78
LABORATORIO DE ENERGIA II AUTOR : ING. ROBERT FABIAN GUEVARA CHINCHAYAN DOCENTE DEL CURSO ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA EN ENERGIA FACULTAD DE INGENIERIA UNIVERSIDAD NACIONAL DEL SANTA

Cuaderno Nº1

Embed Size (px)

DESCRIPTION

LABORATORIO DE ENRGI

Citation preview

Page 2: Cuaderno Nº1

DATOS GENERALES• Facultad : Ingeniería.• Escuela Profesional : Ingeniería en Energía.• Departamento Académico : Energía y Física.• Código : 11-0320• Créditos : 02• Pre-Requisitos : 11-0310• Ciclo de Estudios : VII- Semestre 2009-I• Extensión Horaria : 4 horas/semana• Practica : 4 horas/semana• Nivel de Exigencia : Obligatorio• Duración del Curso : 18.05.09 al 11.09.09 ( 17 semanas)• Docente : Ing. Robert Guevara Chinchayán ( CIP

72486

Page 3: Cuaderno Nº1

MARCO REFERENCIAL

• La presente asignatura tiene el propósito de brindar a los estudiantes de la Escuela Académico Profesional de Ingeniería en Energía la realización de prácticas de laboratorio referentes a la teoría estudiada en los Cursos de Mecánica de Fluidos y Transferencia de Calor , familiarizándose en las aplicaciones de los Termofluidos.

Page 4: Cuaderno Nº1

OBJETIVOS– OBJETIVOS GENERALES :

• Evaluar las propiedades de los fluidos.• Realizar operaciones practicas de termotransferencia de calor en forma

experimental.• Aplicar los conocimientos de los termofluidos en sistemas energéticos reales.

– OBJETIVOS ESPECIFICOS :• Determinar el caudal de flujos dentro de canales abiertos con placas vertederos.• Realizar mediciones de flujo interno con medidores de área variable: rotámetro ,

venturimetro y placa orificio.• Determinar las perdidas primarias y secundarias en flujos internos.• Demostrar el Teorema de Bernoulli en Flujos Internos.• Determinar la velocidad de descarga de un flujo a través de orificios de geometría

variable.• Determinar las curvas características de operación de las turbinas hidráulicas.• Evaluar el performance de Intercambiadores de calor en flujo contracorriente.• Evaluar l eficiencia de transferencia de calor de superficies extendidas.• Determinar la curva de estabilización de evaporadores.• Evaluar el performance de Hornos Industriales.

Page 6: Cuaderno Nº1

I UNIDAD –PROPIEDADES DE LOS FLUIDOS

• Medición de flujos en canales abiertos.• Medidores de Flujo Interno de Área Variable.• Empuje Hidrostático sobre cuerpos

sumergidos.• Demostración del Teorema de Bernoulli.• Impacto de Chorro sobre superficies.

Page 8: Cuaderno Nº1

OBJETIVOSOBJETIVOS GENERAL :

• Evaluar caudales en canales abiertos a través de Placa plana (Vertederos).

OBJETIVOS ESPECIFICOS:• Medir flujos en canales abiertos a través de vertederos

triangulares.• Medir flujos en canales abiertos a través de vertederos

rectangulares.• Determinar los coeficientes de descarga de distinto

tipo de vertederos.

Page 9: Cuaderno Nº1

FUNDAMENTO TEORICOUn medidor de caudal es un aparato que determina generalmente por una simple medida, la cantidad en peso o en volumen por unidad de tiempo que pasa a través de una sección transversal dada. Entre estos medidores tenemos los vertederos. El flujo es un canal abierto puede ser medido por un canal abierto puede ser medido por un vertedero, la cual la obstrucción física hecha en el canal para que elMidiendo la altura de la superficie liquida aguas arriba. El borde o superficie sobre el cual circula al agua de llama cresta.En todos los vertederos el cual es básicamente en función de la altura (altura de cresta).La lámina de agua que se derrama se llama vertiente. Si la lamina vertiente realiza su descarga al aire se llama vertedero de descarga libre y si fuera parcialmente en agua, el vertedero seria sumergible.Un vertedero es una obstrucción física dentro de un canal que hace que el líquido se represe detrás de él y fluya sobre éste. Midiendo la altura de la superficie líquida aguas arribas se determina el caudal

Page 10: Cuaderno Nº1

Los vertederos pueden ser de 2 tipos: de pared delgada y de pared gruesa.Vertedero de pared gruesa: son obstrucciones o diques, generalmente utilizados en la hidráulica de canales, con la finalidad de controlar los niveles de agua de un caudal, una represa.Vertedero de pared delgada: son aquellos vertederos cuya descarga es la lámina de la vertiente se hace sobre una arista aguda. Pueden ser triangulares, rectangulares, trapezoidales, circulares.Se denomina Cd: al coeficiente de descarga, aquel parámetro adimensional de correlación propio de cada vertedero, el cual es necesario conocer para determinar los caudales reales. Es propio de cada vertedero según su configuración geométrica. En nuestro caso haremos uso de los vertederos de pared delgada, los cuales se caracterizan por el bisel de la pared en contacto con el caudal al inicio. Estos según su geometría pueden ser triangulo, rectángulos, circulares, etc.Los vertederos de pared delgada se utilizan para medir con precisión pequeños caudales inferiores a 6 litros / seg. Los vertederos de pared gruesa son utilizados dentro de la Ingeniería Hidráulica para controlar niveles, que pueden ser de un embalse, presa, canal. Los vertederos son función única de la variable “h” o altura de cresta que es la distancia que se forma desde la arista del vertedero al nivel superior de la lámina vertiente

Page 11: Cuaderno Nº1

VERTEDEROS TRIANGULARESSe emplea para medir caudales pequeños inferiores a 6 litros/segundo.La presión que ejerce el fluido varia con la altura, siendo mayor el vértice del vertedero, en consecuencia existe un gran gradiente de velocidad de arriba hacia abajo. Debido ha esto hallaremos un ecuación para el caudal a través de una diferencia de arias y el caudal total lo calcularemos integrando la ecuación.

• El caudal teórico que circula por la diferencia de área será determinado según el siguiente procedimiento:

• Inicialmente se considera que x es la carga de una faja horizontal elemental por triángulos semejantes y su longitud e b(h-x)/h. entonces para el área se tiene:

• Entonces el caudal lo podemos obtener de:• Acomodando convenientemente:

xxhh

bA

xgxxhh

bQ **2*

xxxhgh

bQ 3*2*

Page 12: Cuaderno Nº1

• Y así esta expresión se integra para un limite superior hasta “h” y un limite inferior “o” en x se obtiene:

• Obtenemos el valor del caudal teórico:

• Para corregir y determinar el caudal real se introduce un término Cd. Coeficiente de descarga usado para corregir las imperfecciones del vertedero.

• Finalmente el caudal real CR será :

• Donde teóricamente el coeficiente de descarga es función del ángulo:

• Los experimentos demuestran que el coeficiente se aumenta si aguas arriba de la placa el vertido se hace más rugosa, lo cual hace que la capa limite crezca hasta un mayor espesor. La gran cantidad de liquido que se mueve despacio cerca de la pared puede voltearse mas fácilmente y por consiguiente se presenta una menor contracción de la capa.

