41
Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM Estimating bivariate integer-valued moving average models with the generalized method of moments Isabel Silva 1 and Cristina Torres 2 and Maria Eduarda Silva 3 1 Faculdade de Engenharia da Universidade do Porto 2 ISCAP and Universidade do Porto 3 CIDMA and Faculdade de Economia da Universidade do Porto JOCLAD 2014 JOCLAD 2014 1 / 25

apresentacao_JOCLAD2014

Embed Size (px)

DESCRIPTION

Estimating bivariate integer-valued moving average models with the generalized method of moments

Citation preview

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Estimating bivariate integer-valued moving average

    models with the generalized method of moments

    Isabel Silva1 and Cristina Torres2 and Maria Eduarda Silva3

    1 Faculdade de Engenharia da Universidade do Porto2 ISCAP and Universidade do Porto

    3 CIDMA and Faculdade de Economia da Universidade do Porto

    JOCLAD 2014

    JOCLAD 2014 1 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Outline

    Motivation

    Bivariate INteger-valued Moving Average, BINMA(q1,q2), models

    Poisson BINMA(1, 1) Negative Binomial BINMA(1, 1)

    Parameter Estimation

    Method of Moments (MM) Generalized Method of Moments (GMM) MM and GMM for Poisson and Negative Binomial BINMA(1, 1) models Simulation Study

    Ongoing and Future work

    References

    Outline JOCLAD 2014 2 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    MotivationCount time series

    Discrete time non-negative integer-valued time series

    Motivation JOCLAD 2014 3 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    MotivationCount time series

    Discrete time non-negative integer-valued time series

    Traditional representations of dependence are either impossible or impractical:

    low counts, asymmetric distributions, excess zeros, overdispersion, . . .

    Motivation JOCLAD 2014 3 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    MotivationCount time series

    Discrete time non-negative integer-valued time series

    Traditional representations of dependence are either impossible or impractical:

    low counts, asymmetric distributions, excess zeros, overdispersion, . . .

    INteger-valued AutoRegressive Moving Average (INARMA) Models

    Multiplication in standard ARMA models for time series replaced by a suitable

    operation defined for integer values

    Motivation JOCLAD 2014 3 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    MotivationCount time series

    Discrete time non-negative integer-valued time series

    Traditional representations of dependence are either impossible or impractical:

    low counts, asymmetric distributions, excess zeros, overdispersion, . . .

    INteger-valued AutoRegressive Moving Average (INARMA) Models

    Multiplication in standard ARMA models for time series replaced by a suitable

    operation defined for integer values Thinning operation

    Motivation JOCLAD 2014 3 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    MotivationCount time series

    Discrete time non-negative integer-valued time series

    Traditional representations of dependence are either impossible or impractical:

    low counts, asymmetric distributions, excess zeros, overdispersion, . . .

    INteger-valued AutoRegressive Moving Average (INARMA) Models

    Multiplication in standard ARMA models for time series replaced by a suitable

    operation defined for integer values Thinning operation

    Binomial thinning operation [Steutel and Van Harn, 1979]

    Y: non-negative integer-valued random variable (r.v.), [0,1]

    Y = Yj=1 Bj

    {Bj} N0 (counting series): sequence of independent and identically distributed(i.i.d.) r.v., independent of Y : Pr(Bj = 1) = 1Pr(Bj = 0) =

    Motivation JOCLAD 2014 3 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    MotivationINARMA(p,q) processes

    Xt =

    AR part

    1 Xt1 + +p Xtp+t +1 t t1 + +q t tq

    MA part

    , t Z

    i,j 0, i = 1, . . . ,p1; j = 1, . . . ,q1 and p,q > 0, such that pi=1 i < 1{t} N0 : i.i.d. discrete r.v. (arrival or innovation process)

    Motivation JOCLAD 2014 4 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    MotivationINARMA(p,q) processes

    Xt =

    AR part

    1 Xt1 + +p Xtp+t +1 t t1 + +q t tq

    MA part

    , t Z

    i,j 0, i = 1, . . . ,p1; j = 1, . . . ,q1 and p,q > 0, such that pi=1 i < 1{t} N0 : i.i.d. discrete r.v. (arrival or innovation process)

    Multivariate time series of count

    Counts of several events observed over time and the counts are correlated

    Few models for multivariate count data:

    Dynamic models for multivariate count data need to account both for serial and

    cross-section correlation

    The generalization of the discrete distribution to multivariate context is not

    straightforwardMotivation JOCLAD 2014 4 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Bivariate Poisson Distribution [Kocherlakota and Kocherlakota, 1992; Johnson et al., 1997]

    Xi Po(i), i = 0,1,2X = X1 +X0Y = X2 +X0

    }

    (X,Y) BPo(1,2,0)

    Joint probability function:

    Pr[X = x,Y = y] = e(1+2+0)min(x,y)

    i=0

    xi1 yi2

    i0

    (x i)!(y i)!i!

