28
Prof. SILVIO LOBO RODRIGUES CIRCUITOS RL E RC RESPOSTA NATURAL CAPITULO 05

circuito RC

Embed Size (px)

Citation preview

Page 1: circuito RC

Prof. SILVIO LOBO RODRIGUES

CIRCUITOS RL E RC RESPOSTA NATURAL

CAPITULO 05

Page 2: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 2

5.1 INTRODUÇÃO Estudaremos neste capítulo os circuitos mais simples contendo resistores e capacitores ou resistores e indutores e que não tenham nenhuma fonte. Obteremos para estes circuitos uma equação diferencial linear homogênea de 1ª ordem ou um sistema de equações de 1ª ordem para circuitos que contenham mais de um indutor ou mais de um capacitor dispostos de maneira tal que não permitam uma associação série ou paralela de modo direto. Uma solução será obtida ao encontrarmos, para a variável dependente, uma expressão que satisfaça a equação diferencial e a distribuição de energia nos indutores e capacitores num determinado instante de tempo t = 0. A solução da equação diferencial representa a resposta do circuito. Quando o circuito não é alimentado continuamente por uma fonte independente a resposta é chamada de resposta natural, ou transitória uma vez que ela depende apenas da natureza dos elementos do circuito e desaparece ao longo do tempo pela dissipação da energia armazenada nos capacitores ou indutores se transformando em calor nos resistores do circuito. 5.2 CIRCUITO RL MAIS SIMPLES

Consideremos o CKT da figura 5.1 no qual a corrente no indutor em t = 0 é I0.

Figura 5.1 - Circuito RL simples.

Do circuito temos:

(5.1) Esta é a equação diferencial de 1ª ordem representativa do circuito.

L Rdiv v L Ri 0dt

di R i 0dt L

+ = + =+ = + =+ = + =+ = + =

+ =+ =+ =+ =

t = 0

vL

+

-

R -

vR

+

i(0) = I0

i

Page 3: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 3

Devemos, pois, obter uma solução para i(t) que satisfaça esta equação e a condição inicial i(0) = Io. Uma solução para esta equação é obtida pelo método de separação de variáveis e integração direta. Donde finalmente chegamos à expressão que representa a resposta natural em termos da corrente i(t) em um circuito RL simples.

(5.2) Este tipo de solução é um pouco limitado uma vez que nem sempre se podem separar as variáveis. O método mais utilizado, entretanto consiste em se admitir uma forma de solução e testar a hipótese substituindo nas equações e testar as condições iniciais. Voltemos ao nosso exemplo. Da equação (5.1): Admitimos como solução uma solução exponencial:

(5.3)

(((( ))))

(((( )))) (((( ))))

o

o

o

i(t ) t

I 0

ti(t )

I0

o

o

i Rln tI L

R tL

o

di R dti L

di R dti L

Rln i tL

Rln i ln I tL

i Rln tI L

e ei e

I

−−−−

−−−−

= −= −= −= −

= −= −= −= −

= −= −= −= −

− = −− = −− = −− = −

= −= −= −= −

====

====

∫ ∫∫ ∫∫ ∫∫ ∫

(((( ))))R tL

oi t I e−−−−

====

(((( )))) odi R i 0 i 0 Idt L

+ = =+ = =+ = =+ = =

(((( )))) 1s ti t Ae====

Page 4: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 4

Levando na equação diferencial: Temos três soluções possíveis: As duas primeiras não nos interessam, pois levam a soluções nulas ou triviais. Logo,

(5.4) A nossa solução hipótese fica: Resta determinar a constante A que é obtida pela condição inicial i(0) = I0. Logo, A potência dissipada no resistor é: A energia transformada em calor ao longo do tempo:

(5.5)

(((( ))))1 1

1 1

1

s t s t

s t s t1

s t1 1

d RAe Ae 0dt L

RAs e Ae 0L

RAs e s 0L

+ =+ =+ =+ =

+ =+ =+ =+ =

+ =+ =+ =+ =

1 1RA 0 s - ou sL

= = ∞ = −= = ∞ = −= = ∞ = −= = ∞ = −

1RsL

= −= −= −= −

(((( ))))R tLi t Ae

−−−−====

(((( ))))

(((( ))))

