206
SÉRGIO MELO DESENHO DE EMBARCAÇÕES DE RECREIO

Desenho de embarcações de recreio

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Desenho de embarcações de recreio

SÉRGIO MELO

DESENHO DE EMBARCAÇÕES DE RECREIO

Page 2: Desenho de embarcações de recreio

Pag. 2

SÉRGIO MELO

DESENHO DE

EMBARCAÇÕES DE RECREIO

Uma terapia de substituição para arquitectos ressabiados e

uma aventura intelectual para designers sem horizontes.

Page 3: Desenho de embarcações de recreio

Pag. 3

ÍNDICE

I. Introdução.

II. Plano geométrico. Linhas e coordenadas.

III. Volume submerso e deslocamento. Centro de flutuação e centro de gravidade. Imersão e caimento.

IV. Metacentro, altura metacêntrica e raio metacêntrico. Momento endireitante e momento inclinante.

Relações e coeficientes comparativos. Constantes de forma.

V. Resistência das querenas. Atrito e formação de ondas. Resistências parasitas. Estabilidade.

VI. Embarcações a motor. Embarcações de deslocamento, planantes e semi-planantes.

VII. Embarcações à vela. Tipos tradicionais e modernos de velame. Evolução da forma dos cascos, das

quilhas e dos patilhões.

VIII. Sistemas de propulsão mecânica. Motores, caixas redutoras e de inversão. Hélices. Lemes e outros

dispositivos direccionais

IX. Construção de embarcações. Materiais: plásticos reforçados com fibras, madeira, ligas de alumínio

e aço. Sistemas de cálculo de estruturas. Mastros, cabos e velas. Análise e cálculo dimensional.

X. Bibliografia.

XI. Exemplos.

Nota – As figuras de apoio ao texto tem numeração própria e encontram-se agrupadas no final dos

capítulos a que dizem respeito. As que constituem os exemplos finais são apresentadas a seguir aos

respectivos elementos escritos, em sequência lógica, sem numeração.

As escalas indicadas nas figuras referem-se aos desenhos originais, cujas dimensões foram

alteradas com o processo de reprodução, pelo que não devem ser consideradas.

Page 4: Desenho de embarcações de recreio

Pag. 4

I.

INTRODUÇÃO

Para além das razões mais óbvias e mais interessantes que podem levar um arquitecto a escrever um

livro sobre o desenho de embarcações está aquela que é referida no título. No meu caso trata-se de uma

espécie de medicina para curar a ferida que resulta do facto de sempre ter desejado fazer projectos de

edifícios e, por razões que não posso detalhar aqui, nunca ter podido realizar esse desiderato em

quantidade e qualidade que satisfizessem esta minha necessidade intrínseca. Dá-se o caso de que, por

motivos decorrentes da minha própria vida e, em certa medida, da história recente do nosso país,

comecei tudo muito tarde. E embora este tipo de condicionamentos não tenha prejudicado outros

colegas em situação idêntica, comigo as coisas não correram bem. Encontro-me, agora, no ocaso da vida

e acredito que posso redimir-me de ter sido levado a fazer tantas coisas desagradáveis, se conseguir

chegar ao fim desta pesada empreitada que me propus executar mas que, apesar do esforço exigido,

não deixa de constituir um verdadeiro prazer nos momentos mais empolgantes.

Por outro lado, a inclinação para desenhar estes artefactos que se deslocam na interface de dois fluidos,

a água e o ar, é dificilmente explicável. Poderia adiantar alguns motivos, mais por racionalização posterior

do que para explicar a sua verdadeira génese, à maneira como os arquitectos arranjam desculpas e

aduzem razões programáticas para decisões de desenho que não conseguem explicar e cuja

objectividade deixa muito a desejar. Basta ler as memórias descritivas e “justificativas” que

acompanham os projectos de edifícios e os planos de urbanização para se compreender o que acabo de

dizer. Admito, contudo, que quem tem o mesmo género de compulsões está pouco ou nada interessado

na psicanálise da sua paixão. Uma coisa pode, desde já, assumir-se como certa, a saber: um barco,

contrariamente a um edifício, é um artefacto que não precisa de um lote para ser implantado, é algo que

é concebido para se deslocar graciosamente sobre a água, embora a observação continuada dos nossos

portos de recreio nos possa suscitar algumas dúvidas sobre a autenticidade desta asserção. É que na

sociedade afluente em que temos vivido, a posse destes objectos, principalmente dos mais caros, parece

dever mais à caracterização do estatuto social e económico do possuidor do que, propriamente, à

vontade de usar.

Para situar melhor o âmbito desta obra, isto é, para definir adequadamente aquilo sobre que me

proponho escrever, devo esclarecer que, por razões que me parecem evidentes, não vou falar de navios,

sejam eles petroleiros, porta contentores ou coisas do mesmo jaez. Por outro conjunto de razões, mas

com algum desgosto, também não falarei daquelas embarcações utilitárias tradicionais que há algumas

décadas ainda sulcavam as águas do rio Tejo e de outros cursos de água navegáveis do nosso país,

transportando produtos e pessoas entre as margens, ou que demandavam os abundantes pesqueiros

que se situavam para lá do porto de Cascais e ao longo da costa portuguesa. É claro que ainda se

Page 5: Desenho de embarcações de recreio

Pag. 5

transportam pessoas entre as margens e se pesca fora da barra, mas os meios a que me refiro ficaram

obsoletos há muito tempo, em face de novas soluções mais fiáveis e comercialmente mais interessantes

para as entidades que agora exploram esses negócios e que não são as mesmas que a eles se

dedicavam na época a que me referi. Procurarei ser prático, falando de embarcações de recreio, objectos

que podem ser utilizados nas actividades de lazer e cuja posse e utilização inflama muitas imaginações.

Por ser esse o costume, nada do que ficar dito se aplica a embarcações com o comprimento total superior

a trinta metros (cerca de cem pés). Este limite tem como fundamento determinados motivos de raiz

técnica e económica, mas não só. Se quisermos enquadrar regulamentarmente o conceito de

embarcação de recreio, no contexto da legislação portuguesa, podemos recorrer ao artigo 2º do Decreto-

lei nº 96/97, de 24 de Abril, que fixa o seu âmbito com maior rigor, referindo um comprimento máximo

um pouco menor. Lembro, contudo, que, neste período de crise, a produção em série de barcos de

recreio, pequenos e médios, se reduziu drasticamente, sendo certo que a construção de unidades de

grande porte, feitas à medida da vaidade e dos desejos de exibição megalómana da fortuna dos seus

proprietários, constitui um nicho industrial e comercial florescente, nos países onde esta indústria tem

tradições e peso económico. Sinal dos tempos!

Quando, há alguns anos, comecei a pensar em escrever este conjunto de textos estava no meu

pensamento o ambicioso desejo de produzir uma obra de dimensões apreciáveis que integrasse todas

as questões pertinentes que se colocam a quem quer aprender a arquitectura das pequenas

embarcações de recreio e, bem assim, a concepção dos aspectos construtivos, quer no que se refere ao

cálculo dos elementos estruturais, quer ao seu desenho e pormenorização. Estava também implícito o

desejo de tratar, do ponto de vista de quem projecta embarcações, das matérias relacionadas com os

equipamentos mecânicos, com predominância dos vários meios de propulsão e dos elementos do

armamento.

Tratava-se, como facilmente se percebe, de uma tarefa que não é fácil de levar a cabo por uma única

pessoa!

Devo lembrar neste momento que, no estado actual da indústria, são utilizados vários materiais, isolados

ou em conjunto, para a execução de embarcações de recreio. A sua escolha depende de factores muito

variados, desde a sua disponibilidade nas proximidades dos estaleiros, até ao programa que suporta o

empreendimento, passando pelos recursos económicos que estão disponíveis e pelo conhecimento das

técnicas de utilização e de fabrico. O material tradicional predominante é a madeira, cujas excepcionais

características mecânicas nunca é de mais enfatizar, tanto mais que muita gente que se considera

tecnicamente conhecedora tem a cabeça cheia de equívocos a este respeito. Sendo a madeira um

material utilizado na construção de embarcações há milénios, a sua utilização tem vindo a sofrer

profundas transformações, há algumas décadas para cá, ao ser aplicada conjuntamente com resinas

plásticas e outros produtos sintéticos que a indústria agora disponibiliza. Em boa verdade, uma

Page 6: Desenho de embarcações de recreio

Pag. 6

embarcação construída com recurso às novas técnicas de utilização da madeira tem pouco a ver com

aquelas cuja feitura obedeceu aos métodos clássicos, quer do ponto de vista da sua estrutura, quer da

aparência, quer, ainda, das espécies vegetais e das dimensões das peças utilizadas. Não se pode ignorar

que a disponibilidade de certos tipos de madeira, tendo em atenção a exploração intensiva e

indiscriminada a que tem estado sujeitas as florestas onde crescem as espécies exóticas mais valiosas,

é cada vez mais rara e mais cara, para já não falar das consequências ambientais de tais práticas

predadoras.

Entre os materiais mais comuns na fabricação de embarcações de recreio figuram várias resinas

plásticas reforçadas com fibras, nomeadamente, as que são obtidas a partir do vidro e outras. Pode dizer-

se que são agora os materiais mais usados, apesar de a sua utilização, reciclagem e destruição

apresentar problemas para o ambiente que são difíceis de resolver, no estado actual dos conhecimentos.

Com maior ou menor incidência na utilização, o alumínio, o aço e algumas ligas exóticas, também

integram o grupo de que estamos a falar.

Voltando à execução da “empreitada” que me propus inicialmente, devo confessar que, com a periódica

avaliação da eventual conveniência de difusão e venda desta obra no mercado, se foi instalando no meu

espírito a preocupante sensação de que estas matérias só importam a um número muito restrito de

pessoas, ao mesmo tempo que começava a ficar consciencializado da dimensão ciclópica da tarefa. Este

conjunto de pensamentos negativos fez arrefecer os meus ímpetos iniciais. Depois de meditar no assunto

e de chegar a admitir que o melhor seria não fazer nada, acabei por concluir que era mais razoável tentar

atacar a execução desta empreitada dentro de limites compatíveis com as minhas reais possibilidades,

deixando para os leitores mais interessados uma bibliografia que os ajude a completar a sua formação.

Uma coisa que me deixou verdadeiramente estupefacto, quando comecei a interessar-me racionalmente

pelo desenho de barcos, foi a mais completa ausência de informação fiável sobre o tema, em língua

portuguesa. Dir-se-ia que é algo de muito peculiar, para um país que sempre se vangloriou dos seus

feitos navais no período das descobertas, não só na sua componente de aventura e de heroísmo, como

na da propalada existência de uma infra-estrutura técnica e científica que supostamente esteve na

origem de tais feitos. Como não investiguei os aspectos relacionados com a navegação, admito como

possível que esses conhecimentos não fossem exclusivamente empíricos, no que diz respeito às

actividades de orientação no mar, mas estou agora convencido de que tudo o que se fez no domínio da

concepção e da construção dos barcos ficou a dever-se, exclusivamente, a uma prática anterior de

utilização de embarcações de pesca e de cabotagem, apoiada em inovações e tentativas esporádicas,

sem sistematização de dados experimentais. Segundo se diz, os primeiros barcos utilizados pelos

portugueses no início dos descobrimentos só podiam deslocar-se para sotavento, não sendo viável a

navegação em zonas de vento certo. Era por esse motivo que os marinheiros que se aventuravam a

descer a costa africana temiam as dificuldades do caminho de regresso. A navegação para barlavento

Page 7: Desenho de embarcações de recreio

Pag. 7

só veio a ser praticável com a transformação do caíque, há muito utilizado pelos pescadores algarvios

na sua faina quotidiana. Tratou-se, portanto, da adaptação de um sistema de velame conhecido e usado

no Mediterrâneo desde o século treze. Diz-se que foram os portugueses que fizeram essa primeira

adaptação, distribuindo as velas longitudinalmente nas suas embarcações de três mastros, o que lhes

permitiu, em certa medida, navegarem contra o vento. Como julgo conhecer bem os portugueses e não

sofro de megalomania, não considero exagerado aceitar como provável que, afinal, a nossa gente não

mudou grandemente, permanecendo bastante igual ao que era no século quinze. É um facto comprovado

no dia-a-dia que continuamos a cultivar o gosto pela improvisação, fazendo as coisas em cima do joelho.

São raras as manifestações de perseverança e de vontade de trabalhar afincadamente, com vista à

consecução de objectivos de médio e de longo prazo. A ideia, muito glorificada pelos nossos meios de

comunicação e por alguns patetas que se pretendem fazedores de opinião, de que os portugueses,

individualmente, são capazes de excelentes prestações no estrangeiro, desde as actividades mais

humildes às mais exigentes, manifesta-se também noutros povos com o mesmo tipo de lacunas e revela,

sem margem para equívocos, o desejo obsessivo de consagração fora de portas e a mania de que somos

formidáveis, escondendo dos outros as dificuldades que sentimos quando temos de nos organizar

colectivamente para tirarmos partido dos recursos disponíveis e, assim, conseguirmos produzir as coisas

de que precisamos ou que, simplesmente, satisfaçam os nossos desejos de prazer. A par e passo com

esta faceta negativa e, até certo ponto contraditoriamente, manifesta-se um endeusamento de tudo o

que é estrangeiro e uma subserviência cultural e funcional perante povos que, por simples ignorância,

consideramos mais civilizados do que nós e dos quais estamos constantemente a importar produtos e

ideias que, sem qualquer exercício crítico, aceitamos como excelentes. Esta caracterização, que alguns

podem considerar impiedosa, de uma certa bacoquice nacional serve, entre outras coisas, para explicar

que, apesar de eu ter ficado totalmente dependente das culturas técnicas americana, inglesa e sueca,

entre outras, no meu esforço isolado de aprendizagem do desenho de embarcações de recreio, não

retirei nenhuma satisfação particular desse facto, nem entendo que isso sirva para justificar o que quer

que seja. Quero deixar bem claro que fiquei triste por não me ter sido possível suprir a minha carência

de conhecimentos recorrendo aos meios nacionais, ou mesmo, aos de outras origens diferentes das que

acabo de referir. Solicito a benevolência dos leitores para o facto de ter ficado a conhecer tão mal, como

é facilmente constatável, o vocabulário especializado da língua portuguesa sobre temas náuticos e de

construção naval, mas acabei por me convencer de que não perdi grande coisa.

Gosto muito de andar de barco, mas nunca fui atacado por uma vontade obsessiva de praticar este tipo

de actividades. É por isso que a minha postura, ao escrever este livro, é semelhante à dos arquitectos

que se propõem desenhar edifícios hospitalares, sem terem um particular desejo de virem a frequentá-

los na qualidade de doentes. Também não tenho a intenção de fazer um manual para a prática de

desportos náuticos, primeiramente porque não possuo conhecimentos suficientemente sólidos sobre o

assunto e, depois, porque é uma tarefa que nunca pretendi executar e que verdadeiramente não me

interessa. O que está em causa, nesta obra é a concepção de embarcações de recreio, com um suporte

Page 8: Desenho de embarcações de recreio

Pag. 8

técnico credível, veiculando pontos de vista estéticos e científicos pessoais, alguns dos quais estão

sujeitos a controvérsia, mas cuja defesa me proponho fazer, dando exemplos concretos de alguns destes

artefactos. O desenho de embarcações tem sido, ao longo dos tempos, uma actividade muito

tradicionalista, onde dificilmente se aceitam inovações formais, ou outras. Mas é minha convicção de

que é possível olhar para esses objectos com o espírito totalmente aberto. Na busca de analogias que

sustentem a minha postura, lembrei-me do que tem acontecido com as flutuações do gosto dominante,

nas últimas décadas, quanto ao desenho de edifícios e de outros artefactos de uso corrente, como é o

caso dos automóveis.

Alguns dos projectos que apresentarei como exemplos estão associados a factos curiosos que não

deixarei de referir se e quando isso vier a propósito. Aproveitarei a história de um dos exemplos para

mostrar como a superficialidade e o laxismo se juntam ao oportunismo mais descarado de alguns dos

nossos empreendedores, quando se trata de montar um negócio que comporta alguns riscos, embora

possa vir, eventualmente, a traduzir-se na abertura de um mercado interessante. Esta experiência

negativa não foi suficiente para me fazer perder a esperança de que, algum dia, um pequeno grupo de

pessoas, projectistas apaixonados e empresários honestos, acabe por se interessar pelo assunto e,

finalmente, se venha a desenvolver uma indústria de construção naval que justifique a presunção de

que somos um povo de marinheiros e de que temos condições para construir alguns dos barcos que

usamos. Só por esta via criaremos o nosso próprio “know-how” e deixaremos de ficar dependentes da

produção importada, ainda que muitos de nós estejam intimamente convencidos de que só o que é

estrangeiro é que é bom. O vazio cultural português é um dado bem conhecido da antropologia e certos

pensadores têm-se esforçado por explica-lo, particularmente no que se refere à componente das ciências

humanas, mas deixando totalmente de lado a componente das técnicas e das ciências exactas, aspectos

do conhecimento que são fundamentais para o devir de qualquer povo. Parece-me interessante lembrar,

neste momento, que, muito mais do que as ciências, as técnicas tem nacionalidade e, por esse motivo,

constituem um património negociável e transmissível, contrariamente ao que muito boa gente pensa.

Não sei se já repararam como alguns dos intelectuais portugueses mais conceituados nutrem um

profundo desprezo pelo conhecimento técnico, atitude com que contribuem para a manutenção de uma

ignorância generalizada neste domínio do conhecimento e para a difusão da ideia absurda de que existe

um antagonismo insanável entre técnica e arte, com o falso pressuposto de que não são aspectos

complementares na resolução dos problemas do desenho e, até, daqueles com que nos deparamos no

nosso quotidiano mais trivial.

As embarcações são um meio extremamente económico de transportar grandes cargas, com pouco

dispêndio de energia, na condição de isso ser feito a baixa velocidade. Quando se trata de chegar

depressa, todos os outros meios de transporte são mais eficientes. A seu tempo compreenderemos a

razão por que isto é assim. Mas considero oportuno referir, desde já, que é por causa desta limitação

Page 9: Desenho de embarcações de recreio

Pag. 9

física que não sou um grande apologista do desenho de barcos de regata, à vela e a motor, embora na

época em que vivemos, estando completamente obcecados pela competição e pela velocidade, seja

muito difícil não sucumbirmos às tendências dominantes.

Assim, excepcionalmente, entre as embarcações que usarei para ilustrar a teoria estará uma “máquina”

projectada para andar depressa. Mas isso não impede que continue a ser convicção minha que aquilo

que pode justificar verdadeiramente a prática dos desportos náuticos é o puro prazer que deriva de nos

deslocarmos suave e silenciosamente sobre a água, nos rios ou no mar ou, então, o desejo de

enfrentarmos a força aterradora e incontrolável de uma tempestade num objecto de dimensões

reduzidas, onde é posta à prova a nossa resistência física e psicológica.

Termino esta introdução com a indicação de que ao longo da minha vida tentei sempre, às vezes com

pouca convicção, transmitir os conhecimentos que fui adquirindo penosamente neste domínio. Cheguei

a oferecer os meus préstimos a um dirigente de uma universidade, que não manifestou qualquer

interesse em criar, dentro de um dos cursos existentes, uma disciplina sobre o tema. Se conseguir levar

a bom termo esta tarefa, algo do que aprendi ficará disponível para aqueles que vierem a interessar-se,

no futuro. Mas, como já o referi anteriormente, é-me impossível abordar exaustivamente todas as

matérias que considero relevantes para uma completa aprendizagem desta interessante actividade.

Para quem estiver verdadeiramente interessado, há sempre a possibilidade de recorrer à bibliografia que

foi criteriosamente seleccionada para responder adequadamente aos pressupostos fixados.

Page 10: Desenho de embarcações de recreio

Pag. 10

II.

PLANO GEOMÉTRICO. LINHAS E COORDENADAS

O projecto de uma embarcação de recreio, como de qualquer objecto de prazer que desempenha

cumulativamente funções utilitárias, começa sempre por um programa que define as condições de

utilização e os objectivos a atingir. Gostaria que ficasse claro que, quando falo de funções, não me estou

a limitar exclusivamente ao elenco das funções denotadas, aquelas que esperamos que um artefacto

cumpra, sem margem para desculpas. Refiro-me, também, às funções conotadas, do domínio do

subjectivo e do emocional, como seja tudo o que na forma do objecto foi adoptado por motivações

estéticas ou, mesmo, para caracterização do estatuto do futuro possuidor. Para quem começa a estudar

o assunto, pode parecer que, neste âmbito particular das criações humanas, a variedade das opções é

bastante limitada. Isto resulta principalmente dos efeitos corrosivos da publicidade, esse território

comunicacional privilegiado da mentira e das meias verdades, cujos profissionais adoram tratar-nos

como mentecaptos. Mas também deriva dos métodos de comercialização e da actividade frenética da

produção em massa que, na busca incessante de “novidades” que respondam ao mau gosto dominante,

banalizou de maneira escandalosa o desenho dos objectos de grande consumo e deixou uma falsa ideia

de que, com pequenas alterações ao conceito de base é sempre possível responder a todas as

exigências. Como os mais atentos já devem ter verificado, há projectistas e construtores que levam a

vida toda a fazer variações inconsequentes acerca do mesmo tema, simplesmente porque concluíram

que o consumidor não refila desde que se satisfaçam as suas tendências mais básicas e conservadoras.

Basta, para tanto, que finjam que estão a ser inovadores. O leitor há-de constatar, de cada vez que sobe

mais um degrau na penosa escada do conhecimento artístico e científico, como aquela atitude é

moralmente condenável e tem vindo a contribuir para a decadência do gosto educado, devendo ser

combatida sem desfalecimentos, para que subsista um saudável espírito crítico e para o bem da cultura.

Quando temos o programa da embarcação relativamente bem definido, é chegado o momento de

fazermos alguns esquiços preparatórios, com vista ao início das discussões com o futuro proprietário e,

eventualmente, com o construtor. Destas discussões vai resultar, porventura, uma definição mais precisa

do objecto, através de um conjunto de interacções entre os parceiros da aventura, que culminará num

estudo prévio, ou num anteprojecto. Devo dizer que é importante que o resultado final deste primeiro

esforço se traduza numa imagem que, por mais inovadora que se pretenda, deve reflectir a essência do

programa. Mesmo que a nossa mente esteja disponível para a novidade das formas, e isso parece-me

saudável, não julgo conveniente que, por exemplo, um barco a motor concebido para a velocidade, com

as limitações físicas de que já dei conta, apresente a estética de um rebocador. A não ser que um dos

objectivos, que também considero pertinente na actividade do desenho, seja a exploração da

componente humorística que, a meu ver, deve estar presente em muitos actos da nossa vida e de que

não devemos abdicar, sempre que isso seja possível.

Page 11: Desenho de embarcações de recreio

Pag. 11

Convém relembrar que na memória colectiva dos povos se foram acumulando, ao longo dos tempos,

imagens que associamos involuntariamente às tipologias dos objectos, por um processo selectivo que

nos leva a só reter aquilo que tem consistência formal e de que a experiência acumulada validou o uso,

com suporte num conjunto muito variado de razões que não devemos menosprezar, sem fortes

justificações ou sem argumentos técnicos, científicos e artísticos consistentes. Sejamos livres de espírito,

mas não nos deixemos dominar pela facilidade e pela gratuitidade!

Se exceptuarmos as embarcações que planam, como é o caso da “máquina” a que me referi

anteriormente, a propósito de velocidades elevadas, e de cujo desenho falarei oportunamente, todas as

outras que apresentarei se movem de acordo com o princípio de Arquimedes, isto é, o peso da água

deslocada pelo casco é equivalente ao seu peso total. E até as embarcações susceptíveis de planarem,

só contrariam o citado princípio a partir de uma determinada velocidade ou, melhor dizendo, de um

determinado valor da razão entre a velocidade e a raiz quadrada do comprimento da linha de água. Mas

se quiséssemos ser absolutamente rigorosos, teríamos de admitir que, para regimes de velocidade

inferiores à velocidade limite de um casco, que está directamente relacionada com a dificuldade com

que uma determinada embarcação empurra o trem de ondas de superfície que é formado pelo seu

movimento, se verifica sempre um certo grau de incumprimento da regra, mesmo nas embarcações ditas

de deslocamento. Contudo, para efeitos práticos, este fenómeno não tem qualquer relevância. Fica

assim assente, para os fins do projecto, que a quantidade de água deslocada por uma embarcação de

deslocamento está relacionada intrinsecamente com o seu peso total, a saber, a soma dos pesos do

casco, da superstrutura, dos equipamentos, das vitualhas, da tripulação, dos passageiros, etc. Quando

desenhamos um barco e marcamos a sua linha de flutuação, que separa as obras vivas das obras

mortas, temos de ficar com a noção de que o volume previsto abaixo dessa linha, ou linhas, tendo em

devida conta a variação das condições de carga e da densidade da água (que depende do seu grau de

salinidade), é o adequado para que o barco se desloque nessa posição de equilíbrio, ou muito próximo

dela. Precisamente porque está em causa um problema de equilíbrio, tenho de referir-me, não só, ao

peso das coisas a que aludi anteriormente, como também à sua distribuição no interior do casco e acima

dele. É claro que alguns dos objectos que estão a bordo se movem, como é o caso dos tripulantes e dos

passageiros, e se consomem, como é o caso da água potável e dos combustíveis, mas isso tanto pode

ser desprezado como aproveitado, dependendo das dimensões do barco, das suas características

funcionais e da utilização que lhe estamos a dar em cada momento. Não vejo necessidade de chamar à

colação, neste momento, alguns desastres famosos que induziram a perda de muitas vidas e que

resultaram precisamente da ocorrência da deslocação não planeada de objectos, ou de pessoas, dentro

de embarcações e de navios. Também não considero indispensável falar do conhecimento que tem de

estar associado às operações de carga e descarga dos navios mercantes, para que a sua estabilidade

fique assegurada, quer no porto, quer em marcha. E fica, obviamente, por referir o caso particular do

Page 12: Desenho de embarcações de recreio

Pag. 12

transporte de cargas líquidas, cujas características de acondicionamento implicam um desenho

específico dos navios que se dedicam a essa actividade.

Voltando, agora, à discussão inicial, é de prosseguir com o projecto procedendo à execução do plano

geométrico, isto é, ao desenho das linhas. Não se trata ainda do desenho definitivo, mas de uma primeira

tentativa de definição da forma e do volume. Aquilo que se designa por plano geométrico é um conjunto

de linhas, curvas e rectas, que definem com rigor o volume do casco e, por vezes, das superstruturas, na

totalidade ou em parte. Essas curvas são obtidas pelo seccionamento do hipotético objecto por planos

horizontais, de perfil, de frente, de rampa e oblíquos, tantos quantos reputemos suficientes para a

correcta definição do volume, já que a geometria dos cascos não é, em geral, exprimível por via

matemática. Nem isso nos interessa. A matemática é muito mais útil em outras situações!

A representação desenhada da superfície exterior da embarcação obedece a algumas regras objectivas

mas, também, a convenções que não tem nenhuma fundamentação credível, que não seja a tradição.

Faz-se assim porque é costume. Apresentarei, de seguida, alguns exemplos esquemáticos de planos

geométricos de embarcações, recorrendo a tipos convencionais, para justificar as relações entre forma

e função. O assunto não vai ficar esgotado, nem é esse o objectivo. Estamos a começar!

Aproveitarei o desenho de alguns desses planos geométricos para explicar um dos métodos de cálculo

do deslocamento das embarcações, isto é, do volume e do peso da água deslocada. Na mesma

sequência calcular-se-á, também, a localização do centro de flutuação, isto é, do centro de gravidade do

referido volume de água. É precisamente nesse ponto que colocaríamos a origem de um vector vertical,

voltado para cima, se quiséssemos representar a força da impulsão. Também não é preciso pensar muito

para concluir que, numa situação de repouso, o centro de gravidade do conjunto constituído pela

embarcação e por tudo aquilo que ela contem, num dado momento, deve coincidir com a vertical que

contem o vector da impulsão, sendo que o vector do peso da embarcação se dirige para baixo, isto é,

tem sentido inverso ao da impulsão. Se, por causa da incorrecta distribuição dos pesos, ou por acção de

forças exteriores, assim não acontecesse, o barco oscilaria até que esse desiderato fosse atingido. No

momento em que tal se verificasse, o plano de contacto dos dois fluidos, a água e o ar, seccionaria

idealmente o casco, definindo a verdadeira linha de flutuação. Portanto, essa linha só é coincidente com

a que nós desenhamos no projecto se for verificada a condição que acabei de referir. Já no que se refere

às posições relativas dos dois centros na linha vertical que contém os vectores correspondentes, isto é,

o da impulsão e o do peso, a discussão é mais complexa. Sendo bastante fácil determinar o centro de

flutuação a partir das linhas do barco, com meia dúzia de cálculos, porque se trata de encontrar o centro

de gravidade de um volume de densidade uniforme, sem vazios, o mesmo não se pode fazer para calcular

o centro de gravidade. A heterogeneidade dos materiais que constituem a embarcação e os seus

pertences, as diferentes densidades e as localizações de todos os componentes relativamente ao

sistema de eixos coordenados a que recorremos para situar os objectos no espaço, dão-nos logo a ideia

Page 13: Desenho de embarcações de recreio

Pag. 13

de que não estamos em presença de um trabalho simples. Não é coisa impossível de executar, mas faz

parte daquele grupo de tarefas que os projectistas abominam, por as considerarem sumamente

maçadoras. Esta tarefa encontra-se ao mesmo nível de criatividade da medição e da orçamentação, nos

projectos de arquitectura. Não é por outra razão que os arquitectos portugueses, principalmente os mais

idosos, estão sempre a arranjar pessoas que se encarreguem desses trabalhos, para não terem de os

fazer!

Só para levantar a ponta do véu, direi que é costume, em muitas situações, recorrer ao uso de lastro

móvel para equilibrar as embarcações, mas não se pode pensar neste artifício como se dispuséssemos

de uma panaceia ou de uma solução miraculosa. Há limitações de variadíssima ordem que não devemos

ignorar, nomeadamente o facto de estarmos a recorrer ao transporte de um peso morto que rouba a

potência do motor, só porque não fomos capazes ou não estivemos preocupados em prever a colocação

das coisas mais pesadas nos lugares adequados. É preciso lembrar, neste momento, que há barcos que,

pelas suas características intrínsecas tem de usar lastro em percentagem muito elevada, e isso facilita-

nos as coisas neste aspecto particular, mas falaremos do assunto quando for oportuno. O empenho na

determinação rigorosa do centro de gravidade de um objecto flutuante, apesar de necessário, não

precisa de ser levado longe demais, pois tem como limite o bom senso que deve presidir a todos os actos

do projecto. É por esse motivo que não faria qualquer sentido levar em consideração a permanência de

um casal de namorados, apaixonadamente abraçados na proa do Titanic, com o olhar perdido no

horizonte, porque o peso dessas duas pessoas não influenciaria significativamente a posição da linha de

flutuação desse navio de proporções colossais, mesmo tendo em consideração que os extremos das

embarcações são, por razões óbvias, os piores sítios para colocar objectos pesados!

Vamos analisar, agora, o desenho que se encontra na figura nº1. O que aqui está em causa é uma

representação esquemática, em três projecções, do volume de um troço da proa de uma embarcação,

sem quaisquer pretensões de autenticidade. O seu objectivo é o de mostrar como cada ponto é

representado nas três vistas, na sequência do seccionamento do volume do casco por planos de perfil,

de frente e horizontais, definindo assim as curvas que caracterizam a forma do objecto. Repetindo a

operação de seccionamento tantas vezes quantas as necessárias, atinge-se uma representação

exaustiva da querena, cuja análise permite ao projectista compreender completamente a forma que está

a conceber, ao mesmo tempo que vai eliminando eventuais incorrecções ou deformidades. Trata-se de

um processo iterativo que só termina quando nos consideramos satisfeitos com a forma desejada. Tal

como é referido no texto que acompanha a figura, também foi representado um plano de rampa, cuja

finalidade é a de determinar uma diagonal. Estas curvas são importantes, pelo menos em certos tipos

de cascos, para termos a certeza de que a embarcação, quando está adornada, continua a deslizar sem

grandes problemas, não apresentando irregularidades naquelas partes que só contactam com a água

nessas condições. Veremos nas figuras seguintes, que representam vários tipos de embarcações de

recreio, qual é a aparência das linhas, as diagonais incluídas. É fundamental que todas as curvas

Page 14: Desenho de embarcações de recreio

Pag. 14

indicadas tenham um desenvolvimento suave, sem protuberâncias ou concavidades. Para o seu desenho

recorremos a escantilhões de vários formatos, que foram concebidos expressamente para esse fim e se

designam pelo nome de curvas de Copenhaga. Existem algumas dezenas, com tamanhos variados, que

hoje se fabricam em chapa de vidro acrílico. Antes eram feitas de baquelite e de outros materiais

semelhantes. São numeradas para efeitos de identificação e a sua correcta utilização exige bastante

treino. Além das curvas de Copenhaga há, também, os virotes, peças finas e longas, umas de secção

uniforme e outras de secção variável, que se imobilizam na prancheta por meio de pesos de chumbo ou

de ferro, nos quais está fixada uma ponta de aço que se apoia na parte superior do virote onde, em geral,

foi praticada uma concavidade para melhor fixação da referida ponta. Os virotes antigos eram de madeira

flexível mas agora, tal como as curvas de Copenhaga, também se fabricam em metacrilato de metilo. O

facto de se usarem virotes para o desenho das curvas, e de a sua manutenção sobre a prancheta, com

a curvatura adequada, exigir a aplicação de cerca de uma dezena de pesos de 1,5 a 2,5 quilogramas

cada um, obriga a que o plano de desenho seja mantido na posição horizontal, disposição que pode

representar inicialmente um inconveniente para os projectistas que estão habituados a trabalharem com

a prancheta inclinada, ou na posição vertical, como era o meu caso quando comecei a desenhar barcos.

Sendo certo que quem desenha está cada vez mais dependente do computador e que já se vêem poucos

estiradores nas salas de desenho, não posso deixar de referir que, hoje, estão disponíveis no mercado

sistemas lógicos, uns simples e baratos, outros complexos e dispendiosos, cujos programas foram

concebidos expressamente para o desenho de embarcações. Alguns desses programas tem, ainda, a

vantagem de procederem aos cálculos daquelas quantidades cujo conhecimento é fundamental para o

desenvolvimento do projecto e que, quando feitos manualmente se tornam aborrecidos, além de

representarem uma grande perda de tempo. Contudo, há que ter em devida conta o valor heurístico que

representa a execução dos cálculos em máquinas elementares, sem possibilidade do uso de algoritmos

ou do recurso a programação, facto que tem sido esquecido em muitos ramos da técnica e da ciência. A

feitura dos cálculos desta maneira penosa, pelo menos quando se aprende, implica a introdução de

correcções, que é preciso fazer repetidamente até se atingirem resultados satisfatórios. Isto permite

sentir a evolução das soluções e compreender efectivamente as relações entre as diversas variáveis

contidas nas fórmulas. Os engenheiros e os arquitectos mais idosos, que aprenderam a calcular

estruturas de edifícios pelos métodos iterativos (Cross e Kani), sabem perfeitamente do que estou a

falar. No meu caso, a questão resolveu-se com a maior facilidade pois não me sinto vocacionado para a

aprendizagem dos instrumentos informáticos, entre outras razões, porque entendo que me roubam o

prazer da utilização dos meios tradicionais do desenho. Deixo essa nova abordagem para aqueles que

estão mais interessados nos processos mais recentes e não se importam de pôr de parte o lápis e a

borracha. Na bibliografia indicarei, pelo menos, um livro que fornecerá indicações sobre o tema dos

meios informáticos. Devo insistir, ainda uma vez, no facto de que o recurso ao computador, na fase de

aprendizagem, dificulta, a meu ver, uma completa compreensão dos argumentos que sustentam as

decisões do desenho, limitando a criatividade de quem projecta.

Page 15: Desenho de embarcações de recreio

Pag. 15

Desenhei os planos geométricos esquemáticos contidos nas figuras 2 a 5, sem grandes preocupações

de rigor. São exemplos que só servem para que os leitores fiquem com uma ideia aproximada de alguns

tipos comuns de embarcações que convêm ter presentes, mas que não esgotam, nem de perto nem de

longe, todas as possibilidades de responder às várias exigências funcionais e formais que estes

artefactos nos colocam. Esclareço que, por razões de simplificação e de clareza, as secções transversais

que estão representadas em cada um dos desenhos são relativamente poucas e, sempre, em número

de sete, definindo seis intervalos iguais no comprimento da linha de água que, supostamente,

corresponde à flutuação da embarcação em condições normais de carga. Nas situações correntes de

desenho, o número de curvas que definem a forma, incluindo as referidas secções transversais costuma

ser maior, dependendo das dimensões do artefacto. É, contudo, imperativo que as secções transversais

que figuram dentro dos limites da linha de flutuação sejam equidistantes e em número impar, para que

se defina um número par de intervalos iguais. Só deste modo é possível proceder aos cálculos iniciais

(volume submerso, deslocamento e centro de flutuação), recorrendo à utilização da primeira regra de

Simpson, que estudaremos adiante. Fica desde já feito o aviso de que, por vezes, é preciso intercalar

mais secções em determinados pontos do casco, para que se consiga uma melhor definição da sua

geometria, mas estas secções auxiliares não se usam na determinação das variáveis referidas, pelo que

a sua área não é calculada, contrariamente ao que ocorre com as áreas das outras. Tal como referi antes,

para além das disposições que derivam de exigências devidamente sustentadas, técnica ou

cientificamente, há nos desenhos do plano geométrico uma série de convenções que geralmente se

respeitam, embora tal prática só esteja apoiada na tradição. Por exemplo, nas vistas laterais e inferiores,

o casco é habitualmente representado com a proa virada para o lado direito do desenho, numerando-se

as secções transversais da direita para a esquerda, a partir de zero, inclusive, sem considerar aquelas

que estão para lá dos limites da linha de flutuação contida no plano que constitui a interface dos dois

fluidos. Como é evidente, para efeito dos cálculos a que nos estamos a referir, só está em causa o volume

do casco situado dentro de água, isto é, as obras vivas (querena). Outras convenções serão visíveis ao

longo da obra, mas não vejo qualquer necessidade de chamar a atenção para elas, neste momento, pois

são facilmente identificáveis.

Vamos agora analisar, com algum detalhe, os desenhos das figuras 2 a 5. Começando pela observação

do barco representado na figura 2, logo nos apercebemos de que é um casco tradicional de barco à vela,

com uma quilha fixa relativamente longa, se tivermos em conta os modelos comerciais mais recentes e,

bem assim, as embarcações de regata, desenhadas com a obsessão da velocidade. Nos tempos que

correm este casco é considerado pesado, mas na época em que estas formas eram populares tal

afirmação daria vontade de rir. Por causa da grande evolução que se verificou durante os últimos

cinquenta anos, quer nos materiais utilizados na construção, quer nas técnicas de fabricação, os barcos

tem vindo a reduzir o seu peso de maneira drástica, sem que isso se traduza na perda da resistência

mecânica e da resiliência. Por outro lado, é preciso não esquecer que, quando se encomenda uma

unidade projectada expressamente para responder a um programa, ou se compra um barco de série, o

Page 16: Desenho de embarcações de recreio

Pag. 16

que se está a pagar é, em grande parte, a quantidade e a qualidade dos materiais que lá se colocam.

Daí que os barcos mais leves, construídos com materiais de qualidade questionável, devam ser mais

baratos, se o seu preço não estiver inflacionado por factores alheios à economia do fabrico.

Não me parece que seja necessário aduzir argumentos para sustentar a constatação de que está em

marcha um certo revivalismo formal em muitos domínios do desenho do ambiente construído, desde os

edifícios aos automóveis. E as embarcações de recreio não fogem a esta regra. É por causa desta

tendência actual, cujas motivações são bastante complexas, que estão outra vez a construir-se

embarcações deste género. Para além das razões obscuras, entre as quais parece avultar o

conservantismo formal derivado do enjoo que provoca nos consumidores a gratuitidade de muitas

soluções modernas de desenho, que os seus autores nos impingem como sendo o último grito da moda,

não pode deixar de se afirmar que este tipo de casco é muito mais confortável e seguro do que o das

embarcações dotadas de quilhas estreitas e profundas e de lemes em forma de sabre, as quais, em

mares agitados, se movimentam abruptamente, com grave prejuízo para os estômagos e a boa

disposição do pessoal a bordo, para não referir efeitos eventualmente mais graves. É claro que, por causa

da diferença das superfícies molhadas, tratando-se de duas embarcações com dimensões semelhantes,

o nosso barco será ligeiramente mais lento em algumas situações de vento, mas muito mais fácil de

manter no rumo desejado. O pouco que se ganha em ligeireza perde-se, seguramente, em conforto,

tranquilidade e facilidade de manutenção do rumo. Sempre me pareceu irracional tentar melhorar a

velocidade em algumas décimas de nó, à custa da segurança e da boa disposição dos tripulantes. Quem

tem pressa deve ir de automóvel ou de avião, não deve utilizar um barco, porque a persistência nessa

atitude faz levantar justificadas dúvidas sobre a inteligência e a sanidade mental da pessoa que opta por

este meio de transporte, em tais condições!

Aproveito a presente oportunidade para dizer algo sobre as questões da resistência hidrodinâmica, isto

é, sobre as forças que se opõem ao movimento das embarcações. O atrito na água e a resistência que

deriva da formação de ondas resultantes da deslocação do barco são as forças mais significativas para

as embarcações que se deslocam a velocidades normais. A resistência parasita devida aos

equipamentos salientes do casco (hélices, veios, suportes, etc.) e a resistência do ar são pouco

importantes nos regimes de velocidade mais baixos, embora seja conveniente tê-las em devida conta

nas embarcações planantes, que mal tocam na superfície da água quando se deslocam a alta

velocidade. Mas, para interpretar correctamente as curvas de resistência representadas na figura 6 é

preciso adiantar mais algumas noções cuja racionalidade não é evidente. Note-se que ainda hoje

continuam a verificar-se lacunas importantes nas explicações teóricas com que os investigadores tentam

tornar inteligíveis os fenómenos que ocorrem com a deslocação dos cascos na interface da água com o

ar. Há mesmo alguma controvérsia entre especialistas e os textos mais conhecidos divergem na

apresentação das matérias mais complexas. É com esta reserva que deve ser lido o que se diz em

seguida.

Page 17: Desenho de embarcações de recreio

Pag. 17

Primeiro que tudo há que referir que o atrito provocado pelo contacto da água com a superfície do casco

resulta, obviamente, da quantidade dessa superfície e da sua rugosidade, entre outros factores cuja

reduzida importância não justifica que sejam referidos nesta obra de carácter geral. Quanto à resistência

derivada da formação de ondas pelo movimento das embarcações, verifica-se que ela resulta, em grande

parte, da forma e do volume das querenas, na medida em que o referido movimento provoca um aumento

de pressão na parte anterior dos cascos, causando a distorção da superfície líquida. Contrariamente ao

que acontece com o atrito, este tipo de resistência depende pouco da viscosidade da água e só se verifica

se o flutuador em causa se deslocar na zona de contacto de dois fluidos com diferentes densidades que,

no caso que nos ocupa, são a água e o ar. O movimento da superfície da água é um fenómeno

essencialmente gravitacional e é por este motivo que não se constata a existência de resistência

provocada pela formação de ondas quando um submarino se desloca submergido ou quando um avião

voa no ar.

Ainda no século XIX, alguns físicos ingleses e de outras nacionalidades, procuraram encontrar uma

relação entre a resistência e a velocidade de objectos flutuantes na água, tendo acabado por descobrir

várias fórmulas experimentais de que falaremos mais adiante. Desses trabalhos experimentais decorre

que o atrito aumenta uniforme e suavemente com o aumento da velocidade da embarcação, enquanto

que a resistência devida à formação das ondas sofre um aumento abrupto a partir de um determinado

valor da razão entre a velocidade e a raiz quadrada do comprimento da linha de água, no caso das

embarcações de deslocamento. Por outro lado, verifica-se que, nos regimes mais baixos da velocidade,

é o atrito que representa a maior fatia da resistência, enquanto que a partir do momento em que aquela

razão atinge um determinado valor, passa a verificar-se o contrário.

