86
i UNIVERSIDADE POTIGUAR ESCOLA DE ENGENHARIAS E CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PETRÓLEO E GÁS PPGEPG MESTRADO PROFISSIONAL EM ENGENHARIA DE PETRÓLEO E GÁS - MPEPG GÊMINSON DE ARAÚJO PAULA AVALIAÇÃO DO RESÍDUO DE CASCALHO DE PERFURAÇÃO DE POÇOS DE PETRÓLEO DA BACIA POTIGUAR E ALTERNATIVAS PARA SUA DESTINAÇÃO E REAPROVEITAMENTO NATAL 2014

avaliação do resíduo de cascalho de perfuração de poços de

Embed Size (px)

Citation preview

Page 1: avaliação do resíduo de cascalho de perfuração de poços de

i

UNIVERSIDADE POTIGUAR ESCOLA DE ENGENHARIAS E CIÊNCIAS EXATAS

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PETRÓLEO E GÁS – PPGEPG

MESTRADO PROFISSIONAL EM ENGENHARIA DE PETRÓLEO E GÁS - MPEPG

GÊMINSON DE ARAÚJO PAULA

AVALIAÇÃO DO RESÍDUO DE CASCALHO DE PERFURAÇÃO DE POÇOS DE PETRÓLEO DA BACIA POTIGUAR E ALTERNATIVAS PARA SUA

DESTINAÇÃO E REAPROVEITAMENTO

NATAL 2014

Page 2: avaliação do resíduo de cascalho de perfuração de poços de

ii

GÊMINSON DE ARAÚJO PAULA

AVALIAÇÃO DO RESÍDUO DE CASCALHO DE PERFURAÇÃO DE POÇOS DE PETRÓLEO DA BACIA POTIGUAR E ALTERNATIVAS PARA SUA

DESTINAÇÃO E REAPROVEITAMENTO Dissertação apresentada ao Programa de Pós-Graduação em Engeharia de Petróleo e Gás. Escola de Engenharias e Ciências Exatas, Universidade Potiguar, como requisito parcial para a obtenção do título de Mestre em Engenharia de Petróleo e Gás Natural. Orientadora: Profª. Drª. Carla Gracy Ribeiro Meneses.

Co-orientador: Profº. Drª. Marcilio Pelicano Ribeiro

NATAL 2014

Page 3: avaliação do resíduo de cascalho de perfuração de poços de

iii

GÊMINSON DE ARAÚJO PAULA AVALIAÇÃO DO RESÍDUO DE CASCALHO DE PERFURAÇÃO DE POÇOS

DE PETRÓLEO DA BACIA POTIGUAR E ALTERNATIVAS PARA SUA DESTINAÇÃO E REAPROVEITAMENTO

Dissertação apresentada ao Programa de Pós-Graduação em Engeharia de Petróleo e Gás. Escola de Engenharias e Ciências Exatas, Universidade Potiguar, como requisito parcial para a obtenção do título de Mestre em Engenharia de Petróleo e Gás Natural.

APROVADO EM: _____/______/_______

BANCA EXAMINADORA

______________________________________________ Profª. Drª Carla Gracy Ribeiro Meneses

Orientadora Universidade Potiguar

______________________________________________ Profª. Drª. Ana Catarina Fernandes Coriolano

Examinadora Interna Universidade Potiguar

______________________________________________ Prof. Dr. Franklin Silva Mendes

Examinador Interno Universidade Potiguar

______________________________________________ Profa. Dra. Regina Celia Oliveira Brasil Delgado

Examinadora Externa Universidade Federal Rural do Semi-Árido

Page 4: avaliação do resíduo de cascalho de perfuração de poços de

iv

Dedico este trabalho a Marize, Vitor, Raquel e Carolina, pelo amor, incentivo e

inspiração prestados.

Page 5: avaliação do resíduo de cascalho de perfuração de poços de

v

AGRADECIMENTOS

Aos meus pais Aluisio Paula (in memorium) e a Francinete Paula pela graça da

vida e pelo infinito amor a mim dedicado.

Aos professores deste Programa de Mestrado Franklin Silva Mendes, Regina

Celia Oliveira Brasil Delgado e Ana Catarina Fernandes Coriolano pelo

relevante apoio prestado.

À amiga Netinha, pela presteza na disponibilização de laudos técnicos do

IDEMA/RN.

À minha orientadora Carla Gracy Ribeiro Meneses pela paciência, estimulo e

dedicação.

Page 6: avaliação do resíduo de cascalho de perfuração de poços de

vi

RESUMO

A atividade petrolífera envolve grande potencial de riscos ao meio ambiente,

entre os quais se destaca a produção de grandes volumes de cascalhos na

perfuração de poços de petróleo. Tem se tornado grande desafio para os

governos e as empresas envolvidas a destinação final deste resíduo de forma

adequada às exigências ambientais. Para isso, faz-se necessário inicialmente

classificá-lo conforme a legislação ambiental pertinente para situá-lo ou não

entre os resídos potencialmente mais perigosos. Com base nesta classificação

e mediante pesquisa bibliográfica lastreada em artigos científicos que tratam do

assunto, é fundamental a relização de investigação de alternativas por meio de

pesquisa bibliográfica para solucionar o problema do acúmulo de grandes

volumes deste resíduo na superfície, considerando-se as exigências

ambientais e as técnicas atuais disponíveis, seja na forma de deposição em

aterros com tratamento térmico ou não, seja por meio de sua reciclagem a

partir de outros processos industriais. Concluiu-se pela viabilidade ambiental

tanto de sua destinação em aterros sanitários, como de sua reciclagem como

matéria prima na indústria da construção civil, sugerindo-se como melhor

alternativa o coprocessamento do resíduo de cascalho de perfuração em fornos

de clínquer para fabricação de cimento.

Palavras-Chave: Cascalho. Perfuração. Poluição. Fluido de perfuração.

Resíduo sólido. Reciclagem.

Page 7: avaliação do resíduo de cascalho de perfuração de poços de

vii

ABSTRACT

The Petroleum activity involves a significant potential of risk to the environment,

among which stands out the production of large volumes of crushed rocks from

cutting in drilling wells an appropriate final destination of this residue according

to environmental demands has become a major challenge for governments and

companies involved. For this, it is necessary to initially classify the residues

according to pertinent environmental legislation to situate it or not in the group

of potentially more hazardous waste. Based on this rating and also by a

bibliography research backed by scientific articles dealing with the subject, it is

critical to conduct a research about the alternatives in the literature to solve the

problem of the accumulation of large volumes of this residue on the surface,

considerering the environmental demands and the current available techniques,

either as landfill with heat-treatment or not, or through recycleness from other

industrial processes. It was concluded that there is environmental viability for

both its destination in landfills and its recycleness as raw material in the

construction industry. The coprocessing of drilling cutting residue in clinker kilns

for cement manufacturing is being suggested as the best alternative.

Keywords: Crushed rock. Drilling. Pollution. Drilling fluid. Solid waste.

Recycling.

Page 8: avaliação do resíduo de cascalho de perfuração de poços de

viii

LISTA DE FIGURAS

Figura 1 Desenho equemático da broca atuando no fundo do poço com

o auxílio da potência hidráulica promovida pelo fluido de

perfuração pressurizado ao passar pelos jatos da broca........ 24

Figura 2 Esquema gráfico da circulação do fluido de perfuração.............. 26

Figura 3 Dique para deposição provisória dos cascalhos e outros

materiais descartados.................................................................. 26

Figura 4 Perfil litoestatigráfico das formações rochosas de um poço do

campo de Canto do Amaro (Bacia Potiguar

terrestre)....................................................................................... 30

Figura 5 Diagrama esquemático da injeção do cascalhos em cavidades

subterrâneas de mina de salgema.............................................. 57

Page 9: avaliação do resíduo de cascalho de perfuração de poços de

ix

LISTA DE QUADROS

Quadro 1 Evolução histórica da Bacia Potiguar........................................ 31

Quadro 2 Classificação dos resíduos sólidos com base na norma ABNT

NBR 10004:2004....................................................................... 37

Quadro 3 definições contidas na Instrução de Trabalho nº 3 – IT – RN –

003, item 3................................................................................ 52

Page 10: avaliação do resíduo de cascalho de perfuração de poços de

x

LISTA DE TABELAS

Tabela 1 Formulações adequadas para fluidos aquosos e não aquosos 28

Tabela 2 Formações geológicas de poços de petróleo da Bacia

Potiguar.......................................................................................... 29

Tabela 3 Volumes de Cascalhos de Perfuração gerados em algumas

regiões do Mundo........................................................................... 43

Tabela 4 Composição dos cascalhos de perfuração................................. 43

Tabela 5 parâmetros inorgânicos (mg/l) que ultrapassaram os limites da

NBR 10004:2004............................................................................ 46

Tabela 6 parâmetros orgânicos (mg/l) que ultrapassaram os limites da

NBR 10004:2004............................................................................ 46

Tabela 7 Valores médios obtidos pela média aritmética dos parâmetros

inorgânicos (tabela 5) e orgânicos (tabela 6) em

desconformidade com a NBR 10004:2004.................................. 47

Tabela 8 Formulações de misturas argila e cascalhos (% em peso)......... 63

Tabela 9 Resultados de massa bruta constantes nos laudos amostrais

com base na Norma NBR 10004 (anexo

1).................................................................................................... 72

Tabela 10 Resultados de lixiviado constantes nos laudos amostrais com

base na Norma NBR 10005 (anexo 2)......................................... 73

Tabela 11 Resultados do solubilizado constantes nos laudos amostrais

com base na Norma NBR 10006 (anexo

3).................................................................................................... 75

Tabela 12 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 1

(anexo 4)........................................................................................ 76

Tabela 13 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 2

(anexo 5)........................................................................................ 77

Tabela 14 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 3

Page 11: avaliação do resíduo de cascalho de perfuração de poços de

xi

(anexo 6)........................................................................................ 78

Tabela 15 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 4

(anexo 7)........................................................................................ 79

Tabela 16 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 5

(anexo 8)........................................................................................ 80

Tabela 17 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 6

anexo 9)......................................................................................... 81

Tabela 18 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 7

(anexo 10)...................................................................................... 82

Tabela 19 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 8

(anexo 11)...................................................................................... 83

Tabela 20 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 9

(anexo 12)...................................................................................... 84

Tabela 21 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 10

(anexo 13)...................................................................................... 85

Tabela 22 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 11

(anexo 14)...................................................................................... 86

Tabela 23 Resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 12

(anexo 15)...................................................................................... 87

Page 12: avaliação do resíduo de cascalho de perfuração de poços de

xii

LISTA DE GRÁFICOS

Gráfico 1 Resultados obtidos na análise de solubilizados em relação ao

Alumínio......................................................................................... 47

Gráfico 2 Resultados obtidos na análise de solubilizados em relação ao

Cloreto........................................................................................... 48

Gráfico 3 Resultados obtidos na análise de solubilizados em relação ao

Ferro.............................................................................................. 48

Gráfico 4 Resultados obtidos na análise de solubilizados em relação ao

Sódio............................................................................................. 49

Gráfico 5 Resultados obtidos na análise de solubilizados em relação ao

Sulfato........................................................................................... 50

Page 13: avaliação do resíduo de cascalho de perfuração de poços de

xiii

LISTA DE FLUXOGRAMAS

Fluxograma 1 Blendagem de resíduos......................................................... 53

Fluxograma 2 Coprocessamento de resíduos............................................. 54

Page 14: avaliação do resíduo de cascalho de perfuração de poços de

xiv

LISTA DE ABREVIATURAS

ABNT Associação Brasileira de Normas Técnicas

ANP Agência Nacional de Petróleo

API American Petroleum Institute

CONAMA Conselho Nacional do Meio Ambiente

DBO Demanda Bioquímica de Oxigênio

CAP I Cascalho de perfuração gerado na primeira fase de perfuração

CAP III Cascalho de perfuração gerado na terceira fase de perfuração

DIGUAR Distrito de Produção da Bacia Potiguar

DQO Demanda Química por Oxigênio

E&P-RN/CE Exploração e Produção do Rio Grande do Norte e Ceará

IDEMA Instituto de Desenvolvimento Sustentável e Meio Ambiente do Rio

Grande do Norte

IT Instrução de Trabalho

LCE Lei Complementar Estadual

LQ Limite de quantificação

Ma Milhões de anos

mg/l Miligrama por Litro

PNRS Política Nacional de Resíduos Sólidos

pH Potencial hidrogeniônico

RPNS Região de Produção do Nordeste Setentrional

SISNAMA Sistema Nacional do Meio Ambiente

SUASA Sistema Unificado de Atenção à Sanidade Agropecuária

SNVS Sistema Nacional de Vigilância Sanitária

t/a Toneladas por ano

VMP Valor Máximo Permitido

Page 15: avaliação do resíduo de cascalho de perfuração de poços de

xv

SUMÁRIO

1 INTRODUÇÃO.................................................................................... 19

1.1 OBJETIVO GERAL.............................................................................. 21

1.2 OBJETIVOS ESPECÍFICOS............................................................... 21

2 REFERENCIAL TEÓRICO.................................................................. 22

2.1 A ATIVIDADE DE PERFURAÇÃO...................................................... 22

2.2 O FLUIDO DE PERFURAÇÃO............................................................ 22

2.3 CARACTERIZAÇÃO DA BACIA POTIGUAR...................................... 28

2.4 HISTÓRICO DA ATIVIDADE DE PERFURAÇÃO TERRESTRE NA

BACIA POTIGUAR.............................................................................. 31

2.5 ASPECTOS LEGAIS PERTINENTES................................................. 33

2.6 O PROBLEMA DA DESTINAÇÃO FINAL DO CASCALHO............... 38

2.7 POSSIBILIDADES QUANTO AO MANUSEIO E DESTINAÇÃO

FINAL DOS CASCALHOS................................................................. 39

2.8 CARACTERIZAÇÃO DOS CASCALHOS........................................... 41

3 MATERIAIS E MÉTODOS.................................................................. 44

3.1 ANÁLISE DOS DADOS DA COMPOSIÇÃO QUÍMICA DOS

CASCALHOS...................................................................................... 44

3.2 ANÁLISE E SUGESTÃO DE ALTERNATIVAS PARA A

DESTINAÇÃO E RECICLAGEM DO CASCALHO DE

PERFURAÇÃO.................................................................................... 45

4 RESULTADOS.................................................................................... 46

4.1 ANÁLISE DOS DADOS QUE APRESENTAM NÃO

CONFORMIDADES COM A NORMA NBR 1004:2004....................... 46

4.2 A DESTINAÇÃO FINAL DO CASCALHO DE PERFURAÇÃO........... 50

4.2.1 O processo de incineração dos cascalhos..................................... 51

4.2.2 A deposição do cascalho em aterros sanitários............................ 54

4.2.3 A alternativa de destinação de resíduos de cascalhos de

perfuração em mina de salgema..................................................... 55

4.3 TÉCNICAS DE RECICLAGEM DO CASCALHO DE

PERFURAÇÃO.................................................................................... 58

4.3.1 O emprego do cascalho de perfuração na confecção de tijolos

Page 16: avaliação do resíduo de cascalho de perfuração de poços de

xvi

solo-cimento...................................................................................... 58

4.3.2 O coprocessamento do resíduo de cascalho de perfuração em

fornos de clínquer para fabricação de cimento.............................. 59

4.3.2.1 O coprocessamento de cascalho realizado pela CINPOR –

cimentos de Portugal, SGPS, S.A....................................................... 60

4.3.3 O estudo do potencial de aplicação do cascalho de perfuração

em concreto....................................................................................... 61

4.3.4 O emprego do cascalho de perfuração na fabricação de

material cerâmico.............................................................................. 62

5 CONCLUSÃO..................................................................................... 65

6 SUGESTÕES PARA TRABALHOS FUTUROS................................. 67

7 REFERÊNCIAS BIBLIOGRÁFICAS................................................... 68

ANEXO 1 - resultados de massa bruta constantes nos laudos

amostrais............................................................................................ 72

ANEXO 2 - resultados de lixiviado constantes nos laudos

amostrais com base na Norma NBR 10005..................................... 73

ANEXO 3 - resultados do solubilizado constantes nos laudos

amostrais com base na Norma NBR 10006..................................... 75

ANEXO 4 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 1...................................................................................................... 76

ANEXO 5 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 2...................................................................................................... 77

ANEXO 6 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 3...................................................................................................... 78

ANEXO 7 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 4...................................................................................................... 79

ANEXO 8 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 5......................................................................................................