0o

R tL

o o

i 0 I Ae

A I i t I e−−−−

= == == == =

= == == == =

(((( )))) (((( )))) (((( ))))2R t2 2 L

R oP t Ri t R I e−−−−

= == == == =

(((( )))) (((( ))))

(((( ))))

(((( ))))

2R t2 Lo0 0

2R t2 Lo

0

2o

W p t dt R I e dt

LW R I e2R

1W L I2

∞ ∞∞ ∞∞ ∞∞ ∞ −−−−

∞∞∞∞−−−−

= == == == =

= − ⋅= − ⋅= − ⋅= − ⋅

====

∫ ∫∫ ∫∫ ∫∫ ∫

Page 5: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 5

O resultado concorda com a energia inicialmente armazenada no indutor. 5.3 PROPRIEDADES DA RESPOSTA EXPONENCIAL Consideremos o gráfico da figura 5.2.

Figura 5.2 – Corrente num CKT RL (resposta natural). Quando não se altera, a curva decresce constantemente à medida que t aumenta. A razão inicial do decaimento é dada pela derivada em t = 0.

(5.6)

Da figura 5.2: Como θ é o suplemento de θ’

RL

R to L

t 0

t 0

id I R Redt L L

−−−−

====

====

= − = −= − = −= − = −= − = −

o'

t 0

id I R 1tg tgdt L

====

θ = = − θ =θ = = − θ =θ = = − θ =θ = = − θ =γγγγ

'tg tg1 R

L

θ = − θθ = − θθ = − θθ = − θ

====γγγγ

(((( ))))0

i tI

ϒϒϒϒ

θ’ θ

1

0,638

t(s)

Page 6: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 6

Logo (5.7) E representa o tempo necessário para que caia de 1 a 0. A constante γ é chamada de constante de tempo do circuito. Quando t = γ : Logo i(t) = 36,8%.Io

Para t = 2γ: Para t = 3γ: Para t = 4γ: Para t = 5γ: Conclui-se que para t = 5γ a corrente no circuito é praticamente nula pois i(t)=0,67%.Io. Em termos da constante de tempo:

(5.8)

L (s)R

γ =γ =γ =γ =

o

iI

(((( ))))

(((( ))))

R t 1L

o

o

i te e

Ii t

0,368I

−−−− −−−−= == == == =

====

(((( )))) 2

o

i te 0,135

I−−−−= == == == =

(((( )))) 3

o

i te 0,0498

I−−−−= == == == =

(((( )))) 4

o

i te 0,0183

I−−−−= == == == =

(((( )))) 5

o

i te 0,0067

I−−−−= == == == =

(((( ))))t

oi t I e−−−−

γγγγ====

Page 7: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 7

5.4 ESTUDO DE UM CKT RL MAIS ELABORADO

Analisemos a figura 5.3 na qual é conhecida iL(0).

Figura 5.3 – Circuito RL mais geral.

A constante de tempo do circuito: A corrente iL(t) pode ser escrita:

(5.9) Se quisermos i2, por exemplo, fazemos o divisor de corrente. Então:

(5.10)

Se não for conhecido iL(0) e for conhecido i1(0+), por exemplo, teremos:

1 2eq 3 4

1 2

R RR R RR R

⋅⋅⋅⋅= + += + += + += + +++++

eq

LR

γ =γ =γ =γ =

(((( )))) (((( )))) (((( ))))e q tR

tL

L L Li t i 0 e i 0 e−−−−−−−− γγγγ= == == == =

12 L

1 2

Ri iR R

= − ⋅= − ⋅= − ⋅= − ⋅++++

(((( )))) (((( ))))t

12 L

1 2

Ri t i 0 eR R

−−−−γγγγ= − ⋅= − ⋅= − ⋅= − ⋅

++++

R3

R1 R2 R4

L

iL i1 i2

Page 8: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 8

(5.11) A equação (5.10) para i2(t) fica então:

(5.12)

5.5 CIRCUITO RC MAIS SIMPLES

Consideremos a figura 5.4 na qual v(0) = V0.

Figura 5.4 – Circuito RC simples. A corrente total deixa o nó superior em t = 0.

