42
Capítulo 5 – Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela frequência da portadora, cuja largura de banda de transmissão nunca excede o dobro da banda de mensagem (W ). Será estudado no Capítulo 10 que, em caso de modulação linear , a relação sinal/ruído (SNR) no destino não é melhor que na transmissão em banda base, podendo ser melhorada apenas pelo aumento da potência transmitida. ________________________________________________________________________________________ Por sua vez, a modulação exponencial (ou angular) é um processo não-linear , e assim, a largura de banda de transmissão é maior que o dobro da banda de mensagem (2W). Porém, nesse tipo de modulação, podem ser obtidas relações sinal/ruído (SNR) elevadas, sem a necessidade de se aumentar a potência de transmissão. Constituem vantagens da modulação exponencial: As perdas de potência durante a transmissão não são tão preocupantes como em AM; Tem menos problemas com tensão de ruptura dielétrica devido aos picos na forma de onda; A distorção não-linear de amplitude não afeta a mensagem recebida. Como a modulação exponencial é um processo não-linear, o espectro do sinal modulado não se relaciona de forma simples (por uma translação em frequência) com o espectro da mensagem. Questão: x(t) t 0 0 t cos x(t) 2t t 0 t cos x(t) cos t cos 2t Qual a aparência dessa forma de onda

Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

  • Upload
    lecong

  • View
    228

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Capítulo 5 – Modulação CW ExponencialNa modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela frequência da portadora, cuja largura de banda de transmissão nunca excede o dobro da banda de mensagem (W ).

Será estudado no Capítulo 10 que, em caso de modulação linear, a relação sinal/ruído (SNR) no destino não é melhor que na transmissão em banda base, podendo ser melhorada apenas pelo aumento da potência transmitida.________________________________________________________________________________________

Por sua vez, a modulação exponencial (ou angular) é um processo não-linear, e assim, a largura de banda de transmissão é maior que o dobro da banda de mensagem (≥ 2W).

Porém, nesse tipo de modulação, podem ser obtidas relações sinal/ruído (SNR) elevadas, sem a necessidade de se aumentar a potência de transmissão.

Constituem vantagens da modulação exponencial:

• As perdas de potência durante a transmissão não são tão preocupantes como em AM;• Tem menos problemas com tensão de ruptura dielétrica devido aos picos na forma de onda;• A distorção não-linear de amplitude não afeta a mensagem recebida.

Como a modulação exponencial é um processo não-linear, o espectro do sinal modulado não se relaciona de forma simples (por uma translação em frequência) com o espectro da mensagem.

Questão:

x(t)

t0

0 t

cos x(t)2tt

0 t

cos x(t)

cos t cos 2t

Qual a aparência dessa forma de onda

Page 2: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Nota histórica:

Após o advento da radiodifusão AM, iniciou-se uma procura por técnicas que reduzissem o ruído na recepção.

Como a potência de ruído é proporcional à largura de banda do sinal transmitido, a atenção foi dirigida à busca de um processo de modulação que reduzisse a largura de banda.

A ideia de modulação em frequência (ou fase), onde a frequência (fase) da portadora pudesse ser variada em proporção com a mensagem x(t) parecia promissora: modulação FM (PM).

Assim, na modulação PM, a amplitude de sinal de mensagem produziria uma variação proporcional na fase.

Modulação de fase, PM

a defasagem é proporcional ao valor da mensagem em cada t

AM: FM:

a ‘frequência’ é proporcional ao valor da mensagem em cada t

Page 3: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

A frequência da portadora, agora escrita como f(t), poderia ser variada com o tempo, tal que,f(t) = fc+k x(t), onde k é uma constante arbitrária.

Assim, se o pico de amplitude de x(t) fosse xpico, então, os valores máximo e mínimo da frequência portadora seriam fc+k xpico e fc−k xpico , respectivamente (k medido em Hz V/V).

Portanto, as amplitudes espectrais poderiam permanecer dentro dessa banda, com uma largura 2k xpico , centrada em fc. (na figura, k xpico = 0.015 MHz = 15 kHz)

A largura de banda seria controlada pela constante arbitrária k, cujo valor poderia ser selecionada à vontade. (na figura, sendo x(t) normalizada, xpicos = 1 e k xpico = 15 kHz → k = 15 kHz V/V)

Usando-se um k arbitrariamente pequeno, poderia se fazer a largura de banda de informação arbitrariamente pequena. (se desejado, a largura de banda poderia ser ajustada inclusive menor que 30 kHz)

E estaria resolvido o problema

excursão = 30 kHz

A ideia da FM:

Assim, por exemplo, se em vez de modular a amplitude da portadora, se modulasse a sua frequência, fazendo-a oscilar dentro de uma banda de ±50 Hz (por exemplo), então, a largura de banda de transmissão (BT) seria de apenas 100 Hz, independentemente da largura de banda da mensagem (W).

Infelizmente, resultados práticos mostraram que largura de banda de FM obtida experimentalmente sempre resultava maior que (ou, na melhor das hipóteses, igual) a largura de banda de AM (BT = 2W) .

O raciocínio descrito anteriormente apresenta uma séria falha ao confundir os conceitos de frequência instantânea, f(t), e frequência espectral, f (uma variável independente).

__________________________________________________________________________________________________________

Por exemplo, em FM deseja-se variar a frequência portadora em proporção com o sinal de modulaçãox(t), significando que tal frequência estará variando continuamente a cada instante.

Em princípio, isto não faz muito sentido uma vez que, para se definir uma frequência, deve-se ter um sinal senoidal pelo menos ao longo de um ciclo (ou meio-ciclo, ou quarto de ciclo, ...) com a mesma frequência.

Por definição, um sinal senoidal (eterno) tem uma frequência constante e, assim, a variação de frequência no tempo parece estar em contradição com a definição convencional de “frequência de sinal periódico senoidal”.

Portanto, deve-se estender o conceito de uma senóide temporal para o de uma função generalizada, cuja frequência possa variar no tempo.

Estas questões começam a ser esclarecidas nas próximas seções. #

Page 4: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

5.1 Modulação de Fase e de FrequênciaNesta seção são definidos os conceitos de fase e frequência instantâneas, necessários para se estabelecer os sinais PM e FM.

Desde que a natureza não-linear da modulação exponencial impede a análise espectral em termos gerais, deve-se trabalhar com espectros resultantes de casos particulares, como a modulação em banda estreita, ou então, com modulação de tom.

Sinais PM e FM

Considere-se um sinal CW, com envoltória constante mas com fase variável no tempo, tal que:

Define-se o ângulo instantâneo total como:

Dessa maneira, xc(t) pode ser expresso pela relação geral:

a qual define a modulação exponencial (ou angular), dentre os quais PM e FM são casos particulares.

A fase θc(t) deve conter a informação da mensagem x(t) [embutida na fase modulada φ(t)].

Fica evidente a relação não-linear entre x(t) e xc(t) (através da função cosseno).

relações válidas para quaisquer modulação angular

Forma geral de um sinal PM (ou FM):

+Ac

0

−Ac

A modulação exponencial pode ser descrita na forma portadora-quadratura como:

a partir da qual pode-se obter a descrição de envoltória e fase.

A envoltória é dada por:

revelando que a envoltória do sinal modulado exponencialmente não varia no tempo.

Obviamente, a fase instantânea deve ser o próprio φ(t), uma vez que:

ttAttAttAtx

cccc

ccc

ωφωφφω

sin)(sincos)(cos)](cos[)(

−=+=

)()](arctg[tg)(cos)(sinarctg

)()(

arctg)( tttt

tvtv

ti

q φφφφφ ====

2 2 2 2 2 2( ) ( ) ( ) cos ( ) sin ( )i q c c cA t v t v t A t A t Aφ φ= + = + =

Page 5: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Um caso específico de dependência entre θc(t) e x(t) corresponde à modulação de fase (PM), definida como:

tal que

para φΔ constante (medida em graus ou radianos).

Esta relação estabelece que a fase instantânea varia diretamente com o sinal de modulação x(t) .