80

Page 17: avaliação do resíduo de cascalho de perfuração de poços de

xvii

ANEXO 9 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 6...................................................................................................... 81

ANEXO 10 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 7...................................................................................................... 82

ANEXO 11 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 8...................................................................................................... 83

ANEXO 12 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 9...................................................................................................... 84

ANEXO 13 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 10.................................................................................................... 85

ANEXO 14 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 11.................................................................................................... 86

ANEXO 15 - resultados obtidos que ultrapassam os valores

máximos permitidos pela norma NBR 10004 relativos à amostra

nº 12.................................................................................................... 87

Page 18: avaliação do resíduo de cascalho de perfuração de poços de

19

1 INTRODUÇÃO

Há mais de meio século que a indústria de petróleo vem se

desenvolvendo no Brasil em busca da independência em relação à sua

importação e a de seus derivados.

Para tanto, rastreando as jazidas geológicas existentes, a PETROBRAS

tem posicionado suas sondas ao longo do território brasileiro em sua

plataforma continental.

Não obstante o predomínio da produção de petróleo off-shore, a

atividade terrestre vem sendo exercida em alguns estados brasileiros, entre os

quais figuram Bahia, Sergipe, Alagoas, Espírito Santo, Amazonas e Rio Grande

do Norte.

Geograficamente, esta pesquisa se delimita aos contornos da Bacia

Potiguar em sua porção terrestre, que abrange os Estados do Rio Grande do

Norte e Ceará.

No Estado do Rio Grande do Norte, a exploração e a produção de

petróleo se desenvolvem no litoral e em algumas regiões continentais, em

especial nos campos de petróleo terrestres, situados nos municípios de

Mossoró, Areia Branca, Alto de Rodrigues, Apodi e Macau, notadamente na

região oeste do Estado.

A escolha desta região como cenário para a pesquisa ora em comento

se deve à sua relevância entre os campos produtores de petróleo em nosso

país, uma vez que já figurou em primeiro lugar na produção de petróleo e gás

terrestre, à época sendo o Canto do Amaro considerado o maior campo de

petróleo terrestre em atividade no país, bem como que atualmente representa

uma bacia madura e consolidada, que responde por grande parte da produção

nacional terrestre de petróleo e gás.

A indústria petrolífera, durante suas operações, gera grandes volumes

de resíduos líquidos e sólidos nocivos ao meio ambiente e à saúde pública.

Evidentemente, quando adequadamente tratados, destinados e até reciclados,

com balizamento em padrões internacionais inclusive, seus efeitos nefastos

podem ser reduzidos a níveis aceitáveis.

Page 19: avaliação do resíduo de cascalho de perfuração de poços de

20

Entre estes resíduos ocupam posição de relevância os cascalhos de

perfuração. A preocupação maior da indústria de petróleo e gás se deve à

quantidade destes resíduos gerada e a seus contaminantes, sejam orgânicos

ou inorgânicos. Esforços têm sido empreendidos, tanto pelos gestores públicos,

quanto pela iniciativa privada, com vistas a atender as determinações legais,

bem como prevenir danos ao meio ambiente e à saúde pública, porém muito

ainda há que ser feito para que seja alcançado o tão sonhado meio ambiente

equilibrado.

O presente estudo é direcionado ao impacto ambiental eventualmente

provocado pelos cascalhos provenientes da perfuração no âmbito dos campos

de petróleo terrestres da bacia potiguar, que são, num primeiro instante,

carreados para fora do poço através da circulação do fluido de perfuração e,

posteriormente, destinados a local previamente estabelecido onde serão

depositados ou mesmo incinerados ou ainda reaproveitados na composição de

produtos industriais.

É importante ressaltar o papel relevante de normatizador e fiscalizador

ambiental do IDEMA (Instituto de Desenvolvimento Sustentável e Meio

Ambiente do Rio Grande do Norte) em relação à grande demanda das

empresas quanto ao seu licenciamento operacional e de instalação, que

viabiliza a fiscalização e adequação da produção industrial aos limites

ambientais determinados para evitar a poluição do meio ambiente, sendo

exigência inclusive constitucional a busca por um meio ambiente

ecologicamente equilibrado e sustentável.

A pesquisa que ora se inicia reveste-se de grande importância, tendo em

vista que a atividade de perfuração mobiliza grandes volumes de fluidos e

materiais sólidos aptos a promoverem a poluição do solo nas proximidades do

poço perfurado, bem como do local para onde é enviado em seu destino final, o

que tem se transformado em grande preocupação para os estudiosos do

assunto.

Page 20: avaliação do resíduo de cascalho de perfuração de poços de

21

1.1 OBJETIVO GERAL

Avaliar o cascalho de perfuração de poços na Bacia Potiguar terrestre e

analisar possíveis alternativas de sua destinação final e reaproveitmento

ambientalmente adequadas.

1.2 OBJETIVOS ESPECÍFICOS

Analisar dados obtidos a partir de laudos técnicos junto ao IDEMA

contendo ensaios em relação à massa bruta, lixiviado e

solubilizado do cascalho de acordo com a norma ambiental – NBR

10004:2004.

Investigar e sugerir alternativas de destinação final e

reaproveitamento do cascalho, com base na análise acima.

Page 21: avaliação do resíduo de cascalho de perfuração de poços de

22

2 REFERENCIAL TEÓRICO

2.1 A ATIVIDADE DE PERFURAÇÃO

A atividade de perfuração de poços de petróleo é imprescindível para a

confirmação da existência de hidrocarbonetos no reservatório com viabilidade

econômica de produção, bem como para propiciar a sua produção, uma vez

que após a perfuração do poço, este é equipado para produção, confirmada

sua economicidade.

Após os estudos sísmicos e geológicos realizados indicando provavél

existência de reservatórios contendo hidrocarbonetos, faz-se necessária a

intervenção nas formações rochosas através da perfuração do poço, com

vistas à comprovação da ocorrência da jazida, bem como à sua extração por

meio dos métodos de produção em momento posterior.

A sonda de perfuração é montada na locação e inicia-se a perfuração do

poço. Para avançar ao longo das formações, a coluna com a broca necessita

de rotação, peso sobre broca e potência hidráulica. Enquanto a potência

hidráulica, traduzida no binômio vazão-pressão, é proporcionada pelas bombas

de lama, toda a movimentação da coluna de perfuração é realizada mediante a

energia promovida pelo guincho, sob o comando do sondador.

2.2 O FLUIDO DE PERFURAÇÃO

O fluido de perfuração é definido pelo Instituto Americano de Petróleo –

API como sendo qualquer fluido circulante capaz de tornar a operação de

perfuração viável (GUIMARÃES & ROSSI, 2008). Para Thomas (2001), os

fluidos de perfuração são misturas complexas de sólidos, líquidos, produtos

químicos e, por vezes, até de gases. Do ponto de vista químico, eles podem

assumir aspectos de suspensão, dispersão coloidal ou emulsão, dependendo

do estado físico dos componentes (THOMAS, 2001). Do ponto de vista físico,

os fluidos de perfuração assumem comportamentos de fluidos não-

newtonianos, ou seja, a relação entre a taxa de cisalhamento e a taxa de

Page 22: avaliação do resíduo de cascalho de perfuração de poços de

23

deformação não é constante (MACHADO, 2002, apud GUIMARÃES & ROSSI,

2008).

Para realização da perfuração de poço de petróleo, imprescindível se faz

a retirada dos fragmentos de rochas perfurados do interior do poço também

denominados de cascalhos, o que possibilita o avanço da broca ao longo das

formações a serem perfuradas e realizada a análise geológica dos mesmos.

Historicamente, quando primeiro se pensou em retirar do interior do

poço estas porções de rochas perfuradas, utilizou-se a lama que havia

disponível na locação,1 o que resultou em sucesso dada a pequena

profundidade do poço. Porém, com a necessidade de se alcançar

profundidades cada vez maiores, vieram dificuldades a serem vencidas, tais

como a existência de formações geológicas com diferentes pressões de poro e

composições químicas (argilosas, salinas, etc.), submetidas a altas pressões e

temperaturas, a trajetória do poço (poços verticais ou direcionais), condições

ambientais adversas (presença de aquíferos) e riscos de danos à formação

(GUIMARÃES & ROSSI, 2008), surgindo, assim, a necessidade de se

aperfeiçoar as propriedades do fluido de perfuração visando a atender a uma

gama de outras finalidades, até os dias atuais quando se reveste da maior

importância o programa projetado do fluido de perfuração para a perfuração de

poços.

Esta função primordial do fluido de perfuração é desempenhada

mediante a injeção do fluido de perfuração (mud) pelo interior da coluna de

perfuração, que, ao passar pelos jatos da broca, desenvolve energia hidráulica

hábil a potencializar a eficiência da perfuração das formações, ao mesmo

tempo em que retorna pelo espaço anular (coluna/paredes do poço),

arrastando até a superfície o volume cortado de rochas, que passa a ser

denominado de cascalhos de perfuração.

A ação do fluido de perfuração de limpar o fundo do poço e trazer para a

superfície o cascalho perfurado é mostrada na figura 1.

1 Este é o motivo pelo qual a indústria do petróleo consagrou a expressão ‘mud’ como

denominação do fluido de perfuração, que significa ‘lama’ em inglês.

Page 23: avaliação do resíduo de cascalho de perfuração de poços de

24

Figura 1 - Desenho equemático da broca atuando no fundo do poço com o auxílio da potência hidráulica promovida pelo fluido de perfuração pressurizado ao passar pelos jatos da broca

Fonte: CHIPALAVELA, 2013

Porém, além de realizar a limpeza do poço, outras são as funções

desempenhadas pelo fluido de perfuração, com vistas a possibilitar uma

perfuração segura, econômica e rápida, entre as quais exercer pressão

hidrostática sobre as formações, de modo a evitar o influxo de flluidos

indesejáveis e estabilizar as paredes do poço (THOMAS, 2001).

São consideradas imprescindíveis à sua operacionalidade as seguintes

características (THOMAS, 2001):

Ser estável quimicamente;

Estabilizar as paredes do poço, mecânica e quimicamente;

Facilitar a separação dos cascalhos na superfície;

Manter os sólidos em suspensão quando estiver em repouso;

Ser inerte em relação a danos às rochas produtoras;

Aceitar qualquer tratamento, físico e químico;

Ser bombeável;

Apresentar baixo grau de corrosão e de abrasão em relação à coluna de perfuração e demais equipamentos do sistema de circulação;

Facilitar as interpretações geológicas do material retirado do poço;

Apresentar custo compatível com a operação.

Page 24: avaliação do resíduo de cascalho de perfuração de poços de

25

Para o bom desempenho das funções acima elencadas, faz-se

necessário a preparação e contínuo tratamento do fluido segundo

determinadas propriedades físicas e químicas, dentre as quais se destacam a

densidade, os parâmetros reológicos, as forças géis, os parâmetros de

filtração, o teor de sólidos, o pH, as alcalinidades, o teor de cloreto (salinidade)

e o teor de bentonida (ou de sólidos ativos) (THOMAS, 2001).

Essa injeção do fluido para o interior do poço dá-se por meio de bombas

de lama que o succiona dos tanques de lama e o faz chegar até o interior da

coluna de perfuração direcionando-o através da mangueira de lama, passando

pela cabeça de injeção (swivel) até a haste quadrada (kelly) conectada no topo

da coluna, conforme se vê na figura 2.

Em seguida, o fluido de perfuração circula pelo interior da coluna de

perfuração passando pelos jatos da broca que atua no fundo do poço mediante

parâmetros de perfuração (vazão e pressão), ocasião em que limpa o fundo do

poço (retirando daí os pedaços de rochas perfurados), otimiza a taxa de

penetração da broca na formação e inicia o seu retorno até a superfície

deslocando-se pelo espaço anular (annulus) situado entre o poço e a coluna de

perfuração, carreando os cascalhos perfurados.

Ao chegar à superfície, a mistura de fluido de perfuração e cascalhos é

despejada numa peneira de lama vibratória, onde os cascalhos são separados

e direcionados para um dique onde permanecerão depositados até o final do

poço, enquanto que o fluido de perfuração passa pelo sistema de tratamento

composta de desareiadores, dissiltadores, centrifugadores e desgaseificadores,

retornando aos tanques de lama quando a sua injeção no poço é retomada,

submetendo-se ainda a tratamento químico se necessário.

A figura 2 mostra o esquema do sistema de circulação do fluido de

perfuração.

Page 25: avaliação do resíduo de cascalho de perfuração de poços de

26

Figura 2 - Esquema gráfico da circulação do fluido de perfuração

Fonte: SOUZA & LIMA, 2002

A figura 3 contempla um dique para deposição provisória dos resíduos

sólidos oriundos do poço em perfuração e já separados do fluido de perfuração.

Figura 3 - Dique para deposição provisória dos cascalhos perfurados

Fonte: SOUZA & LIMA, 2002

Page 26: avaliação do resíduo de cascalho de perfuração de poços de

27

Basicamente, os fluidos de perfuração se classificam em duas

categorias: fluidos à base de água e à base de óleo, não obstante existir outros

tipos de fluidos normalmente empregados em situações específicas de

perfuração, como é o caso dos fluidos aerados, o que certamente eleva o custo

da perfuração.

Os fluidos de perfuração à base de água são formulados a partir de

água, barita, argila, soda cáustica, polímeros solúveis e sais, provendo a água

o meio para dispersão dos materiais coloidais. Classificam-se em inibidos ou

não-inibidos a depender de haver ou não tratamento químico. São os mais

usados na perfuração de poços onshore, principalmente por apresentarem

como caracterísitcas (STEFAN, 1982):

Custo mais baixo;

Facilidade com que é encontrada a água na natureza;

Atendem, na maioria dos casos, às exigências operacionais.

Os poços de petróleo perfurados na Bacia Potiguar terrestre não

apresentam grandes profundidades, bem como não demandam alta tecnologia

para o seu desiderato, tendo sido possível a obtenção de água em quantidade

suficiente, em que pese sua situação geográfica na região semi-árida brasileira,

razão pela qual optou-se pelo emprego de fluido à base água.

Os fluidos à base de óleo possuem a fase contínua constituída por uma

fase óleo geralmente composta de hidrocarbonetos líquidos, e por pequenas

gotículas de água acreescidas ou não de sólidos coloidais (de natureza

orgânica ou inorgânica) como fase dispersa (THOMAS, 2001).

São bastante utilizados na perfuração off-shore (plataformas marítimas)

devido ao seu alto custo e por ser necessário que atendam a diversas

exigências técnicas ineretnes a poços de grande profundidade. Apresentam as

seguintes características (THOMAS, 2001):

Grau de inibição elevado em relação às rochas ativas;

Baixíssima taxa de corrosão;

Propriedades controláveis a temperaturas acima de 350 ºF até 500 ºF;

Grau de lubrificidade elevado;

Amplo intervalo de variação de densidade – 0,89 a 2,4;

Baixíssima solubilidade de sais inorgânicos.

Page 27: avaliação do resíduo de cascalho de perfuração de poços de

28

Em síntese, as composições adequadas para um fluido à base água e

para um fluido à base óleo são mostradas na tabela 1.

Tabela 1 – Formulações adequadas para fluidos aquosos e não aquosos

Fluido à base aquosa Fluido à base de óleo

Controladores de densidade 6% Controladores de densidade 9%

Sólidos de perfuração 5% Aditivos 3%

Controladores de viscosidade 3% Água 30%

Emulsificador 6% CaCl2 ou NaCl 4%

Fase aquosa 80% Óleo diesel 54% Fonte: GUIMARÃES & ROSSI, 2008

2.3 CARACTERIZAÇÃO DA BACIA POTIGUAR

A Bacia Potiguar situa-se no extremo leste da Margem Equatorial

brasileira, compreendendo um segmento emerso e outro submerso ao longo

dos Estados do Rio Grande do Norte e Ceará, ao longo de uma área de 48.000

km2, destes 21.500 km2 correspondem à sua parte emersa (FILHO, 2007), que

se limita ao norte com o Oceano Atlântico, ao sul, com o embasmento

cristalino, a noroeste com o Alto de Fortaleza/CE e ao leste com a Bacia

Pernambuco-Paraíba pelo Alto de Touros/RN (SOARES et al, 2003, apud

LIMA, 2006, apud CASTRO et al, 2010).