    Motivation JOCLAD 2014 5 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Bivariate Poisson Distribution [Kocherlakota and Kocherlakota, 1992; Johnson et al., 1997]

    Xi Po(i), i = 0,1,2X = X1 +X0Y = X2 +X0

    }

    (X,Y) BPo(1,2,0)

    Joint probability function:

    Pr[X = x,Y = y] = e(1+2+0)min(x,y)

    i=0

    xi1 yi2

    i0

    (x i)!(y i)!i!

    Bivariate Negative Binomial Distribution [Marshall and Olkin, 1990; Cheon et al., 2009]

    X Po(1),Y Po(2), where Gamma(1,1)(X,Y) BNB(1,2,)Joint probability function:

    Pr[X = x,Y = y] =

    (1+x+y)(1)(x+1)(y+1)

    (1

    1+2+1

    )x( 21+2+1

    )y( 11+2+1

    )1

    Motivation JOCLAD 2014 5 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Bivariate INteger-valued Moving Average models

    Bivariate INMA(1) [Brnns and Nordstrm, 2000]: Aggregation of INAR(1) models

    BINMA models JOCLAD 2014 6 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Bivariate INteger-valued Moving Average models

    Bivariate INMA(1) [Brnns and Nordstrm, 2000]: Aggregation of INAR(1) models

    X1,t = 1,t +1,1 1,t1 + +1,q1 1,tq1X2,t = 2,t +2,1 2,t1 + +2,q2 2,tq2

    BINMA models JOCLAD 2014 6 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Bivariate INteger-valued Moving Average models

    Bivariate INMA(1) [Brnns and Nordstrm, 2000]: Aggregation of INAR(1) models

    X1,t = 1,t +1,1 1,t1 + +1,q1 1,tq1X2,t = 2,t +2,1 2,t1 + +2,q2 2,tq2

    BIINMA(q1,q2) model with independent binomial thinning operations

    arrivals following a discrete distribution [Quoreshi, 2006] arrivals following a bivariate Poisson and Negative Binomial distributions [Torres et al.]

    BINMA(q1,q2) model with dependent binomial thinning operations

    arrivals following a discrete distribution [Torres et al) arrivals following a bivariate Poisson and Negative Binomial distributions [Torres et al.]

    Same dependence structure as in Al-Osh and Alzaid (1988)

    BINMA models JOCLAD 2014 6 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    BINMA(1,1) models

    X1,t = 1,t +1,1 1,t1X2,t = 2,t +2,1 2,t1

    BINMA models JOCLAD 2014 7 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    BINMA(1,1) models

    X1,t = 1,t +1,1 1,t1X2,t = 2,t +2,1 2,t1

    Characterization of first- and second-order:

    Poisson BINMA(1, 1) Neg. Bin. BINMA(1, 1)

    Moment (j = 1,2) t BPo(1,2,) t BNB(1,2,)E[Xj,t] (j +)(1+j,1) j(1+j,1)

    Var(Xj,t) (j +)(1+j,1) j(1+j,1)+ 2j (1+ 2j,1)Xj(1) = Cov(Xj,t1,Xj,t) (j +)j,1 jj,1(1+j)

    X1,X2(0) = Cov(X1,t,X2,t) (1+1,12,1) 12(1+1,12,1)X1,X2(1) = Cov(X1,t,X2,t1) 1,1 121,1X2,X1(1) = Cov(X1,t1,X2,t) 2,1 122,1

    BINMA models JOCLAD 2014 7 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter Estimation

    Method of Moments

    Moment conditions:E[m(Xt,)] = 0

    {Xt : t = 1, ...T} : observed sample : unknown q1 parameter vector with true value 0 m(Xj,t,) : continuous p1 vector function of E[m(Xt,)] exist and be finite for all t and

    Parameter Estimation JOCLAD 2014 8 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter Estimation

    Method of Moments

    Moment conditions:E[m(Xt,)] = 0

    {Xt : t = 1, ...T} : observed sample : unknown q1 parameter vector with true value 0 m(Xj,t,) : continuous p1 vector function of E[m(Xt,)] exist and be finite for all t and

