161
ADRIÁN GARCÍA-RODRÍGUEZ DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E MICRO EVOLUTIVOS EM REGIÕES COMPLEXAS Natal, Rio Grande do Norte - Brasil 2018

DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

ADRIÁN GARCÍA-RODRÍGUEZ

DETERMINANTES ECOLÓGICOS DE

PROCESSOS MACRO E MICRO EVOLUTIVOS EM REGIÕES COMPLEXAS

Natal, Rio Grande do Norte - Brasil

2018

Page 2: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

2

ADRIÁN GARCÍA-RODRÍGUEZ

DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E MICRO EVOLUTIVOS

EM REGIÕES COMPLEXAS

Tese apresentada à Universidade Federal do Rio Grande do Norte, como parte das exigências do Programa de Pós-Graduação em Ecologia, para obtenção do título de Doutor.

Orientador

Dr. Gabriel Corrêa Costa

Co-orientador Dr. Adrian Antonio Garda

Page 3: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

3

ADRIÁN GARCÍA-RODRÍGUEZ

DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E MICRO EVOLUTIVOS

EM REGIÕES COMPLEXAS

Tese apresentada à Universidade Federal do Rio Grande do Norte, como parte das exigências do Programa de Pós-Graduação em Ecologia, para

obtenção do título de Doutor.

Dr. Fabricio Villalobos Membro titular externo

Instituto de Ecología, A.C. (INECOL). México

Dr. Diogo Borges Provete Membro titular externo

UFMS

Dr. Adrian Antonio Garda Membro titular interno

UFRN

Dr. Sergio Maia Queiroz Lima Membro titular interno

UFRN

__________________________ Dr. Gabriel Corrêa Costa

Orientador Auburn University, Alabama, EU

Page 4: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

4

Universidade Federal do Rio Grande do Norte - UFRN Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN -

Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB

García-Rodríguez, Adrián.

Determinantes ecológicos de processos macro e

microevolutivos em regiões complexas / Carlos Adrián García

Rodríguez. - Natal, 2018. 160 f.: il.

Tese (Doutorado) - Universidade Federal do Rio Grande do

Norte. Centro de Biociências. Departamento de Ecologia.

Programa de Pós-Graduacão em Ecologia. Orientador: Prof. Dr. Gabriel Correa Costa.

1. Bioacústica - Tese. 2. Heterogeneidad climática - Tese. 3.

Complexidade topográfica - Tese. 4. Divergência genética - Tese.

5. Especiação - Tese. 6. Macroevolução - Tese. I. Costa, Gabriel Correa. II. Universidade Federal do Rio Grande do Norte. III.

Título.

Elaborado por KATIA REJANE DA SILVA - CRB-15/351

Page 5: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

5

Vive como si fueses a morir mañana. Aprende como si fueses a vivir para siempre.

Mahatma Gandhi La ciencia se compone de errores, que a su vez, son los pasos hacia la verdad

Julio Verne

Page 6: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

6

AGRADECIMIENTOS

Tras cuatro años de mucho aprendizaje y crecimiento personal, cierro aquí la

que puedo decir -sin temor a equivocarme- ha sido la experiencia más

enriquecedora de mi vida. Quedan plasmadas en estas páginas, las ideas que

poco a poco fui madurando durante este tiempo, pero más que un documento

que pretende hacer una pequeña contribución al conocimiento, este trabajo es

el vivo reflejo de un esfuerzo (y sacrifício) conjunto, y a la vez mi humilde

homenaje a todas las personas que me acompañaron en el camino.

Agradezco sobre todo a mi família, que es el centro de mi vida. A mis

padres, Carlos Alberto y Carmen María, por ser mi luz, mi ejemplo y mi más

grande apoyo en todo momento. Por su amor incondicional, por siempre

motivarme a perseguir lo que me apasiona, por acuerpar mis decisiones y por

enseñarme, desde que tengo memoria, a valorar la educación como el tesoro

más preciado que me podían dar. A mis hermanas Silvi, Lauri y Marce y mis

sobrinos Sofi, Ale y Amandita por su cariño, su comprensión, su complicidad,

su admiración y por ser mi fuerza y motivación aún en la distancia.

A mi orientador Gabriel Costa, por ser mi principal guía en este proceso.

Por su integridad profesional y su sincera amistad, por la admirable dedicación

y paciencia que tiene con sus alumnos. Por su inspiradora capacidad para sacar

Page 7: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

7

lo mejor de cada uno de nosotros y estar presente y disponible aún a 7000 km

de distancia. A mis co-autores y amigos Marcelo Araya, Andrew Crawford,

Adrian Garda, Carlos Guarnizo, Pablo Martinez, Brunno Oliveira y Alex Pyron

por toda su colaboración y críticas constructivas durante el desarrollo de estos

trabajos.