Voltando ao tema das embarcações representadas nas figuras 2 a 5, detenhamo-nos na da figura 3. Está

aqui representada uma pequena embarcação à vela, com um peso muito reduzido, concebida para usar

uma superfície de velame comparativamente grande, que lhe permitirá deslocar-se velozmente, com

pouco vento, em águas protegidas. A sua estabilidade é baixa, não somente por causa da forma das

secções transversais, muito arredondadas na zona do encolamento, mas principalmente pelo seu baixo

deslocamento (peso) e pela ausência de lastro fixo. Nestas condições, a sua estabilidade depende

fundamentalmente da tripulação, que pode ser obrigada a pendurar-se na borda, ou em trapézios,

esforçando-se bastante para a manter equilibrada. Neste exemplo, a quilha e o leme apresentam a

possibilidade de rodarem em torno de um eixo e de serem parcialmente escamoteáveis, com vista à

redução do calado e da superfície molhada. Esta disposição introduz alguma complexidade adicional no

projecto e na construção do barco mas permite diminuir o atrito, obtendo-se, assim, maior velocidade

quando se navega com ventos da alheta ou de popa. No fabrico desta embarcação deve fazer-se apelo

a materiais leves e resistentes, para que uma execução descuidada não venha a comprometer aquilo

que o desenho das linhas pretende indiciar.

Page 18: Desenho de embarcações de recreio

Pag. 18

Olhando agora para a figura 4 vemos a representação esquemática das linhas de um barco a motor para

serviço pesado. Pode ser usado para a faina da pesca ou como barco de recreio, de grande

deslocamento, susceptível de aguentar qualquer borrasca, sem problemas. Pode ser construído com

materiais e técnicas tradicionais, devendo dimensionar-se os seus elementos estruturais com elevadas

margens de segurança, sem preocupações de poupar no peso. A forma do casco permite-lhe transportar

equipamentos e vitualhas em quantidades suficientes para permanecer no mar por longos períodos, com

várias pessoas a bordo. Sendo uma embarcação de grande deslocamento, a sua estabilidade não é

praticamente afectada por variações de carga relativamente importantes. A genealogia das suas formas

entronca na das que tem vindo a ser utilizadas nas traineiras do Atlântico Norte, onde as condições de

tempo, geralmente adversas, obrigaram os pescadores a recorrerem a este tipo de cascos, cujas

oscilações em mares encapelados são relativamente lentas, comparativamente com o que ocorre com

a embarcação seguinte.

A figura 5 representa uma forma de casco muito comum nos dias actuais. A maior parte dos barcos de

recreio movidos exclusivamente a motor, de grande série, que hoje se fabricam, tem cascos semelhantes

a este, embora grande parte deles não tire qualquer partido da sua forma. Trata-se de um casco planante,

o que quer dizer que, a partir de uma certa velocidade deixa de se deslocar de acordo com o princípio de

Arquimedes. Mas, para que esta condição se verifique, é preciso que a relação do peso total com a

potência dos motores seja inferior a pouco mais do que 15 quilogramas por cavalo de potência efectiva.

É claro que o desenho da parte imersa do casco tem de obedecer a determinadas regras geométricas

que implicam que os centros de flutuação e de gravidade sejam localizados fora dos limites tradicionais,

ficando muito recuados. Vemos neste desenho que a parte posterior da querena mantém a mesma forma

em todas as secções. Como se pode verificar pela observação do plano geométrico, os dois lados do

fundo apresentam um diedro constante, a partir da secção mestra. Dir-se-á, por agora, que não convém

que o ângulo deste diedro seja superior a 165º. Quanto menor é o ângulo, maior é o calado e mais pesada

e segura é a embarcação, mas maior tem de ser a potência do motor, para que se cumpra o requisito da

relação entre o peso e a potência. No entanto, advirto o leitor de que não deve ficar com a ideia de que

todos os cascos que podem planar tem arestas e, muito menos, de que todos os cascos com arestas

podem planar. Há barcos com cascos redondos que também planam e puros barcos de deslocamento

que não tem o casco redondo. Contudo, a forma indicada no desenho é a mais eficiente para o fim

pretendido, embora seja menos confortável e menos resistente aos impactos do que um casco com

secções convexas, como qualquer pessoa com alguns conhecimentos de resistência dos materiais bem

compreende. Tal como antes foi vagamente assinalado, este tipo de casco tem o centro de flutuação

muito recuado, uma vez que a maior parte do volume imerso se situa entre a secção mestra e a popa. É

por este motivo que o seu movimento em águas agitadas é irregular e pode mesmo ser perigoso,

contrariamente ao que acontece com o barco da figura 4, mais lento, mais seguro e mais económico. Só

devemos desenhar uma embarcação que plane se dispusermos de potência de cruzeiro suficiente nos

Page 19: Desenho de embarcações de recreio

Pag. 19

motores para conseguir esse efeito e se soubermos que a sua utilização habitual não implica a

navegação em condições de mar adversas, com ondulações que transformam o prazer de navegar num

verdadeiro tormento. Só em águas calmas é que faz sentido o recurso a um barco como o da figura 5,

cuja construção, equipamento e manutenção são dispendiosos e cujo consumo de combustível é

proibitivo. É claro que, se o conhecimento atempado da previsão do tempo nos leva a abandonar um

local em vias de se tornar perigoso, o barco da figura 5 permite fazê-lo muito mais rapidamente do que

o da figura 4, o que não deixa de ser uma vantagem.

Nesta descrição sintética de tipos de embarcações ficaram de lado muitos exemplos interessantes,

nomeadamente os multicascos. Trimarans e catamarans, a motor e à vela, podem constituir motivo de

grande prazer, tanto na execução do projecto, como na sua utilização. Mas este texto não pretende ser

exaustivo, pelo que o leitor que esteja interessado em estudar estes e outros temas terá de aguardar

algum tempo e, eventualmente, de procurar documentação em textos especializados.

Vamos falar, agora, das coordenadas que, juntamente com o plano geométrico, constituem o ponto de

partida para um verdadeiro projecto de embarcação. Quando se pretende construir uma embarcação, a

partir do plano geométrico (e dos desenhos de construção), a primeira coisa a fazer é reproduzir esse

conjunto de rectas e de curvas, em tamanho natural, usando para o efeito um local com as dimensões

adequadas, que disponha de um pavimento totalmente desempenado, onde se pode desenhar. É aqui

que entram as coordenadas, pois a ampliação das linhas, exclusivamente com base nos desenhos à

escala, é uma tarefa quase inviável. As coordenadas são determinadas pelo projectista durante a fase

de concepção e apresentadas sob a forma tabular, constituindo um conjunto de dimensões lineares que

resultam da medição de distâncias entre a superfície do casco e certas linhas e planos de referência, a

saber, alturas a partir da base, larguras a partir do plano central e distâncias aos eixos (diagonais). Em

rigor, pode afirmar-se que é possível reconstituir as linhas, em tamanho natural, dispondo

exclusivamente da tabela das coordenadas, sem conhecer os desenhos. É importante perceber que a

execução do desenho das linhas, no pavimento da sala do risco, implica a utilização de virotes de grande

comprimento, para que as curvas se desenvolvam perfeitamente desempenadas, sem irregularidades.

Por mais cuidado que o autor do projecto tenha no desenho do plano geométrico e na determinação das

coordenadas haverá sempre correcções a fazer na passagem para as dimensões reais, que serão tanto

menores quanto maior for o rigor colocado no desenho das linhas, na fase de projecto.

Às vezes, quando o local onde se vão desenhar as linhas não tem dimensões suficientes, pode usar-se

o tamanho natural para o desenho das secções transversais, enquanto que a vista lateral e a vista inferior

e, bem assim, as diagonais, são representadas em escalas menores. Aplica-se o tamanho natural nas

larguras e nas alturas e metade ou um terço das dimensões reais nas medições longitudinais. Este

método, apesar de apresentar as linhas de água, as secções longitudinais e as diagonais com curvaturas

superiores às reais, permite executar moldes correctos das secções transversais, para posterior fixação

Page 20: Desenho de embarcações de recreio

Pag. 20

na estrutura de suporte, onde se vai construir a embarcação ou o molde, ou mesmo para a execução das

secções definitivas, tudo dependendo do método de construção e dos materiais a utilizar. Alguns

projectistas, para não aumentarem excessivamente as dimensões das folhas de papel onde representam

o plano geométrico e, ao mesmo tempo, para diminuírem as possibilidades de erro nas mudanças de

escala, usam também escalas diferentes para as diversas vistas, maximizando a escala das secções

transversais, mas representando as três vistas sobrepostas. Embora seja um pouco mais difícil de

interpretar um desenho executado segundo este processo, a utilização de escalas mais próximas da

realidade dimensional permite aumentar o rigor na determinação das distâncias. O que considero mais

aconselhável e faz sentido é desenhar um conjunto de linhas na forma convencional e, no caso de se

considerar conveniente, desenhar outro com escalas diferentes, para posterior utilização na elaboração

da tabela das coordenadas.

Convém não esquecer que o desenho do plano geométrico utilizando meios informáticos permite resolver

o problema do rigor dimensional das coordenadas com maior facilidade, facto que constitui uma

vantagem nos processos de fabricação em série de embarcações cujos componentes são executados

em plásticos reforçados com fibras. Nestes casos a execução do molde e do contramolde, sem falhas, é

do maior interesse, na medida em que os erros que persistirem nestes suportes da construção final são

transferidos para todas as cópias que deles se retirarem.

Page 21: Desenho de embarcações de recreio
Page 22: Desenho de embarcações de recreio
Page 23: Desenho de embarcações de recreio
Page 24: Desenho de embarcações de recreio
Page 25: Desenho de embarcações de recreio
Page 26: Desenho de embarcações de recreio

Pag. 21

III.

VOLUME SUBMERSO E DESLOCAMENTO.

CENTRO DE FLUTUAÇÃO E CENTRO DE GRAVIDADE.

IMERSÃO E CAIMENTO.

Neste capítulo vamos retomar a análise de algumas situações que já foram ligeiramente abordadas no

capítulo anterior e tratar de esclarecer a localização no espaço, de dois pontos que, de acordo com os

princípios gerais da hidrostática, definem a resultante de grandezas vectoriais de que o conhecimento é

indispensável para que o artefacto que estamos a conceber cumpra adequadamente as funções

denotadas previamente fixadas no programa. Contudo, nunca nos devemos esquecer de que as ciências

exactas devem ser aplicadas com as reservas necessárias, na medida em que os modelos abstractos

que concebemos a partir dos conhecimentos científicos são, em geral, aproximações bastante grosseiras

e limitadas da realidade, só a reproduzindo parcialmente. Sendo certo, por outro lado, que o

conhecimento científico está em constante mutação, na sequência dos avanços culturais, do progresso

das investigações e da consequente alteração das teorias, pode dizer-se, como já o fez um pensador do

século XX, muito citado mas pouco conhecido, que este tipo de conhecimento é o paradigma do

conhecimento errado. Assim, quando os projectistas e técnicos recorrem à ciência para tomarem

decisões de projecto, nunca devem perder de vista a realidade com que estão confrontados, recorrendo,

sempre que possível, ao conhecimento empírico, para validação das opções tomadas. Há, na construção

naval, uma longa tradição de aprender com os desastres e a análise e o tratamento estatístico dos

eventos nefastos cuja explicação não é óbvia, constitui um manancial de regras para bem conceber e

construir, que nunca deve ser menosprezado por quem tem a responsabilidade de projectar. As

sociedades de classificação de navios que estão ligadas às grandes empresas seguradoras produzem,

compilam e publicam essas regras, alterando-as sempre que acontecimentos não previstos, depois de

devidamente estudados, tornam evidentes as falhas que ocorrem nas normativas e nos protocolos em

vigor num dado momento.

Vamos começar pelo cálculo do volume imerso da embarcação que está esquematicamente

representada na figura 2. Tal como já anteriormente foi referido por mim, trata-se de um exemplo pouco

rigoroso, como os restantes que se seguem, mas que serve perfeitamente para exemplificar a aplicação

da primeira regra de Simpson, que é o método mais comum, de entre vários de que dispomos, para a

determinação do volume de água deslocado pelo casco quando flutua no plano horizontal de cota 0. E

consequentemente, do peso total da embarcação. Utilizando um planímetro, um integrador, ou, para

quem não dispõe destes instrumentos de medida, recorrendo a um dos métodos geométricos mais

usados para a determinação aproximada de áreas de figuras planas irregulares, procedemos à medição

da superfície das metades das secções transversais, abaixo do referido plano, tal como se apresentam

no desenho onde estão representadas as secções transversais. Porque neste caso se trata de áreas

Page 27: Desenho de embarcações de recreio

Pag. 22

desenhadas à escala 1:25, multiplicamos o valor obtido por 25X25=625, para ficarmos com o referido

valor, em tamanho real.

Assim teremos:

Sn = A / 2

0 = 00,00 dm2

1 = 11,28 dm2

2 = 29,58 dm2

3 = 49,05 dm2

4 = 49.38 dm2

5 = 33,13 dm2

6 = 00,00 dm2

Aplicando estes valores como se fossem dimensões lineares, a uma escala conveniente, marcamo-los a

partir de uma recta de referência, mantendo as posições relativas das secções e procedendo, de seguida,

ao desenho da curva das áreas que nos permite visualizar a distribuição do volume submerso ao longo

do plano longitudinal. Estando as medições bem executadas e as linhas do plano geométrico bem

desenhadas, a curva das áreas deve apresentar um desenvolvimento harmonioso, sem saliências ou

reentrâncias abruptas, a não ser que se trate de uma embarcação com quilha de barbatana ou de bolbo

lastrado, o que não é o caso. Se a curva não tiver um desenvolvimento regular é porque as medições

e/ou os cálculos de algumas das áreas das secções estão errados e torna-se indispensável repeti-los,

até que a referida linha apresente uma curvatura verosímil. Para efeitos comparativos, com vista a

ganharmos um conhecimento perfeito do aspecto das coisas, é conveniente observarmos, sempre que

isso seja possível, os planos geométricos e as curvas das áreas de embarcações semelhantes.

Vamos, agora, construir uma tabela para a determinação do deslocamento da embarcação e para a

localização da linha vertical que contem o seu centro de flutuação, quando esta se encontra em repouso.

Veremos mais adiante que, quando um barco oscila, a forma do volume submerso se altera e,

consequentemente, o seu centro de flutuação se desloca.

Page 28: Desenho de embarcações de recreio

Pag. 23

1ª 2ª 3ª 4ª 5ª 6ª 7ª

Sn A/2 (dm2) X D X F ∑ b

0 0,00 1 0,00 3 0,00

1 11,28 4 45,12 2 +90,24

2 29,58 2 59,16 1 +59,16

3 49,05 4 196,20 0 0,00 +149,40

4 49,38 2 98,76 1 -98,76

5 33,13 4 132,52 2 -265,04

6 0,00 1 0,00 3 0,00 -363,80

∑ a = 531,76 ∑ bt = - 214,40

Distância entre secções transversais, medida no plano geométrico: d = 10,0 dm

Cálculo do volume submerso: 3

da2V

310,0531,762

V

33545,967dmV

Cálculo do peso total da embarcação (deslocamento):

D (água doce) = 3545,067 x 1 = 3545,067 kg

D (água salgada) = 3545,067 x 1,026 = 3637,387 kg

Cálculo da posição longitudinal do centro de flutuação:

a

d tblF

36531

010

,, -214,40

lF

Fl = -4,03 dm, em direcção à popa (por ser um valor negativo), a partir da secção mestra S3.

Quanto à fundamentação teórica deste método (ou de outros que podemos aplicar como sejam, por

exemplo, a regra dos trapézios e a regra de Tchebycheff) e, bem assim, do cálculo da localização

transversal do centro de flutuação, remeto o leitor para um qualquer texto de arquitectura naval, onde

pode encontrar as explicações necessárias. Direi apenas que, neste método, os troços de curva

compreendidos entre linhas consecutivas, representando as secções transversais, são considerados

como sendo segmentos de parábolas e que conhecimentos elementares da análise matemática e da

física permitem perceber, sem grandes dificuldades, porque é que as coisas se fazem desta maneira e

não de outra. Quanto aos multiplicadores que estão indicados na terceira e na quinta colunas da tabela

anterior, basta dizer que a sua aplicação está relacionada com o número de secções que, como antes

foi dito, tem de ser sempre em número ímpar, para que os intervalos sejam pares. Suponhamos, então,

Page 29: Desenho de embarcações de recreio

Pag. 24

que, em vez de sete temos onze secções e, naturalmente, dez intervalos. Neste caso, os multiplicadores

da regra de Simpson serão, sequencialmente:

1, 4, 2, 4, 2, 4, 2, 4, 2, 4, 1.

No que diz respeito aos multiplicadores do centro de flutuação, por que está em causa a determinação

de momentos relativamente à secção mestra, a sequência será:

5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5.

O número 0 corresponde sempre à secção a partir da qual são calculados os momentos, não tendo de

ser, obrigatoriamente, a secção mestra. Mas se for esta a escolhida, os cálculos serão mais fáceis

porque, em condições normais, o centro de flutuação estará mais próximo desta secção do que de

qualquer outra, se esquecermos por momentos as embarcações planantes.

Observando, na figura 2, a curva das áreas e a superfície subtendida entre ela e a corda onde se apoia,

constatamos que não apresenta um desenvolvimento simétrico relativamente à secção mestra. Se esse

facto se verificasse, o cálculo que fizemos para determinar a posição longitudinal do centro de flutuação

daria um resultado final nulo, significando esse valor que os momentos à esquerda e os momentos à

direita da secção mestra se equivaleriam e que a recta que contem o centro de flutuação coincidiria com

a recta que representa a citada secção (S3). Compreende-se facilmente, pois é da natureza da teoria,

que a linha que contem o centro de flutuação divide a referida superfície em duas partes com a mesma

área, embora se apresentem geometricamente diferenciadas. Quanto mais próxima esta linha estiver da

secção mestra da embarcação mais equilibrada é a distribuição dos volumes das obras vivas (querena).

No caso presente constata-se que há menos flutuação do lado da proa pelo que, em situações de mar

agitado, a recuperação da horizontalidade, quando a proa afunda, pode não ocorrer nas melhores

condições e com a rapidez necessária. Um barco deste tipo, com um desenho verdadeiramente

tradicional teria a curva das áreas ligeiramente mais cheia na frente e, provavelmente, mais cavada para

a ré. Relembro que o que se pretende com este exemplo é a possibilidade de exemplificação dos cálculos.

Não está em causa o desenho de uma embarcação perfeita nem isso, sequer, existe. O projecto de

embarcações de recreio, como de qualquer outro artefacto com alguma complexidade, implica uma

cadeia de decisões comprometidas com as opções do programa, tendo sempre em mente que não se

pode ter o melhor de todos os mundos. Nas actividades de concepção, como na vida, nunca se consegue

proceder à optimização simultânea de todos os objectivos porque, muitas vezes, são contraditórios.

No princípio do século XX, as embarcações de recreio e as traineiras de pesca tinham o centro de

flutuação muito próximo da secção mestra, localizando-se, às vezes, para vante do plano transversal que

a contem. Hoje, isso não se verifica e muito menos nas embarcações planantes mas, neste último caso,

Page 30: Desenho de embarcações de recreio

Pag. 25

há exigências de ordem técnico-científica para que tal aconteça. Já falámos disso anteriormente e

voltaremos a falar, com maior profundidade. Contudo, é preciso ter presente que, nas embarcações

modernas, a redução do peso dos materiais de construção e dos motores tornou menos favorável a

relação entre o peso dos tripulantes, dos passageiros e de todas as outras coisas que não estão

permanentemente a bordo e o peso da embarcação e dos equipamentos fixos. Nos barcos antigos, a

partir de certas dimensões, a influência dos itens móveis era quase irrelevante para a variação da

horizontalidade e da posição do seu centro de gravidade. Agora, quando se concebe uma embarcação

de dimensões médias é preciso ter um cuidado acrescido com a distribuição dos pesos, facto que

influencia significativamente o arranjo do seu interior. Veremos adiante, quando falarmos do metacentro,

como as posições do centro de flutuação e do centro de gravidade variam quando o barco é solicitado

por acções externas e pela movimentação de objectos e de pessoas no seu interior. E aprenderemos

como isso pode afectar a estabilidade do flutuador, para o bem e para o mal.

É uma evidência que as embarcações de um só casco (e a maior parte dos multicascos) são simétricas

em relação ao plano longitudinal, por vezes designado por diametral. Por esta razão, o centro de

flutuação fica contido nele. Como já aprendemos a determinar a posição longitudinal do referido ponto,

se nos interessar fixar a sua posição no espaço tridimensional relativamente a um sistema de eixos

ortogonais, basta-nos conhecer a sua altura relativamente à linha de flutuação de referência (neste caso

usaremos a linha -2). Para esse efeito teremos de dividir a querena (obras vivas) num número impar de

linhas de água, equidistantes, e medir seguidamente as suas meias áreas.

Na figura 2 estão representadas cinco linhas de água, (incluindo a linha 0) que dividem verticalmente as

obras vivas em quatro intervalos iguais. Vamos determinar, de seguida, as respectivas superfícies e

repetir as mesmas operações que fizemos para cálculo do deslocamento e da posição longitudinal do

centro de flutuação.

LA A/2 (dm2) × V × F ∑ b

0 452,50 1 452,50 2 +905,00

-1 294,12 4 1176,48 1 +1176,48

-2 120,26 2 240,52 0 0,00 +2081,48

-3 51,45 4 205,80 1 -205,80

-4 19,80 1 19,80 2 -39,60 -245,40

∑ a = 2095,10 ∑ bt = +1836,08

Distância entre linhas de água: d = 2,5 dm

Page 31: Desenho de embarcações de recreio

Pag. 26

Cálculo do volume submerso: 3

2

daV

3

5021020952 ,,V

V = 3491,833 dm3

O valor encontrado para o volume submerso é inferior em cerca de 50 dm3 (1,5%) ao que foi obtido a

partir das secções transversais, facto que nos permite concluir que os cálculos realizados não

apresentam erros significativos. No entanto, o número reduzido de linhas de água e de secções

transversais que utilizámos para explicar o método e, bem assim, a escala muito pequena que foi usada

para a execução dos desenhos justificariam a ocorrência de erros maiores. Variações da ordem dos 5%

no cálculo do volume submerso, usando as secções transversais e as linhas de flutuação, são

perfeitamente toleráveis. Para não correr o risco de que alguns leitores, mais cépticos, fiquem

convencidos que houve alguma batota da minha parte direi, apenas, que o que é verdadeiramente

relevante neste momento é a aprendizagem do processo. Haverá, no futuro, muitas oportunidades para

testar o rigor de execução de desenhos e de medição das áreas, sempre que se usarem escalas de

apresentação compatíveis com as dimensões da embarcação e se recorrer ao planímetro polar.

Continuemos, pois.

Cálculo da posição vertical do centro de flutuação (com referência à linha de água -2):

a

d tbvF

102095

502

,, 1836,08

vF

Fv = 2,19 dm, acima da linha -2, por ser um valor positivo.

Não suscita um grande interesse, nem é prática corrente, representar a curva de áreas correspondente

às linhas de água. Contudo, para que se fique com uma ideia da distribuição vertical do volume

submerso, no presente caso, fiz a sua indicação à esquerda das secções transversais. Para a execução

da referida curva utilizei os valores obtidos na medição das superfícies das linhas de água, recorrendo a

uma escala conveniente, tal como tinha feito quando desenhei a primeira curva das áreas. Também aqui,

a recta que contem o centro de flutuação divide a figura em duas partes geometricamente (muito)

diferentes, das quais estamos em condições de assegurar a igualdade das suas áreas.

Em termos de modelo físico, podemos afirmar que o centro de gravidade de um corpo, ou de um conjunto

de corpos, é o ponto por onde passa a resultante dos vectores que representam as várias forças

ponderais do corpo, ou do conjunto. Se estiver em causa um objecto rígido, por exemplo, uma viga

metálica de secção variável, diremos que ela fica equilibrada quando a apoiarmos num fulcro cuja aresta

pertence ao plano que contem o centro de gravidade. Vê-se, imediatamente, que estamos a lidar com

momentos, à esquerda e à direita dessa linha de apoio, isto é, com produtos de forças ponderais por

distâncias ao plano que contem o centro de gravidade. Se colocarmos um objecto com o peso de um

quilograma sobre o lado direito da viga, à distância de um metro do centro de gravidade, e se só

Page 32: Desenho de embarcações de recreio

Pag. 27

dispusermos de outro objecto com meio quilograma de peso, para restabelecermos o equilíbrio perdido

teremos, obviamente, de pousa-lo a dois metros de distância, para o lado esquerdo.

md = 1 kg x 1 m = 1 kg.m

me = 0,5 kg x 2 m = 1 kg.m

md = me

Para determinarmos a localização do centro de gravidade de um conjunto tão complexo como é um

barco, com todo o seu equipamento, os tripulantes e tudo o que estes transportam para bordo, é preciso

conhecer o centro de gravidade de cada um desses itens e, naturalmente, o seu peso. Na prática, é

normal fixar a posição de muitos desses centros de gravidade, por estimativa, com base em dados da

experiência, a não ser quando os objectos em questão tem pesos muito elevados, como é o caso de

certos equipamentos metálicos, dos motores, dos tanques de combustível que lhes estão associados e

dos depósitos de água, quando estamos a lidar com embarcações de dimensões apreciáveis. Há tabelas

técnicas e catálogos de fabricantes que nos podem fornecer informações preciosas, no que se refere a

massas volúmicas dos materiais, ao peso dos equipamentos e, até, à localização dos centros de

gravidade. Se tivermos algum cuidado na avaliação que levarmos a cabo, o resultado final acabará por

ficar muito próximo da realidade, já que é provável que os erros eventualmente cometidos não ocorram

todos no mesmo sentido, o que faz com que se anulem mutua e tendencialmente.

É interessante pensar um pouco, neste momento, nos problemas que se colocam ao projectista quando

pretende localizar objectos cujo peso varia consideravelmente durante uma viagem, como é o caso dos

tanques de combustível. A desatenção a esta questão pode levar a que, durante um longo percurso,

ocorram alterações na horizontalidade das embarcações, com efeitos negativos na sua performance e,

até, na segurança. A distribuição do combustível por vários tanques, criteriosamente implantados, e/ou

a sua localização nas proximidades do centro de gravidade, permitem obviar ao inconveniente a que

referi. Contudo, devemos ter sempre presente a noção de que, com o desenho do plano geométrico,

fixámos definitivamente o centro de flutuação, decisão que nos obriga a distribuir os pesos de tal modo

que o centro de gravidade se situe na vertical que contem esse ponto. Por esta razão, não é de bom

senso terminar o arranjo interior da embarcação, sem deixar uma margem de manobra para a ocasional

deslocação de alguns itens bastante pesados, como pode ser o caso dos motores, ou do lastro, nas

embarcações que o usam. Na sequência do que já foi dito anteriormente a propósito dos tanques de

combustível (ou dos depósitos de água), estes não devem ser usados para ajustamentos de última hora,

por causa das variações de peso, em função do combustível (ou da água) que contêm. O desenho do

interior das embarcações está condicionado pela funcionalidade, pela segurança, pelo conforto dos

ocupantes e pelo imperativo de distribuir os pesos de modo a que o centro de gravidade fique localizado

onde é preciso que esteja. Trata-se, como é óbvio, de um processo iterativo, que não é tão complicado

Page 33: Desenho de embarcações de recreio

Pag. 28

como pode parecer à primeira vista. A sua resolução é facilitada pela análise de exemplos bem sucedidos

e pela experiência que se adquire com o treino e o tempo.

Vamos agora estudar os modos como se calcula a mudança de imersão e de caimento da embarcação,

quando se constata que ela não repousa no plano de flutuação para que foi concebida e se pretende

que tal facto se verifique. Compreende-se que, se a imersão é superior à prevista, isso significa que o

conjunto ficou mais pesado do que era pretendido. Nesta situação pouco haverá a fazer, porque é

provável que não seja possível retirar equipamento de bordo, até ao ponto em que o deslocamento acabe

por atingir o valor projectado. Teremos, em geral, de assumir o novo deslocamento e as consequências

que daí resultam. Mas nem todas serão negativas, embora fique evidente que o aumento do peso e,

consequentemente, da superfície molhada afectarão negativamente a velocidade do barco. É claro que

este inconveniente será muito mais grave em certos tipos de embarcações, como facilmente se conclui

depois do que ficou dito para traz. Se estamos a lidar com um barco a motor, do tipo planante, já sabemos

que teremos de respeitar o limite de peso imposto pela potência efectiva dos motores que foram

instalados. Se esse limite for ultrapassado o barco nunca atingirá uma velocidade que lhe permita planar

e comportar-se-á como um barco de deslocamento, situação que vai colocar o projectista numa posição

pouco confortável perante quem lhe fez a encomenda, tanto mais que essa pessoa e os seus convidados

serão obrigados a sofrer todos os inconvenientes de desconforto e de insegurança que resultam da

localização recuada dos centros de flutuação e de gravidade, sem qualquer vantagem visível.

Se pretendemos determinar um número que nos indique de quantos quilogramas precisamos para baixar

ou elevar o plano de flutuação de um ou dois centímetros, calculamos a área de flutuação, usando a

primeira regra de Simpson, e multiplicamos o valor obtido pela altura que está em causa (1 ou 2 cm).

Como as embarcações de que nos estamos a ocupar, com raras excepções, não tem as bordas verticais

e, portanto, paralelas, o processo que estamos a usar está longe de ser correcto. Mas, para o nível de

rigor pretendido neste género de operação, a aproximação é suficiente, desde que a variação da altura

da linha de água não ultrapasse dois ou três centímetros. Para valores maiores será necessário ter em

devida conta o aumento ou a redução da área de flutuação que resulta do aumento do deslocamento ou

da sua redução, respectivamente.

Aproveitando o exemplo da figura 2, de que nos temos servido para exemplificar os cálculos, vamos

medir, em cada secção transversal, ao nível da flutuação a que corresponde a linha de água 0, a distância

que vai da superfície exterior do casco à recta que representa o plano diametral e inscrever os valores

obtidos na tabela já nossa conhecida.

Page 34: Desenho de embarcações de recreio

Pag. 29

Sn l (dm) × A

0 0,00 1 0,00

1 4,30 4 17,20

2 7,60 2 15,20

3 9,80 4 39,20

4 10,95 2 21,90

5 9,25 4 37,00

6 0,00 1 0,00

∑ a = 130,50

Distância entre secções transversais, medida no plano geométrico: d = 10,0 dm

Cálculo da área de flutuação: 3

2 d aA

3

0105130 ,, 2A

A = 870 dm2

Cálculo aproximado do volume deslocado com 2 cm de imersão: V = 870 x 0,2 V = 174 dm3

Estando em causa uma embarcação que se desloca em águas salgadas, cuja densidade aproximada já

conhecemos, é fácil determinar imediatamente a variação de deslocamento que está envolvida na

operação:

P = 174 x 1,026 P = 178,5 kg

Ficamos a saber que, se levarmos para bordo uma carga de 178,5 kg, a embarcação afunda

uniformemente 2 cm, desde que a distribuição dos objectos seja de tal modo que o centro de gravidade

do conjunto se mantenha na vertical do centro de gravidade da embarcação. No caso em que essa

exigência não fique respeitada, haverá diferença de imersão entre a proa e a popa, situação que

podemos explorar para corrigir qualquer erro de projecto ou de construção.

Como é fácil de perceber, não temos vindo a considerar problemas relacionados com o equilíbrio

transversal das embarcações, porque são coisas que se colocam com menor frequência, embora certos

erros bastante comuns na concepção do arranjo interior possam conduzir a que a embarcação flutue

inclinada para bombordo ou para estibordo. No entanto, as situações mais graves são as que dizem

respeito ao equilíbrio longitudinal e é por esse motivo que também se deve saber como resolver um

problema destes. Vamos recorrer a um método aproximado, porque é o que se costuma fazer quando

estão em causa embarcações de recreio e, também, porque um método mais preciso implicaria o

conhecimento, neste momento, da posição do centro de gravidade e do que são os metacentros e dos

processos de cálculo para a sua localização, de que só falaremos adiante. Para efeitos práticos, é

Page 35: Desenho de embarcações de recreio

Pag. 30

costume assumir que a altura metacêntrica longitudinal, que é como quem diz, a distância do centro de

gravidade ao metacentro longitudinal, é igual ao comprimento da linha de flutuação que corresponde ao

deslocamento que se está a considerar. Uma vez assumida esta simplificação, já podemos determinar a

quantidade de quilogramas por decímetro (kg.dm) que é necessária para corrigir um determinado

caimento. A questão do equilíbrio longitudinal, isto é, da correcção de um caimento para a popa e para

a proa, leva-nos a falar, mais uma vez, de momentos. Não podemos esquecer que um caimento de dois

centímetros significa que a variação é de um centímetro em cada extremo, a não ser que se trate de uma

embarcação planante que, como já foi referido, tem muito mais flutuação à popa e, consequentemente,

os seus centros de flutuação e de gravidade estão muito recuados. O que temos de ter presente na nossa

mente é que a correcção do caimento resulta da soma das duas correcções, à proa e à popa, podendo

as mesmas ser iguais ou diferentes, em valores absolutos, porque em valores relativos só podem ser de

sinais contrários.

Momento para equilibrar longitudinalmente um centímetro: 10

LGM D

m

Foi dito anteriormente que não cometemos um grande erro se assumirmos que GM = L, isto é, que a

altura metacêntrica longitudinal é igual ao comprimento da linha de água. Nessa ordem de ideias,

teremos:

10

Dm

É evidente que se estiver em causa uma correcção de três centímetros teremos de triplicar o valor obtido,

e assim por diante.

A embarcação que nos tem vindo a servir para exemplificar a teoria tem um deslocamento aproximado

de 3637 kg, se considerarmos que o desenho se refere a um barco que vai ser utilizado em água salgada.

Se, quando ele flutuar em repouso, constatarmos que está caído para a popa de três centímetros (1,5 +

1,5), por exemplo, sabemos que precisamos de um momento de 1140 kg.dm para corrigir esta falha.

Senão vejamos: 310

3 3637

cmm 373633 ,cmm m(3cm) = 1091 kg.dm.

Na eventualidade de existir algum lastro móvel no interior da embarcação, facto que é comum em

embarcações deste género, podemos deslocá-lo em direcção à proa de uma distância suficiente, para o

efeito. Suponhamos que o lastro móvel de que dispomos é de 2% do deslocamento, isto é, de cerca de

Page 36: Desenho de embarcações de recreio

Pag. 31

70 kg de lingotes de chumbo. Neste caso teremos de deslocá-los horizontalmente de um pouco mais do

que 1,50 m em direcção à proa, como se constata através deste simples cálculo:

1091 ÷ 70 = 15,58 dm = 1,56 m

Vamos admitir que, ao calcularmos o centro de gravidade da embarcação, na fase de projecto,

constatamos que o referido ponto está recuado de cerca de 0,5 dm em relação ao centro de flutuação.

Sabendo que o seu deslocamento é de 3637 kg, precisamos de reposicionar um ou mais itens, de modo

a que se consiga um momento de 1818 kg.dm (3637 x 0,5), para que o centro de gravidade fique na

vertical do centro de flutuação. Se tivéssemos previsto instalar a bordo um motor auxiliar cujo peso, de

acordo com dados do catálogo, seria de 308 kg, dividiríamos o momento de 1818 kg.dm pelo peso do

motor, chegando, assim, a saber a distância a que é preciso deslocá-lo para atingir o desiderato

pretendido:

1818 ÷ 308 = 5,90 dm = 0,59 m

Sendo viável o reposicionamento do motor, deslocá-lo-íamos de 59 cm, na direcção da proa, e ficaríamos

com o nosso problema resolvido. No caso contrário, teríamos de procurar outros itens e fazer os cálculos

necessários, até que conseguíssemos levar o centro de gravidade ao ponto onde deve estar.

Através da anterior discussão ficámos a saber que, para se conseguir equilibrar um barco cujo caimento

não está certo, teremos de reposicionar o lastro ou parte do equipamento. Também é possível conseguir

esse efeito adicionando lastro ou retirando equipamento, soluções que, como se percebe, não são

geralmente aconselháveis, pelos inconvenientes que podem provocar. Em última análise, se a situação

for verdadeiramente complicada, pode ter de se recorrer a uma solução drástica, que é o redesenho das

linhas para que o centro de flutuação se desloque para a vertical do centro de gravidade. Será um

percurso inverso daqueles que propusemos e, obviamente, muito mais trabalhoso, pois é mais do que

provável que a solução definitiva não seja encontrada à primeira tentativa.

Voltando à questão da determinação do peso de uma embarcação na fase de projecto, é quase certo

que o grau de rigor exigido pode levar-nos à execução de um trabalho enfadonho e demorado. O resultado

final ficará a depender do conhecimento que possuirmos do peso de cada item. Faço notar que os

materiais e os métodos utilizados na fabricação dos cascos e das superstruturas também influenciam,

em certa medida, a quantidade de trabalho a fazer. A propósito, é o que se passa com a construção

tradicional em madeira, em que centenas de pequenas peças ligadas por parafusos e pregos, podem

implicar um esforço de medição e de cálculo para o qual não estamos disponíveis. Um bom exemplo do

que estou a procurar mostrar pode ser apreciado nas páginas 308 a 315 do livro indicado na bibliografia,

Skene’s Elements of Yacht Design (8ª edição), cujo autor preparou este trabalho como suporte da

Page 37: Desenho de embarcações de recreio

Pag. 32

construção do seu iate Pipe Dream, em madeira, com base em métodos tradicionais. Chamo a atenção

para o facto de que o cálculo dos momento só é feito segundo as direcções vertical e longitudinal,

deixando de lado a direcção transversal por não a considerar relevante neste caso. Só para dar uma

ideia da dimensão da tarefa com que nos defrontaremos, refiro agora um exemplo que aparece num

conhecido livro de dois autores suecos (ver a bibliografia), a propósito de uma embarcação à vela, com

motor auxiliar, de doze metros de comprimento total, a construir em resinas plásticas reforçadas a fibra

de vidro. Neste caso, o trabalho de avaliação dos pesos foi feito a partir da divisão do conjunto em catorze

grandes grupos, assim identificados:

Estrutura, zona da proa, cabina da proa, salão, estação de navegação, cozinha, instalações

sanitárias, cabina da popa, poço e zona da popa, instalações mecânicas, equipamento do

tombadilho, armamento e velas, lastro e, finalmente, tripulação, consumíveis e equipamento avulso.

Constatamos que os critérios utilizados na designação dos grupos não correspondem a uma visão

homogénea do artefacto, mas o que é relevante nesta tarefa é estabelecer uma grelha que não deixe

escapar nada de verdadeiramente significativo, independentemente do seu rigor conceptual. Na

sequência deste trabalho inicial, cada um dos grupos a que me referi antes foi subsequentemente

dividido em elementos mais pequenos, totalizando cerca de duas centenas. A cada um dos elementos

da lista foi atribuído um peso, por conhecimento ou estimativa, sendo definida a localização do seu

centro de gravidade segundo três direcções ortogonais, de acordo com a seguinte metodologia:

1. Distância longitudinal, a partir da secção extrema da linha de flutuação do lado da proa, atribuindo

valores positivos na direcção da popa e negativos na direcção contrária;

2. Distância transversal, a partir do plano diametral, atribuindo valores positivos para estibordo e

negativos para bombordo;

3. Distância vertical, a partir do plano de flutuação de referência, atribuindo valores positivos para cima

desse plano e negativos para baixo.

Após a construção da tabela, procedeu-se à determinação dos totais parciais, para cada um dos grupos

e, subsequentemente, dos totais gerais, o que permitiu comparar o peso do conjunto assim obtido com

o deslocamento da embarcação calculado inicialmente e, bem assim, localizar com rigor o centro de

gravidade, obrigatoriamente situado na vertical do centro de flutuação. Pelo meio ficaram alguns

exercícios de ajustamento do volume e da posição do lastro, o qual, com o barco a meia carga, acabou

por atingir a significativa percentagem de 40% do deslocamento, valor perfeitamente aceitável numa

embarcação com o programa pretendido.

Deslocamento a meia carga = 8,12 toneladas;

Lastro = 3,25 toneladas.

Page 38: Desenho de embarcações de recreio

Pag. 33

Oportunamente, se houver condições para isso, quando apresentar o projecto de uma das embarcações

que mostrarei na parte final da obra, será feita a computação dos pesos e da localização do centro de

gravidade, segundo critérios de arrumação e de diferenciação algo diferentes dos que citei e muito mais

simples. Faço notar que é o nosso conhecimento da embarcação, das técnicas e dos materiais de

construção, e dos seus equipamentos que deve orientar a escolha do método e a divisão em grupos e

subgrupos, tendo sempre presente o princípio do menor esforço. Tal como já referi antes, não vale a

pena perder tempo a fazer cálculos e medições, se os resultados a obter não são fiáveis (porque se

desconhecem variáveis importantes), ou são devidos a um excesso de rigor, incompatível com o nível de

aproximação de que somos capazes. Não é o facto de se fazerem muitas contas que torna o nosso

projecto globalmente melhor. Os recursos matemáticos são um meio de que dispomos para serem

utilizados com bom senso e parcimónia, sendo um sinal de inteligência e de lucidez a adopção de uma

atitude permanente de desconfiança perante resultados absurdos ou insólitos, que se afastam da

norma.

Page 39: Desenho de embarcações de recreio

Pag. 34

IV.

METACENTRO, ALTURA METACÊNTRICA E RAIO METACÊNTRICO.

MOMENTO ENDIREITANTE E MOMENTO INCLINANTE.

RELAÇÕES E COEFICIENTES COMPARATIVOS.

CONSTANTES DE FORMA.

Não é fácil compreender, de imediato, os efeitos conjugados das grandezas físicas que concorrem para

a estabilidade dos flutuadores, em geral, e das embarcações, em particular, a não ser quando acontece

que o seu centro de gravidade se situa abaixo do centro de flutuação, na recta vertical que une os dois

pontos. Ora esta condição raramente se verifica. Consideremos o cilindro de material homogéneo cuja

secção se encontra representada no lado esquerdo do topo da figura 8 (cilindro A) e, bem assim, o cilindro

seguinte, do lado direito, constituído por três partes de duas substâncias de diferentes densidades

(cilindro B). É fácil de concluir que o centro de gravidade coincide com o centro geométrico, em ambos

os casos, enquanto que o centro de flutuação está muito abaixo deste ponto, no local correspondente

ao centro de gravidade do volume do líquido que foi deslocado quando nele se mergulharam os referidos

sólidos.

Esta é uma situação em que o equilíbrio do flutuador se designa por indiferente. Se fizermos rodar o

cilindro em torno do seu eixo longitudinal verificamos que ele se imobiliza ao fim de algum tempo, por

acção do atrito, mantendo-se nessa posição até que, sob o efeito de uma qualquer força exterior, seja

posto novamente em movimento. O centro de rotação destes objectos coincide com o seu centro de

gravidade, como facilmente se compreende. O mesmo já não se verifica com o cilindro C (representado

em duas posições diferentes), que é constituído por duas partes de substâncias diferentes, em que a

menor é muito mais densa. A primeira posição corresponde a uma situação de equilíbrio instável, ao

passo que a segunda diz respeito a outra de equilíbrio estável.

Já o mesmo se não verifica com os prismas quadrangulares, de diferentes densidades, representados

na parte inferior da figura. Como eles são homogéneos, os seus centros de gravidade coincidem com os

respectivos centros geométricos. Mas os centros de rotação (os pontos M) encontram-se em várias

posições que dependem do peso dos flutuadores e da sua geometria. Antes de qualquer outra

consideração é preciso dizer que esses pontos se designam por metacentros e que, no caso das

embarcações (e da maior parte dos flutuadores), só permanecem fixos quando estão em causa ângulos

de inclinação infinitamente pequenos, relativamente às posições estáveis. Como facilmente se percebe,

a cada inclinação do plano de rotação de um flutuador, corresponde um metacentro. No que diz respeito

à teoria que sustenta este estudo, por razões de ordem prática, só nos interessam dois conjuntos de

metacentros particularmente importantes, os transversais e os longitudinais.

Page 40: Desenho de embarcações de recreio

Pag. 35

Já é do nosso conhecimento que um barco se pode inclinar em todas as direcções, pela acção de forças

externas ou pelo deslocamento de pesos no seu interior. Por razões de simplificação é comum fazer-se

a análise desses movimentos segundo duas direcções principais, a longitudinal e a transversal. Também

nos dá bastante jeito considerar essas inclinações como independentes e, embora tal assumpção não

seja rigorosamente verdadeira, é assim que os textos de arquitectura naval costumam apresentar o

tema.

Seguindo a prática dos referidos textos vamos começar por abordar as questões relacionadas com a

estabilidade transversal e, consequentemente, por caracterizar adequadamente o conjunto de

metacentros que lhe corresponde, os metacentros transversais. No caso em que, por acção do vento,

das ondas, da movimentação de objectos pesados no interior da embarcação, ou de quaisquer outros

factores pertinentes que não afectem o deslocamento, uma embarcação adorna de um determinado

ângulo α, passando do plano de flutuação F L para o plano F’L’, constatamos que o valor do volume

imerso não se altera e que o princípio de Arquimedes continua a vigorar. Os vectores do peso (P) e da

impulsão (I) permanecem iguais em valor absoluto, com direcção vertical e sentidos contrários. Contudo,

o centro de flutuação C desloca-se da sua posição inicial para a posição C’, em direcção ao bordo que

fica mais próximo da superfície da água.