    The MM estimator T solves the analogous sample moment conditions

    mT() = T1T

    t=1

    m(Xt,) = 0

    Parameter Estimation JOCLAD 2014 8 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter Estimation

    Generalized Method of Moment estimator [Hansen, 1982]

    The GMM estimator minimizes a quadratic form

    QT() = mT()WTmT()

    where WT any symmetric and positive definite weight matrix

    WT = (Cov(mT()))1

    Parameter Estimation JOCLAD 2014 9 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter Estimation

    Generalized Method of Moment estimator [Hansen, 1982]

    The GMM estimator minimizes a quadratic form

    QT() = mT()WTmT()

    where WT any symmetric and positive definite weight matrix

    WT = (Cov(mT()))1

    Under some assumptions about the structure of m(Xt,), Xt and the parameterspace, the GMM estimator T is

    Weakly Consistent Asymptotically Normal(

    MT( T)WT VT WT MT( T)) 12 (

    MT( T)WT MT( T))

    T(

    T 0)

    dN(0, Iq

    )

    where VT = TVar[mT( 0)] and MT() =mT ()

    Parameter Estimation JOCLAD 2014 9 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter Estimation

    MM and GMM for Poisson BINMA(1, 1) models{

    Xj,1, ...,Xj,T , j = 1,2}

    : sample of Poisson BINMA(1, 1)

    = (1,1,1,2,1,2,)

    m(Xj,t,) =

    X1,t (1 +)(1+1,1)X2,t (2 +)(1+2,1)X1,t1X1,t [(1 +)1,1 +(1 +)2(1+1,1)2]X2,t1X2,t [(2 +)2,1 +(2 +)2(1+2,1)2]X1,tX2,t1 [1,1 +(1 +)(1+1,1)(2 +)(1+2,1)]X1,tX2,t [(1+1,12,1)+(1 +)(1+1,1)(2 +)(1+2,1)]X2,tX1,t1 [2,1 +(1 +)(1+1,1)(2 +)(1+2,1)]

    Parameter Estimation JOCLAD 2014 10 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter Estimation

    MM and GMM for Poisson BINMA(1, 1) models

    Method of Moments: p = q = 5

    j,1 =j(1)

    1 j(1), j =

    xj

    (1+ j,1) , = 1,2(0)

    1+ 1,12,1, j = 1,2

    xj is the sample mean of{

    Xj,t , t = 1, ...,T}

    for j = 1,2 j(1) is the sample autocorrelation in lag 1, for j = 1,2 1,2(0) is the sample cross-covariance in lag 0

    Parameter Estimation JOCLAD 2014 11 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter Estimation

    MM and GMM for Poisson BINMA(1, 1) models

    Method of Moments: p = q = 5

    j,1 =j(1)

    1 j(1), j =

    xj

    (1+ j,1) , = 1,2(0)

    1+ 1,12,1, j = 1,2

    xj is the sample mean of{

    Xj,t , t = 1, ...,T}

    for j = 1,2 j(1) is the sample autocorrelation in lag 1, for j = 1,2 1,2(0) is the sample cross-covariance in lag 0

    Generalized Method of Moments: q = 7 > p = 5

    T = argmin

    (mT()WTmT()

    )

    WT = (Cov(mT()))1

    Parameter Estimation JOCLAD 2014 11 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter EstimationMM and GMM for Negative Binomial BINMA(1, 1) models{

    Xj,1, ...,Xj,T , j = 1,2}

    : sample of Negative Binomial BINMA(1, 1)

    = (1,1,1,2,1,2,)

    m(Xj,t,) =

    X1,t 1(1+1,1)X2,t 2(1+2,1)X21,t [1(1+1,1)+ 21 (1+ 21,1)+ 21 (1+1,1)2]X22,t [2(1+2,1)+ 22 (1+ 22,1)+ 22 (1+2,1)2]X1,t1X1,t [11,1(1+1)+ 21 (1+1,1)2]X2,t1X2,t [22,1(1+2)+ 22 (1+2,1)2]X1,tX2,t [12((1+1,12,1)+(1+1,1)(1+2,1))]X1,tX2,t1 [12(1,1 +(1+1,1)(1+2,1))]X2,tX1,t1 [12(2,1 +(1+1,1)(1+2,1))]

    Method of Moments: p = q = 5

    Generalized Method of Moments: q = 9 > p = 5Parameter Estimation JOCLAD 2014 12 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter EstimationSimulation Study