A constante φΔ representa o deslocamento de fase máximo produzido por x(t) [pois |x(t)| ≤ 1].

O limite superior, φΔ ≤ 1800 , limita φ(t) à faixa ± 1800 e previne ambiguidade de fase.

(No tempo, não existe distinção física entre os ângulos + 2700 e −900 , por exemplo.)

O limite imposto sobre φΔ em PM é análogo à restrição μ ≤ 1 em AM, e assim, φΔ costuma ser chamado de índice de modulação de fase (ou desvio de fase).

Modulação PM

Frequência instantânea do sinal modulado

A frequência instantânea corresponde à taxa de rotação instantânea do fasor [velocidade de variação de θc(t) no tempo], medida em ciclos por segundo (cps) ou Hertz (Hz):

Embora f(t) seja medido em Hz, não deve ser confundido com a frequência espectral f (a variável independente do domínio da frequência).

A frequência instantânea f(t) é uma propriedade que depende do tempo e da forma de onda que serámodulada exponencialmente [e portanto, da mensagem x(t)].

Page 6: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Discussão: conceito de fase instantânea total*

O ângulo generalizado de um senóide convencional, Accos(ωct+θ0), é θc(t)=ωct+θ0, correspondentea uma linha reta com inclinação ωc e intercepto θ0, como indicado na figura abaixo:

O gráfico de θc(t), para um caso arbitrário,ocorre ser tangencial ao ângulo (ωct+θ0) em algum instante t, sendo t1 < t < t2

O ponto crucial é que, ao longo de um pequeno intervalo Δt→0, em torno de t, o sinalxc(t)=Accos θc(t) e a senóide Accos(ωct+θ0) são idênticos:

xc(t) = Accos(ωct+θ0) para t1 < t < t2 .

Ao longo deste pequeno intervalo Δt, a frequência de θc(t) é ωc.

Por (ωct+θ0) ser tangencial a θc(t), a frequência de xc(t) é a inclinação de seu ângulo θc(t) ao longo deste pequeno intervalo.

___________________________________________________Pode-se generalizar este conceito para cada instante: a frequência instantânea ω(t)=2πf(t) , em qualquer instante t, é a inclinação de θc(t) em t: ω(t) = dθc(t)/dt .__________________________________________________________________________________________

* B. P. Lathi e Z. Ding, Sistemas de Comunicações Analógicos e Digitias, Quarta edição, LTC, RJ, 2012.

tangent

ωc e θ0 constantes → reta

ωc constante,mas θ0 = φ(t)

variável

θc(t)

ωc e θ0constantes → reta

Assim, para xc(t)=Accosθc(t),

e

Pode-se agora visualizar a possibilidade de transmitir a informação de x(t) variando o ângulo θc(t) de uma portadora.______________________________________________

Exemplo: no caso PM:

ocorre

para θ0 = 0, sem perda de generalidade.

Em PM, a frequência (angular) instantânea é

a qual varia linearmente com a derivada do sinal de modulação.

Alternativamente, a frequência (linear, em Hz) instantânea é

λλωθ dtt

c )()( ∞−=

)()(),()()( 00 txttxtttt ccc ΔΔ =++=++= φφφθωφθωθ

)](cos[)(cos)( txtAtAtx ccccc Δ+== φωθ

dttdx

dttd

t cc )()()( Δ+== φωθω

)(21)(

21)(

2)(

21)(

21)( tf

dttdf

dttdxft

dttd

tf ccccc φ

πφ

ππφθ

πθ

π +=+=+=== Δ

(como definido anteriormente)

(como anteriormente) #

gerais, válidas para qualquer modulação angular

( )( ) 2 ( ) ( )cc

d tt f t t

dtθω π θ= = =

.

Page 7: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Modulação FM

No caso de modulação em frequência (FM), a frequência instantânea do sinal modulado é:

para fΔ constante (medido em Hz), tal que f(t) varia em proporção ao sinal de modulação x(t).

Ou, alternativamente,

A constante de proporcionalidade fΔ é chamada de desvio de frequência, e representa o deslocamento máximo de f(t) [já que ⏐x(t)⏐≤ 1] em relação à frequência portadora fc.

A condição fΔ < fc simplesmente assegura que sempre ocorre f(t) > 0 em (5.1-5), p/ qualquer x(t).

Normalmente, deseja-se que fΔ << fc a fim de garantir a natureza passa-banda de xc(t) .

Tem-se também,

onde o termo constante em θc(t) (da 1ª. integral) foi considerado nulo, sem perda de generalidade.

O sinal modulado em FM é:

)(2)(2)( txftft c Δ+== πωπω

λλπωλλπωλλωθ dxftdxfdtt

cc

tt

c )(2)](2[)()( ∞−ΔΔ∞−∞−+=+==

])(2cos[)( ∞−Δ+=t

ccc dxftAtx λλπω

(ver adiante)

,

adotou-se ωcλ⏐λ= −∞ = 0

( ) cos ( )c c cx t A tθ=

fc−fΔ >0

_________________________________________________Comparando-se (5.1-4) com (5.1-5), observa-se que o sinal FM satisfaz

e a integração gera a seguinte modulação de fase:

Se t0 é tomado de forma que φ(t0) = 0, pode-se desconsiderar o limite inferior de integração e usar a expressão mais informal:

__________________________________________________________________________________________

Assume-se que a mensagem x(t) não tem componente DC, tal que as integrais acima não divirjam quando t→∞.

Fisicamente, um termo DC em x(t) produzirá um desvio de frequência constante com relação à portadora, igual a .

Na prática, qualquer componente DC em x(t) deve ser bloqueada pelos circuitos do modulador.

)(2)( txft Δ= πφ

)(txfΔ

geral

FM

Page 8: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Conceito generalizado de modulação exponencial (ou angular)

Na tabela 5.1-1 compara-se os sinais PM e FM:

Observa-se que sinais PM e FM não são apenas similares, mas também inseparáveis:

Sinal PM: .

Sinal FM: .

onde foi definido que .

No final das contas, ambas as expressões para xc(t) são similares.

Portanto, visualizando-se uma portadora modulada em ângulo, torna-se difícil discernir entre FM e PM.

λλ dxtgt

)()( =

)](2cos[])(2cos[)( tgftAdxftAtx cc

t

ccc Δ∞−Δ +=+= πωλλπω

)](cos[)( txtAtx ccc Δ+= φω

( ) cos[ ( )]c c cx t A t tω φ= +

_______________________________________________No caso de modulação de tom, fica bem evidente ser praticamente impossível detectar a diferença entre os sinais PM e FM:

λλ dxtgt

)()( =

)](2cos[])(2cos[)( tgftAdxftAtx cc

t

ccc Δ∞−Δ +=+= πωλλπω

)](cos[)( txtAtx ccc Δ+= φωSinal PM:

Sinal FM:

tAtx mm ωsin)( =x(t) mensagem tonal

PM ou FM?

PM ou FM?

Page 9: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

_______________________________________________No caso de modulação de tom, fica bem evidente ser praticamente impossível detectar a diferença entre os sinais PM e FM:

λλ dxtgt

)()( =

)](2cos[])(2cos[)( tgftAdxftAtx cc

t

ccc Δ∞−Δ +=+= πωλλπω

)](cos[)( txtAtx ccc Δ+= φωSinal PM:

Sinal FM:

tAtx mm ωsin)( =x(t) mensagem tonal

Conclui-se também que, com o uso de circuitos integradores ou diferenciadores, um modulador PM pode produzir FM, e vice-versa:

Os métodos FM e PM são simultâneos, no sentido de que qualquer variação na fase da portadora (ωct) resulta em variação na frequência, e vice-versa.________________________________________________Os casos acima revelam que, em PM e FM, o ângulo de uma portadora varia em proporção à alguma ‘medida/ métrica’ (derivada, integral, etc.) de x(t).

Informa-se que podem haver várias outras maneiras de se gerar uma ‘métrica’ de x(t), possibilitando criar um grande número de esquemas de modulação angular, além de FM e PM.