2**2:

215

4

2/52/3*2

5

53

tghbsi

ghh

bQ

hhhg

h

bQ

2*2

15

8 5 tgghQ

QtCdQr *

62.0º126

59.0º90

Cd

Cd

Page 13: Cuaderno Nº1

VERTEDEROS RECTANGULARESPara el vertedero rectangular de manera análoga al calculo anterior tenemos que:

El Caudal teórico será :Así mismo Donde Cd oscila entre 0,64 y 0.79.

ghbhQt 23

2

tr QCdQ *

Page 14: Cuaderno Nº1

DESCRIPCION DEL EQUIPO– Un vertedero rectangular.– Un vertedero triangulares.– Banco de prueba hidráulico para

vertederos rectangular y triangulares.– Un cronómetro.– Un balde de 4 lt. O probeta graduada a

depósito.– Una manguera de plástico de ½”.– Regla graduada o transportador.– Una placa auxiliar de acrílico según la

sección recta del tanque vertedero.

Page 15: Cuaderno Nº1

PROCEDIMIENTO EXPERIMENTAL– Montar el equipo, según como indica el docente.– Emplazar la regla graduada con el nonius en la mitad

aproximadamente de la distancia que aparece el vertedero de las pantallas.

– Medir las dimensiones del vertedero.– Suministrar agua la canal hasta que se descargue por el

vertedero. Procurando establecer un régimen de flujo, según la abertura dada por la válvula d regularon de flujo ubicado luego de la bomba de suministro.

– Dejar que se estabilice la altura “h” y medir este con la punta del garfio desplazando convenientemente el nonius.

– Medir las dimensiones del canal aguas arriba.– Así mismo una vez que se estabilice la altura de la cresta

cerrar la válvula del tanque de recepción del agua de la escalda graduada en función de la unidad de tiempo predeterminada. Realizar tres mediciones para caso antes de sacar un promedio.

– Realizar el mismo procedimiento variando el régimen de flujo con la válvula de apertura montada luego de la bomba de agua.

– REPETIR EL MISMO PROOCEDIMIENTO CON EL VERTEDERO TRIANGULAR

Page 16: Cuaderno Nº1

DATOS A CONSIGNAR

• Para el Vertedero triangular tomar datos para 4 caudales distintos , y para cada uno de ellos realizar 4 mediciones de 5 litros y sacar un promedio.

• Realizar lo mismo con el Vertedero rectangular.

  Volumen V (m3)Altura h

(mm)Tiempo t

(s)

1 5x10-3

2 5x10-3

3 5x10-3

4 5x10-3

Promedio  

Page 17: Cuaderno Nº1

CUESTIONARIO• Para el vertedero rectangular y la vertedero triangular confeccionar el siguiente cuadro de valores para cada

uno de los promedios de los caudales:

• Graficar y comentar para el vertedero rectangular Qt vs h (hallar la ecuación característica de la curva), Log Qt vs log h , Cd vs h/b y comentar.

• Graficar y comentar para el vertedero triangular Cd vs h y comentar.• Por que difieren los valores experimentales del coeficiente de descarga a los proporcionados por la literatura• Explique la importancia del cálculo de los parámetros adimensionales: numero de Reynolds, numero de

fraude.• Desarrollar la ecuación del cálculo para la medición de flujos abiertos con vertederos semicirculares.• Para cada caso ( vertedero triangular y vertedero rectangular) hallar el área de flujo, perímetro mojado,

diámetro hidráulico.• Detallar cual es según UD. Son las causas de los errores de esta experimentación y como se corregirán.• Comentar acerca de la importancia del calculo del diámetro hidráulico, perímetro mojado en la medición de

caudales abiertos• Que criterios se deben tener en cuenta para una correcta medición de caudales en canales abiertos.• Investigar acerca de la metolodologia en medición de flujos en canales abiertos con vertederos laterales:

describa un esquema, límites, variables y así mismo desarrolle una ecuación para el cálculo de caudales son este tipo de vertederos.

Datos Volumen V

(m3)Tiempo t

(s)Caudal Qr

(m3/s)Altura h (mm) Qt Cd

% de Error

1 5x10-3

2 5x10-3

3 5x10-3

4 5x10-3

Page 18: Cuaderno Nº1

BIBLIOGRAFIA• Chow, V. OPEN CHANNEL HYDRAULICS. McGraw-Hill. 1959.• Domínguez, F. HIDRAULICA. Capítulo sobre Vertederos

Laterales. Editorial • Guevara, Robert . MANUAL DE PRACTICAS DE

LABORATORIO DE ENERGIA II. 2009.• Mataix,C. MECANICA DE FLUIDOS Y MAQUINAS

HIDRAULICAS. Ed Harla. Mexico.2005• Mott,R. MECANICA DE FLUIDOS . Ed. Prentice Hall.• Potter,MC. MECANICA DE FLUIDOS .Ed Thompson. Ed 2002.• Streeter. MECANICA DE FLUIDOS .Ed Mc Graw Hill.2000

Page 21: Cuaderno Nº1

OBJETIVOS OBJETIVOS GENERALES:

• Evaluar flujos a través de medidores diferenciales de presión.

OBJETIVOS ESPECIFICOS:• Realizar mediciones de flujos internos con el

venturímetro.• Realizar mediciones de flujos internos con la placa de

orificio.• Comparar las caídas de presión de distintos medidores

de flujo interno en simultáneo.

Page 22: Cuaderno Nº1

FUNDAMENTO TEORICO• MEDIDORES DE FLUJO DIFERENCIAL DE PRESION:

Se entiende como medidor diferencial a aquel cuyos principios de medición se infieren el resultado final.Los medidores diferenciales de presión se identifican, por la característica de su elemento primario, en el cual se crea una diferencia o caída de presión que depende de la velocidad y densidad del fluido. Esta diferencia es medida por un segundo elemento llamado secundario. Los más comunes son:El venturimetro.El rotámetroLa placa de orificio.

Page 23: Cuaderno Nº1

• ROTAMETRO:Los rotámetros son medidores de caudal de área variable en los cuales un flotador cambia su posición dentro de un tubo en función del caudal que pasa por dicho tubo. Las fuerzas que actúan sobre el flotador están representadas en la figura.Es un medidor de caudal en tuberías de área variable, de caída de presión constante. El Rotámetro consiste de un flotador (indicador) que se mueve libremente dentro de un tubo vertical ligeramente cónico, con el extremo angosto hacia abajo. El fluido entra por la parte inferior del tubo y hace que el flotador suba hasta que el área anular entre él y la pared del tubo sea tal, que la caída de presión de este estrechamiento sea lo suficientemente para equilibrar el peso del flotador. El tubo es de vidrio y lleva grabado una escala lineal, sobre la cual la posición del flotador indica el gasto o caudal.Los rotámetros, flowmeters, del tipo área variable, son instrumentos diseñados para la medición y control de caudales, gases y líquidos. Fabricamos caudalímetros desde 1 ml/h hasta 1000000 lts/min. La unidad de lectura vendrá especificada en la unidad de preferencia del usuario (lts/h, g/min, mtr^3/h, scfh, lbm/min, scfm, etc, etc), es decir, lectura directa de caudal.