(((( )))) (((( ))))(((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( ))))

1 1 2 2

12 1

2

L 1 2

1L 1 1

2

2 1L 1

2

R i 0 R i 0

Ri 0 i 0R

i 0 i 0 i 0

Ri 0 i 0 i 0R

R Ri 0 i 0R

+ ++ ++ ++ +

+ ++ ++ ++ +

+ + ++ + ++ + ++ + +

+ + ++ + ++ + ++ + +

+ ++ ++ ++ +

====

====

= − += − += − += − +

= − += − += − += − + ++++= − ⋅= − ⋅= − ⋅= − ⋅

(((( )))) (((( ))))t

12 1

2

Ri t i 0 eR

−−−−++++ γγγγ= ⋅= ⋅= ⋅= ⋅

dv vC 0dt R

dv v 0dt RC

+ =+ =+ =+ =

+ =+ =+ =+ =

R C v(t)

+

-

v(0) = v0

Page 9: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 9

Comparando com , verificamos que se trata da equação dual pela substituição

de i por v e por .

A solução deve ser portanto o dual da solução para CKT RL. Logo:

(5.13)

Vamos supor que selecionamos i(t) e não v(t) como variável para o CKT RC. Derivando: Como Teremos novamente:

5.6 PROPRIEDADES DA RESPOSTA EXPONENCIAL (CKT RC)

Figura 5.5 – Tensão num circuito RC (resposta natural).

di R i 0dt L

+ =+ =+ =+ =RL

1RC

(((( ))))t

RC0v t V e

−−−−====

(((( ))))01v t idt Ri 0C

+ + =+ + =+ + =+ + =∫∫∫∫

(((( ))))i t diR 0C dt

+ =+ =+ =+ =

v dv vi 0R dt RC

= → + == → + == → + == → + =

(((( ))))t

RCov t V e

−−−−====

0

vV

ϒϒϒϒ

θ’ θ

1

0,638

t

Page 10: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 10

Quando não se altera, a curva decresce constantemente à medida que t aumenta. A razão

inicial do decaimento é dada pela derivada em t = 0. Logo γ = RC (s) (5.14) E representa o tempo necessário para que caia de 1 a 0. Quando t = γ : Para t = 2γ: Para t = 3γ: Para t = 4γ: Para t = 5γ: Conclui-se que a tensão no circuito, para t = 5γ, é praticamente cula pois v(t)=0,67%.Vo. Em termos da constante de tempo:

(5.15)

1RC

to RC

t 0

t 0

'

vd V 1 1edt RC RC

1tg tg

1 1RC

−−−−

====

====

= − = −= − = −= − = −= − = −

θ = − θ = −θ = − θ = −θ = − θ = −θ = − θ = −γγγγ

====γγγγ

o

vV

(((( )))) 2

o

v te 0,135

V−−−−= == == == =

(((( )))) 3

o

v te 0,0498

V−−−−= == == == =

(((( )))) 4

o

v te 0,0183

V−−−−= == == == =

(((( )))) 5

o

v te 0,0067

V−−−−= == == == =

(((( )))) 1

o

v te 0, 368

V−−−−= == == == =

(((( ))))t

ov t V e−−−−

γγγγ====

Page 11: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 11

5.7 ESTUDO DE UM CKT RC MAIS ELABORADO Consideremos o CKT da figura 5.6 em que v(0) = Vo.

Figura 5.6 – CKT RC mais geral. Qualquer voltagem ou corrente na parte resistiva da rede será da forma Por exemplo: E i(0+) deve ser obtido da condição inicial dada. Para o divisor de corrente: Mas. Então, (5.16)

(((( )))) e q

1 3eq 2

1 3t

R C0

eq

R RR RR R

v t V eR C

−−−−

⋅⋅⋅⋅= += += += +++++

====

γ =γ =γ =γ =t

A e−−−−

γγγγ⋅⋅⋅⋅

(((( )))) (((( ))))t

1 1i t i 0 e−−−−++++ γγγγ====

(((( )))) (((( )))) 31

1 3

Ri 0 i 0R R

+ ++ ++ ++ += ⋅= ⋅= ⋅= ⋅++++

(((( )))) (((( )))) (((( ))))0 1 30

eq 1 2 2 3 1 31 32

1 3

v 0 V R RVi 0R R R R R R RR RR

R R

++++++++ ++++

= = == = == = == = =+ ++ ++ ++ +

++++ ++++

(((( )))) (((( ))))31

1 2 2 3 1 3

Ri 0 v 0R R R R R R

+ ++ ++ ++ += ⋅= ⋅= ⋅= ⋅+ ++ ++ ++ +

v

R1

R2 R3

C

i1

i

+

-

Page 12: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 12

5.8 CKT RL E RC GERAIS

Um circuito com vários indutores ou capacitores geralmente não permite a simplificação para 1

indutor ou 1 capacitor associado a uma resistência equivalente. Temos sempre nestes casos mais de uma exponencial negativa associada ao circuito. Tais problemas envolvem a solução de um sistema de equações diferenciais de 1ª ordem e o circuito terá mais de uma constante de tempo, associada a descarga da energia armazenada nos capacitores ou indutores.