)](2cos[

])(2cos[)(

txftA

dxftAtx

cc

t

ccc

Δ

∞−Δ

+=

+= πω

λλπω

(ambas são devido a x(t) variável)

a partir de modulador de fase

a partir de modulador de frequência

integrar a entrada

])(cos[)( λλφω ∞−Δ+=t

ccc dxtAtx

multiplicar φΔ pela entrada

Page 10: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Exemplo: Restringindo-se à escolha de um operador linear, então, uma ‘métrica’ de x(t) pode ser obtida como saída de um SLIT apropriado, com x(t) como entrada.

A saída do sistema H(s) é uma ‘métrica’ de x(t) , sendo que esta é uma operação reversível, passandoψ(t) através da função 1/ H(s).________________________________________________________________________________________________________________________________________________________

Então, a portadora com modulação generalizada em ângulo pode ser expressa como:

sendo h(t) a TFI de H(s) (ou seja, a resposta impulsiva).

a) Se tem-se um sinal PM

b) Se tem-se um sinal FM

Portanto, PM e FM são apenas duas possibilidades dentre um grande número de outras alternativas. #

])()(cos[)](cos[)( λλλωψω dthxtAttAtxt

ccccc −+=+= ∞−

)()( tth δφΔ=

)](cos[])()(cos[)( txtAdtxtAtx cc

t

ccc ΔΔ∞−+=−+= φωλλδφλω

)(2)( tufth Δ= π

])(2cos[])(2)(cos[)( λλπωλλπλω dxftAdtufxtAtxt

cc

t

ccc ∞−ΔΔ∞−+=−+=

convolução : ψ(t) = x(t) * h(t)

métrica = operação sobre x(t)SLIT

métrica

Exemplo: Considere-se o sinal x(t) mostrado na Figura (a). Dados fc= 100 MHz, φΔ = 10π rad e fΔ = 105 Hz, esboçar os sinais de FM e PM.

Solução: método indireto (ver adiante)A frequência instantânea para FM é dada por:

Assim, seus valores máximos e mínimos são:

Como x(t) aumenta e diminui linearmente com o tempo, a frequência instantânea aumenta linearmente de 99,9 a100,1 MHz em um meio ciclo, e cai linearmente de 100,1a 99,9 MHz no meio ciclo seguinte.

O sinal modulado está mostrado na Figura (b).

__________________________________Por outro lado, a frequência instantânea para PM é dada por:

)(1010)()( 58 txtxfftf c +=+= Δ

MHz9,99)1(1010)]([1010)( 58min

58min

=−+=+= txtf

MHz1,100)1(1010)]([1010)( 58max

58max

=++=+= txtf

dttdx

dttdx

dttdxf

dttxtd

dttdtf c

cc )(510)(2

1010)(21)]([

21)(

21)( 88 +=+=+=

+== Δ

Δ

ππφ

πφω

πθ

π(continua...)

99.9M 100M 100.1M 99.9M

Page 11: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

________________________________________________________________________________________________O sinal x(t) é dado por:

Sua derivada é igual a:

cujo gráfico está desenhado na Figura (c).

As frequências instantâneas, mínima e máxima, são:

Como dx/dt oscila entre os valores de −20.000 e +20.000, a frequência portadora oscila entre 99,9 e 100,1 MHz a cada meio ciclo, e cujo gráfico está desenhado na Figura (d). #

dttdx

dttdx

dttdxf

dttxtd

dttdtf c

cc )(510)(2

1010)(21)]([

21)(

21)( 88 +=+=+=

+== Δ

Δ

ππφ

πφω

πθ

π

MHz9,99000.20510)(510)( 8min

8min

=×−=+= txtf

×<<+×−<<−×

=−−

s102103102s1001102)( 444

44

tttt

tx

×<<×−<<×

=−−

s10210102s100102)( 444

44

tt

tx

MHz1,100000.20510)(510)( 8min

8min

=×+=+= txtf

10−4

2×10−4

0

99.9 100.1 99.9 100.1

Exemplo: Considere-se o sinal x(t) mostrado na Figura (a). Dados fc= 100 MHz, φΔ = π/2 rad e fΔ = 105 Hz, esboçar os sinais de FM e PM.

Solução:

A frequência instantânea para FM é dada por:

Como x(t) oscila entre −1 e +1, a forma de onda FM oscila entre 99,9 e 100,1 MHz, como mostrado na Figura (b).

Este tipo de modulação digital é chamada de modulação por chaveamento de frequência (FSK – frequency shift keying).

______________________________________________________________________________

Por outro lado, a frequência instantânea para PM é dada por:

o qual depende de derivadas da Figura (a).

)(1010)()( 58 txtxfftf c +=+= Δ

dttdx )(

41108 +=

(continua...)

dttdxftf c)(

21)( Δ+= φπ

MHz9,99)1(1010)]([1010)( 58min

58min

=−+=+= txtf

MHz1,100)1(1010)]([1010)( 58max

58max

=++=+= txtf

Page 12: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

________________________________________________________________________________________________Devido as descontinuidades em x(t) , sua derivada deve conter singularidades.

A derivada de x(t) é mostrada na Figura (c).

A frequência do sinal PM permanece a mesma, fc, exceto nas descontinuidades com impulsos.

Não fica claro como a frequência instantânea pode sofrer uma alteração de tamanho infinito e voltar ao valor original num tempo zero.

Este método (chamado indireto) falha em pontos de descontinuidades._____________________________________Usando-se a abordagem direta, tem-se:

obtendo-se a Figura (d) [PSK – Phase shift keying]. #

dttdxtf )(

4110)( 8 +=

+=−−=+

=+=+= Δ 1)(quandosin1)(quandosin

)](2

cos[)](cos[)(txtAtxtA

txtAtxtAtxcc

ccccccc ω

ωπωφω

φΔ = π/2 rad fc = 108 Hz

dx/dt=0dx/dt=0

dx/dt=0

+∞ +∞

−∞ −∞

Exemplo: Modulação FM por pulso retangular

Estudou-se no Exemplo 2.2-1, que o espectro do pulso retangular de largura τ e amplitude A, ou seja,, é dado por . Pedem-se:

a) O sinal modulado em FM, para uma portadora na frequência fc= 2/τe com AfΔ = fc .

b) A largura de transmissão BT.

___________________________Solução:

A largura de banda da mensagem é:

O sinal de FM é calculado a seguir.

)sinc()( ττ fAfX =)/()( τtAtx Π=

21 cfW ==τ

(continua...)

x(t)

| X(f) |

arg X(f)|

espectro da mensagem

Page 13: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

])(2cos[)( λλπω ∞−Δ+=t

ccc dxftAtx

Dados: fc= 2/τ e AfΔ = fc , calcula-se:

.... FM

a) Para −∞ < t < −τ/2, ocorre x(t) = 0, e assim,

b) Para −τ/2 < t < +τ/2, ocorre x(t) = A, e assim,

c) Para t > +τ/2, ocorre x(t) = 0, e assim,

Este sinal de FM está desenhado abaixo:

Este corresponde ao sinal estudado no Exemplo 2.5-1, e então, sua TF já é conhecida.

x(t)

tAdftAtx cc

t

ccc ωλπω cos]02cos[)( =+= ∞−Δ

tAtftAtAftAdAftAtx ccccccc

t

ccc ωπωπωλπωτ

τ2cos]2cos[]2cos[]2cos[)(

2/

2/=+=+=+= Δ

+−

−Δ tAdftAtx cc

t

ccc ωλπωτ

τcos]02cos[)(

2/

2/=+=

+

Δ

xc(t)

(continua...)

c

Segundo o Exemplo 2.5-1, a TF do sinal modulado em FM é:

Conclui-se, portanto, que a largura de banda de transmissão, BT , é de aproximadamente 2 fc = 4W, independentemente da amplitude da mensagem, A.