PEF

Page 24: Cuaderno Nº1

• VENTURIMETROEl Tubo de Ventura fue creado por el físico e inventor Giovanni Ventura (1746 - 1822). Fue profesor en las ciudades de Modena y pasiva. Realizo estudios referidos a la óptica, calor e hidráulica. En este ultimo campo desarrollo el medidor diferencial de presión que lleva su nombre, según el cual es un medidor que permite medir el gasto del fluido, a partir de una diferencia de presión entre el ligar por donde entra la corriente y el punto, calibrable, de mínima sección del tubo, en donde su parte ancha final actúa como difusor.El caudal que circula por el tubo 1 es:

Q1 = v1 * A1 Donde: A1 = * D2

------------ 4

Page 25: Cuaderno Nº1

• Es el área de paso en la sección 1, y vl es la velocidad del fluido en el punto 1. Como el fluido es incomprensible (densidad constante), el flujo volumétrico Q es el mismo en cualquier punto, de modo que la ecuación de conservación de masa toma la forma de:

Q = v1 * A1 = vg * A1 = vi * Ai (4)Y vemos que conforme la sección disminuye, la velocidad aumenta para satisfacer la ecuación (4). Dado el caudal Q que atraviesa el tubo de Ventura y teniendo en cuenta las áreas de paso son conocidas, la ecuación (4) proporciona valores de la velocidad en cada punto. Utilizando la ecuación de Bernoulli, se puede calcular la presión en cada punto si se conoce la correspondiente altura h. como los tubos de Ventura están dispuestos horizontalmente, todos los puntos están a la misma altura, de modo que la ecuación de Bernoulli es:

De modo que la presión disminuye en la región convergente, llega a un mínimo en la garganta y aumenta de nuevo en la región divergente.Así mismo podemos medir el caudal de agua que pasa por la instalación aplicando la ecuación de Bernoulli en los puntos 1 y 2 (garganta) según al figura 2, además como h1 = h2, queda:

Como el caudal viene dado por:Q = v1 * A1 = v2 * A2 (7)La ecuación 6 queda como:

Page 26: Cuaderno Nº1

De modo que el caudal se puede determinar como:

La formula 9 es aproximada, en realidad hay que tener en cuenta las perdidas de carga en el ducto. De este modo, la formula anterior se corrige con un coeficiente adicional, Cd, llamado Coeficiente de Descarga ( cuyo valor es 0.90 ) que tiene en cuenta las pérdidas de carga en el tramo 1 – 2 así tenemos:

Page 27: Cuaderno Nº1

• PLACA ORIFICIO O DIAFRAGMA:La placa orificio o diagrama consiste en una placa perforada instalada dentro de un ducto. Dos tomas conectadas en la parte interior y posterior de la placa captan la presión diferencial, que es proporcional al cuadrado del caudal que circula dentro de este. El esquema de la placa d oficio y la distribución de las tomas se muestran en la figura:

Aplicando la ecuación de Bernoulli entre dos puntos agua arriba y agua debajo de la placa orificio tal como como se muestra en la figura(3) obtenemos un caudal dado por:

Donde:Pl y P2 son las presiones aguas arriba y aguas debajo de la placa orificio. d es el diámetro del orificio y D es el diámetro interior de la tubería , aguas arriba del diafragma. De nuevo tenemos que añadir un factor de corrección debida a las perdidas de carga en el orificio, y le caudal queda determinado por a expresión:

Page 28: Cuaderno Nº1

Siendo Cd el coeficiente de descarga del diafragma. Por otro lado , en cualquier sistema hidráulico practico tienen perdidas de carga , pero conviene ignorarlas al obtener expresiones de las ecuaciones en estos aparatos y Lugo corregir los resultados teóricos obtenidos , multiplicándolos por un coeficiente experimental para evaluar los coeficientes de las perdidas d energía (en este caso Cd ) Z1 + (V1/ 2*g) + (P1/γ) = Z2 + (V2/ 2*g) + (P2/γ) ……………………(a) g=ρ*g (peso especifico) Ahora bien , tanto para el venturimetro, como para la placa orificio Z1= Z2, debido a que generalmente estos medidores trabajan horizontalmente, por lo que la ecuación se reduce a: (pl - p2/ γ) = (V2

2 –V12/2*g) ……………………………………………..(b)

Debido a la continuidad del flujoDonde A1*V1 = A2*V2 donde V2 =( A1*V1/ A2) ................................................................(c) Desarrollando la ecuación para para un caudal de un equipo o prototipo cualquiera, el Q(caudal real) esta dado en función a Cd ( factor de accesorio), entonces teniendo en cuenta (b) y ( c)

Donde los valores asignados de Cd . para la placa orificio = 0.63

Page 29: Cuaderno Nº1

DESCRIPCION DEL EQUIPO DE PRACTICAS

• Un banco hidráulico FME- 00

• Equipo de demostración de medición de flujo FME- 18

• Cronometro

Page 30: Cuaderno Nº1

PROCEDIMIENTO EXPERIMENTAL• ACTIVIDAD Nº1: LLENADO DE LOS TUBOS MANOMETRICOS:• Cierre la válvula de control de flujo del banco hidráulico y cierre también la válvula

de control de flujo del equipo, FME-18. • Conecte la bomba y abra completamente la válvula del equipo y la válvula del

banco hidráulico (lentamente) hasta alcanzar un flujo de 40 litros/min. Espere unos minutos hasta que los tubos manométricos estén completamente llenos y que no queden burbujas de aire en su interior.

• Apague la bomba y cierre una válvula asegurándose de que el equipo quede completamente estanco, es decir que no entre ni salga agua.

• Abrir la válvula de purga.• Abrir con cuidado la válvula de control de equipo, se puede observar como los

tubos manométricos se llenan de aire.• Una vez alcanzada el nivel requerido cierre la válvula de control de flujo y coloque

otra vez la válvula anti retorno o en su defecto o en su defecto cierre la válvula de purga.

• Todos los tubos deben haber alcanzado el mismo nivel.• Ahora Abrimos con cuidado la válvula de control de equipo teniendo en cuenta el

caudal que se requiere (5, 10, 15, 20, 25, 30 litros/seg.). cerciorándonos estos valores con el rotámetro del equipo.

Page 31: Cuaderno Nº1

DATOS A CONSIGNAR-VenturimetroPara el desarrollo de la determinación de las actividades en el venturimetro se llenara en este cuadro.Donde:

• P1: presión en la entrada del venturimetro.

• P2: presión en la garganta del venturimetro.

• P3: presión en la salida del venturimetro.

• ∆P=(P1- P2)

• QR: caudal medido por el rotametro.

• Cd = 0.98

Finalmente elaboramos un cuadro comparativo entre el Caudal real y el experimental hallado con el venturimetro :

 

P1 (mmH2O)

P2

(mmH2O)∆P=(P1- P2)

(mmH2O)

P3

(mmH2O)QR

(Litros/min)123456

 

QR (Litros/min)

Qv (Litros/min)

123456

Page 32: Cuaderno Nº1

DATOS A CONSIGNAR-Placa Orificio Para el desarrollo de la determinación de las actividades en la placa orificio, se llenará en cuadro Nª 2 (ver resultados finales) con los siguientes parámetros:

- P6 (mmH2O): presión en la entrada la placa orificio.- P7 (mmH2O): presión en la salida de la placa orificio.- P8 (mmH2O): presión a una distancia “X” de la placa orificio.- ΔP (mmH2O): P6 – P7 - QR (Lits/min): medido con el rotámetro.- Q’R (Lts/min): medido en el banco hidráulico

Donde:QP =caudal medido en la placa orificio (Litros/minuto).A2 = 2.83 x 10-4 m2A1 = 9.62 x 10-4 m2 Asimismo de debe tener en cuenta que en la placa orificio se tiene.

Finalmente elaboramos un cuadro comparativo entre el Caudal real y el experimental hallado con la placa

orificio :

 

QR (Litros/min)

Qv (Litros/min)

123456

 

P6 (mmH2O)

P7

(mmH2O)∆P=(P6- P7)

(mmH2O)

P8

(mmH2O)QR

(Litros/min)123456

Page 33: Cuaderno Nº1

CUESTIONARIO• En función a los valores de los cuadros de graficar Qv vs Qreal comentar los resultados de la

grafica e indicar cual es la orientación de la recta ¿Por qué Qv≠Qreal?• En función del cuadro Nº 1 y la ecuación (f) graficar Qreal Vs Q´v determinar el valor

aproximado de la pendiente y compararlo con el valor Cd. Para cada caso dando el margen el margen de error de la práctica realizada.