A mis mentores en Costa Rica, Cachí, Fede y GB por su influencia y

consejos durante mi formación como estudiante y después como profesional,

por su apoyo contínuo hasta el día de hoy. A la Escuela de Biología de la

Universidad de Costa Rica, especialmente a Gustavo Gutiérrez, Viviana Lang,

Elsa de la O y demás funcionarios que siempre me han apoyado a lo largo de

esta etapa, facilitando todos los procesos administrativos que permitieron

mantener un vínculo profesional con mi querida Álma Mater.

A todos mis amigos en Costa Rica (mis “Brothers” del cole, mis queridos

“Peleles” de pretil, y toda la chusma de Biolo) por siempre tener una sonrisa

para recibirme y un abrazo para despedirme, por desearme lo mejor y ante todo

por no dejar que la distancia nos separe. A Juanca y Eu, mis hermanitos ticos

que se embarcaron conmigo en esta aventura brasilera y fueron siempre mi

pedacito de Tiquicia en el exilio. A los ticos con los que en algún momento

coincidí estando Brasil: Sarita, Kabeto, Boris y Hellen, gracias por la ayuda, la

solidaridad y los buenos momentos. A mis grandes amigos y colegas, Pitillo,

Page 8: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

8

Erick, Victicor, Sofi Rodríguez, Sofi Granados y Bety por su ayuda en el campo

y su amistad sincera.

A mis amigos en Brasil, quienes hoy son mi família lejos de casa. Mis

colegas del lab Juampi, Bruninho, André, Brunnão, Tales y Felipe, por la

compañia, las buenas energias y la ayuda siempre desinteresada. A mis roomies,

con quiénes compartí mil historias y cuya compañia hizo todo más fácil desde

el inicio, principalmente a Camura y Anita mis hermanitos y cómplices, gracias

por tanto cariño y sonrisas compartidas, tamo junto sempre. A Vekinha, que le

tocó aguantarme en la recta final de esta tesis, gracias por el apoyo, la paciencia

y los chineos durante esta “labor de parto”. A quienes a ojos cerrados

literalmente me entregaron sus casas, sus carros y sus mascotas: mis hermanos

y consejeros Hélder y Carolzinha, mis amados Duka e Helo, mi otro hermano

Juampi y mis queridas Tamy e Isa, gracias no sólo por todo lo que facilitaron

mi vida, sino por esas grandes muestras de confianza, somos familia. A mis

grandes amigos y colegas Castiele, Eliana, Vinicius y Francisco, que haciendo

un esfuerzo gigantesco me visitaron en Costa Rica y también me acompañaron

en mis giras de campo, recuerdos para siempre mis queridos. A mis amigas,

consejeras, confidentes y hasta enfermeras Andressa y Nadia por cuidarme

cuando no estuve bien y escucharme siempre que lo necesité. A Gus y Serginho

Page 9: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

9

por su sincera amistad y por siempre tener esa energía leve y una palabra

adecuada para compartir.

Agradezco a todos los profesores, amigos y alumnos con quiénes coincidí en el

Programa de Posgraduacao em Ecologia de la UFRN. Ha sido un placer y un

honor ser parte del programa y un gusto inmenso haberlos encontrado en este

camino. Todos y cada uno de ustedes forman parte de mi historia, son el más

puro reflejo de la solidaridad y una muestra clara de que la amistad trasciende

idiomas y fronteras... saudades galera!

Agradezco infinitamente a este Brasil querido, por recibirme de brazos abiertos,

por presentarme algunos de los lugares más lindos y personas más especiales

que conocí en mi vida. Por desbordarme con su diversidad cultural y sus

bellezas naturales, por contagiarme de esa alegría que nunca acaba y hacerme

sentir en casa. Nada de esto hubiera sido posible sin el apoyo de la Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) que financió

durante 48 meses mi vida en Brasil y National Geographic Society que apoyó

mi trabajo de campo en Costa Rica.

Gracias a todos, gracias por todo!