    Illustrate the small sample properties of MM and GMM estimators

    Compare their behaviour

    Analyse the choice/number of moment conditions

    Parameter Estimation JOCLAD 2014 13 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Parameter EstimationSimulation Study

    Illustrate the small sample properties of MM and GMM estimators

    Compare their behaviour

    Analyse the choice/number of moment conditions

    1000 realizations of Poisson and Negative Binomial BINMA(1, 1) models

    T = 200, 500 and 1000 observations

    {(0.1,1,0.1,1,0.5),(0.1,1,0.1,1,1),(0.1,1,0.5,3,0.5),(0.1,1,0.5,3,1),(0.1,3,0.5,1,0.5),(0.1,3,0.5,1,1),(0.1,3,0.9,1,0.5),(0.1,3,0.9,1,1),

    (0.5,1,0.5,1,0.5),(0.5,1,0.5,1,1)}MM and GMM

    Initial values for GMM: MM

    BN BINMA(1, 1): Initial values for MM: (0.5,1,0.5,1,1)

    Parameter Estimation JOCLAD 2014 13 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Poisson BINMA(1, 1) models

    Sample mean bias and sample standard deviation (in brackets)

    T = 200 T = 500 T = 1000

    0(i) MM GMM MM GMM MM GMM1,1 = 0.1 0.015 0.035 0.000 0.001 -0.001 -0.008

    (0.075) (0.119) (0.049) (0.073) (0.038) (0.056)

    1 = 3 0.475 -0.047 0.522 0.038 0.521 0.071(0.318) (0.429) (0.205) (0.289) (0.157) (0.240)

    2,1 = 0.9 -0.097 -0.185 -0.050 -0.101 -0.025 -0.047(0.122) (0.251) (0.089) (0.181) (0.067) (0.143)

    2 = 1 0.630 0.322 0.571 0.165 0.542 0.097(0.219) (0.525) (0.141) (0.324) (0.103) (0.222)

    = 1 -0.758 -0.051 -0.756 -0.027 -0.755 -0.029(0.062) (0.281) (0.040) (0.186) (0.028) (0.132)

    Parameter Estimation JOCLAD 2014 14 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Poisson BINMA(1, 1) models

    Sample mean bias and sample standard deviation (in brackets)

    T = 200 T = 500 T = 1000

    0(i) MM GMM MM GMM MM GMM1,1 = 0.1 0.020 0.042 0.002 0.010 -0.001 0.002

    (0.077) (0.130) (0.052) (0.080) (0.039) (0.061)

    1 = 3 0.113 -0.074 0.159 -0.005 0.167 0.007(0.288) (0.396) (0.201) (0.272) (0.146) (0.207)

    2,1 = 0.5 -0.011 -0.011 -0.005 -0.005 0.001 0.004(0.136) (0.216) (0.086) (0.152) (0.061) (0.109)

    2 = 1 0.178 0.056 0.169 0.030 0.163 0.010(0.204) (0.307) (0.127) (0.209) (0.094) (0.156)

    = 0.5 -0.331 -0.021 -0.330 -0.010 -0.330 -0.005(0.067) (0.204) (0.043) (0.135) (0.032) (0.098)

    Parameter Estimation JOCLAD 2014 15 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Poisson BINMA(1, 1) models

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_10000.2

    0

    0.2

    0.4

    0.6

    0.8

    Bias 1,1

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_10000.5

    0.3

    0.1

    0.1

    0.3

    0.5

    Bias 2,1

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_1000

    1

    0.5

    0

    0.5

    1

    Bias 1

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_1000

    0.5

    0

    0.5

    1

    Bias 2

    MM_500 GMM_200 MM_500 GMM_500 MM_1000 GMM_1000

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    Bias

    Poisson BINMA(1,1), 1,1

    =0.1; 2,2

    =0.5; 1=3;

    2=1; =0.5

    Parameter Estimation JOCLAD 2014 16 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Negative Binomial BINMA(1, 1) models

    Sample mean bias and sample standard deviation (in brackets)

    T = 200 T = 500 T = 1000

    0(i) MM GMM MM GMM MM GMM1,1 = 0.5 -0.024 0.006 -0.008 0.004 -0.007 0.001

    (0.117) (0.165) (0.079) (0.097) (0.057) (0.060)

    1 = 1 0.033 -0.022 0.016 -0.007 0.007 -0.007(0.135) (0.150) (0.085) (0.091) (0.058) (0.062)