• En función de los valores del cuadro Nº 2 y la ecuación (g) graficar Qp Vs Qreal comentar los resultados de la grafica e indicar cual es la orientación de la recta. Porque Qp Vs Qreal.

• (b) graficar Qrela Vs Q`p. Determinar el valor aproximado de la pendiente y compararlo con el valor Cd. Para cada caso dando el margen el margen de error de la práctica realizada.

• Demostrar la ecuación general para el Calculo del Caudal Experimental tanto para la placa orificio como el Venturimetro.

• Detallar las características de los medidores de flujo ultrasonido.• Investigar acerca del marco conceptual y criterio de diseño de: placa orificio , venturimetro y rotámetro

Page 34: Cuaderno Nº1

BIBLIOGRAFIA• Chow, V. OPEN CHANNEL HYDRAULICS. McGraw-Hill. 1959.• Domínguez, F. HIDRAULICA. Capítulo sobre Vertederos

Laterales. Editorial • Guevara, Robert . MANUAL DE PRACTICAS DE

LABORATORIO DE ENERGIA II. 2009.• Mataix,C. MECANICA DE FLUIDOS Y MAQUINAS

HIDRAULICAS. Ed Harla. Mexico.2005• Mott,R. MECANICA DE FLUIDOS . Ed. Prentice Hall.• Potter,MC. MECANICA DE FLUIDOS .Ed Thompson. Ed 2002.• Preobrazhenski. MEDICIONES TERMOTÉCNICAS Y APARATOS PARA

EFECTUARLAS. Tomo II.1998• Streeter. MECANICA DE FLUIDOS .Ed Mc Graw Hill.2000

Page 35: Cuaderno Nº1

ENLACES-WEB• http://tarwi.lamolina.edu.pe/~dsa/Medidores.htm• http://www.geocities.com/ing_industrial/medidore.html• http://apuntes.rincondelvago.com/venturimetro.html• http://www.monografias.com/trabajos6/tube/tube.shtml• http://www.geocities.com/CollegePark/Pool/1549/instru1/c02.htm

l• http://www.industria.uda.cl/Academicos/AlexanderBorger/Docts%

20Docencia/Seminario%20de%20Aut/trabajos/trabajos%202003/Sem%20Aut%20%20Caudal/web-final/Medidores%20Diferenciales.htm

• http://www.conagua.gob.mx/CONAGUA07/Noticias/Placa_orificio.pdf

• http://www.monografias.com/trabajos31/medidores-flujo/medidores-flujo.shtml

Page 37: Cuaderno Nº1

OBJETIVOS

Medir la fuerza que ejerce un fluido sobre las superficies que están en contacto con el.

Determinar la posición del Centro de Presiones sobre una superficie plana parcialmente sumergida en un líquido en reposo.

Determinar la posición del Centro de Presiones sobre una superficie plana, completamente sumergida en un líquido en reposo.

Page 38: Cuaderno Nº1

FUNDAMENTO TEORICO• Consideremos el cuerpo sumergido EHCD (fig.2), actúa sobre la cara superior la fuerza de presión

Fp1, que es igual al peso del liquido representado en la figura por ABCHE,y sobre la cara inferior la fuerza de presión Fp2 igual al peso del liquido representado en la figura por ABCDE. El cuerpo esta sometido, pues a un empuje ascensional, que la resultante de las dos fuerzas. FA = Fp2 – Fp1

pero Fp2 – Fp1 es el peso de un volumen de líquido igual al volumen del cuerpo EHCD, o sea igual al volumen del líquido desalojado por el cuerpo al sumergirse.

Enunciado del principio de Arquímedes:“Todo cuerpo sumergido en un líquido experimenta un empuje ascensional igual al peso del líquido que desaloja”

Sobre el cuerpo sumergido EHCD actúa también su peso W o sea la fuerza de la gravedad, y se tiene: a) Si W > FA el cuerpo se hunde totalmente.b) Si W < FA el cuerpo sale a la superficie hasta que el peso del fluido de un volumen igual al volumen sumergido iguale al peso W c) Si W = FA el cuerpo se mantiene sumergido en la posición en que se le deje.

E = Peso del líquido desplazado = dlíq . g . Vliq desplazado = dliq . g . Vcuerpo

Page 39: Cuaderno Nº1

Si un cuerpo sumergida sale a flote es porque el empuje predomina sobre el peso (E>P).En el equilibrio ambas fuerzas aplicadas sobre puntos diferentes estarán alineadas; tal es el caso de las embarcaciones en aguas tranquilas, par ejemplo. Si par efecto de una fuerza lateral, como la producida par un golpe del mar, el eje vertical del navío se inclinara hacia un lada, aparecerá un par de fuerzas que harán .oscilar el barco de un lada a .otro. Cuanta mayor sea el momento M del par, mayor será la estabilidad del navío, es decir, la capacidad para recuperar la verticalidad. Ello se consigue diseñando convenientemente el casco y repartiendo la carga de modo que rebaje la posición del centra de gravedad, can la que se consigue aumentar el brazo del par. Que es precisamente el valor del empuje predicho por Arquímedes en su principio, ya que V = c.S es el volumen del cuerpo, r la densidad del líquido. m = r.V la masa del liquido desalojado y finalmente m.g es el peso de un volumen de líquido igual al del cuerpo sumergido.

Resulta evidente que cada vez que un cuerpo se sumerge en un líquido es empujado de alguna manera por el fluido. A veces esa fuerza es capaz de sacarlo a flote y otras sólo logra provocar una aparente pérdida de peso. Sabemos que la presión hidrostática aumenta con la profundidad y conocemos también que se manifiesta mediante fuerzas perpendiculares a las superficies sólidas que contacta. Esas fuerzas no sólo se ejercen sobre las paredes del contenedor del líquido sino también sobre las paredes de cualquier cuerpo sumergido en él. Fig1. Distribución de las fuerzas sobre un cuerpo sumergido

La simetría de la distribución de las fuerzas permite deducir que la resultante de todas ellas en la dirección horizontal será cero. Pero en la dirección vertical las fuerzas no se compensan: sobre la parte superior de los cuerpos actúa una fuerza neta hacia abajo, mientras que sobre la parte inferior, una fuerza neta hacia arriba. Como la presión crece con la profundidad, resulta más intensa la fuerza sobre la superficie inferior. Concluimos entonces que: sobre el cuerpo actúa una resultante vertical hacia arriba que llamamos empuje.

Page 40: Cuaderno Nº1

Fundamento del equipo de la práctica:

• La fuerza que ejerce un fluido sobre una superficie sólida que esta en contacto con él es igual al producto de la presión ejercida sobre ella por su área. Esta fuerza, que actúa en cada área elemental, se puede representar por una única fuerza resultante que actúa en un punto de la superficie llamado centro de presión.

• Si la superficie sólida es plana, la fuerza resultante coincide con la fuerza total, ya que todas las fuerzas elementales son paralelas. Si la superficie es curva, las fuerzas elementales no son paralelas y tendrán componentes opuestas de forma que la fuerzas resultante es menor que la fuerza total.

Page 41: Cuaderno Nº1

• Inmersión Parcial. Tomando momentos respecto del eje (figura 1) en que se apoya el brazo basculante se obtiene la siguiente relación:

Donde γ(es el peso específico del agua 1000kg/m3)

• 2. Inmersión Total. Tomando momentos respecto a! eje (figura 2) en que se apoya el brazo basculante se obtiene:

• Donde ho = h – d/2 es la profundidad del centro de gravedad de la superficie plana.

