graduação do curso de Licenciatura em Ciências da

Natureza para o Ensino Fundamental, da Escola de Artes, Ciências e Humanidades da USP.

Câmara Escura:

Atividades de Ciências da Natureza;

Autor: Luís Paulo de Carvalho Piassi;

Apostila Grupo de Reelaboração do Ensino de Física – GREF, vol. 2;

Page 28: Apostila II EC

UNIVERSIDADE DO ESTADO DE SANTA CATARINA

CENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE LICENCIATURA EM FÍSICA

Anexos

Anexo 1: Moldes para o Experimento – Câmara Escura.