A porção terrestre da Bacia Potiguar se estende ao longo do território de

15 municípios produtores de petróleo no Rio Grande do Norte: Alto do

Rodrigues,Apodi, Areia Branca, Assu, Caraúbas, Carnaubais, Felipe Guerra,

Governador Dix-Sept Rosado, Guamré, Macau, Mossoró, Pendências, Porto do

Mangue, Serra do Mel e Upanema (ARAÚJO, 2010).

Buscando-se identificar as formações rochosas existentes na Bacia

Potiguar, tomou-se como base o campo de petróleo de Canto do Amaro, por

ser este o mais representativo entre os campos desta Bacia, seja por conter

grande quantidade de poços perfurados, seja por ser o campo que apresenta a

maior produção de petróleo.

As formações geológicas que compõem o perfil geológico dos poços do

campo de Canto do Amaro são as mostradas na tabea 2, com pequenas

alterações de profundidades de poço para poço.

Page 28: avaliação do resíduo de cascalho de perfuração de poços de

29

Tabela 2 – Formações geológicas de poços de petróleo da Bacia Potiguar

Formação Barreiras 0 a 30m

Formação Jandaíra 30 a 400m

Formação Açu 400 a 855m

Formação Alagamar 855 a 880 m

Embasamento topo a 880 m Fonte: PREDA et al, 2012

Conforme Cassab (2003), as formações geológicas presentes na Bacia

Potiguar terrestre se caracterizam da seguinte forma:

Formação Jandaíra - seção carbonática, sobreposta concordantemente aos arenitos da Formação Açu, sendo composto por calcarenitos e calcilutitos bioclásticos, cujas cores variam do cinza claro ao amarelado, com um nível evaporítico na base. A ocorrência de foraminíferos bentônicos de algas verdes, a presença de marcas de raízes e gretas de contração são características que apontam para um ambiente de planície de maré, embra em alguns locais predominasse uma plataforma rasa (ARARIPE & FEIÓ, 1994a, apud CASSAB, 2003). Formação Açu - são camadas espessas de arenitos finos e grossos, esbranquiçados, intercalados com folhelhos, argilitos e siltitos, especialmente em direção ao topo. Também são indentificados sedimentos provenientes de leques, aluviais e de sistemas fluviais entrelaçados e meandrantes e ainda uma transgressão estaurina. Formação Alagamar - constitui-se de arenitos finos a grossos, intercalados com folhelhos lagunares ricos em matéria orgânica, depositados em ambiente transicional. Também ocorrem camadas de carbonatos fossilíferos, depositados sob influência marinha restrita. Ocorre somente em subsuperfície (BRASIL, 1998, apud CASSAB, 2003). Formação Pendência - a idade absoluta do rifteamento foi calculada em 140 Ma (Berrisiano). Os sedimetnos mais antigos depostados no rifte estão associados à parte basal desta formação e foram datados pela presença de pólens característicos do andar Rio da Serra. Em sua maior parte es´ta em subsuperfície, só aflorando ao sul da bacia. Estes sedimentos constituem-se de rochas vulcanoclásticas contemporâneas a rocas siliclásticas, passando a arenitos finos argilosos, intercalados com siltitos e folhelhos ricos em matéria orgânica. Estes sedimentos foram depositados em ambiente lacustre associado a deltas progradantes e planícies aluviais (DELLA FÁVERA, 2001, apud CASSAB, 2003).

O perfil litoestratigráfico de um poço perfurado no campo de Canto do

Amaro é mostrado na figura 4.

Page 29: avaliação do resíduo de cascalho de perfuração de poços de

30

Figura 4 – perfil litoestratigráfico das formações rochosas de um poço do campo de Canto do Amaro (Bacia Potiguar terrestre)

Fonte: PREDA et al, 2012.

Page 30: avaliação do resíduo de cascalho de perfuração de poços de

31

2.4 HISTÓRICO DA ATIVIDADE PETROLÍFERA NO ESTADO DO RIO

GRANDE DO NORTE

Conforme Larissa (2008) e Araujo (2010), o levantamento da evolução

histórica da atividade petrolífera na Bacia Potiguar apresenta os seguintes

marcos históricos:

Quadro 1 – Evolução histórica da Bacia Potiguar

Século

XIX

Na segunda metade, o padre Florêncio Gomes de Oliveira, enviou

carta ao cientista francês Jacques Brunet noticiando a ocorrência de

betume na lagoa do Apodi, pedindo que visitasse o Rio Grande do

Norte (ARAÚJO, 2010).

1922 Primeiras indicações de caráter científico pelo geólogo John Casper

Branner, que publicou notícia sobre possibilidades de óleo no Brasil

(LARISSA,2008).

1929 Luciano Jaques de Morais reafirmou a suspeita de ocorrência de

petróleo no Rio Grande do Norte apontando a necessidade de

estudos mais minuciosos: “o terreno cretáceo do RN é

particularmente interessante para a possibilidade da ocorrência de

petróleo, por ser marinho, fossilífero e apresentar-se cortado por

eruptivas”. (LARISSA,2008).

1943 Início de pesquisas no Rio Grande do Norte – alguns poços

perfurados apenas com vestígios de óleo (ARAÚJO, 2010).

Década

de 1950

O deputado Floriano Bezerra reivindicou pesquisas no município de

Macau, muito antes de ser descoberto petróleo nessa região

(ARAÚJO, 2010).

1956 A PETROBRAS resolve fazer a primeira sondagem no Rio Grande

do Norte na região de Gangorra/Grossos, com a perfuração do

primeiro poço terrestre (G-1-RN), não surtindo bons resultados

(LARISSA,2008).

1965 Enviada equipe de geólogos para estudar a Bacia Potiguar

(LARISSA,2008).

1966 O prefeito de Mossoró contratou firma para abrir um poço d’água,

Page 31: avaliação do resíduo de cascalho de perfuração de poços de

32

supervisionado pelo geólogo Lúcio Cavalcante, na praça Pe. João

Mota. O poço jorrou petróleo misturado com água e serviu de

combustível para as lamparinas da população pobre “durante

meses” (ARAÚJO, 2010).

1973 Descoberta do campo marítimo de Ubarana com a perfuração do

primeiro poço RNS-1 (ARAUJO, 2010).

1976 Início das atividades petrolíferas do Rio Grande do Norte no campo

de Ubarana (município de Guamaré) (LARISSA,2008). Criado o

DIGUAR (Distrito de Produção da Bacia Potiguar), abrangendo o

Ceará, Rio Grande do Norte e Paraíba, com sede em Natal

(ARAUJO, 2010).

1979 Surgiu óleo nas piscinas do Hotel Termas em Mossoró, quando

foram abertas as torneiras com água. Entrou em operação o poço

MO-14, que produziu o primeiro carregamento de petróleo terrestre

da Bacia (LARISSA, 2008).

Década

de 80

No início, foram intensificadas as perfurações de poços nos

municípios de Macau, Areia Branca, Alto do Rodrigues e Mossoró

(ARAUJO, 2010).

1987 Criada a RPNS – Região de Produção do Nordeste Setentrional em

substituição à DIGUAR (ARAUJO, 2010).

1994 O Rio Grande do Norte alcançou a marca de segundo maior

produtor de petróleo do Brasil e primeiro em produção terrestre

ARAUJO, 2010).

1995 A PETROBRAS substituiu RPNS por E&P-RN/ CE (Exploração e

Produção do Rio Grande do Norte e Ceará), resultante da

reestruturação das atividades de exploração, perfuração e

produção, anteriormente departamentalizadas. No ano 2000, mudou

novamente a sigla: agora denominada UN-RNCE (Unidade de

Negócios do Rio Grande do Norte e Ceará) (ARAUJO, 2010).

2000 Alcançou-se a marca de 4000 poços terrestres e 200 poços

marítimos na Bacia Potiguar (ARAUJO, 2010).

Fonte: LARISSA, 2008 e ARAUJO, 2010

Page 32: avaliação do resíduo de cascalho de perfuração de poços de

33

2.5 ASPECTOS LEGAIS PERTINENTES

A Constituição Federal prevê em seu artigo 225 que:

“Todos têm direito ao meio ambiente ecologicamente equilibrado, bem de uso comum do povo e essencial à sadia qualidade de vida, impondo-se ao Poder Público e à coletividade o dever de defendê-lo e preservá-lo para as presentes e futuras gerações”.

Em consonância com o artigo 225 constitucional, a Política Nacional do

Meio Ambiente contida na Lei nº 6.938/81, tem como objetivos, dentre outros,

conforme o seu artigo 4º:

Art. 4º - A Política Nacional do Meio Ambiente visará: I - à compatibilização do desenvolvimento econômico social com a preservação da qualidade do meio ambiente e do equilíbrio ecológico; II - à definição de áreas prioritárias de ação governamental relativa à qualidade e ao equilíbrio ecológico, atendendo aos interesses da União, dos Estados, do Distrito Federal, do Territórios e dos Municípios; III - ao estabelecimento de critérios e padrões da qualidade ambiental e de normas relativas ao uso e manejo de recursos ambientais; IV - ao desenvolvimento de pesquisas e de tecnologias nacionais orientadas para o uso racional de recursos ambientais; V - à difusão de tecnologias de manejo do meio ambiente, à divulgação de dados e informações ambientais e à formação de uma consciência pública sobre a necessidade de preservação da qualidade ambiental e do equilíbrio ecológico; VI - à preservação e restauração dos recursos ambientais com vistas á sua utilização racional e disponibilidade permanente, concorrendo para a manutenção do equilíbrio ecológico propício à vida; VII - à imposição, ao poluidor e ao predador, da obrigação de recuperar e/ou indenizar os danos causados, e ao usuário, de contribuição pela utilização de recursos ambientais com fins econômicos.

Para efeito desta Política Nacional, preocupou-se o legislador em

conceituar em seu art. 3º:

Art. 3º - Para os fins previstos nesta Lei, entende-se por: I - meio ambiente, o conjunto de condições, leis, influências e interações de ordem física, química e biológica, que permite, abriga e rege a vida em todas as suas formas; II - degradação da qualidade ambiental, a alteração adversa das características do meio ambiente; III - poluição, a degradação da qualidade ambiental resultante de atividades que direta ou indiretamente: a) prejudiquem a saúde, a segurança e o bem-estar da população; b) criem condições adversas às atividades sociais e econômicas; c) afetem desfavoravelmente a biota;

Page 33: avaliação do resíduo de cascalho de perfuração de poços de

34

d) afetem as condições estéticas ou sanitárias do meio ambiente; e) lancem matérias ou energia em desacordo com os padrões ambientais estabelecidos; IV - poluidor, a pessoa física ou jurídica, de direito público ou privado, responsável, direta ou indiretamente, por atividade causadora de degradação ambiental; V - recursos ambientais: a atmosfera, as águas interiores, superficiais e subterrâneas, os estuários, o mar territorial, o solo, o subsolo, os elementos da biosfera, a fauna e a flora.

A Lei nº 12.305/2010 instituiu a Política Nacional de Resíduos Sólidos,

dispondo sobre seus princípios, objetivos e instrumentos, bem como sobre as

diretrizes relativas à gestão integrada e ao gerenciamento de resíduos sólidos,

incluídos os perigosos, às responsabilidades dos geradores e do poder público

e aos instrumentos econômicos aplicáveis, embora não seja aplicada aos

rejeitos radioativos, trazendo conceituações em seu art. 3º:

Art. 3º Para os efeitos desta Lei, entende-se por: I - acordo setorial: ato de natureza contratual firmado entre o poder público e fabricantes, importadores, distribuidores ou comerciantes, tendo em vista a implantação da responsabilidade compartilhada pelo ciclo de vida do produto; II - área contaminada: local onde há contaminação causada pela disposição, regular ou irregular, de quaisquer substâncias ou resíduos; III - área órfã contaminada: área contaminada cujos responsáveis pela disposição não sejam identificáveis ou individualizáveis; IV - ciclo de vida do produto: série de etapas que envolvem o desenvolvimento do produto, a obtenção de matérias-primas e insumos, o processo produtivo, o consumo e a disposição final; V - coleta seletiva: coleta de resíduos sólidos previamente segregados conforme sua constituição ou composição; VI - controle social: conjunto de mecanismos e procedimentos que garantam à sociedade informações e participação nos processos de formulação, implementação e avaliação das políticas públicas relacionadas aos resíduos sólidos; VII - destinação final ambientalmente adequada: destinação de resíduos que inclui a reutilização, a reciclagem, a compostagem, a recuperação e o aproveitamento energético ou outras destinações admitidas pelos órgãos competentes do Sisnama, do SNVS e do Suasa, entre elas a disposição final, observando normas operacionais específicas de modo a evitar danos ou riscos à saúde pública e à segurança e a minimizar os impactos ambientais adversos; VIII - disposição final ambientalmente adequada: distribuição ordenada de rejeitos em aterros, observando normas operacionais específicas de modo a evitar danos ou riscos à saúde pública e à segurança e a minimizar os impactos ambientais adversos; IX - geradores de resíduos sólidos: pessoas físicas ou jurídicas, de direito público ou privado, que geram resíduos sólidos por meio de suas atividades, nelas incluído o consumo; X - gerenciamento de resíduos sólidos: conjunto de ações exercidas, direta ou indiretamente, nas etapas de coleta, transporte, transbordo, tratamento e destinação final ambientalmente adequada dos resíduos

Page 34: avaliação do resíduo de cascalho de perfuração de poços de

35

sólidos e disposição final ambientalmente adequada dos rejeitos, de acordo com plano municipal de gestão integrada de resíduos sólidos ou com plano de gerenciamento de resíduos sólidos, exigidos na forma desta Lei; XI - gestão integrada de resíduos sólidos: conjunto de ações voltadas para a busca de soluções para os resíduos sólidos, de forma a considerar as dimensões política, econômica, ambiental, cultural e social, com controle social e sob a premissa do desenvolvimento sustentável; XII - logística reversa: instrumento de desenvolvimento econômico e social caracterizado por um conjunto de ações, procedimentos e meios destinados a viabilizar a coleta e a restituição dos resíduos sólidos ao setor empresarial, para reaproveitamento, em seu ciclo ou em outros ciclos produtivos, ou outra destinação final ambientalmente adequada; XIII - padrões sustentáveis de produção e consumo: produção e consumo de bens e serviços de forma a atender as necessidades das atuais gerações e permitir melhores condições de vida, sem comprometer a qualidade ambiental e o atendimento das necessidades das gerações futuras; XIV - reciclagem: processo de transformação dos resíduos sólidos que envolve a alteração de suas propriedades físicas, físico-químicas ou biológicas, com vistas à transformação em insumos ou novos produtos, observadas as condições e os padrões estabelecidos pelos órgãos competentes do Sisnama e, se couber, do SNVS e do Suasa; XV - rejeitos: resíduos sólidos que, depois de esgotadas todas as possibilidades de tratamento e recuperação por processos tecnológicos disponíveis e economicamente viáveis, não apresentem outra possibilidade que não a disposição final ambientalmente adequada; XVI - resíduos sólidos: material, substância, objeto ou bem descartado resultante de atividades humanas em sociedade, a cuja destinação final se procede, se propõe proceder ou se está obrigado a proceder, nos estados sólido ou semissólido, bem como gases contidos em recipientes e líquidos cujas particularidades tornem inviável o seu lançamento na rede pública de esgotos ou em corpos d’água, ou exijam para isso soluções técnica ou economicamente inviáveis em face da melhor tecnologia disponível; XVII - responsabilidade compartilhada pelo ciclo de vida dos produtos: conjunto de atribuições individualizadas e encadeadas dos fabricantes, importadores, distribuidores e comerciantes, dos consumidores e dos titulares dos serviços públicos de limpeza urbana e de manejo dos resíduos sólidos, para minimizar o volume de resíduos sólidos e rejeitos gerados, bem como para reduzir os impactos causados à saúde humana e à qualidade ambiental decorrentes do ciclo de vida dos produtos, nos termos desta Lei; XVIII - reutilização: processo de aproveitamento dos resíduos sólidos sem sua transformação biológica, física ou físico-química, observadas as condições e os padrões estabelecidos pelos órgãos competentes do Sisnama e, se couber, do SNVS e do Suasa;

A norma ABNT NBR 10004:2004 dispõe sobre a classificação dos

resíduos sólidos, com a finalidade de fornecer subsídios para o seu

gerenciamento e destinação.