Page 42: Cuaderno Nº1

DESCRIPCION DEL EQUIPOEl accesorio consiste en un cuadrante montado sobre el brazo de una balanza que bascula alrededor de un eje.Cuando el cuadrante esta inmerso en el deposito de agua, la fuerza que actúa sobre la superficie frontal, plana y rectangular, ejercerá un momento con respecto al eje de apoyo.El brazo basculante incorpora un platillo y un contrapeso ajustable.Deposito con patas de sustencion regulables que determina su correcta nivelación.Dispone una válvula de desagüe.El nivel alcanzado por el agua en el depósito se indica en una escala graduada.

• Especificaciones:Capacidad del deposito: 5.5 litrosDistancia entre las masas suspendidas y el punto de apoyo: 285 mmÁrea de la sección: 0.007 m2Profundidad total del cuadrante sumergido: 100 mmAltura del punto de apoyo sobre el cuadrante: 100 mmSe suministra un juego de masas de distinto pesos:- 4 pesas de 100gr- 1pesa de 50 gr- 2 pesas de 20 gr- 2 pesas de 20 gr- 1pesa de 5 gr

Page 43: Cuaderno Nº1

PROCEDIMIENTO EXPERIMENTAL1. Acoplar el cuadrante al brazo basculante enclavándolo mediante los dos pequeños tetones y asegurándolo después mediante el tornillo de sujeción.2. Medir y tomar nota de las cotas designadas por a, L, d y b; estas ultimas correspondientes a la superficie plana situada al extremo del cuadrante.3. Con el depósito emplazado sobre el banco hidráulico, colocar el brazo basculante sobre el apoyo (perfil afilado) y colgar e] platillo al extremo del brazo.4. Conectar con la espita de desagüe del depósito un tramo de tubería flexible, y llevar su otro extremo al sumidero. Extender, asimismo, la alimentación de agua desde la boquilla impulsora del banco hidráulico hasta la escotadura triangular existente en ]a parte superior del depósito.5. Nivelar el depósito actuando convenientemente sobre los píes de sustentación, que son regulables, mientras se observa el "nivel de burbuja".6. Desplazar el contrapeso del brazo basculante hasta conseguir que éste se encuentre horizontal.7. Cerrarla espita de desagüe del fondo del depósito.S. Introducir agua en el depósito hasta que la superficie libre de ésta quede a nivel de la arista superior de la cara plana que presenta el cuadrante en su extremidad, y el brazo basculante esté en posición horizontal con ayuda de pesos calibrados situados sobre el platillo de balanza.9. El ajuste fino de dicho nivel se puede lograr sobrepasando ligeramente el llenado establecido y, posteriormente, desaguando lentamente a través de la espita. Anotar el nivel del agua indicado en el cuadrante, y el valor del peso situado en el platillo.10. Incrementar el peso sobre el platillo de balanza y añadir, lentamente agua hasta que el brazo basculante recupere ]a posición horizontal.11. Tomar nota del nivel de agua y del peso correspondiente.12. Repetir la operación anterior, varias veces, aumentando en cada una de ellas, progresivamente, el peso en el platillo hasta que, estando nivelado el brazo basculante. el nivel de la superficie libre del agua alcance la cota máxima señalada por la escala del cuadrante.13. A partir de ese punto, y en orden inverso a como se fueron colocando sobre el platillo, se van retirando los incrementos de peso añadidos en cada operación. Se nivela el brazo (después de cada retirada) utilizando la espita de desagüe y se van anotando los pesos en el platillo y los niveles de agua.

Page 44: Cuaderno Nº1

DATOS A CONSIGNAR• Realizar la toma de mediciones , inicialmente llenando agua ,

y posteriormente cuando se realiza la descarga del tanque. Para esto se llenan las siguientes tablas:

Para Cuerpo semisumergido

Masa grmsHmm Ac↓ H mm Dc ↑

H promedio

mm

20406080

100120140160180

Para Cuerpo sumergido

Masa grms Hmm Ac↓H mm Dc

H promedio

mm

200220240260280300320340360380400Ac: llenado del

depósito.Dc: Vaciado del

depósito.

Page 45: Cuaderno Nº1

CUESTIONARIO• a) Llenar los datos faltantes según calculos Teóricos y Experimentales , teniendo

en cuenta :a = 100mm b = 70mm d = 100mm L = 285mm

Para inmersión parcial o cuerpo semisumergidoTabla N º 3

Masa( gr.) Hprom (mm)Hprom/3

(m) Ft Ft/ Hprom 2 Fp/ Hprom

2

020406080

100120140160180

Para inmersión total o cuerpo sumergidoTabla Nº 4

Masa ( gr.) Hprom mm Ho(m) Fteorico Ft/Ho 1/Ho Fp/Ho

200220240260280300320340360380400

Page 46: Cuaderno Nº1

b) Realizar una Grafica , cuando d = 100 mm ( h < d) Inmersión parcial .hallando la pendiente y la ecuación característica de 2º y 3ª grado.

c) Realizar lo mismo para la inmersión total

d) Definir que es Metacentro

e) Detallar acerca del equilibrio de cuerpos parcialmente sumergidos estable, inestable y indiferente.

f) Detallar acerca del equilibrio de cuerpos totalmente sumergidos : estables, inestables e indiferentes ( caso : sumergible , dirigible)

g) Comentar acerca de la Grafica para Inmersión Parcial Ft/H2 vs H/3 para Inmersión total Ft vs 1/Ho

Page 47: Cuaderno Nº1

BIBLIOGRAFIA• Galloni, Maria del Carmen. EL MUNDO FÍSICO :

CONTENIDOS PROCEDIMENTALES : GUÍA DE EXPERIENCIAS.1998

• Guevara, Robert . MANUAL DE PRACTICAS DE LABORATORIO DE ENERGIA II. 2009.

• Mataix,C. MECANICA DE FLUIDOS Y MAQUINAS HIDRAULICAS. Ed Harla. Mexico.2005

• Mott,R. MECANICA DE FLUIDOS . Ed. Prentice Hall.• Potter,MC. MECANICA DE FLUIDOS .Ed Thompson. Ed 2002.• Preobrazhenski. MEDICIONES TERMOTÉCNICAS Y APARATOS PARA

EFECTUARLAS. Tomo II.1998• Streeter. MECANICA DE FLUIDOS .Ed Mc Graw Hill.2000

Page 50: Cuaderno Nº1

OBJETIVOS

• Demostrar el Teorema de Bernoulli a través de practicas experimentales .

• Determinar por medio de los tubos de Pitot y las medidas piezométricas la presión estática , presión dinámica y presión total de un punto dentro de un flujo interno

Page 51: Cuaderno Nº1

FUNDAMENTO TEORICOLa denominada ecuación o teorema de Bernoulli representa el principio de la conservación de la energía mecánica aplicado al caso de una corriente fluida ideal, es decir, con un fluido sin viscosidad (y sin conductividad térmica). El nombre del teorema es en honor a Daniel Bernoulli, matemático suizo del siglo XVIII (1700-1782), quien, a partir de medidas de presión y velocidad en conductos, consiguió relacionar los cambios habidos entre ambas variables. Sus estudios se plasmaron en el libro “Hidrodynamica”, uno de los primeros tratados publicados sobre el flujo de fluidos, que data de 1738.Para la deducción de la ecuación de Bernoulli en su versión más popular se admitirán las siguientes hipótesis (en realidad se puede obtener una ecuación deBernoulli más general si se relajan las dos primeras hipótesis, es decir, si reconsidera flujo incompresible y no estacionario):• Flujo estacionario (es decir, invariable en el tiempo).• Flujo incompresible (densidad ρ constante). Fluido no viscoso.• Fuerzas presentes en el movimiento: fuerzas superficiales de presión y fuerzas másicas gravitatorias (= peso del fluido).• No hay intercambio de trabajo o calor con el exterior del flujo.