Observemos cuidadosamente os desenhos esquemáticos que se situam na parte superior da figura 7.

As cunhas FOF’ e LOL’, que se prolongam a todo o comprimento do casco, são designadas por cunha

emersa e cunha imersa, respectivamente. O ponto Mα, determinado pela intersecção da vertical que

passa pelo novo centro de flutuação C’ com a recta que contem o centro de flutuação inicial C, e o centro

de gravidade G, é designado por metacentro (do ângulo α). O segmento que liga o centro de gravidade

ao metacentro chama-se altura metacêntrica (GMα = r - a) e o que liga o centro de flutuação ao

metacentro designa-se por raio metacêntrico (FMα = r). A distância que vai do centro de gravidade à

vertical que passa pelo novo centro de flutuação C’ é conhecida como braço endireitante (GZ). Como se

pode concluir facilmente, sendo iguais e opostos os vectores do peso e da impulsão, formam um binário

cujo valor é equivalente ao produto do deslocamento por GZ. Designamos esta quantidade por momento

endireitante: m = P x GZ.

Se construirmos uma curva, num sistema de dois eixos coordenados ortogonais, em que inscrevemos no

eixo vertical os valores do momento endireitante correspondentes aos diferentes ângulos de inclinação

e no eixo horizontal os referidos ângulos, teremos uma representação da curva da estabilidade estática.

A área que fica subtendida à curva, até um determinado ângulo, representa o trabalho que foi produzido

para que a embarcação se incline até esse ponto e equivale à estabilidade dinâmica correspondente.

Page 41: Desenho de embarcações de recreio

Pag. 36

Retomando a expressão do momento endireitante, vamos reescrevê-la do seguinte modo:

m = P.(r-a).sen α

Já vimos que o segmento (r-a) se designa por altura metacêntrica. Podemos acrescentar que o produto

P (r-a) se chama de coeficiente de estabilidade transversal.

O valor de “a” está dependente da posição do centro de gravidade da embarcação e é tanto menor

quanto mais baixo se situar o referido centro. Quanto ao valor de r, é fácil compreender que depende

essencialmente da forma da querena. Se esta tiver formas cheias ele será, obviamente, maior do que no

caso de ela ser fina (ver, para o efeito, os três desenhos da figura nº 9).

Ainda podemos apresentar a fórmula anterior de uma maneira diferente. Vejamos:

m = (P.r.sen α) – (P.a.sen α)

Designa-se o primeiro termo da diferença por binário de estabilidade da forma e o segundo por binário

de estabilidade do peso. Sendo certo que, em quase todos os barcos, o centro de flutuação está

posicionado abaixo do centro de gravidade, diz-se que o primeiro binário é endireitante e o segundo

inclinante. Mas, nas embarcações à vela fortemente lastradas, o centro de gravidade localiza-se, por

vezes, abaixo do centro de flutuação, situação em que o segmento “a” passa a ter sinal negativo. Neste

caso será:

m = (P.r.sen α) – (P. (–a).sen α) m = (P.r.sen α) + (P.a.sen α)

É fácil de compreender que, nesta situação particular, ambos os termos da expressão anterior

contribuem para reconduzir o flutuador à posição inicial, contrariamente ao que acontece quando o

centro de gravidade está localizado acima do centro de flutuação.

Há várias maneiras, algumas das quais bastante elaboradas, de explicar o conceito de metacentro. A

que vamos aprender é, a meu ver, adequada para o nível científico e matemático que esta obra

pressupõe.

Voltemos, então, aos desenhos da figura 7. Seja V o volume total submerso, v o volume de cada uma das

cunhas (imersa e emersa), g e g’ os respectivos centros de gravidade e δ a densidade da água.

Verificando-se que a impulsão, na embarcação inclinada, é igual à impulsão inicial, embora passe pelo

novo centro de flutuação, vamos considerar as seguintes grandezas vectoriais:

Page 42: Desenho de embarcações de recreio

Pag. 37

I = V.δ, aplicada em C quando a embarcação está horizontal e em C’ quando está inclinada;

i = v.δ, aplicada em g e em g’, após a inclinação.

Tendo em atenção que o ângulo α é muito pequeno e tende para zero, podemos assumir, sem cometer

erros significativos, que:

1 = /2 cos = cos

(radianos) = sen

Na sequência destas assunções simplificativas vamos escrever a expressão dos momentos dos vectores

da impulsão a respeito do eixo longitudinal, considerando o seu sentido, a sua distância ao eixo e as

suas posições relativas, antes e depois de a embarcação estar inclinada. Igualaremos as resultantes,

uma vez que não se verificou alteração no deslocamento (peso e volume da água deslodada):

V.δ.c = v.δ.d + v.δ.d – V.δ.b V.b + V.c = v.d + v.d V.(b + c) = v.(2.d) b + c = (2.d.v) ÷ V

Atendendo a que: b + c = senCM e 2.d = 2cosgg ,

porque, como antes referimos, estão em causa ângulos muito pequenos, tendendo para zero, teremos:

V2cosggv

senCM

Vggv

CM ,

em que (v.gg’) representa o momento do volume das duas cunhas em relação ao eixo de rotação

coincidente com o eixo longitudinal.

Recorrendo, agora, aos desenhos situados na parte inferior da figura 7, verificamos que o volume da

cunha elementar é:

2zdxy

dv

, com z = y.sen α

e, consequentemente, z = y.α, teremos dxy2

dv 2

O momento elementar é, então:

dm = dv.2/3y, em que (2/3y) é a distância do baricentro da cunha elementar ao eixo de rotação.

Substituindo a expressão de dv nesta última, teremos:

Page 43: Desenho de embarcações de recreio

Pag. 38

dxy31

dm 3

Procedendo à integração, teremos a expressão do momento total de uma cunha: m = 1/3.α.∫ y3.dx

Para as duas cunhas será: 2m = 2/3.α.∫ y3.dx

Como ggvm2 e o momento de inércia da superfície de flutuação relativamente ao eixo de rotação

(It) é igual a 2/3.∫ y3.dx, teremos:

2m = α.It

VI

CM t VI

CM t ou r = It/V

O raio metacêntrico transversal é equivalente ao quociente entre o momento de inércia da área de

flutuação (relativamente ao eixo longitudinal) e o volume da querena.

Conclui-se desta relação que o valor do raio metacêntrico só depende da geometria das obras vivas, que

o mesmo é dizer que, para um determinado deslocamento e para a mesma superfície de flutuação, o

raio metacêntrico será tanto maior quanto maior for o momento de inércia (It), ou seja, quanto mais curta

e mais larga for a embarcação.

Nos casos em que a superfície de flutuação se anula, como acontece, por exemplo, com os submarinos

quando estão totalmente submersos, o momento de inércia e o raio metacêntrico também se anulam,

pelo que o metacentro e o centro de flutuação coincidem.

Por causa das formas dos cascos das embarcações de recreio com que lidamos habitualmente, só para

pequenos ângulos de inclinação é que a intersecção das duas flutuações, a horizontal e a inclinada,

coincide com o eixo longitudinal. Quando o ângulo começa a atingir valores significativos (acima dos 7º)

deixa de se verificar essa condição e o cálculo dos braços de alavanca (GZ) tem de processar-se de modo

a que se tome em devida conta o facto de as flutuações inclinadas terem de corresponder, obviamente,

a um deslocamento igual ao que foi inicialmente calculado. A parte imersa do casco correspondente a

cada uma das inclinações deve ter o mesmo volume que todas as outras. Diz-se, em arquitectura naval,

que as obras vivas que obedecem a este imperativo são isoquerenas. Sendo certo que um cálculo de

estabilidade completo deve fazer-se para intervalos de 10º, 15º, 20º ou 30º de inclinação, até que se

atinjam 60º, 100º ou ainda mais graus de inclinação, dependendo do tipo e das condições de utilização

da embarcação, facilmente se compreende que há muito trabalho de cálculo e de medição a fazer, até

que estejam disponíveis os dados necessários para o desenho da curva dos momentos endireitantes.

Faremos, oportunamente, uma aplicação prática deste conjunto de cálculos.

Page 44: Desenho de embarcações de recreio

Pag. 39

Aproveitando a embarcação da figura 2 e algumas medições anteriormente efectuadas vamos calcular

o momento de inércia transversal (It) da sua superfície de flutuação. Tratando-se de uma superfície

irregular, não nos é possível recorrer a tabelas técnicas para obtermos o resultado.

Utilizaremos, mais uma vez, a primeira regra de Simpson e o conceito de momento de inércia de uma

superfície, relativamente a um eixo, que já conhecemos da física. Construímos a tabela da maneira que

se expõe a seguir. Na primeira coluna indicamos os números de referência das secções transversais,

como já fizemos noutras oportunidades, na segunda coluna colocamos as distâncias entre o eixo

longitudinal e os extremos da linha de flutuação, em cada secção transversal, tal como fizemos quando

procedemos aos cálculos relativos às variações de imersão; na terceira coluna colocamos os cubos das

distâncias que antes tínhamos escrito na segunda coluna; na quarta coluna escrevemos os nossos

conhecidos multiplicadores de Simpson e na quinta coluna colocamos os resultados dos produtos dos

cubos das distâncias pelos multiplicadores. Fazendo a soma dos valores da última coluna, multiplicando

por dois, para termos a superfície de flutuação completa (e não apenas metade) e, ainda, pelo terço do

intervalo entre secções, chegamos a um valor que, de acordo com a teoria, tem de ser, ainda, dividido

novamente por três, para chegarmos ao resultado final.

Sn l (dm) l3 (dm3) × I 0 0,00 0,00 1 0,00 1 4,30 79,51 4 318,04 2 7,60 438,98 2 877,96 3 9,80 964,43 4 3857,72 4 10,95 1312,93 2 2625,86 5 9,25 791,45 4 3165,80 6 0,00 0,00 1 0,00

∑ It = 10845,38

3

ti3d2tI

3

381084530102 ,,tI

It = 24100,84 dm4

No cálculo do volume submerso e do deslocamento, a partir das áreas das secções transversais

determinámos oportunamente que:

V = 3545,967 dm3.

Substituindo estes valores numéricos na expressão CMα = It ÷ V, teremos:

CMα = 24100,84 ÷ 3545,967 CMα = 6,8 dm, ou r = 6,8 dm

Page 45: Desenho de embarcações de recreio

Pag. 40

Quando está em causa o cálculo da posição do metacentro longitudinal, o eixo deve ser transversal e

passar pelo centro geométrico da superfície, o que também acontece com o eixo longitudinal. Mas neste

último caso verifica-se simetria relativamente ao eixo longitudinal, o que garante que o referido centro

está contido no eixo, não sendo preciso determiná-lo.

Estando identificados, neste momento, com a teoria que sustenta a determinação dos raios

metacêntricos, vamos aplicá-la ao cálculo do raio metacêntrico longitudinal, com vista à localização

correcta do metacentro longitudinal. Quando, mais tarde, conhecermos a posição do centro de gravidade,

já podemos efectuar cálculos do caimento sem necessidade de recorrermos à simplificação que

assumimos anteriormente, de considerarmos que a altura metacêntrica longitudinal é aproximadamente

equivalente ao comprimento da linha de flutuação. A verdade é que essa simplificação é aceitável nas

fases iniciais da concepção mas, em certos tipos de embarcações, dá origem a diferenças que convém

evitar.

Vamos, então, proceder ao cálculo do momento de inércia longitudinal da embarcação que temos vindo

a utilizar. A primeira coisa a fazer é determinar a posição do centro geométrico da superfície de flutuação,

pois o que está em causa, tal como aconteceu com o momento de inércia transversal, é a determinação

de um momento de inércia relativamente a um eixo que passa por esse centro e é perpendicular ao eixo

longitudinal. Vamos copiar a tabela construída para o cálculo das variações da imersão, completando-a

com mais duas colunas, o que nos permitem posicionar o referido centro.

Sn l (dm) × a (dm) × G ∑ g

0 0,00 1 0,00 3 0,00

1 4,30 4 17,20 2 34,40

2 7,60 2 15,20 1 15,20

3 9,80 4 39,20 0 0,00 49,60

4 10,95 2 21,90 1 21,90

5 9,25 4 37,00 2 74,00

6 0,00 1 0,00 3 0,00 -95,90

∑ a = 130,50 ∑ gt = -46,3

Distância entre secções transversais, medida no plano geométrico: d = 10,0 dm

a

tgdG

5130

346010

,,,

G

G = -3,5 dm (a partir da secção mestra, na direcção da popa, por

ser um valor negativo)

Page 46: Desenho de embarcações de recreio

Pag. 41

Para procedermos ao cálculo do momento de inércia vamos desenhar o eixo transversal que contem o

centro geométrico e medir, sobre as rectas que representam as secções longitudinais na vista inferior da

embarcação da figura 2, as distâncias desse eixo aos extremos da linha de flutuação, no sentido da popa

e da proa (ver, para o efeito, a figura nº 2A). Esta operação dá-nos dois valores para cada secção, facto

que ocorre pela primeira vez. Como vamos usar a regra de Simpson é preciso garantir a equidistância

das referidas secções que, no nosso caso, são cinco, definindo quatro intervalos iguais. Já sabemos que,

para atingirmos um rigor adequado, precisaríamos de mais alguns intervalos, mas o que se pretende,

neste momento, é explicar o processo. Assumindo que é do conhecimento do leitor que o momento de

inércia de duas superfícies é igual à soma dos momentos de cada uma, a respeito de um qualquer eixo,

vou construir a tabela fazendo simultaneamente o cálculo das duas partes que estão unidas pelo eixo.

Como ele passa pelo centro geométrico, cada uma das partes tem momentos de inércia iguais, mas

usarei este processo como forma de verificação de erros eventuais e para aumentar o rigor. Quem estiver

interessado pode somar alternadamente os valores da coluna final (coluna I). Verificará que, de facto, os

resultados das duas somas não são iguais, quando deviam ser. Mas como a diferença é pouco

importante (cerca de 5%) e o que nos interessa neste momento é aprender o método, passamos adiante.

Assim teremos:

Bn l (dm) L3 (dm3) × I 0 26,50 18610 1 18610 0 33,50 37595 1 37595 1 25,60 16777 4 67108 1 28,13 22259 4 89036 2 24,00 13824 2 27648 2 21,50 9938 2 19876 3 20,87 9090 4 36360 3 14,00 2774 4 10936 4 7,63 444 1 444 4 9,38 825 1 825

∑ it = 308438

d = 2,5 dm

3

32 tidIl

3

3084383522

,Il Il = 171354 dm4

O raio metacêntrico longitudinal vem a ser: Rl = Il ÷ V Rl = 171354 ÷ 3546 Rl = 48,3 dm

Sendo nossa conhecida a posição do centro de flutuação é fácil localizar o metacentro longitudinal, a

partir do valor de Rl. Mas, como ainda desconhecemos a posição do centro de gravidade da embarcação,

não nos é possível fazer o cálculo rigoroso do caimento. Contudo, estamos em presença de um tipo de

embarcação bem conhecido, que nos permite assumir, desde já, que o seu lastro constituirá entre 35 e

Page 47: Desenho de embarcações de recreio

Pag. 42

45% do deslocamento da embarcação. Nestas condições, o centro de gravidade fica muito próximo do

centro de flutuação, podendo mesmo coincidir com ele. Se fosse esse o caso, teríamos a altura

metacêntrica com o mesmo valor que o raio metacêntrico. Nesta ordem de ideias seria:

10

LlGMD

m 1060

3483637

,

m

(o valor de 3637, para o deslocamento, foi anteriormente calculado para água salgada)

m = 292,78 kg.dm

m (3cm) = 292,78 x 3 m (3cm) = 878 kg.dm

O valor assim obtido é manifestamente inferior ao valor de 1091 kg.dm que obtivemos anteriormente,

quando fizemos os cálculos simplificados. O recurso à movimentação de 70 kg de lastro, que foi

considerado nos referidos cálculos, impunha uma mudança de posição de 1,56 m. Com o valor agora

obtido verificamos que bastaria movimentar o lastro de 1,25 m para corrigirmos o caimento:

878 ÷ 70 = 12,5 dm = 1,25 m.

As embarcações de recreio agrupam-se em vários tipos, de acordo com as funções denotadas, o mesmo

acontecendo com outros tipos de embarcações e navios, principalmente no que diz respeito às obras

vivas, que constituem a parte do flutuador que mais influencia as suas performances. A inovação formal

verifica-se, na maior parte das situações, nas obras mortas e na superstrutura, quando esta existe, e

corresponde à introdução de detalhes decorativos ou a pequenas variações da geometria que não

afectam o conceito geral daquilo que se projecta. É por esta razão que, desde longa data, recorremos à

comparação de relações dimensionais entre querenas do mesmo tipo, para verificarmos se o objecto

que estamos a conceber se afasta excessivamente da norma. Trata-se de procurar analogias com

querenas semelhantes, das quais já conhecemos o comportamento, no que se refere à estabilidade, à

segurança e à velocidade.

As grandezas lineares de superfície e de volume que é costume utilizar para determinar as relações e os

coeficientes de que temos vindo a falar são as seguintes:

Comprimento da linha de flutuação entre perpendiculares, na interface entre a água e o ar, que

designaremos pela letra C;

Boca máxima na flutuação, correspondente à maior largura da linha de flutuação na interface entre

a água e o ar, que designaremos pela letra L;

Page 48: Desenho de embarcações de recreio

Pag. 43

Imersão média, medida a meio da distância entre perpendiculares, que designaremos por I (faço

notar que, por causa da banalização do uso de apêndices isolados, como é o caso das quilhas e dos

lemes de barbatana, a medição que hoje se faz da imersão impõe que se tomem determinados

cuidados que apreciaremos ao estudarmos casos concretos);

Área da flutuação na interface entre a água e o ar, que designaremos por Ah;

Área da porção imersa da secção transversal que corresponde à boca máxima, que designaremos

por At;

Área da porção imersa da secção longitudinal que contem o plano diametral (plano de abatimento),

que designaremos por Al;

Volume de deslocamento correspondente à flutuação considerada, que designaremos por V.

Partindo destes valores dimensionais, é possível determinar várias relações, algumas das quais se

utilizam com bastante frequência. As principais são as seguintes:

a = C ÷ L e b = I ÷ L

Quanto aos coeficientes, habitualmente designados por coeficientes de adelgaçamento, há a considerar

os seguintes:

Coeficiente de adelgaçamento da flutuação, que corresponde ao quociente entre a área da flutuação

e a área do rectângulo circunscrito (fineness coefficient):

c1 = Ah ÷ (C x L)

Coeficiente de adelgaçamento da porção imersa da casa-mestra, que corresponde ao quociente

entre a área da secção transversal que integra a boca máxima e a área do rectângulo circunscrito:

c2 = At ÷ (L x I)

Coeficiente de adelgaçamento da porção imersa do plano de abatimento, que corresponde ao

quociente entre a área da secção longitudinal que contem o plano diametral e a área do rectângulo

circunscrito:

c3 = A l ÷ (C x I)

Page 49: Desenho de embarcações de recreio

Pag. 44

Coeficiente de adelgaçamento total da querena, que corresponde ao quociente entre o volume da

querena (volume imerso do casco) e o volume do prisma rectangular circunscrito (block coefficient):

c4 = V ÷ (C x L x I)

Coeficiente de adelgaçamento transversal da querena, que corresponde ao quociente entre o

volume da querena e o volume do cilindro que tem por altura a boca máxima na flutuação e por

secção recta a superfície do plano de abatimento:

c5 = V ÷ (L x Al)

Coeficiente de adelgaçamento longitudinal da querena, que corresponde ao quociente entre o

volume da querena e o volume do cilindro que tem por altura o comprimento da querena e por

secção recta a porção imersa da secção transversal que integra a boca máxima (prismatic

coefficient):

c6 = V ÷ (C x At)

Coeficiente de adelgaçamento vertical da querena, que corresponde ao quociente entre o volume

da querena e o volume do cilindro que tem por altura a imersão média e por secção recta a superfície

de flutuação:

c7 = V ÷ (I x Ah)

Tendo em atenção as definições anteriores dos vários coeficientes, é possível estabelecer as seguintes

relações: C5 = c4 ÷ c3; c6 = c4 ÷ c2; c7 = c4 ÷ c1.

Para além dos coeficientes que acabámos de estudar, (grandezas sem dimensões), costumamos

recorrer a outros parâmetros numéricos que designamos por constantes da forma e que também servem

para efeitos comparativos. Estas constantes são definidas das seguintes maneiras:

p1 = C ÷ V1/3; p2 = L ÷ V1/3; p3 = I ÷ V1/3;

p4 = Ah ÷ V2/3; p5 = At ÷ V2/3; p6 = Sm ÷ V2/3.

Como é fácil de constatar, os quocientes em causa são, como os anteriores, valores sem dimensões.

Page 50: Desenho de embarcações de recreio

Pag. 45

A fórmula da constante p6 refere a grandeza Sm que diz respeito à superfície molhada e que pode ser

calculada, com um grau de aproximação aceitável, recorrendo à primeira regra de Simpson. É natural

que se queira conhecer a área da superfície molhada pois, como já vimos antes, uma parte importante

das resistências que se opõem ao movimento das embarcações é consequência do atrito da querena na

água, que será tanto maior quanto maior for a superfície molhada. Contudo, não se pode abordar o

problema do desenho das querenas tendo exclusivamente na ideia a preocupação de minimizar a

superfície molhada, pois tal objectivo conflitua com outros que tivemos oportunidade de referir e que

tem, também, muita importância, senão para a velocidade, pelo menos para a estabilidade e para a

segurança.

Voltando, agora, ao modo de determinação da superfície molhada, basta--nos considerar a vista de frente

que está integrada no plano geométrico e medir ao longo de cada secção transversal o comprimento que

vai da linha de flutuação até à zona mais funda. Como está em causa uma linha curva, é necessário

utilizar uma régua flexível, de metal, plástico ou cartolina, que temos de dobrar cuidadosamente,

fazendo-a acompanhar cada uma das secções, dentro dos limites que acabei de referir. Os valores

obtidos para os comprimentos das várias secções vão sendo inseridos na tabela com que já estamos

familiarizados. Obtidos os produtos pelos multiplicadores de Simpson, faz-se a soma dos valores

encontrados, multiplica-se por dois, para que sejam consideradas as duas metades e, ainda, por um

terço da distância entre secções, tal como tem vindo a ser feito quando se recorre a esta regra. É preciso

ter presente que, nos casos em que a embarcação dispõe de quilha de barbatana e leme em forma de

sabre, estes apêndices tem de ser medidos à parte, sobre a vista lateral, sem esquecer as duas faces, e

o valor da área deve ser adicionado ao que foi obtido através da medição das secções transversais.

Parece-me oportuno referir que, assim como estão disponíveis no mercado vários aparelhos de medida

das áreas, tais como o planímetro e o integrador gráfico, também há dispositivos mecânicos para a

medição do comprimento de linhas curvas, os quais, como é evidente, facilitam grandemente o trabalho

dos projectistas.

Outra nota que julgo digna de menção, é a que diz respeito ao facto de este método conter uma falha

conceptual, pois a soma dos intervalos iguais entre secções transversais, que se utiliza no cálculo,

corresponde ao comprimento entre perpendiculares e é um pouco mais pequena do que a distância

medida entre a proa e a popa, ao longo da linha de flutuação. E seria esta última distância que deveria

ser utilizada no cálculo da superfície molhada, por tomar em consideração a curvatura da superfície. Mas

o trabalho implicado com este pequeno suplemento de rigor não faria grande sentido. A prática corrente

no desenho de embarcações de recreio é a que acaba de ser explicada, uma vez que o erro cometido

não tem significado do ponto de vista da utilização que se pretende, para fins comparativos. Se medirmos

as duas distâncias, no desenho da vista inferior da figura 2, constataremos que o comprimento entre

perpendiculares é inferior em 10% ao comprimento do contorno da linha de flutuação. Como

Page 51: Desenho de embarcações de recreio

Pag. 46

imediatamente se percebe, o erro será tanto menor quanto mais fina for a embarcação. No entanto, o

que é importante que se verifique é que o método utilizado seja sempre o mesmo, quando procedemos

a análises comparativas.

Em particular, para as embarcações à vela, é costume fazer outras avaliações comparativas tendo em

atenção o deslocamento, a área do velame, o comprimento da linha de flutuação, a superfície molhada

e o lastro. Como a tradição destas análises comparativas é de origem inglesa, recorre-se ao sistema

“imperial” de medidas. Exemplificando:

Área do velame (em pés quadrados) a dividir pelo Deslocamento (em pés cúbicos, elevando esta

quantidade a dois terços).O valor obtido permite avaliar a capacidade da embarcação em combater

a resistência provocada pelo sistema de ondas. Diz-se que o valor é baixo quando é inferior a 14,

que é moderado entre 14 e 18, que é alto entre 18 e 21 e que é muito alto acima de 21.

Área do velame (em pés quadrados) a dividir pela Superfície molhada (em pés quadrados). Um

resultado de 2,5 indica uma excelente performance com ventos fracos.

Deslocamento (em long tons) a dividir por 1% do Comprimento da linha de água, elevado ao cubo

(em pés). Esta razão dá-nos uma ideia do peso relativo da embarcação. Quando o valor obtido

ultrapassa os 300 o barco é pesado, entre os 200 e os 300 está na média, entre os 100 e os 200

é leve, abaixo de 100 é considerado ultraleve.

Lastro (em libras) a dividir pelo Deslocamento (em libras). Esta razão dá uma ideia da estabilidade

relativa. Valores abaixo dos 30% são considerados baixos, entre 30% e 40% são moderados, entre

40% e 50% são altos e acima de 50% são muito altos.

Em geral, tratando-se de embarcações semelhantes, os resultados comparativos são de confiar.

Contudo, aparecem muitos casos que suscitam maior cuidado na análise, uma vez que a quantidade de

parâmetros que influenciam a performance de uma embarcação justifica uma atitude de reserva,

principalmente quando as diferenças são pequenas.

Page 52: Desenho de embarcações de recreio
Page 53: Desenho de embarcações de recreio
Page 54: Desenho de embarcações de recreio
Page 55: Desenho de embarcações de recreio
Page 56: Desenho de embarcações de recreio
Page 57: Desenho de embarcações de recreio
Page 58: Desenho de embarcações de recreio

Pag. 47

V.

RESISTÊNCIA DAS QUERENAS.

ATRITO E FORMAÇÃO DE ONDAS.

RESISTÊNCIAS PARASITAS. ESTABILIDADE.

Vamos voltar a considerar, neste capítulo, os tipos de resistência que se opõem ao movimento das

embarcações quando estas são movidas pelos próprios meios, a saber, os motores, o velame e outros

meios nossos conhecidos. Não trataremos das situações de reboque porque, no contexto deste livro,

esta forma de propulsão não tem qualquer relevância. Para começar falaremos um pouco acerca da

forma das embarcações e da influência que ela pode ter sobre a facilidade de deslocação na interface

dos fluidos que as envolvem. Por causa da enorme diferença entre as densidades da água e do ar (a

água é oitocentas vezes mais densa do que o ar) e de outras coisas menos importantes, as questões da

hidrodinâmica e da aerodinâmica tem de ser tratadas autonomamente.

Enquanto que a parte submersa das embarcações está sujeita a um conjunto de fenómenos de

resistência que temos de considerar relevantes desde as mais baixas velocidades, já o efeito do ar sobre

a parte do casco que está emersa e sobre as superestruturas só começa a ter alguma importância, que

exige apreciação e tratamento ao nível do desenho, a partir de velocidades que ultrapassem os quarenta

e cinco nós. Diz-se que foi com o desenho dos aviões que os problemas da aerodinâmica começaram a

merecer a atenção dos engenheiros e dos projectistas, por causa das perdas de potência resultantes de

um desenho deficiente que não atendia a esses aspectos. Mais tarde, os fabricantes de automóveis

começaram a preocupar-se com o assunto, acabando por transformar uma abordagem que começou por

ser científica e técnica numa moda estética, o streamlining, com manifestações ridículas de exagero e

de mau gosto, principalmente no período dos anos quarenta e cinquenta do século passado, que ainda

estão na memória dos mais velhos. Importa reter que, enquanto o desenho das querenas deve resultar

de uma síntese em que a componente hidrodinâmica desempenha a sua parte entre outras igualmente

importantes, mesmo nas embarcações mais lentas, só faz sentido considerar a intervenção negativa da

resistência do ar no movimento das embarcações quando estão em causa velocidades muito altas, de

acordo com os padrões usados no meio naval, os quais tem pouco a ver com o que se passa no ambiente

automóvel e muito menos com o mundo dos aviões.

Quando estamos a desenhar embarcações à vela, destinadas à utilização sistemática em regatas, é

compreensível que façamos o aproveitamento de todos os meios disponíveis para maximizar a

velocidade. Se nos lembrarmos de que as referidas embarcações raramente se deslocam na posição

horizontal, faz sentido que consideremos, para efeitos de análise e comparação, o desenho de linhas de

flutuação em várias inclinações. Esse desenho não se revela tão simples como pode parecer, pois

conforme os barcos se inclinam, também mudam de caimento, pelo facto de, normalmente, terem mais

flutuação à ré. Hoje são raros os barcos que adornam sem alterarem a posição do eixo longitudinal de

Page 59: Desenho de embarcações de recreio

Pag. 48

flutuação. A maior parte deles faz o que acabei de referir, mas há casos, como o de certas embarcações

tradicionais holandesas (boier, botter, etc.) que, entretanto, foram adaptadas para recreio, que fazem

precisamente o contrário, pois são mais cheias à proa do que à popa. Contudo, a situação mais comum

é a primeira. Portanto, ao desenhar linhas de flutuação inclinadas, temos de começar por estimar a

mudança de caimento na vista lateral, desenhando a nova linha de referência, em perfil, com uma

inclinação que compense a maior flutuação da popa, se for esse o caso. Veremos que, por causa disso,

as secções transversais apresentam várias rectas paralelas, em vez de uma recta única na

representação da linha de flutuação de referência. O objectivo a atingir é conseguir que a nova posição

longitudinal do centro de flutuação coincida com a inicial, isto é, que ambos os centros estejam contidos

no mesmo plano de perfil. Só deste modo é possível garantir que o centro de gravidade continua na

vertical do novo centro de flutuação. É evidente que precisamos de muita sorte para conseguirmos

acertar à primeira tentativa, sendo certo que se trata de uma actividade que envolve muito desenho e

bastantes cálculos. Mas, como diz o nosso povo, nada se consegue sem trabalho. E, afinal das contas,

para que vai servir todo este trabalho? Não devemos desanimar se constatarmos que as linhas de

flutuação apresentam um desenho fortemente distorcido, para um dos lados. É assim mesmo! O que nos

interessa é dispormos de elementos que permitam fazer comparações com embarcações que foram bem

sucedidas, pois uma pequena melhoria na hidrodinâmica das obras vivas pode traduzir-se naquela

vantagem suplementar que os fanáticos da competição procuram na linha de chegada.

Catalogando as três formas de resistência a considerar no desenho de embarcações de recreio, diremos

que está em causa o atrito (água e ar), a formação de ondas e a resistência parasita. Já falámos de todas

anteriormente, mas sem grande detalhe. Vamos, agora, tratar do assunto de modo mais sistemático,

recorrendo às explicações científicas mais convenientes, para uma melhor compreensão dos fenómenos,

sendo certo que as teorias disponíveis apresentam aspectos controversos e lacunas que, só com o

tempo, o desenvolvimento das investigações pode vir a colmatar. Em particular, no que se refere ao atrito

das querenas na água, os fenómenos envolvidos são complexos e as explicações disponíveis não se

revelam, a meu ver, inteiramente satisfatórias. De qualquer modo, há que evidenciar que esta

componente da resistência é a mais importante nas embarcações de recreio que se deslocam nos

regimes de baixa velocidade e que são, obviamente, a maioria. Há situações em que o atrito na água

atinge 80% da resistência total, mas quando estão em causa grandes navios, a resistência devida ao

atrito pode chegar aos 90%. Acerca dos veículos que se deslocam totalmente submersos, pode dizer-se

que, praticamente toda a resistência ao seu movimento resulta do atrito da água. Por razões de

simplificação trataremos desta matéria considerando que tudo se passa em ambiente calmo, com a

interface entre os dois fluidos perfeitamente plana, situação que, como sabemos, raramente se verifica.

Por outro lado vamos admitir, para efeitos de exposição da teoria, que as embarcações se deslocam na

posição normal de equilíbrio, sem orçarem ou apresentarem caimento.

Page 60: Desenho de embarcações de recreio

Pag. 49

Todas as embarcações de recreio e, em particular, as que tem um deslocamento comparativamente

elevado, apresentam curvas de resistência como aquelas que estão representadas na figura 6. Verifica-

se que a resistência devida ao atrito vai aumentando suavemente em função da velocidade, ou melhor

dizendo, em função da velocidade relativa (relação entre a velocidade e a raiz quadrada do comprimento

da linha de água). Já no que diz respeito à resistência que resulta da formação das ondas, o

comportamento das embarcações é muito diferente. A partir do ponto em que a referida relação

(velocidade relativa) atinge 1,1 (com a velocidade medida em nós e o comprimento entre perpendiculares

medido em pés) a resistência aumenta abruptamente, como se o sistema de ondas colocasse uma

barreira hidrodinâmica ao aumento da velocidade. E embora as curvas da figura 6 digam respeito a

embarcações a motor, com determinadas características geométricas, este género de comportamento é

aplicável a todos os outros tipos. Detendo-nos um pouco sobre o gráfico em questão, podemos dizer que

o mesmo resultou de ensaios efectuados em tanque, com dois modelos cujas relações entre

deslocamento e comprimento da linha de água apresentavam os valores de 150 e 250, respectivamente,

embora ambos tivessem o mesmo coeficiente prismático, de 0,64.

Não é a primeira vez que faço notar as discrepâncias entre a realidade física e as teorias científicas que

procuram explicá-la. Às vezes, as simplificações são excessivas, porque os modelos abstractos estão

longe de cumprirem os requisitos fundamentais de reprodução do comportamento das variáveis. É o que

se passa com as análises que admitem que a água se comporta como um fluido perfeito, o que quer

dizer que não sofre tensões tangenciais. Trata-se, obviamente, de uma falsidade que não pode ser

escamoteada quando estamos a estudar a resistência ao movimento dos corpos que se deslocam na

água e na interface da água e do ar. A verdade é que a maior parte dessa resistência, pelo menos dentro

dos limites correntes de velocidade, quer da água, quer das embarcações, fica a dever-se ao atrito na

zona de contacto entre a querena e a água. Esta ocorrência deriva da existência de viscosidade e da

ausência de deslizamento do fluido na referida zona. É sabido que uma placa extremamente fina pode

intercalar-se entre camadas de um fluido perfeito, em movimento, sem afectar as condições do fluxo

(trata-se, obviamente, de uma assumpção meramente teórica). Já o mesmo não pode acontecer quando

a placa se encontra submergida num fluido imperfeito, como é o caso da água, pois as partículas que se

encontram mais próximas da placa estão completamente paradas, provavelmente por causa de

fenómenos de atracção. Conforme a água fica mais afastada da placa, menos se sente o efeito do

retardamento e há uma distância a partir da qual já nada afecta o movimento das partículas do fluido.

Esta camada, dentro da qual os gradientes de velocidade são consideráveis, começando em zero até

atingirem um valor relativamente importante, costuma designar-se por camada limite e a sua existência

foi notada pela primeira vez, que se saiba, por J. Scott Russel, em 1865. É interessante ler o que ele

disse sobre o assunto e que consiste em algo parecido com isto:

“Já observei o fenómeno várias vezes e parece-me que o que se passa é que a totalidade da superfície

das querenas fica coberta por uma fina camada de água que adere firmemente a elas, deslocando-se

Page 61: Desenho de embarcações de recreio

Pag. 50

com a mesma velocidade (o que quer dizer que a velocidade relativa entre a água, nesta camada, e a

querena é nula). Há uma segunda camada de água que adere parcialmente à primeira, mas que se

atrasa um pouco porque tem de arrastar consigo uma terceira camada, que também arrasta uma quarta,

e assim sucessivamente, verificando-se sempre um diferencial de velocidade entre duas camadas

contíguas, até se atingir uma espessura a partir da qual o líquido deixa de ser perturbado pela passagem

da embarcação». Esta imagem das lâminas de água contíguas, cujas velocidades relativamente à

embarcação variam de zero, na zona de contacto com o casco, até ao valor mais alto na zona mais

afastada, dá uma ideia muito precisa do que se passa. Toda a resistência devida ao atrito ocorre no

interior desta camada e resulta do aparecimento de forças de fricção que actuam paralelamente à

superfície da querena, em direcção contrária à do seu movimento. Experiências conduzidas por Osborne

Reynolds (e outros) provaram que as características do fluxo dentro da camada limite e as forças de

atrito que lhe estão associadas dependem de uma quantidade conhecida como número de Reynolds, a

saber: Rn = 80 000 x V x L

em que V é a velocidade da embarcação através da água, em pés por segundo e L é o comprimento da

linha de água, em pés.

Quando a embarcação se desloca a baixa velocidade, o número de Reynolds é comparativamente baixo

e o movimento das partículas de água é, em grande parte, paralelo à superfície molhada, isto é, o fluido

move-se suavemente, sem perturbações. Diz-se que, nestas condições, o fluxo é laminar, designação

que deriva da tal imagem inicial, de que existem várias camadas finas de fluido que deslizam umas sobre

as outras, com atrito. Em consequência da viscosidade da água verifica-se que o fluxo laminar tem

características de auto estabilização porque, nas situações em que é acidentalmente perturbado, de

modo abrupto, acaba por se reconstituir. Contudo, quando o fluxo laminar aumenta de espessura para

lá de um certo limite, adquire uma instabilidade permanente e o seu comportamento altera-se

drasticamente. Neste caso, que ocorre quando o número de Reynolds atinge um determinado valor, diz-

se que o fluido passou ao regime turbulento. As partículas de água começam a oscilar em direcção

perpendicular à do movimento da embarcação e formam-se pequenos vórtices no interior da camada

limite. Sabe-se que, neste novo estado, o atrito aumenta consideravelmente e que a alteração do

comportamento das partículas de água é influenciada pela forma das querenas e pelo estado da

superfície de contacto, sendo certo que a ausência de rugosidades contribui para que o regime

turbulento demore mais tempo a aparecer. O valor do número de Reynolds que lhe corresponde pode

variar entre (5 x 105) e (5 x 106). No entanto, a existência de grandes imperfeições na superfície molhada

pode provocar o aparecimento do regime turbulento ainda abaixo de Rn = 5 x 105, pelo que, quem se

preocupa com performances elevadas, deve manter o casco da sua embarcação perfeitamente liso, não

sendo, contudo, necessário que se apresente brilhante.

Page 62: Desenho de embarcações de recreio

Pag. 51

Vale a pena fazer, neste momento, algumas considerações acerca dos sistemas de dimensões

habitualmente utilizados em arquitectura naval, tanto mais que, como constatámos há instantes com o

número de Reynolds, ainda é bastante comum, pelo menos nos países de cultura anglo-saxónica, o

recurso ao sistema inglês de medidas, que os seus criadores gostam de designar pomposamente por

sistema imperial. Este sistema antropomórfico tem vindo a perder terreno para o sistema métrico que,

sendo uma criação dos franceses, é mais abstracto e simples. Neste momento, a Grã-Bretanha já usa

legalmente o sistema métrico, mas ainda não abandonou totalmente o sistema tradicional, enquanto

que os Estados Unidos parecem pouco preocupados com o problema, em muitas áreas do conhecimento

e na indústria. Por causa dos custos que a mudança vai acarretar e pelos efeitos de toda a ordem que

implica, serão, provavelmente, os últimos a aplicarem generalizadamente o sistema métrico.

Quando comecei a escrever este texto pensei no assunto e cheguei à conclusão de que deveria utilizar,

sempre que possível, o sistema métrico, mas sem fazer dele um uso exclusivo. A verdade é que há

coeficientes e relações entre grandezas cuja apresentação, desde sempre, no sistema inglês, levou

muita gente deste sector a memorizar valores de referência que acabaram por adquirir um significado

quase mítico. A conversão destes valores para o sistema métrico retirar-lhes-ia esse peso histórico e, a

meu ver, isso seria lamentável e inconveniente. Nesta ordem de ideias, tenho vindo a usar

esporadicamente e continuarei a fazer concessões à utilização do sistema inglês, sempre que se

verifiquem as tais condições que referi, de que não vejo necessidade de prescindir. Porque somos

pessoas sensíveis devemos valorizar a componente poética que está associada à ciência e às técnicas.

Do mesmo modo que o nome de Osborne Reynolds se encontra intimamente ligado ao estudo dos

fenómenos de viscosidade e, bem assim, à caracterização dos regimes laminar e turbulento que andam

associados à resistência devida ao atrito dos flutuadores nos fluidos, também o nome de William Froude

aparece relacionado com os fenómenos gravitacionais e de inércia que coexistem com a formação dos

sistemas de ondas gerados pelo movimento das embarcações. Há, também, um número de Froude, que

se exprime pela seguinte fórmula:

Fr = 0,2977 × V ÷ L½,

em que V é a velocidade da embarcação em nós e L o comprimento entre perpendiculares, medido em

pés.

Para efeitos comparativos podemos reescrever a fórmula do número de Reynolds, utilizando as mesmas

dimensões que usamos nesta última, o que dará:

Rn = L × V ÷ 7,5735 × 106

Page 63: Desenho de embarcações de recreio

Pag. 52

Infelizmente, apesar das muitas tentativas nesse sentido, não foi possível arranjar uma expressão que

traduza os efeitos combinados da viscosidade e da gravidade porque, tanto quanto é conhecido até este

momento, estamos em presença de uma impossibilidade física. Sem entrar nos pormenores científicos

do problema direi, apenas, que as experiências com modelos, em tanques, que tanto tem contribuído

para a compreensão destes fenómenos (a partir dos trabalhos iniciados por William Froude), só podem

ser conclusivas se as duas componentes da resistência (atrito e formação de ondas) forem tratadas

autonomamente. Foi Froude quem produziu uma evidência experimental deste facto, no ano de 1872.

Por razões que não são difíceis de explicar, mas que não interessa discutir neste contexto, verificam-se

discrepâncias entre as constantes utilizados pelos ingleses e as que são usadas pelos americanos (dos

Estados Unidos) para a medição dos fenómenos relacionados com a resistência e para a caracterização

da forma dos flutuadores. As relações entre a velocidade e o comprimento das embarcações e a

velocidade e o comprimento dos sistemas de ondas que lhes estão associados e, bem assim, as relações

entre a superfície molhada e o deslocamento obedecem a diferentes conceptualizações, o que é pena e

pode confundir quem se interessa por estes assuntos. Há que referir que a notação americana usada no

estudo da resistência é teoricamente menos rigorosa, mas mais prática e mais simples, pelo que será a

esta que recorrerei, sempre que isso seja possível. Vejamos, de seguida, algumas dessas relações.

1. Relação entre o deslocamento e o comprimento da linha de água: d = D ÷ (L ÷ 100)3

em que D é deslocamento em toneladas inglesas (1,096 toneladas do sistema métrico) e L é o

comprimento da linha de água em pés.

2. Relação entre a velocidade e o comprimento da linha de água, nas embarcações, e entre a

velocidade e o comprimento das ondas nos sistemas que estão associadas ao movimento dos

flutuadores: v = V ÷ L1/2

em que V é medida em nós e L em pés.

Vejamos agora, o caso dos coeficientes de resistência, em que as resistências são medidas em libras e

o deslocamento em toneladas inglesas. Assumindo que Rt é a resistência total, Rf a resistência devida

ao atrito e Rr a resistência residual (formação de ondas e resistências parasitas), teremos

respectivamente:

rt = Rt ÷ D rf = Rf ÷ D rr = Rr ÷ D

Quando observamos o movimento das ondas, qualquer que seja o acontecimento que está na sua

génese, ficamos com a ideia ilusória de que está a verificar-se o movimento de uma massa de água na

direcção de propagação deste fenómeno ondulatório. Mas se dirigirmos a nossa atenção para pequenos

objectos flutuantes, ou mesmo para formações isoladas de espuma, constatamos que não ocorre uma

Page 64: Desenho de embarcações de recreio

Pag. 53

deslocação sustentada da água no sentido de propagação das ondas. A verdade é que a velocidade a

que se movem as ondas pode ser enorme, como ocorre com os maremotos. No entanto, o movimento

das partículas da água que as ondas contem é sempre relativamente lento. O que acontece, na realidade,

é que as partículas de água se movem segundo um caminho circular de pequeno raio, sob o efeito

combinado da gravidade (do peso) e da força centrífuga. Como a água é um fluido imperfeito, a

viscosidade e a tensão superficial acabam por determinar o fim do movimento de qualquer ondulação,

coisa que não aconteceria se o fluido fosse perfeito. Já sabemos que as ondas resultam de mudanças

de pressão que ocorrem na água, sempre nas proximidades da superfície de contacto com o ar. O padrão

do movimento das ondas depende essencialmente do número de Froude (Fr = V ÷ (g x L)1/2) ou, usando

a notação americana, da velocidade relativa (v = V ÷ L1/2), isto é, da relação entre a velocidade das ondas

e o seu comprimento, o que vem a ser quase a mesma coisa que o número de Froude, pois os efeitos da

gravidade são praticamente constantes.