Ou seja, a largura de banda de transmissão é quatro vezes maior que a largura de banda do sinal demensagem, contrariando o senso comum discutido na ‘Nota histórica’. #

xc(t)

|Xc(f) |

2fc

21 cfW ==τ

)]2(sinc)2([sinc2

)](sinc)([sinc2

)]()([2

)( ccccccc ffffAffffAffffAfX ++−+++−−++−= ττδδ

Page 14: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Potência transmitida

Ao contrário do acontece na modulação linear, os sinais PM e FM têm amplitudes constantes.

Portanto, independente da mensagem x(t), a potência transmitida será:

_________________________________________________Prova:

para

Ou seja, #

_________________________________________

Lembre-se que, em modulação linear:

e portanto, para aumentar Psb (associada ao sinal de mensagem) devia-se aumentar .

Por outro lado, no caso de modulação angular, independentemente de x(t).

dttAT

dttxT

S cc

T

oTc

T

oTT )(cos1lim)(1lim 222 θ ∞→∞→

==

2)(2cos1lim

222)(2cos11lim

2222 c

c

T

oT

cccT

ocTT

Adtt

TAA

dtt

TAS =+=

+= ∞→∞→

θθ

sbccxc

T PPASAS 222

222

+=+=μ

)(2 txS x =

2/2cT AS =

(=0 para valores elevados de fc)

só depende da portadora

Adianta-se que a demodulação (ou detecção) de FM (no receptor) consiste em se extrair a frequência instantânea f(t) = fc+fΔ x(t), a qual contém a mensagem x(t).

Garante-se que o nível do sinal de mensagem no demodulador é melhorado se for aumentado o desvio de frequência fΔ , o qual, por sua vez, acarreta uma maior largura de banda de transmissão (ver a Seção 5.2).

Qualitativamente, se a potência transmitida ST permanecer constante, a potência de ruído também permanece constante.

Pode-se aumentar a relação sinal-ruído (SNR) aumentando-se fΔ , o qual aumenta o nível do sinal recebido no receptor, sem alterar ST.

Para todos os efeitos, isto é equivalente a reduzir o ruído!

Contudo, se fΔ aumenta, também aumenta a largura de banda, e assim, na modulação exponencial existe um compromisso entre a largura de banda (↑) e a relação sinal-ruído (↑).

Conforme já foi anunciado, ironicamente, a modulação FM foi originalmente concebida como uma forma de reduzir a largura de banda, mas falhou, devido à séria falha de se confundir os conceitos de frequência instantânea, f(t), e frequência espectral, f.

Esta limitação, contudo, é compensada por várias outras vantagens (estudadas adiante).

Page 15: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Conforme verificado, os cruzamentos dos zeros de xc(t) na modulação linear são sempre periódicos.

Contudo, os cruzamentos dos zeros de um sinal de modulação exponencial não são periódicos, porém, eles obedecem às equações para a fase mostradas na Tabela 5.1-1.

Isto permite concluir que a mensagem reside exclusivamente nos cruzamentos de zeros dos sinais FM e PM, desde que a frequência portadora seja grande o suficiente.

Na Fig. 5.1-2 estão ilustrados exemplos de sinais AM, FM e PM para alguns sinais de mensagem:

Conclui-se que, devido à não linearidade do processo de modulação exponencial, o sinal modulado não se assemelha em nada com a forma de onda da mensagem.

PM e FM Faixa (ou Banda) Estreitas

Usando a descrição de portadora-quadratura para a equação (5.1-1) abaixo

sendo:

onde foram aplicadas as séries de Taylor para e .

A seguir, impõe-se a condição:

tal que e

e assim, o sinal modulado será:

Curiosidade:

A envoltória não é constante no tempo!! (??)

Isto é resultado das aproximações adotadas e terá de ser discutido adiante...

)(cos tφ )(sin tφ

ttAtAtx ccccc ωφω sin)(cos)( −=

(faixa estreita)

tem-se (5.1.9):

PM FM

2 2 2 2( ) ( ) 1 ( )c c cA t A A t A tφ φ= + = +

Page 16: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Xc(f)

PM e FM Faixa (ou Banda) Estreitas

Usando a descrição de portadora-quadratura para a equação (5.1-1) abaixo

sendo:

onde foram aplicadas as séries de Taylor para e .

A seguir, impõe-se a condição:

tal que e

e assim, o sinal modulado será:

O espectro de Xc(f) do sinal modulado é dado por:

no qual:

)(cos tφ )(sin tφ

ttAtAtx ccccc ωφω sin)(cos)( −=

(faixa estreita)

tem-se (5.1.9):

PM FM

Xc(f)

________________________________Se x(t) tem largura de banda W << fc , então, a largura de banda de Φ(t) também é igual a W.Por sua vez, o sinal modulado xc(t) será um sinal passa-banda, cujo espectro de magnitudes será como o esboçado na figura abaixo:

Portanto, a largura de banda de Xc(f) é igual a 2W, desde que |φ(t)|<<1 rad.

Para valores maiores de |φ(t)|, os termos φ 2(t), φ 3(t), ..., não podem ser ignorados na série de Taylor em (5.1-10), e assim, aumentará a largura de banda de Xc(f) .

As equações (5.2-12 a-b) descrevem o caso especial de modulação fase ou frequência em banda estreita, NBPM ou NBFM (Narrow Band PM ou Narrow Band FM), os quais se assemelham a um espectro de sinal AM.

|Xc(f)|

fc−W fc fc +W f

)(2 c

c ffA−δ

)(2 c

c ffA−Φ

(faixa estreita)

Page 17: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

x

x(t) X(f)

1/2W1

Exemplo 5.1-1: Espectros de NBPM e NBFM

Considere-se o caso de x(t) = sinc 2Wt, tal que X(f) = (1/2W) Π(f /2W).

Como foi visto, os espectros NBPM e NBFM são dados por (5.1-12a-b), ou seja:

___________________________________________________________a) No caso NBPM, (5.1-12b) informa que:

e assim,

para f > 0 .

Xc(f)

)()( fXf Δ=Φ φ

Π+−=−+−= ΔΔ Wff

WAjffAffXAjffAfX c

cccccccc 221

2)(

21)(

2)(

21)( φδφδ

(continua...)

t

imaginário

________________________________________b) No caso NBFM, (5.1-12b) informa que:

Desta forma, o espectro do sinal modulado será:

c

cccc

c

ccccc ff

WffW

fA

ffAff

WffW

jfAjffAfX−

−Π+−=

−Π−+−= ΔΔ

]2/)[(21

2)(

21]2/)[(

21

2)(

21)( δδ

fWf

Wjf

ffXjff )2/(

21)()( Π−=−=Φ ΔΔ

−W 0 +W f

22/1 W

22/1 W−

ffX )(

x

x(t)1/2W1

Xc(f)

(continua...)

t

real

X(f) = (1/2W) Π(f /2W)

X(f)/f

banda base

Page 18: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Π+−= Δ Wff

WAjffAfX c

cccc 221

2)(

21)( φδ

c

ccccc ff

WffW

fAffAfX−

−Π+−= Δ

]2/)[(21

2)(

21)( δ

NBPM:

NBFM:_____________________________________________

Os espectros de amplitude de ambos, PM e FM, estão desenhados a seguir:

NBPM

NBFM

−W 0 +W f

22/1 W

22/1 W−

Xc(f)

Xc(f)

(continua...)

fWf

W)2/(

21 Π

sinal

sinal demensagem

espectrode PM

espectrode FM

imaginário

NBPM

NBFM

Xc(f)

Xc(f)

Impulso na frequência portadora e largura de banda igual a 2W.

Ambas as bandas laterais NBPM têm um deslocamento de fase de 900.

_______________________

Impulso na frequência portadora e largura de banda igual a 2W.

O espectro NBFM é real.

A banda lateral inferior NBFM está 1800 fora de fase.

O espectro NBPM se parece muito com um espectro de AM para o mesmo sinal modulador.A diferença se deve apenas ao deslocamento de fase de 900. #

fase, 90o

fase, 180o

Page 19: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Modulação de Tom

O estudo de FM e PM para modulação de tom pode ser realizado conjuntamente, tomando-se como mensagem:

Nesta situação, as equações (5.1-2) e (5.1-6) geram:

PM:

FM:

Ou seja:

para ambos os casos, sendo

O parâmetro β serve como índice de modulação para PM e FM com modulação tonal.