    2,1 = 0.5 -0.025 0.000 0.003 -0.008 -0.001 -0.006(0.343) (0.169) (0.310) (0.100) (0.267) (0.066)

    2 = 1 0.065 -0.016 0.039 0.001 0.029 -0.001(0.269) (0.150) (0.226) (0.095) (0.181) (0.063)

    = 1 -0.072 -0.076 -0.050 -0.041 -0.035 -0.023(0.262) (0.247) (0.181) (0.151) (0.136) (0.110)

    Parameter Estimation JOCLAD 2014 17 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Negative Binomial BINMA(1, 1) models

    Sample mean bias and sample standard deviation (in brackets)

    T = 200 T = 500 T = 1000

    0(i) MM GMM MM GMM MM GMM1,1 = 0.1 0.012 0.014 -0.004 0.001 -0.001 0.002

    (0.077) (0.083) (0.051) (0.050) (0.045) (0.038)

    1 = 3 -0.015 -0.061 0.017 -0.017 0.006 -0.015(0.260) (0.287) (0.187) (0.199) (0.140) (0.143)

    2,1 = 0.5 0.020 0.010 -0.017 -0.013 -0.007 -0.004(0.353) (0.186) (0.316) (0.107) (0.284) (0.077)

    2 = 1 0.024 -0.012 0.049 0.006 0.036 0.002(0.271) (0.156) (0.227) (0.097) (0.194) (0.068)

    = 0.5 -0.003 -0.024 -0.012 -0.014 -0.010 -0.009(0.117) (0.108) (0.081) (0.069) (0.059) (0.051)

    Parameter Estimation JOCLAD 2014 18 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Negative Binomial BINMA(1, 1) models

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_1000

    0

    0.2

    0.4

    0.6

    0.8

    Bias 1,1

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_10000.5

    0

    0.5

    Bias 2,1

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_1000

    1

    0.5

    0

    0.5

    Bias 1

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_1000

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    Bias 2

    MM_200 GMM_200 MM_500 GMM_500 MM_1000 GMM_1000

    0.2

    0

    0.2

    0.4

    Bias

    Negative Binomial BINMA(1,1),1,1

    =0.1; 2,2

    =0.5; 1=3;

    2=1; =0.5

    Parameter Estimation JOCLAD 2014 19 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Discussion

    Poisson BINMA(1, 1) models

    MM sample standard deviation < GMM sample standard deviation

    MM sample bias > GMM sample bias

    For and j : GMM is better than MM

    For j,1 : MM GMM

    Parameter Estimation JOCLAD 2014 20 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Discussion

    Poisson BINMA(1, 1) models

    MM sample standard deviation < GMM sample standard deviation

    MM sample bias > GMM sample bias

    For and j : GMM is better than MM

    For j,1 : MM GMM

    Negative Binomial BINMA(1, 1) models

    GMM is better than MM in terms of sample bias and standard deviation

    For 2,1 and 2 : MM has a poor performance

    Parameter Estimation JOCLAD 2014 20 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    How many and which moment conditions to choose?

    Example: Poisson BINMA(1, 1) models

    Available: 7 conditions

    2 means, 2 auto-covariances (lag 1) and 3 cross-covariances (lags -1, 0 and 1)

    Parameter Estimation JOCLAD 2014 21 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    How many and which moment conditions to choose?

    Example: Poisson BINMA(1, 1) models

    Available: 7 conditions

    2 means, 2 auto-covariances (lag 1) and 3 cross-covariances (lags -1, 0 and 1)

    Method of Moments: 5 conditions

    2 means, 2 auto-covariances (lag 1) and 1 cross-covariance (lag 0)

    Generalized Method of Moments: 7 conditions

    2 means, 2 auto-covariances (lag 1) and 3 cross-covariances (lags -1, 0 and 1)

    Generalized Method of Moments: 6 conditions (A)

    2 means, 2 auto-covariances (lag 1) and 2 cross-covariances (lags 0 and 1)

    Generalized Method of Moments: 6 conditions (B)

    2 means, 2 auto-covariances (lag 1) and 2 cross-covariances (lags -1 and 0)

    Parameter Estimation JOCLAD 2014 21 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Poisson BINMA(1, 1) models

    Sample mean bias and sample standard deviation (in brackets)

    T = 500 MM GMM

    0(i) 5 cond. 7 cond. 6 cond.(A) 6 cond.(B)1,1 = 0.1 0.000 0.001 0.011 -0.019

    (0.049) (0.073) (0.081) (0.071)