As ondas de superfície que se formam com a passagem de uma embarcação cumprem quase totalmente

o modelo fixado pela teoria trocoidal e mantém uma relação constante entre a sua velocidade e a raiz

quadrada do seu cumprimento, a saber:

v = 1,34 × L1/2

Tal como foi referido inúmeras vezes, o principal factor que determina a formação das ondas de

superfície, associadas ao movimento dos flutuadores, é a resistência devida à gravidade. Em termos

gerais há três diferentes grupos de ondas que convém tipificar:

1. As ondas divergentes produzidas na proa da embarcação;

2. As ondas transversais da proa;

3. As ondas transversais da popa.

Quando a embarcação se desloca a baixa velocidade, são as ondas divergentes da proa que se tornam

mais evidentes mas, a altas velocidades, as ondas transversais assumem muito maior importância e são

as que mais influenciam o crescimento da resistência residual. Sabe-se que a energia contida nas ondas

formadas pelo movimento das embarcações é proporcional ao seu comprimento e ao quadrado da sua

amplitude. Também se constatou que, embora não exista uma relação geral fixa entre amplitude e

comprimento, essa relação mantém-se aproximadamente constante dentro de grupos sucessivos de

ondas.

A experiência mostra que a resistência de origem gravitacional aumenta rapidamente, conforme o

número de comprimentos de ondas diminui, dentro dos limites do comprimento da linha de flutuação.

Page 65: Desenho de embarcações de recreio

Pag. 54

Número de comprimentos de onda Velocidades relativas (v = V ÷ L1/2)

6 0,547 3 0,775

1,795 1,00 1 1,34

0,8 1,50

O gráfico da figura 6, para o qual chamei a atenção várias vezes, apresenta, na sua parte superior, a

indicação de comprimentos de onda, desde n=3 até n=0,8. Por ele é possível verificar que o crescimento

da resistência devida à gravidade ocorre simultaneamente com a redução do número de comprimentos

de onda, aumentando abruptamente a partir da região em que a velocidade relativa atinge o valor 1,2.

Ao empurrar a água lateralmente, a querena exerce uma força neste fluido que produz um aumento de

pressão nas secções próximas da proa; por causa deste facto a embarcação tende a resistir ao

movimento frontal. O aumento da pressão na frente da embarcação, concomitantemente com a redução

da pressão na popa, faz deslocar o centro das pressões verticais no sentido da proa e obrigam esta a

levantar-se, afundando a ré, de modo a que a resultante do conjunto das forças ascendentes permaneça

na vertical do centro de gravidade, supostamente inalterável. A distância que a água precisa para voltar

à posição inicial de equilíbrio, sob a influência do seu peso, corresponde ao comprimento de onda

natural, que se move à mesma velocidade que o barco. Nas situações em que o barco se desloca a uma

velocidade menor do que a velocidade que corresponde ao movimento de uma onda que tem um

comprimento igual ao comprimento entre perpendiculares da embarcação, a água volta à posição

anterior e a curva das áreas relativa ao deslocamento do barco em movimento apresentará um valor

nulo na popa, se for esse o valor que a curva apresentava em repouso. Já quando o barco se desloca a

velocidades superiores isso não acontece pois a popa da embarcação mergulhará na água, fazendo com

que a curva das áreas termine num valor superior a zero. Quando estamos a desenhar uma embarcação

de deslocamento que se pretende rápida, não podemos deixar de ter em linha de conta este

comportamento. Se a popa for razoavelmente larga, sem excessos, com uma imersão quase nula nesse

ponto quando está imobilizada (ver, por exemplo, o barco à vela da figura 3) constataremos que, quando

em repouso ou deslocando-se a baixas velocidades, apresenta uma curva das áreas que termina

praticamente em zero. Mas, se a velocidade aumentar, a proa levanta e a popa afunda, alterando-se o

caimento de tal maneira que o deslocamento se reduz na frente e aumenta concomitantemente na parte

posterior do barco, onde a curva das áreas passará a apresentar um valor muito diferente de zero,

podendo chegar a atingir o valor maior de área imersa, ao longo de todo o comprimento da linha de

flutuação. Basta, para tanto, que a popa seja suficientemente larga e que a velocidade relativa tenha um

valor acima de 1,2. É conveniente observar a figura 11 para se ficar com uma ideia do comportamento

dos barcos de deslocamento cuja popa ainda apresenta alguma flutuação quando estão em repouso.

Este tipo de barcos consegue adaptar-se melhor do que um barco com popa fina às exigências de uma

velocidade comparativamente alta, sem comprometer muito as suas prestações a baixa velocidade. Não

Page 66: Desenho de embarcações de recreio

Pag. 55

podemos esquecer que os barcos de deslocamento são construídos, na maioria dos casos, para

funcionarem a velocidades relativas inferiores a 1,34, limite imposto pela resistência provocada pela

formação das ondas. Acima deste valor a popa afunda, por falta de apoio na água, e a embarcação tem

uma grande dificuldade em avançar, mesmo que disponha de potência de sobra no motor. Como

estamos a falar de velocidades relativas, torna-se evidente que a velocidade absoluta será tanto maior

quanto mais comprida for a embarcação. As representações da figura 11 ajudam a compreender isso

mesmo. Se estiverem em causa duas embarcações semelhantes, com comprimentos entre

perpendiculares, respectivamente, de 25 e de 36 pés, a mais comprida atinge, obviamente, uma

velocidade absoluta maior, para a mesma velocidade relativa. Isto quer dizer que se só está em causa a

velocidade de uma embarcação de deslocamento, em projecto, esta deve ser tão longa quanto possível,

pois andará mais depressa com a mesma potência do motor, sendo por isso mais económica. É claro

que raramente a questão do projecto se coloca em termos tão simples, já que exigências de carácter

funcional e económico, ou outras, podem impedir esta optimização.

Page 67: Desenho de embarcações de recreio
Page 68: Desenho de embarcações de recreio

Pag. 56

VI.

EMBARCAÇÕES A MOTOR.

EMBARCAÇÕES DE DESLOCAMEMTO, PLANANTES E SEMI-PLANANTES.

Vamos tratar neste capítulo das embarcações a motor, no sentido em que os seus meios principais, ou

únicos, de propulsão são motores de explosão ou de combustão. Trataremos destas embarcações

separando-as de outras que, dispondo também de motores, só os utilizam como auxiliares, como é o

caso de muitas embarcações à vela. A verdade é que a introdução dos meios mecânicos de propulsão,

desde os primórdios da máquina a vapor, veio alterar profundamente o desenho dos barcos e navios,

dando-lhes uma flexibilidade de movimentos e uma fiabilidade que nunca tinham conhecido até esse

momento, na medida em que deixaram de estar totalmente dependentes das condições atmosféricas

cujo controlo pelo homem continua a ser uma impossibilidade. Antes do advento dos motores também

não se pensava em embarcações planantes, se bem que, com determinadas condições de vento é

possível mover pequenos barcos à vela, adequadamente desenhados, com alguma impulsão dinâmica.

Mas o que é importante reter é que, com desenho adaptado, o recurso aos motores permitiu atingir

velocidades que eram impensáveis para as embarcações à vela. No entanto, já sabemos que a relação

mínima entre o peso da embarcação e a potência dos motores impede que grandes artefactos flutuantes

possam planar, pois a potência necessária para tal e os problemas estruturais que o apoio dinâmico

coloca, não tornam fácil nem económica a construção desses objectos. Por outro lado, vivemos num

tempo em que as dificuldades na obtenção de combustíveis fósseis nos obrigam a nunca esquecer a

necessidade de reduzir os consumos, para já não falar das consequências ambientais do uso

indiscriminado de motores de explosão e de combustão. Assim, enquanto não surge uma alternativa

mais económica e ambientalmente mais segura, teremos de pensar maduramente antes de

contribuirmos para lançar no mercado objectos de prazer com tantos inconvenientes!

Quando anteriormente fizemos comentários acerca das embarcações a motor cuja geometria está

esquematicamente desenhada nas figuras 4 e 5 dissemos alguma coisa acerca das performances

previsíveis destes dois tipos. Contudo, neste momento é conveniente que nos detenhamos na análise

das suas linhas e, em particular, das suas curvas de áreas. Podemos afirmar que a embarcação da figura

4 é uma típica embarcação de deslocamento, com o seu centro de flutuação localizado nas proximidades

da secção mestra, mais precisamente a 53 % do comprimento da linha de água, a partir da proa. Já a

embarcação da figura 5 é do tipo planante, pelo que o seu centro de flutuação se encontra

aproximadamente a 61 % do comprimento da linha de água, bastante próxima da secção 4. É fácil

perceber que as duas curvas tem um desenvolvimento bem diferente. A primeira é quase simétrica

relativamente ao segmento médio, enquanto que a segunda, por causa das formas da querena, é

deliberadamente assimétrica, com muito maior flutuação no lado da popa. A curva das áreas do barco

de deslocamento termina à popa com uma área nula, ao passo que a da embarcação planante apresenta

Page 69: Desenho de embarcações de recreio

Pag. 57

nessa zona uma área imersa quase igual à da secção mestra. Entre estes dois tipos de embarcações

situam-se outras que representam uma espécie de compromisso entre posições extremas, com curvas

de áreas que tendem mais para um ou para outro tipo, ficando as opções a depender do seu programa

funcional e das disponibilidades de potência. Parece-me interessante e educativo que levemos a efeito,

neste momento, alguns cálculos sumários com vista à determinação da potência dos motores que é

necessária para fazer mover as embarcações em causa dentro dos regimes de velocidades de cruzeiro

que lhes são adequados, em função do seu tipo e das performances que consideramos óptimas. Nunca

nos devemos esquecer de que os programas que suportam a concepção de cada um destes objectos

têm subjacentes lógicas conceptuais cuja contestação, por quem projecta ou por quem usa, faria destes

actores pessoas pouco inteligentes. Recorrendo a uma analogia que todos compreendem, pode dizer-se

que seria manifestamente absurdo, por exemplo, andar permanentemente com um automóvel

desportivo de grande potência, à velocidade de sessenta quilómetros horários, numa via rápida e, em

contrapartida, tentar utilizar uma viatura utilitária como se fosse um Ferrari, o que não quer dizer que,

como todos sabemos, não haja pessoas que se permitem estes devaneios.

Já dissemos inúmeras vezes, a propósito dos vários tipos de resistência que se opõe ao movimento dos

corpos flutuantes, que as embarcações de deslocamento tem, independentemente dos recursos de

potência motriz disponíveis, uma velocidade relativa óptima, a partir da qual será necessária uma grande

potência para aumentar a velocidade para além desse limite, mesmo que o acréscimo de velocidade

seja muito pequeno. Analisando as curvas de resistência da figura 6 e os sistemas de ondas da figura

11, compreendemos que para lá de uma velocidade relativa de 1,34 as coisas começam a ficar

complicadas, quando estamos a lidar com embarcações que não foram desenhadas para terem apoio

dinâmico na sua deslocação, isto é, que estão obrigadas a cumprir sempre o princípio de Arquimedes.

Como se deduz da figura 6, se conseguirmos atingir a velocidade relativa de 1,5, porque está disponível

potência suficiente para tanto, um barco com estas características fica apoiado em 0,8 de um

comprimento de onda, significando isto que deixa de ter apoio na popa, facto que obrigará a sua proa a

levantar exageradamente, dificultando sobremaneira o seu movimento. Não sendo impossível atingir

velocidades relativas de 1,5 e 1,6 com embarcações de deslocamento convencionais, a verdade é que,

se elas não forem muito estreitas e leves, com todas as consequências de utilização que derivam dessas

características, isso só se consegue com potências exageradas e consumos desnecessários de

combustível. Mas, quando passamos para o território das embarcações planantes, como é o caso do

barco da figura 5, já nos é possível atingir velocidades relativas da ordem dos 10, ou mesmo mais. É

claro que isso só é viável desde que o peso total do artefacto não ultrapasse os quinze quilogramas por

cavalo de potência efectiva, condição que já referimos várias vezes. Convém ter sempre presente que o

acto de planar corresponde a um regime de movimento determinado pela velocidade da embarcação,

sendo certo que, enquanto não atingem essa velocidade, que lhes permite receber apoio dinâmico da

água, os barcos planantes cumprem o princípio de Arquimedes e comportam-se como se fossem de

deslocamento. Acerca das duas embarcações que estamos a analisar em termos comparativos pode

Page 70: Desenho de embarcações de recreio

Pag. 58

dizer-se que apresentam quase o mesmo comprimento das linhas de flutuação, embora o seu

deslocamento seja completamente diferente. A primeira tem um volume submerso de cerca de 30 200

decímetros cúbicos, enquanto que a segunda tem, aproximadamente, 19 200 decímetros cúbicos, um

pouco mais de metade da primeira. Se quisermos que a primeira se desloque com uma velocidade

relativa de 1,3, quase no limite da sua eficiência óptima, isso vai corresponder a uma velocidade absoluta

de:

v ÷ L1/2 = 1,3 v = 1,3 × 39,341/2 (o comprimento da linha de flutuação é de 1200 cm= 39,34´)

v = 8,15 nós.

Recorrendo a uma fórmula empírica que é vulgarmente utilizada, verificamos que precisamos de um

motor com uma potência efectiva de 120 cavalos para deslocar a embarcação à velocidade máxima de

8,15 nós.

Passando agora para a embarcação planante, podemos admitir, sem grande exagero, que a sua

velocidade relativa deve situar-se em 5,8 (ou mais). É fácil verificar que a esta velocidade relativa

corresponde uma velocidade absoluta de:

v ÷ L1/2 = 5,8 v = 5,8 × 39,341/2 v = 36,38 nós

Recorrendo a outra fórmula empírica, que também é frequentemente referida, e que se aplica

especialmente a embarcações planantes e semi-planantes, chegamos à conclusão de que precisamos

de 1300 cavalos de potência efectiva para atingir a velocidade de 36,38 nós com a nossa embarcação.

Independentemente de não ser possível atingir esta velocidade com a embarcação de deslocamento,

que tem quase o dobro do volume imerso da embarcação planante para o mesmo comprimento da linha

de flutuação, ficamos a saber que a velocidade nos barcos custa muito caro. A potência dos motores do

barco planante é mais de dez vezes superior à dos motores do barco de deslocamento, a que

corresponde uma diferença astronómica de consumos, e uma velocidade que é só o triplo da primeira.

Fica assim perfeitamente esclarecida uma afirmação feita inicialmente por mim de que é muito

económico fazer o transporte de grandes cargas por barco, a baixa velocidade, e que tal já não é

economicamente viável com rapidez, se bem que a um comprimento da linha de flutuação maior

corresponde, para uma mesma velocidade relativa, uma velocidade efectiva maior. Por exemplo, para

atingirmos a velocidade de 36,38 nós com um navio (que só pode mover-se em regime de deslocamento),

ao qual fixamos a velocidade relativa de 1,3, precisamos de que o comprimento da linha de flutuação se

aproxime dos 240 metros, a que corresponderia um volume imerso da ordem dos 250 000 metros

cúbicos, se fosse do mesmo tipo da embarcação da figura 4!

Page 71: Desenho de embarcações de recreio

Pag. 59

Já anteriormente abordámos a questão das relações numéricas entre dimensões das embarcações, de

modo a caracterizá-las. No que se refere às embarcações a motor são particularmente relevantes

algumas delas, que passo a citar. Em primeiro lugar vem o coeficiente prismático, que dá uma indicação

da finura do casco. Trata-se, como já foi referido, do quociente entre o volume da querena e o de um

prisma cuja secção transversal é igual à maior secção da querena e cujo comprimento é o mesmo da

linha de flutuação da embarcação. Quando estamos a comparar embarcações que apresentam

diferentes coeficientes prismáticos, verificamos que lhes correspondem diferentes velocidades relativas,

numa perspectiva de aproveitamento óptimo das suas potencialidades, embora não seja possível fixar

uma relação directa, porque se constatam variações cuja explicação teórica se apresente difícil. Nota-se

experimentalmente mas não se explica que, a velocidades relativas de 0,9, ou menos, correspondem

embarcações cujo coeficiente prismático vai de 0,60 a 0,80. As velocidades relativas entre 1 e 1,2 deve

corresponder um coeficiente mais baixo, entre 0,54 e 0,59. Vamos, agora, calcular os coeficientes

prismáticos das embarcações das figuras 4 e 5. No que se refere à primeira temos:

c6 = 30200 ÷ ( 20 × 6 × 192,5 × 2) c6 = 30200 ÷ 46200 c6 = 0,65.

Trata-se de um valor um pouco alto para este tipo de embarcação, o qual poderia ser reduzido com

alguma vantagem se os extremos da embarcação fossem menos cheios. Vejamos, agora, qual o valor do

coeficiente da embarcação planante da figura 5:

c6 = 19200 ÷ (20 × 6 × 113 × 2) c6 = 19200 ÷ 27120 c6 = 0,71

Este valor considera-se correcto para uma embarcação deste tipo, podendo mesmo ser mais elevado.

Nas embarcações a motor mais antigas, a secção que tinha a maior área era, geralmente, a secção

mestra e era, sem margem para dúvidas, este valor que se utilizava para calcular o coeficiente

prismático. Hoje, por razões de vários tipos, entre as quais se encontram as que são derivadas da

distribuição dos pesos e do aproveitamento do espaço interior, essa ocorrência raramente se verifica.

Por exemplo, no caso da embarcação de deslocamento de que determinámos o coeficiente, a secção

que apresenta a maior área submersa é a secção 4, sendo certo que, na embarcação planante, a secção

maior é a 5, já muito próxima da popa.

Um coeficiente que também se utiliza com frequência para comparar barcos a motor é o que recorre ao

quociente entre o deslocamento, medido em toneladas inglesas (1 tonelada inglesa equivale a 2240

libras e 1,016 toneladas métricas), e a centésima parte do comprimento da linha de flutuação, em pés,

elevada ao cubo.

Page 72: Desenho de embarcações de recreio

Pag. 60

D/L = P ÷ (0,01 × L)3

Vamos determinar os valores deste coeficiente para as duas embarcações que temos vindo a utilizar

para teste. No caso da embarcação de deslocamento teremos:

D/L = (30200 ÷ 1016) ÷ (0,01 × 39,34)3 D/L = 29,72 ÷ 0,0609 D/L = 488

Este valor diz-nos que a embarcação é bastante pesada e, obviamente, que jamais teria condições para

planar. Independentemente das exigências próprias do desenho e da potência dos motores que sabemos

serem necessárias para que um barco atinja esse desiderato, isso jamais pode acontecer com barcos

que apresentam coeficientes destes, acima dos 250. Para se conseguir esse efeito, o ideal é que o

coeficiente se situe entre 140 e 225. Vejamos, então, o que acontece com o nosso barco planante:

D/L = (19200 ÷ 1016) ÷ (0,01 × 39,34)3 D/L = 18,90 ÷ 0,0609 D/L = 310

Como se acaba de constatar este valor é manifestamente excessivo, pelo que, se pretendermos melhorar

a sua eficácia para navegar como embarcação planante, teremos de fazer algo para o reduzir.

Por razões de facilidade destes cálculos temos vindo a assumir que um decímetro cúbico de água

equivale a um quilograma, ou seja, que os valores computados correspondem a uma situação em que

os barcos se deslocam em água doce. Se as contas fossem feitas para água salgada os valores

correspondentes ao peso das embarcações seriam, como sabemos, um pouco superiores o que, no caso

deste último coeficiente, daria resultados ainda maiores. Com esta explicação pretendo chamar a

atenção para o facto de que, pelo menos no que se refere ao barco planante, numa situação de projecto,

seríamos obrigados a reduzir o valor do seu deslocamento, tornando-o mais leve. Para o efeito, entre

outras acções possíveis, podemos baixar um pouco a linha de flutuação de referência, facto que, por

causa da diminuição do peso, concorre também para reduzir de alguma coisa a potência dos motores.

Se conseguíssemos atingir os 13500 decímetros cúbicos, em vez dos 19200 que obtivemos antes, já

estaríamos com um coeficiente aceitável. Para isso seria necessário que a linha de água baixasse cerca

de 10 centímetros, ficando a embarcação com um calado de 1,05 metros, em vez de 1,15 metros que

agora apresenta. Como se pode ver por este exemplo, as questões do desenho só estão completamente

resolvidas quando conseguimos equacionar de maneira harmoniosa os vários factores em presença.

Faço notar que o abaixamento da linha de flutuação tem implicações de vária ordem, nomeadamente no

que se refere ao dimensionamento da estrutura e ao peso dos itens que podemos instalar a bordo.

Quando decidimos reduzir o volume submerso em cerca de 5700 decímetros cúbicos teremos de ter

uma particular atenção com a escolha dos materiais de construção e com as suas performances

Page 73: Desenho de embarcações de recreio

Pag. 61

mecânicas. Posso adiantar, neste momento, que certos materiais que agora já estão facilmente

disponíveis e determinadas técnicas modernas de construção permitem atingir resistências mecânicas

elevadas, com pesos relativamente baixos.

Já sabemos que as condições do movimento das embarcações de deslocamento e das embarcações

planantes são muito diferentes, na medida em que as primeiras cumprem o princípio de Arquimedes e

as segundas, a partir de uma certa velocidade elevam-se, alterando-se a sua superfície de flutuação de

maneira radical. Os projectistas costumam recorrer a um coeficiente adimensional (número de Froude

volumétrico) para determinarem a aptidão das embarcações para planarem, sendo certo que não há

valores absolutamente precisos para definição dos modos de movimento. Vejamos, então, a expressão

que traduz o coeficiente:

Fnv = v ÷ (g × V1/3)1/2

em que v é a velocidade da embarcação medida em pés por segundo (1,6889 nós), g é a aceleração da

gravidade, nas mesmas dimensões, e V é o volume submerso, medido em pés cúbicos.

Os barcos de deslocamento operam a valores deste coeficiente inferiores a 1,3, os barcos semi-

planantes tem o coeficiente situado entre 1,0 e 3,0 e os barcos planantes apresentam valores superiores

a 2,3. Como se pode constatar, há uma certa sobreposição dos valores.

Aplicando esta fórmula aos dois casos que temos vindo a testar, considerando a embarcação planante

com o valor do deslocamento reduzido para 13500 decímetros cúbicos, teremos 0,76 para a

embarcação da figura 4 e 3,9 para a embarcação da figura 5. Qualquer dos valores é compatível com

aquilo que se admite como adequado. Do mesmo modo que a experiência fixou como máximo admissível

cerca de quinze quilogramas para cada cavalo de potência efectiva, nas embarcações planantes,

também os ensaios determinaram que, nas embarcações de deslocamento, a cada cavalo de potência

correspondem 225 a 275 quilogramas de peso. Nestas condições a velocidade relativa da embarcação

situar-se-á no conhecido valor de 1,34. Mas se dispusermos de motores com uma potência bastante

maior, que corresponda, por exemplo, a metade daquele peso, à volta de 125 quilogramas por cada

cavalo efectivo, só conseguimos aumentar a velocidade relativa para 1,5, algo que já referimos antes

como uma das características mais marcantes deste tipo de embarcações. No que se refere às

embarcações semi-planantes basta referir que não são mais do que um compromisso entre as duas

situações extremas, constituindo muitas vezes a solução ideal para programas em que se procura aliar

a velocidade com a economia e com performances intermédias. Julgo que qualquer leitor já terá

percebido que a curva das áreas de uma embarcação semi-planante é também um compromisso entre

as duas que temos vindo a estudar, não valendo a pena perder mais tempo com o assunto.

Page 74: Desenho de embarcações de recreio

Pag. 62

Para finalizar esta discussão faz todo o sentido recordar, mais uma vez que, por causa das exigências de

potência, as embarcações planantes estão sujeitas a limites dimensionais bastante apertados. Não é

económica nem tecnicamente viável fazer embarcações planantes de grandes dimensões (com mais de

trinta metros), pelo menos enquanto só tivermos motores de explosão e de combustão do tipo

convencional. Por outro lado, as solicitações dinâmicas impostas pela deslocação das embarcações a

alta velocidade e pela assimetria do apoio nestas condições de movimento obrigam a cuidar

particularmente do correcto dimensionamento dos elementos estruturais e do revestimento do casco,

sem nunca esquecer a questão crucial do limite do peso. O impacto da água e as vibrações do casco,

como resultado da alta velocidade, podem ter efeitos destrutivos sobre os referidos elementos e sobre

as ligações, efeitos esses que não se verificam nas embarcações de deslocamento, a não ser nas raras

situações em que são apanhadas pelo mau tempo.

Nos últimos anos tem vindo a vulgarizar-se a utilização de multicascos como embarcações a motor, de

lazer. Como estas embarcações são bastante diferentes dos monocascos vale a pena dizer algo sobre

elas, tanto mais que muitas das assunções feitas acerca destas últimas não se lhes aplicam. Pondo de

parte alguns exemplos especiais particularmente exóticos, podem classificar-se os multicascos, tal como

os monocascos, em embarcações de deslocamento, planantes e semi-planantes. Contudo os limites de

velocidades relativas que separam estas categorias devem ser analisados com algum pormenor pois

apresentam diferenças substanciais relativamente aos monocascos. Só irei abordar, neste momento, os

catamarans de cruzeiro, deixando de lado os trimarãs, por causa da sua raridade e, também, os

catamarans de corrida. Por outro lado, são os catamarans de cruzeiro que começam agora a vulgarizar-

se, e não quaisquer outros. Particularmente na Nova Zelândia, na França e nos Estados Unidos, por

causa das economias de combustível e do conforto que resulta do apoio em dois cascos, tem vindo a

aparecer inúmeros exemplos de catamarans de cruzeiro. No início, estes barcos tinham um desenho

muito semelhante ao dos multicascos à vela, mas com o tempo e com o conhecimento que se foi

adquirindo acerca destes artefactos, a concepção foi evoluindo e há, neste momento, um entendimento

muito mais profundo das diferenças entre os monocascos e os multicascos a motor. A primeira coisa que

configura a diferença é que não se aplicam a estes últimos os valores de velocidade relativa (ou do

número de Froude) que correspondem aos vários tipos dos primeiros. Por mais incrível que pareça, um

catamarã de deslocamento, com motorização adequada, pode atingir uma velocidade relativa de 3,25,

ou ainda mais. Com esta velocidade não se constata qualquer espécie de apoio dinâmico no seu

movimento, situação que sabemos, também, ser impossível de se verificar com um monocasco de

deslocamento. É importante referir que o cálculo da velocidade relativa dos catamarans se faz tomando

em consideração o comprimento entre perpendiculares de cada um dos seus cascos, muito longos e

estreitos, por comparação com os das embarcações de um só casco. Observando mais uma vez a figura

6 concluímos imediatamente que, para se atingirem altas velocidades relativas com embarcações de

deslocamento (e também com embarcações planantes), é preciso atacar principalmente a resistência

de origem gravítica, isto é, a que conduz à formação de ondas. Ora, há duas maneiras para atingir este

Page 75: Desenho de embarcações de recreio

Pag. 63

desiderato, a saber, reduzir drasticamente o peso ou fazer cascos de deslocamento muito longos e

estreitos. Como um catamarã de cruzeiro precisa sempre de algum volume imerso, para poder

transportar todas as coisas e pessoas que é normal existirem dentro de uma embarcação com a referida

finalidade, não resulta fácil reduzir o seu peso para além de um determinado limite. No que se refere à

utilização de cascos planantes subsistem as dificuldades intrínsecas à sua geometria. Por razões óbvias,

as querenas dos catamarans são estreitas, isto é, apresentam uma relação entre o comprimento e a

boca, na linha de flutuação, da ordem dos 9 ou 10 para 1, enquanto que nas embarcações convencionais

de um só casco esses valores são muito menores. Sabemos que, com querenas tão estreitas, é difícil

conseguir apoio dinâmico pelo que, só nos resta verdadeiramente a segunda das duas possibilidades

antes referidas, ou seja, usar cascos de deslocamento longos e estreitos. Não quer isto dizer que seja

impossível conceber catamarans de cruzeiro com cascos planantes, desde que o valor da relação

referida antes ande à volta de 7 para 1, mas começa a ser muito complicado desenhá-los quando

ultrapassam os quinze metros de comprimento total. Quando, por razões programáticas, se ultrapassa

esta dimensão, faz todo o sentido usar querenas de deslocamento, tanto mais que, como dissemos

antes, é possível atingir boas velocidades relativas com cascos deste tipo. E porque será que a barreira

da velocidade relativa, de 1,34, não se aplica aqui?

Porque dois cascos muito estreitos, rigidamente ligados a uma distância conveniente, tem uma área

frontal muito menor do que a de um monocasco de comprimento comparável. Contudo, percebe-se

intuitivamente que, quanto menor for a área frontal, menor é o volume de água que a embarcação tem

de afastar sempre que se move e isso é fundamental para reduzir a resistência provocada pela formação

dos sistemas de ondas. É conveniente referir, neste momento, que duas embarcações com o mesmo

comprimento da linha de água, deslocando-se a velocidade semelhante, produzem sistemas de ondas

de características semelhantes, com a única diferença de que a embarcação mais estreita, com menor

área frontal, dá origem a ondas com menor altura, isto é, com uma distância menor entre a cava da onda

e a crista respectiva. Compreende-se, sem dificuldade, que o barco mais estreito desloca menos água

do que o barco mais largo, situação que, obviamente, exige um menor esforço ao sistema de propulsão,

qualquer que ele seja. Quando ainda não se conhecia a teoria que suporta o desenho das embarcações

planantes e semi-planantes e, por qualquer razão programática, era imperativo obter “altas velocidades”

na água, projectavam-se embarcações de deslocamento muito longas, estreitas e bastante leves, com

todos os inconvenientes que daí advinham para a segurança e para a estabilidade. Uma embarcação

que ficou famosa na época, desenhada e construída em 1897 por Charles Parsons, tinha um pouco mais

de trinta metros de comprimento da linha de água, enquanto a boca na flutuação se ficava por um oitavo

deste valor. Esta embarcação, com quarenta e quatro toneladas e meia de deslocamento, dispunha de

três turbinas a vapor, cuja potência total atingia dois mil cavalos, conseguindo deslocar-se à

“extraordinária” velocidade de trinta e cinco nós. A proporção entre a boca e o comprimento (um para

oito), utilizada no desenho das linhas da Turbinia (era este o seu nome), foi uma opção resultante de se

ter concluído, pelo recurso a ensaios, que as embarcações com as referidas proporções requeriam a

Page 76: Desenho de embarcações de recreio

Pag. 64

menor potência para regimes de velocidades relativas inferiores a 1,34. Como hoje sabemos, o

argumento que sustentou aquela opção de projecto constituiu, sem margem para discussão, uma falácia

resultante da generalização abusiva. Aquilo que é bom para uma velocidade relativa tão baixa,

infelizmente não se aplica quando se pretende atingir o valor de 3,5.

Para que o leitor fique razoavelmente identificado com as características geométricas de um

“catamaran” de cruzeiro, dotado de cascos de deslocamento, apresento na figura 12 o plano geométrico

simplificado de uma das mais bem sucedidas formas, capaz de viagens transoceânicas, desde que a sua

estrutura esteja adequadamente concebida para resistir a condições adversas de mar. É preciso ter

presente que a geometria da asa de ligação dos dois cascos apresenta condicionalismos muito

particulares que a diferenciam fortemente da forma dos monocascos pois, para além das questões de

resistência mecânica, em geral, e da resistência à flexão e à torção, em particular, que a deslocação em

mar aberto coloca, é nesse vazio central que se localiza a maior parte dos espaços de estar e de dormir,

nos catamarans de cruzeiro.

Voltando agora ao desenho da figura 12, convém referir que ele se afasta bastante da forma inicial dos

catamarans a motor que, como já foi dito, eram baseados em desenhos anteriores que tinham sido

concebidos para recorrerem ao uso das velas. Essas primeiras embarcações tinham pouca flutuação na

popa, disposição que não influenciava negativamente o seu movimento derivado do uso de velame (o

conjunto das velas em funcionamento ajudava a equilibrar as querenas), mas que se veio a revelar

inconveniente, no caso da propulsão com motores porque, a partir de certa velocidade, a popa começava

a afundar e a performance da embarcação era fortemente afectada.

Parece-me interessante evidenciar as características da curva das áreas desta embarcação de

dimensões apreciáveis. Por causa da forma particular da popa existe, ainda, alguma flutuação entre as

secções 5 e 6, o que permite que este barco se desloque em posição horizontal, mesmo quando se move

a velocidades importantes, tal como se pretendia. Mas é evidente que a forma da referida curva é típica

de uma embarcação de deslocamento. Embora não sejam apresentados os cálculos referentes ao

deslocamento e à localização do centro de flutuação, os mesmos foram feitos. Os resultados obtidos

permitem afirmar que o volume imerso (dos dois cascos) atinge 15550 dm3, aproximadamente. Por outro

lado, nota-se que a localização longitudinal do centro de flutuação ultrapassa ligeiramente a secção

mestra, no sentido da proa (1,17 dm), facto que provavelmente não será inconveniente, bastando, para

tanto, ter em devida conta o arranjo dos espaços e a distribuição dos elementos mais pesados, quando

se proceder ao desenho do seu interior. No caso de se verificar, durante o cálculo dos pesos e da

localização do centro de gravidade, que o centro de flutuação precisa de ser recuado, poderemos alterar

ligeiramente o volume das duas querenas, exigência que se resolve, sem dificuldade, alargando as

secções transversais da popa com vista a um pequeno aumento do seu deslocamento nesta zona.

Page 77: Desenho de embarcações de recreio
Page 78: Desenho de embarcações de recreio

Pag. 65

VII.

EMBARCAÇÕES À VELA.

TIPOS TRADICIONAIS E MODERNOS DE VELAME.

EVOLUÇÂO DAS FORMAS DOS CASCOS, DAS QUILHAS E DOS PATILHÔES.

Desde os tempos mais antigos, os pescadores e outros navegantes procuraram tirar vantagem do uso

do vento para se deslocarem em embarcações. A evolução das velas e dos cascos ocorreu,

essencialmente, a partir dos dados recolhidos da experiência, muitas vezes penosa e dramática, que

permitiu aperfeiçoar empiricamente as embarcações, sem recurso a quaisquer meios científicos de

suporte. Só a partir do século XVIII é que alguns físicos começaram a utilizar os incipientes

conhecimentos de hidrodinâmica e de aerodinâmica disponíveis nessa época para, aplicando-os à

prática de velejar e do movimento das embarcações, tentarem compreender, com um enquadramento

científico adequado, os fenómenos que estão envolvidos na actividade náutica. Deve dizer-se, em abono

da verdade, que os primeiros resultados obtidos, quer na criação de modelos explicativos, quer ao nível

da alteração dos desenhos tradicionais que tinham evoluído lentamente através dos séculos, nem

sempre foram satisfatórios. As interacções entre vento, ondulação, querenas e velame são muito

complexas e continuamos a constatar, ainda hoje, a existência de várias lacunas e de alguns equívocos

nas teorias que pretendem servir de suporte à concepção das embarcações, ao seu desenho e à

actividade desportiva que deriva da utilização destes artefactos. É por este motivo que a aprendizagem

do acto de projectar embarcações de recreio deve basear-se ainda, em grande parte, no saber feito de

experiência, isto é, no conjunto dos dados qualitativos e quantitativos que o uso continuado validou. Isto

não quer dizer que a experiência prática (assim como o recurso à teoria) conduza obrigatoriamente a

resultados definitivos. Sabemos que algumas das observações que durante muito tempo tivemos por

solidamente fundamentadas, sustentaram decisões que o tempo e outras observações do mesmo

género acabaram por pôr em causa, demonstrando a sua falsidade. É esta a razão por que nestas, como

noutras situações semelhantes, uma atitude de permanente dúvida e de modéstia revela lucidez e bom

senso. Estarmos cheios de certezas acerca dos vários aspectos da concepção e da construção de

embarcações e, também, da prática da vela denota uma grande falta de realismo.

Muitos dos projectistas de maior sucesso guardam ciosamente, para uso pessoal, os resultados de testes

e outros conhecimentos que foram adquirindo e validando durante a sua actividade profissional, não só

através de um trabalho sistemático de recolha e de inventariação de dados como também de maneira

fortuita. Neste momento vem-me à memória a conhecida frase de Picasso que, segundo parece, não

desenhava embarcações, mas que mostra como é importante estarmos atentos aos sinais que o mundo

nos envia, a todo o momento, e que sintetiza uma atitude mental que devemos ter sempre presente:

“Primeiro encontro, depois procuro”

Page 79: Desenho de embarcações de recreio

Pag. 66

Vamos começar as nossas explicações por uma descrição sumária do efeito do vento nas velas, porque

este é um dos aspectos que mais confusão cria na mente dos que pretendem conhecer algo mais do

que ideias feitas sobre os fenómenos em causa. Todos os avanços atingidos na concepção dos sistemas

de velame, a partir da utilização de panos redondos, foram marcados pela necessidade de se conseguir

navegar mais próximo da direcção donde vem o vento, com vista a reduzir os trajectos que antes eram

obrigatórios para se chegar a um determinado lugar situado a barlavento. É fundamental que se

compreenda que, na sua concepção original, as embarcações movidas a vento constituíam sistemas de

atrito que desenvolviam forças propulsoras quase exclusivamente na direcção do movimento do ar. Por

causa dessa limitação sofriam as consequências negativas que resultavam da dependência da direcção

do vento. Tanto quanto a nossa cultura histórica ocidental (sistematicamente refeita em função dos

poderes emergentes) nos permite conhecer, foi a partir do momento em que as embarcações de pesca

do Mediterrâneo, por volta do século XII, começaram a utilizar as velas “latinas”, envergadas segundo o

plano longitudinal da embarcação, diferentemente das velas redondas, que eram sustentadas por vergas

cruzadas transversalmente nos mastros, que os pescadores devem ter percebido intuitivamente que

seria possível navegar contra o vento. É claro que esta capacidade de deslocação para novos rumos em

relação à direcção do vento não era, nem é, ilimitada. A experiência da vela diz-nos que, mesmo os

actuais sistemas mais eficientes, não conseguem fazer progredir as embarcações segundo direcções

abaixo de um determinado ângulo entre o sentido do vento verdadeiro e o rumo do barco. Em condições

bastante favoráveis esse ângulo é da ordem dos 55 graus, ou um pouco menos, situação em que o

ângulo de incidência do vento nas velas fica pelos 25 graus. Neste tipo de mareação, designada por

navegação à bolina cerrada, o conjunto da embarcação e das velas funciona como um dispositivo de

elevação, no qual a força que produz essa elevação se desenvolve perpendicularmente ao movimento.

Trata-se de algo muito diferente do que se passa quando o barco é empurrado pelo vento, isto é, quando

navega com vento de popa ou da alheta. Uma análise cuidada da maneira como funcionam os dois

sistemas (de atrito, com vento pela ré, e de elevação, com vento pela proa), revela imediatamente a

maior complexidade do conjunto das forças envolvidas quando ocorre o movimento da embarcação

contra o vento. Por exemplo, o fenómeno do abatimento, que é o ângulo que o plano longitudinal da

embarcação faz com o seu caminho real, é maior quanto mais cerrada for a bolina, facto que prejudica

significativamente o andamento da embarcação, na medida em que o seu avanço ocorre um pouco de

lado, com manifesto detrimento da sua hidrodinâmica, na medida em que a área frontal é superior

àquela que o barco apresentaria no caso de se deslocar rigorosamente segundo o seu eixo longitudinal.

Os barcos são concebidos para se moverem segundo esse eixo, embora se conheçam algumas

excepções muito raras, como era o caso de certas embarcações tradicionais de pesca usadas no Japão

e de outras bastante utilizadas pelos pescadores portugueses fora da baía de Cascais (as muletas) cuja

concepção explorava a capacidade de deslizarem lateralmente, em determinadas condições, para fins

estritamente utilitários (lançamento e recolha das redes).

Page 80: Desenho de embarcações de recreio

Pag. 67

Deve ter sido por causa do esforço exigido às embarcações e às tripulações, quando se navega à bolina

cerrada, que um velejador de nacionalidade americana, com pretensões a aristocrata, deu como título a

um livro, no qual relata os seus feitos náuticos, a seguinte frase: “Os cavalheiros não navegam contra o

vento“.

Para compreendermos o que está em causa vamos fornecer alguns conceitos adicionais, que nos

ajudarão a construir mentalmente um modelo explicativo desta complexa fenomenologia. Chama-se

centro velico (ou centro de esforço das embarcações à vela) ao ponto de aplicação da resultante dos

efeitos do vento sobre o conjunto das velas. A sua determinação pode fazer-se de várias maneiras,

algumas gráficas e outras através de cálculos. Na figura 15 pode ver--se a aplicação de um dos métodos

gráficos, provavelmente aquele que os projectistas mais utilizam. Trata-se de determinar o centro

geométrico de cada uma das velas e, simultaneamente, de calcular a sua área. Como as velas mais

correntes são triângulos ou quadriláteros é relativamente fácil atingir este objectivo. Combinando as

velas, duas a duas, determina-se o baricentro dos conjuntos parciais, ligando os centros por um

segmento e, colocando perpendicularmente a este, outros segmentos cujo comprimento corresponde às

áreas das velas, de modo a que a de menor dimensão seja aplicada a partir do centro da vela maior, e

vice-versa. Ligando os extremos dos segmentos obtêm-se o centro de cada conjunto. Repetindo esta

operação as vezes necessárias chega-se ao centro velico do conjunto total. Como pode ver-se pela

observação da figura 15, as velas situadas para vante do mastro mais avançado não foram consideradas

individualmente. O que é costume fazer-se, nestes casos, é considerar o triângulo formado pelo mastro,

pelo cabo onde enverga a vela mais avançada, quando há mais do que uma, e pela parte superior do

convés, determinando o centro geométrico desta superfície e utilizando, de seguida, a sua área total,

independentemente do número de velas que aí existam. Foi aquilo que eu fiz, neste exemplo.

Todavia, faço notar que, através de ensaios em túneis de vento e de medições com modelos, foi possível

concluir que a posição dos centros velicos não é estável. A sua localização depende das mareações e de

outros factores que não vale a pena referir neste contexto. Mas a variação das posições quando a área

do pano se mantém constante é relativamente limitada e pouco relevante para o que nos diz respeito.

Para já, interessa fixar este método de determinação do centro velico, pois a sua relação com outro

centro, o centro de resistência lateral, deve ser devidamente considerada no desenho de embarcações

à vela.

Para o observador pouco atento, o efeito do vento nas velas parece resultar directamente da pressão

do ar em movimento, situação que, afinal, só acontece com vento de través ou de popa. Contudo, nas

condições de navegação contra o vento, já estamos em presença de um conjunto de forças que podem

ser comparadas com as que se desenvolvem na asa de um planador ou de um ultraleve, quando estes

se deslocam no ar. Na verdade, as experiências levadas a cabo neste domínio por investigadores

qualificados vieram demonstrar que a força de elevação é, na sua maior parte, devida à redução da

Page 81: Desenho de embarcações de recreio

Pag. 68

pressão do vento no extradorso das velas (sotavento) e não ao aumento da referida pressão no

intradorso. A curvatura das velas, sob a acção do vento frontal, obriga a que o ar que circula na parte

convexa se desloque com maior rapidez do que o que passa na zona côncava (barlavento). A dinâmica

dos fluidos ensina-nos que a pressão diminui nas regiões em que a velocidade do fluido é maior, por

oposição àquilo que se passa nas regiões de baixa velocidade. Assim, a força de elevação acaba sendo

o resultado combinado da redução da pressão e do seu aumento, respectivamente, a sotavento e a

barlavento, embora se saiba, através de testes laboratoriais, que a sucção produzida no extradorso da

vela conta bastante mais do que o empuxo no intradorso. Verifica-se, na realidade, que com a sucção se

obtém aproximadamente 60% a 80% da força total.