Exemplo: seja o circuito da figura 5.7 para o qual conhecemos i1(0) e i2(0). Seja i1(0) = 11A e i2(0) = 11A.

Figura 5.7 – Circuito a dois indutores – Exemplo de aplicação. Temos duas correntes de laço e cada uma delas será representada pela soma de duas

exponenciais e cada exponencial tem como incógnita uma amplitude e uma constante de tempo. Teremos 6 incógnitas a determinar:

Escrevendo as equações de laço: A nossa hipótese de solução é:

1 21

1 22

di dii 5 3 0 (1)dt dt

di di3 3 2i 0 (2)dt dt

+ − =+ − =+ − =+ − =

− + + =− + + =− + + =− + + =

1 2

1 2

s t s t1

s t s t2

i Ae +Be (3)

i Ce +De (4)

====

====

1Ω 2Ω 3H

2H

i1 i2

Page 13: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 13

Substituindo i1 e i2 nas equações diferenciais: A solução para este sistema obriga que todos os termos entre parêntesis sejam nulos. Da equação (5): Levando na equação (7): Donde Da equação (6): Levando na equação (8): Donde Escolhemos para solução:

(((( )))) (((( ))))(((( )))) (((( ))))

1 2 1 1 2 2

1 2 1 2 2

1 1

1 1

s t s t s t s t s t s t1 1 2 2

s t s t s t s t s ts1t1 2 1 2

s t s2 t1 1 2 2

s t s2 t1 1 2 2

Ae +Be +5As e -3Cs e +5Bs e -3Ds e =0

3As e 3Bs e 3Cs e 3Ds e 2Ce 2De 0

A 5As 3Cs e B 5Bs 3Ds e 0

3As 3Cs 2C e 3Bs 3Ds 2D e 0

− − + + + + =− − + + + + =− − + + + + =− − + + + + =

+ − + + − =+ − + + − =+ − + + − =+ − + + − =

− + + + − + + =− + + + − + + =− + + + − + + =− + + + − + + =

(((( ))))(((( ))))(((( ))))(((( ))))

1 1

2 2

1 1

2 2

A 1 5s 3Cs 0 (5)

B 1 5s 3Ds 0 (6)

C 2 3s 3As 0 (7)

D 2 3s 3Bs 0 (8)

+ − =+ − =+ − =+ − =

+ − =+ − =+ − =+ − =

+ − =+ − =+ − =+ − =

+ − =+ − =+ − =+ − =

1

1

sA 3C1 5s

====++++

21 16s 13s 2 0+ + =+ + =+ + =+ + =

1 2s 1 6 , s -2= − == − == − == − =

2

2

sB 3D1 5s

====++++

22 26s 13s 2 0+ + =+ + =+ + =+ + =

1 2s 1 6 , s -2= − == − == − == − =

1 2t 2t6

1t 2t6

2

s 1 6 e s -2

i Ae Be

i Ce De

−−−− −−−−

−−−− −−−−

= − == − == − == − =

= += += += +

= += += += +

Page 14: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 14

Aplicando as condições iniciais: Estas duas equações não são suficientes para determinar A, B, C e D. Utilizamos então duas

equações diferenciais. Por exemplo as equações (5) e (6): Como A solução das equações (9) a (12) fornece: A solução final fornece: As constantes de tempo do circuito são:

(((( ))))(((( ))))

1

2

i 0 A B 11 (9)

i 0 C D 11 (10)

= + == + == + == + =

= + == + == + == + =

(((( ))))(((( ))))

1 1

2 2

A 1 5s 3Cs 0

B 1 5s 3Ds 0

+ − =+ − =+ − =+ − =

+ − =+ − =+ − =+ − =

1 2s 1 6 , s -2= − == − == − == − =

(((( ))))(((( ))))

A 3C 0 11

9B 6D 0 12

+ =+ =+ =+ =

− + =− + =− + =− + =

A 3 B 8 C 1 e D 12= = = − == = = − == = = − == = = − =

t 2t61

t 2t62

i 3e 8e

i e 12e

−−−− −−−−

−−−− −−−−

= += += += +

= − += − += − += − +

1 21 2

1 2

1 1 s s

16s s2

γ = − γ = −γ = − γ = −γ = − γ = −γ = − γ = −

γ = γ =γ = γ =γ = γ =γ = γ =

Page 15: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 15

A representação gráfica das correntes sobre os indutores é dada na figura 5.8.