Este parâmetro corresponde ao desvio/deslocamento de fase máximo para tom e é proporcional à amplitude do tom, Am , em ambos os casos.

Contudo, ao contrário de PM, β para FM é inversamente proporcional à frequência do tom, fm .

tAtxt mm ωφφφ sin)()( ΔΔ ==

tf

fAdAfdxft mm

mmm

ttωλλωπλλπφ sin)cos(2)(2)( Δ

ΔΔ ===

(5.1-2)

(5.1-6)

como?

a) Modulação de tom com banda estreita

No caso β <<1 rad, a equação (5.1-9), ou seja

com e

simplifica-se para:

Em f = fc

(continua...)

_________________________________________________

tjc meA ωβ −−2

tjc meA ωβ +

2

válidas para ⏐φ(t)⏐<<1 rad.

espectro unilateral

Page 20: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

xc(t)

PM ou FM

(continua...)

AM

____________________________________________________Observa-se como a reversão de fase da linha de banda lateral inferior produz uma componente perpendicular (ou de quadratura) em relação ao fasor da portadora.

Esta relação de quadratura é quem gera modulação de fase (PM) ou frequência (FM), em vez de modu-lação de amplitude (AM):

componente em quadratura

componente em fase

b) Modulação de tom com banda larga

Expandindo a equação (5.1-1), ou seja,

se obtém,

_________________________________________Mesmo que xc(t) não seja necessariamente periódica, os termos cos(β sinωmt) e sin(β sinωmt) o são,e podem ser expandidos como uma série de Fourier trigonométrica, com frequência fundamental fm :

sendo n positivo e

a função de Bessel de primeira espécie, ordem n (não obrigatoriamente inteiro) e ângulo β.

(Esta integral não tem solução analítica.)(continua...)

Page 21: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Prova: Dado

e, sendo a exponencial complexa 2π-periódica, ela pode ser expandida em série de Fourier:

onde

para fm = 1/Tm , ωm = 2πfm tal que ωmTm = 2π.

Portanto, tem-se

Da Física-Matemática, sabe-se que

a função de Bessel de primeira espécie, ordem n (não obrigatoriamente inteiro) e ângulo β.

Portanto,

}{)sincos()( sin tjtjcmccc

mc eeeAttAtx ωβωωβω ℜ=+=

tjnm

n

tj mm enfce ωωβ )(sin ∞

−∞=

=

dteeT

nfc tjntj

Tm

mmm

m

ωωβ −= sin1)(

λπ

ωω

λλβπ

πωβ

ωdeetdee

Tnfc jnj

mtnfjtj

Tmm

mmm

mm

−− == sin

2

2sin

211)(

λπ

λλβπ

πdenfc nj

m)sin(

21)( −

−=

0,21)( )sin( ≥= −

− βλπ

β λλβπ

πdeJ nj

n

0,)(sin ≥= ∞

−∞=

ββ ωωβ tjnn

n

tj mm eJe(continua...)

ou então:

)()( βnm Jnfc =

quando t=Tm ωmt=ωmTm =2π

λ = ωmt = 2πfmt

Δ

tjnn

n

tj mm eJe ωωβ β )(sin ∞

−∞=

= 0,21)( )sin( ≥= −

− βλπ

β λλβπ

πdeJ nj

n

Esta integral não tem solução analítica.____________________________________________________________________________________________________

Função de Bessel de primeira espécie e ordem n: Jn(β )

Portanto: sin 3 23 2 1

2 30 1 2 3

... ( ) ( ) ( )( ) ( ) ( ) ( ) ...

m m m m

m m m

j t j t j t j t

j t j t j t

e J e J e J e

J J e J e J e

β ω ω ω ω

ω ω ω

β β ββ β β β

− − −− − −= + + + +

+ + + + +(continua...)

sendo

Funções oscilatórias, evanescentes na medida que β aumenta, mas não periódicas.

Todas passam pela origem, exceto J0(β), que inicia em 1.

Page 22: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

tjnn

n

tj mm eJe ωωβ β )(sin ∞

−∞=

= 0,21)( )sin( ≥= −

− βλπ

β λλβπ

πdeJ nj

n

_________________________Usando a propriedade das funções de Bessel*: para n inteiro, vem

como queríamos demonstrar.

De forma análoga, mostra-se também que

# Fim da Prova._______________________________________* Ver: Abramowitz, M. & Stegun, I. A., Handbook of mathematical functions, New York: Dover Publications, 1972.

...)()()()()()()(...

33

2210

12

23

3sin

+++++

+++= −−

−−

−−

tjtjtj

tjtjtjtj

mmm

mmmm

eJeJeJJeJeJeJe

ωωω

ωωωωβ

βββββββ

)()1()( ββ nn

n JJ −=−

sin 3 23 2 1

2 30 1 2 3

3 3 2 2

1 1 0

cos( sin ) Re{ } Re{... ( ) ( ) ( )( ) ( ) ( ) ( ) ...}

... [ ( ) ( )]cos3 [ ( ) ( )]cos 2[ ( ) ( )]cos ( ) ...

m m m m

m m m

j t j t j t j tm

j t j t j t

m m

m

t e J e J e J e

J J e J e J eJ J t J J t

J J t J

J

β ω ω ω ω

ω ω ω

β ω β β ββ β β β

β β ω β β ωβ β ω β

− − −− − −= = + + + +

+ + + + += + − + + ++ − + +

= 0even

( ) 2 ( ) cosn mn

J n tβ β ω∞

+

sin

oddsin( sin ) Im{ } 2 ( )sinmj t

m n mn

t e J n tβ ωβ ω β ω∞

= =

(continua...)

sendo

as componentes ímpares são canceladas

0,)(sin ≥= ∞

−∞=

ββ ωωβ tjnn

n

tj mm eJe

Resumo: PM ou FM

Page 23: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

xc(t) (15)

_______________________________Substituindo-se (16) em (15),

0even odd

( ) ( ) cos 2 ( )cos cos 2 ( )sin sinc c c n c m n c mn n

x t A J t J t n t J t n tβ ω β ω ω β ω ω∞ ∞

= + −

(continua...)

modulação de tom com banda largaContinuação:

tjnn

n

tj mm eJe ωωβ β )(sin ∞

−∞=

=

( ) cos( sin )c c c mx t A t tω β ω= + sin( ) { }c mj t j tc cx t A e e eω β ω= ℜ

_____________________________________________________

Alternativamente, dados

substituindo-se na expressão de xc(t), obtém-se:

____________________________________Um exemplo de espectro de linhas (unilateral) está desenhado na figura ao lado (para Ac =1):

(continua...)

Page 24: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

{ })(

--)(Re)(Re)( tntj

nn

ctjn

nn

tjcc

mcmc eJAeJeAtx ωωωω ββ +∞

∞=

∞= =

=

tjnn

n

tj mm eJe ωωβ β )(sin ∞

−∞=

=}{)( sin tjtjcc

mc eeeAtx ωβωℜ=________________________________...obtém-se:

uma forma mais compacta e que permite obter o diagrama de linhas espectrais do sinal modulado.

O espectro de linhas (unilateral) está desenhado na figura abaixo:

banda larga

)()1()( ββ nn

n JJ −=−propriedade das

funções de Bessel

______________________________________________________ • O espectro de FM consiste de uma linha na portadora, mais um número infinito de linhas de bandas

laterais nas frequências (fc ±nfm).

• Todas as linhas são igualmente espaçadas pela frequência de modulação (fm).

• As linhas de ordem ímpar da banda lateral inferior (em relação à portadora) são invertidas em fase.

• Num espectro de linhas de frequências positivas (unilateral), qualquer frequência aparente negativa [(fc +nfm)<0] deve ser rebatida de volta para valores positivos |fc +nfm|.

• No desenho acima, as componentes do espectro na região de frequência negativas são desprezíveis (e portanto não foram desenhadas) uma vez que βfm << fc . (ver adiante...)