Esta classificação envolve:

Page 35: avaliação do resíduo de cascalho de perfuração de poços de

36

a) a identificação do processo ou atividade que lhes deu origem;

b) a identificação de seus constituintes e características;

c) a comparação destes constituintes com listagens de resíduos e

substâncias cujo impacto à saúde e ao meio ambiente é conhecido.

Buscando propiciar sua melhor compreensão, a norma em comento traz

alguns conceitos que merecem ser mencionados em seu item 3:

3 Definições Para os efeitos desta norma, aplicam-se as seguintes definições: 3.1 resíduos sólidos: resíduos nos estados sólido e semi-sólido, que resultam de atividades de origem industrial, doméstica, hospitalar, comercial, agrícola, de serviços e de varrição. Ficam incluídos nesta definição os lodos provenientes de sistemas de tratamento de água, aqueles gerados em equipamentos e instalações de controle de poluição, bem como determinados líquidos cujas particularidades tornem inviável o seu lançamento na rede pública de esgotos ou corpos de água, ou exijam para isso soluções técnica e economicamente inviáveis em face à melhor tecnologia disponível. 3.2 periculosidade de um resíduo: característica apresentada por um resíduo que, em função de suas propriedades físicas, químicas ou infecto-contagiosas, pode apresentar: a) risco à saúde pública, provocando mortalidade, incidência de doenças ou acentuando seus índices; b) riscos ao meio ambiente, quando o resíduo for gerenciado de forma inadequada. 3.3 toxicidade: propriedade potencial que o agente tóxico possui de provocar, em maior ou menor grau, um efeito adverso em conseqüência de sua interação com o organismo. 3.4 agente tóxico: qualquer substância ou mistura cuja inalação, ingestão ou absorção cutânea tenha sido cientificamente comprovada como tendo efeito adverso (tóxico, carcinogênico, mutagênico, teratogênico ou ecotoxicológico). 3.5 toxicidade aguda: propriedade potencial que o agente tóxico possui de provocar um efeito adverso grave, ou mesmo morte, em conseqüência de sua interação com o organismo, após exposição a uma única dose elevada ou a repetidas doses em curto espaço de tempo. 3.6 agente teratogênico: qualquer substância, mistura, organismo, agente físico ou estado de deficiência que, estando presente durante a vida embrionária ou fetal, produz uma alteração na estrutura ou função do individuo dela resultante. 3.7 agente mutagênico: qualquer substância, mistura, agente físico ou biológico cuja inalação, ingestão ou absorção cutânea possa elevar as taxas espontâneas de danos ao material genético e ainda provocar ou aumentar a freqüência de defeitos genéticos. 3.8 agente carcinogênico: substâncias, misturas, agentes físicos ou biológicos cuja inalação ingestão e absorção cutânea possa desenvolver câncer ou aumentar sua freqüência. O câncer é o resultado de processo anormal, não controlado da diferenciação e proliferação celular, podendo ser iniciado por alteração mutacional.

Page 36: avaliação do resíduo de cascalho de perfuração de poços de

37

3.9 agente ecotóxico: substâncias ou misturas que apresentem ou possam apresentar riscos para um ou vários compartimentos ambientais.

De acordo com a norma NBR 10004:2004, um resíduo sólido é

classificado como Classe I (perigoso), quando um ou mais parâmetros do

lixiviado e/ou massa bruta estiverem acima dos valores máximos permitidos

pelos anexos da NBR 10004:2004.

É classificado como Classe II A (não inerte), quando um ou mais

parâmetros do solubilizado estiverem acima dos valores máximos permitidos

pelos anexos “G” da NBR10004:2004.

É classificado como Classe II B (inerte), quando todos os parâmetros,

tanto da massa bruta quanto dos ensaios de solubilização e lixiviado estiverem

abaixo dos valores máximos permitidos pelos anexos da NBR 10004, conforme

consta do quadro 2.

Quadro 2 – Classificação dos resíduos sólidos com base na norma ABNT NBR 10004:2004

Classe I – perigoso

um ou mais parâmetros do lixiviado e/ou massa bruta estiverem acima dos valores máximos permitidos pelos anexos da NBR 10004.

Classe II A – não inerte

um ou mais parâmetros do solubilizado estiverem acima dos valores máximos permitidos pelos anexos G da NBR10004.

Classe II B – inerte

todos os parâmetros, tanto da massa bruta quanto dos ensaios de solubilização e lixiviado estiverem abaixo dos valores máximos permitidos pelos anexos da NBR 10004.

Fonte: NBR 10004:2004

Os fragmentos de rochas cortados pela broca (cascalhos) são carreados

pelo fluido de perfuração até as peneiras vibratórias na superfície, onde são

separados do fluido e descartados para um dique. Por não haver uma remoção

total do fluido impregnado nos cascalhos, e ainda pela própria composição da

formações geológicas que compõem o perfil geológico do poço, os cascalhos

podem conter contaminantes, tais como (LUCENA et al, 2007):

Metais pesados;

Alta salinidade, uma vez que os fluidos, em sua maioria têm sais em sua composição, cujo objetivo é o de minimizar o inchamento das formações argilosas perfuradas, promovendo a estabilidade do poço;

Óleos e graxas;

Elementos que causam Demanda Bioquímica de Oxigênio (DBO);

Elementos que causam Demanda Química de Oxigênio (DQO);

Elementos que causam alcalinidade.

Page 37: avaliação do resíduo de cascalho de perfuração de poços de

38

2.6 O PROBLEMA DA DESTINAÇÃO FINAL DO CASCALHO

A indústria petrolífera representa grave risco de poluição do meio

ambiente. Embora se reconheça residir nos derramamentos de petróleo de

poços descontrolados em ambiente marinho as maiores catástrofes ambientais,

a atividade de exploração e produção de petróleo apresenta diversos outros

riscos que lhe são inerentes, tais como a poluição de lençois freáticos situados

próximos à superfície, do solo e do ar, e ainda a poluição relacionada aos

grandes volumes de cascalhos que são carreados à superfície pelo fluido de

perfuração por ocasião da perfuração de poços, dentre outros, o que tem

trazido preocupações aos órgãos governamentais e à sociedade como um

todo.

As perdas condicionadas ao meio ambiente pela utilização de derivados

de petróleo, desde a extração até a distribuição, representam um problema de

extensão mundial com potencial de contaminação ao meio ambiente. A

necessidade crescente de preservação dos recursos naturais e dos espaços

designados à ocupação humana requer a criação de soluções tecnológicas

efetivas para a destinação final dos resíduos gerados nas diversas etapas de

produção, minimizando de forma eficaz os impactos ambientais (GANGHIS et

al, 2009).

Estima-se que na região nordeste do Brasil exista atualmente uma

quantidade de resíduos da ordem de 100 mil m³ oriundos do processo de

perfuração de poços para produção de petróleo e, ainda, em função do

crescente número de poços que estão em fase deconstrução, estima-se uma

geração anual de 50 mil m³. Embora comumente classificado pela legislação

brasileira como classe II, a destinação de grandes quantidades deste tipo de

resíduo com as características físico-químicas encontradas tem se mostrado

um grande desafio para as empresas do setor e órgãos ambientais (GANGHIS,

2009).

A acumulação deste resíduo exige a urgente implementação de medidas

ao menos atenuadoras de seus efeitos nefastos ao meio ambiente, já que não

é possível cessar sua geração.

Page 38: avaliação do resíduo de cascalho de perfuração de poços de

39

2.7 POSSIBILIDADES QUANTO AO MANUSEIO E DESTINAÇÃO FINAL

DOS CASCALHOS

A melhor forma de tratar os resíduos é não gerá-los, seguindo a ordem de

prioridade na gestão e gerenciamento de resíduos sólidos prevista no art. 9º,

da Lei nº 12.305/2010 (Plano Nacional de Resíduos Sólidos). Entretanto, a

atividade de perfuração, inevitavelmente, gera o cascalho enquanto resíduo

sólido.

Art. 9º. Na gestão e gerenciamento de resíduos sólidos, deve ser observada a seguinte ordem de prioridade: não geração, redução, reutilização, reciclagem, tratamento dos resíduos sólidos e disposição final ambientalmente adequada dos rejeitos.

Também, verifica-se não ser possível a redução de sua geração, uma

vez que não se trata de resíduos que são gerados por desperdício, erros

operacionais, etc, mas que são gerados como resultado natural da própria

atividade industrial – à medida que a broca avança no poço, todo o cascalho

perfurado há de ser retirado de seu interior. Pelo mesmo motivo, conclui-se

pela impossibilidade de minimização do volume gerado de cascalho ainda que

por modificações no processo de perfuração de poços (CARVALHO, 1993,

apud TOCHETTO, 2005).

Os estudos para o uso do cascalho em materiais de construção são

recentes. Eles apontam alternativas para a construção de sub-base de

pavimentação, materiais cerâmicos e cimentícios. Essa etapa do estudo tem

por objetivo realizar os ensaios para avaliar a influência da substituição de

parte da areia natural por cascalhos de perfuração em blocos de concretos

para pavimentação intertravada.

Segundo Miller (2011), podemos lidar com os resíduos sólidos que

produzimos de duas maneiras: por meio da redução de resíduos e do

gerenciamento.

As seis maneiras de reduzir a utilização de recursos, os resíduos e a

poluição, também chamada de “os seis passos da sustentatibilidade”, são

(MILLER, 2011):

Page 39: avaliação do resíduo de cascalho de perfuração de poços de

40

a) consumir menos;

b) reprojetar processos de fabricação e produtos para que utilizem

menos matéria e energia;

c) reprojetar processos de fabricação para que produzam menos

resíduos e menos poluição;

d) desenvolver produtos fáceis de reparar, reutilizar, remanufaturar,

compostar ou recicilar;

e) reprojetar produtos para durarem mais tempo;

f) eliminar ou reduzir o uso de embalagem.

Quanto ao gerenciamento de resíduos, considera Miller (2011) uma

abordagem ligada à alta produção de dejetos inevitável para o crescimento

humano, buscando-se gerenciar os resíduos advindos do crescimento

econômico a fim de reduzir o dano ao meio ambiente, principalmente

misturando e compactando os resíduos para, depois, incinerá-los, enterrá-los

ou enviá-los para outro país. Ocorre, assim, a mesclagem dos resíduos e sua

transferência de um ambiente para outro.

Na perfuração de poços, levando-se em conta que a produção dos

cascalhos é inerente à própria atividade, não há como se aplicar os seis passos

da sustentabilidade. Resta, portanto, a possbilidade de aplicação do

gerenciamento destes resíduos.

A Lei nº 12.305/2010 define gerenciamento de resíduos sólidos como

sendo

o conjunto de ações exercidas, direta ou indiretamente, nas etapas de coleta, transporte, transbordo, tratamento e destinação final ambientalmente adequada dos resíduos sólidos e disposição final ambientalmente adequada dos rejeitos, de acordo com plano municipal de gestão integrada de resíduos sólidos ou com plano de gerenciamento de resíduos sólidos, exigido na forma desta Lei.

Segundo Mendes & Sousa (2013), a necessidade de gerenciamento

adequado dos cascalhos é um grande desafio a ser vencido pela indústria

petrolífera em sua atividade de perfuração de poços:

Page 40: avaliação do resíduo de cascalho de perfuração de poços de

41

A necessidade de gerenciar, reduzir e destinar adequadamente os resíduos de cascalhos de perfuração, atendendo às legislações e normas ambientais vigentes, dentro de uma perspectiva social e econômicamente sustentável, é um grande desafio para a atividade de perfuração dos poços de petróleo, mas torna-se possível mediante parcerias com empresas que possam desenvolver técnicas de tratamento e destinação definitivas, realização de estudos de viabilidade técnica, operacional, assim como testes e ensaios laboratoriais com a reciclagem do resíduo cascalho, dentro dos parâmetros legais.

2.8 CARACTERIZAÇÃO DOS CASCALHOS

Conforme Serra (2003), apud Moraes (2010), o cascalho representa os

fragmentos de rocha deslocados pela broca e carreados para a superfície no

fluido de perfuração. São também denominados de amostra de calha. Essas

amostras de calha quando estão lavadas e secas, são analisadas pelos

geólogos para a obtenção de informações sobre as formações perfuradas. O

termo cascalho é utilizado na indústria do petróleo para qualquer sedimento

retirado do poço, seja de granulametria fina ou grossa.

Ao retornar à superfície, o fluido de perfuração traz consigo o cascalho,

além de lodo, areia e gases, quando é submetido a um processo de separação

de sólidos e, uma vez apresentando as características desejadas, é

rebombeado para o poço fechando, assiim, o ciclo de bombeamento.

Estima-se que cerca de 10 a 15% do volume do fluido de perfuração

permanece aderido aos cascalhos após o processo de separação (MORAES,

2010), o que, indubitavelmente, irá influenciar a composição do resíduo sólido a

ser transportado e destinado a aterro, reaproveitamento ou mesmo sua

incineração.

Desta forma, tem-se a composição do cascalho determinada,

fundametalmente, pela composição da rocha cortada, que deixa o poço

bombeado pelo fluido de perfuração, predominando, assim, a composição

mineral da formação perfurada.

O volume de cascalhos produzidos durante a perfuração teoricamente

corresponde ao volume do poço acrescido de 20% em decorrência de

eventuais desmoronamentos das formações para dentro do poço de forma que

para cada 100 metros perfurados, produz-se cerca de 13 metros cúbicos de

cascalho (FIALHO, 2012).

Page 41: avaliação do resíduo de cascalho de perfuração de poços de

42

Assim, um poço com profundidade de 900 metros (Canto do Amaro) e

diâmetro médio de 8,75 polegadas geraria em média o volume de 41,9 metros

cúbicos de cascalhos. Considerando-se uma densidade média do cascalho de

2,6 kg/dm3 (FIALHO, 2012), este volume corresponderia a 108,9 toneladas.

Da mesma forma, considerando 600 metros como profundidade média

dos poços da Bacia Potiguar terrestre e diâmetro médio do poço de 8,75

polegadas, e ainda o número de poços perfurados de 7.703 desde o início de

sua exploração até o ano de 2012 (ANP, BDEP-Banco de Dados de

Exploração e Produção. POÇOS – DADOS ESTATÍSTICOS - 2012), obtém-se

o volume gerado de cascalhos da ordem de 215.170 m3, que correspondem à

massa de 559.443,2 toneladas, sendo necessário para o seu transporte a

utilização de cerca de 25.429 carretas com capacidade de carga de 22

toneladas.

Os resultados acima são elucidados a partir dos cálculos seguintes.

Page 42: avaliação do resíduo de cascalho de perfuração de poços de

43

A tabela 3 apresenta o volume de cascalhos gerado em algumas regiões

do mundo, para efeito de comparação.

Tabela 3 – Volumes de Cascalhos de Perfuração gerados em algumas regiões do Mundo

Região Volume (t/ano)

Referência Ano

EUA (mar) 1.560.000 American Petroleum Institute (API) 2000

Reino Unido (mar) 50.000 a 80.000

Al-ansary e Al-Tabbaa 2004

Bahia (terra) 80.000 PETROBRAS 2009

Esp. Santo (terra) 7.000 PETROBRAS 2008

Esp. Santo (terra) 10.000 PETROBRAS 2010 Fonte: Fialho, 2012

A composição química dos cascalhos é muito variada e depende da

composição das formações rochosas perfuradas principalmente, e da

composição química do fluido de perfuração (FIALHO, 2012). A tabela 4 mostra

os principais componentes químicos dos cascalhos em percentagem.

Tabela 4 – Composição dos cascalhos de perfuração

Determi-nações

(%)

ABBE et al (2009)

PIRES (2009)

MEDEIROS (2010)

LEONARD e STEGEMAN

(2010)

VALORES MÉDIOS

SiO2 37,60 43,96 36,5 60,4 44,61

Al2O3 13,54 21,48 11,5 10,4 14,23

Fe2O3 6,34 5,40 4,5 4,9 5,29

BaO 11,39 2,38 N.A. N.A. 3,44

CaO 2,78 18,12 35,3 2,5 14,68

MnO 0,17 N.A. 0,09 0,06 0,08

MgO 2,31 N.A. N.A. 2,0 1,08

K2O 2,33 4,51 2,7 1,7 2,81

Na2O 1,17 N.A. N.A. 2,4 0,89

TiO2 0,65 N.A. 0,81 0,6 0,52

P2O5 0,10 N.A. N.A. 0,1 0,05 Fonte: FIALHO, 2012 adaptada

Embora seja variável sua composição, depreende-se da tabela 4 a

predominância de SiO2, Al2O3, Fe2O3, BaO e CaO na composição dos

cascalhos de perfuração.