Figura 5.8 – Resposta em corrente para o CKT RL a dois indutores.

5.9 EXERCÍCIOS RESOLVIDOS

1. A fonte independente no circuito da figura abaixo é 140V para t < 0 e 0V para t > 0. Determine i(t) e vo(t).

1 2 3 4 5 t (s)

i1 (t) [A]

11

10

8

6

4

2

t (s)

i1 (t) – i2 (t) [A]

11

10

8

6

4

2

1 2 3 4 5 t (s)

70Ω

420Ω 80Ω 60Ω

20Ω 2µF

v0(t) +

-

vs

i(t)

Page 16: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 16

Solução: Para t < 0: Para t > 0:

(((( )))) (((( ))))(((( )))) (((( ))))

(((( ))))4

o

eq

6 4eq

c

t2 10 5000t

c c

140i t A v t 0490

R 70 // 420 80 // 80 60 40 100

R C 100 2 10 2 10 s

140v (0 ) 420 i(0 ) 420 120V490

v (t) v (0 )e 120e t 0−−−−

− −− −− −− −

+ −+ −+ −+ −

−−−−⋅⋅⋅⋅+ −+ −+ −+ −

= == == == =

= + = + = Ω= + = + = Ω= + = + = Ω= + = + = Ω

γ = = × × = ×γ = = × × = ×γ = = × × = ×γ = = × × = ×

= × = × == × = × == × = × == × = × =

= = >= = >= = >= = >

(((( ))))

(((( ))))

(((( )))) (((( ))))

(((( ))))(((( ))))

(((( ))))

(((( ))))

6 5000tcc

5000tc

c 5000t

5000t

o R60

c 5000tR60

o

dvi t C 2 10 120 5000edt

i t 1,2 e A t 0

i t 70 1,2 70i t e490 490

i t 0,171e t 0

v t 60 i

i t 80i 0,6 e A

160v t 60 0

− −− −− −− −

−−−−

−−−−

−−−−

−−−−

= = − × × ×= = − × × ×= = − × × ×= = − × × ×

= − × >= − × >= − × >= − × >

×××× ××××= == == == =

= − >= − >= − >= − >

= ×= ×= ×= ×

××××= − = ×= − = ×= − = ×= − = ×

= ×= ×= ×= × 5000t,6 e V−−−−××××

(((( )))) 5000tov t 36e V t 0−−−−= → >= → >= → >= → >

40Ω 60Ω

vc(t) + -

ic(t)

Page 17: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 17

2. Após estar fechada por um longo tempo, a chave no circuito da figura que segue é aberta em t = 0. Determine v(t) para t > 0.

Solução:

Chamando ix a corrente no resistor de 2KΩ para t < 0 temos: Logo: Para t > 0:

(((( ))))3x x

x

0,3 2000i 1000 i 0,6 10

0,3 0,6 0,3i 0,1mA3000 3000

−−−−= + + ×= + + ×= + + ×= + + ×

− −− −− −− −= = = −= = = −= = = −= = = −

(((( )))) (((( ))))(((( )))) (((( ))))

3v 0 1000 0,6 0,1 10 0,5V

v 0 v 0 0,5V

− −− −− −− −

− +− +− +− +

= − × == − × == − × == − × =

= == == == =

(((( )))) (((( )))) (((( ))))6t

1000 5 10v t v 0 e−−−−−−−−

× ×× ×× ×× ×++++====

(((( )))) 200tv t 0,5e V−−−−====

2kΩ

1kΩ 0,6mA 5µF v(t)

+

-

t=0

ix

0,3V

Page 18: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 18

3. A chave do circuito da figura que segue fecha-se em t = 0. Determine i1(t) e i2(t) para t > 0.

Para t < 0: Para t > 0:

(((( ))))

(((( ))))

1

2

18 4,5i t 9A4,5 3 1,59 2 18 9i t6 2 8 4

××××= == == == =+ ++ ++ ++ +

××××= = == = == = == = =++++

(((( ))))

(((( ))))

11 1 2

22 2 1

11 2

21 2

di3i 6 2 i i 0dt

di12 6i 2 i i 0dt

di5i 6 2i 0dt

di2i 8i 12 0dt

+ + − =+ + − =+ + − =+ + − =

+ + − =+ + − =+ + − =+ + − =

+ − =+ − =+ − =+ − =

− + + =− + + =− + + =− + + =

18A 4,5Ω

2Ω 6Ω

12H 6H

i1 i2

t=0

2Ω 6Ω

12H 6H 3Ω

i1 i2

Page 19: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 19

A nossa solução hipótese é: Combinando (1) com (3): De (1) : Aplica em (3): Combinando (2) com (4): De (2) : Aplica em (4):

(((( )))) (((( ))))(((( )))) (((( ))))

1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2

s t s t1

s t s t2

s t s t s t s t s t s t1 2

s t s t s t s t s t s t1 2

s t s t1 2

s t s t1 2

i Ae Be

i Ce De

5Ae 5Be 6As e 6Bs e 2Ce 2De 0

2Ae 2Be 12Cs e 12Ds e 8Ce 8De 0

e 5A 6As 2C e 5B 6Bs 2D 0

e 2A 12Cs 8C e 2B 12Ds 8D 0

= += += += +

= += += += +

+ + + − − =+ + + − − =+ + + − − =+ + + − − =

− − + + + + =− − + + + + =− − + + + + =− − + + + + =

+ − + + − =+ − + + − =+ − + + − =+ − + + − =

− + + + − + + =− + + + − + + =− + + + − + + =− + + + − + + =

(((( ))))(((( ))))(((( ))))(((( ))))

1

2

1

2

5 6s A 2C 0 (1)

5 6s B 2D 0 (2)

8 12s C 2A 0 (3)

8 12s D 2B 0 (4)

+ − =+ − =+ − =+ − =

+ − =+ − =+ − =+ − =

+ − =+ − =+ − =+ − =

+ − =+ − =+ − =+ − =

15 6s A C2

++++ ====

21 1

1

2s 3s 1 01s e -12

+ + =+ + =+ + =+ + =

= −= −= −= −

22 2

2

2s 3s 1 01s e -12

+ + =+ + =+ + =+ + =

= −= −= −= −

25 6s B D2

++++ ====

Page 20: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 20

Escolhendo para solução: Quando t = 0 : Escolhendo as equações (1) e (2): Resolvendo o sistema das equações (5), (6), (7) e (8):

1 2

t t21

t t22

1s e s -12

i Ae Be

i Ce De

−−−− −−−−

−−−− −−−−

= − == − == − == − =

= += += += +

= += += += +

(((( ))))(((( ))))

1

2

i 0 A B 9 (5)9i 0 C D (6)4

= + == + == + == + =

= + == + == + == + =

(((( ))))(((( ))))

1 1

2 2

15 6s A 2C 0 s 25 6s B 2D 0 s 1

2A 2C 0 (7) B 2D 0 (8)

−−−−+ − = → =+ − = → =+ − = → =+ − = → =

+ − = → = −+ − = → = −+ − = → = −+ − = → = −

− =− =− =− =− − =− − =− − =− − =

9A=29B29C2

9D4

====

====

= −= −= −= −

t t21

t t22

9 9i (t) e e2 29 9i (t) e e2 4

−−−− −−−−

−−−− −−−−

= += += += +

= −= −= −= −

Page 21: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 21

As constantes de tempo são:

4. A chave do circuito abaixo está em a por muito tempo. Em t = 0 ela é movida para b e, em t = 1s é movida para c. Para que instante t, v = 1V?