Page 52: Cuaderno Nº1

• Considerando el caudal en dos secciones diferentes de una tubería y aplicando la ley de conservación de la energía, la ecuación de Bernoulli se puede escribir como:

• Y, en este equipo, Z1 = Z2.; y P = γ.h• Con esto, se quiere demostrar en estas prácticas que, para una tubería dada

con dos secciones, 1 y 2, la energía entre las secciones es constante. La suma de los tres términos anteriores es constante y, por lo tanto, el teorema de Bernoulli queda como sigue:

Page 53: Cuaderno Nº1

• En estas bases teóricas, se considera que el fluido es ideal, pero las partículas rozan unas con otras. En este proceso la velocidad de las partículas disminuye y la energía del sistema se transforma en calor.

• Se considera que ∆H es la pérdida de presión entre las dos secciones, por lo que

• Donde ∆P es la pérdida de potencial.• Con esto, se considera la ecuación de Bernoulli como:

REPRESENTACIÓN GRÁFICA DEL TEOREMA DE BERNOULLI

Page 54: Cuaderno Nº1

TUBOS DE PITOT:La operativa con un tubo de Pitot es:En primer lugar, se considera un obstáculo fijo en el fluido en movimiento

La línea ∆P termina en el punto de impacto (P), si se hace un orificio en este punto P y se une éste con un tubo de medida, se está midiendo la presión total:Se puede también conocer la velocidad en la tubería, esto es:

Page 55: Cuaderno Nº1

EQUIPO FME3El equipo de demostración del teorema de Bernoulli, FME03, está formado por un conducto de sección circular con la forma de un cono truncado, transparente y con siete llaves de presión que permiten medir, simultáneamente, los valores de presión estática que correspondiente a cada punto de las siete secciones diferentes.Todas las llaves de presión están conectadas a un manómetro con un colector de agua presurizada o no presurizada.Los extremos de los conductos son extraíbles, por lo que permiten su colocación tanto de forma convergente como divergente con respeto a la dirección del flujo.Hay también una sonda (tubo de Pitot) moviéndose a lo largo de la sección para medir la altura en cada sección (presión dinámica)La velocidad de flujo en el equipo puede ser modificada ajustando la válvula de control y usando la válvula de suministro del Banco o Grupo Hidráulico.

Page 56: Cuaderno Nº1

DATOS A CONSIGNAR

• ESPECIFICACIONESRango del manómetro: O- 300 mm. de agua.- Número de tubos manométricos: 8.- Diámetro del estrangulamiento aguas arriba: 25 mm.- Estrechamiento.

Estrechamiento aguas arriba: 100

Estrechamiento aguas abajo: 210

• DIMENSIONES Y PESOS:

- Dimensiones aproximadas: 800x450x700mm.- Peso aproximado: 15kg.- Volumen aproximado: 0.25 m3

Page 57: Cuaderno Nº1

PROCEDIMIENTO EXPERIMENTAL• Cerrar la válvula de control del Banco o Grupo Hidráulico (VC) y cerrar también la válvula de control de flujo del

equipo (VCC).• Poner en marcha la bomba de agua y abrir completamente la válvula VCC. Abrir despacio la válvula CV hasta que

se alcance un flujo máximo. Cuando todos los tubos manométricos están completamente llenos de agua y no hay ninguna burbuja de aire, ciérrese VC y VCC.

• Es muy importante que el equipo sea un compartimiento estanco.• Retírese la válvula anti-retomo o ábrase la válvula de purga.• Abrase despacio la válvula VCC. Se puede observar como los tubos comienzan a llenarse de aire.• Cuando todos los tubos han obtenido la altura deseada (30 ò 40 mm.), cierre la válvula VCC y coloque la válvula

anti-retomo VCC o cierre la válvula de purga.• Abrir la válvula de caudal del Banco o Grupo Hidráulico y la válvula de regulación del equipo.• Fijar un caudal y anotar su valor.• Colocar el tubo de Pitot en la primera toma de presión de mínima sección. Esperar a que la altura en el tubo

manométrico de Pitot se estabilice. Este proceso puede tardar unos minutos.• Cuando la altura de ambos tubos sea estable, determinar la diferencia de altura entre los dos tubos manométricos;

presión estática "hi" y presión total "htp" (tubo de Pitot).• La diferencia corresponde a la presión cinética dada por "V2/2g".• Determinar la sección con la siguiente ecuación: S=Q/V, donde Q es el caudal de agua y V es la velocidad obtenida

en dicha sección.• Repetir todos los pasos descritos anteriormente para cada toma de presión.• Repetir los pasos previos para diferentes caudales de agua.• Para cada caudal de agua la sección debe ser más o menos la misma. Calcular la media de las secciones obtenidas

con diferentes caudales de agua.

Page 58: Cuaderno Nº1

DATOS A CONSIGNAR• Anote en la tabla para cada posición de estrangulamiento la velocidad del fluido y la altura cinética.• Cuando el tubo de pitot se encuentra en la sección inicial

• Determinando los valores para las demas posiciones restantes.• Completar las siguientes tablas:

Para completar la tabla se siguen los siguientes pasos para el calculo correspondiente:Para el cálculo del caudal:

De la ecuación: Donde:

Q: caudal (m3/s)V: volumen (litros)t: tiempo (s)

Para el calculo de las secciones de cada punto medido . estos se deben hallar por ecuaciones trigonométricas , teniendo en cuenta el diámetro del ducto , y los angulos de estrechamiento aguas arriba y aguas abajo:Los cuales son :Estrechamiento aguas arriba: 100

Estrechamiento aguas abajo: 210

Ademas el diámetro de la tubería es 25 mm.

S7(mm)

So(mm)

So - S7(mm)

Volumen(litros)

Tiempo (seg.)

Caudal(10-3m3/s)

Tabla Nº 01

Page 59: Cuaderno Nº1

• Para el cálculo de la velocidad, se procede a aplicar la ecuación de continuidad en 2 puntos , y se estima con la siguiente ecuación :

v (velocidad en m/sg.) = Q/S

Donde: V: velocidad (m/s) g: gravedad (g= 9.806 m/s2) : Diferencia de altura (mm)

• Para el calculo de la altura cinetica se tiene la ecuación :

Calculo de la altura piezométrica: De la ecuación:

Donde: h: altura (metros leidos en cada lectura de la practica para cada punto)

Page 60: Cuaderno Nº1

CUESTIONARIO1. Elaborar para cada posición del tubo de pitot el siguiente cuadro :

Tomando un caudal promedio ,( para esto se debe interpolar) graficar un diagrama de evolución de las alturas cinética , piezometrica y total en una escala conveniente y en un mismo grafico para todos los puntos :Altura cinética , Altura piezometrica y Altura TotalSi-S7, Altura piezometrica y PitotComentar acerca de las diferencias entre la altura cinética y Si-S7 , y Altura Total , con Altura de Pitot. Debido a que se presentan las diferencias.

Caudal(10-3m3/s)

Velocidad(m/s)

Sección (10-3m2)

Altura cinética m.c.a

S0-S7 (m.c.a)

Altura piezometrica m.c.a

Altura Total Cin.+alt. pie.