Page 43: avaliação do resíduo de cascalho de perfuração de poços de

44

3 MATERIAIS E MÉTODOS

Visando obter dados inerentes à composição química dos cascalhos

oriundos de poços perfurados após o seu término, buscou-se junto ao IDEMA

informações a respeito existentes em processos de licenceamento ambiental

relativos à destinação final destes resíduos.

Os dados correspondem a análise de cascalhos provenientes de poços

perfurados no campo de Canto do Amaro, concluída em 04/12/2009 feita por

empresa inteessada com vistas à caracterização de resíduo segundo

parâmetros da NBR 10004:2004, constantes do processo de requerimento de

licença de operação nº 2008-021678/TEC/LO-0387, tendo como objetivo a

instalação para recebimento e disposição final de resíduos, situados no

Município de Mossoró/RN.

O referido requerimento teve como objetivo o recebimento e disposição

final de resíduos inertes (Classe II) em empreendimento situado no município

de Mossoró/RN (BR-304, Km 50,5, na localidade do Rancho Santo André, s/n;

zona rural), datado de 10/07/2008, como base na LCE nº 272/2004 e

alterações introduzidas pela LCE nº 336/2006.

3.1 ANÁLISE DOS DADOS DA COMPOSIÇÃO QUÍMICA DOS CASCALHOS

As metodologias utilizadas para a elaboração dos laudos foram

baseadas na “SW 846 (USEPA 1986, Test Method for Evaluating Solid Waste

Report Number 846, Washington DC” e as referências são:

Norma NBR 10004:2004 da ABNT – Classificação de Resíduos

Sólidos;

Norma NBR 10005:2004 da ABNT – Ensaio de Lixiviação;

Norma NBR 10006:2004 da ABNT – Ensaio de Solubilização.

Foram analisadas pela empresa 12 amostras no processo nº 2008-

021678/TEC/LO-0387. Basicamente, as análises foram feitas em relação à

massa bruta, ao lixiviado e ao solubilizado encontrado nas amostras, que são

mostradas nos anexos 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14 e 15.

O procedimento para o ensaio de massa bruta é feito a partir de

amostras coletaddas no resíduo total e com base na norma NBR 10004:2004

Page 44: avaliação do resíduo de cascalho de perfuração de poços de

45

para os parâmetros Ponto de fulgor, pH (suspensão 1:1), sulfeto (como H2S)

porcentagem de sólidos e cianeto (como HCN) (IDEMA, processo nº 2008-

021678/TEC/LO-0387).

O procedimento para o ensaio de lixiviado é descrito pela norma NBR

10005:2004 (Procedimento para a obtenção de extrato lixiviado de resíduos

sólidos), que define lixiviação como sendo o processo pelo qual se determina a

capacidade de transferências de substâncias orgânicas e inorgânicas

presentes no resíduo sólido por meio de dissolução no meio exerior. A

lixiviação da amostra é feita por meio de filtração através de filtro de fibra de

vidro isento de resinas com porosidade entre 0,6 µm a 0,8 µm, após agitação

(por aproximadamente 18 horas, a 25 °C e a 30 rpm). O extrato lixiviado obtido

será objeto da análise, cuja classificação é feita por comparação dos dados

obtidos com os constantes do anexo “F” da norma NBR 10004:2004.

O procedimento para o ensaio de solubilizado é descrito pela norma

NBR 10006:2004 (Procedimento para a obtenção de extrato solubilizado de

resíduos sólidos):

a) Adicionar água destilada, desionizada e isenta de orgânicos à

amostra do resíduo seco a 42 °C e agitar com baixa velocidade por 5

minutos;

b) cobrir o frasco com filmes de PVC e deixar em repouso por 7 dias à

temperatura de 25° C;

c) Filtrar a solução com aparelho de filtração guarnecido com

membrana filtrante com 0,45 µm de porosidade, obtendo-se o extrato

solubilizado a ser analisado, cujos dados serão comparados aos

constantes do anexo “G” da norma NBR 10004:2004.

3.2 ANÁLISE E SUGESTÃO DE ALTERNATIVAS PARA A DESTINAÇÃO E

RECICLAGEM DO CASCALHO DE PERFURAÇÃO

A partir de pesquisa bibliográfica, analisou-se diversas alternativas

ambientalmente adequadas para a reciclagem dos cascalhos gerados na

perfuração de poços na Bacia Potiguar, sugerindo-se, ao final, a mais

adequada a ser empregada no âmbito local.

Page 45: avaliação do resíduo de cascalho de perfuração de poços de

46

4 RESULTADOS

4.1 ANÁLISE DOS DADOS QUE APRESENTAM NÃO CONFORMIDADES

COM A NORMA NBR 1004:2004

Com relação aos parâmetros relativos à massa bruta e ao lixiviado,

conforme se vê nos anexos 1 e 2 respectivamente, não foi encontrada qualquer

não conformidade em relação aos limites impostos pela norma NBR

10004:2004. Porém, os parâmetros analisados referentes ao solubilizado

apresentaram não conformidades com os valores limtes desta norma.

A partir da análise dos dados condensados nos anexos 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14 e 15, foi possível a identificação de parâmetros que

apresentam não conformidades com a norma NBR 10004:2004, com relação

aos parâmetros inorgânicos e orgânicos dos ensaios de solubilizado, que são

apresentados nas tabelas 5 e 6.

Tabela 5 – Parâmetros inorgânicos (mg/l) que ultrapassaram os limites da NBR 10004:2004

Número da amostra MÉDIA

Valor NBR

10004 1 2 3 4 5 6 7 8 9 10 11 12

Al 0,204 0,589 0,594 0,2 0,704 0,488 1,400 1,100 0,980 0,383 0,762 1,451 0,738 0,2

Cl-

1985 1728 1890 1737 1686 1434 1640 1272 975 1410 1377 2087 1602 250

Fe 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,678 0,687 0,000 0,463 0,000 0,152 0,3

Na 914 971 875 1000 788 717 936 716 574 736 720 777 810 200

SO4 429 315 467 442 325 437 351 345 211 473 445 316 380 250

Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387

Tabela 6 – Parâmetros orgânicos (mg/l) que ultrapassaram os limites da NBR 10004:2004

Número da amostra MÉDIA

Valor NBR

10004 1 2 3 4 5 6 7 8 9 10 11 12

Al 0,282 0,604 0,606 0,000 0,704 0,488 1,600 0,660 1,400 0,538 0,700 0,457 0,647 0,2

Cl-

2087 1791 1638 1720 1686 1434 1485 1578 1578 1481 1324 1614 1561 250

Fe 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,712 0,603 0,000 0,535 0,000 0,153 0,3

Na 926 879 871 1040 830 788 869 902 555 781 706 921 819 200

SO4 395 357 426 424 322 325 320 451 220 483 418 339 376 250

Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387

Com base nos valores constantes das tabelas 5 e 6, elaborou-se a tebela 7 contendo a média aritimética do correspondentes parâmetros inorgânicos e orgânicos.

Page 46: avaliação do resíduo de cascalho de perfuração de poços de

47

Tabela 7 – Valores médios obtidos pela média aritmética dos parâmetros inorgânicos (tabela 5) e orgânicos (tabela 6) em desconformidade com a NBR 10004:2004

Número da amostra MÉDIA

Valor NBR

10004 1 2 3 4 5 6 7 8 9 10 11 12

Al 0,282 0,596 0,600 0,100 0,704 0,488 1,500 0,880 1,190 0,461 0,731 0,955 0,692 0,2

Cl-

2036 1760 1764 1728 1686 1434 1563 1425 1277 1446 1351 1851 1581 250

Fe 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,695 0,645 0,000 0,499 0,000 0,153 0,3

Na 920 925 873 1020 809 752 903 809 565 759 713 849 815 200

SO4 336 336 446 433 323 381 336 398 216 478 432 328 378 250

Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387

Plotando-se os valores da tabela 7 em função de cada substância com

não conformidades em relação à norma NBR 10004:2004 (alumínio, cloreto,

ferro, sódio e sulfato), são gerados os gráficos 1, 2, 3, 4 e 5.

Gráfico 1 – resultados obtidos na análise de solubilizados em relação ao Alumínio

Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387

Com relação ao alumínio, verificou-se a presença de não conformidades

em todas as amostras analisadas exceto na amostra nº 4, cujos valores médios

de solubilizados ultrapassaram o limite da norma,. O valor médio do desvio é

0,692 mg/l, quando o limite máximo permitido pela norma é 0,2 mg/l,

correspondentes a 3,46 vezes o valor permitido, conforme se vê no Gráfico 1.

Com relação ao cloreto, verificaram-se não conformidades em todas as

amostras analisadas. O valor médio do desvio é 1.561 mg/l, quando o limite

Page 47: avaliação do resíduo de cascalho de perfuração de poços de

48

máximo permitido pela norma é 250 mg/l – o desvio médio coresponde a 6,244

vezes o limite da norma, de acordo com o gráfico 2.

Gráfico 2 – resultados obtidos na análise de solubilizados em relação ao Cloreto

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Gráfico 3 – resultados obtidos na análise de solubilizados em relação ao Ferro

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 48: avaliação do resíduo de cascalho de perfuração de poços de

49

Detectou-se a presença de ferro apenas nas amostras nºs. 8, 9 e 11,

que apresentaram não conformidades (gráfico 3). Considerando-se todas as

amostras, o valor médio do desvio é 0,153 mg/l, abaixo do limite máximo

permitido pela norma que é 0,3 mg/l. Porém, se considerarmos a média apenas

dos valores obtidos com as três amostras desconformes (amostra 8 = 0,695

mg/l; amostra 9 = 0,645 mg/l; amostra 11 = 0,499 mg/l), o valor médio passa a

ser 0,613 mg/l, que ultrapassa o valor 0,3 mg/l permitido pela Norma NBR

10004:2004 em 104,3%.

Gráfico 4 – resultados obtidos na análise de solubilizados em relação ao Sódio

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Com relação ao sódio, houve não conformidades em todas as amostras

analisadas. A média do desvio é 815 mg/l, quando o limite máximo permitido

pela norma é 200 mg/l, portanto, equivalente a mais de quatro vezes o limite

permitido pela Norma NBR-10004:2004, conforme demonstrado no gráfico 4.

Também, com relação ao sulfato (gráfico 5), houve não conformidades

em todas as amostras analisadas, cujo valor médio do desvio é de 378 mg/l,

enquanto que o valor máximo permitido pela norma NBR 10004:2004 é de 250

mg/l, estando o valor médio acima do permitido em mais de 50%.

Page 49: avaliação do resíduo de cascalho de perfuração de poços de

50

Gráfico 5 – resultados obtidos na análise de solubilizados em relação ao Sulfato

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Desta forma, com base na análise dos dados avaliados, constata-se

que os cascalhos de perfuração analisados se classificam como resídos sólidos

classe II-A – não inertes.

4.2 A DESTINAÇÃO FINAL DO CASCALHO DE PERFURAÇÃO

Tendo em vista a preocupação dos órgãos governamentais e da

sociedade com o risco de poluição ambiental causado pelos resíduos da

atividade de perfuração de poços, passou-se a se pesquisar alterantivas

ambientalmente adequadas para a solução do problema.

Assim, os cascalhos gerados na perfuração de poços de petróleo vem

sendo dispostos em aterros sanitários ou reciclados como matéria prima na

confecção de artefatos diversos da construição civil, em que pese serem

recentes os estudos realizados a respeito da matéria (FIALHO, 2012).

Atualmente, encontra-se em prática na Bacia Potiguar a deposição dos

cascalhos provenentes da perfuração em aterros sanitários situados no campo

de Canto do Amaro, conforme demonstram os processos de licença ambiental

nºs. 2006-005332/TEC/LP-0153, 2008-021312/TEC/RLO-0850 e 2008-

021678/TEC/LO-0387.

Page 50: avaliação do resíduo de cascalho de perfuração de poços de

51

O reaproveitamento do cascalho mediante sua reciclagem como material

de construção vem trazendo benefícios econômicos para a indústria civil, além

de atenuar o volume depositado em aterros, contribuindo para atenuar a

poluição ambiental, uma vez que faz desaparecer o resíduo indesejado, ao

contrário do que ocorre com a sua deposição em aterro sanitário.

4.2.1 O processamento de incineração dos cascalhos

A incineração dos cascalhos constitui etapa que antecede a destinação

final a ser dada aos cascalhos, podendo servir de fase de preparação tanto

para a sua deposição em aterros como para a sua reciclagem.

Conforme consta no processo nº 2008-021312/TEC/RLO-0850 do

IDEMA (Renovação de Licença de Operação de 02/07/2009), a operação da

Unidade de Blendagem de Resíduos, situada no Canto do Amaro, no Município

de Areia Branca/RN consiste no manuseio, movimentação, segregação, pré-

acondicionamento e blendagem de resíduos industriais oriundos do dique mãe

e Central de Resíduos, ambos do campo de petróleo do Canto do Amaro,

situado em Areia Branca/RN.

A Unidade de Incineração para o tratamento térmico dos resíduos

blendados do Canto do Amaro se encontra instalada na Unidade de

Blendagem de Resíduos.

De acordo com a Instrução de Trabalho nº 3 – IT – RN – 003, que define

práticas para a produção de blends para co-processamento e incineração, os

primeiros blends enviados para os fornos serão utilizados como substitutos

energéticos e/ou matéria prima de forma segura e em conformidade com os

requisitos internos e os requisitos legais. Já os blends preparados para

incineração in sito, sofrerão descontaminação através de destruição térmica da

sua carga orgânica.

Foram referenciadas as resoluções CONAMA 264 (procedimentos,

critérios e aspectos técnicos específicosde licenciamento ambiental para o co-

processamento de resíduos em fornos rotativos de clinquer, para a fabricação

de cimento) e CONAMA 316 (procedimentos e critérios para o funcionamento

de sistemas de tratamentos térmicos e resíduos).

Page 51: avaliação do resíduo de cascalho de perfuração de poços de

52

O item 3 da instrução acima mencionada traz algumas definições

importantes para a compreensão da rotina dos serviços listadas no quadro 3:

Quadro 3 – definições da Instrução de Trabalho nº 3 – IT – RN – 003, item 3 Blend Mistura de resíduos

Planta de Blend Área disponibilizada para recebimento de resíduos a granel ou em qualquer recipiente aprovado. Nessa área, são realizadas as atividades de blendagem, segregação, manipulação e expedição de resíduos

Resíduos coprocessáveis

Resíduos que após a análise técnica de suas características pelo centro técnico, gestores de contratos e operação, são aprovados o aceite para co-processamento

Coproces-samento

Técnica de destruição para resíduos por via térmica em fornos de alta temperatura durante o processo de fabricação de cimento em unidades devidamente licenciadas para este fim, com aproveitamento energético e/ou de matéria prima sem geração de novos resíduos, contribuindo para a redução de combustíveis e matéria prima sem alterar a qualidade

Manuseio Qualquer atividade onde o resíduo ou seus continentes possam entrar emcontato com os operadores e/ou meio ambiente

Armazenamento Ato ou efeito de guardar provisoriamente o resíduo até uma posterior destinação

Transporte Ato ou efeito de traportar um resíduo, por via rodoviária, ferroviária, marítima ou aérea

Mistura/ blendagem

Misturar com o auxílio de pá mecânica os resíduos a fim de homogeneizar o material para preparação do blend; o blend deve ser estocado/empilhado e posteriormente ser amostrado de forma representativa e enviado para o laboratório para avaliação e garantia da qualidade.

Peneiramento de resíduos

Iniciar a segregação de material impróprio para o peneiramento ainda nos diques e no piso do galpão (material de grandes dimensões, material metálico como tambores, tampas, etc.); verificar se o sistema de peneiramento (alimentador vibratório, correia transportadora e peneira vibratória) encontra-se em condição de operação, observando todas as partes moveis – polias, correias, rolamentos, corpo da peneira, etc.); com a unidade de classificação granulomética (alimentador vibratório, correia transportadora e peneira vibratória) em funcionamento; utilizar a pá carregadeira para alimentar o material a ser peneirado; limpar a grelha do alimentador vibratório e a tela da peneira vibratória sempre que houver acúmulo de material que impeça a operação normal.