Nos sistemas em que há várias velas parcialmente sobrepostas (ver, para este fim, os esquemas

explicativos da figura 13) desenvolve-se, ainda, um efeito adicional, o chamado efeito de fenda, que

conta positivamente para o andamento da embarcação. A geometria do conjunto faz com que a corrente

de ar que passa entre as velas aumente ainda mais a sua velocidade no extradorso da segunda vela (e

das restantes, quando existem), potenciando a diminuição da pressão nesse lado do pano e,

consequentemente, o efeito de sucção. Mas, para que as coisas se processem da melhor maneira, é

preciso que as velas adjacentes se mantenham com uma posição e uma curvatura semelhantes e, por

outro lado, que a parte em que se verifica sobreposição dos panos apresente uma área razoável, sem

ser excessiva. A experiência demonstrou que há um limite para essa sobreposição, que é também

influenciada pela resistência mecânica dos mastros para suportarem as tensões produzidas pelas velas

e pela capacidade dos molinetes, ou dos músculos dos tripulantes! Acontece, ainda, que certas normas

contidas em regulamentos de regata, definidoras das principais características das embarcações,

condicionam as dimensões das velas, bem como as áreas de sobreposição. Ao conjunto das forças que

a passagem do ar faz que se desenvolvam sobre as velas contrapõem-se um outro conjunto que actua

sobre a embarcação e, em particular, sobre as obras vivas, como consequência da passagem da água.

Chama-se centro de resistência lateral ao ponto onde a resultante dessas forças actua. Se repararmos

no desenho constante da figura 14 podemos aperceber-nos perfeitamente dessas acções actuando

sobre a querena, quando a embarcação se desloca à bolina. Na figura 15, anteriormente referida a

propósito do centro velico, aparece também indicado o centro de resistência lateral, que não é mais do

que o centro geométrico da figura plana que representa, nesta vista, a projecção das obras vivas da

embarcação sobre o plano de referência. Para determinar a sua localização aproximada há, também,

vários métodos, sendo o mais comum e mais simples, aquele que consiste na reprodução do perfil

situado abaixo da linha de água, em papel rígido ou cartolina, recortando-o com uma tesoura, ou outro

dispositivo de corte. Suspende-se, em seguida, a figura assim obtida, do bisel de uma régua, em equilíbrio

horizontal, e marca-se sobre ela a linha de intersecção dos dois planos. Repete-se esta operação

segundo três direcções quaisquer, marcando novamente na superfície da cartolina os segmentos de

recta que coincidem com as intersecções do plano da régua com a figura que nela está apoiada e

equilibrada. Verificaremos que, se houver algum cuidado, os três segmentos se encontram num único

Page 82: Desenho de embarcações de recreio

Pag. 69

ponto. Este é o centro de resistência lateral que coincide, obviamente, com o centro geométrico da figura.

Vamos agora discutir com algum pormenor, a relação que deve existir entre as posições relativas deste

centro e do centro velico, para que a embarcação não apresente vícios e navegue nas melhores

condições. Contudo, devo advertir o leitor de que existe uma enorme controvérsia acerca desta matéria,

porque, tal como já o referi inúmeras vezes, o desenho de embarcações de recreio não se apoia em

princípios científicos exactos. Tomando como aceitável o que diz F. S. Kinney, no conhecido livro Skene,s

Elements of Yacht Design, sobre a percentagem que representa a distância horizontal entre os dois

centros, relativamente ao comprimento da linha de água, medido ao longo do seu eixo central, teremos:

para sloops- de 14% a 19%;

para yawls- cerca de 15% (atribuindo metade da área da catita, no cálculo da posição do centro

velico);

para ketches- cerca de 20% (atribuindo metade da área da mezena, no cálculo da posição do centro

velico);

para schooners- cerca de 5%.

Todos estes valores são para utilizar partindo do princípio que o centro velico está situado à frente do

centro de resistência lateral, na direcção da proa. No entanto, o famoso palhabote América, que fez uma

carreira desportiva extraordinária, tinha o centro velico recuado em relação ao centro de resistência

lateral de cerca de 1% do comprimento da linha de água!

Aproveito este momento para referir que, como é evidente, nas embarcações com patilhão móvel, é

possível alterar a posição do centro de resistência lateral conforme se move o referido apêndice. Até

existem veleiros com dois patilhões, sistema que permitem actuar com maior eficácia neste domínio,

com vista à melhoria das condições de navegação.

Já constatámos, a propósito do estudo das embarcações a motor, que as forças envolvidas no seu

movimento estão essencialmente relacionadas com fenómenos hidrodinâmicos. No que se refere às

embarcações movidas exclusivamente à vela, ou que dependem parcialmente do movimento do ar para

se deslocarem, estão obviamente em causa fenómenos que, além da água, envolvem o ar. Estamos a

falar de forças de atrito e de elevação actuando nas querenas e nas velas, sendo certo que a necessidade

da sua compreensão implica que nos detenhamos com algum pormenor nos modelos científicos que as

explicam. Quando um flutuador se desloca na interface dos dois fluidos, a água e o ar, ou quando estes

se deslocam em torno do flutuador, o que, de um ponto de vista do enquadramento teórico, não

apresenta qualquer diferença, o referido objecto fica sujeito a um conjunto complexo de forças e

momentos, em que as primeiras se podem descrever cientificamente sem grande dificuldade, mas cuja

Page 83: Desenho de embarcações de recreio

Pag. 70

separação e graduação, na prática, se revelam extremamente difíceis. Vejamos, em termos gerais, o

elenco das entidades físicas mais evidentes que estão envolvidas no movimento:

1. Forças da inércia (elevação), que derivam da aceleração do movimento dos fluidos quando se

afastam do seu percurso normal por efeito da presença de uma embarcação;

2. Forças da viscosidade (atrito), que se devem à atracção exercida pela superfície do casco e das

velas sobre os fluidos que com eles contactam, originando um gradiente de velocidade nas camadas

sucessivas dos fluidos (ar e água) em contacto com a embarcação, a que já antes nos referimos, a

propósito das embarcações a motor;

3. Forças da gravidade, que empurram os fluidos para as suas posições de equilíbrio, depois de se

terem afastado para cima e para baixo, pela acção da passagem do flutuador;

4. Forças de compressão, devidas à eventual redução do volume dos fluidos como resultado da

passagem do flutuador.

Uma rápida apreciação deste conjunto leva-nos a concluir que só as três primeiras é que nos devem

preocupar quando estamos confrontados com o desenho de embarcações de recreio, na medida em que

as forças de compressão só interessam aos engenheiros e físicos aeronáuticos, pois só eles lidam com

artefactos que se deslocam a velocidades próximas ou superiores à velocidade do som no ar. Quanto às

forças da viscosidade e da gravidade já falámos bastante delas quando discutimos as querenas das

embarcações a motor. Ficam, então, para analisar as forças de inércia, as tais que se desenvolvem

perpendicularmente à direcção do movimento dos corpos e desempenham um papel fundamental na

sua progressão, nas situações em que esta depende de sistemas de velame ou de dispositivos

semelhantes, que tiram partido do vento.

Quando nos dedicamos ao estudo da passagem do ar pelas velas e da água pelos apêndices dos cascos

que produzem efeitos hidrodinâmicos favoráveis, tais como as quilhas, os patilhões, as tábuas de

abatimento e os lemes, temos a consciência de que esses dispositivos não interferem, a não ser

marginalmente, com o que se passa na interface dos dois fluidos. Na verdade, a formação dos vários

sistemas de ondas que o movimento da embarcação gera depende, essencialmente, da força da

gravidade e da área frontal que o flutuador em causa apresenta quando se move, não sendo influenciada

pelas forças de inércia e de viscosidade. Também já tratámos anteriormente deste assunto quando

estudámos as embarcações a motor, pelo que não se justifica repetir as considerações que foram feitas

nessa oportunidade.

Tendo em atenção que o presente texto lida essencialmente com o desenho de embarcações de recreio

(de cruzeiro e de regata), não vamos falar de embarcações à vela que são ou eram destinadas a outros

fins. Esta é uma área do conhecimento mais ligada à história que pode ser explorada por aqueles que

tiverem interesse no assunto, já que a sua vastidão e variedade dão pano para mangas, como diz o povo.

Page 84: Desenho de embarcações de recreio

Pag. 71

Por outro lado, mesmo com a limitação do universo do discurso às embarcações de recreio, a

catalogação e tipificação das várias configurações de velame não se revela muito simples, já que são

muitas as nações e culturas que apresentam um património muito variado neste domínio. Contudo, há

dois países cujas tradições são mais ricas, correspondendo cada um deles a atitudes diferenciadas, quer

dos construtores, quer dos projectistas, quer dos praticantes do desporto, provavelmente por influência

de factores históricos, sociais, geográficos e económicos que não será muito difícil discernir. Estamos a

falar da Inglaterra e dos Estados Unidos da América. É claro que outros países mais pequenos, como a

Suécia e a Holanda, ou mais longínquos, como a Austrália e a Nova Zelândia também praticaram e

praticam intensamente este desporto, tendo, até, contribuído com avanços científicos e técnicos da

maior relevância para a melhoria das performances destes artefactos. Mas não pode deixar de se

assinalar que as alterações do desenho e da fabricação que ocorreram nos Estados Unidos durante a

segunda metade do século dezanove e a primeira do século vinte, período em que os seus projectistas

e estaleiros lutavam para roubar a supremacia aos ingleses nos domínios da concepção e dos materiais,

contribuíram decisivamente para a democratização desta actividade, tradicionalmente reservada aos

mais ricos, pelo menos no que diz respeito às unidades de maiores dimensões.

Como é fácil entender, as embarcações exclusivamente destinadas a cruzeiros privilegiam o conforto e

a segurança, em detrimento da velocidade. Já as embarcações destinadas essencialmente à prática de

regatas são concebidas e construídas, tendo como objectivo principal as performances desportivas. São

bem conhecidos alguns casos em que este objectivo foi levado a extremos que redundaram em desastre,

implicando, até, a perda de vidas humanas. Tudo aconteceu deste modo porque a busca incessante da

velocidade obriga a um esforço de redução do peso e isso, obviamente, pode resultar no

enfraquecimento das estruturas, mesmo nos casos em que se utilizam materiais exóticos e dispendiosos

cujas características mecânicas são excepcionais.

Quando está em causa a produção de grandes séries de embarcações, cujo volume e desenho do interior

permitem aos utilizadores permanecerem a bordo por períodos de tempo alargados, com possibilidade

de pernoitarem e de prepararem refeições, os fabricantes procuram soluções de compromisso que lhes

permitam vender um objecto que seja adaptável às duas funções, o cruzeiro e a regata. Isto tem sido

conseguido com algum sucesso, muitas vezes à custa da redução dos custos de fabricação, por via da

instalação de unidades fabris em países onde a mão-de-obra é mais barata. Nos tempos em que o

material mais comum para a fabricação das embarcações de recreio (e outras) era a madeira, a

construção de barcos de qualidade só era viável quando estavam disponíveis artesãos qualificados e

experientes, situação que, por causa do método de aprendizagem, correspondia sempre à existência, ao

longo de décadas, de gerações de carpinteiros navais e de uma tradição instalada desde longa data que

permitia um conhecimento profundo das características dos materiais e da maneira de os utilizar. E este

enquadramento social e técnico, associado ao elevado custo do produto final, limitava as possibilidades

Page 85: Desenho de embarcações de recreio

Pag. 72

de execução dessas máquinas de qualidade excepcional, muitas das quais ainda estão disponíveis hoje,

por causa dos esforços dos proprietários, que investem continuamente verbas elevadíssimas na sua

recuperação e conservação.

Mas quando começou a generalizar-se a construção de barcos em resinas plásticas reforçadas a fibra

de vidro, tudo se alterou. Como é fácil de constatar, este material pode ser manuseado por gente sem

preparação técnica específica, sendo fácil, para quem dirige as unidades fabris, fazer um controlo

rigoroso da qualidade. Em países pobres é sempre possível poupar nos sistemas eficientes de ventilação

e noutros dispositivos de prevenção destinados a minimizar os inconvenientes para a saúde dos

operários que o manuseamento descuidado das resinas sintéticas e das fibras de vidro e de carbono

pode provocar. Por outro lado, os impactes ambientais dos subprodutos desta indústria não devem ser

negligenciados e alguns países já dispõem de legislação restritiva cujo rigoroso cumprimento acaba por

onerar significativamente o custo de produção das embarcações. Apesar das enormes quantidades de

embarcações de plástico reforçado a fibra de vidro, obsoletas ou fora de uso, que enchem as marinas,

os estaleiros, os espaços de parqueamento e os depósito que pululam por toda a parte, ainda não foi

desenvolvido um sistema económico, eficaz e não poluente para conseguir a sua eliminação. Faço notar

que não se conhece, ainda, qual é o tempo de vida deste material composto que, aparentemente, parece

ser eterno e que, por causa disso, começa a colocar problemas difíceis de resolver, muito diferentes dos

que ocorrem, por exemplo, com os automóveis, cuja reciclagem já está a fazer-se em condições

relativamente aceitáveis. Quando estes últimos ficam obsoletos, é possível aproveitar uma fracção

significativa dos seus componentes e o aço com que se fabricam as carroçarias acaba por deteriorar-se

se for deixado sob a acção prolongada do tempo. O mesmo não acontece com os materiais de que agora

se faz a maior parte das embarcações de recreio.

Voltando novamente à questão da configuração dos sistemas de velas mais comuns convém referir que

não tenho a pretensão de fazer uma descrição exaustiva de todos os tipos. Há, porventura, muitos que

desconheço ou que conheço mal. Mas aquilo que pode interessar, no âmbito deste texto, é dar uma ideia

geral do assunto, com vista à criação de uma base de conhecimentos susceptível de um eventual

aprofundamento futuro por parte dos leitores cuja curiosidade não se esgota facilmente.

Já falámos superficialmente acerca das duas maneiras como podem ser envergadas as velas e das

designações respectivas. As velas redondas envergam em paus cruzadas nos mastros

perpendicularmente ao plano longitudinal e as velas latinas envergam segundo o referido plano, em

mastros, vergas, caranguejas e estais. É sabido que os panos redondos caíram praticamente em desuso

e que, pelo menos no que diz respeito às unidades modernas, se generalizou o uso do pano latino de

desenho triangular e trapezoidal, pela possibilidade que estas velas nos dão de explorar mareações que

não estão ao alcance das velas redondas.

Page 86: Desenho de embarcações de recreio

Pag. 73

As embarcações de recreio movidas à vela, de dimensões mais correntes, possuem um ou dois mastros,

podendo encontrar-se unidades maiores com três e mais mastros. Contudo, vamos enumerar

exclusivamente as primeiras, utilizando uma mistura da terminologia anglo-americana com a portuguesa,

por ser aquilo que é mais corrente entre nós. Devo referir que muitas destas embarcações são derivadas

de embarcações tradicionais utilizadas pelos seus detentores em várias fainas, o que permitiu evidenciar

as suas qualidades marinheiras. É claro que a mudança desses artefactos para uma utilização exclusiva

no desporto e o recurso generalizado a motores auxiliares permitiu refinar os desenhos e as técnicas de

construção, com o objectivo de melhorar as performances, de simplificar o aparelho e de satisfazer o

orgulho dos praticantes e dos possuidores.

As embarcações de um mastro que usam uma só vela envergada nesse mastro foram muito populares

nos Estados Unidos no fim do século dezanove e no princípio do século vinte mas caíram em desuso por

causa da instabilidade que resultava, em grande parte, de alguns exageros na sua concepção. Eram

denominadas cat boats e raramente ultrapassavam os trinta pés de comprimento entre perpendiculares.

Uma embarcação que continua a ser extremamente popular ainda hoje é o sloop. Tem um mastro, uma

vela grande e um estai que, em determinadas mareações e condições de vento pode ser substituído ou

acompanhado por mais um pano. Outro barco bastante parecido com este é o cuter. Aquilo que distingue

a sua armação da do sloop é a relação entre a área da vela grande e a dos panos que são envergados

para vante do mastro. No caso do cuter a vela grande é menor, como consequência da implantação do

mastro mais para a ré do que no sloop. Existe a ideia de que o cuter é um barco melhor adaptado para

cruzeiros oceânicos e situações de mau tempo, por causa do maior número de velas que a sua armação

permite envergar, facilitando combinações mais variadas da área dos panos e das posições dos centros

velicos do que a armação do sloop.

A armação de que falaremos a seguir, que é bastante comum em embarcações com comprimento

superior a quarenta pés, é o ketch, também designado entre nós por chalupa. Trata-se de uma armação

de dois mastros, sendo o mastro da ré de pequenas dimensões. Designa-se por vela grande aquela que

enverga no mastro grande e por mezena a que enverga no mastro menor. Uma armação bastante

semelhante a esta é a do yawl. Neste caso o mastro da ré ainda é menor do que o anterior e muito

chegado ao painel da popa. Por causa desta localização do mastro, a retranca respectiva projecta-se

para além do comprimento do casco. Por outro lado o pano que enverga neste mastro designa-se por

catita e tem, obviamente, dimensões muito reduzidas. Pode dizer-se que a sua utilização serve,

principalmente, para estabilizar o casco, contrariando os balanços provocados pelas ondas, tal como

acontece, por exemplo, em pequenas embarcações de pesca, a motor, que praticam a sua faina no norte

da Espanha (e noutros locais) e que dispõem, apenas, de um pequeno mastro fixado na popa para

envergar a referida vela. Praticamente todos os entendidos nestas matérias são unânimes em dizer que

quando o mastro pequeno fica para a ré da roda do leme, estamos em presença de um yawl.

Page 87: Desenho de embarcações de recreio

Pag. 74

Finalmente, apresentamos o palhabote, que nas terminologias inglesa e americana se designa por

schooner. É um barco com dois mastros, como a chalupa e o yawl, mas em que o mastro grande,

contrariamente ao que se passa com estas duas armações, se situa para a ré do mastro menor. Neste

caso o mastro menor é designado por mastro do traquete. Esta disposição dos mastros influencia

decisivamente a geometria das velas, colocando alguns problemas ao aproveitamento do espaço situado

entre os dois mastros. O recurso a latinos quadrangulares é bastante habitual nestes casos, mesmo

quando as restantes velas são latinos triangulares. Mas há outros esquemas de velame mais ou menos

comuns neste tipo de armação, tendo em atenção que os latinos quadrangulares se encontram fora de

moda há bastante tempo, por causa da maior complexidade da sua manobra e da necessidade de

usarem mais um pau, a carangueja.

Não posso deixar de chamar a vossa atenção, neste momento, para o facto de que o domínio quase

absoluto da vela triangular, também designada por bermuda ou Marconi, começa a ser posto

parcialmente em causa. Estão a aparecer, com bastante frequência, armações que, sem serem

absolutamente fieis à tradição, recuperam geometrias antigas que parecem ter dado excelentes

prestações, adaptando-as ao nosso tempo, através do recurso a materiais mais leves e resistentes e a

dispositivos de manobra, cuja concepção e desenho actualizam os antigos artefactos. Tenho visto

defender estas armações com argumentos técnicos e científicos dificilmente aceitáveis, embora me

pareça mais razoável admitir que, provavelmente, o que está em causa é um desejo de recuperar

imagens do passado e de retornar às coisas supostamente simples que se pensa terem existido nesses

tempos mais recuados. Em boa verdade, essas coisas só tem vida real na imaginação das pessoas. Mas

devemos ser tolerantes com estes apetites românticos e compreender que na nossa existência

tomamos, muitas vezes, decisões que não são inteiramente racionais. Pela minha parte acredito que

estamos em presença de uma recusa momentânea e passageira dos desenhos modernos e

ultramodernos que está a verificar-se, também, noutras áreas da concepção de bens duradouros de

consumo. Um argumento que me seduz significativamente nestes exemplos reaccionários do desenho

de embarcações é a sua indiscutível beleza.

Com esta resumida e rápida exposição de alguns dos tipos mais comuns de armações de embarcações

à vela, esquematicamente representados nas figuras 16, 17 e 18, não ficam obviamente esgotadas

todas as hipóteses e alternativas em matéria de concepção. Há um sem número de soluções novas (e a

inventar), fruto da imaginação dos projectistas, ou repescadas de tradições locais quase esquecidas, que

merecem análise e ponderação, com vista ao seu uso e à experimentação, sempre que os proprietários

e os utilizadores estejam disponíveis para explorarem novos caminhos, ou caminhos antigos que foram

momentaneamente varridos da memória dos povos. O que é importante, quando se desenha algo que

se afasta das soluções conhecidas e experimentadas, é a necessidade de aderir aos princípios, às

relações que tenho vindo a referir e que a experiência consagrou.

Page 88: Desenho de embarcações de recreio

Pag. 75

Tal como já disse anteriormente a propósito de outras matérias, para quem estiver interessado em

aprofundar os conhecimentos neste domínio complexo do desenho das velas estão disponíveis

indicações bibliográficas preciosas no final do livro. O texto “The sailmaker’s apprentice”, de Emiliano

Marino, é um documento excepcional, ao qual nem sequer falta aquele elemento de paixão, sem o qual

o estudo de qualquer matéria científica e técnica se torna quase insuportável.

Ainda nada foi afirmado acerca da área total do velame das embarcações. Depois de tudo o que tem

sido dito, torna-se evidente que a referida área depende de vários factores. Contudo, é do mais elementar

bom senso concluir que a superfície total das velas de uma embarcação deve permitir-lhe navegar

satisfatoriamente, sem que seja constantemente necessário reduzir o pano para evitar inclinações

excessivas. Já anteriormente no capítulo IV, a propósito das relações e dos coeficientes comparativos

escrevi algo sobre este assunto. Sendo certo que a superfície molhada e o deslocamento determinam

decisivamente as performances da embarcação, faz todo o sentido relacionar a área do velame com

estas duas variáveis. Teremos, então, uma expressão e dois gráficos que nos permitem testar a validade

da opção que o nosso desenho representa neste domínio e, eventualmente, proceder à sua correcção,

se for caso disso. Ver, para este efeito, a figura 19. No primeiro gráfico temos no eixo das abcissas o

quociente entre a área das velas (em condições normais de vento) e a superfície molhada e no eixo das

ordenadas o comprimento da linha de água. No segundo gráfico, o eixo das abcissas contém os valores

do produto da superfície molhada pelo comprimento total do casco dividido pelo deslocamento,

enquanto que o eixo das ordenadas apresenta, como no primeiro gráfico, o comprimento da linha de

água. Na presente situação vamos recorrer, por razões históricas, ao sistema inglês de medidas, sendo

certo que os valores calculados para os eixos das abcissas são adimensionais e, portanto, não

dependentes do sistema utilizado. Faço notar que os gráficos apresentados se destinam a embarcações

de cruzeiro. Com os dados assim obtidos não se está à procura de atingir boas prestações em regime de

regata, é preciso ser mais agressivo!

Como já dispomos dos valores da embarcação da figura 2 que nos permitem aplicar, de imediato, o

segundo gráfico, vamos utilizá-lo para calcular a área do pano que conduz à obtenção de adequadas

condições de navegação. Assim, teremos:

LA = 6m = 19,67 pés

C = 7,75m = 25,41 pés

D = 3,546m3 = 125 pés cúbicos

Se olharmos com atenção para o gráfico em causa, veremos que, como o comprimento da linha de água

é ligeiramente inferior a 20 pés, o ponto a aplicar estaria na mancha mais elevada (ponto B). Contudo,

acabei por escolher o ponto A, porque se trata de uma embarcação com cabina, de deslocamento

Page 89: Desenho de embarcações de recreio

Pag. 76

apreciável e, na verdade, as manchas mais pequenas, nos dois gráficos, destinam-se a embarcações

miúdas e abertas que navegam em zonas protegidas, com as tripulações a contribuírem decisivamente

para o seu equilíbrio. Não é, obviamente, a situação do pequeno cruzeiro que temos vindo a estudar.

O ponto A permite-nos ler, no eixo das abcissas, um valor de 70. Aplicando este valor no primeiro termo

da fórmula respectiva, fica:

DCS

70 v 34425,41

12570Sv

344Sv pés quadrados ( 37 m2)

Se pretendermos armar a embarcação em sloop, por exemplo, teremos de dividir a área assim

determinada, pela vela grande e pelo triângulo definido pelo mastro, pelo cabo onde enverga o estai e

pela parte superior do convés, tal como anteriormente foi explicado. Parece-me conveniente referir, neste

momento, que quando falo em triângulos estou a fazer aproximações mais ou menos grosseiras, na

generalidade das situações. Como é sabido, há dois lados das velas triangulares e das velas latinas

quadrangulares que não são rectos, visto apresentarem uma certa curvatura. Quer a valuma, quer a

esteira dessas velas são desenhadas deste modo. Sendo assim, nos casos em que essa curvatura é

muito acentuada, é conveniente fazer a avaliação desse excesso e acrescentá-lo ao cálculo da área do

triângulo respectivo, ou do quadrilátero. Nos casos em que a curvatura é diminuta, não é costume

considerá-la para efeito de computação das áreas. Já referi inúmeras vezes, ao longo desta obra, que a

enorme quantidade de variáveis que influenciam a qualidade final do artefacto que estamos a conceber

e que não temos condições para considerar na totalidade, quando fazemos opções de projecto,

justificam que os cálculos envolvidos e as fórmulas empíricas aplicadas sejam usados com bom senso

e, principalmente, sem excessos ridículos de rigor. Contudo, parece-me oportuno referir que há outros

métodos mais refinados para determinar a superfície que as velas devem ter, mas só faz sentido recorrer

a eles quando estão em causa embarcações de regata. Os métodos do ângulo de Dellenbaugh e do

coeficiente de pressão do vento são dois deles. Quem estiver interessado no assunto pode consultar,

entre outros, o livro “ Technical Yacht Design”, de Andrew Hammitt.

Para encerrar este capítulo vou falar, um pouco, sobre o tema das formas das obras vivas das

embarcações à vela, ou melhor, acerca da geometria do perfil destes artefactos, abaixo da linha de água.

Para este efeito é conveniente observar com atenção as figuras 20 e 21, onde estão representados

vários perfis da parte imersa de embarcações projectadas nos anos referidos no lado esquerdo dos

desenhos, figurando, no lado direito, uma representação esquemática das secções mestras. Estão ainda

indicados os valores do deslocamento, em toneladas, e do comprimento da linha de água, em metros.

Não existe, da minha parte, a intenção de apresentar exaustivamente todas as situações que ocorreram

durante estes 105 anos. O meu objectivo consiste em tipificar as tendências mais significativas que se

afirmaram neste período. Uma das principais tendências, que se constata nas embarcações projectadas

sem quaisquer intenções revivalistas, é a constante redução do peso, com vista ao aumento da

Page 90: Desenho de embarcações de recreio

Pag. 77

velocidade e à diminuição do custo. É claro que esse desiderato só pôde ser atingido por via do recurso

a novos materiais ou novas técnicas de utilização de materiais tradicionais, como é, por exemplo, o caso

da aplicação das madeiras moldadas e coladas à temperatura ambiente, com colas de nova geração.

Outra tendência, também evidente, é a da redução da superfície molhada e, consequentemente, da área

do perfil longitudinal.

O recurso a patilhões rotativos e outros dispositivos móveis, de aumentar e reduzir o calado manteve-se

estável ao longo deste período e foi utilizado, em geral, para facilitar a navegação em águas pouco

profundas, locais onde não se podia chegar com quilhas de dimensões convencionais. É claro que

também contava como objectivo dos projectistas e dos utilizadores, a diminuição da superfície molhada,

quando os patilhões estavam recolhidos.

Uma tendência que também se difundiu e acentuou foi a da separação entre as quilhas e os cascos,

passando aquelas a assemelharem-se a asas de aviões, com perfis adaptados de séries testadas em

laboratório, terminando muitas vezes com bolbos hidrodinâmicos lastrados. Este género de dispositivos

contribui para a melhoria das performances mas levanta sérios problemas de resistência mecânica,

principalmente na zona da junção das quilhas com os cascos, Por causa da deficiente resolução técnica

destas ligações, já ocorreram incidentes muito graves em embarcações projectadas por gabinetes com

reputação internacional e em outras de produção corrente. Soluções deste tipo exigem um estudo

aturado e a eventual contribuição de especialistas na concepção de estruturas metálicas sofisticadas.

O cálculo e a localização do lastro das embarcações à vela é uma das matérias que não pode ser

ignorada, mesmo num livro que pretende ser uma introdução ao desenho destes artefactos. Para a sua

colocação há que ter em conta a localização pretendida do centro de gravidade total, pelo que nem

sempre é possível encontrar a solução à primeira tentativa. Como se trata provavelmente do item mais

pesado, uma vez que, nas embarcações que dependem dele para obter um nível adequado de

estabilidade, deve constituir entre 30% e 60% do peso total, há que ter o maior cuidado na determinação

dos seus pontos de apoio. Em geral, fica colocado entre as secções transversais 3 e 6, quando se divide

a linha de água em 10 secções, com o zero situado do lado da proa. É fixado por grandes parafusos à

quilha, dependendo o sistema de fixação do material em que é feita a embarcação. Aproveitando, mais

uma vez, a embarcação da figura 2, vamos fazer o ensaio que é apresentado na figura 25, retirando do

desenho base, para o efeito, os elementos necessários para a resolução do problema. Como

pretendemos obter resultados suficientemente precisos, vamos reduzir para metade o espaçamento dos

planos que seccionam a embarcação transversalmente, introduzindo os planos 2A, 3A, 4A e 5A, a

acrescentar aos planos preexistentes 2, 3 e 4. Recorrendo à regra de Simpson, medem-se as áreas das

partes das secções que são ocupadas pelo lastro e procede-se ao cálculo habitual. Segue-se a aplicação

das fórmulas já conhecidas e, deste modo, ficamos a conhecer o volume do lastro e a localização da

vertical que contem o seu centro de gravidade. Não esquecer que o lastro é feito de um material

Page 91: Desenho de embarcações de recreio

Pag. 78

homogéneo, ferro fundido ou chumbo, com densidades respectivas de 7,1 e 11,5. Apresentam-se os

cálculos de seguida:

1ª 2ª 3ª 4ª 5ª 6ª 7ª

Sn A/2 (dm2) X V X C ∑ b

2A 0,00 1 0,00 3 0,00

2 0,39 4 1,56 2 3,12

3A 2,53 2 5,06 1 5,06

3 3,94 4 15,76 0 0,00 +8,18

4A 3,51 2 7,02 1 -7,02

4 2,68 4 10,72 2 -21,44

5A 1,75 1 1,75 3 -5,25 -33,71

∑ a = 41,87 ∑ bt = - 25,53

3

da2V

35,041,872

V

139,57V dm3

Vamos optar, neste caso, pelo chumbo. Como a densidade deste metal é de 11,5 teremos como peso

total da peça:

139,57 x 11,5 = 1605 kg

Cálculo da percentagem do peso do lastro relativamente ao peso da embarcação:

1605 ÷ 3637 = 0,44 44%

Cálculo da posição longitudinal do centro de gravidade do lastro, coincidente com o seu centro de

flutuação (a peça é constituída por um material homogéneo, sem vazios):

a

d bgC

87,410,5 -25,53

gC

Cg = 3,05 dm, em direcção à popa (por ser um valor negativo),

a partir da secção 3.

Como já referimos antes, optou-se por recorrer ao chumbo como material de base pelo que se obteve

uma peça com o peso total de 1605 kg, o que nos dá uma percentagem de 44%, relativamente ao peso

total já conhecido. Para embarcações deste género é um valor aceitável, podendo ser um pouco menos,

à volta dos 40%. Se repararmos nos desenhos da figura 25, onde também está marcada a vertical do

Page 92: Desenho de embarcações de recreio

Pag. 79

centro de flutuação da embarcação, verificamos que existe uma distância de 0,98 dm entre esta e a

vertical do centro de gravidade do lastro. Só conhecendo a posição do centro de gravidade da

embarcação, sem o lastro, será possível saber se a combinação assim obtida coloca o centro de

gravidade do conjunto na vertical do centro de flutuação. Se assim não acontecer, há que fazer ajustes

e redesenhar o lastro ou desloca-lo para outra posição conveniente. Contudo, como pouca gente acredita

em milagres é costume, nestes casos, deixar sempre 1% a 5% de lastro móvel, no interior, para ajustes

finais!

Devo, ainda, acrescentar uma última nota a propósito da escala a que foi realizado o desenho da figura

25. Está em causa um objecto de dimensões reduzidas pelo que, para efeito de maior precisão nos

resultados, seria conveniente recorrer, por exemplo, à escala 1: 10. Tal tarefa não foi empreendida

porque o que se pretende é explicar o processo e nada mais.

Page 93: Desenho de embarcações de recreio
Page 94: Desenho de embarcações de recreio
Page 95: Desenho de embarcações de recreio
Page 96: Desenho de embarcações de recreio
Page 97: Desenho de embarcações de recreio
Page 98: Desenho de embarcações de recreio
Page 99: Desenho de embarcações de recreio
Page 100: Desenho de embarcações de recreio
Page 101: Desenho de embarcações de recreio
Page 102: Desenho de embarcações de recreio
Page 103: Desenho de embarcações de recreio

Pag. 80

VIII.

SISTEMAS DE PROPULSÃO MECÂNICA.

MOTORES; CAIXAS REDUTORAS E DE INVERSÂO. HÉLICES.

Os sistemas de propulsão mecânica das embarcações de recreio subdividem-se em três subsistemas, a

saber, o subsistema motor, o conjunto dos elementos de transmissão e o dispositivo propulsor

propriamente dito.

Acerca do primeiro pode dizer-se que, excluindo o método anacrónico das máquinas a vapor e as

modernas turbinas a gás, estão em apreciação dois tipos principais, os motores de explosão e os motores

de combustão interna. Os primeiros consomem gasolina e os segundos consomem gasóleo. Devo referir

que em alguns países onde o gosto pela tradição está muito arreigado, como é o caso da Inglaterra,

existem ainda exemplares de embarcações de recreio movidas a vapor, que eram essencialmente

destinadas a circularem em águas interiores e que são agora extraordinariamente bem cuidadas e

exibidas com enorme orgulho em exposições e outros eventos de carácter festivo, para além da sua

utilização para passeios em rios navegáveis e lagos. Há neste país e, também, nos Estados Unidos várias

associações de proprietários deste tipo de embarcações e fabricantes de equipamentos mais ou menos

requintados que fornecem, com os referidos equipamentos, indicações e especificações técnicas

detalhadas para a sua montagem e utilização. Trata-se, obviamente, de um movimento com

características revivalistas que explora, como já disse antes a propósito dos sistemas de velame

tradicionais, uma visão romântica passadista, ao gosto de alguns estratos sociais da classe média alta.

Para dizer algo do outro sistema menos comum de propulsão mecânica, a turbina de gás, há que referir

que a sua grande virtude reside no facto de ser comparativamente mais leve do que os outros sistemas,

embora apresente inconvenientes que só permitem o seu uso em embarcações excepcionais,

nomeadamente, as que são destinadas a usos militares. Estou a referir-me às altas rotações que este

sistema desenvolve, o que impõe a utilização obrigatória de dispositivos de transmissão complexos e

dispendiosos, de modo a ser possível reduzir as rotações da turbina para valores compatíveis com a

utilização de hélices em meio aquoso, para já não falar do facto de, no fabrico das referidas turbinas,

haver necessidade de recorrer a materiais com características mecânicas e térmicas especiais, por

causa das altíssimas temperaturas que se desenvolvem no seu interior, quando em funcionamento. Os

metais e os materiais compósitos que são usados na produção dos motores de avião (a jacto) dão-nos

uma ideia do que está em causa. Contudo, há já alguns anos que estão em curso investigações acerca

de novos compostos cerâmicos que resistem a esforços mecânicos excepcionais e a altíssimas

temperaturas. Se essas investigações vierem a traduzir-se em resultados favoráveis do ponto de vista

técnico e dos custos de produção, poderão abrir-se, no futuro, perspectivas interessantes para a

Page 104: Desenho de embarcações de recreio

Pag. 81

utilização e a subsequente banalização das turbinas a gás, por causa do seu reduzido volume e peso,

conquanto o combustível a usar não atinja preços proibitivos, o que para já parece pouco provável.

Em rigor, ainda existe um outro subsistema de motorização, hoje caído em total desuso, que teve alguma

voga nos finais do século dezanove e, ainda, durante o século vinte. Este subsistema começou por ser

aplicado nas primeiras embarcações que atingiram altas velocidades. Estamos a falar das turbinas a

vapor. A propósito da geometria dos cascos falei anteriormente do Turbinia, um barco que era dotado de

uma máquina deste tipo e que em 1895, em Inglaterra, atingiu a extraordinária velocidade de mais de

trinta e dois nós! Na sequência deste sucesso e de alguns outros do mesmo género, apareceram várias

aplicações militares e comerciais deste “motor”, mas a sua complexidade e ineficiência fez desaparecer

totalmente este tipo de motorização, em embarcações de recreio.

Voltando agora aos subsistemas mais comuns, os motores de explosão e de combustão interna, pode

dizer-se que nos últimos quarenta anos se assistiu a uma evolução destes subsistemas, nem sempre

comandada pelas exigências do uso a que nos estamos a reportar, isto é, à utilização em ambiente

marítimo. Na verdade, as dimensões, o peso específico, as velocidades atingidas e a potência alteraram-

se profundamente. Mas os motores de que estamos a falar são produzidos, há algumas décadas, a partir

de blocos fabricados para serem utilizados em automóveis e camiões ou instalações estacionárias

industriais. Com algumas raras excepções, já não se fazem motores com um programa exclusivo para

utilização expressa em embarcações de recreio, pelo que os avanços atingidos na produção destas

máquinas em matéria de redução do peso e de aumento cumulativo da potência passaram pela subida

exagerada dos valores da compressão e do número de rotações, induzindo alterações no desenho dos

motores propriamente ditos e dos sistemas auxiliares de entrada e de saída do ar e do combustível,

exactamente como aconteceu com os motores dos automóveis. Como já referi anteriormente e será

perfeitamente esclarecido quando estudarmos os subsistemas de propulsão, estas modificações tem

óbvias vantagens mas também alguns inconvenientes. Por outro lado, o aumento da velocidade dos

pistões, concomitante com a redução do seu curso, torna-se inconveniente, do ponto de vista da sua

duração, na medida em provoca um maior desgaste das peças cujas superfícies contactam durante o

seu movimento. Os antigos motores marítimos, por causa das baixas rotações que desenvolviam, podiam

ter uma ligação directa à hélice e, assim, o bloco da transmissão só precisava de dispor das engrenagens

de inversão da marcha, para utilização quando fosse necessário. Com os modernos motores altamente

rotativos isso já não é viável e as transmissões têm de conter, para além da inversão de marcha, um

dispositivo de redução das rotações, de modo a tornar possível o acoplamento à hélice, sem que se

produzam fenómenos nocivos, como é o caso da cavitação que contribui significativamente para a

diminuição do tempo de vida das hélices, entre outras coisas que não interessa agora referir.

O recurso a transmissões hidráulicas tem sido de grande vantagem naquelas situações em que, por

razões de falta de espaço, é preciso separar o motor da transmissão. As vantagens de uma maior

Page 105: Desenho de embarcações de recreio

Pag. 82

flexibilidade na localização dos subsistemas são inegáveis, se bem que há sempre um preço adicional a

pagar quando se recorre a este tipo de instalação, quer por causa do aumento da complexidade, quer

pela maior possibilidade de ocorrência de avarias.

Sabe-se que os motores a gasolina representam um perigo maior do que os motores de combustão

interna no que se refere à eventualidade de ocorrência de incêndios e de explosões. Contudo, desde que

se tenham em atenção as regras de segurança referidas nos manuais dos fabricantes e nos

regulamentos das seguradoras e das várias associações internacionais de construtores, quando está em

causa a instalação de motores com sistemas de ignição, que consomem gasolina, é sempre possível

usufruir das vantagens destes motores, no que diz respeito à relação peso/potência, incomparavelmente

melhor da que possuem os motores diesel. Há situações em que é praticamente impossível prescindir

do uso dos motores a gasolina, como acontece quando se projectam embarcações de alta velocidade,

nomeadamente as que são utilizadas em corridas.

O motor de explosão destinado à instalação em embarcações de recreio tem, basicamente, o corpo do

motor, uma transmissão destinada a reduzir as rotações e a inverter a marcha e os restantes acessórios

indispensáveis ao seu funcionamento, entre outros, um alternador, um ou mais carburadores, uma

bomba de água, uma bomba de combustível, um sistema de arrefecimento e um sistema de exaustão

dos gases da combustão. Dadas as elevadas temperaturas que são atingidas no escape, este último

conjunto de acessórios tem de impedir efectivamente o contacto acidental das partes aquecidas do

motor com os elementos da embarcação que sejam susceptíveis de arder, eventualidade que a ocorrer

pode originar fogos de efeitos devastadores, principalmente nas embarcações de madeira ou de outros

materiais combustíveis. Existem vários tipos de escapes, dos quais falaremos mais adiante.

O motor de explosão a que nos estamos a referir é o conhecido motor de quatro tempos, cujo princípio

de funcionamento nos é familiar, pois trata-se do mesmo tipo de motor que é usado maioritariamente

nos automóveis. Tanto quanto sei, os motores de dois tempos (que não são de combustão interna, como

acontece com os motores diesel, do tipo Detroit, da General Motors), já só são utilizados como motores

fora de borda e em ferramentas industriais e agrícolas ligeiras. Os fabricantes deixaram de produzir

motores deste tipo para utilização em veículos de transporte. Convém referir que são cada vez mais

comuns os motores fora de borda a quatro tempos. Como sabemos, os motores a dois tempos

tradicionais são bastante mais baratos, por causa da sua grande simplicidade, mas consomem uma

mistura de gasolina com óleo lubrificante que torna a sua utilização pouco prática, para além de nos

obrigarem a suportar os fumos do escape que exalam um odor desagradável, sendo, ainda, mais

perniciosos do ponto de vista ambiental. Recentemente, os fabricantes dos motores a dois tempos

conseguiram resolver alguns dos inconvenientes referidos, pelo que a sua comercialização voltou a estar

na ordem do dia.

Page 106: Desenho de embarcações de recreio

Pag. 83

Quando o motor é instalado internamente é da responsabilidade do projectista de embarcações de

recreio prever um sistema de exaustão dos gases do motor que permita que esses gases muito quentes

atinjam o ar livre com facilidade. Para que esse desiderato seja atingido é necessário que os tubos que

conduzem os gases para a atmosfera tenham o menor número de curvas, de modo a evitar-se um

desenho que propicie potenciais causas de pressão posterior. Quando não se tem em devida conta estes

cuidados, as válvulas de escape sobreaquecem, com a consequente diminuição da potência do motor e

a possibilidade de incêndio. É claro que estando o motor instalado num espaço confinado, há que dar a

maior atenção à ventilação desse espaço, quer para diminuir a temperatura ambiente para valores

aceitáveis, quer para facilitar a evacuação dos gases resultantes da evaporação acidental de combustível

que, por qualquer razão não previsível, se tenha escoado para este local. É fácil encontrar informação

de interesse nos textos publicados pelo American Boat and Yacht Council. Há, ainda, livros dedicados à

construção de embarcações que tratam do tema com algum detalhe, nos capítulos apropriados.

É importante referir que há dois tipos fundamentais de dispositivos de exaustão dos gases da combustão,

para instalações de motores internos: a exaustão húmida e a exaustão seca. No primeiro caso exige-se

o fornecimento permanente de um pequeno jacto de água enquanto o motor trabalha. Este jacto mistura-

se com os gases quentes expelidos pelo motor através de um injector, nas imediações da inserção do

tubo de escape ao bloco. Essa água pode ser doce e vir directamente do sistema de arrefecimento do

motor ou ser água do mar, caso a embarcação se esteja a deslocar num ambiente líquido salgado. A

utilização deste tipo de dispositivo implica que o motor (ou motores) se encontre instalado parcialmente

acima da linha de água, coisa que raramente acontece nas embarcações que também são movidas à

vela. Faço notar que a saída dos gases do motor será conectada ao tubo de exaustão, de modo a que

este apresente um declive de 4%, continuamente, até à saída dos fumos para a atmosfera, que

geralmente ocorre através de um orifício circular praticado na popa. A geometria do tubo de escape,

nestes casos, implica um certo cuidado, com vista ao impedimento de retornos de água para o motor,

situação que, a verificar-se, conduziria a graves avarias, como facilmente se percebe.

No que se refere ao estudo destes problemas é importante analisar a informação técnica produzida e

difundida pelos fabricantes e vendedores. Nessa informação encontram-se desenhos, valores de

potências, de consumo de combustível, peso, localização do centro de gravidade e outros aspectos

importantes para conhecimento dos designers. Os motores marítimos (a gasolina e a gasóleo) são,

geralmente, instalados com uma pequena inclinação, para que seja possível que o seu eixo atinja a água

de modo a poder receber a hélice. A inclinação máxima possível é indicada pelo fabricante e não deve

ser ultrapassada, caso contrário a lubrificação do motor não se processa convenientemente e pode

acontecer que as peças em movimento acabem por “gripar”.