(m.c.a)Pitot m.c.a

Page 61: Cuaderno Nº1

El grafico ha elaborar a lo largo de la tubería convergente – divergente debe tener la siguiente característica :

Page 62: Cuaderno Nº1

2 Realizar un cuadro detallando los márgenes de error entre las alturas totales ( altura total y pitot) y las alturas de velocidad ( altura cinética y Si-S7).

3 Definir que es Presión Dinámica y que es Presión Estática , y cual es la diferencia entre ambas.

4 ¿Qué aplicaciones industriales se tienen tomando en cuenta el Teorema de Bernoulli?

5 Investigar como se aplica el Teorema de Bernoulli a el Teorema de Torricelli (velocidad de un liquido a través de un orificio) Demostrarlo matemáticamente.

6 Haciendo uso del Teorema de Bernoulli , demostrar cómo se utiliza este fundamento en el desarrollo del cálculo del caudal a través de un tubo venturi.

7 Detallar acerca del fundamento y características constructivas del Tubo de Pitot.

Page 63: Cuaderno Nº1

BIBLIOGRAFIA• Galloni, Maria del Carmen. EL MUNDO FÍSICO :

CONTENIDOS PROCEDIMENTALES : GUÍA DE EXPERIENCIAS.1998

• Guevara, Robert . MANUAL DE PRACTICAS DE LABORATORIO DE ENERGIA II. 2009.

• Mataix,C. MECANICA DE FLUIDOS Y MAQUINAS HIDRAULICAS. Ed Harla. Mexico.2005

• Mott,R. MECANICA DE FLUIDOS . Ed. Prentice Hall.• Potter,MC. MECANICA DE FLUIDOS .Ed Thompson. Ed 2002.• Preobrazhenski. MEDICIONES TERMOTÉCNICAS Y APARATOS PARA

EFECTUARLAS. Tomo II.1998• Streeter. MECANICA DE FLUIDOS .Ed Mc Graw Hill.2000

Page 66: Cuaderno Nº1

OBJETIVOS

OBJETIVO GENERAL:» Evaluar y medir la fuerza ejercida sobre diferentes blancos

y comparación con las fuerzas predichas por la teoría de la inercia.

OBJETIVOS ESPECIFICOS:» Evaluar y medir la fuerza ejercida sobre una superficie

plana.» Evaluar y medir la fuerza ejercida sobre una superficie

curva de 120º» Evaluar y medir la fuerza ejercida sobre una superficie

semiesférica.

Page 67: Cuaderno Nº1

FUNDAMENTO TEORICO• Dentro del estudio del flujo de fluido encontramos el impacto de un chorro sobre una superficie, base principal

para el desarrollo de la teoría de turbo maquina. Es mediante las turbo maquinas, que se realiza la realización de un trabajo a partir de la energía que trae un fluido, como también la aplicación de un trabajo a un fluido, para agregarle una energía mayor. Por ello nos enfocaremos en determinar la fuerza de reacción que se genera por un impacto de chorro a una superficie, sea plana o semiesférica. La fuerza que ejerce un chorro que impacta contra una superficie se obtiene aplicando la ecuación de conservación de la cantidad de movimiento. Esta fuerza, para régimen estacionario y teniendo en cuenta que su componente horizontal sea nula, viene dada por la expresión:

Fy = . Q . (V-V. cos ) NSiendo:

: densidad del fluido (kg/m3). Para el agua 1000 kg/m3.Q: caudal con el que se esta trabajando (m3/s): el ángulo en grados que forma el fluido desalojado con el vector normal a la superficie de impacto V: velocidad con la que el chorro impacta sobre la superficie del problema (m/s). esta

La velocidad se relaciona con le caudal mediante la ecuación:

V = Q A (m/s)Donde:

A: área transversal del chorro (m2)

Page 68: Cuaderno Nº1

• Para una superficie plana ( = 90°) la ecuación anterior tiene la forma:

Fy = . Q . (V-0) = . Q2A N Figura Nº 2 Superficie plana

Para una superficie curva (α=120º) la ecuación queda:

Figura Nº 3 Superficie curva

Para una superficie semi-esferica (α=180º) se llega a:

Como puede observarse, a mayor valor de α , mayor es la fuerza ejercida por el chorro sobre la superficie , siendo para α=180 el valor máximo posible.

NQVVQFY .

2

3

2**

NA

QVVQFY

2

.2**

Page 69: Cuaderno Nº1

PROCEDIMIENTO EXPERIMENTAL• Impacto sobre una superficie plana

Desarrollo de la práctica:• Retire la tapa situada encima del deposito transparente de agua y enrosque la superficie de impacto plana (α=90) en el eje vertical

unido solidariamente al soporte sobre el que se colocan las pesas, como se observa en la figura 3• Figura 3• Cubra el tanque de nuevo con la tapa • • Ponga el depósito en el banco hidráulico FMEOO o en el grupo hidráulico FMEOO/B. conectando su entrada de agua a T1 (ver figura

4)) con ayuda del conector rápido.• figura 4.esquema del banco hidráulico FMEOO• • Esta representación del banco hidráulico FMEOO, tiene lo siguiente.• VCC: válvula de control de flujo.• T1: toma de impulsión o salida del banco hidráulico.• • Equilibre el equipo con ayuda del nivel de burbujas situado sobre la tapa del cilindro. Para ello regule la altura del soporte ajustable

hasta que la burbuja se establece en el centro del indicador.• Ajuste el calibre hasta que se situé al mismo nivel que la señal de la plataforma auxiliar.• • figura 5. Válvula de control• • Coloque en la plataforma un peso y anote su valor. Cierre la VCC del FMEOO y a continuación encienda la bomba.• Con ayuda de la VCC regule el flujo que impacta contra la superficie para conseguir que la señal de la plataforma este en la misma

altura que la indicación del calibre , es decir , que vuelva ala posición original (ver figura 6)• En esta situación de equilibrio, mida el flujo de salida a través de la boquilla para ello, cierre el desagüe del banco hidráulico y tome

medidas de volúmenes en un tiempo determinado, obteniendo así los litros por unidad de tiempo (caudal) repita los pasos anteriores aumentando las masas y flujos gradualmente.

Page 70: Cuaderno Nº1

DESCRIPCION DEL EQUIPO• El accesorio consiste en un tanque cilíndrico (1) con superficies laterales

transparentes donde la boquilla (2) conectada al banco hidráulico FM00, se alinea con el eje sobre el que se acopla la superficie problema (3). La fuerza vertical realizada por el agua contra la superficie se mide empleando masas calibradas (4) que equilibran dicha fuerza, tomando como referencia un indicador o calibre (5) que se a ajustado previamente a un cero de referencia que es una marca que aparece en la superficie sobre la que se colocan las masas. Otros aspectos a destacar del equipo son:

Apoyos ajustables que permiten la nivelación del equipo Orificios hechos en la base inferior del tanque para evacuar el agua evitando así las salpicaduras.