Análise química

A análise química deve atender aos parâmetros definidos para coprocessamento e incineração conforme especificação técnica em anexo para lotes 1.000 ton (+/- 200 ton). Ressalte-se que os resíduos nao tendo grande variabilidade em função da sua origem conhecida e única, poderemos autmentar a quantidade de resíduos por lote.

Fonte: IDEMA, processo nº 2008-021312/TEC/RLO-0850

O fluxograma 1 mostra a rotina da blendagem de resíduos (IDEMA,

processo nº 2008-021312/TEC/RLO-0850):

Page 52: avaliação do resíduo de cascalho de perfuração de poços de

53

Fluxograma 1 – Blendagem de resíduos

Fonte: IDEMA, processo nº 2008-021312/TEC/RLO-0850

O fluxograma 2 mostra as etapas do coprocessamento de resíduos:

início

Estocar resíduos

Segregar resíduos

Misturar previamente

peneirar

Analisar quimicamente

fim

Adicionar resíduos

Blend atende

especificação?

não

sim

Liberar Blend

para envio

Page 53: avaliação do resíduo de cascalho de perfuração de poços de

54

Fluxograma 2 – coprocessamento de resíduos

Fonte: IDEMA, processo nº 2008-021312/TEC/RLO-0850

4.2.2 A deposição do cascalho em aterros sanitários

Sendo o cascalho classificado como resíduo sólido não inerte (classe II-

A), portanto não perigoso, a sua deposição em aterros sanitários deve seguir a

NBR-13.896/1997, que dispõe sobre “aterros de residuos não perigosos –

critérios para projeto, implantação e operação”.

Conforme a Norma NBR-13.896/1997, deve-se atentar para os seguintes

critérios:

Impermeabilização: propiciada a partir de deposição de camadas de

materiais artificiais ou naturais, que impeça ou reduza

substancialmente a infiltração no solo dos líquidos percolados,

através da massa de resíduos.

Localização: deve ser tal que:

a) o impacto ambiental a ser causado seja minimizado;

b) a aceitação da instalação pela população seja maximizada;

c) esteja de acordo com o zoneamento da região;

d) possa ser utilizado por um longo espaço de tempo, necessitando

de um mínimo de obras para o início da operação;

Licenças Ambientais

Segregar pré- condicionar

e/ou blendar os resíduos

Carregamento de caminhões

Transporte de resíduos

Co-processamento dos resíduos

nas cimenteiras

Controle de qualidade dos

lotes para expedição

Controle de qualidade do

processo produtivo e

ambiental

Entrega de certificado de

Tratamento Térmico

Page 54: avaliação do resíduo de cascalho de perfuração de poços de

55

e) recomenda-se locais com declividade superior a 1% e inferior a

30%;

f) não deve o aterro ser executado em áreas sujeitas a inundações,

em períodos de recorrência de 100 anos.

Inicialmente, é feita uma separação do material coletado visando a sua

destinação para aterro ou a sua incineração, conforme sua classificação: a

parte do cascalho considerada não perigosa, será diretamente depositada em

aterros sanitários e a perigosa, destinada à incineração (IDEMA, processo nº

2006-005332/TEC/LP-0153).

A deposição de cascalhos de perfuração em aterrros sanitários demanda

a disponibilidade de grandes áreas destinadas ao seu armazenamento além do

monitoramento dos gases gerados no aterro, das águas subterrâneas e de

detecção de vazamentos, o que se perpetua ao longo do tempo.

4.2.3 A alternativa de destinação de resíduos de cascalhos de perfuração

em mina de salgema

Outra alternativa estudada para a destinação dos resíduos de cascalhos

de perfuração é a sua deposição em cavidades subterrâneas de minas de

salgema abandonadas. O estudo foi feito numa mina de salgema já desativada

e localizada em Maceió no Estado de Alagoas.

Embora se reconheça a eficiência e importância dos modelos industriais

de transformação do resíduo em insumos da construção civil, esta alternativa

se embasa no fato de que as alternativas industriais nãoconseguem processar

os grandes volumes de cascalho produzidos pela indústria petrolífera

(GANGHIS et al, 2009).

Ressaltam Ganghis et al (2009), que a utilização de cavidades

subterrâneas aberta por dissolução em maciços evaporíticos para

armazenamento seguro de produtos e rejeitos industriais tem sido largmente

praticada em países como Canadá e Estados Unidos.

O processo consiste na injeção do cascalho bombeado através de

tubulação instalada em poços de injeção perfurados e instalados para este fim,

Page 55: avaliação do resíduo de cascalho de perfuração de poços de

56

em solução de salmoura saturada, que retornará à superfície através do

espaço anular existente entre a tubulação e as paredes do poço. Destarte, a

fase sólida será depositada na base da cavidade subterrânea de configuração

cilíndrica com seção transversal de cerca de cinquenta metros de diâmetro

ecento e vinte metros de altura, situada entre 850 m e 1.000 m de

profundidade, abaixo de um espesso pacote de rochas sedimentares formadas

por camadas de folhelho (GANGHIS et al, 2009).

O processo de injeção está representado na figura 5 e apresenta as

seguintes etapas (GANGHIS et al, 2009):

Transporte e descarregamento dos resíduos de cascalho de perfuração em uma unidade adequada ao seu recebimento;

Bombeamento de salmoura da cavidade, misturando-a aos resíduos em um tanque adequado a este fim, tendo por finalidade transformar o cascalho em uma polpa uniforme, com uma proporção estimada de 20% de sólidos e concentração muito próxima a existente no interior da cavidade;

Injeção dessa polpa para o interior da mina através de bombeamento, utilizando-se de tubulação instalada exclusivamente para este fim. Ao atingir o final do poço ao redor de 980 m de profundidade, a polpa é lançada no interior da caverna e a parte sólida desta suspensão deposita-se rapidamente na base da cavidade. A fase líquida da suspensão que é injetada, constituída de salmoura saturada, desloca um volume equivalente da solução existente na caverna, que fluirá para a superfície através do espaço anular de um poço existente na porção superior da cavidade, chegando ao tanque de salmoura na superfície do terreno (completando assim o circuito fechado), onde a salmoura utilizada para produção da polpa do resíduo acaba voltando integralmente para dentro da caverna.

Entre os aspectos que viabilizam o processo segundo os autores estão

(GANGHIS et al, 2009):

Não há qualquer impacto na superfície visto que o líquido utilizado para diluir e manter osresíduos em suspensão é a própria salmoura saturada, retirada e, a seguir, retornada para o interior da mina em circuito fechado (Figura 1.);

A rocha salina possui propriedades físicas extremamente favoráveis à sua utilização para a finalidade proposta, como baixa permeabilidade, da ordem de 10-7 cm/s, baixíssima porosidade e elevada plasticidade do corpo salino a essa profundidade, minimizando a possibilidade de ocorrência de fraturas no maciço;

Não há possibilidade de comprometimento da estabilidade geomecânica da caverna pelo fato da diluição dos resíduos ser feita com a salmoura já saturada pré-existente no interior da mina. Como a salmoura encontra-se saturada, não haverá a

Page 56: avaliação do resíduo de cascalho de perfuração de poços de

57

dissolução adicional da salgema das paredes e progressão do volume da caverna.

A princípio, os três argumentados técnicos levantados pelos autores

acima são bastante importantes no tocante à viabilização do processo de

armazenamento do cascalho produzido, no entanto resolve o problema apenas

de forma localizada, vez que não só o volume gerado em todo o país

ultrapassa o volume disponível no subsolo, como se encontra espalhado no

vasto território brasileiro, inviabilizado o seu transporte ao seu destino final,

ainda que houvesse espaço disponível.

Figura 5 - Diagrama esquemático da injeção do cascalhos em cavidades subterrâneas de mina

de salgema

fonte: GANGHIS et al, 2009

Ou seja, esta alternativa somente é viável para campos de petróleo

situados nas proximidades de minas de sal gema abandonadas, como é o caso

do Estado de Alagoas.

Page 57: avaliação do resíduo de cascalho de perfuração de poços de

58

4.3 TÉCNICAS DE RECICLAGEM DO CASCALHO DE PERFURAÇÃO

4.3.1 O emprego do cascalho de perfuração na confecção de tijolos

solo-cimento

O solo cimento consiste em material resultante da mistura homogênea

compactada e curada de solo, cimento e água em proporções adequadas, que

proporciona ao material boa resistência à compressão, bom índice de

permeabilidade, baixo índice de retração volumétrica e boa durabilidade

(MARQUES, 2010).

Conhecidos como tijolos ecológicos, apresentam a vantagem de serem

fabricados rapidamente no próprio canteiro de obras por mão-de-obra não

especializada, tendo como maior quantidade de matéria prima o solo,

possibilitando menor consumo de argamassa de assentamento e de

revestimento dada a boa qualidade e regularidade no aspecto final das peças,

reduzindo a duração da obra e promovendo uma relação custo-benefício mais

satisfatória (MARQUES, 2010).

Com a incorporação do resíduo do cascalho, igualmente são verificadas

as vantagens acima citadas, uma vez que sua utilização alcança proporção de

90% em quantidade da mistura (MARQUES, 2010).

Assim, esse modelo de destinação do cascalho apresenta a um só

tempo dupla vantagem: a reciclagem do próprio cascalho com a eliminação de

seu potencial de poluição e a fabricação de material de construção a baixo

custo.

Outro aspecto relevante a ser considerado é que esta técnica pode ser

implementada em qualquer atividade de construção civil que envolva a

utilização de tijolos assentados com argamassa de cimento independe de sua

localização geográfica.

Page 58: avaliação do resíduo de cascalho de perfuração de poços de

59

4.3.2 O coprocessamento do resíduo de cascalho de perfuração em

fornos de clínquer para fabricação de cimento

Outra importante forma de reaproveitamento do cascalho de perfuração

é a sua utilização na fabricação de cimento Portland por meio do seu

coprocessamento, que consiste numa atividade que visa à reutilização de

materiais resultantes de processos produtivos e, no entanto, indesejáveis por

sua fonte geradora, como alternativa para substituição de matéria-prima para a

produção de cimento (MENDES & SOUSA, 2013).

Para isto, foram coletadas amostradas do cascalho em base seca, em

fase de teste em cimenteira de Mossoró/RN, de acordo com a recomendação

da NBR 10.007/2004 com vistas a compor o clínquer que serve de base para a

fabricação do cimento (MENDES & SOUSA, 2013).

Em seguida, determinou-se a taxa de alimentação do cascalho e do

calcário para a composição da matéria-prima conhecida como farinha

finamente moída para a produção do clínquer e obtida a partir de minerais e

outros materiais ricos em CaCO3, SiO2, Al2O3 e FeSO4 (MENDES & SOUSA,

2013).

Os resíduos de cascalho e calcário são homogeneizados juntos, por

terem características em comum quanto à sua composição química potencial,

como a cal (CaO), a sílica (SiO2), a alumina (Al2O3), o óxido de ferro (Fe2O3),

certa proporção de magnésia (MgO) e uma percentagem de anidrido sulfúrico

(SO3). Têm ainda, como constituintes menores, óxido de sódio (Na2O) e óxido

de potássio (K2O) que constituem os denominados álcalis do cimento (BAUER,

1994, apud MELLO, 2004, apud MENDES & SOUSA, 2013).

Isto porque, na realidade, o resíduo de cascalho é usado em substituição

ao calcário e de outros materiais na composição do clínquer, que é levado ao

forno com atingimento de temperaturas da ordem de 1.450 °C.

O processo de fabricação do cimento Portland consiste na

transformação de matérias-primas por meio do rearranjo de seus elementos

químicos em novos compostos, a partir da preparação destas matérias-primas,

que são moídas, transformando as rochas, fontes de cálcio, silício, ferro e

alumínio na farinha ou cru de clínquer (Mendes et De Sousa:2013).

Page 59: avaliação do resíduo de cascalho de perfuração de poços de

60

Adquire-se, assim, o cimento Portland através da pulverização do

clínquer constituído essencialmente de silicatos hidráulicos de cálcio, sulfato

natural de cálcio natural e adições de substâncias que modificam suas

propriedades ou facilitam o seu emprego, ocorrendo a destruição total do

resíduo empregado (MENDES & SOUSA, 2013).

Para Mendes & Sousa (2013), o coprocessamento do cascalho de

perfuração além de viável, é vantajoso em comparação com sua deposição em

aterro sanitário:

A aplicação da técnica de coprocessamento com o resíduo cascalho de perfuração, dentro dos padrões legais, é considerada adequada às necessidades operacionais do forno de clínquer, contribuindo para o objetivo dos aspectos legais sobre o tratamento de resíduos gerados nos poços de perfuração onde, através desta técnica, se constata que outra disposição deste resíduo em aterro controlado, somente adiaria o tratamento do passivo, não sendo considerado eficaz.

O emprego desta técnica é viável para aproveitamento de cascalhos

gerados em campo de petróleo situados nas proximidades de fábricas de

cimento protland, a menos que haja viabiliade do seu transporte a locais onde

estão instaladas as fábricas de cimento, considerando a grande demanda.

4.3.2.1 O coprocessamento de cascalho realizado pela CINPOR –

cimentos de Portugal, SGPS, S.A.

Instalada na cidade de João Pessoa/PB, a empresa CINPOR –

Cimentos de Portugal, SGPS, S.A., mediante contrato assinado com a

PETROBRAS e em convêncio com empresa do grupo ODEBRECHT, já

economizou mais de 150 mil toneladas de recursos naturais ao implantar um

projeto de coprocessamento, através do qual substitui parte da matéria-prima

natural usada na fabricação de cimento por cascalho de perfuração que

aguardam há vários anos uma solução técnica e economicamente viável e

ambientalmente adequada. Só em 2011, cerca de 57% da argila necessária ao

processo de fabricação de cimento foi substituído por cascalho de perfuração

(CINPOR, 2013).

Page 60: avaliação do resíduo de cascalho de perfuração de poços de

61

4.3.3 O estudo do potencial de aplicação do cascalho de perfuração em

concreto

A utilização do cascalho de perfuração no concreto produzido pode se

dar tanto pela substituição parcial da areia por cascalhos de perfuração,como

pela adição dos cascalhos em relação à massa do cimento.

Segundo Fialho (2012), para um melhor aproveitamento do resíduo, é

necessário um estudo particular do cascalho a ser utilizado, partindo-se de sua

caracterização exaustiva. O estudo foi feito com base no cascalho gerado na

atividade de perfuração de poços de petróleo realizada no norte do Estado do

Espírito Santo, que engloba os Municípios de Linhares, São Mateus, Jaguaré e

Conceição da Barra.

A pesquisa foi desenvolvida no trabalho de autoria de Poline Fernandes

Fialho denominado “Cascalho de Perfuração de Poços de petróleo e Gás.

Estudo do Potencial de Aplicação em concreto” de 2012, que foi dividido em

duas etapas: a primeira consistiu na substituição da areia fina por cascalho de

perfuração da primera fase de perfuração (denominado CAP I); a segunda, na

adição do cascalho de perfuração gerado na terceira fase de perfuração

(denominado CAP III) em diferentes percentuais em relação à massa de

cimento de concreto de referência.

Antes de serem utilizados, os cascalhos foram secos em estufa a 100ºC

por 24 horas, destorroados manualmente e quarteados e devidamente

preparados. Escolheu-se para os experimentos os concretos S100 e A15 por

conterem maior teor de substituição ou adiçao de cascalhos.

Para o preparo de 252 copros de prova, utilizou-se o cimento CP V ARI,

como agregado miúdo a areia de rio e a areia de jazida, como agregado graúdo

uma brita de origem granítica, aditivo superplastificante de 3ª geração e os dois

tipos de cascalhos de perfuração.

Para a mistura dos concretos foi utilizada uma betoneira de eixo

inclinado e os materiais foram vertidos na seguinte sequência: metade da água,

toda a brita, todo o cimento, toda a areia e todo o resíduo. Após a mistura, foi

adicionada o restante da água e o aditivo. As amostras continham substituição

da areia por cascalho nas proporções de 20%, 50% e 100%.