Solução: Com a chave em a o capacitor se carrega e em t = 0-: Com a chave na posição b, 0 < t < 1: Em t = 1s:

1

2

2s1s

γ =γ =γ =γ =γ =γ =γ =γ =

(((( )))) 100000v 0 5 4V25000 100000

−−−− = ⋅ == ⋅ == ⋅ == ⋅ =++++

(((( )))) 5 5t

t tRC 10 10ov t V e 4e 4e V−−−−

−−−−−−−− −−−−⋅⋅⋅⋅= = == = == = == = =

(((( )))) 1v 1 4e 1,472V−−−−= == == == =

25kΩ

100kΩ

100kΩ

10µF

5V

a b c

v

+

-

t=0

Page 22: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 22

Com a chave na posição c, t > 1: Assim o instante em que ocorre v = 1 é:

5. Com referência ao circuito mostrado a seguir sabe-se que v(0) = 9V. Determine i(t) para t > 0.

Solução: Para se obter a tensão v(t) e i(t) precisamos do equivalente resistivo (Thévenin) ligado ao

capacitor. Assim obtém-se o equivalente Thévenin visto de ab.

(((( )))) (((( )))) (((( ))))5 5 5t

10 //10 10 2t

2t

2t

v t v 1 e 1,472e

1 1,472e1 e

1,4721ln 2t

1,472t 0,193s

−−−−−−−−

⋅⋅⋅⋅ −−−−

−−−−

−−−−

= == == == =

====

====

= −= −= −= − ====

t 1 0,193 1,193s= + == + == + == + =

15Ω

10Ω

a

b

v(t)

+

-

50µF 6i

i(t)

15Ω

10Ω

a

b

6i 1V

ix i’

i

Page 23: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 23

Assim:

(((( ))))

'

x'

x

x

x

x

TH

1i 0,1A10

1 15i 6i 0

i i i 01 15i 6i

0,1 i ii 0,1 i1 15 0,1 i 6i1 1,5 9i

2,5i9

i 0,2777A

1 1R 3,6i 0, 2777

= == == == =

− + + =− + + =− + + =− + + =

+ + =+ + =+ + =+ + =

= += += += +− = +− = +− = +− = +

= − −= − −= − −= − −

= − − += − − += − − += − − +

+ = −+ = −+ = −+ = −

====−−−−

= −= −= −= −

= − = = Ω= − = = Ω= − = = Ω= − = = Ω

(((( )))) 6t

3,6 50 10cv t 9e

−−−−−−−−

× ×× ×× ×× ×====

(((( )))) 5555,5tcv t 9e V−−−−====

(((( )))) 6 5555,5tc cv dvi t C 50 10 9 5555,5e

3,6 dt− −− −− −− −= − = = − × × ×= − = = − × × ×= − = = − × × ×= − = = − × × ×

(((( )))) 5555,5ti t 2,5e A−−−−= −= −= −= −

50µF 3,6Ω

-

+

vc

i

Page 24: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 24

6. As duas chaves do circuito que segue são fechadas em t = 0. Determine i1(t), i2(t) e i3(t) para t > 0.

Solução: a) Antes de t = 0 com o inductor em curto vL = 0: b) Após o fechamento das chaves o indutor fica em paralelo com as resistências de 10Ω e 40Ω

e as fontes deixam de alimentar o indutor. Assim:

(((( ))))3

2 2 L

1 1 L

2 1

2

1

i 0 0

0,2 10i 10i v 00,3 20i 40i v 0

i i i 0,015Ai 0,01Ai 0,005A

−−−− ====

− + + + =− + + + =− + + + =− + + + =− + + + =− + + + =− + + + =− + + + =

= + == + == + == + =========

30,2i 0,02A t 010

= = >= = >= = >= = >

(((( ))))8R tt 10t0,8L

o3i t I e 0,015e 0,015e A

−−−−−−−− −−−−= = == = == = == = =

10Ω 10Ω 40Ω 20Ω

0,8H t=0 t=0 0,2V 0,3V

i1

i2

i3

i

vL

+

-

0,8H 40//10 = 8Ω

i

Page 25: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 25

c) i2 é obtido de i(t) por divisão de corrente para t > 0.