Page 107: Desenho de embarcações de recreio

Pag. 84

Só para ficarmos com uma ideia aproximada dos consumos dos motores marítimos, apresento

seguidamente os seus valores médios:

Motores interiores de gasolina – 3,4 litros por 10 HP, por hora;

Motores interiores de gasóleo - 2,3 litros por 10 HP, por hora;

Motores fora de borda, a 2 tempos – 5,7 litros por 10 HP, por hora.

Para a escolha do motor a aplicar num determinado projecto concorrem vários factores que é preciso

ponderar, a saber: custo, peso, dificuldade de manutenção, disponibilidade de peças, potência

necessária, etc. Pode dizer-se que se o barco é leve e rápido e, além disso, é utilizado em águas

interiores, faz sentido recorrer a um motor de gasolina. Quando o barco é grande e pesado e, na maioria

das situações, se destina a cruzeiros em mar aberto, por largos períodos de tempo, é de optar pelos

motores diesel. É uma opção mais segura, porque o combustível não apresenta perigo de incêndio.

O recurso a ”sterndrives” (z-drives), acoplados a motores de gasolina ou gasóleo, é uma alternativa

bastante difundida, por causa das suas vantagens. O conjunto é fornecido completo, com todas as partes

integradas e, por isso, não é necessário desenhar sistemas de escape ou qualquer outra coisa que não

sejam os seus apoios. É fácil aceder à hélice, para limpeza ou manutenção e é possível alterar o seu

ângulo de funcionamento. A embarcação não precisa de leme, mas o motor tem de ser instalado muito

próximo da popa, facto que coloca problemas de equilíbrio por este objecto de peso considerável se

situar longe do centro de flutuação. Se ainda tivermos presente na nossa memória o que anteriormente

foi dito acerca do desenho das embarcações planantes e do facto de a localização do seu centro de

flutuação ser muito recuada, concluímos que serão os veículos ideais para aplicação deste sistema de

transmissão.

Antes de terminar com algumas referências aos problemas relativos à instalação de motores internos

convém dizer, ainda, algo sobre os motores fora de borda. Nos últimos anos começaram a difundir-se os

motores fora de borda a quatro tempos e, quase ao mesmo tempo, foram resolvidos muitos dos

inconvenientes dos motores a dois tempos. Já se fabricam motores deste último tipo em que não é

preciso misturar óleo lubrificante com o combustível. Tendo em linha de conta os avanços tecnológicos

verificados recentemente e a inerente simplicidade destes motores, é muito possível que, num futuro

próximo, voltem a estar na moda, e não só para mover embarcações.

A instalação de um motor interno numa embarcação implica que se considerem cuidadosamente as

condições de fixação, a distribuição dos esforços resultantes do seu peso e a limitação dos efeitos

destrutivos das vibrações de todo o sistema. Mais uma vez, faz sentido recorrer aos “Standards” referidos

anteriormente a propósito dos sistemas de exaustão dos gases da combustão, particularmente, ao

Page 108: Desenho de embarcações de recreio

Pag. 85

capítulo “Machinery division, project”. Também é importante estudar as especificações fornecidas pelos

fabricantes pois, infelizmente, não há normalização nas dimensões dos apoios, mesmo em motores de

potências semelhantes. Nas embarcações construídas em madeira, segundo os métodos tradicionais,

estão disponíveis várias obras, das quais destaco “Boatbuilding”, de Howard Chapelle, um clássico na

matéria, que explica a resolução dos problemas da instalação de motores. Para conhecer as modernas

técnicas de utilização da madeira associada a resinas epóxidas, cuja aplicação está cada vez mais

generalizada, convém ler “The Gougeon Brothers on boat construction”, ou outros textos que apresentem

os métodos mais conhecidos que recorrem à associação das madeiras com resinas e colas de última

geração. No capítulo IX, quando tratarmos dos materiais mais utilizados, voltaremos a abordar este tema,

sendo certo que não vale a pena explicar coisas que estão melhor expostas nas obras indicadas na

bibliografia. Com este trabalho está em causa uma introdução pouco exaustiva aos assuntos de índole

acentuadamente tecnológica, ficando o seu eventual aprofundamento para o recurso a leituras

posteriores mais especializadas.

Vamos, agora, abordar o tema das hélices que, como se pode constatar, considero um substantivo

feminino, embora haja muita gente no meio náutico que tem opinião diversa! Começo por referir que não

está em causa o projecto destes artefactos. É uma matéria assaz complexa que não conheço, nem tenho

idade para aprender. Aquilo que pretendo expor são alguns processos de selecção das hélices

disponíveis no mercado, de modo a que a sua instalação permita aproveitar, nas melhores condições, a

potência dos motores a que ficam acopladas e evitar os inconvenientes de uma escolha inadequada. E

este desiderato já não é tarefa simples, tanto mais que a quantidade de variáveis que influenciam este

processo impede a sua optimização. A primeira coisa a fazer para iniciar o trabalho é determinar as

características da embarcação e do motor. Uma embarcação de deslocamento exige uma hélice que não

pode ser aplicada numa embarcação planante. Por outro lado, as características do motor, tais como

potência, torque, rotações e consumos de combustível são factores que interferem com a referida

escolha. Os fabricantes fornecem folhetos onde é possível obter estes dados para cada um dos motores

que produzem e, em alguns casos, outros dados de interesse como os diâmetros das hélices, de acordo

com os valores de redução das rotações que são obtidos com o tipo de redutor escolhido. Vale a pena

consumir algum tempo estudando estes documentos, sendo certo que determinados dados contidos

nestes textos de índole comercial, como é o caso dos diâmetros das hélices, são meramente indicativos,

devendo ser confrontados com os cálculos a realizar pelo projectista.

Para chegarmos até à definição das características da hélice temos um longo caminho a percorrer,

começando pela velocidade pretendida para a embarcação, levando em devida conta as suas

características. Já falámos anteriormente das velocidades relativas, a propósito das embarcações de

deslocamento e constatámos que há limites que dificilmente podem ser ultrapassados. Neste momento

vale a pena recordar, mais uma vez, a figura nº 11. Se quisermos que as duas embarcações

apresentadas ultrapassem a velocidade relativa de 1,34 (imagem no fundo da página) as referidas

Page 109: Desenho de embarcações de recreio

Pag. 86

embarcações começam a navegar com a popa cada vez mais afundada na cava da última onda

transversal e só à custa de um enorme aumento de potência do motor é que se conseguirá um aumento

ridículo da velocidade absoluta. Faço aqui um parêntesis para dizer que tem sido possível furar esta

regra com embarcações de deslocamento ultraleves, com boca muito reduzida. Mas trata-se de

situações excepcionais que não vale a pena exaltar neste contexto em que nos estamos a iniciar no

desenho de veículos aquáticos normais. Contudo, pode ser de alguma utilidade dizer qualquer coisa

sobre aquilo que se considera pesado e leve quando falamos de embarcações. Voltando à figura 6

verificamos que no topo esquerdo do quadro está uma fórmula que serviu para caracterizar as duas

embarcações acerca das quais são definidas as curvas de resistência. Uma dessas embarcações

apresenta o valor de 250 e a outra o valor de 150. Estes coeficientes (displacement lenght ratios) dão

uma ideia do peso relativo de cada uma delas. Por exemplo, a embarcação da figura nº 2 deste texto tem

o coeficiente de 470. É muito mais pesada, comparativamente, que as duas anteriormente referidas.

Ora, para “furar” a regra da velocidade relativa é preciso baixar muito este valor, o que quer dizer que só

com técnicas modernas de construção é possível fazê-lo (com coeficientes abaixo de 100 o sistema de

formação de ondas reduz-se drasticamente). Os valores ideais para obter tal efeito seriam abaixo dos

80. Já se sabe que o preço a pagar é a redução, ou mesmo a eliminação, de muitas das coisas que

consideramos confortáveis quando passeamos de barco, para além da necessidade de uma escolha

criteriosa dos materiais e das técnicas de fabrico do artefacto.

Vamos voltar à embarcação da figura nº2 que temos vindo a utilizar para aplicação da teoria que vai

sendo desenvolvida. Tratando-se de uma típica embarcação de deslocamento que se move à vela,

precisa de um motor auxiliar para se deslocar quando esse elemento natural não está disponível. O

processo que vamos seguir para escolher esse motor serve, também, para usar com as embarcações

que dependem exclusivamente dos meios mecânicos para se deslocarem. Fica, desde já, assente que

nós somos pessoas razoáveis, pelo que escolhemos neste caso, como ponto de partida, uma velocidade

relativa de 1,34, ou seja:

1,34LAv

, em que pés 19,67 m 6LA (linha de água)

19,67 1,34v 4,441,34v nós 5,9v (11 Km/h)

Tendo fixado o valor da velocidade absoluta que procurávamos, vamos determinar, agora, a combinação

de motor e hélice que responde a este enquadramento. Para o efeito recorremos a uma fórmula empírica

que nos vai permitir determinar a potência do motor que se adequa às características fixadas. Mas antes

disso, falaremos um pouco da escolha do valor da velocidade relativa neste processo, tendo presente o

tipo de embarcação e as prestações pretendidas. Já sabemos que, para os verdadeiros barcos de

Page 110: Desenho de embarcações de recreio

Pag. 87

deslocamento, veleiros com motor auxiliar ou barcos exclusivamente motorizados, o referido valor será

de 1,34, ao qual corresponde uma determinada velocidade absoluta máxima, para aqueles que fazem a

selecção “correcta” do motor. Dois bons exemplos deste tipo de embarcações são os que estão

representados nas figuras 2 e 4. Daqui para a frente já estaremos a lidar com embarcações semi-

planantes e planantes e, para tentar atingir velocidades relativas muito altas, temos de pensar em

materiais leves e resistentes, porque a este nível o peso é um factor determinante. Quando estão em

causa embarcações medianamente velozes fixaremos um valor da velocidade relativa entre 2,5 e 4. Esta

é a situação a que corresponde a embarcação representada na figura nº5. Acima de 4 estão as máquinas

de alta velocidade, dispendiosas na manutenção e no consumo. As embarcações de corrida, perigosas,

desconfortáveis e ainda mais dispendiosas já atingem valores de 8 e mais. Não apresentarei neste texto

nenhum exemplo do género. Ao decidirmos o valor da velocidade relativa a atribuir à embarcação que

estamos a projectar, devemos ter presente o que se passa com embarcações semelhantes que nos

sejam familiares e que consideremos de bom nível.

Vamos ver, então, qual a potência do motor a escolher, usando para o efeito a fórmula de que falamos

atrás. Devo dizer que há inúmeras fórmulas para atingir este e outros objectivos da arquitectura e da

engenharia naval pelo que, quem estiver interessado em procurar outros caminhos, pode recorrer à

bibliografia apresentada ou fazer um percurso autónomo de investigação. Prosseguindo:

3

665,10vr

SHP

em que:

SHP – potência ao eixo, em cavalos (shaft horsepower);

– deslocamento, em libras;

vr – velocidade relativa (speed lenght ratio) que, neste caso, é de 1,34.

Aplicando à embarcação da figura nº 2, teremos:

3665,1034,18020SHP 001983,08020SHP 16SHP

Assumindo uma diminuição de 15% na potência disponível, por causa das perdas na transmissão e

noutros mecanismos acoplados, chegamos ao seguinte valor:

BHP1985,016 (brake horsepower)

Procurando em folhetos técnicos fornecidos por fabricantes, vamos tentar encontrar um motor com

potência aproximada de 19 BHP, que responda às exigências pretendidas. Resta, agora, determinar qual

Page 111: Desenho de embarcações de recreio

Pag. 88

a transmissão a escolher, em função das rotações do motor e dos rácios de redução disponíveis.

Sabemos que, do ponto de vista da eficácia, é sempre melhor ter hélices com o maior diâmetro possível,

concomitantemente com as menores rotações disponíveis no eixo a que estão acopladas. Aliás, os

mecanismos de redução das rotações só são usados porque os motores marítimos modernos são muito

rotativos. Grandes diâmetros, combinados com motores de baixa rotação são o que há de melhor para

obter uma alta eficiência do conjunto. É claro que, por vezes, não é possível utilizar o maior diâmetro,

por causa das restrições dimensionais da zona do casco onde vai ser aplicada a hélice.

No presente caso, depois de alguma pesquiza, encontrei um motor diesel de um conhecido fabricante

sueco que, de acordo com os dados do catálogo, tem uma potência máxima de 17 SHP, a 3000 RPM

(rotações por minuto). O referido motor é comercializado em duas versões, uma delas com um “sail drive”

que, obviamente, não pode ser utilizado nesta embarcação, por causa da geometria das obras vivas. A

outra versão tem duas opções de redução, à escolha. Uma com 2,4:1 e outra com 3,0:1. Como não

dispomos de dados construtivos da embarcação que nos permitam, neste momento, fazer uma opção

fundamentada do ponto de vista do enquadramento dimensional, vamos escolher a redutora de 3,0:1.

A análise do diagrama deste motor, no que diz respeito à potência, indica que o seu limite inferior é de 8

SHP, a 1500 RPM, e o seu limite superior é aquele que já foi assinalado anteriormente (17 SHP, a 3000

RPM). Com a instalação da redutora escolhida, o eixo da hélice apresenta o seguinte intervalo de

rotações (RPM):

1500:3 (8 SHP) -------------------------------------------3000:3 (17 SHP), ou seja:

500 (8 SHP) -------------------------------------------1000 (17 SHP)

São estes dados que servirão de ponto de partida para a selecção da hélice.

Julgo que já está, neste momento, totalmente assumido pelo leitor que o desenho de embarcações é um

acto criativo em que abundam as incertezas, dos pontos de vista científico e técnico. Contudo, a liberdade

artística mantem-se condicionada por factores físicos que não podem ser subvalorizados, mesmo

quando se desconhece a extensão dos seus efeitos. Na selecção das hélices para uma determinada

embarcação raramente estão disponíveis todas as variáveis que concorrem para a eficácia do seu

funcionamento, como é o caso da velocidade e da direcção do movimento da água em que a embarcação

se desloca. Seleccionar hélices implica conhecer razoavelmente a teoria, mas há que ter sempre atenção

aos resultados obtidos em embarcações semelhantes, com sistemas motrizes do mesmo tipo. Isto é, a

experiência não deve ser menosprezada.

Convém dizer, neste momento, que as hélices mais utilizadas no sector das embarcações de recreio são

as de três pás. Há razões para isso. No entanto, nas embarcações à vela, para reduzir a ocorrência de

resistências parasitas quando a hélice está parada, usam-se hélices de duas pás dobráveis (folding

Page 112: Desenho de embarcações de recreio

Pag. 89

propellers). Esta solução aparece no motor que escolhi anteriormente, quando é fornecido com o “sail

drive”. Na verdade, uma hélice de duas pás é mais eficiente, mas o recurso a esta solução implica

verificar o fenómeno da cavitação, coisa de que ainda nada foi dito. A cavitação consiste na formação de

bolhas de vapor de água, com efeitos eventualmente destrutivos do material de que são feitas as hélices.

O seu aparecimento é uma consequência do abaixamento excessivo da pressão no dorso das pás da

hélice e é tanto maior quanto menor for a superfície sobre que incide. É por ser mais fácil aumentar a

área total das pás quando o seu número é maior que o recurso a três pás está mais difundido.

Quem pretender ter uma visão mais aprofundada destas questões deve ler o livro Propeller Handbook

indicado na bibliografia, onde o autor faz um esforço meritório de simplificação deste tema complexo.

Quanto ao método que vou utilizar para seleccionar a hélice tenho a esclarecer que é simples e adequado

para este tipo de embarcação à vela, com motor auxiliar. Nas embarcações movidas exclusivamente a

motor vale a pena recorrer a um método mais preciso, como é, por exemplo, o método de “Taylor and

Troost”, também conhecido como método Bp-δ. A sua aplicação apoia-se em gráficos construídos para

séries de hélices com características semelhantes no número de pás e na razão entre a área das pás e

a área do disco em que se inserem.

Voltando ao método mais elementar, vamos determinar o diâmetro para hélices fabricadas em série, de

contorno elíptico e secção ogival, com uma razão entre a largura média e o diâmetro de 0,33. São hélices

comuns, disponíveis no mercado internacional. Usaremos a fórmula empírica:

6,0

2,0

RPMSHP7,632

D

em que:

D – diâmetro, em polegadas;

SHP – potência do motor no eixo, em SHP

RPM – rotações por minuto, no eixo, após redução na transmissão.

Para determinar o diâmetro usam-se sempre os valores máximos de SHP e RPM, o que já não vai

acontecer no cálculo do passo. Teremos, então:

6,0

2,0

1000177,632

D

1,63

76,17,632D

"186,17D (polegadas)

Pelas razões anteriormente assinaladas, o valor obtido para o diâmetro, arredonda-se sempre para cima.

Page 113: Desenho de embarcações de recreio

Pag. 90

Também, como referi no cálculo do diâmetro, para determinar o passo da hélice vamos usar valores de

potência e rotação um pouco menores do que os valores máximos, pelo que adoptaremos uma redução

de 10% na potência:

SHP3,159,017

Analisando o gráfico do motor fornecido pelo fabricante, verificamos que, a esta potência corresponde

um valor de rotação aproximadamente igual a 2700 RPM. Entrando com o factor de redução da

transmissão escolhida, teremos:

RPM90032700

Coloca-se, agora, o problema do escorregamento. Sem entrar em grandes detalhes técnicos, parece

evidente (e é) que, quando a hélice roda uma volta completa, a embarcação não percorre a distância

correspondente ao comprimento dessa volta (passo). Há um certo escorregamento (slip) que não se

verifica, por exemplo, quando um saca-rolhas penetra na rolha de uma garrafa (quando as rolhas são de

boa qualidade!). Há várias maneiras de calcular este escorregamento e há, ainda, algumas tabelas que

o fixam para certos tipos de embarcações, com base em conhecimento empírico. Recorrendo ao livro

“Propeller Handbook” vemos que, para embarcações à vela dotadas de motor auxiliar, com velocidade

absoluta inferior a 9 nós, é atribuída a percentagem de 45% para escorregamento (por sinal é o valor

mais elevado entre os tipos de embarcações referidas).

Usando mais uma fórmula empírica teremos: slip1RPM

6,1215vP

em que:

P – passo da hélice;

v – velocidade da embarcação, em nós;

RPM – rotações por minuto;

slip – percentagem de escorregamento (neste caso é 45%).

Aplicando ao nosso caso, teremos: 45,01900

6,12159,5P

495

0,7172P "145,14P (polegadas)

Contrariamente ao que ocorre com o diâmetro, no cálculo do passo, arredonda-se o valor obtido para

baixo.

Page 114: Desenho de embarcações de recreio

Pag. 91

Ficamos, então com uma hélice de D=18”, P=14” e 33,0D

LM (largura média a dividir pelo diâmetro).

Para compreender o conceito de largura média (mean width) ver a página 29 do “Propeller Handbook”.

Numa embarcação com características semelhantes à que estamos a usar é normal praticar uma

abertura mais ou menos oval na zona posterior da quilha, junto ao leme, para colocar a hélice. No

desenho dessa abertura há limites a observar, em termos dimensionais, para que não ocorram

interferências nocivas. Se a hélice que acabamos de escolher tiver dimensões exageradas, isto é, se não

couber ou ficar demasiado próxima do casco e do leme terá que ser substituída por outra de menor

diâmetro. Para atingir esse desiderato teríamos de trocar a transmissão que reduz as rotações na

proporção de 3,0:1, aplicando aquela cuja proporção é de 2,4:1. Nestas condições o eixo da hélice

apresentaria os seguintes valores de RPM:

1500:2,4 (8 SHP) -----------------------------------------------3000:2,4 (17 SHP), ou seja:

625 (8SHP) -----------------------------------------------1250 (17 SHP)

E seria com estes dados que se repetiriam todos os cálculos até se obterem os valores finais.

Feitas as contas, se não houve nenhum engano, teremos uma hélice de 15 polegadas de diâmetro e 12

polegadas de passo, a rodar muito mais depressa do que a anterior, o que poderia, eventualmente,

obrigar-nos a verificar se ocorre cavitação e, caso tal ocorresse, diminuir um pouco a eficiência. Para

além destes problemas que acabo de enunciar ainda ficam outros por tratar. Mas o assunto é árido e

parece-me pouco interessante para a maioria dos leitores. Por isso, fico por aqui. Quem quiser saber

mais e pretender lidar com as adaptações deste método a hélices de 2 e 4 pás, aprender o método Bp-

δ, estudar o fenómeno da cavitação e muitas outras questões conexas, pode ler o texto que referi e ficará

esclarecido.

Para terminar este capítulo vamos abordar, agora, a questão dos dispositivos direccionais.

Anteriormente, ao apresentar vários modelos de quilhas, patilhões e geometrias de embarcações, abaixo

da linha de água, mostrei, concomitantemente, vários tipos de lemes (figuras 19 e 20). Completa-se,

neste momento, um pouco mais esse conjunto de exemplos com a figura 24, sem pretender esgotar o

tema.

A geometria dos lemes está, em muitas situações profundamente marcada pela tradição e pelos

materiais e métodos de fabrico. Contudo, não deixa de ser evidente que as suas dimensões, em plano,

são tanto maiores quanto menor é a velocidade do veículo cuja direcção pretendem controlar. Com o

advento dos materiais compósitos, nomeadamente, dos plásticos reforçados a fibras de vários tipos,

apareceram as grandes produções de embarcações de recreio fabricadas a partir de moldes negativos.

Page 115: Desenho de embarcações de recreio

Pag. 92

E a fabricação dos lemes ficou integrada no mesmo modelo de produção. Isso permitiu construir moldes

com secções em forma de aerofólio, dentro dos quais são produzidas as cascas dos lemes, suportadas

no seu interior por uma estrutura metálica ligada rigidamente ao eixo, normalmente construído em tubo

de aço inoxidável, monel ou outro metal adequado.

Os lemes, tal como os dispositivos direccionais dos aviões, actuam por pressão no lado que recebe o

fluxo do fluido e sucção no lado oposto. Por esta razão a sua localização deve ser sempre, no caso das

embarcações a motor, directamente atrás da hélice, para que recebam o referido fluxo com a máxima

intensidade. É muito interessante, para esse efeito, ver os esquemas de funcionamento do leme Kitchen

(este é o nome do engenheiro naval inglês que o inventou) que, com duas conchas rotativas, controla os

movimentos do fluxo produzido pela hélice, de maneira totalmente original. Para quem estiver

interessado, um passeio pela internet mostrará como se passam as coisas!

Como é sobejamente sabido, muitas das embarcações mais velozes estão equipadas com mais de um

motor. A maior parte das vezes possuem dois. Depois do que ficou dito, fica evidente que, para dois

motores, deve haver dois lemes. Não sendo isso possível, por qualquer razão construtiva ou outra, o

desenho do único leme deve ser tal que, quando este vira, uma parte da porta deve ser atingida pelo

fluxo de uma das hélices.

O quadro e a fórmula que se apresentam na figura 23 servem para determinar as áreas laterais dos

lemes de embarcações à vela e a motor, com comprimentos das linhas de água entre 20 e 100 pés (6,10

e 30,5 metros). Para obter orientação que permita desenhar lemes de embarcações de menores

dimensões, basta olhar para outras embarcações semelhantes que se comportem adequadamente para

os fins visados.

Observando o quadro que referi acima constata-se que a área que se determina a partir da linha

referente às embarcações à vela é lida directamente na escala do lado esquerdo. Para as embarcações

a motor, o valor obtido na escala do lado direito é introduzido na fórmula respectiva, de cuja resolução

sai a área pretendida. Faço notar que qualquer valor que resulte de um ponto marcado no quadro, nas

imediações da linha correspondente ao tipo de sistema propulsor (vela ou motor), é aceitável. Há

inúmeros factores, alguns pouco relevantes, que influenciam as performances dos lemes, pelo que seria

estultícia pretender levar longe de mais a determinação da sua área lateral. Um valor aproximado é

perfeitamente suficiente. Alguns dos vícios que se verificam no uso continuado de embarcações são

difíceis de detectar na fase de projecto, pelo que não devemos adoptar soluções de desenho com base

numa convicção desmedida no resultado dos cálculos. Projectar é uma aventura, comporta riscos.

Page 116: Desenho de embarcações de recreio
Page 117: Desenho de embarcações de recreio
Page 118: Desenho de embarcações de recreio
Page 119: Desenho de embarcações de recreio

Pag. 93

IX.

CONSTRUÇÃO DE EMBARCAÇÕES.

MATERIAIS: PLÁSTICOS REFORÇADOS COM FIBRAS, MADEIRA, LIGAS DE ALUMÍNIO E AÇO. SISTEMAS

DE CÁLCULO DE ESTRUTURAS.MASTROS, CABOS E VELAS. ANÁLISE E CÁLCULO DIMENSIONAL.

As embarcações de recreio que se constroem na actualidade são executadas em vários materiais de

base, a saber: fibras de vidro e de carbono (e de outras substâncias) impregnadas com resinas sintéticas

(poliéster, vinilester, resinas epóxidas, etc.), madeira, ligas de alumínio e aço. Para além destes materiais

mais comuns usam-se ainda outros, esporadicamente, entre os quais se destacam dois muito diferentes:

a liga de cuproníquel e o ferrocimento. A primeira é um material muito dispendioso, com características

excelentes, e o segundo está na outra extremidade da tabela, por ser o material dos pobres. Barcos de

pesca que praticam a sua faina na China, em Cuba e em outros países do terceiro mundo são fabricados

com este material, utilizando técnicas elementares e recursos muito reduzidos.

Pode dizer-se que o PRF (plástico reforçado com fibras) domina inteiramente o mercado actual da

fabricação em série, por um conjunto de razões que facilmente se compreendem. Isto não quer dizer que

uma avaliação mais aprofundada deste tipo de produto não levante inúmeras objecções ao seu uso

indiscriminado (do ponto de vista ambiental e não só). Os processos de fabrico do PRF são pouco limpos

e prejudiciais para a saúde dos operários, se não forem tomadas medidas rigorosas de segurança e de

condicionamento dos ambientes fabris. Grande parte das resinas, quando reagem, libertam gases

tóxicos para a atmosfera, como é o caso do estireno libertado pelo poliéster e cuja libertação ocorre

durante a reacção exotérmica que precede a fase de endurecimento, após aplicação do catalisador e do

acelerador. Para controlo da qualidade do produto final é necessário fixar limites relativamente

apertados de temperatura e de humidade, de modo a que a passagem ao estado sólido do material

compósito se processe de tal maneira que a resistência mecânica do conjunto não venha a ser diminuída.

Julgo que ainda é possível adquirir nas livrarias um livrinho, muito bem escrito, sobre o tema da utilização

e do fabrico do PRF, para os fins mais diversos. O título do referido texto é: Poliéster reforçado a fibra de

vidro, e o seu autor é o engenheiro Victor Branco. De um ponto de vista conceptual, o PRF apresenta

semelhanças com o betão armado porque os objectos construídos com eles tem por base dois produtos:

um material contínuo constituído pela argamassa de cimento, no betão, e pela resina de poliéster, no

PRF, e outro material descontínuo que constitui a armadura, feita de vergas de aço, no betão, e de fibras

de vidro (ou de outras substâncias), no PRF, originando estruturas monolíticas, contrariamente ao que

se passa, por exemplo, com um casco de madeira executado segundo as técnicas tradicionais. Neste

último caso há centenas de peças que são fixadas umas às outras com as mais variadas ligações

metálicas e de madeira. Uma embarcação de madeira executada segundo a técnica clássica (carvel

planking) e outra de PRF comportam-se, do ponto de vista mecânico, de maneira muito diferente sob as

acções a que estão sujeitas em meio aquático. E, obviamente, as questões relacionadas com os custos

Page 120: Desenho de embarcações de recreio

Pag. 94

da manutenção dos artefactos, ao longo do tempo, e da sua fiabilidade, são argumentos que justificam,

entre outros, a opção dos utilizadores pelo PRF, como se constata pela observação de centenas de

marinas e portos, em todo o mundo.

A fabricação de um casco de PRF dentro de um molde fêmea é empreendida através da aplicação de

tecidos de fibras de vários tipos, em camadas sobrepostas, devidamente impregnadas de resina (hand-

lay up), até ser atingida a espessura que resultou dos cálculos estruturais. Como algumas superfícies do

casco estão quase verticais, na fase de estratificação, as resinas devem ser tixotrópicas, para que não

escorram durante o período que antecede a cura e o endurecimento, deixando os tecidos

deficientemente impregnados. Há outra técnica bastante comum para aplicar os produtos em causa,

mas na fabricação de cascos não me parece conveniente a sua utilização pois as características

mecânicas do produto final são manifestamente inferiores. Trata-se da projecção simultânea de fibras e

resina (spray-up), utilizando uma pistola e algum equipamento mecânico criado para o efeito.

Porque o PRF é um material bastante flexível e, nas unidades mais pequenas, pode atingir espessuras

muito reduzidas, os objectos assim construídos tem tendência a deformar-se quando são sujeitos a

determinadas solicitações. A melhor maneira de obviar a este inconveniente deu origem a um outro

sistema de fabrico, a construção em sandwich, isto é, a aplicação do PRF em duas camadas separadas,

com um recheio de material leve (uma espuma plástica ou madeira de balsa seccionada

perpendicularmente às fibras), preenchendo o espaço intermédio. Este sistema reduz a flexão de painéis

de teste mais de sete vezes, com um aumento de peso inferior a 10%.

Para construir embarcações à unidade, ou em séries muito reduzidas, utiliza-se um molde macho,

executado em tiras de madeira horizontais e verticais, o que permite montar um esqueleto

suficientemente rígido para apoiar placas flexíveis de espuma ou balsa, sobre as quais se executa o lay-

up exterior. Posteriormente retira-se o casco do molde e procede-se ao lay-up interior. É claro que este

método implica um enorme trabalho complementar de preparação da superfície exterior para o

acabamento, trabalho esse que não existe na utilização de moldes fêmea finamente acabados, onde foi

aplicado previamente o gel-coat. Contudo, como o PRF sofre retracção, tal como o betão armado, o

recurso ao molde macho permite que a retracção contribua para uma ligação mais perfeita entre

camadas de tecido de fibra. Como não está em causa esgotar o tema deste material compósito, sugiro

o recurso a leituras complementares da bibliografia, para aqueles que sentirem necessidade de saber

mais.

Se considerarmos agora as técnicas de utilização da madeira, modernas e tradicionais, os universos em

que nos vamos mover são muito diferentes. Esta mudança resulta, essencialmente, da invenção e

produção generalizada das modernas colas industriais, a saber: resorcinol (fenol resorcinol formaldeído),

resinas epóxidas e cianoacrilatos. Estes adesivos são as primeiras colas verdadeiramente utilizáveis em

Page 121: Desenho de embarcações de recreio

Pag. 95

contacto permanente com a água, desde que sejam aplicadas de acordo com os protocolos definidos

pelos seus fabricantes. Há uma segunda categoria de colas, colas termoplásticas, que não apresentam

o mesmo grau de fiabilidade, mas podem ser utilizadas em zonas menos expostas. Caracterizam-se por

manterem uma certa flexibilidade residual, após aplicação e secagem, e são naturalmente mais

económicas que as primeiras. Estou a falar dos acetatos de polivinil e dos poliuretanos, particularmente

nas suas formulações mais recentes, que aumentaram substancialmente a resistência à delaminação e

à humidade.

Se não pretendermos falar de sistemas de fabrico raros ou exóticos e nos fixarmos nos sistemas que o

uso já consagrou, podemos dizer que há seis maneiras de abordar o tema da construção de embarcações

em madeira, duas tradicionais e quatro modernas. É claro que, por vezes, os sistemas misturam-se e,

também, na construção tradicional se recorre, agora, em muitas situações, aos modernos adesivos. Mas,

para os fins que nos interessam, vamos admitir que nada disso acontece!

O sistema mais comum de construir de modo tradicional é aquele que recorre à execução do casco com

base na fixação de fiadas longitudinais de tábuas, apoiadas lateralmente e calafetadas (costado liso –

carvel planking). O outro sistema que estamos a considerar é o do costado trincado (lapstrake), em que

as fiadas longitudinais de tábua são sobrepostas pelos lados, cortados em bisel, para reduzir a altura

das juntas, fixando umas às outras com pregos de cobre, pelo que fica suprimida a necessidade de

calafeto. O primeiro sistema é exigente do ponto de vista da qualificação da mão-de-obra, dá origem a

embarcações pesadas, permite reparações fáceis e precisa de madeiras de qualidade, cada vez mais

raras. O segundo sistema quase só se aplica em unidades muito pequenas, permitindo executar

embarcações relativamente leves, ao contrário do sistema anterior. É indiscutível a elegância dos

produtos fabricados deste modo, mas a execução é, também, complexa e exige grande rigor dimensional

na definição das peças exteriores do casco.

Falando agora das maneiras modernas de construir, começaremos pelo sistema do casco trincado, mas

em que as tábuas são coladas e, em geral, cortadas de painéis de contraplacado marítimo (glued

lapstrake). Tal como o sistema anterior, este processo é usado essencialmente em pequenas unidades

e, por causa do recurso ao contraplacado e às colas actuais, é possível obter objectos leves, resistentes

e muito rígidos. Como em todos os processos que se baseiam no uso de colas para fazer a ligação das

peças, as grandes reparações são muito difíceis de levar a cabo. O sistema que vem a seguir é aquele

que, na língua inglesa, se designa por strip-planking. É uma técnica consumidora de trabalho intensivo,

que consiste na assemblagem de tiras de madeira que, por exemplo, na construção de uma canoa

podem ter meio centímetro de espessura e dois centímetros de largura. Por causa da fragilidade do

conjunto, o processo é quase sempre completado com a aplicação de tecidos leves de fibra de vidro, por

fora e por dentro, devidamente impregnados com resinas epóxidas. Recorrendo a tiras de madeira de

secções apreciáveis é possível construir unidades de quinze metros (e mais), sem problemas. Neste caso

Page 122: Desenho de embarcações de recreio

Pag. 96

as tiras, além de serem coladas, são também pregadas. A protecção dos cascos com fibras e resinas

permite utilizar madeiras de baixo custo (cedro, sapele, etc.), sem que isso afecte a durabilidade e a

resiliência do conjunto, desde que, na manutenção periódica, se detectem eventuais passagens de água

e se corrija o problema atempadamente. Escolhendo madeiras de baixa densidade é possível construir

embarcações relativamente leves. Outro dos sistemas modernos que se usa bastante para executar

barcos à vela de competição, é o que se designa por moldagem a frio (cold-molding) (a moldagem a

quente é pouco utilizada e exige equipamento dispendioso que não interessa referir). Os cascos são

construídos sobre um molde positivo, através da aplicação de tiras de folheado de madeira relativamente

largas, com espessuras de alguns milímetros (veneer), dependendo do tamanho da unidade. As tiras são

aplicadas em várias direcções cruzadas, colando-as às inferiores, de modo a obter uma casca que se for

seccionada parece feita de contraplacado curvo. É um processo que permite obter cascos fortes, leves

e impermeáveis, adaptando-se a formas complexas. É difícil de reparar e exige mão-de-obra muito

qualificada e colas de altíssima qualidade, para que o resultado final não seja um fracasso. É susceptível

de se adaptar facilmente à fabricação de pequenas séries. Finalmente abordaremos o método stitch-

and-glue que se assemelha ao sistema glued lapstrake, na medida em que recorre ao uso de resinas

epóxidas para ligar as peças do conjunto. Aproveito a oportunidade para referir que embora o resorcinol

seja a cola de referência, em termos de resistência e de fiabilidade, é menos utilizada do que a resina

epóxida porque exige que as superfícies de contacto fiquem perfeitamente ajustadas, sem vazios.

Quanto à resina epóxida, tal exigência não se verifica, na medida em que a sua propriedade de “gap

filling” torna a aplicação mais simples e a execução das zonas de contacto da madeira menos rigorosa.

Com a técnica stitch-and-glue usamos embarcações geralmente pequenas e médias (mas não só), cujo

casco é constituído de painéis planificáveis, ligados entre si. Recorrendo muitas vezes ao CAD-CAM,

desenham-se e cortam-se os painéis em contraplacado marítimo, furam-se ao longo dos bordos a

intervalos curtos e regulares e ligam-se com pequenos troços de fio de cobre. Os fios servem para manter

o conjunto ligado temporariamente pois aplica-se seguidamente pasta de resina epóxida e tiras de tecido

de fibra de vidro, ao longo das juntas, deixa-se endurecer e removem-se de seguida os fios (ou parte

deles). Posteriormente reforçam-se as juntas, por dentro e por fora, com mais tiras devidamente

impregnadas e termina-se com os acabamentos. Há um estaleiro, na zona do Oceano Pacífico junto a

Seatle, nos Estados Unidos, que só constrói embarcações segundo esta técnica. A unidade maior que

fabrica é um barco de cruzeiro, a motor, com 48 pés de comprimento total e com um deslocamento de

32 000 libras! Este é um processo rápido e económico em que os cascos possuem obrigatoriamente

arestas, cuja aparência nem sempre é aceite, do ponto de vista estético. Exige-se um projectista

talentoso para superar esta dificuldade.

As espécies de madeira que se utilizam na construção de embarcações e iates são inúmeras. O uso de

algumas foi consagrado por uma tradição de séculos, nas regiões onde são produzidas e aplicadas,

outras ganharam estatuto com a saga das descobertas, quando foi mostrada ao mundo a riqueza das

florestas tropicais, como é o caso da teca, a madeira mais nobre de todas as que se aplicam neste sector

Page 123: Desenho de embarcações de recreio

Pag. 97

de actividade, e os mognos americanos e africanos. Alguns dos livros que são referidos na bibliografia

apresentam listagens das madeiras mais utilizadas pelo que não vejo necessidade de repeti-las aqui.

Antes de terminar esta pequena exposição sobre técnicas de utilização das madeiras é preciso referir

que o recurso ao moderno equipamento motriz de configuração das peças desse material liberta para a

atmosfera dos ambientes fabris inúmeras partículas de reduzidas dimensões que serão respiradas pelos

operários, se não forem tomadas providências, em matéria de filtragem e de ventilação, que impeçam

essa ocorrência. Com as ferramentas tradicionais nada disto acontecia. Ora, contrariamente ao que se

pensa sobre os produtos naturais, por causa das ideologias ecológicas, os efeitos destas poeiras são,

em muitos casos, altamente perniciosos. A natureza não nos propicia só coisas benéficas, também

fabrica venenos e é preciso ter em devida conta os efeitos do manuseamento dos produtos florestais,

em particular dos de origem tropical que, como já se constatou, podem apresentar um grau de toxicidade

elevado, Em muitos casos, as referidas poeiras vão adicionar-se aos vapores produzidos por algumas

das colas industriais que hoje se utilizam no interior dos edifícios fabris deficientemente ventilados.

Vamos, agora, examinar sumariamente a produção de embarcações em metal, construídas em ligas de

alumínio e aço. Sendo dado o caracter exótico e de raridade do cuproníquel, apesar da sua extraordinária

qualidade de resistir indefinidamente ao ambiente marinho, mesmo sem qualquer protecção, e de não

ser sequer atacado pelos organismos que costumam fixar-se aos cascos, fica excluído das nossas

considerações. O mesmo se aplica ao ferrocimento, mas por razões muito diversas. O alumínio que hoje

se usa na indústria naval não é só o elemento da escala periódica que nós conhecemos bem. Nunca

poderia ser utilizado, no estado puro, para o fim que nos ocupa, por causa da sua incapacidade para

resistir à corrosão e, ainda, pela sua fragilidade. O alumínio destinado à construção de iates e de

embarcações mais miúdas é uma liga que contem, além do próprio elemento, cerca de 5% de magnésio

e pequenas quantidades de silício, manganês e crómio. O que é interessante referir é que, sendo os dois

principais metais contidos na liga extremamente macios e frágeis, a liga apresenta características

mecânicas muito superiores e é muito resistente ao ambiente marinho. Basta dizer-se que pode ser

utilizado na construção de cascos, sem que seja preciso aplicar-lhe qualquer protecção. Os cascos desta

liga são pintados por razões meramente decorativas. Como nota à margem, informo os leitores que as

ligas de alumínio que contem cobre, utilizadas na construção de aviões, não podem contactar com água

salgada pois são corroídas rapidamente. As chapas de ligas de alumínio utilizadas na construção de

embarcações são muito dúcteis, esticando e flectindo quando são atingidas por objectos pesados e

duros. Não partem nem furam como acontece com outros materiais. Estas ligas tem, ainda, outras

propriedades interessantes, conduzindo bem o calor e, quando as superfícies estão bem tratadas, são

excelentes reflectoras. Uma embarcação de alumínio pousada na água dissipa rapidamente para o seu

entorno grande parte do calor que não reflecte. Pode dizer-se que as embarcações de alumínio são

frescas dentro de água! O maior inconveniente que se pode assacar a este material é o seu custo. É mais

caro de que a madeira, o PRF e o ferro. Contudo, os modernos métodos e equipamentos de formatação,

Page 124: Desenho de embarcações de recreio

Pag. 98

soldadura e acabamento das chapas e dos perfis extrudidos tornaram a fabricação de iates

relativamente competitiva, sem esquecer que a reciclagem do produto de base é sempre viável. A

manutenção destas unidades, cujo peso é inferior ao de unidades semelhantes feitas com os outros

materiais correntes, também, é menor. Com pequenas variações nas percentagens dos metais utilizados

nas ligas e com a aplicação de uma meia dúzia de têmperas de vários tipos, é possível criar uma

variedade de produtos cujas características mecânicas permitem escolhas muito dirigidas.

Um dos problemas que merece ser levemente discutido neste texto é o da soldadura das ligas de

alumínio. Há, essencialmente, dois métodos de as soldar, o TIG e o MIG. Em ambos é utilizado um gás

inerte (árgon ou hélio, ou uma mistura dos dois) para impedir que o oxigénio do ar chegue à zona da

soldadura e oxide o alumínio fundido, destruindo o trabalho. No método TIG usa-se um eléctrodo de

tungsténio para formar o arco com a zona da junta a soldar. Este eléctrodo não é consumível. No método

MIG o eléctrodo é consumível e, nem todos os eléctrodos disponíveis no mercado são adequados para

aplicação em embarcações. Com o método MIG é possível soldar chapas com 3 milímetros de espessura,

mas um soldador competente pode chegar a metade dessa espessura, usando o método TIG.

O desenho das linhas de uma embarcação a construir com chapas metálicas implica um bom

conhecimento da geometria das superfícies planificáveis, para que o trabalho de conformação das

chapas não seja uma tarefa excessiva, afectando proibitivamente o custo final. Há vários métodos de

abordar este tema, dos quais falarei oportunamente em dois dos exemplos que apresentarei no final,

quer para a execução de um molde fêmea de um pequeno iate a executar em PRF, quer para a definição

de painéis de contraplacado de um pequeno barco a motor fora de borda.

Vamos, agora, abordar a utilização do aço na construção de embarcações. Comparando as

características deste metal com as do alumínio veremos quão diferentes eles são. O alumínio tem uma

densidade de 2,691, enquanto que o aço atinge 7,849, o que quer dizer que as peças de alumínio só

pesam 34% das de aço. No que se refere às tensões de ruptura, um dos aços mais utilizados na

construção dos cascos apresenta o valor de 414 MPa, enquanto que uma das mais utlizadas ligas de

alumínio, com a têmpera adequada, atinge o valor de 276 MPa, isto é, fica abaixo 67% nesta

característica. Sabemos que em matéria de ductilidade o alumínio é muito superior e que o aço tem o

grave problema da corrosão. Isto não quer dizer que o alumínio esteja isento deste problema. Contudo,

o alumínio é principalmente susceptível à corrosão electrolítica, a qual pode ser parcialmente

neutralizada com a aplicação de ânodos de zinco no casco. O caso do aço já é diferente pois no

dimensionamento das peças que vão contactar com a água do mar é preciso prever uma percentagem

de redução da espessura, para perdas resultantes da corrosão. O recurso a aços do tipo Cor-Ten atenua

bastante o problema, em termos de longevidade (mas não o elimina), desde que a manutenção periódica

seja executada sem falhas. A preparação das superfícies com jacto de areia antes das pinturas é

imperativa.

Page 125: Desenho de embarcações de recreio

Pag. 99

Os aços estão divididos em classes, de acordo com a quantidade de carbono que é adicionada ao ferro

para alterar as suas características. Assim teremos:

aços com baixo teor de carbono, até 0,15%;

aços para fins estruturais, ou aços macios, com teor de carbono entre 0,15 e 0,30%;

aços com teor médio de carbono, isto é, entre 0,30 e 0,50%;

aços de alto teor de carbono, entre 0,50 e 1,00%.