Page 61: avaliação do resíduo de cascalho de perfuração de poços de

62

Os resultados obtidos com os concretos com substituição do cascalho

de perfuração da primeira fase - CAP I indicaram que todos os parâmetros

estabelecidos no programa experimental tais como resistência à compressão

axial, resistência à tração por compressão diametral, durabilidade, módulo de

elsaticidade e detecçao de cloretos livres foram devidamente atendidos.

Com relação aos concretos com adição do cascalho de perfuração da

terceira fase - CAP III, também os resultados apontam no sentido de que todos

os parâmetros estabelecidos no programa experimental acima elencados foram

devidamente atendidos.

Em resumo, os resultados apontaram no sentido de que existe o

potencial de substituição de cascalhos de perfuração em concretos nos teores

indicados nos experimentos acima quando comparados ao concreto de

referência.

4.3.4 O emprego do cascalho de perfuração na fabricação de material

cerâmico

Visando o emprego de tecnologias limpas para a destinação e

reaproveitamento do cascalho de perfuração na indústria, destaca-se o seu

emprego associado a argilas, exercendo estas o suporte para o resíduo, tendo

em vista suas características e natureza homogêneas, com vasto espectro de

composições de materiais plásticos e não plásticos, que permite a presença de

materiais residuais de vários tipos, mesmo em percentagens significantes

(MEDEIROS, 2010).

Medeiros (2010) estudou o processo industrial de aproveitamento dos

cascalhos na fabricação de material cerâmico, cujas etapas de

desenvolvimento são as seguintes:

a) Inicialmente, foram selecionados os materiais para composição dos

corpos de prova: argila comum oriunda do Município de

Goianinha/RN e cascalhos de perfuração de poços onshore situados

no Município de Serra do Mel/RN e devidamente caracterizadas,

conforme análise química (percentuais de óxidos mais estáveis dos

Page 62: avaliação do resíduo de cascalho de perfuração de poços de

63

elementos químicos presentes), análise mineralógica (os materiais

foram moídos em almofariz, moinhos de bola e classificados por

peneiramento na granulometria inferior a 0,074mm), análise

granulométrica (com o auxílio de granulômetro a laser com faixa de

0,04 a 2500 µm) e análise térmica (com variações de 25ºC a 1000

ºC);

b) Formulações de massas cerâmicas de acordo com a tebela 8, que

foram misturadas e homogeneizadas com 10% em peso de água,

pesadas com 13 g de massa e armazenadas evitando variações de

umidade:

Tabela 8 – formulações de misturas argila e cascalhos (% em peso)

Formulações (g) Argila (% em peso) Cascalhos (% em peso)

Argila 100 0

Argila + Cascalhos 95 5

Argila + Cascalhos 90 10

Argila + Cascalhos 85 15

Argila + Cascalhos 75 25

Argila + Cascalhos 50 50

Argila + Cascalhos 25 75

Cascalhos 0 100 Fonte: MEDEIROS, 2010

c) Os corpos de prova foram formados mediante compactação de 25

MPa e, em seguida, devidamente secados à temperatura de 110 º C

por 24 horas;

d) Realizadas queimas nas temperaturas de 850, 950 e 1050 ºC à taxa

de aquecimento de 10 ºC/min, com patamar de 30 ºC, sendo

resfriados até a temperatura ambiente.

Ao final, foram obtidos tijolos maciços para alvenaria, conforme a norma

ABNT NBR 07170/1983, e blocos cerâmicos para alvenaria de vedação, de

acordo com a norma ABNT NBR 15270-1/2005 (MEDEIROS, 2010).

Constatou-se com o trabalho referido acima que, a utilização dos

cascalhos na fabricação de material cerâmico tanto contribui para a atenuação

do problema ambiental, como para a redução dos custos de materiais na

Page 63: avaliação do resíduo de cascalho de perfuração de poços de

64

indústria da construção civil, agregando, ainda, valor a um material que não

estava sendo utilizado nos processos industriais (MEDEIROS, 2010).

Em que pese a viabilidade técnica do aproveitamento dos cascalhos

como matéria-prima na fabricação de tijolos cerâmicos, há que se verificar o

custo de seu transporte do campo de petróleo até o local onde é realizada a

fabricação cerâmica, buscando-se a sua viabilidade econômica, ambiental e

social em escala industrial, em comparação com a redução de custos de

materiais na indústria construção civil e a demanda disponível deste resíduo, o

que pode ser otimizado por meio de novos estudos a serem realizados a

respeito.

Page 64: avaliação do resíduo de cascalho de perfuração de poços de

65

5 CONCLUSÃO

A destinação final dos cascalhos de perfuração tem sido motivo de

preocupação e, ao mesmo tempo, um verdadeiro desafio para os órgãos

gevernamentais e para as empresas petrolíferas não só no Brasil, mas em todo

o mundo, não existindo ainda uma padronização adequada para o caso, em

que pese os estudos até então realizados.

Esta preocupação decorre principalmente dos grandes volumes de

cascalhos gerados na perfuração de poços de petróleo, tendo em vista a

quantidade proveniente dos poços atuais que acrescem ao grande estoque

existente há várias décadas.

Convém deduzir-se que a geração de cascalhos é inerente à própria

atividade de perfuração, uma vez que, para que se perfure, há que ser retirado

do interior do poço e ser conduzido até à sua superfície, quando será coletada

ínfima porção para análise geológica, e a partir de então não terá mais utilidade

para a atividade.

Isto significa que, enquanto se realizar a pefuração de poços de

petróleo, ocorrerá sua geração, o que afasta a possibilidade de sua não

existência ou mesmo da redução do volume produzido.

Há que se ressaltar o importante papel que vem desempenhando o

IDEMA no tocante à viablização das alternativas viáveis, enquanto órgão

fiscalizador e regulamentador de riscos ao meio ambiente.

Através de informações colhidas da análise dos laudos obtidos junto ao

IDEMA, constatou-se que os cascalhos de perfuração são classificados

segundo a Norma NBR 10004:2004 como sendo de classe II-A, portanto, não

inertes e não perigosos, uma vez que se verificou não conformidades entre os

parâmetros analisados e os valores limites da norma técnica acima apenas nos

ensaios de solubilidade.

Esta classificação possibilita que sejam os cascalhos não só destinados

a deposição em aterros sanitários ou em outros locais ambientalmente viáveis,

mas também reaproveitados por meio de reciclagem em processos industriais,

em particular da construção civil.

Page 65: avaliação do resíduo de cascalho de perfuração de poços de

66

A deposição do cascalho em aterros sanitários requer a observâncias de

regras previstas em normas técnicas, mas tem suas viabilidades técnica e

econômica calcadas na disponibilidade de áreas existentes nas proximidades

dos poços geradores, no entanto a sua viabilidade ambiental torna-se

ameaçada pelo fato de que não faz desaparecer o resíduo em estudo, que se

perpetuará no local destinado indefinidamente além de monitoramento

contínuo, o que não afasta a possibilidade da poluição de suas proximidades.

Entre as alternativas viáveis de reciclagem do cascalho de perfuração,

foram analisados a reciclagem de cascalho na confecção de solo-cimento, o

coprocessamento do resíduo de cascalho para a fabricação de cimento, o

estudo do potencial de aplicação do cascalho em concreto e, o emprego do

cascalho na fabricação de material cerâmico.

Estas alternativas apresentam grande viabilidade do ponto de vista

ambiental, tendo em vista que com a recicalgem dos cascalhos, faz

desaparacer o indesejável resíduo, embora dependam para a sua

implementação de outros fatores tais como a existência do processo industrial

pertinente em locais próximos da fonte geradora do cascalho, além de

parcerias com empresas industriais, considerando as viabilidades técnicas e

econômicas.

Por último, analisou-se a alternativa de destinação do cascalho em mina

de salgema abandonada (subsuperfície), verificando-se a sua inaplicabilidade

na Bacia Potiguar, ante a inexistência do espaço de subsuperfície essencial à

sua deposição.

Assim sendo, sugere-se como melhor alternativa o reaproveitamento do

cascalho no coprocessamento do resíduo em forno de clínquer para fabricação

de cimento, tendo em vista que existe em atividade uma fábrica de cimento na

cidade de Mossoró, o que viabiliza economicamente o empreendimento.

Verifica-se que, não obstante haver viabilidades técnica, econômica e

ambiental do emprego das tecnologias analisadas, há necessidade de

aprofundamento de pesquisas enfocando a reciclagem do cascalho de

perfuração na confecção de materiais de construção civil, bem como em outros

processos industriais a serem identificados, bem como que não está

descartada a sua deposição em em aterros sanitários.

Page 66: avaliação do resíduo de cascalho de perfuração de poços de

67

6 SUGESTÕES PARA TRABALHOS FUTUROS

Os cascalhos produzidos no poços perfurados na Bacia Potiguar

carecem ainda de uma melhor caracterização com vistas à identificação de

eventuais elementos perigosos, tendo em vista sua disposição geográfica em

vasta área do território potiguar, o que se traduz em grande quantidade de

campos de petróleo existentes.

Da mesma forma, faz necessária a realização de pesquisas voltadas

para novas alternativas de destinação final e reaproveitamento destes

cascalhos, bem como para sua implementação.

Desta forma, sugere-se para trabalhos futuros:

1) Realização de análise em laboratório da composição química dos

cascalhos gerados na perfuração de poços nos diversos campos de

petróleo da Bacia Potiguar e sua respectiva classificação com base

na Norma NBR 10004:2004;

2) Estudos de viabilidade técnica, econômica e ambiental de

alternativas de destinação final e reaproveitamento do cascalho

enfocando a realidade da Bacia Potiguar.

Page 67: avaliação do resíduo de cascalho de perfuração de poços de

68

7 REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO, Vagner. A história do petróleo no Rio Grande do Norte. Disponível em http://www.vagneraraujo.com/2010/08/historia-do-petroleo-no-rio-grande-do.html. Acesso em 15 set 2013. ANP, BDEP-Banco de Dados de Exploração e Produção. POÇOS – DADOS ESTATÍSTICOS - 2012. Disponível em www.bdep.gov.br/SITE/acao/download/?id=6236. Acesso em 02 jun 2014. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10004: Resíduos sólidos - Classificação. Disponível em http://www.aslaa.com.br/legislacoes/NBR%20n%2010004-2004.pdf. Acesso em 7 jun 2014. ______. NBR 10005: Procedimento para obtenção de extrato lixiviado de resíduos sólidos. Disponível em http://wp.ufpel.edu.br/residuos/files/2014/04/ABNT-NBR-10005-Lixiviacao-de-Residuos.pdf. Acesso em 7 jun 2014. ______. NBR 10006: Procedimento para obtenção de extrato solubilizado de resíduos sólidos. Disponível em http://patriciamirotti.files.wordpress.com/2012/04/nbr-10006-procedimento-para-obtenc3a7c3a3o-de-extrato-solubilizado-de-resc3adduos-sc3b3lidos.pdf. Acesso em 7 jun 2014. ______. NBR 13896: Aterros de resíduos não perigosos – critérios para projeto, implantação e operação. Disponível em ftp://ftp.cefetes.br/cursos/MetalurgiaMateriais/Joseroberto/P%D3S/NORMAS,%20ARTIGOS%20E%20%20EXERC%CDCIOS/nbr13896.pdf. Acesso em 7 jun 2014. CASSAB, Rita de Cassia Tardin. Paleontologia da formação Jandaíra, cretáceo superior da Bacia Potiguar, com ênfase na paleobiologia dos Gastrópodos. Dissertação para obtenção do grau em doutor em Ciências. Programa de Pós-Graduação em Geologia, Universidade Federal do Rio de Janeiro, 2003. Disponível em http://www.cpr.gov.br/publique/media/rita.pdf. Acesso em 15 junho 2014. CASTRO, Francker Duarte de; COSTA, Luzimar Pereira da; SAN TOS, Narja Najara Barboza dos; SANTOS E SILVA, Clara Rafaela de Olveira. Aspectos geomorfológicos, gelológicos e oceanográficos da margem continental potiguar: uma fração do Brasil carente em informação. Disponível em http://connepi.ifal.edu.br/ocs/index.php/connepi/CONNEPI2010/paper/viewFile/563/342. Acesso em 12 maio 2014. CHIPALAVELA, Ariana Francisco. Análise e Discussão das Operações de Perfuração e Completação em Poços Petrolíferos. Dissertação para obtenção do grau de mestre em Engenharia Geológica de Minas. Disponível

Page 68: avaliação do resíduo de cascalho de perfuração de poços de

69

em https://fenix.tecnico.ulisboa.pt/downloadFile/395145922656/tese%20final%20imprimir1.pdf. Acesso em 23 maio 2014. CINPOR Cimentos de Portugal, SGPS, S.A. Disponível em http://www.cimpor.pt/Default.aspx?lang=pt. Acesso em 30 mar 2013. BRASIL. Constituição Federal de 1988. Disponível em http://www.planalto.gov.br/ccivil_03/Constituicao/Constituicao.htm. Acesso em 23 dez 2013. ______. Lei nº 6.938, de 31 de agosto de 1981 – Política Nacional do Meio Ambiente. Disponível em Lei nº 6.938, de 3 de agosto de 1981 – Política Nacional do Meio Ambiente. Acesso em 23 dez 2013. ______. Lei nº 12.305, de 2 de agosto de 2010 - Política Nacional de Resíduos Sólidos. Disponível em http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2010/Lei/L12305.htm. Acesso em 23 dez 2013. FIALHO, Poline Fernandes. Cascalho de perfuração de poços de petróleo e gás. Estudo do potencial de aplicação em concreto. 217 f., dissertação de Mestrado em Engenharia Civil – Programa de Pós-Graduação em Engenharia Civil, Universidade Fedeal do Espírito Santo, Vitória, 2012. Disponível em http://portais4.ufes.br/posgrad/teses/tese_5089_Poline%Fernandes%20Fialho.pdf. Acesso em 23 mai 2014. FILHO, Antonio Costa. Riscos e Vulnerabilidade – Campo Petrolífero Canto do Amaro, Mossoró-RN. 189 f., dissertação de Doutorado em Recursos Naturais – Programa de Pós-Graduação em Rrecursos Naturais, Universidade Federal de Campina Grande-PB, Setembro, 2007. Disponível em http://www.recursosnaturais.ufcg.edu.br/teses/AntonioCFilho_2007.pdf. Acesso em 23 mai 2014. GANGHIS, Diógenes; ALARSA, Marcelo; TRENTINI, Sérgio. Alternativa para destinação final de cascalho de perfuração de poços de petróleo on shore gerados noNordeste do Brasil. Trabalho apresentado no I Congresso Internacional de Meio Ambiente Subterrâneo, 2009. Disponível em http://aguassubterraneas.abas.org/asubterraneas/article/view/21961/14330. Acesso em 26 dez 2012. GUIMARÃES, Ian Barros; ROSSI, Luciano Fernando dos Santos. Estudo dos constituintes dos fluidos de perfuração: proposta de uma formulação otimizada e ambientalmente correta. 2008, Disponível em http://www.ppgem.ct.utfpr.edu.br/lacit/publicacoes/congressos/Estudo%20dos%20Constituintes%20dos%20Fluidos%20de%20Perfura%E7%E3o%20proposta%20de%20uma%20Formula%E7%E3o%20Otimizada%20e%20Ambientalmente%20Correta%20COBEQ%202008.pdf. Acesso em 04 out 2013. IDEMA. Processo nº 2006-005332/TEC/LP-0153. Licença Prévia.