Posibilidades PrácticasMedidas experimentales de la fuerza ejercida por un chorro contra distintas superficies comparando los resultados con los valore teóricos Especificaciones Diámetro del chorro: 8mm.Diámetro de las superficies de impacto: 40 mm.Superficies de impacto:

– Superficie semi-esferica de 180°– Superficie de la curva de 120°– Superficie plana de 90°

Conjunto de pesas de 5, 10, 20, 50, 100 gr (suministrado

Page 71: Cuaderno Nº1

PROCEDIMIENTO EXPERIMENTAL• Desarrollo de la práctica ( Para las tres superficies de contacto)• Retire la tapa situada encima del deposito transparente de agua y

enrosque la superficie de impacto plana (α=90) en el eje vertical unido solidariamente al soporte sobre el que se colocan las pesas, como se observa en la figura :

• Cubra el tanque de nuevo con la tapa

• Ponga el depósito en el banco hidráulico FMEOO o en el grupo hidráulico FMEOO/B. conectando su entrada de agua con ayuda del conector rápid

• Equilibre el equipo con ayuda del nivel de burbujas situado sobre la tapa del cilindro. Para ello regule la altura del soporte ajustable hasta que la burbuja se establece en el centro del indicador.

• Ajuste el calibre hasta que se situé al mismo nivel que la señal de la plataforma auxiliar.

• Coloque en la plataforma un peso y anote su valor. Cierre la VCC del FMEOO y a continuación encienda la bomba.

• Con ayuda de la VCC regule el flujo que impacta contra la superficie para conseguir que la señal de la plataforma este en la misma altura que la indicación del calibre , es decir , que vuelva ala posición original .

• En esta situación de equilibrio, mida el flujo de salida a través de la boquilla para ello, cierre el desagüe del banco hidráulico y tome medidas de volúmenes en un tiempo determinado, obteniendo así los litros por unidad de tiempo (caudal) repita los pasos anteriores aumentando las masas y flujos gradualmente.

Page 72: Cuaderno Nº1

DATOS A CONSIGNAR-Superficie PlanaUna vez comenzado a trabajar con el FME01, debe tener la precaución de asegurar que se establezca el equilibrio entre la fuerza ejercida por el chorro y la fuerza ejercida por las pesas. El muelle puede conducir a errores si la placa sobre la que se colocan las pesas ejerce fuerza sobre el mismo. Dado que este es un equilibrio estático no se tendrá en cuenta el efecto del rozamiento producido entre la barra que sostiene la superficie problema y la tapa del cilindro, lo cual es una posible fuente de error, inevitable ya que el equipo no permite medir dicho rozamiento.Los resultados obtenidos pueden anotarse en la tabla siguiente:

Para verificar el estado de equilibrio y comprobar que, tanto el muelle como las fuerzas de rozamiento que aparezcan no han ejercido influencia sobre el experimento, la fuerza ejercida por el chorro Fa debe ser aproximadamente la misma que la ejercida por las masas. Es decir:

Donde:• Fm (N) es la fuerza vertical ejercida por las pesas colocadas• m (Kg) es la mas total de las pesas colocadas• g (m/s2) es la aceleración de la gravedad

SUPERFICIE PLANA DE 90ºMasa

(g)Volumen (m3)*10-3

tiempo promedio (s)

Caudal Q (m3/s)*10-3

Q2 (10-6)

Fm

(N)*10-3

Fa

(N)52550

100200400600800

Page 73: Cuaderno Nº1

DATOS A CONSIGNAR-Superficie Curva a 120º

Una vez comenzado a trabajar con el FME01, debe tener la precaución de asegurar que se establezca el equilibrio entre la fuerza ejercida por el chorro y la fuerza ejercida por las pesas. El muelle puede conducir a errores si la placa sobre la que se colocan las pesas ejerce fuerza sobre el mismo. Dado que este es un equilibrio estático no se tendrá en cuenta el efecto del rozamiento producido entre la barra que sostiene la superficie problema y la tapa del cilindro, lo cual es una posible fuente de error, inevitable ya que el equipo no permite medir dicho rozamiento.Los resultados obtenidos pueden anotarse en la tabla siguiente:

Para verificar el estado de equilibrio y comprobar que, tanto el muelle como las fuerzas de rozamiento que aparezcan no han ejercido influencia sobre el experimento, la fuerza ejercida por el chorro Fa debe ser aproximadamente la misma que la ejercida por las masas. Es decir:

Donde:• Fm (N) es la fuerza vertical ejercida por las pesas colocadas• m (Kg) es la mas total de las pesas colocadas• g (m/s2) es la aceleración de la gravedad

SUPERFICIE CURVA DE 120ºMasa

(g)Volumen (m3)*10-3

tiempo promedio (s)

Caudal Q(m3/s)*10-3

Q2

(10-6)Fm

(N)*10-3

Fa (N)

52550

100200400600800

Page 74: Cuaderno Nº1

DATOS A CONSIGNAR-Superficie Semiesferica

Una vez comenzado a trabajar con el FME01, debe tener la precaución de asegurar que se establezca el equilibrio entre la fuerza ejercida por el chorro y la fuerza ejercida por las pesas. El muelle puede conducir a errores si la placa sobre la que se colocan las pesas ejerce fuerza sobre el mismo. Dado que este es un equilibrio estático no se tendrá en cuenta el efecto del rozamiento producido entre la barra que sostiene la superficie problema y la tapa del cilindro, lo cual es una posible fuente de error, inevitable ya que el equipo no permite medir dicho rozamiento.Los resultados obtenidos pueden anotarse en la tabla siguiente:

Para verificar el estado de equilibrio y comprobar que, tanto el muelle como las fuerzas de rozamiento que aparezcan no han ejercido influencia sobre el experimento, la fuerza ejercida por el chorro Fa debe ser aproximadamente la misma que la ejercida por las masas. Es decir:

Donde:• Fm (N) es la fuerza vertical ejercida por las pesas colocadas• m (Kg) es la mas total de las pesas colocadas• g (m/s2) es la aceleración de la gravedad

SUPERFICIE CURVA DE 180ºMasa

(g)Volumen (m3)*10-3

tiempo promedio (s)

Caudal Q(m3/s)*10-3

Q2

(10-6)Fm

(N)*10-3

Fa (N)

52550

100200400600800

Page 75: Cuaderno Nº1

CUESTIONARIO• Graficar para cada una de las superficies: Fa vs Fm.

Comentar sus resultados.• Para los tres cuadros elaborados determine el % de

error y la desviación estándar, para cada caso, establezca que la Fm es la fuerza real.

• ¿Que es colisión, y cuando una colisión es elástica, y cuando es inelástica?

• Deduzca una ecuación que exprese la fuerza ejercida sobre: un alabe fijo, un alabe en movimiento.

• Describa la notación para los triángulos de velocidad de entrada y salida de un alabe de un rodete de una bomba o ventilador.

Page 76: Cuaderno Nº1

BIBLIOGRAFIA

• Guevara, Robert . MANUAL DE PRACTICAS DE LABORATORIO DE ENERGIA II. 2009.

• Mataix,C. MECANICA DE FLUIDOS Y MAQUINAS HIDRAULICAS. Ed Harla. Mexico.2005

• Mott,R. MECANICA DE FLUIDOS . Ed. Prentice Hall.• Potter,MC. MECANICA DE FLUIDOS .Ed Thompson. Ed

2002.• Preobrazhenski. MEDICIONES TERMOTÉCNICAS Y APARATOS

PARA EFECTUARLAS. Tomo II.1998• Streeter. MECANICA DE FLUIDOS .Ed Mc Graw

Hill.2000

Page 77: Cuaderno Nº1

ENLACES WEB

• http://www4.ujaen.es/~cmbazan/privado/Primer_Cuatrimestre/Chorro.pdf

Page 78: Cuaderno Nº1

PROCESO DE EVALUACION

• EXAMEN I UNIDAD:E = PE1+PE2+PE3+PE4+PE5/5Donde PEi= ((Sustentación*2)+Informe)/3

• PROMEDIO DE PRACTICAS CALIFICADAS : PP

• NOTA I UNIDAD : ((2*E)+ PP ) = 3