• O comportamento relativo das amplitudes de cada componente (a envoltória do espectro) segue o comportamento das funções de Bessel para um dado valor de β, ou seja, de Jm(β).

)()1()( ββ nn

n JJ −=−

(ver adiante...)

Page 25: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Propriedades:

1. A amplitude da linha portadora J0(β) varia com o índice de modulação β e, portanto, depende do sinal de modulação.

Assim, ao contrário da modulação linear, a componente de frequência portadora de um sinal FM contém parte da informação da mensagem.

Todavia, pode haver espectros nos quais a portadora tem amplitude nula, desde que ocorre J0(β) =0 para β = 2.4, 5.5, etc.

• • • • •

zeros de J0(β)

___________________________________________________________________________

2. O número de linhas de bandas laterais com amplitudes relativas significativas depende de β.Com β << 1, apenas J0(β) e J1(β) são significativas, tal que o espectro consiste de uma portadora e duas linhas de banda lateral, como ocorreu na Fig. 5.1-4a (para NBFM).

Contudo, se β >>1, existirão muitas linhas de bandas laterais, gerando um espectro nada parecido com a modulação linear.

Figura 5.1-4a

Page 26: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

3. Grandes valores de β implicam em grande largura de banda para acomodar a extensa estrutura de bandas laterais, concordando com a interpretação física de um grande desvio de frequência.

Algumas dessas propriedades podem ser observadas na Fig. 5.1-6b, que fornece Jn(β) em função de n/β (para n real, não inteiro) e parametrizado em β.

Figura. 5.1-6b

nβ1 2

Jn(1) em função de n/1

Jn(2) em função de n/2

Jn(5) em função de n/5

3. Grandes valores de β implicam em grande largura de banda para acomodar a extensa estrutura de bandas laterais, concordando com a interpretação física de um grande desvio de frequência.

Algumas dessas propriedades podem ser observadas na Fig. 5.1-6b, que fornece Jn(β) em função de n/β (para n real, não inteiro) e parametrizado em β.

Figura. 5.1-6b

Estas curvas representam a envoltória das linhas de bandas laterais, se o eixo horizontal n/β for

multiplicado por βf m : , para uma dada frequência de tom fm.m mnf n fββ

=

nβ1 2

fm 2 fm

por que βfm???

n fm

Jn(1) em função de n/1, ou, de nfm

Jn(2) em função de n/2 , ou, de nfm

Jn(5) em função de n/5 , ou, de nfm

Page 27: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Exemplos:

1 2 n/βfm 2fm f=nfm

J0(β)J1(β)

J2(β)porta

dora

11, 1, 11 m m

nn nf fβ

= = = =

1 2 n/β2fm 4fm f=nfm

22, 1, 22 m m

nn nf fβ

= = = =

J0(β)

J2(β)

J4(β)

n/β

(continua...)

Exemplos:

1 2 n/β

J0(β)

J5(β)

55, 1, 55 m m

nn nf fβ

= = = =

5fm 10fm f=nfm

1 2 n/β10fm 20fm f=nfm

1010, 1, 1010 m m

nn nf fβ

= = = =

J0(β)

J10(β)

n/β

(continua...)

Page 28: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

_____________________________________________________________

Em particular, observa-se que todos os Jn(β) decrescem monotonicamente para n/β > 1, e, que | Jn(β) |<<1 se | n/β | >>1.

Rápido decaimento para n/β > 1

Funções de Bessel Jn(β) em função de β e parametrizadas em n.

Funções de Bessel Jn(β) em função de n/β e parametrizadas em β.

Na tabela 5.1-2 listam-se alguns valores de Jn(β), sendo que os valores em branco correspondem à condição | n/β | >>1.

n/β=2/0.1=20

Valores de n/β elevados e,consequentemente, de |Jn (β)| reduzidos

Page 29: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Os espectros de linhas, desenhadas a partir da tabela 5.1-2, são mostrados na Fig. 5.1-7, omitindo-se as inversões de sinais.

ver explicação a seguir

O espectro de magnitudes(ou módulo) é simétricoem relação a fc .

aumenta2,fixo mmmmmm

m ffAffAff

fA ββββ ↑↑== ΔΔΔ

aumenta2 mmm fAA βφβφβ ↑↑= ΔΔ

A figura em (a) é desenhada para valores crescentes de β, com fm mantido fixo, e se aplica a FM e PM.

FM: e

PM: e

Em ambos os casos (2βfm) aumenta.

As linhas tracejadas auxiliam a visualizar a concentração de linhas de bandas laterais significativas dentro da faixafc ± βfm , à medida que β aumenta.

↑ β ↑ número de linhas significativaspara produto AmfΔ (ou AmφΔ)crescentes

Obs: se βfm << fc , não existem componentes significativas em f<0 (espectro unilateral).

por que βfm???

Page 30: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

A figura em (b) se aplica apenas a FM e ilustra o efeito de se aumentar β pelo decréscimo de fm, como produto AmfΔ fixo.

As linhas tracejadas auxiliam a visualizar a concentração de linhas de bandas laterais significativas dentro da faixafc ± βfm à medida que β aumenta.

↑ β ↑ número de linhas significativaspara produto AmfΔ = βfm fixo.

fixo, 2 2 constantemm m m m

m

A f A f f f A ff

β β βΔΔ Δ= ↓ ↑ =

importante

por que βfm???

Interpretação fasorial de xc(t)

A fim de interpretar fasorialmente a expressão (5.1-8a), qual seja,

retorna-se a aproximação de banda estreita (n=1) da Fig. 5.1-4,

A envoltória e a fase, construídas a partir da portadora e o primeiro par de bandas laterais, são*:

______________________________*Obs: usar a série de Taylor .

])cos()[cos()(cos)()( 10 ttJAtJAtx mcmccccc ωωωωβωβ −−++=

1...,2/11 <++≅+ xxx (continua...)

Figura 5.1-4

Page 31: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

_______________________________Assim, a variação de fase é aproximadamente o desejado, porém, existe uma variação de amplitude adicional com o dobro da frequência do tom.

Para cancelar esta última, deve-se incluir um par de linhas de banda lateral de segunda ordem, que rotaciona ±2fm em relação à portadora, e cuja resultante seja colinear com a portadora.

Contudo, enquanto um par de segunda ordem virtualmente elimina a modulação de amplitude, ele também distorce φ(t).

A distorção de fase é então corrigida acrescentando um par de terceira ordem que, por sua vez, introduz modulação de amplitude novamente.

E assim, por diante....

])2cos()2[cos()(])cos()[cos()(cos)()(

2

10

ttJAttJAtJAtx

mcmcc

mcmccccc

ωωωωβωωωωβωβ

−+++−−++=

no limite para β→0, A(t) = Ac

ímpares, quadratura → corrige fasepares, em fase → corrige amplitude

Distorção de amplitude e fase, gerada devido a um número limitado de par de linhas laterais:

envoltória constante

envoltória não constante

envoltória não constante

distorção de fase

distorção de fase

Page 32: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

])4cos()4[cos()(])3cos()3[cos()(])2cos()2[cos()(

])cos()[cos()(cos)()(

4

32

10

ttJAttJAttJA

ttJAtJAtx

mcmcc

mcmccmcmcc

mcmccccc

ωωωωβωωωωβωωωωβ

ωωωωβωβ

−+++−−++−+++

−−++=

Ac

n=1

n=2n=3n=4

A(t)

φ(t)

Quando todas as linhas são incluídas, os pares de ordem superior têm uma resultante em quadratura com a portadora que proporciona a modulação de frequência/fase desejada, mas sem modulação de amplitude indesejável; a resultante dos pares de ordem par, sendo colinear com a portadora, corrigem as variações de amplitude.

Exemplo: considerando-se n = 0, 1, 2, 3 e 4.

(continua...)

ímpares, quadratura → corrige fasepares, em fase → corrige amplitude

(diagrama obtido num dado instante t)

A amplitude A(t) permanece constante em todos os instantes.

A ponta da resultante varia um arco circular, refletindo que a amplitude permanece constante, Ac.