Page 69: avaliação do resíduo de cascalho de perfuração de poços de

70

______. Processo nº 2008-021312/TEC/RLO-0850. Renovação de licença operacional. ______. Processo nº 2008-021678/TEC/LO-0387. Licença Operacional. Contém laudos de análise do cascalho em laboratório. LARISSA, Karla. RN: onde tudo começou. 2008. Disponível em http:// nominuto.com/noticias/economia/rn-onde-tudo-comecou/23947/acesso em 14 dez 2013. LUCENA, Adriano Elisio de F. L.; RODRIGUES, John Kennedy G.; FERREIRA, Heber Carlos. LUCENA; Lêda Christianne de F. L.; LUCENA, Luciana de F. L.. Carcaterização térmica de resíduos de perfuração “Onshore”. 2007, Disponível em www.portalabpg.org.br/PDPPetro/4/resumos/4PDPPETRO_6_2_0015-1.pdf. Acesso em 14 dez 2013. MARQUES, Sheyla Karolina Justino. Estudo da incorporação de cascalho proveniente da perfuração de poços de petróleo em formulações para tijolos de solo-cimento. Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte.Centro de Ciências Exatas e da Terra. Programa de Pós-graduação em Ciência e Engenharia de Materiais. Natal, 2010. Disponível em http://bdtd.bczm.ufrn.br//tde_busca/arquivo.php?codArquivo=4315. Acesso em 12 nov 2013. MEDEIROS, Leonardo Coutinho de. Adição de cascalho de perfuração da Bacia Potiguar em argilas para uso em materiais cerâmicos: influência da concentração e temperatura de queima. Dissertação (mestrado) pela Universidade Federal do Rio Grande do Norte - Programa de Pós-graduação em Ciências e Engenharia da Materiais, 2010. MENDES, Franklin Silva; SOUSA, Cacilda Alves de. Coprocessamento em fornos de clínquer: uma alternativa sustentável para destinação do resíduo cascalho de perfuração de poços de petróleo em Mossoró-RN. rUnPetro, Ano I, n. 1 nov.2012/abr.2013. Acesso em 29 set 2013. MILLER, G. Tyler. Ciência ambiental. Tradução da 11ª edição norte-americana, revisão técnica Welington Braz Carvalho Delitti, São Paulo, Cengage Learning, 2011. MORAES, Mariana Almeida de. Estudo Geoquímico, Ecotoxicológico do sedimento nas proximidades de um poço de perfuração na Bacia de Campos, Rio de Janeiro, Brasil. Disponível em www.bdtd.ndc.uff.br/tde_arquivos/8/TDE-2011-05-09T110702Z-2916/Publico /Dissert-MarianaMoraes.pdf. Acesso em 02 set 2012. PREDA, Wagner Nogueira; ALENCAR FILHO, Martinho Quintas de; BORBA, Genildo Luiz. Características gerais dos projetos de injeção de água nos reservatórios produtores de petróleo da formação açu na Bacia Potiguar. Trabalho apresentado no XV Congresso Brasileiro de Águas Subterrâneas.

Page 70: avaliação do resíduo de cascalho de perfuração de poços de

71

Disponível em http://aguassubterraneas.abas.org/asubterraneas/article/view/23855. Acesso em 29 nov 2012. SOUZA, Paulo Juvencio Berta de; LIMA, Valdir Luiz de. Avaliação das técnicas de rejeitos da perfuração terrestre de poços de petróleo. Disponível em http://teclim.ufba.br/site/material_online/monografias/mono_souza_e_lima.pdf. Acesso em 31 out 2012. STEFAN, Petru. Manual de Fluidos de Perfuração. 2 ed, Salvador, PETROBRAS, 1982. TOCHETTO, Marta Regina Lopes. Gerenciamento de resíduos sólidos industriais. Departamento de Química, Universidade Federal de Santa Maria/RS, 2005. Disponível em http://marta.tocchetto.com/site/?q=system/files/Gest%C3%A3o+Ambiental+-+Parte+1.pdf. Acesso em 23 nov 2012. THOMAS, José Eduardo. Organizador. Fundamentos de engenharia de petróleo. Rio de Janeiro, Interciência, 2001.

Page 71: avaliação do resíduo de cascalho de perfuração de poços de

72

ANEXO 1 - resultados de massa bruta constantes nos laudos amostrais

Tabela 09 – resultados de massa bruta constantes nos laudos amostrais

Parâmetros Unidade LQ Resutados Analíticos

VMP – 10004

Ponto d fulgor °C - >60 60 (a.d.)

pH (suspensão 1:1) - 0 – 14 8,1 – 9,9 2,0 - 12,5 (b)

Sulfeto (como H2S) mg/kg 2 <3 500 (c)

Porcentagem de sólidos % p/p 0,05 84,6 – 96,2 -

Cianeto (como HCN) mg/kg 0,2 <0,2 250 (c) Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Explicações a respeito dos parâmetros acima:

(a) = avaliação da inflamabilidade – item “a” do tópico 4.2.1.1 da NBR

10004:2004;

(b) avaliação da corrosividade – item “a” do tópico 4.2.1.2 da NBR 10004:2004;

(c) avaliação da reatividade – item “a” do tópico 4.2.1.1 da NBR 10004:2004;

(d) = valor máximo para resíduos líquidos.

Page 72: avaliação do resíduo de cascalho de perfuração de poços de

73

ANEXO 2 - resultados de lixiviado constantes nos laudos amostrais com

base na Norma NBR 10005

Tabela 10 - resultados de lixiviado constantes nos laudos amostrais com base na Norma NBR 10005

Parâmetros inorgânicos

Unidade LQ Resutados Analíticos

VMP – 10004

Arsênio mg/L 0,01 < 0,01 1,0

Bário mg/L 0,01 1,3 70,0

Cádmio mg/L 0,001 < 0,001 0,5

Chumbo mg/L 0,01 < 0,01 1,0

Cromo mg/L 0,01 < 0,01 5,0

Fluoreto mg/L 0,1 0,5 150

Mercúrio mg/L 0,00005 < 0,00005 0,1 Prata mg/L 0,005 < 0,005 5,0

Selênio mg/L 0,008 < 0,008 1,0

Parâmetros orgânicos Unidade LQ Resutados

Analíticos VMP – 10004

1.1-Dicloroeteno mg/L 0,001 < 0,001 3,0

1.2-Dicloroetano mg/L 0,001 < 0,001 1,0

1,4 - Diclorobenzeno mg/L 0,001 < 0,001 7,5

2,4,5 – T mg/L 0,001 < 0,001 0,2

2,4,5 – TP mg/L 0,001 < 0,001 1,0

2,4,5 - Triclorofenol mg/L 0,001 < 0,001 400

2,4,6 - Triclorofenol mg/L 0,0005 < 0,0005 20,0

2,4 – D mg/L 0,0005 < 0,0005 3,0

2,4 – Dinitrotolueno mg/L 0,001 < 0,001 0,13

Aldrin e Dieldrin mg/L 0,00003 < 0,00003 0,003

Benzeno mg/L 0,001 < 0,001 0,5

Benzo(a)pireno mg/L 0,00005 < 0,00005 0,07

Clordano (isômeros) mg/L 0,0001 < 0,0001 0,02

Cloreto de Vinila mg/L 0,001 < 0,001 0,5

Clorobenzeno mg/L 0,001 < 0,001 100

Clorofórmio mg/L 0,001 0,022 6,0

DDT (isômeros) mg/L 0,0005 < 0,0005 0,2

Endrin mg/L 0,0001 < 0,0001 0,06

Hexaclorobenzeno mg/L 0,0005 < 0,0005 0,1

Hexaclorobutadieno mg/L 0,001 < 0,001 0,5

Hexacloroetano mg/L 0,001 < 0,001 3,0

m-Cresol mg/L 0,001 < 0,001 200

Metoxicloro mg/L 0,0005 < 0,0005 2,0

Nitrobenzeno mg/L 0,001 < 0,001 2,0

o-Cresol mg/L 0,001 < 0,001 200

p-Cresol mg/L 0,001 < 0,001 200

Pentaclorofenol mg/L 0,0005 < 0,0005 0,9

Piridina mg/L 5 < 5 5,0

Page 73: avaliação do resíduo de cascalho de perfuração de poços de

74

Tetracloreto de carbono mg/L 0,001 < 0,001 0,2

Tetracloroeteno mg/L 0,001 < 0,001 4,0

Toxafeno mg/L 0,0001 < 0,0001 0,5

Tricloroeteno mg/L 0,001 < 0,001 7,0

Heptacloro e Heptacloro Epóxido

mg/L 0,00002 < 0,00002 0,003

Lindano (g-BHC) mg/L 0,00005 < 0,00005 0,2

Metiletilcetona mg/L 5 < 5 200 Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 74: avaliação do resíduo de cascalho de perfuração de poços de

75

ANEXO 3 - resultados do solubilizado constantes nos laudos amostrais

com base na Norma NBR 10006

Tabela 11 - resultados do solubilizado constantes nos laudos amostrais com base na Norma NBR 10006

Parâmetros inorgânicos

Unidade LQ Resutados Analíticos

VMP – 10004

Alumínio mg/L 0,01 0,282-1,500 0,2

Arsênio mg/L 0,01 < 0,01 0,01

Bário mg/L 0,01 0,328 0,7

Cádmio mg/L 0,001 < 0,001 0,005

Chumbo mg/L 0,01 < 0,01 0,01

Cianeto mg/L 0,05 < 0,05 0,07

Cloreto mg/L 1 1277-2087 250

Cobre mg/L 0,005 0,034 2,0

Cromo mg/L 0,01 < 0,01 0,05

Ferro mg/L 0,01 0,157-0,695 0,3

Fluoreto mg/L 0,1 0,4 1,5

Índice de Fenóis mg/L 0,001 0,010 0,01

Manganês mg/L 0,01 < 0,01 0,1

Mercúrio mg/L 0,00005 < 0,00005 0,001

Nitrato (como N) mg/L 0,1 < 0,1 10,0

Prata mg/L 0,005 <0,005 0,05

Selênio mg/L 0,008 < 0,008 0,01

Sódio mg/L 0,5 565-1040 200

Sulfato mg/L 1 216-460 250

Surfactantes mg/L 0,1 < 0,1 0,5

Zinco mg/L 0,01 0,038 5,0

Parâmetros orgânicos Unidade LQ Resutados Analíticos

VMP – 10004

2,4,5 – T mg/L 0,001 < 0,001 0,002

2,4,5 – TP mg/L 0,001 < 0,001 0,03

2,4 – D mg/L 0,0005 < 0,0005 0,03

Aldrin e Dieldrin mg/L 0,00003 < 0,00003 0,00003

Clordano (isômeros) mg/L 0,0001 < 0,0001 0,0002

DDT (isômeros) mg/L 0,0005 < 0,0005 0,002

Endrin mg/L 0,0001 < 0,0001 0,0006

Hexaclorobenzeno mg/L 0,0005 < 0,0005 0,001

Metoxicloro mg/L 0,0005 < 0,0005 0,02

Toxafeno mg/L 0,0001 < 0,0001 0,005

Heptacloro e Heptacloro Epóxido

mg/L 0,00002 < 0,00002 0,00003

Lindano (g-BHC) mg/L 0,00005 < 0,00005 0,002 Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 75: avaliação do resíduo de cascalho de perfuração de poços de

76

ANEXO 4 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 1

Tabela 12 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 1

Amostra 1 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,359 0,2

Cloreto 2087 250

Sódio 938 200

Sulfato 360 250

Solubilizado – parâmetros orgânicos

Alumínio 0,204 0,2

Cloreto 1985 250

Sódio 914 200

Sulfato 429 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 76: avaliação do resíduo de cascalho de perfuração de poços de

77

ANEXO 5 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 2

Tabela 13 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 2

Amostra 2 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,619 0,2

Cloreto 1853 250

Sódio 786 200

Sulfato 399 250

Solubilizado – parâmetros orgânicos

Alumínio 0,589 0,2

Cloreto 1728 250

Sódio 971 200

Sulfato 315 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 77: avaliação do resíduo de cascalho de perfuração de poços de

78

ANEXO 6 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 3

Tabela 14 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 3

Amostra 3 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,618 0,2

Cloreto 1386 250

Sódio 866 200

Sulfato 384 250

Solubilizado – parâmetros orgânicos

Alumínio 0,594 0,2

Cloreto 1890 250

Sódio 875 200

Sulfato 467 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 78: avaliação do resíduo de cascalho de perfuração de poços de

79

ANEXO 7 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 4

Tabela 15 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 4

Amostra 4 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio < 0,2 0,2

Cloreto 1702 250

Sódio 1080 200

Sulfato 406 250

Solubilizado – parâmetros orgânicos

Alumínio < 0,2 0,2

Cloreto 1737 250

Sódio 1000 200

Sulfato 442 250

Conclusão os parâmetros cloreto, sódio e sulfato

ultrapassaram os limites máximos permitidos. Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 79: avaliação do resíduo de cascalho de perfuração de poços de

80

ANEXO 8 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 5

Tabela 16 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 5

Amostra 5 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,593 0,2

Cloreto 1686 250

Sódio 872 200

Sulfato 318 250

Solubilizado – parâmetros orgânicos

Alumínio 0,704 0,2

Cloreto 1686 250

Sódio 788 200

Sulfato 325 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 80: avaliação do resíduo de cascalho de perfuração de poços de

81

ANEXO 9 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 6

Tabela 17 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 6

Amostra 6 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,398 0,2

Cloreto 1261 250

Sódio 649 200

Sulfato 410 250

Solubilizado – parâmetros orgânicos

Alumínio 0,488 0,2

Cloreto 1434 250

Sódio 717 200

Sulfato 437 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 81: avaliação do resíduo de cascalho de perfuração de poços de

82

ANEXO 10 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 7

Tabela 18 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 7.

Amostra 7 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 1,4 0,2

Cloreto 1640 250

Sódio 936 200

Sulfato 351 250

Solubilizado – parâmetros orgânicos

Alumínio 1,6 0,2

Cloreto 1485 250

Sódio 869 200

Sulfato 320 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 82: avaliação do resíduo de cascalho de perfuração de poços de

83

ANEXO 11 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 8

Tabela 19 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 8

Amostra 8 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 1,1 0,2

Cloreto 1272 250

Ferro 0,678 0,3

Sódio 716 200

Sulfato 345 250

Solubilizado – parâmetros orgânicos

Alumínio 0,660 0,2

Cloreto 1578 250

Ferro 0,712 0,3

Sódio 902 200

Sulfato 451 250

Conclusão os parâmetros alumínio, cloreto, ferro, sódio e sulfato

ultrapassaram os limites máximos permitidos. Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 83: avaliação do resíduo de cascalho de perfuração de poços de

84

ANEXO 12 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 9

Tabela 20 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 9

Amostra 9 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,980 0,2

Cloreto 975 250

Ferro 0,687 0,3

Sódio 574 200

Sulfato 211 250

Solubilizado – parâmetros orgânicos

Alumínio 1,4 0,2

Cloreto 1578 250

Ferro 0,603 0,3

Sódio 555 200

Sulfato 220 250

Conclusão os parâmetros alumínio, cloreto, ferro, sódio e sulfato

ultrapassaram os limites máximos permitidos. Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 84: avaliação do resíduo de cascalho de perfuração de poços de

85

ANEXO 13 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 10

Tabela 21 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 10

Amostra 10 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,383 0,2

Cloreto 1410 250

Sódio 736 200

Sulfato 473 250

Solubilizado – parâmetros orgânicos

Alumínio 0,538 0,2

Cloreto 1481 250

Sódio 781 200

Sulfato 483 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 85: avaliação do resíduo de cascalho de perfuração de poços de

86

ANEXO 14- resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 11

Tabela 22 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 11

Amostra 11 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 0,762 0,2

Cloreto 1377 250

Ferro 0,463 0,3

Sódio 720 200

Sulfato 445 250

Solubilizado – parâmetros orgânicos

Alumínio 0,700 0,2

Cloreto 1324 250

Ferro 0,535 0,3

Sódio 706 200

Sulfato 418 250

Conclusão os parâmetros alumínio, cloreto, ferro, sódio e

sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387

Page 86: avaliação do resíduo de cascalho de perfuração de poços de

87

ANEXO 15 - resultados obtidos que ultrapassam os valores máximos

permitidos pela norma NBR 10004 relativos à amostra nº 12

Tabela 23 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma NBR 10004 relativos à amostra nº 12

Amostra 12 Parâmetro analisado

Resultado analítico (mg/l)

Valor máx. permitido (mg/l)

Massa bruta parâmetros não ultrapassaram os limites máx. perm.

Lixiviado parâmetros não ultrapassaram os limites máx. perm.

Solubilizado – parâmetros inorgânicos

Alumínio 1,451 0,2

Cloreto 2087 250

Sódio 777 200

Sulfato 316 250

Solubilizado – parâmetros orgânicos

Alumínio 0,457 0,2

Cloreto 1614 250

Sódio 921 200

Sulfato 339 250

Conclusão os parâmetros alumínio, cloreto, sódio e sulfato ultrapassaram os limites máximos permitidos.

Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387