    1 = 3 0.522 0.038 0.013 0.117(0.205) (0.289) (0.280) (0.316)

    2,1 = 0.9 -0.050 -0.101 -0.061 -0.084(0.089) (0.181) (0.138) (0.181)

    2 = 1 0.571 0.165 0.110 0.138(0.141) (0.324) (0.269) (0.305)

    = 1 -0.756 -0.027 -0.032 -0.019(0.040) (0.186) (0.200) (0.176)

    Parameter Estimation JOCLAD 2014 22 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Results for Poisson BINMA(1, 1) models

    MM GMM GMM_6A GMM_6B0.1

    0

    0.1

    0.2

    0.3

    Bias 1,1

    MM GMM GMM_6A GMM_6B

    0.6

    0.4

    0.2

    0

    Bias 2,1

    MM GMM GMM_6A GMM_6B1

    0.5

    0

    0.5

    1

    Bias 1

    MM GMM GMM_6A GMM_6B

    0.5

    0

    0.5

    1

    1.5

    Bias 2

    MM GMM GMM_6A GMM_6B

    0.5

    0

    0.5

    Bias

    Poisson BINMA(1,1), 500 obs.; 1,1

    =0.1; 2,2

    =0.9; 1=3;

    2=1; =1

    Parameter Estimation JOCLAD 2014 23 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Ongoing and Future Work

    Decide how many and which moment conditions to choose

    Estimation of the parameters of the models

    Generating Probability Function Characteristic Function

    Specify other structures of dependence between the several thinning operations

    Application to real data

    Ongoing and Future Work JOCLAD 2014 24 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    Ongoing and Future Work

    Decide how many and which moment conditions to choose

    Estimation of the parameters of the models

    Generating Probability Function Characteristic Function

    Specify other structures of dependence between the several thinning operations

    Application to real data

    Developing tools for the analysis of multivariate time series of counts: inference,

    diagnostic, forecasting

    Great care is needed when developing extensions, otherwise model specification

    and inference becomes very demanding mathematically and computationally

    Ongoing and Future Work JOCLAD 2014 24 / 25

  • Isabel Silva & Cristina Torres & Maria Eduarda Silva Estimating BINMA models with GMM

    References

    Al-Osh, M.A. and Alzaid, A.A. (1988).

    Integer-valued moving average (INMA) process.

    Statistical Papers, Vol. 29, pp 281-300.

    Brnns, K. and J. Nordstrm (2000).

    A Bivariate Integer Valued Allocation Model for Guest Nights in Hotels and

    Cottages.

    Ume Economics Studies 547. Ume University, Sweden.

    Cheon, S., S. H. Song and B. C. Jung (2009).

    Tests for independence in a bivariate negative binomial model.

    Journal of the Korean Statistical Society, Vol. 38(2), pp. 185U190.

    Hansen, Lars Peter (1982).

    Large sample properties of generalized method of moments estimators.

    Econometrica: Journal of the Econometric Society, Vol. 50, pp. 1029-1054.

    Johnson, N.L., Kotz, S. and Balakrishnan, N. (1997).

    Discrete Multivariate Distributions. Wiley, New York.

    Kocherlakota, S. and K. Kocherlakota (1992).

    Bivariate discrete distributions. Markel Dekker, New York.

    Marshall, A. W. and I. Olkin (1990).

    Multivariate distributions generated from mixtures of convolution and

    product families.

    Lecture Notes-Monograph Series, Vol. 16, pp. 371U393.

    Mtys, Lszl (1999).

    Generalized Method of Moments Estimation. Cambridge University Press.

    Quoreshi, S. (2006).

    Bivariate Time Series Modelling of Financial Count Data.

    Ume Economics Studies, Vol. 35, pp. 1343-1358.

    Torres, C., Silva, I. and Silva, M. E. (2012).

    Modelos bivariados de mdias mveis de valor inteiro.

    XX Congresso Anual da Sociedade Portuguesa de Estatstica, 27-29 de

    Setembro, Porto, Portugal.

    Steutel, F.W. and K. Van Harn (1979).

    Discrete analogues of self-decomposability and stability.

    The Annals of Probability, Vol. 7, pp. 893-899.

    References JOCLAD 2014 25 / 25

    OutlineMotivationBINMA modelsPoisson and NB BINMA(1, 1)Parameter EstimationMMGMMMM and GMM for Poisson BINMA(1, 1) modelsMM and GMM for NB BINMA(1, 1) modelsSimulation StudyOngoing and Future WorkReferences