Page 10: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

10

SUMÁRIO

Agradecimientos................................................................6

Resumo..............................................................................12

Abstract..............................................................................14

Introdução Geral................................................................16

Capítulo 1. Faster amphibian speciation supports the role of mountains as

biodiversity pumps

Abstract……………………………………………….. 26

Introdução........................................................................ 27

Material e métodos........................................................... 30

Resultados........................................................................ 36

Discussão......................................................................... 44

Referências...................................................................... 50

Material suplementar....................................................... 61

Capítulo 2. Idiosyncratic responses to drivers of genetic differentiation in the

complex landscapes of Isthmian Central America

Abstract………………………………………………... 65

Introdução........................................................................ 67

Material e métodos........................................................... 72

Resultados........................................................................ 82

Page 11: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

11

Discussão......................................................................... 88

Referências...................................................................... 98

Material suplementar....................................................... 104

Capítulo 3. The role of geography, topography and climate in the acoustic

divergence of Neotropical Diasporus frogs

Abstract........................................................................... 116

Introdução....................................................................... 118

Material e métodos.......................................................... 121

Resultados........................................................................ 128

Discussão......................................................................... 136

Referências...................................................................... 144

Considerações finais......................................................... 158

Page 12: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

12

Resumo

As áreas de montanha do mundo cobrem menos de 15% da superfície terrestre; no entanto, elas concentram cerca de 90% dos hotspots de diversidade de espécies e 40% dos hotspots de endemismo. As evidências sugerem que fatores como a complexidade topográfica, a heterogeneidade climática e sua dinâmica histórica nas montanhas podem desempenhar um papel importante na evolução e manutenção de suas ricas biotas. Nesta tese, pretendi avaliar o papel de tais fatores tanto em escala macro (ou seja, nos padrões globais de especiação) quanto em escalas microevolutivas (ou seja, intraespecíficas de divergência genética e de traits) usando anfíbios como sistema de estudo. No primeiro capítulo, contrastei as taxas de especiação entre regiões de alta e baixa complexidade topográfica. Para este fim, usei uma filogenia quase completa de anfíbios contendo 7238 espécies (>90% da diversidade existente) para rodar uma Análise Bayesiana de Misturas Macroevolutivas (BAMM) que permite estimar as taxas de especiação. Posteriormente, projetei na geografia essa informação usando os mapas de distribuição disponíveis, para explorar padrões geográficos de especiação em anfíbios e avaliei sua associação com terrenos complexos, estimando um índice global de complexidade topográfica. Encontrei que, globalmente, as taxas de especiação são mais rápidas em regiões de alta complexidade topográfica independentemente da latitude. Desconstruí esse padrão repetindo as análises nas regiões Zoogeográficas de Wallace - levando em consideração as histórias evolutivas regionais independentes - e encontrei a mesma tendência em oito dos 11 reinos zoogeográficos. No segundo capítulo, avalio o papel relativo de diferentes componentes da paisagem na promoção da diversificação da linhagem na complexa topografia da América Central Ístmica (ACI: Costa Rica e Panamá), uma região geologicamente jovem, mas altamente biodiversa. Aqui usei DNA mitocondrial para estimar a divergência genética dentro de 11 espécies de anfíbios (9 anuros e 2 salamandras) com diferentes atributos ecológicos que ocorrem conjuntamente na região. Então, utilizei análises de Matriz Múltipla de Regressão com Randomização e Modelagem de Dissimilaridade Generalizada para quantificar o papel relativo do isolamento por distância, ambiente e resistência (topografia e adequação) na modelagem de padrões geográficos de estrutura genética dentro de cada espécie. Encontrei respostas idiossincráticas que podem refletir aspectos específicos de suas histórias de vida e poderiam dar uma visão sobre o papel da ACI como motor da especiação. No terceiro capítulo, testei se as barreiras climáticas e topográficas podem influenciar a variação dos sinais acústicos de duas espécies de sapos do gênero Diasporus. Este é um traço comportamental importante que possui características particulares que

Page 13: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

13

permitem o reconhecimento intra-específico e podem desempenhar um papel importante como mecanismo de isolamento reprodutivo. Para este capítulo, gravei vocalizações de anúncio de 170 machos de duas espécies de sapos do gênero Diasporus distribuídos na Costa Rica. Eu realizei gravações em 21 locais em todo o país, desde o nível do mar até 2800 metros de altitude. Com essa informação realizei análises bioacústicas para documentar a variação geográfica e análises correlativas de matrizes múltiplas para testar se a distância geográfica, as barreiras físicas ou climaticas entre populações, ou adaptação às condições locais podem moldar tais padrões. Para esse fim, eu incorporei análises espaciais (modelos de nicho, estimativas de rugosidade do terreno e teoria dos circuitos) para estimar níveis de isolamento das populações e ajustar um modelo de dissimilaridade generalizada para abordar esta questão. Nas duas espécies, encontrei altos níveis de variação acústica, assim como de isolamento entre populações, gerado pelos fatores testados. No entanto, somente as barreiras topográficas explicaram significativamente a variação acústica em D. diastema. Entretanto, a dissimilaridade climática e distância geográfica só possui associação marginal com os padrões de variação acústica encontrados. Em conclusão, consideramos forças que operam em uma escala local e de forma independente (por exemplo a seleção sexual, o deslocamento de caracteres ou mesmo deriva genética) poderiam então ser mais determinantes na evolução desses sinais nas espécies de estudo.