A amplitude A(t) permanece constante em todos os instantes.

Page 33: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Exemplo 5.1-2: Modulação de Tom com NBFM

O sinal NBFM xc(t) =100 cos[2π5000t + 0.05 sin2π200t] = 100 cos[θc(t)] é transmitido.

A frequência instantânea é obtida derivando-se θc(t)=2π5000t + 0.05 sin2π200t:

Comparando-se com f(t)=fc +fΔ x(t), conclui-se que fc = 5000 Hz e fΔx(t)= 10 cos2π200t Hz.

Existem duas formas de se determinar β:

a) Para NBFM com modulação de tom, sabe-se que φ(t) = β sinωmt.Desde que xc(t) = Ac cos[ωct+φ(t)] = 100cos[2π5000t+0.05 sin2π200t], então, φ(t) = 0.05sin2π200t,e assim, β = 0,05.

b) Calcula-se

a partir de f(t) = fc + fΔ Am cosωmt = 5000+10cos2π200t, encontra-se Am fΔ = 10 e fm = 200, tal que

.05,020010 ==β

(continua...)

x(t) para FM

c

A pequena distorção na aproximação NBFM fica mais evidenciada quando se calcula a potência transmitida.

A partir do espectro de linhas do Exemplo em questão, obtém-se

ao contrário do valor obtido quando há raias laterais suficientes, de forma a não ocorrer distorção de amplitude:

#

5,22

05,01002

05,0,100

=×=

==β

β

c

c

AA

25,5006)5,2(21)100(

21)5,2(

21 222 =++−=TS

5000)100(21

21 22 === cT AS

Figura 5.1-4aaplicando o teorema de Parseval

0,13% de diferença

xc(t) =100 cos[2π5000t + 0.05 sin2π200t]

β = 0,05

Page 34: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Modulação Periódica e Multitom

A técnica de série de Fourier também pode ser aplicada ao caso de FM com modulação multitom.

Por exemplo, considere-se , onde f1 e f2 não são harmonicamente relacionadas (f1 não é um múltiplo inteiro de f2 ).

O sinal modulado em FM será:

ou

sendo e índices de modulação.

Alternativamente, xc(t) pode ser escrito como: .

Sabe-se que:

e assim,

tAtAtx 2211 coscos)( ωω +=

++=+= ΔΔ tAtAftAdxftAtx cc

t

ccc 22

21

1

1 sinsin2cos[])(2cos[)( ωω

ωω

πωλλπω

1 1 2 2( ) cos[ sin sin ]c c cx t A t t tω β ω β ω= + +

1

11 f

fA Δ=β2

22 f

fA Δ=β

{ }tjtjtjcc eeeAtx c 2211 sinsinRe)( ωβωβω=

0,)(sin ≥= ∞

−∞=

ββ ωωβ tjnn

n

tj mm eJe

=

=

++∞

∞=

∞=

∞=

∞=

tmnjmn

mnc

tjmm

m

tjnn

n

tjcc

c

c

eJJA

eJeJeAtx

)(21

--

2-

1-

21

21

)()(Re

)()(Re)(

ωωω

ωωω

ββ

ββ

(continua...)

2 tons

= ++

∞=

∞= tmnj

mnmn

ccceJJAtx )(

21--

21)()(Re)( ωωωββ________________________________Portanto,

Esta técnica pode ser extendida para incluir três ou mais tons, embora com mais esforço algébrico.

Para interpretar (5.1-19) no domínio da frequência, divide-se as linhas espectrais em quatrocategorias:

(1) Linha portadora em fc (para n=m=0), com amplitude:

Exemplo:Consideram-se frequências são tais que f1 << f2 e β1 > β2

)()( 2010 ββ JJAc n=m=0

Frequência: fc

Page 35: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

________________________________Portanto,

Esta técnica pode ser extendida para incluir três ou mais tons, embora com mais esforço algébrico.

Para interpretar (5.1-19) no domínio da frequência, divide-se as linhas espectrais em quatrocategorias:

(2) Linhas de bandas laterais em fc ± nf1 devido somente ao tom f1 (para m=0), com amplitude:

Exemplo:Consideram-se frequências são tais que f1 << f2 e β1 > β2

)()( 201 ββ JJA nc n =1, m=0n = −1, m=0

n =2, m=0

Frequências: fc ± n f1

________________________________Portanto,

Esta técnica pode ser extendida para incluir três ou mais tons, embora com mais esforço algébrico.

Para interpretar (5.1-19) no domínio da frequência, divide-se as linhas espectrais em quatrocategorias:

(3) Linhas de bandas laterais em fc ± mf2 devido somente ao tom f2 (para n=0), com amplitude:

Exemplo:Consideram-se frequências são tais que f1 << f2 e β1 > β2

n =0, m=1n=0, m=2

)()( 210 ββ mc JJA

n =0, m = −1n =0, m = −2

Frequências: fc ± m f2

Page 36: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

________________________________Portanto,

Esta técnica pode ser extendida para incluir três ou mais tons, embora com mais esforço algébrico.

Para interpretar (5.1-19) no domínio da frequência, divide-se as linhas espectrais em quatrocategorias:

(4) Linhas de bandas laterais em fc ± nf1 ±mf2 , que aparecem como modulação na frequência de batimento nas frequências soma e diferença dos tons (f1 e f2) e suas harmônicas, e com amplitudes:

Exemplo:Consideram-se frequências são tais que f1 << f2 e β1 > β2 n =1, m=1n = −1,

m = 1 n =2, m=1n =1, m=2

n = 1, m = − 1

)()( 21 ββ mnc JJAprodutos de intermodulação

Frequências: fc ± n f1 ± m f2

Resumo: FM com dois tons

No caso de dois tons, cujas frequências são tais que f1 << f2 e β1 > β2 (existem mais linhas significativas separadas por f1 do que linhas separadas por f2 ) tem-se o espectro típico:

Uma discussão mais detalhada é apresentada a seguir.

(continua...)

Page 37: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Exemplo: FM com dois tons (continuação...)

Para f1 << f2 e β1 > β2 [existem mais linhas significativas separadas por f1 (em preto) do que linhas separadas por f2 (em marrom)]:

Cada linha de banda lateral em fc ± mf2 ( ) se comporta com uma portadora de FM com modulação tonal na frequência f1 .

A largura de banda global depende das componentes significativas do sinal em f2 e que estão na sua maior frequência.

f2

fc−2f2 fc−f2 fc−f1 fc+f1 fc+f2 fc+f2+f1 fc+2f2

fc

f

f1 f1

f1

Espectro de FM com 2 tons, em f1 e f2 , para f1 < f2.

(continua...)

)()( 2010 ββ JJAc

)()( 201 ββ JJA nc

)()( 210 ββ mc JJA

)()( 21 ββ mnc JJA

fc + nf1 fc + mf2 fc +mf2 ± nf1fc − mf2 ± nf1 fc − mf2 fc − nf1

Categoria de linhas (4):“Linhas de bandas laterais em fc ± nf1 ±mf2 , que aparecem como modulação na frequência de batimento nas frequên-cias soma e diferença dos tons (f1 e f2) e suas harmônicas, e com amplitudes: .”______________________________________________________O comportamento das linhas (4) diferem das de AM, onde cada nova frequência adicionada ao sinal modulado dá origem apenas às suas próprias bandas laterais.

Ou seja, em AM, as bandas laterais obedecem ao princípio de superposição.

Assim, se x1(t) e x2(t) dão origem às bandas X1(f) e X2(f), então, as bandas criadas pelo sinal compostox1(t) + x2(t) serão oriundas de X1(f) + X2(f):

Não há produtos de intermodulação ou bandas laterais devido a produto cruzado; ou seja, não há termos nas frequências fc ± nf1 ±mf2 .

)()( 21 ββ mnc JJA

fc−2f2 fc−f2 fc−f1 fc+f1 fc+f2 fc+2f2

fc

f

f2

f1Espectro de AM com 2 tons, em f1 e f2 , para f1 < f2.

(continua...)

