22
CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

Embed Size (px)

Citation preview

Page 1: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

CAPACITÂNCIA

Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

Page 2: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

A Garrafa de Leiden: O Primeiro Capacitor

O ano de 1745 foi marcado pelo surgimento do primeiro dispositivo capaz de armazenar cargas elétricas inventado acidentalmente por Ewald Georg von Kleinst (1700-1748), hoje conhecido como Garrafa de Leiden ou Leyden. A descoberta foi por acaso num experimento com eletricidade, tocando seu gerador elétrico num prego preso à cortiça de um frasco de remédio, sofrendo um grande choque ao tocar no prego

Page 3: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

No entanto, os créditos desta descoberta é atribuída a outro inventor.

Petrus van Musschenbroek nasceu a 14 de março de 1692 em Leiden, Holanda e morreu em 19 de setembro de 1761. Nasceu em uma família que fabricava instrumentos científicos, tais como bombas de ar, microscópios e telescópios, o que explica em parte seu interesse pela ciência. Estudou na Universidade de Leiden e doutorou-se em medicina em 1715, e mais tarde doutorou-se em Filosofia Natural, o que hoje conhecemos como Física.

Page 4: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

- Capacitância é uma medida da capacidade de armazenar carga por uma dada diferença de potencial.

- Capacitância não depende de Q ou V, mas apenas do tamanho, forma e posição relativa entre os condutores.

- O farad é uma unidade um tanto grande e, portanto, geralmente são usados submúltiplos como ( 1µF = 10-6F).

- O capacitor é um aparelho eletrônico usado para armazenar energia elétrica.

- Consiste de dois condutores com um isolante entre eles. Os condutores tem carga ±Q, o que estabelece uma diferença de potencial V entre eles.

- Um capacitor comum é o capacitor de placas paralelas.

VoltfaradUnidade

VQ

potencialacC

Coulomb(F) :

arg

Page 6: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P
Page 7: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P
Page 8: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P
Page 9: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

Os capacitores de um circuito às vezes podem ser substituído por um capacitor equivalente, isto é, um único capacitor com a mesma capacitância que o conjunto de capacitores.

PARALELO: A diferença de potencial V aplicada a todos os capacitores é a mesma.

Page 10: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

CAPACITORES EM SÉRIE

Page 11: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

Energia Potencial Elétrica de um Capacitor

Uma fonte de alimentação, ao carregar um capacitor, fornece-lhe energia potencial elétrica que fica armazenada nele. Como a carga de um capacitor é diretamente proporcional à sua ddp, o gráfico da carga em função da ddp é uma reta que passa pela origem.

Page 12: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

ENERGIA ARMAZENADA EM UM CAMPO ELÉTRICO

Page 13: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

CAPACITOR COM DIELÉTRICOUm dielétrico é um isolante elétrico que, sob a atuação de um campo elétrico exterior acima do limite de sua rigidez dielétrica, permite o fluxo da corrente elétrica. Qualquer substância submetida a um campo elétrico muito alto pode se ionizar e tornar-se um condutor.

Normalmente um material dielétrico se torna condutor quando é ultrapassado o seu campo de ruptura. Essa intensidade máxima do campo elétrico (em V/m) se chama rigidez dielétrica. Assim, se aumentamos muito campo elétrico aplicado sobre o dielétrico, o material se converte em um condutor.

mF

kdA

dAkC

/8,85.10 vácuono dadepermissivi

placas as entre distância dcapacitor. do áreaA

)dielétrico cada de (depende dielétrica constante k)dielétrico do idade(permissiv

)dielétrico com preenchido (Capacitor

12-0

0

0

Page 14: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

Os capacitores são amplamente utilizados em circuitos eletrônicos para bloquear a passagem de corrente contínua e permitir a passagem de corrente alternada, filtrar interferências, suavizar a saída de fontes de alimentação, sintonia de circuitos ressonantes, dentre outras aplicações.

Na prática, os capacitores são formados por diversas placas, dispostas de maneira a aumentar a superfícies das mesmas e obter uma maior capacitância

Page 15: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

Tipos de capacitor apresenta suas peculiaridades, vantagens e desvantagens:

Cerâmicos: Capacitores pequenos, de baixo custo, adequados para altas frequências. São fabricados com valores de capacitância de picofarads (pF) até 1 microfarad (µF). Sua capacitância pode variar dependendo da tensão aplicada.

Poliéster: Muito utilizados para sinais AC de baixa frequência, mas inapropriados para altas frequências. Seu valor típico de capacitância reside na ordem dos nanofarads (nF).

Tântalo: Alta capacitância, tamanho reduzido, ótima estabilidade. Existem modelos polarizados e não-polarizados. Possuem maior custo de produção em relação aos capacitores eletrolíticos e tensão máxima de isolamento em torno de 50V.

Mica: São inertes, ou seja, não sofrem variação com o tempo e são muito estáveis, porém, de alto custo de produção.

Óleo: Possuem alta capacitância e são indicados para aplicações industriais, pois suportam altas correntes e picos de tensão elevados. Possuem tamanho superior em relação a outros tipos de capacitores e seu uso é limitado a baixas frequências.

Eletrolíticos: Nome comumente empregado aos capacitores cujo dielétrico é o óxido de alumínio imerso em uma solução eletrolítica. São capacitores polarizados de alto valor de capacitância, muito utilizados em fontes de alimentação. Possuem custo reduzido em relação ao valor da capacitância, porém, proporcionam grandes perdas e seu uso é limitado a baixas frequências.

Page 16: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

TIPOS DE CAPACITORES

Page 17: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

A maioria dos capacitores não possui polaridade, isto é, não existe terminal positivo ou negativo, podendo ser ligados "de qualquer jeito". Entretanto, muita atenção deve ser dada aos modelos polarizados (cujos principais representantes são os eletrolíticos), pois os mesmos podem explodir, se ligados de forma invertida. Outro cuidado importante é observar a tensão máxima de isolação, a qual é especificada no próprio componente. Se for aplicada uma tensão maior do que a especificada, o componente será danificado de forma irreversível.

Ao escolher um capacitor comercial, deve-se atentar para as seguintes características: tipo de dielétrico, capacitância, tensão máxima de isolamento e tolerância.

Existem dois códigos principais para a identificação de capacitores: um código numérico e outro de cores. Este último, atualmente, é empregado apenas para resistores.

O código numérico é composto por três algarismos, seguido, opcionalmente, por uma letra. Esta letra corresponde à tolerância do componente, ou seja, à variação máxima do valor da capacitância especificada pelo fabricante. Da esquerda para a direita, os dois primeiros números correspondem aos dois algarismos do valor da capacitância, enquanto que o terceiro número corresponde ao fator multiplicativo. Tais valores são expressos em picofarads.

Page 18: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P
Page 19: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P
Page 20: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P
Page 21: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P
Page 22: CAPACITÂNCIA Lista exercícios: 1E, 2E, 3E, 5E, 11P, 15P, 19E, 30P, 31P, 62P, 63P, 64, 65P

PLEXIGLAS: Matéria plástica (polimetacrilato de metila) transparente, dura, deformável sob calor, empregada especialmente como vidro de segurança pelas indústrias aeronáutica e automobilística.