De todos estes, os que são utilizados para a construção de embarcações são os aços macios, com a

excepção do Cor-Ten, que também se utiliza, embora pertença à primeira categoria.

Vamos abordar, agora, as matérias relativas ao dimensionamento dos elementos estruturais, com

aplicação a todos os materiais anteriormente referidos (PRF, madeira, ligas de alumínio e aço).

As embarcações devem manter a sua forma quando ficam sujeitas aos esforços que resultam do uso a

que são destinadas, dependendo essa propriedade das características mecânicas e dimensionais dos

seus elementos estruturais, a saber, o revestimento exterior (que preenche, ainda, outras funções) e o

conjunto dos elementos longitudinais e transversais fixados ao revestimento exterior e à superestrutura,

quando existe, bem como de alguns outros elementos, como anteparas e outras peças do equipamento

interior que tem, cumulativamente, outras funções. Todos estes elementos devem ser concebidos e

desenhados de modo a constituírem uma unidade coerente, dimensionada com base em métodos

confiáveis. No geral, há três métodos de determinação das dimensões dos elementos estruturais:

método analítico, método comparativo e método empírico. No primeiro recorre-se à física, à resistência

dos materiais e à matemática para calcular os esforços a que estão sujeitas as peças, atribuindo valores

às solicitações com base na recolha e medição dos dados da experiência; no segundo parte-se do

conhecimento da geometria e dos dados numéricos de uma embarcação semelhante, construída noutro

material, e procede-se à alteração das dimensões a partir de constantes conhecidas, podendo fazer-se

pequenas alterações no desenho das peças, de acordo com os resultados obtidos; no terceiro recorre-

se a informação acumulada pela experiência, nomeadamente de exemplos de sucesso e, também, de

acontecimentos funestos que puseram em evidência deficiências que tiveram de ser corrigidas, num

processo de tentativas e erros.

O método analítico, extensivamente utilizado no cálculo estrutural dos grandes navios, é raramente

aplicado no desenho de embarcações de recreio e de iates. Um conceituado arquitecto naval americano,

que escreveu um texto didáctico sobre este tema, diz o seguinte:

Page 126: Desenho de embarcações de recreio

Pag. 100

“Outra razão para usar raramente o método analítico no desenho de pequenos iates e barcos de diversão

é que as fórmulas correntemente empregadas dão origem a dimensionamentos que geram desconfiança

por serem irrealisticamente diminutos, quando comparados com a grande quantidade de dados

empíricos que temos disponíveis, como resultado de se construírem barcos e se observarem as suas

performances. Talvez o método analítico, quando aplicado ao desenho de pequenas embarcações, seja

tecnicamente defensável – talvez, como um humorista pôs a questão, o yacht designer médio use um

«factor de ignorância» em vez de um factor de segurança. Contudo, o yacht designer que está preocupado

com os aspectos de segurança dos produtos que concebe, como todos nós devemos estar, seja guiado

mais pelo que foi historicamente demonstrado que é adequado, do que por aquilo que pode ser

teoricamente admissível,”.

Para os fins a que se destina este despretensioso livro resulta quase evidente que o método a aplicar

pelos seus leitores, no caso de pretenderem dominar as técnicas de concepção dos artefactos em causa,

será, prioritariamente, o método empírico. Não irei fazer uma exposição detalhada do assunto, limitar-

me-ei a discorrer sumariamente sobre o tema, tendo como base o texto The Elements of Boat Stregth,

referido na bibliografia. Com este livro é possível atingir, em plenitude, os objectivos pretendidos. Não se

trata de um texto de investigação destinado a apresentar desenvolvimentos especializados do tema. É,

como diz o autor, uma referência fácil de usar para o cálculo de elementos estruturais (scantlings) fiáveis,

práticos e sólidos, para barcos de diferentes tipos e serviços. Scantlings são os tamanhos, as formas, os

materiais e os pesos dos componentes estruturais de um barco. Tudo começa, como em qualquer outro

sistema do método empírico (há vários), com a determinação de um número a partir das dimensões da

embarcação em causa. Neste livro, que apresenta a vantagem não despicienda, de usar

cumulativamente o sistema métrico e o sistema inglês de medidas, o número em questão designa-se

por Scantling Number (Sn) e resulta do produto de três dimensões da embarcação (comprimento total,

largura e altura na secção média), a dividir por uma constante. As definições e as figuras de apoio

contidas no livro esclarecem, sem lugar a equívocos, do que se trata.

32,28DepthBeamLOA

Sn

(metros)

Aplicando esta fórmula à embarcação que temos vindo a usar para testar a matéria que se vai

aprendendo, teremos:

LOA = 7,75 m

32,2838,107,275,7

Sn

78,0Sn Beam = 2,07 m

Depth = 1,38 m

Page 127: Desenho de embarcações de recreio

Pag. 101

É este o número que utilizaremos ao longo de todo o processo de cálculo das dimensões dos elementos

da estrutura. Suponhamos que a nossa embarcação da figura nº 2 ia ser construída em PRFV (poliéster

reforçado a fibra de vidro), e queríamos determinar as espessuras do casco estratificado à mão, de

maneira convencional, com parede simples (hand-lay-up). Vamos à página 28 do livro e aplicamos a

fórmula 4-1. Obtemos o valor de 5,9mm para a região denominada “lower topsides”, cuja localização

está indicada na figura nº 26 deste texto. Passando à fórmula 4-2 determinamos as espessuras de todas

as superfícies do casco. Ver, para o efeito, a figura referida acima. Agora é preciso encontrar uma

sequência de tecidos, roving e mat, que se colocam alternadamente, aplicando sobre eles a resina.

Faço aqui um parêntese para referir que não se deve aplicar resina em excesso, porque isso diminui as

propriedades mecânicas do estratificado. O livro que referi anteriormente, do engenheiro Victor Branco

e, bem assim, aquele que estamos a usar, dão indicações preciosas sobre as condições técnicas e

ambientais da aplicação do PRFV. É necessário, de seguida, escolher os tecidos de acordo com uma

gramagem que, após terminar a operação de lay-up, conduza a uma espessura e um peso tão

aproximados quanto possível dos valores obtidos no cálculo. Por outro lado, faz sentido não exagerar na

variedade das gramagens para evitar erros de aplicação durante o processo, que é realizado sempre sob

uma certa tensão, por causa dos tempos curtos disponíveis, antes do endurecimento dos materiais

utilizados. Não se respeitando esses tempos, ocorrerão desperdícios.

Recorrendo à tabela 4-9 procedi à escolha dos tecidos, de modo a que, na aplicação não houvesse

mudança de gramagem na mesma camada. Ficamos com a combinação que se apresenta a seguir, em

que os valores entre parênteses são os que foram encontrados pela aplicação das fórmulas.

UPPER TOPSIDE (5,0 mm):

24 - 15 combi - mat = 2,26 mm,

24 - 15 combi - mat = 2,26 mm,

18 - 10 combi - mat = 1,60 mm. Total = 6,12 mm.

LOWER TOPSIDE (5,9 MM):

24 - 15 combi – mat = 2,26 mm,

24 - 15 combi – mat = 2,26 mm,

18 - 10 combi – mat = 1,60 mm. Total = 6,12 mm.

BOTTOM (6,8 mm):

24 - 15 combi - mat = 2,26 mm,

24 - 15 combi - mat = 2,26 mm,

18 - 10 combi - mat = 1,60 mm,

18 oz/sq.yd. roving = 0,79 mm. Total = 6,91 mm.

Page 128: Desenho de embarcações de recreio

Pag. 102

KEEL REGION (8,9 mm):

24 - 15 combi – mat = 2,26 mm,

24 - 15 combi – mat = 2,26 mm,

18 - 10 combi - mat = 1,60 mm,

18 oz/sq.yd. roving = 0,79 mm,

1,50 oz/sq.ft. mat = 1,22 mm,

18 oz/sq.yd. roving =0,79 mm. Total =8,92 mm.

Este conjunto constitui a parte do lay-up que diz respeito ao casco propriamente dito, mas ainda falta

referir o revestimento exterior de acabamento, para que a operação fique completa.

Na construção em grandes números existe sempre um molde fêmea que deve apresentar uma superfície

sem quaisquer irregularidades, devidamente preparada com cera própria, para evitar que o estratificado

se cole. Sobre essa superfície aplica-se (à pistola) o gelcoat e sobre ele um mat muito leve cujo peso

deve situar-se entre 1 e 1,5 oz/sq.yd. para embarcações de 7,5 a 9 metros. Este fino tecido deve ser

colocado antes de o gelcoat terminar a cura, para que a aderência entre os dois materiais se processe

nas melhores condições. Só depois se aplicam, em camadas sucessivas, os elementos do casco que

constituem a parte estrutural.

Após resolver esta fase dos cálculos seguir-se-ia com o desenho da estrutura interior e com o seu

dimensionamento, isto é, com a definição dos elementos longitudinais e transversais. Estes

componentes são normalmente indispensáveis para que seja assegurada a rigidez do conjunto, embora

nas pequenas e médias unidades à vela, como é aquela que nos ocupa, não costuma ser necessário

recorrer a elementos longitudinais e transversais, para além daqueles que constituem o arranjo interior

das embarcações, isto é, as anteparas e os elementos de apoio, tais como beliches e locais de arrumos.

Isto resulta do facto de as baixas velocidades a que se deslocam tais embarcações engendrarem

pressões muito baixas, o que não acontece com embarcações a motor cujas velocidades já são

apreciáveis. Mas vamos ficar por aqui, deixando o assunto para ser estudado por quem pretender,

através da consulta da obra de referência indicada. Há inúmeros aspectos deste método de construção,

assim como dos outros, que ficaram por referir, no pressuposto de que a leitura da bibliografia constitui

uma obrigação complementar imperativa. Devo apenas referir, antes de passar a outro tema, que os

métodos de cálculo empíricos começaram a ser utilizados desde longa data, com a construção tradicional

em madeira, como seria previsível. E, cada um desses sistemas determina o “scantling number” de

maneira diferente. Por exemplo, o sistema Nevin’s usa a raiz cúbica do deslocamento, em pés cúbicos.

A Westlawn scantling formula, apresentada nos textos didácticos fornecidos pela escola já referida,

Page 129: Desenho de embarcações de recreio

Pag. 103

obtém o número a partir da seguinte expressão: 16

BLC

, em que L representa o comprimento total

e B a boca máxima.

Existem, ainda, outros sistemas que se encontram espalhados pela literatura especializada e que foram

testados, com sucesso, em milhares de situações que, a meu ver, demonstram a validade destas

abordagens.

Vamos, agora, tratar da mastreação e do aparelho fixo. Embora tenham sido realizadas várias

experiências, algumas com sucesso, recorrendo a outros materiais, que não os consagrados na prática,

há dois que são os mais usados, no tempo actual, nas embarcações de recreio. São algumas das ligas

de alumínio e a madeira de abeto, uma resinosa que se desenvolve em alguns estados da América do

Norte e do Canadá.

Mas como vou recorrer, mais uma vez, a um método empírico para dimensionar estes componentes e

preciso de conhecer o momento endireitante correspondente à inclinação de 30 graus, vou aproveitar a

oportunidade para explicar como se determina a curva de estabilidade de uma embarcação,

esclarecimento que, propositadamente, ficou por fazer no local próprio deste texto, isto é, o capítulo IV.

Aproveitarei, como sempre, a embarcação representada na figura nº 2. Copiando as secções transversais

da referida figura e repetindo as mesmas secções para o lado oposto de cada um dos dois desenhos que

se encontram na figura nº 27, ficamos com uma vista da proa e outra da popa. Marcamos nos dois

desenhos duas linhas de água com a inclinação de 30 graus. Recorrendo à regra de Simpson vamos

calcular o deslocamento da parte imersa do casco adornado, medindo a totalidade da área de cada uma

das secções. Devemos ter presente que, neste caso, a segunda coluna do quadro onde se inscrevem os

valores das áreas não diz respeito a metade das áreas, mas sim à totalidade. Como consequência deste

facto, a fórmula que costumamos usar deixa de ter o número 2 no numerador. Se o valor obtido se

aproximar do que foi calculado anteriormente com a linha de água horizontal, admitindo-se desvios da

ordem de 3%, prosseguimos com o trabalho. Se o desvio for maior desenhamos novas linhas de água,

paralelas às iniciais e repetimos os cálculos. Com algum treino acabaremos por acertar logo à segunda

tentativa, quando não for à primeira! Daqui para a frente iremos aplicar outra regra de cálculo, a regra

dos trapézios e não a regra de Simpson. Para isso dividimos a linha de água em espaços iguais, em que

uma das linhas separadoras tem de passar obrigatoriamente pelo centro de gravidade. Como não

fizemos, ainda, o cálculo respectivo, temos de estimar a sua localização. Como o lastro constitui 44% do

peso total, não parece difícil chegar a um ponto que tem grandes probabilidades de estar muito próximo

da verdadeira posição. No caso que agora nos ocupa sabe-se, por experiência com embarcações

semelhantes, que o centro de gravidade fica ligeiramente acima do centro de flutuação.

Page 130: Desenho de embarcações de recreio

Pag. 104

Na regra dos trapézios não existe qualquer restrição para o número de intervalos, ao contrário do que

acontece com a regra de Simpson. Outro ponto importante a considerar é que, tal como está apresentado

nos dois desenhos da figura nº 27, deve-se evitar ir até ao extremo das secções, sendo mais conveniente

dar uma pequena folga, pois está demonstrado que procedendo assim os resultados são mais precisos.

Seguidamente constrói-se o quadro que está na parte inferior da folha e inscrevem-se nos locais próprios

os valores obtidos por medição dos comprimentos dos segmentos entre a linha de água inclinada e o

extremo das secções, depois de aplicada a escala respectiva (neste caso é de 1:25). Repare-se que na

secção 4 uma parte do segmento fica do lado de fora. Esta parte não deve ser considerada, tal como

refere o desenho. De acordo com a regra dos trapézios todos os valores que se encontram nos extremos

superior e inferior da tabela devem ser reduzidos a metade. Feitas as somas em cada coluna, multiplica-

se cada valor obtido pela distância entre secções transversais. No desenho da figura nº2 é de 10 dm,

como sabemos. Ficamos na última linha com os valores das áreas de cada secção longitudinal inclinada,

a, b, c, d, …

Transportamos esses valores para a segunda coluna do quadro da direita e multiplicamos cada um deles

pela distância entre o plano respectivo e o plano que passa pelo centro de gravidade. Tal como fazemos

na regra de Simpson para determinar a posição do centro de flutuação, também aqui contamos valores

positivos e valores negativos. Neste caso vai-se subtrair a soma das duas primeiras linhas da soma das

cinco restantes. Finalmente, divide-se o valor obtido pela soma das áreas inscritas na segunda coluna e

tem-se a distância entre o plano inclinado que passa pelo centro de gravidade e aquele que passa pelo

novo centro de flutuação. A essa distância damos o nome de braço endireitante.

Se repetirmos estes cálculos para várias inclinações, por exemplo, de dez em dez graus, teremos um

conjunto de valores que, se forem inscritos num sistema de dois eixos ortogonais e unidos por uma curva

constituem a curva de estabilidade que nos dá uma ideia muito precisa do comportamento da

embarcação neste domínio. Colocam-se os ângulos no eixo horizontal e os comprimentos dos braços

endireitantes no eixo vertical.

Já conhecemos o braço endireitante, que acabámos de calcular, e o peso total da embarcação, em água

salgada. Vamos calcular, de imediato, o momento endireitante a 30 graus:

M30 = GZ (dm) x D (kg) M30 = 2,813 x 3545 M30 = 9972 dm.kg

Dos desenhos em que nos estamos a apoiar retiramos o comprimento da boca situada na zona onde o

mastro atravessa o convés e que é de 20 dm. De seguida aplicaremos a fórmula empírica que está

integrada no método desenvolvido pela conhecida firma Sparkman and Stephen’s.

Page 131: Desenho de embarcações de recreio

Pag. 105

Carga vertical no mastro:

2b

78,2MP 30

1078,29972

P

2772P kg

Vamos, agora, calcular o comprimento do maior troço do mastro sem apoios. Como o barco está armado

em sloop, com os brandais amarrados no topo, o mastro fica dividido em duas partes, uma entre o convés

e o espaçador (spreader) e outra entre o espaçador e o topo do mastro. Nestas condições costuma fixar-

se o espaçador quase a meio do mastro, a 51,5 % da altura total, acima do convés. Como o mastro mede

100 dm, o troço inferior medirá:

L = 100 x 0,515 L = 51,5 dm.

Da tabela da página 168 do livro Skene’s Elements of Yacht Design, onde vem explicado o método (o

autor desta edição aumentada da edição inicial do livro trabalhou muitos anos na firma referida

acima),retiramos o valor da constante C a aplicar na fórmula seguinte:

C = 0,94 (um único espaçador, um tubo de alumínio).

Cálculo do momento de inércia transversal do mastro:

8

2t

tt 10)PL(C

I

8

2

tt 10)27725,51(0,94

I

277,0265,094,0Itt 069,0Itt dm4

690Itt cm4

Para determinar o momento de inércia longitudinal do mastro voltaremos à tabela referida acima e

procuraremos a constante que se aplica nesta situação e que é 0,54 (embarcação com comprimento da

linha de água inferior a 32 pés, estais fixados no topo do mastro).

Neste caso a dimensão vertical do troço do mastro, sem apoios, é a totalidade do comprimento entre o

convés e o topo do mesmo, porque não há apoios intermédios.

Cálculo do momento de inércia longitudinal:

8

2l

ll 10)PL(C

I

8

2

ll 10)2772100(0,54

I

2772,0154,0Ill 1496,0Ill dm4

1496Itt cm4

Page 132: Desenho de embarcações de recreio

Pag. 106

Como só encontrei uma tabela de secções ovais de alumínio com valores numéricos no sistema métrico

no livro dos autores suecos que está na bibliografia (Principles of Yacht Design) fui lá procurar uma

secção cujos valores dos momentos de inércia estivessem ligeiramente acima dos que aqui foram

encontrados. Escolhi um perfil oval de alumínio com 224 mm x 150 mm de eixos principais e uma

espessura de 4,5 mm.

Para calcular a tensão nos brandais aplica-se a seguinte fórmula:

2b

5,1MT 30

105,19972

T

10

14958T 1496T kg

A este valor é aplicado um coeficiente de segurança de 2,5 a 2,75 nos brandais superiores e de 3 nos

brandais inferiores.

75,21496Ts 4114Ts kg 40335Ts N

31496Ti 4488Ts kg 44012Ts N

Com base na tabela da página 169 aplicam-se percentagens de distribuição das cargas, 60 % nos

brandais duplos inferiores e 45 % nos superiores.

Brandais superiores:

40335 x 0,45 = 18151 N

Brandais inferiores:

44012 x 0,65 = 28607 N

Como devem ter notado, nos resultados obtidos, converti os quilogramas em newtons, isto porque na

tabela dos cabos que consta do livro sueco referido acima é esta a unidade utilizada. Consultada a

tabela, ficamos com cabos de aço inoxidável 1 x 19, com o diâmetro de 5 mm nos brandais superiores

e de 6 mm nos inferiores. Qualquer deles tem uma tensão de rotura bastante superior à tensão de

trabalho calculada. Para calcular a secção dos estais não existe, neste método nenhuma fórmula. Utiliza-

se, simplesmente, a seguinte regra empírica: escolhe-se o maior diâmetro que se aplicou nos brandais.

Portanto, ficarão os dois estais, da proa e da popa, com cabos de aço inoxidável 1 x19, com o diâmetro

de 6 mm.

Page 133: Desenho de embarcações de recreio

Pag. 107

Ainda ficam alguns itens por estudar, tais como os cabos do aparelho móvel, os “chainplates”(não sei

como se diz em português) e outras coisas menores. Contudo não vejo necessidade de expor aqui, nesta

obra de iniciação, tudo aquilo que facilmente se pode encontrar na bibliografia. Devo acrescentar, em

abono da verdade, que se tivesse que ser eu a procurar a necessária documentação teria, em muitas

situações, de recapitular a matéria estudada há muito tempo e o apetite já não é grande!

Por outro lado, tal como no caso das estruturas, escolhi um método simples para o cálculo dos mastros

e do aparelho. Quem quiser adquirir uma visão mais alargada deste tema, só tem de consultar a

bibliografia, nomeadamente o livro dos autores suecos onde está exposto, além deste, outro método

mais preciso. Abrem-se horizontes insuspeitados, para quem tiver a energia para consultar alguns destes

livros, onde são postos em confronto pontos de vista variados e diferentes perspectivas, acerca de muitos

dos assuntos tratados. É por essa razão que acabo por nada dizer sobre velas, um tema fascinante para

quem aprecia os barcos que dependem delas para se moverem. Seria uma verdadeira perda de tempo

escrever sobre esta matéria quando existe aquele livro maravilhoso (Sailmaker’s apprentice) que é

referido na bibliografia e que trata do tema muito melhor do que eu o faria.

Infelizmente quase todos os livros referidos estão escritos em inglês, mas é uma condição do século XXI

dominar razoavelmente esta língua franca. Provavelmente o general De Gaulle está a dar voltas no seu

túmulo mas, se repararem, até os políticos franceses já falam inglês! E quando a situação chegou a tal

ponto, não temos outro remédio senão aceitar este império.

Page 134: Desenho de embarcações de recreio
Page 135: Desenho de embarcações de recreio
Page 136: Desenho de embarcações de recreio
Page 137: Desenho de embarcações de recreio

Pag. 108

BIBLIOGRAFIA ESSENCIAL

1. CIÊNCIA APLICADA

1.1. Basic Naval Architecture

Autor – Kenneth C. Barnaby

Editor – Hutchinson scientific and technical

Este livro expõe, com grande clareza, o estado “actual” do conhecimento científico no domínio

da arquitectura naval. A última edição é de 1969.

1.2. Technical yacht design

Autor – Andrew G. Hammit

Editor – Adlard Coles Limited

Texto teórico destinado a apresentar modelos físicos e matemáticos das questões que o autor

considera mais pertinentes na fenomenologia do uso e da prática desportiva com embarcações.

2. DESIGN DE EMBARCAÇÕES DE RECREIO

2.1. Preliminary design of boats and ships

Autor – Cyrus Hamlin, N.A.

Editor – Cornell Maritime Press

Livro da maior utilidade para quem pretende ter uma visão de conjunto do processo criativo,

cheio de informações relativas à ergonomia, à segurança e à economia. O fantasma do suporte

matemático é desmistificado.

2.2. Skene’s elements of yacht design (8ª edição)

Autor – Francis S. Kinney

Editor – Dodd, Mead and Company

Livro clássico sobre o tema, com edições sucessivas, constantemente actualizadas. Contem

informação útil para aplicação nos projectos. O autor das últimas edições trabalhou muitos anos

na famosa firma de projectistas Sparkman and Stephens.

2.3. Principles of yacht design

Autores – Lars Larsson and Rolf E. Eliasson

Editor – International Marine / Mc Graw-Hill

Esta é a obra de dois arquitectos navais suecos. O primeiro é professor universitário de

hidrodinâmica e o segundo tem formação em engenharia de construção, mas exerce actividade

Page 138: Desenho de embarcações de recreio

Pag. 109

profissional como projectista de embarcações de recreio. Texto eminentemente moderno, com

enfoque nos iates à vela. Excelente base matemática e suporte técnico-científico credível.

3. ARMAÇÕES E VELAS

3.1. The sailmaker’s apprentice

Autor – Emiliano Marino

Editor – International Marine / Mc Graw- Hill

Praticamente tudo o que interessa sobre o desenho, a execução e a reparação das velas. Em

certas passagens apresenta o nível literário de um bom romance!

4. HÉLICES

4.1. Propeller Handbook

Autor – Dave Gerr

Editor – International Marine / Mc graw-Hill

Tudo o que é preciso saber para escolher (com critério) e perceber o funcionamento das hélices

das embarcações de recreio.

5. MATERIAIS DE CONSTRUÇÃO E CÁLCULOS ESTRUTURAIS

5.1. Wood Handbook – Wood as an engineering material

Autores – Bergman, Richard; Cai,Zhiyong et al.

Editor – United States Department of Agriculture – Forest Products Laboratory

Sitio – www.fpl.fs.fed.us

Texto exaustivo sobre o tema das aplicações técnicas das madeiras, qualidades e defeitos, com

um enfoque generalizado. .

5.2. The elements of boat strength

Autor – Dave Gerr

Editor – International Marine / Mc Graw-Hill

Livro fundamental para o desenho e a execução dos cálculos estruturais, com uma abordagem

directa e prática das características físicas dos materiais utilizados na construção de iates e

outras embarcações. Não se pode dispensar, se o método de cálculo a utilizar é empírico.

5.3. Boatbuilding

Autor – Howard I. Chapelle

Editor – W. W. Norton and Company, Inc.

Page 139: Desenho de embarcações de recreio

Pag. 110

Construção tradicional em madeira, sem cálculos. Muito bem ilustrado, com desenhos

excelentes. Feito por quem sabia (o autor foi um notável investigador que escreveu vários livros

de grande qualidade sobre a história marítima e a construção de navios dos Estados Unidos da

América). Faleceu recentemente.

5.4. Marine Composites

Autor – Eric Greene

Sitio – www. ericgreene associates.com/images/MARINE COMPOSITES/PDF.

Informação bastante exaustiva sobre os modernos materiais compósitos, com aplicação na

indústria naval. Bem documentado.

5.5. Rules and Regulations for the Classification of Yachts and Small Craft

Autor e Editor – Lloyds Register of Shipping

Normas de execução e dimensionamento de embarcações produzidas pela famosa seguradora

inglesa. Uma espécie de bíblia sobre o tema. É apresentado sob a forma de dossier e está sujeito

a alterações periódicas, em função dos avanços da investigação aplicada e da ocorrência de

incidentes que revelem defeitos na concepção dos modelos físicos que suportam os cálculos.

5.6. Standards and Recommended Practices for Small Craft

Autor e Editor – American Boat and Yacht Council Inc.

Normas americanas para orientação de projectistas e construtores sobre praticamente todos os

aspectos importantes deste ramo da indústria. Sujeito a alterações periódicas de actualização,

em função da inovação tecnológica.

5.7. The Gougeon Brothers on Boat Construction

Autor – Meade Gougeon

Editor – Gougeon Brothers

Excelente livro prático sobre a construção de embarcações em madeiras e resinas, segundo as

técnicas mais modernas (o autor é um dos membros da família que montou uma empresa, à

escala mundial, para produzir e comercializar resinas epóxidas e todos os produtos

complementares para os fins referidos). Boas ilustrações e fotografias.

5.8. Poliéster Reforçado a Fibra de Vidro (guia prático)

Autor – Victor Branco

Editor – Luís Falcão Simões de Carvalho

Este pequeno manual foi publicado antes do aparecimento de produtos e métodos de fabrico

tecnologicamente evoluídos cuja utilização está hoje bastante difundida, como é o caso de

certas resinas e dos tecidos de carbono, mas serve perfeitamente como introdução ao tema.

Page 140: Desenho de embarcações de recreio

Pag. 111

EXEMPLO 1

Nos anos de 1985-1986 o Instituto de Apoio às Pequenas e Médias Empresas Industriais (IAPMEI) e a

Direcção Geral da Qualidade lançaram um concurso nacional de design industrial intitulado “Design na

Indústria”. Esse concurso pretendia promover a difusão do design no nosso tecido industrial que estava

e ainda continua, trinta anos depois, particularmente em certos sectores, muito pouco interessado no

assunto, situação que potencia a fabricação de produtos de baixa qualidade conceptual, cuja colocação

no mercado é particularmente difícil em competição com produtos similares de outras origens, que

resultaram da concepção de projectistas devidamente habilitados. É preciso dizer-se que, em alguns

sectores da indústria nacional as coisas evoluíram de maneira drástica nos últimos anos e isso reflecte-

se na reputação, tanto interna como externa, dos produtos em questão. Mas, na área a que me estou a

referir pouco ou nada mudou nestes quase trinta anos.

A ideia do referido concurso implicava a associação de uma pequena ou média empresa com um

designer, tendo em vista a criação, em conjunto, de um artefacto de consumo que apresentasse

características de desenho de bom nível, o que lhe permitiria concorrer nos mercados com equivalentes

estrangeiros. Havia quatro prémios do mesmo montante, a distribuir em partes iguais entre as equipas

ganhadoras (empresa e designer) e, ainda três prémios menores para estudantes da área do design que

concorressem com projectos autónomos. Foi a esse concurso que apresentei este projecto de

embarcação, depois de descobrir uma empresa que se manifestou interessada no assunto. Logo aqui,

as coisas começaram mal pois o objectivo seria que a empresa interessada procurasse um designer, e

não o contrário.

Durante a execução do projecto tive alguns contactos esporádicos com gestores da referida empresa e,

aos poucos, comecei a aperceber-me de que, para eles, se tratava exclusivamente de uma oportunidade

de promoção, sem qualquer espécie de investimento, e pouco mais.

Entre os quatro projectos premiados, conjunto de que este fazia parte, havia vários objectos cuja

concepção se apresentava relativamente simples, independentemente do seu caracter mais ou menos

inovador. Não estava prevista, nem se verificou, qualquer hierarquização dos trabalhos premiados.

No dia da entrega dos prémios lá nos deslocámos a Leiria, onde se realizou a cerimónia, estando

presente um representante da empresa que recebeu, sem qualquer problema, o quantitativo que

assumiu que lhe pertencia por uma coisa para a qual nada tinha contribuído. Durante alguns meses fui

contactando com gente dessa organização, com vista à possível execução do molde da embarcação em

causa, mas acabou por ficar claro para mim que esse molde só seria feito se eu estivesse disponível

para custeá-lo! Pelo menos foi essa a ideia que me transmitiram. É assim que as coisas se passam,

muitas vezes, na nossa terra.

Page 141: Desenho de embarcações de recreio

Pag. 112

Na sequência do concurso e ainda com a esperança de que algo se faria, preparei a documentação para

o licenciamento da embarcação, tendo em vista a produção de uma pequena série. São esses desenhos

que agora apresento, juntamente com alguma documentação referente aos cálculos de suporte que,

como se pode constatar, são apoiados em métodos nem sempre iguais aos que apliquei no presente

texto. Neste caso socorri-me dos métodos preconizados e ensinados pela Westlawn School of Yacht

Design, uma instituição americana de ensino à distância, com a qual iniciei os estudos, nesta matéria,

no princípio dos anos oitenta do século passado e que, alguns anos depois, passou a designar-se por

Westlawn Institute of Marine Technology, designação que ainda hoje utiliza.

Falando agora das bases geométricas que estão na origem deste projecto quero dizer que as mesmas

se apoiam em conceitos relativamente apreensíveis por quem tem uma razoável formação em geometria

descritiva. A observação da primeira folha deste projecto, onde se encontram representadas as linhas

do casco, revela que o mesmo é constituído por uma série de superfícies curvas limitadas lateralmente

por linhas também curvas que constituem as arestas (chines) do volume assim definido. Por causa da

facilidade de construção do molde, em contraplacado (ou outro material adequado), era minha intenção

que cada uma dessas superfícies fosse planificável. Entre os métodos disponíveis para atingir este

objectivo só há um que se pode aplicar a esta situação particular. É o método das linhas oblícuas não

complanares (skew lines), cuja descrição pode ser vista num dos textos referidos na bibliografia

(Technical Yacht Design, pag.221 e seguintes). Os outros dois métodos, também referidos no mesmo

texto (superfícies cilíndricas e superfícies cónicas) não são aplicáveis por causa da limitação que resulta

do facto de as linhas que constituem as arestas estarem totalmente predeterminadas. Contudo, é

conveniente referir que o método dos cilindros foi aplicado por mim nos exemplos 4 e 5, como pode ser

facilmente constatado. E quem estiver interessado em ver um exemplo onde se aplicam

simultaneamente o método dos cones e o dos cilindros, com resultados estéticos excelentes, pode

apreciar o desenho que se encontra na página 112 do livro, também constante da bibliografia, Skene’s

Elements of Yacht Design.

Porque estamos a lidar com objectos reais e não com entidades abstractas, é importante não nos

deixarmos influenciar demasiadamente pelos modelos teóricos que sustentam, no nosso universo do

discurso, a possibilidade de execução das coisas que imaginamos!

Se tomarmos como base as linhas curvas longitudinais que constituem as arestas que delimitam a forma

do casco da nossa embarcação, usando os valores das coordenadas para executar um modelo à escala

conveniente (coisa que fiz para apresentar ao concurso), não nos preocupando em reproduzir

rigorosamente a curvatura das superfícies limitadas por duas arestas contíguas, é possível, aplicando

um material flexível e estendendo-o cuidadosamente entre arestas contíguas, obter a planificação de

cada um dos gomos, suficientemente precisa, para posterior reprodução no material definitivo que vai

constituir o molde fêmea, a construir sobre um exoesqueleto de madeira ou de metal. Como hoje já

Page 142: Desenho de embarcações de recreio

Pag. 113

parece viável experimentar a reprodução destas operações em computador, deixo esta possível

abordagem à consideração dos entendidos no assunto.

Vou, agora, apresentar para mera informação dos leitores, os textos preparados para o licenciamento do

projecto, alguns dos quais não foram exigidos pelas autoridades licenciadoras mas que, naquele

momento, me pareceu que poderiam ser de alguma utilidade para que os técnicos que iam analisar o

dossier pudessem fazer um juízo sustentado sobre as qualidades marinheiras da embarcação.

MEMÓRIA DESCRITIVA

Com a elaboração do projecto desta pequena embarcação costeira, de convés fechado, pretende-se

tornar viável a produção de uma série limitada cujo preço unitário de venda se situe dentro de limites

razoáveis. Só assim será possível responder adequadamente a uma clientela potencial cujas

capacidades económicas são relativamente modestas e cujo gosto pelas actividades náuticas ainda não

encontrou uma resposta apropriada no mercado nacional destes artefactos. Tendo como objectivo

prioritário a redução dos custos de mão-de-obra concebemos o casco, o convés e os restantes

componentes a estratificar, de tal modo que é possível fabricá-los a partir de moldes de contraplacado,

sem necessidade de execução de contramoldes dispendiosos. O resultado previsto, quer do ponto de

vista estético, quer do das performances, não se afigura significativamente inferior ao das embarcações

de desenho mais convencional.

Como se pode verificar através da observação dos elementos gráficos apresentados, a embarcação em

causa destina-se fundamentalmente à prática de pequenos cruzeiros, mas também tem condições para

participar em regatas, suportando perfeitamente um aumento substancial da superfície de velame, se

um utilizador experiente quiser melhorar as suas prestações nos regimes de vento mais calmos. O arranjo

interior desta embarcação é bastante simples e corresponde, essencialmente, ao programa

anteriormente definido. Tem quatro beliches, uma sanita química amovível, um compartimento para

guardar o motor fora de borda e algum espaço para arrumos. Tendo em conta as reduzidas dimensões

de sinal da embarcação, o elevado custo do equipamento e a utilização prevista, optou-se por recorrer a

um motor fora de borda, como meio de propulsão mecânica, embora seja possível adaptar os desenhos

para uma instalação fixa do tipo Sail Drive. Para a opção apresentada no projecto, um motor com a

potência de 6 HP é a resposta adequada às necessidades que se prevêem.

A decisão de recorrer à construção em resina de poliéster reforçada a fibra de vidro ficou a dever-se,

essencialmente, ao baixo custo de manutenção das embarcações construídas com este material e à

relativa economia do processo de fabrico. Com a utilização de resinas isoftálicas e um adequado controlo

da temperatura e da humidade durante a fase de estratificação, obtém-se um produto de excelentes

características mecânicas. Optou-se, também, por preencher quase totalmente, com espuma de

Page 143: Desenho de embarcações de recreio

Pag. 114

poliuretano, os espaços vazios entre as superfícies, externa e interna, de poliéster reforçado. Esta

solução diminui significativamente a arqueação líquida mas pareceu-nos que tal inconveniente é

aceitável, no caso presente, se se tiver em conta a segurança adicional que se obtém. Tratando-se de

uma embarcação destinada a cruzeiros relativamente curtos, que pode ser utilizada por tripulações

pouco experientes, não é irrelevante o facto de ser inafundável. Sabendo-se que o poliéster reforçado

tem uma grande resistência mecânica mas, também, uma deficiente rigidez, a utilização da espuma de

poliuretano entre as superfícies interna e externa, é a forma ideal de ultrapassar esta deficiência, pelo

que a solução adoptada se apresenta duplamente vantajosa.

A mastreação pode vir a ser executada, indiferentemente, em perfis de alumínio ou madeira de abeto,

embora só se apresentem os desenhos relativos a este último material. No primeiro caso ficamos com

um conjunto mais leve e de melhor performance aerodinâmica, mas há tipos de utilização que podem

justificar o recurso à madeira. Deixamos a utilização ao critério do utilizador. Chama-se também a

atenção para o facto de a quilha e o conjunto do leme serem construídos à parte e separáveis do casco.

As condições de fixação destes elementos não prejudicam a resistência do conjunto e facilitam a

manutenção periódica e eventuais reparações. No que se refere a meios de salvação, equipamento e

luzes regulamentares admite-se que sejam os futuros proprietários a proceder à sua instalação, no

respeito pela legislação em vigor e, nomeadamente, pelos artigos 30, 31 e 32 do Regulamento Provisório

das Embarcações de Recreio. Contudo, sugere-se a eventual dispensa da instalação da jangada

pneumática, tendo em conta o facto de se tratar de uma embarcação de pequenas dimensões e de ser

inafundável. Está prevista a instalação de dois extintores de pó químico, com capacidade de 1kg, sendo

um fixo nas imediações do motor e outro no interior da cabine.

A execução deste projecto implicou a elaboração dos cálculos abaixo descriminados. Os referidos

cálculos podem vir a ser apresentados, no todo ou em parte, para responder a quaisquer esclarecimentos

complementares.

1. Deslocamento e Centro de flutuação

2. Área de flutuação e superfície molhada

3. Curva de estabilidade (ângulos de 30, 60, 90 e 120 graus)

4. Cálculos estruturais

5. Superfície de velame e Centro vélico

6. Mastro, retranca, estais e brandais

7. Centro de gravidade e distribuição dos pesos.

Page 144: Desenho de embarcações de recreio

Pag. 115

INFORMAÇÃO COMPLEMENTAR

Na sequência da entrega dos documentos para licenciamento da embarcação no porto de Lisboa, recebi

um ofício da Direcção dos Serviços de Segurança – Inspecção Geral de Navios, solicitando alguns

esclarecimentos complementares que apresentei oportunamente, juntamento com outros dados que

considerei pertinentes. São esses elementos que incluo de seguida.

PREVISÃO DE BORDO LIVRE (em centímetros)

A B C

Bordo livre na proa 73,1 68,6 59,8

Bordo livre máximo 85,0 80,5 71,7

Bordo livre na popa 70,2 65,7 56,9

Deslocamento 840 kg 1120 kg 1730 kg

Notas:

Os valores indicados na coluna A correspondem à flutuação da embarcação vazia (deslocamento de

1120 – 280 = 840 kg);

Os valores indicados na coluna B correspondem à flutuação projectada, que resultou de se ter

acrescentado ao peso da embarcação completamente equipada, uma carga de 280 kg, considerada

por nós a carga normal de cruzeiro (três a quatro tripulantes, roupas e alimentação);

Os valores indicados na coluna C correspondem àquilo que admitimos como carga máxima

(deslocamento de 840 +890 = 1730 kg); o valor de 890 kg para carga máxima foi determinado de

acordo com a norma H.5 – Boat load capacity dos STANDARDS AND RECOMMENDED PRACTICES

FOR SMALL CRAFT (American Boat and Yacht Council, Inc.).

MÉTODOS E NORMAS UTILIZADOS NO DIMENSIONAMENTO ESTRUTURAL E NA DETERMINAÇÂO DAS

ESPESSURAS DO CASCO E DO CONVÉS

A atribuição das cargas e dos esforços, o dimensionamento estrutural e o cálculo das espessuras do

casco e do convés foram levados a efeito de acordo com o método preconizado pela Westlawn School of

Yacht Design (fiberglass design and construction) para embarcações não planantes, à vela e a motor. Os

resultados obtidos, no que se refere a espessuras e peso dos reforços de fibra de vidro, foram

seguidamente confrontados com os valores indicados nas RULES AND REGULATIONSW FOR THE

CLASSIFICATION OF YACHTS AND SMALL CRAFT da Lloyd’s Register of Shipping.

Page 145: Desenho de embarcações de recreio

Pag. 116

O dimensionamento do mastro, da retranca (abeto e alumínio), dos estais e dos brandais foi determinado

a partir da fórmula de Euler. Os resultados obtidos foram seguidamente comparados com os valores

encontrados pelo método empírico, proposto pela Westlawn School of Yacht Design.

FERROS, AMARRAS E ESPIAS DE AMARRAÇÃO

Ferros:

1 âncora tipo Almirantado de 14 kg

1 âncora CQR de 25 lbs, ou, em alternativa,

1 âncora Danforth – Standard de 25 lbs, ou, em alternativa,

1 âncora Bruce de 7,5 kg.

Amarras:

1 corrente de elos de 8mm, com 8 metros

1 cabo de nylon de 12 mm, com 30 metros

1 cabo de nylon de 12 mm, com 50 metros

1 cabo de nylon de 16 mm, com 2 metros

Acessórios: manilhas de união, tornel, manilha de talingadura, olhal com arganeu, sapatilhos, etc.

Espias de atracação:

1 cabo de nylon de 10 mm, com 30 metros

2 cabos de nylon de 10 mm, com 12 metros cada um

2 cabos de nylon de 10mm, com 6 metros cada um.

Nota: A selecção dos ferros e o diâmetro das amarras resultaram da aplicação da norma A-5- Anchoring,

mooring, docking, towing and lifting dos STANDARDS AND RECOMMENDED PRACTICES FOR SMALL

CRAFT (American Boat and Yacht Council, Inc.).

DADOS NUMÉRICOS MAIS SIGNIFICATIVOS

Comprimento entre perpendiculares --------------------------------------------------- CT =6,00 m

Comprimento na linha de água ------------------------------------------------------------ C =5,20 m

Page 146: Desenho de embarcações de recreio

Pag. 117

Boca máxima ----------------------------------------------------------------------------------------- BM =2,22 m

Boca máxima na flutuação ------------------------------------------------------------------- B =1,91 m

Calado máximo -------------------------------------------------------------------------------------- CM =1,00 m

Deslocamento ---------------------------------------------------------------------------------------- D =1120 kg

Lastro (35,7%) --------------------------------------------------------------------------------------- L = 400kg

Área de flutuação ---------------------------------------------------------------------------------- AF =6,62 m2

Superfície molhada -------------------------------------------------------------------------------- SM =9,50m2

Superfície vélica (vela grande + 100% do triângulo a vante) ------------ SV =16,50m2

Deslocamento por centímetro de imersão ------------------------------------------- d =66,2 kg

Momento para variar a imersão longitudinal de um centímetro-------- M =1802 kg.cm

Raio metacêntrico longitudinal ------------------------------------------------------------- Rl = 8,4 m

Raio metacêntrico transversal -------------------------------------------------------------- Rt =1,1 m

Coeficiente de bloco (só do casco) = 40,5 %

Coeficiente prismático = 57,0 %

Coeficiente de finura = 67,7 %

SV/SM = 1,74 (ver, para o efeito, o gráfico superior da figura nº 19 do texto)

62,171120

1900.V.S32

32

(valores de referência, AV em pés quadrados e D em pés cúbicos:15,5 17)

D/(0,01 x C)3 = 222 (valores de referência, D em long tons e C em pés: 250 350)

ESPECIFICAÇÕES TÉCNICAS DOS MATERIAIS UTILIZADOS

Foram apresentadas, em anexo, várias cópias de certificados de aprovação de resinas de poliéster, de

tecidos de fibra de vidro (mat e woven roving) e de poliuretano expansível para utilização em

estratificados e painéis sandwich, em embarcações.