Palavras chave: Bioacústica, Complexidade Topográfica, Divergência Genética, Especiação, Genética da Paisagem, Heterogeneidade Climática, Isolamento, Macroecologia, Macroevolução, Montanhas

Page 14: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

14

Abstract

Mountain areas around the world cover less than 15% of global land surface; nevertheless, they concentrate around 90% of the hotspots of species diversity and 40% of the hotspots of endemism. Available evidence suggest that ecological factors such as landscape features (i.e topographic complexity, climatic heterogeneity and their historical dynamics) of mountains may play an important role in the evolution and maintenance of rich biotas at such regions. In my dissertation I aim to evaluate the role of such factors in both macro (i.e global speciation patterns) and microevolutionary (i.e intra-specific genetic and trait divergence) processes using amphibians as study system. In the first chapter, we tested in a global scale the Montane Pumps hypothesis, which proposes that speciation rates are faster in mountains explaining higher diversities in those regions. To this end we used a near complete Amphibian phylogeny containing 7238 species (>90% of the group’s extant diversity) and conducted a Bayesian Analysis in Macroevolutionary Admixtures (BAMM) to estimate speciation rates. Then we combined this information with available range maps to explore Amphibian geographic patterns of speciation and evaluated its association with complex terrains (mountains) by estimating a global index of topographic complexity. We found that globally, speciation rates are faster in regions of high topographic complexity independently of latitude. We repeated our analyses using the Wallace’s Zoogeographic regions, taking into account regional independent evolutionary histories, and found the same pattern in eight out of the total 11 zoogeographical realms. In a second chapter, we assess the relative role of different components of the landscape in promoting lineage diversification across the roughed topography of Isthmian Central America (Costa Rica & Panama), a geologically young but highly biodiverse region. Here we use available mitochondrial DNA to estimate genetic divergence within 10 amphibian species (8 anurans and 2 salamanders) with different biologies that co-occur in the region. Then, we use a Multiple Matrix of Regression with Randomization to assess the relative role of isolation by distance, by environment and by resistance (topography, current climate, and LGM paleoclimate) in shaping the geographic patterns of genetic structuration within each species. So far, we have not found a general force that explains genetic divergence in all studied species. Instead, we have found idiosyncratic responses that may reflect specific aspects of their life histories, such as dispersal capabilities, range size or reproductive potential. In the third chapter,

Page 15: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

15

we test how climatic and topographic barriers may influence variation in an important behavioral trait such as are advertisement calls. In anurans, such calls has species-specific features that play an important role in recognition. Then, variation in spectro-temporal features between populations has been proposed as a mechanism of reproductive isolation that may promote speciation in the long term. For this chapter I recorded advertisement calls of 170 males from 2 species of Diasporus frogs distributed in Costa Rica. I made recordings at 21 sites in all the country ranging from sea level to 2800 meters elevation. We use such information we conduct bioacoustics analyses to first document geographic variation and then test if the geographic distance, physical or ecological barriers between populations, or adaptation to local conditions could shape such patterns. To this end, we incorporate spatial analyses (niche models, terrain roughness estimations and circuit theory) to generate levels of population isolation and apply Generalized Dissimilarity Matrix test to address this question. In both species, I found high levels of acoustic variation and among population isolation derived by the tested factors. However, only topography significantly explained acoustic divergence in D. diastema while climatic dissimilarity and geographic distance are only marginally associated with the patters of acoustic variation in D. hylaeformis. In conclusion, other forces operating independently in the local scale -such as sexual selection, character displacement or genetic drift- may be more determinant in the evolution of acoustic signals in these species.

Keywords: Bioacoustics, Climatic Heterogeneity, Genetic Divergence, Isolation, Landscape Genetics, Macroecology, Macroevolution, Mountains, Speciation, Topographic Complexity

Page 16: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

16

INTRODUÇÃO GERAL

Um dos fenômenos naturais mais amplamente documentados é a distribuição

desigual que tem a diversidade em múltiplas dimensões (Menge and Sutherland

1976). Os padrões de riqueza de espécies, variam através do espaço, do tempo

e dos clados: algumas regiões são mais diversas que outras (Hillebrand 2004),

a composição da diversidade hoje não é a mesma que no passado (Johnson

2009) ainda, alguns grupos taxonômicos são muito diversos, outros contem

poucos representantes (Wiens 2011). Entender o porquê dessa variação tem se

tornado um dos maiores objetivos de pesquisa na intersecção da ecologia e

evolução, gerando hipóteses derivadas dessas duas áreas da ciência.