X2(f)X1(f)

Page 38: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

Exemplo: FM com três tons

Para f1 << f2 << f3 e β1 > β3 > β3 , tem-se o espectro abaixo:

Aparentemente, quem define a largura de banda global do espectro de FM multitons é o tom de maior frequência. #

W1/2

W2/2

W3/2

fc fc+f2 fc+f3 f

X1(f-fc)

X2(f-fc)

X3(f-fc)Espectro de FM com 3 tons f1 << f2 << f3 e β1 > β3 > β3.

Sinais de FM com tons harmonicamente relacionados

Quando as frequências dos tons estão relacionadas linearmente (i.e. f1 = f0 , f2 = 2f0 , etc.), tem-se:

uma série de Fourier e, portanto, um sinal periódico.

(Comparar com .)

Com isso, φ(t) (= φΔ x(t) para PM, e, = para FM) também será periódico, bem como, .

Este, por sua vez, pode ser expandido em série de Fouriercomo:

sendo

Portanto, o sinal modulado será:

sendo que Ac|cn| corresponde as magnitudes das linhas espectrais em f = fc +nf0 .

tmftmfAtfAtfAtx mm

001

0201 2sin02cos0...22cos2cos)( ππππ ++=++= ∞

=

tnfbtnfactv nnn

001

0 2sin2cos)( ππ ++= ∞

=

λλπ dxft

)(2 Δ

)](exp[ tjφtnfj

nn

tj ece 02)( πφ ∞

−∞=

=

dteeT

c tnfjtj

Tn0

0

2)(

0

1 πφ −=

==+=

−∞=

+

n

tjnn

tjc

ttjcccc eceAeAttAtx cc 0Re}Re{)](cos[)( )]([ ωωφωφω

Page 39: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

−τ 0 T0−τ T0 t

x(t)

Exemplo 5.1-3: FM com modulação por trem de pulsos (tons harmonicamente relacionados)

Seja x(t) uma função moduladora com forma de onda em trem de pulsos com amplitudes unitárias, período T0, duração de pulso τ e ciclo de trabalho d =τ /T0 .

Deseja-se obter os gráficos de φ(t) , f(t) e do espectro do sinal de FM.

As constantes de integração são escolhidas tais que φ(t) ≥ 0.___________________________________________________________________________________________________

A frequência instantânea para x(t) é:

A origem do tempo é escolhida tal que φ(t) tem valor de pico φΔ =2πfΔτ em t=0:

Para −τ < t <0, x(t) = 1, e

)()( txfftf c Δ+=

)()(2)( 00

tdxftt

t += Δ φλλπφ

)()(2)(12)( 00 ttftdftt

φτπφλπφτ

++=+= Δ−Δ (continua...)

Deseja-se φΔ =2πfΔτ em t=0.

Então, φ(t0) deve ser igual a zero em t = −τ, para ocorrer φΔ =2πfΔτ para t = 0:

, para −τ < t <0.

)()(2)(12)( 00 ttftdftt

φτπφλπφτ

++=+= Δ−Δ

Para 0< t < T0−τ, ocorre x(t) =0, e assim, não seria possível calcular a integral de φ(t) de tal forma a manter esta função periódica.

(Não tem como φ(t) retornar a zero em T0−τ após a integração, a fim de se tornar periódica.)

Neste caso, é razoável tentar obter φ(t) a partir de f(t).

−τ 0 T0−τ T0 t

x(t)

φ(t)

−τ 0 T0−τ T0 t

φΔ =2πfΔτ

(continua...)

)(2)( τπφ += Δ tft

Page 40: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

fc −fΔd

−τ 0 T0−τ T0 t

x(t)O valor médio de x(t) é:

[ ] dT

tT

dtT

tx TT

T

T==== −−

000

0

0

0

0

111)( τττ

Após remover a componente DC [x(t) → x’ (t) ], a frequência instantânea do sinal de FM resultante será:

Por conveniência, emprega-se o sistema de coordenadas auxiliar t’.

])([)(')(' dtxfftxfftf cc −+=+= ΔΔ

(continua...)

A

A0 t−d

1−d

x’=x(t)−d

0 t’)(''

21'

21)(' txf

dtd

dtdftf c Δ=+= φ

πφ

π

Kdxft

+= Δ λλπφ )('2''

0

A

A0 t−d

1−d

x’=x(t)−d

0 t’

φ’(t)

−τ 0 T0−τ T0 t

φΔ =2πfΔτ(1-d)

Sabe-se que: t’ = t+τ

Em t = −τ , φ’(t) =0

e então

a) Para o intervalo −τ < t < 0, tem-se uma área A positiva:

b) Para o intervalo 0< t < T0−τ, tem-se uma área A negativa, sendo possível fazer φ(t) retornar a zero.Emprega-se o sistema de coordenadas normal para t.

[ ] ')2('2)(2)(' 00KtdfKfKddft tt

+−=+−=+−= ΔΔΔ πλπλπφ

(continua...)

[ ] KtdfKdfKddfKdxft ttt+−=+−=+−=+= ΔΔΔΔ ')1(2)1(2)1(2)('2)(' '

0

'

0

'

0πλπλπλλπφ

Ktdft ++−= Δ ))(1(2)(' τπφ

00))(1(2)(' ==++−−= Δ KKdft ττπφ

)1)(1()(')1)(1(2))(1(2)('τ

φφτ

τπτπφ tdttdftdft +−=+−=+−= ΔΔΔ

Page 41: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

0/,')2()( TdKtdft τπφ =+−= Δ___________________________________________________

Para t = T0−τ , .

Então:

)(2'0')(2' 00 τπτπφ −==+−−= ΔΔ TdfKKTdf

Para 0< t < T0−τ,

(continua...)

0000 ],[)()(2'

TdtTdTddtTdfdtf ττ

τφτ

τφ

τφτππφ =−−=−+−=−+−= ΔΔΔΔΔ

=−

−−= Δ ]1)[('0

0 ττ

τφφ

TtTd )1)(1(')1)((1

0000

0 τφφ

τφ

−−−=

−−− ΔΔ T

tdT

tdTTT

Porém, deseja-se que φ(t) tem valor de pico φΔ =2πfΔτ em t=0.

Obteve-se: para −τ < t < 0, , e, para 0< t < T0−τ,

então, pode-se normalizar φ’(t) dividindo-se por (1−d) obtendo-se:

)1)(1()('τ

φφ tdt +−= Δ)1)(1('

0 τφφ

−−−= Δ T

td

fc −fΔd

(continua...)

________________________________________________O cálculo de cn é uma tarefa não trivial, envolvendo integrais exponenciais e relações trigonométricas.

O resultado final pode ser escrito como (aconselha-se o leitor a tentar demonstrá-lo) :

resultando em:

onde , o qual exerce um papel similar ao índice de modulação para o caso de modulação de tom simples.

dteT

c dttntj

Tn

])([

0

0

0

1 ωφ −=

00 / ffTf ΔΔ ==β

Page 42: Capítulo 5 –Modulação CW Exponencial · Capítulo 5 –Modulação CW Exponencial Na modulação linear, o espectro modulado consiste no espectro da mensagem transladado pela

cn

Para o caso particular onde d=1/4, β=4 e Ac =1, tem-se o seguintes espectro de linhas:

_____________________________________________}Re{)( )(

+∞

−∞=

+=n

tnjncc

ocecAtx ωω

Espectro do sinal de FM:

(continua...)

fc−fΔd

Nota-se a ausência de simetria do espectro em torno da portadora fc .

Os picos estão em e , revelados pelas frequências instantâneas

fc −fΔd e fc+(1−d) fΔ , para d=1/4.

O fato de que o espectro contém outras frequências também ressalta a diferença entre frequência espectral e frequência instantânea.

As mesmas observações se aplicam para o espectro contínuo de FM, com x(t) na forma de um pulso único de modulação, e que foiestudado no Exemplo 2.5-1:

Δ−= fff c 41

Δ+= fff c 43

Sinal temporal modulado em FM

Espectro contínuo de FM para f > 0