Page 147: Desenho de embarcações de recreio

Pag. 118

DESLOCAMENTO E CENTRO DE FLUTUAÇÃO

St ½ A (dm²) × Δ (dm³) × CF

0 0,000 1 0,000 5 0,000

1 1,164 4 4,656 4 18,624

2 4,202 2 8,404 3 25,212

3 8,180 4 32,720 2 65,440

4 13,154

2 26,308

1 38,468 147,744 6,080 12,160

5 16,780

4 67,120

0 --- 1,480 5,920

6 18,676 2 37,352 1 37,352

7 18,130 4 72,520 2 145,040

8 13,382 2 26,764 3 80,292

9 7,070

4 28,280

4 117,920 0,300 1,200

10 0,000 1 0,000 5 0,000 380,604

323,404

232,860

(304,124)

3s f 2

(total)

3

5,2 323,404 2 1121 dm³ (kg)

32,5124,3042

apêndices) (sem

1054 dm³ (kg)

fsX

CF c

323,404

5,2232,860CF

74,3CF dm (atrás de St5)

Page 148: Desenho de embarcações de recreio

Pag. 119

ÁREA DE FLUTUAÇÃO SUPERFÍCIE MOLHADA

St ½

Largura × Áreas Flutuação St

½ Perímetro × Superfície Molhada

0 0,00 1 0,00 0 0,20 1 0,20

1 1,90 4 7,60 1 2,20 4 8,80

2 4,06 2 8,12 2 4,40 2 8,80

3 6,08 4 24,32 3 6,55 4 26,20

4 7,66 2 15,32 4 8,15 2 16,30

5 8,86 4 35,44 5 9,35 4 37,40

6 9,52 2 19,04 6 10,20 2 20,40

7 9,44 4 37,76 7 10,05 4 40,20

8 8,54 2 17,08 8 8,85 2 17,70

9 6,58 4 26,32 9 6,80 4 27,20

10 0,00 1 0,00 10 1,00 1 1,00

191,00 204,20

CÁLCULO DA SUPERFÍCIE VELICA

Método do Coeficiente de Pressão do Vento:

220º

C LA WPCGZ

.V.S

20,94 12,95 1,20,95 2470

.V.S

13,73346,52

.V.S 171.V.S pés2 16 m2

20ºGZ 0,29 m0,95 pés

WPC1,2 (iate de cruzeiro)

LA(CV CRL)3,95 m12,95 pés

Ccos 20º0,94

1121 kg 2470 libras

35,2 191 2

.F.A

13,662.F.A dm2

3

5,2 204,20 2Casco.M.S

90,707Casco.M.S dm2

20,167Quilha.M.S dm2

50,74Leme.M.S dm2

60,949Total.M.S dm2

Page 149: Desenho de embarcações de recreio

Pag. 120

Método Dellenbaugh:

GM 1LA S.V. 3,57

DC

2,83 247095,12 177,37 3,57

DC

º83,18DC

S.V. 16,50 m2 177,37 pés2

LA(CV CRL)3,95 m12,95 pés

1121 kg 2470 libras

GM(CG M)0,86 m2,83 pés

De acordo com a tabela respectiva, a embarcação devia ter uma superfície vélica um pouco superior,

pelo que se considera ligeiramente “undercanvased”.

Neste cálculo foi utilizada a superfície vélica do projecto.

Page 150: Desenho de embarcações de recreio

Pag. 121

ESTIMATIVA DO CÁLCULO DOS PESOS E D0 CENTRO DE GRAVIDADE

Item Peso Dist. St 5 Mom. Hor. Dist. LA Mom. Vert.

CASCO:

Zona do Fundo (incluindo interior) 60 -0,55 -33,0 -0,18 -10,8

Lados 70 0,20 14,0 -0,7 -49,0

Bordos 30 0,25 7,5 0,50 15,0

POPA 8 -2,40 -19,2 0,45 3,6

INTERIOR:

Longitudinais (Vert. + Hor.) + Poliur. 30 -0,30 -9,0 0,25 7,5

Transversais 3,5 -2,10 -7,35 0,30 1,05

II 3,5 -0,25 -0,87 0,50 1,75

II 2,0 0,80 1,6 0,50 1,0

II 3,5 1,55 5,42 0,50 1,75

II 1,5 2,25 3,38 0,40 0,6

II 1,5 -2,60 -3,9 0,20 0,3

II 2,0 -1,90 -3,8 0,05 0,1

DECK - CONVÉS 15 1,00 15,0 1,00 15,0

II 15 -1,30 -19,5 0,45 6,75

II 2,5 -0,50 -1,25 0,90 2,25

MOTOR FORA DE BORDA+TANQUE 30 -2,00 -60,0 0,15 4,5

SANITA AMOVIVEL 10 2,15 21,5 0,10 1,0

CAIXA DO MOTOR 10 -1,00 -10,0 -0,10 -1,0

COLCHÕES 10 -0,40 -4,0 0,10 1,0

MASTRO+ARMAMENTO+VELAS 50 0,50 25,0 3,00 150,0

ANCORA+CORRENTES+CABOS 30 2,30 69,0 0,45 13,5

EQUIPAGEM 250 -1,40 -350,0 0,50 125,0

COMIDA+ÁGUA+ROUPAS 30 0,00 0,00 0,10 3,0

FERRAGENS NO DECK+ESCOTILHAS 20 0,00 0,00 0,90 18,0

LEME COMPLETO C/ SKEG E STOCK 50 -2,30 -115,0 -0,45 -22,5

QUILHA 360 0,30 108,0 -0,65 -234,0

LASTRO MÓVEL (CHUMBO) 22 -2,36 -51,9 0,00 0,00

TOTAL 1120 -418,37 55,35

112037,418

.)long(CG

0,374 m 37,4 cm atrás de St 5

112035,55

.)vert(CG 0, 049 m 4,9 cm acima da LA

Page 151: Desenho de embarcações de recreio

Pag. 122

CÁLCULOS ESTRUTURAIS (poliéster reforçado com fibra de vidro e poliuretano expandido)

Os presentes cálculos foram baseados nas fórmulas e nos algoritmos contidos no texto didáctico

referente ao desenho e à construção de embarcações de deslocamento e planantes, a executar em

resinas de poliéster reforçadas a fibra de vidro, integrado no curso ministrado pela Westlawn School of

Yacht Design. O mesmo texto contem tabelas que indicam os valores aplicáveis a certas grandezas, de

acordo com as normas e os protocolos americanos deste sector da indústria e com os princípios gerais

da resistência dos materiais.

São apresentados neste livro, meramente a título de exemplo, porque à data em que o desenho foi

executado ainda não estava disponível o livro The elements of Boat Strenght, referido na bibliografia, que

julgo mais adequado para utilização pelas pessoas a quem se dirige esta obra.

Nota - É prática corrente admitir neste tipo de materiais e de construção, que os esforços a que o casco

está sujeito não justificam o recurso a reforços longitudinais e/ou transversais, para além dos que

constituem as anteparas, os beliches e outros elementos do arranjo interior, para embarcações à vela

de reduzidas dimensões como é esta a que nos estamos a reportar. Nestes casos calculam-se primeiro

as espessuras do casco da embarcação e só depois se verifica a eventual necessidade de reforços

adicionais.

Note-se que quando estamos a lidar com embarcações que se movem exclusivamente a motor,

principalmente as mais velozes, o caminho a seguir na execução dos cálculos será o inverso do que aqui

foi utilizado, começando-se pelo cálculo dos reforços longitudinais e transversais e passando depois à

determinação das espessuras do casco propriamente dito.

Lista de símbolos:

Pd – pressão hidrostática no casco (fundo e lados),

Phs – distância vertical abaixo da borda, multiplicada por 0,5,

Pvs – pressão resultante do movimento, de acordo com tabela apresentada no texto da WSYD,

Mb – momento flector máximo,

L – distância sem apoios,

z – módulo da secção,

Fs – resistência à flexão,

da – flecha admissível,

tr – espessura para garantir determinada rigidez,

d – flecha,

Ef – módulo de elasticidade do material que constitui as faces do painel sandwich,

Page 152: Desenho de embarcações de recreio

Pag. 123

t – espessura total do painel sandwich,

tc – espessura do material de baixa densidade contido entre as faces do painel,

tf – espessura das faces,

Ec – módulo de elasticidade do material de baixa densidade,

fs – tensão das faces (compressão e tracção),

fc – tensão de corte do material de baixa densidade (poliuretano),

Fm – módulo de flexão.

Nos cálculos que se seguem foi utilizado o sistema inglês de medidas.

FUNDO LATERAL:

vshsd PPP 0,1340,53,28Pd 1,774Pd lbs/in2

12yLP

M2

b

12

327,51,774M

2

b

4,335Mb lbs.in

s

b

FM

z 31030335,4

z

0112,0z in3

Flexão:

z2L

t f 0112,02

27,5t f 154,0t f in

Rigidez:

100L

da 10027,5

da 275,0da in

31

m

4

r dF32LP

t

31

6

4

r 275,0105,1325,27774,1

t

425,0tr in

Embora a espessura calculada do ponto de vista da resistência, seja inferior à que foi calculada para

responder à rigidez, vamos arbitrar valores para a primeira e, posteriormente, refazer os cálculos da

rigidez, mas considerando a participação do poliuretano e da camada interior do estratificado.

Page 153: Desenho de embarcações de recreio

Pag. 124

Assim:

Espessura

mat ----------------------------- 0,030 x (3 x 1) = 0,090

woven roving --------- 0,0015 x (3 x 18) = 0,081

0,171 in 4,3 mm (esta espessura não integra gelcoat e topcoat)

Peso

mat ----------------------------------------- 563,016

331

woven roving --------------- 824,016

244,0318

1,387 lbs / ft2 6,763 kg/m2

Rigidez (contando com o poliuretano expandido e o laminado interior):

c

2f

c3

c3

f

22

Ettt

ttEL561,0

4LP

d

6000131,0261,44

4261,4105,27561,0

45,27774,1

d 2336

22

4,1023414

6,1336323125,424

4,335d

mm6,0in0238,0d

P = 1,774 lbs/in2

L = 27,5 in

Ef = 106 psi

Ec = 6 x 103 psi

t = 0,171 + 0,09 + 4

tf = (0,171 + 0,09) / 2

tc = 4 (valor médio)

Como d < da, isto é, 0,0238 in < 0,275 in, os valores arbitrados são suficientes.

7,2057,0154,0

(600g/m2) oz 18 deroving woven de camadas 3(300g/m2) oz 1 demat de camadas 3

Page 154: Desenho de embarcações de recreio

Pag. 125

FUNDO (zona da quilha):

Aplica-se mais 50% do que foi calculado para o FUNDO LATERAL.

Assim:

Espessura

mat ------------------------------------- 0,030 x 5 = 0,150

woven roving ----------------- 0,0015 x 72 = 0,108

0,258 in 6,6 mm

Peso

mat ---------------------------------------- 937,016

351

woven roving -------------- 098,116

244,0418

2,035 lbs / ft2 9,920 kg/m2

LADOS (zona com poliuretano expandido):

2ddvshsd in/lbs119,1P134,05,097,1PPPP

inlbs64,90M12

318119,1M

12yLP

M b

2

b

2

b

33

s

b in00302,0z103064,90

zFM

z

Flexão:

in027,0t00302,02

18tz

2L

t fff

05,4057,0

5,1154,0

(600g/m2) oz 18 deroving woven de camadas 4(300g/m2) oz 1 demat de camadas 5

Page 155: Desenho de embarcações de recreio

Pag. 126

Rigidez:

in18,0d10018

d100

Ld aaa

in239,0t18,0105,132

18119,1t

dF32LP

t r

31

6

4

r

31

m

4

r

Aplicando o esquema de cálculo usado anteriormente, teremos:

Espessura

mat ----------------------------------------- 0,030 x 2 = 0,060

woven roving --------------------- 0,0015 x 36 = 0,054

0,114 in 2,9 mm

Peso

mat ------------------------------------------ 375,016

321

woven roving --------------- 514,016

244,0218

0,889 lbs / ft2 4,335 kg/m2

Nota: O laminado dos lados fica bastante acima das exigências de cálculo. Foi assim decidido para evitar

que se verifique uma redução abrupta da espessura do estratificado, na passagem dos fundos laterais

para os lados. Ver a figura esquemática integrada nos elementos desenhados do projecto.

Rigidez (contando com o poliuretano expandido e o laminado interior):

c

2f

c3

c3

f

22

Ettt

ttEL561,0

4LP

d

6000102,0204,22

2204,21018561,0

418118,1

d 2336

22

P = 1,118 lbs/in2

L = 18 in

Ef = 106 psi

Ec = 6 x 103 psi

t = 0,114 + 0,09 + 2

tf = (0,114 + 0,09) / 2

tc = 2 (valor médio)

47,0057,0027,0

(600g/m2) oz 18 deroving woven de camadas 2(300g/m2) oz 1 demat de camadas 2

Page 156: Desenho de embarcações de recreio

Pag. 127

42,265102

66,270618574,181

639,90d

mm33,0in013,0d

Como d < da, isto é, 0,013 in < 0,18 in, os valores arbitrados são suficientes.

LADOS (zona sem poliuretano, até à borda):

2ddvshsd in/lbs484,0P134,05,07,0PPPP

inlbs74,7M12

38484,0M

12yLP

M b

2

b

2

b

33

s

b in000258,0z1030

8z

FM

z

Flexão:

in00103,0t000258,028

tz2L

t fff

Rigidez:

in08,0d100

8d

100L

d aaa

in0802,0t08,0105,132

8484,0t

dF32LP

t r

31

6

4

r

31

m

4

r

Como tr > tf, temos:

4,01057,0

0802,0 (600g/m2) oz 18 deroving woven de camadas 2

(300g/m2) oz 1 demat de camadas 2

Page 157: Desenho de embarcações de recreio

Pag. 128

Espessura

mat ----------------------------------------- 0,030 x 2 = 0,060

woven roving --------------------- 0,0015 x 36 = 0,054

0,114 in 2,9 mm

Peso

mat ------------------------------------------- 375,016

321

woven roving ----------------- 514,016

244,0218

0,889 lbs / ft2 4,335 kg/m2

CONVÉS E COCKPIT

Considerando que o painel sandwich tem as seguintes espessuras:

tf – camada exterior (1 x wr + 1 x mat) -------------------------- 0,057 in.

tc – camada intermédia de poliuretano ------------------------- 1,583 in.

tf - camada interior (2 x mat) ----------------------------------------- 0,060 in.

Total ------ 1,700 in. 43 mm

Considerando duas réguas de contraplacado de 10 cm de largura intercaladas nas arestas do convés

ficamos com uma distância máxima aproximada, sem apoios, de 75 cm 30 in.

Flecha admissível = 30 / 200 = 0,15 in 4 mm

c

2f

c3

c3

f

22

Ettt

ttEL561,0

4LP

d

6000057,07,1

583,1583,17,110

30561,04301

d 2336

22

0000977,0000534,0225d

in14,0d (como 0,14 < 0,15 a solução é aceitável)

Page 158: Desenho de embarcações de recreio
Page 159: Desenho de embarcações de recreio

Pag. 129

Tensão do laminado (faces) – esforço de tracção:

psi1201f

057,07,1057,08301

fttt8

LPf s

2

sff

2

s

(como 1,201 x 103 < 12 x 103 a solução é aceitável)

Tensão do poliuretano (camada intermédia) – esforço de corte:

psi13,9f

057,07,12301

ftt2

LPf cc

fc

(sendo 100 psi a resistência limite do poliuretano às tensões de corte, como 9,13 < 100 a solução é

aceitável)

Nota – É normal considerar que a flecha admissível no convés seja igual à distância sem apoios a dividir

por 250, para evitar que os ocupantes da embarcação tenham a sensação desagradável de andarem

sobre uma superfície flexível. Contudo, em soluções económicas pode chegar-se até ao valor de L/100.

Neste caso admitiu-se L/200, opção que se considerou adequada para o nível de qualidade fixado para

o produto.

CÁLCULO DO MASTRO, DA RETRANCA, DOS BRANDAIS E DOS ESTAIS

Para levar a efeito a execução dos cálculos acima indicados recorreu-se à fórmula de Euler, seguindo o

esquema do segundo método referido nos textos da Westlawn School of Yacht Design que não foi

explicitado no presente livro. Tal como já foi dito anteriormente a propósito de outros cálculos deste

exemplo, apresenta-se porque assim foi executado no momento em que se projectou esta embarcação.

Faço notar que este método de cálculo, assim como outros, deixa de lado vários factores que influenciam

a segurança do conjunto, tais como o modo de apoio do mastro e as condições de movimento da

embarcação no mar. Em consequência das lacunas do modelo teórico que serve de base aos cálculos,

as fórmulas respectivas integram coeficientes de segurança variáveis bastante elevados, de acordo com

a praxis, como se pode ver na folha anexa onde se encontra o esquema dimensionado do mastro e dos

brandais (e nos cálculos subsequentes). Começando pelo referido esquema, calculam-se as reacções

nos brandais partindo de uma série de pressupostos, através dos quais se determinam as forças de

compressão que permitirão chegar às dimensões da secção do mastro e, bem assim, às secções dos

cabos.

Page 160: Desenho de embarcações de recreio
Page 161: Desenho de embarcações de recreio

Pag. 130

Continuando os cálculos iniciados na folha onde figura o esquema simplificado do mastro, vamos avaliar

o efeito das tensões dos brandais na compressão do mastro:

Brandais superiores ------ 1622

5.10CU CU = 850

Brandais inferiores ------- 2403.25.11

CL CL = 1200

2050 lbs

Compressão total 2050

Peso do mastro e do aparelho 90

Peso das velas 30

Peso da retranca 15

Esforço do aparelho (3 vezes o peso das velas) 90

Esforço das velas (estimado) 25

Total 2300

Fórmula de Euler:

Momento longitudinal (com um coeficiente de segurança de 2):

IEL14,3

2W2

L7

2

I102,295

14,329000

LI22639000

22639000

IL 4IL in4(alumínio)

L6

2

I103,12,295

14,329000

2949000

IL

31IL in4 (abeto)

W = 2300 x 3,9 (c.s.) = 9000 lbs

LL = 24,6’ x 12 = 295,2”

E = 107 (alumínio)

E = 1,3 x 106 (abeto)

[I] = in4

Page 162: Desenho de embarcações de recreio

Pag. 131

Momento transversal (não se considera nenhum coeficiente de segurança):

IEL14,3

W2

T7

2

I10138

14,39000

TI51779000

51779000

IT 7.1IT in4 (alumínio)

T6

2

I103,1138

14,39000

6739000

IT

13IT in4 (abeto)

LT = 11,5’ x 12 = 138”

Secção do Mastro (dimensões e geometria):

Alumínio – Secção oval – Espessura da parede = 0,125” (3,2 mm)

Eixos = 5” x 3” (12,7 cm x 7,6 cm)

Abeto – Secção oval – Espessura da parede = 0,8” (20,5 mm)

Eixos = 5,5” x 4” (14 cm x 10,2 cm)

Nota: A escolha das secções foi feita a partir dos momentos de inércia, usando tabelas.

Secção da Retranca (dimensões e geometria):

LWPCSV

W

5,8

5,15,107W

19W lbs

Alumínio – Secção circular – Espessura da parede = 0,125” (3,2 mm)

Diâmetro = Ø 3” (7,6 cm)

Abeto – Secção rectangular arredondada – Espessura da parede = 0,5” (12,7 mm)

Lados = 3,5” x 2,3” (8,9 cm x 5,8 cm)

Nota: O dimensionamento da retranca foi obtido a partir de uma tabela contida nos textos da WSID.

Page 163: Desenho de embarcações de recreio

Pag. 132

CÁLCULO DA ESTABILIDADE

Os cálculos de estabilidade desta embarcação foram levados a efeito utilizando as seguintes inclinações:

30º, 60º, 90º e 120º. Tal como referi anteriormente, seria mais rigoroso recorrer a um número maior de

ângulos, eventualmente com um intervalo de vinte graus, isto é: 20º, 40º, 60º, 80º, 100º, 120º e 140º.

Contudo, as quatro inclinações que usei nestes cálculos já nos dão uma ideia bastante precisa da curva

da estabilidade, permitindo afirmar que o comportamento da embarcação, neste domínio, está de acordo

com o que se espera de um veleiro deste tipo. Ver, em anexo, os elementos escritos e desenhados

subsequentes que, a meu ver, corroboram a presente afirmação.

Page 164: Desenho de embarcações de recreio
Page 165: Desenho de embarcações de recreio
Page 166: Desenho de embarcações de recreio
Page 167: Desenho de embarcações de recreio
Page 168: Desenho de embarcações de recreio
Page 169: Desenho de embarcações de recreio
Page 170: Desenho de embarcações de recreio
Page 171: Desenho de embarcações de recreio
Page 172: Desenho de embarcações de recreio
Page 173: Desenho de embarcações de recreio
Page 174: Desenho de embarcações de recreio
Page 175: Desenho de embarcações de recreio
Page 176: Desenho de embarcações de recreio
Page 177: Desenho de embarcações de recreio
Page 178: Desenho de embarcações de recreio

Pag. 133

EXEMPLO 2

O presente estudo tem o nível de anteprojecto e foi elaborado nos anos oitenta do século passado para

responder a um exercício apresentado pela Westlawn School (WSID), no âmbito dos estudos que fiz

nesse período. Apesar de só ter sido exigido, neste caso, um número reduzido de cálculos, aqueles que

foram pedidos já permitem concluir da viabilidade da proposta, tanto assim que o instrutor que a analisou

a considerou muito boa.

Como se pode concluir da apreciação dos elementos executados e agora apresentados, trata-se do tal

exemplo que prometi anteriormente que mostraria, para exemplificar a exploração do tema da velocidade

em meio aquático. É uma embarcação planante, do tipo “runabout”, de quatro lugares, tal como

determinava (em alternativa) o programa fornecido pela escola. A escolha assumida de um motor diesel

pode ser questionada, do ponto de vista da resposta mais adequada a dar ao que era solicitado, no que

se refere à velocidade, pois um motor a gasolina seria mais leve para a mesma potência ou mais potente

para o mesmo peso. A primeira hipótese (motor mais leve) permitiria colocar mais facilmente o centro de

gravidade na vertical do centro de flutuação e a segunda (motor mais pesado) permitiria andar um pouco

mais depressa. Mas a minha permanente preocupação com os problemas da segurança, levou-me a

fazer a referida opção que julgo aceitável e, provavelmente, de acordo com a opinião de muitos dos

aficionados que funcionam no mesmo registo que eu.

Quer o texto, quer os elementos escritos dos desenhos são apresentados na forma original, isto é, na

língua inglesa. Com a provecta idade que já possuo, não me é possível refazer os desenhos com a

competência e o rigor que a minha mão e a minha vista me permitiam naquele tempo e, também, não

considero relevante proceder à retroversão do texto. Só peço que me sejam perdoados os erros

linguísticos que os especialistas não deixarão de encontrar. Ainda sou do tempo em que, no ensino

regular oficial, se investia mais no estudo da língua francesa, pelo que espero a benevolência dos leitores

mais exigentes.

*Programa fornecido pela WSID:

Draw plans for a high speed, four or six passenger runabout, between 20´ and 26´L.O.A., and of

conventional beam.

The plans are to consist of a profile and arrangement; lines and offsets; construction profile, beam plan

and frame plan; and at least two sections.

Construction drawings should show engine, fuel tank, and steering gear installation.

Page 179: Desenho de embarcações de recreio

Pag. 134

In order to determine proper trim, provide a complete table of weights and moments, and calculate the

location of the longitudinal center of gravity.

*Resposta:

Material: the hull, deck and structural members of this boat are to be made of sheets and plates of marine

aluminum alloy in order to attain the least possible dead weight (about 1000 lbs. for hull, deck and

structure).

The chosen alloys and tempers are as follow:

Hull and deck ------------ 5086 H 32

Structural members - 5083 H 112

Scantlings were obtained by the empirical method, using data furnished by book 20, volume 1.

Displacement and LCB:

STA Half Areas × Functions for Δ × CB

0 0.0000 1 0.0000 5 0.0000

1 0.1907 4 0.7628 4 3.0512

2 0.5742 2 1.1484 3 3.4452

3 1.0016 4 4.0064 2 8.0128

4 1.4145 2 2.8290 1 2.8290 - 17.3382

5 1.6164 4 6.4656 0 ---

6 1.6504 2 3.3008 1 3.3008

7 1.6551 4 6.6204 2 13.2408

8 1.6602 2 3.3204 3 9.9612

9 1.6721 4 6.6884 4 26.7536

10 1.3750 1 1.3750 5 6.8750 60.1314

36.5172 42.7932

364s 2

F

3641.8104 36.5172 2

7.2820 lbs

F

c

sX

LCB

36.5172

1.810442.7932LCB

12.2LCB abatf STA5 (0.31 abaft STA6)

Page 180: Desenho de embarcações de recreio

Pag. 135

Engine – Volvo Penta, AQ 225 D / 280 B ----------------------- 225 HP – Top, 180 HP – Cruising

Keith’s Formula:

Assuming C=17 (very eficient runabout)

BPL

CM3

6.3

22518.117M

3

6.397.15

17M 43M mph (top speed)

40M mph (cruising speed)

Checking on second speed chart (Book 14) – Fast runabout

1802820

P

67.15

P

lbs/HP 44 statute miles/hour

18.140

L

V 4.9

LV

WEIGHT CALCULATION ( wgt = lbs; dist. from STA 6 =in.):

Item WGT Dist. from STA 6 Horiz. Moments

Stern frames 37.42 +6.85 +256.33

Outboard driving mounting plating 8.46 +5.91 +50.00

Stern plating 31.15 +7.05 +219.61

Transverse frames – STA 9 16.42 +5.59 +91.79

STA 8 16.71 +3.72 +62.16

STA 7 19.95 +1.89 +37.71

STA 6 18.09 +0.04 +0.72

STA 5 20.37 -1.79 -36.46

STA 4 19.93 -3.60 -71.75

STA 3 24.79 -5.44 -134.86

STA 2 18.03 -7.30 -131.62

STA 1 13.87 -9.15 -126.91

STA 0 10.37 -10.95 -113.66

STA -1 2,05 -12.75 -26.14

Longitudinal frames - bottom 73.42 -1.42 -104.26

Side 53.16 -2.46 -130.77

Integral tank 31.19 -0,00 0.00

Engine girders and transverse stifeners 12.52 +3.72 +46.57

Page 181: Desenho de embarcações de recreio

Pag. 136

Stifeners – STA 2 STA 3 5.51 -6.40 -35.26

Hull plating – A.P. STA 9 29.36 +6.42 +188.49

STA 9 STA 8 44.35 +4.53 +200.91

STA 8 STA 7 44.02 +2.72 +119.73

STA 7 STA 6 44.09 +0.89 +39.24

STA 6 STA 5 44.47 -0.91 -40.47

STA 5 STA 4 44.16 -2.71 -119.67

STA 4 STA 3 43.43 -4.51 -195.87

STA 3 STA 2 40.55 -6.34 -257.09

STA 2 STA 1 36.89 -8.15 -300.65

STA 1 STA 0 29.93 -9.96 -298.10

STA 0 F.P. 28.52 -11.65 -332.26

Deck and cockpit plating – A.P. STA 9 8.93 +6.18 +55.19

STA 9 STA 3 40.20 -0.46 -18.49

STA 3 STA 0 68.73 -7.52 -516.85

STA 0 F.P. 16.75 -11.93 -199.83

Engine (Volvo Penta, AQ 225 D / 280 B) 893.00 +4.49 +4009.57

Engine cover (aluminum sheet and insulation) 32.80 +4.25 +139.94

Engine controls and console (air intake) 53.72 -3.38 -181.57

Fuel (half capacity) 130.00 0.00 0.00

Acrylic screen 18.14 -5.55 -100.68

Stearing system 13.00 +0.63 +8.19

Cockpit sole (plywood) 45.00 -2.40 -108.00

Cockpit side (plywood) 22.00 -2.20 -48.40

Battery 17.50 -7.94 -138.95

Seats (aft) 70.00 +0.99 +69.30

Seats (forward) 45.00 -3.43 -154.35

Crew (2 young people, aft) 230.00 +1.03 +236.90

(2 adults, forward) 300.00 -3.39 -1017.00

TOTAL 1120 +892.43

LCB = 2.12 - 1.81 LCB = 0.31 abaft STA 6

2867.95892.43

CG CG = 0.31 abaft STA 6

Page 182: Desenho de embarcações de recreio
Page 183: Desenho de embarcações de recreio
Page 184: Desenho de embarcações de recreio
Page 185: Desenho de embarcações de recreio

Pag. 137

EXEMPLO 3

Por várias vezes, quando ainda tinha disponibilidade para isso, apresentei propostas ao concurso

internacional “Classic Boat Amateur and Professional Design Competition”, promovido anualmente pela

conhecida revista mensal inglesa Classic Boat. Em geral fiquei bem classificado, mas nunca consegui

chegar ao primeiro lugar, que era, obviamente, o meu objectivo. O exemplo que agora vou apresentar

constitui uma dessas tentativas, por sinal a que ficou pior posicionada pois não passou do quarto lugar,

se bem me lembro. Pelo menos, um membro do júri criticou negativamente a solução, contudo, foi aquela

em que mais me esforcei e que continua a parecer-me uma proposta interessante para responder ao

programa que foi apresentado aos leitores num dos números da revista, no ano de 1998.

Tal como no exemplo anterior, as partes escritas são apresentadas em inglês, pelo que peço, mais uma

vez, as minhas desculpas no que se refere a eventuais falhas semânticas e gramaticais. Como não sei

onde pára o exemplar da revista que continha o programa, dispenso-me de o apresentar, embora a

exposição do conceito que inicia o texto explicativo que acompanhou os desenhos permita ter uma ideia

aproximada do que se trata.

1140 Motorsailer

1 – The concept

1.1 – “The desire to find our own space, self-sufficient in our own craft, is one of the reasons why we go

cruising”. This statement served as a “moto” for the boat I wish to present to your consideration.

I assumed that three friends in a boat, for one month, need enough space to walk around. That is why I

designed a reasonable spacious boat, putting an emphasis on the motor side, undercanvased, but

capable of making a trip to search a shelter under sails alone.

1.2 – Depending on the chosen wilderness (for instance, the coast of Scotland or the Cape Vert Islands),

the equipment may vary. I think of things like an instant water heater, a generator and a reverse osmosis

desalinator, etc., that I have not indicated on the plans.

Of course, these items can be installed without any difficulty.

1.3 – As you can see looking at the lines, I propose a pure displacement craft, with a displacement/length

ratio of 252. Furthermore, the location of the longitudinal centre of buoyancy is totally compatible with a

speed/length ratio of 1.15.

Page 186: Desenho de embarcações de recreio

Pag. 138

1.4 – The centerboard is to be used not only with sails. It also serves to maintain the boat on her track,

when needed.

2 – Numerical data

IMPERIAL METRIC

LOA (length overall) 37.37 11.400 m

LWL (length waterline) 34.88 10.640 m

BOA (beam overall) 11.38 3.470 m

BWL (beam waterline) 10.56 3.220 m

Hd (hull draft) 1.98 0.605 m

Maximum draft (cb. up) 2.75 0.840 m

Maximum draft (cb. down) 5.74 1.750 m

Displacement (tons) 10.699 long tons 10.871 M tons

Displacement (lbs, kg) 23,966 lbs 10,871 kg

Displacement (cu. ft., dm3) 374.476 cu. ft. 10,604 dm3

Sail area 341.74 sq. ft. 31.79 m2

Shaft centerline below waterline 1.62 0.495 m

Maximum propeller diameter to fit within aperture 21 0.533 m

D/L ratio 252 ---

Block coefficient (CB) 0.51 0.51

Prismatic coefficient (CP) 0.58 0.58

3 – Engine, propeller and shaft

Assuming S = 6.8 knots, we have

LWLS

LS

34.886.8

LS 15.1 L

S

Then:

3 SHP10.665

L

S

3 SHP966.23

10.665 1.15

SHP = 30 (stated upper limit)

For continuous output we must operate the engine at 85% of the top RPM and HP. We also have to allow

for a 3% loss of power due to friction and back pressure.

HP3603.185.0SHP 30

Page 187: Desenho de embarcações de recreio

Pag. 139

This indicates an engine with a maximum BHP rating of 36 HP.

Departing from this value I pick up a 4-stroke diesel engine, a Volvo MD 17D/MS2, with a maximum

output of 36 HP, at 3000 RPM, equipped with a reduction gear of 3:1 and an output shaft downward

angle of 7º.

Maximum intermittent shaft output would be 35 HP.

Under these conditions the maximum speed of the boat would be:

3 35996.2310.665

34.88

S

S 7.15 knots

Let us chose the propeller using the Bp-δ method:

804.015.7 Va Va 5.75 knots

5.2

0.5

VaRPM(SHP)

Bp

5.2

0.5

75.5100035

Bp

Bp 74.6

From the chart Bp-δ (screw series B 3.65 – type B, 3 blades, d.a.r.= 0.65) we take:

δ 315 and 43

Adjustment of δ for single screw:

δ 315 0.95 δ 299.25

Then: RPM

12Va D

330001275.525.299

D

D 20.65 (52.5 cm)

From the chart we obtain 65.0DpPM , then:

MP 0.65 20.65 MP 13.4 (34.1 cm)

Page 188: Desenho de embarcações de recreio

Pag. 140

We can settle on a 21 inch diameter x 13 inch pitch propeller, three bladed, with a d.a.r. of 0.65.

Checking for cavitation:

51.03.r.a.d

MWR

53.165.0

MWR 425.0 MWR

blades of nº51.0MWR2D

Ad2

351.0425.0

221

1416.3 Ad2

Ad 225.22 sq.in.

Allowable blade loading:

08.05.0 ftVa9.1 PSI 08.05.0 62.175.59.1 PSI PSI 4.73

Actual blade loading:

AdVaeSHP326

PSI

22.22575.543.035326

PSI

PSI 3.79

As we can see there is no cavitation at all but the efficiency is not very good (=0.43).

Doing the calculations again with a screw B 3.50, d.a.r. = 0.50 we have the same diameter and pitch but

at a cost of some cavitation (actual blade loading of 5.4) we attain a better value for efficiency (=0.472).

Let us determine the propeller-shaft diameter (solid tobin bronze):

3s RPMSt

SFSHP000.321 D

3s 33000000.20335000.321

D

Ds 1.14 ( 30 mm)

From the data of the engine:

Power RPM (gear ratio 3:1) Fuel hourly consumption

35 SHP 1000 220 gr/HP

¾ x 35 SHP = 26.25 SHP 680 193 gr/HP

½ x 35 SHP = 17.55 SHP 480 195 gr/HP

Page 189: Desenho de embarcações de recreio

Pag. 141

Estimated speed at 3/4 full power of engine:

3 SHP43

665.10

LS

3 35

43

996.23

665.10

34.88S

S 6.49 knots

The total fuel capacity of the boat is 500 litters.

Converting to weight: 500 0.88 440 kg

If we travel at 3/4 full power we have an hourly consumption of: 193 gr 26.25 SHP 5.066 gr

Which means that we can run for almost 87 hours: 440.000 5.066 86.85 hours

At 6.49 knots we can voyage on power alone for 563 miles, under ideal conditions:

6.49 86.85 563.65

4 – Construction (wood and aluminum alloy).

The hull is to be done using strip planks of Australia (Acacia Melanoxylon, R. Brown) and laminated

members of the same wood, unless otherwise stated on the sheets. Floor timbers and gussets are made

of woods that were already used in Portuguese caravels. As to the method of construction I would advise

something similar to the construction of Westernman (see CB nº 115) but using, instead of epoxy, a

modified PVA glue (Borden XB90K5). The outside is to be sheathed with two epoxied layers of 400 gr

glass.

The components made of aluminum alloy are to be prefabricated and then, set in place, with the

exception of the stiffening members of the centerboard case. The ballast, molded in lead to fit the hull

form must be well secured to the backbone and the frames.

For economic reasons, the tanks (fuel, fresh water and sewage) and the bath tub can be done of FRP,

using a known method of cheap molding.

There was much to say about the options I assumed, but I let it to your judgement when analyzing the

drafts.

Page 190: Desenho de embarcações de recreio
Page 191: Desenho de embarcações de recreio
Page 192: Desenho de embarcações de recreio
Page 193: Desenho de embarcações de recreio
Page 194: Desenho de embarcações de recreio

Pag. 142

EXEMPLO 4

Aqui está mais uma ideia sujeita à apreciação do júri da revista Classic Boat, desta vez no ano

de 2002. O objectivo principal dos promotores do concurso era conceber uma embarcação na

qual fosse possível instalar, com critério, o motor representado nos desenhos, um pequeno motor

diesel marítimo de uma marca japonesa muito conhecida. O vencedor do concurso receberia um

exemplar do referido motor.

Devo dizer que a minha proposta, contemplando alguma ironia contestatária do conformismo

estético dominante no universo do discurso da arquitectura naval, foi uma espécie de «caixote»

destinado a uma utilização em águas interiores, onde as condições de navegabilidade são

geralmente boas. E há em Portugal muitos rios e albufeiras com excelentes condições para a sua

utilização. Mas, o que seria verdadeiramente formidável era conduzir este artefacto pelas redes

de canais da Europa continental e da Inglaterra, aproveitando o tempo disponível para visitar os

monumentos e os restaurantes das povoações ribeirinhas.

Um jovem casal, com espírito desportivo e alguns meios, que se atrevesse a empreender esta

viagem, ficaria com memórias para o resto dos seus dias.

Das propostas submetidas a concurso que chegaram a ser publicadas esta era, obviamente, a

mais radical e pareceu-me, pelo que vi escrito, que o editor da revista a achou muito divertida.

Mas o júri, provavelmente conservador, só lhe deu o terceiro lugar.

No que se refere aos aspectos construtivos é fácil concluir que a sua realização pode fazer-se,

com rapidez e eficiência, a partir de painéis de contraplacado marítimo, pois todas as superfícies

do casco e da superestrutura são planificáveis, como se pode verificar pela análise das linhas e

dos restantes desenhos. É possível, e isso foi referido por um dos elementos do júri, aproveitar

este desenho para instalação de um motor fora de borda de baixa potência, depois de

introduzidas algumas alterações simplificadoras na zona da popa. Deste modo ficaria a sua

construção e utilização ao alcance de um maior número de utilizadores e os custos de

manutenção mais aliviados. Fica, porém, evidente que, com esta alternativa, a despesa com

combustível aumenta substancialmente.

Mais uma vez, apresento o texto tal como foi enviado, juntamente com os desenhos, para

apreciação, em língua inglesa.

Page 195: Desenho de embarcações de recreio

Pag. 143

River craft “RIO TEJO 7.5”

1. The concept

1.1. As it is said by Philip C. Bolger about the boat “Alice”, « Recreation suffers from thinking

too hard. By definition it ought to be spontaneous. The people motoring through rivers

and harbors look as they were doing it right, but the boats they’ve been sold don’t. The

designers have been studied harder than is appropriate».

I tried to avoid this sin but I must confess that it is not easy.

1.2. My idea was to design a river boat of simple construction and maintenance, intended to

promenade slowly on the estuaries of rivers Tagus and Sado, two beautiful bodies of

water with plenty opportunities to see birds and dolphins, and to visit both ancient and

modern monuments on their riversides. One can navigate these rivers during several

years without being bored, stopping on the banks to seek restaurants where you can

enjoy a good meal at a reasonable price. This is why I designed a tunnel hull, for extreme

shoal draft. With this kind of arrangement you can reach places that cannot be attained

in normal conditions.

It is also possible that, with a trailer, this boat may be transported by route to other

interesting places, namely, rivers Douro and Guadiana, both navigable for many miles,

from their mouths.

2. Numerical data

Imperial Metric

LOA (length overall) 25.57’ 780 cm

LWL (length waterline) 024.59’ 750 cm

BOA (beam overall) 6.89’ 210 cm

BWL (beam waterline) 6.39’ 195 cm

Hd (hull draft) 1.18’ 36 cm

Displacement (tons) 3.47 long tons 3.53 M tons

Displacement (cu.ft., dm3) 370 cu.ft. 3440 dm3

Shaft centerline below waterline 4.72’’ 12.0 cm

Max. propeller diameter to fit tunnel 12.4’’ 31.5 cm

D/L ratio 233 --

Block coefficient 0.65 0.65

Prismatic coefficient 0.81 0.81

Page 196: Desenho de embarcações de recreio

Pag. 144

3. Propeller and shaft calculations.

Engine – Yanmar 1 GM 10

Maximum output = 9.1 HP

Continuous rating output (at crankshaft) = 8.0 HP

Let us use a value of SHP = 7.5.

Under this conditions the speed of the boat would be:

3 SHP665.10

L

S

3 5.77773

665.10

24.59S

S 5.23 knots (9.69 Km/h)

Let us choose the propeller, using the Bp-δ method (single screw):

65.0 Cb

72.0W)C6.0(11.1 W fbf

77.3V72.023.5VWV V aafa

With SHP = 7.5 we have 3,450 RPM at crankshaft and 1,560 RPM at the propeller, using a

reduction ratio of 2.21 (Model KM 2P).

Then,

5.2

5.0

p VaRPMSHP

B

5.2

5.0

p 77.315605.7

B

Bp 155

From the chart Bp-δ (screw series B 3.65 – type B, 3 blades, d.a.r. = 0.65) we take:

450 and 35

Adjustment of δ for single screw:

42895.0450

Then,

"4.12D1560

1277.3428D

RPM12Va

D

Page 197: Desenho de embarcações de recreio

Pag. 145

From the chart we obtain 52.0 DpPM , then:

"4.6P"4.1252.0 P MM

Giving the restrictions (screw working in a tunnel), we can settle on a 12 inch diameter x 7

inch propeller, three bladed, with a d.a.r. of 0.65.

Let us determine the propeller-shaft diameter (solid Tobin bronze):

"65.0D

21.23600000,2031.9000,321

DRPMSt

SFSHP000,321 D s3s

3s

(16.4 mm)

4. Fuel consumption

At SHP = 7.5 the engine has an hourly consumption of:

210 gr x 7.5 = 1,575 gr (from the data).

The total fuel capacity of the boat is 70 litters.

Converting to weight:

70 x 0.88 = 61.6 kg

This means that the engine can run for 39 hours.

hours 39.11,57561,600

5. Construction

The hull is to be done using sheets of marine plywood sheathed with two epoxied layers of

400gr glass.

Sawn frames and all other members are to be made of Australia (Acacia Melanoxylon, R.

Brown) and Holm oak, in accordance with good practice.

The deck, the cockpit sole and the cabin sole are to be done of 5 mm Iroko, laid over 10 mm

plywood. The guards are to be of varnished Iroko, applied over finished hull.

Note – It seems to me that, giving the use of the craft, there is no need for stability

calculations.

Page 198: Desenho de embarcações de recreio
Page 199: Desenho de embarcações de recreio
Page 200: Desenho de embarcações de recreio
Page 201: Desenho de embarcações de recreio
Page 202: Desenho de embarcações de recreio

Pag. 146

EXEMPLO 5

Desta vez, e para finalizar, apresento uma pequena embarcação de recreio que submeti à

apreciação do júri do concurso promovido esporadicamente pela conhecida revista americana

WoodenBoat. Passou ignorado no meio do conjunto dos concorrentes, provavelmente porque foi

mais uma solução entre muitas outras que se assemelhavam e que não apresenta qualquer

originalidade. Reconheço que não investi grande esforço na sua execução e que os efeitos

corrosivos do tempo já não me deixaram desenhar com a elegância da juventude. Contudo, este

exercício simplista pode ajudar a imaginar artefactos despretensiosos cujo prazer de utilização

está num nível superior ao orgulho de possuir. E esta atitude, quanto a mim, merece ser

valorizada nos tempos complexos em que vivemos.

Seguem os elementos escritos e desenhados, na forma habitual, isto é, na língua dos promotores

da referida competição.

1 – My proposal attempts to answer the parameters shown in your AD for the Design Challenge,

keeping in mind that the resulting must stay within reasonable limits of simplicity of construction

and maintenance.

The solution presented is open to alterations of the materials used and the method of

construction.

Because the hull surfaces are developable, it is possible to adapt this boat to «seam-and-batten»

or «stitch-and-glue» methods or, even, welded sheets of marine aluminum, left unpainted for low

maintenance.

I imagine the presented version to be painted over the fabric of glass applied on the exterior of

the plywood hull and deck (one layer of 400 gr. glass).

2 – I made the calculation of the displacement having obtained a volume of 1000 dm3, which

corresponds to 1000 kg (2205 lbs)

for fresh water.

I also made a rough evaluation of the weight, reaching a result of about 180 kg (400).

Nevertheless, this number may be altered if we change to other wood species, materials or

systems of construction.

Page 203: Desenho de embarcações de recreio

Pag. 147

3 – Numerical data:

LOA – 5620 mm (18.43 in)

LWL – 5400 mm (17.70 in)

BOA – 1580 mm (5.18 in)

DISPLACEMENT – 1000 kg (2205 lbs)

Block Coefficient – 0.42

Prismatic Coefficient – 0.75

Speed (25 HP maximum power):

3/13/12/1 DPLC10 S

3/13/12/1 2205257.176.110 S

1.15 S knots

Page 204: Desenho de embarcações de recreio
Page 205: Desenho de embarcações de recreio
Page 206: Desenho de embarcações de recreio