7. A chave da esquerda no circuito que segue é fechada em t = 0. a) Determinar iL(t) e i1(t) para 0 < t < 0,15. b) A chave do lado direito é fechada em t = 0,15. Determine iL(t) e i1(t) para t > 0,15. Solução: a) Para t < 0:

10 10t2

40 ii 0,8 0,015e 0,015e A40 10

− −− −− −− −⋅⋅⋅⋅= − = − × = −= − = − × = −= − = − × = −= − = − × = −++++

(((( ))))(((( ))))

1

L

i 0 0

24i 0 2A2 4 6

−−−−

−−−−

====

= == == == =+ ++ ++ ++ +

0,8H

10Ω 40Ω

i2

i

0,6H

6Ω 4Ω 2Ω

24V

i1(t)

iL(t)

t=0,15s t=0

Page 26: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 26

Para 0 < t < 0,15 com a chave da esquerda fechada: c) Para t > 0,15:

8. Após ter estado fechada por um longo tempo, a chave no circuito abaixo é aberta em t = 0. Determine v(t) para t > 0.

Solução: Para t = 0- o capacitor está carregado e em aberto:

(((( ))))

(((( )))) (((( ))))

10 t16,67t0,6

L o

16,67t1 L

i t I e 2e24i t i t 12 2e2

−−−−−−−−

−−−−

= == == == =

= − = −= − = −= − = −= − = −

(((( ))))

(((( )))) (((( ))))(((( ))))(((( ))))

1

6 t1,667 10t0,6

L L

10tL

10tL

24i t 12A2

i t i 0,1 e 2e e

i t 2 0,1888e

i t 0,3776e

−−−−− −− −− −− −

−−−−

−−−−

= == == == =

= ⋅ = ⋅= ⋅ = ⋅= ⋅ = ⋅= ⋅ = ⋅

= ×= ×= ×= ×

====

(((( ))))c

13

1 1

v 0 1000i (1)

0,3 2000i 1000i (2)

i 0,6 10 i i i 0,006 (3)

−−−−

−−−−

====

= += += += +

+ × = → = −+ × = → = −+ × = → = −+ × = → = −

0,3V 0,6mA 1kΩ

2kΩ

vc(t) +

-

t=0 i1

i

5µF

Page 27: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 27

Levando (3) em (2): Para t > 0:

9. Um capacitor de precisão de valor 1µF tem como dielétrico (isolante entre as placas condutoras) um material com resistividade muito elevada. O capacitor é carregado até 1V em t = 0 e é, então, desligado da fonte. Observa-se que a voltagem cai a 0,9V em 100 horas.

Determine a resistência de isolação:

(((( ))))

(((( )))) (((( ))))

3

3c c

0,3 2000 i 0,0006 1000i0,3 3000i 1,2

1,5i 0,5 10 A3000

v 0 1000 0,5 10 0,5V v 0

−−−−

− − +− − +− − +− − +

= − += − += − += − +

= −= −= −= −

= = ×= = ×= = ×= = ×

= × × = == × × = == × × = == × × = =

(((( )))) (((( )))) 3 6t

200t10 5 10c cv t v 0 e 0,5e V−−−−

−−−−+ −+ −+ −+ −× ×× ×× ×× ×= == == == =

(((( ))))

(((( ))))

6

6

6

tRC

o

tR 10

10 tR

10 tR

6

4

v t V e

0,9 1e

0,9 e

ln 0,9 ln e

10 t0,1053605R

t 100 3600 36 10 s

−−−−

−−−−

−−−−××××

−−−−

−−−−

====

====

====

====

− = −− = −− = −− = −

= × = ×= × = ×= × = ×= × = ×

6 41210 36 10R 3,4168 10

0,1053605× ×× ×× ×× ×= = × Ω= = × Ω= = × Ω= = × Ω

Page 28: circuito RC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA - FENG

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE CIRCUITOS I

Professor Silvio Lobo Rodrigues 28

10. As voltagens iniciais nos capacitores, do circuito que segue, são: v1(0) = 10V e v2(0) = 4V. Para que valor de t, i = 0?

Solução: Quando Como os resistores são de igual valor a corrente i(t) será nula quando v1(t) = v2(t).

(((( )))) (((( )))) (((( ))))1 2i t i t i t− =− =− =− =

(((( )))) (((( )))) (((( ))))1 2i t 0 i t i t= → == → == → == → =

(((( ))))

(((( ))))

(((( ))))

t2

1

t6

2

tt62

t2

t6

t3

t3

v t 10e

v t 4e

10e 4e

e 410

e

e 0,4

ln e ln 4

−−−−

−−−−

−−−−−−−−

−−−−

−−−−

−−−−

−−−−

====

====

====

====

====

====

t 0,91629 t 2,74887s3

− = − → =− = − → =− = − → =− = − → =

2MΩ 2MΩ

1µF 3µF v2 v1

+

- +

-

i1 i2

i(t)