Na escala espacial, uma das mais extremas variações na distribuição da

diversidade acontece em áreas de topografias irregulares. Globalmente os

sistemas montanhosos tem uma distribuição desigual que abrange somente uma

oitava parte da superfície da terra (Antonelli 2015, Körner et al. 2017). No

entanto, essas regiões concentram altas riquezas de espécies, sendo que 90%

dos hotspots de diversidade e 40% dos hotspots de endemismo ocorrem em

áreas de montanha (Myers et al. 2000, Orme et al. 2005). A tendência que tem

as regiões de alta complexidade topográfica para suportar altos números de

espécies é um padrão bem documentado em diversos grupos animais e vegetais

(Ruggiero and Hawkins 2008). Porém, os determinantes ecológicos e os

Page 17: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

17

mecanismos macro e micro evolutivos que geram essa diversidade biótica ainda

são pouco conhecidos.

Tem-se sugerido que as regiões montanhosas poderiam agir como

motores de especiação, pelo efeito duplo que as topografias complexas e os

fortes gradientes ambientais contidos nelas podem ter nos processos de

divergência genética (Funk et al. 2016). As configurações irregulares de topos

de montanha e vales alternados representam mosaicos de habitats favoráveis e

desfavoráveis (Kozak and Wiens 2006), que aumentam o isolamento entre

populações e em consequência a probabilidade de especiação alopátrica (Orr

and Smith 1998, Moritz et al. 2000, Rull 2005, Guarnizo et al. 2009).

Complementariamente, os amplos espectros ambientais representados em

curtas distâncias ao longo dos gradientes altitudinais (Graham et al. 2014,

Merckx et al. 2015), oferecem condições ideais em que a especiação ecológica

em parapatria pode ocorrer (Rundle and Nosil 2005). Nessas circunstâncias, as

pressões locais poder promover divergência entre populações, levando ao

surgimento de novas espécies, mesmo na ausência de barreiras físicas maiores

(Knox and Palmer 1995, Graham et al. 2004, Caro et al. 2013, Chapman et al.

2013).

Dentro de uma perspectiva macro ecológica, a montagem de

comunidades e riqueza de espécies numa região especifica, num dado momento,

Page 18: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

18

é determinada pelos processos de especiação, extinção e dispersão (Hutter et al.

2013). Portanto, a identificação dos fatores que potencialmente influenciam

nestes processos é crucial para entender a origem dos amplos padrões de

diversidade atual. Em escalas mais locais, as abordagens desenvolvidas nas

áreas da filogeografia e genética da paisagem tem sido úteis para abordar essa

questão com maior resolução espacial mas menor alcance taxonômico e

geográfico.

Nesta tese avalio em diferentes escalas geográficas de que forma as

paisagens complexas determinadas por regiões montanhosas possuindo perfis

climáticos heterogêneos influenciam em processos evolutivos que contribuem

para a formação dos padrões biológicos que observamos. O meu interesse foi

primeiramente abordar essa questão tentando obter o ‘big picture’ da

generalidade de certos padrões macro evolutivos em escala global; ao mesmo

tempo, que procurei aprofundar numa maior resolução, testando o rol que tem

certos atributos físicos e ecológicos da paisagem na geração de pressões locais

que influenciam os processos micro evolutivos de diferenciação genética e

divergência acústica no espaço. Para atingir esses objetivos eu incorporei

diversas análises evolutivas, conceitos de genética de populações, abordagens

da ecologia do comportamento e ferramentas de machine learning para projetar

Page 19: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

19

no espaço múltiplos padrões de variação e avaliar quais são as forças que lós

explicam melhor.

No primeiro capítulo, testei em escala global se existe uma relação entre

taxas de especiação mais rápidas e regiões topograficamente complexas, que

potencialmente poderia explicar maiores diversidades nessas regiões. Para este

fim, usei uma filogenia quase completa de anfíbios para estimar dinâmicas

evolutivas. Posteriormente, espacializei essa informação para explorar padrões

geográficos de especiação em anfíbios e avaliei sua associação com terrenos

complexos, estimando um índice global de complexidade topográfica. No

segundo capítulo, avalio o papel relativo de diferentes componentes da

paisagem na promoção da diversificação da linhagem na complexa topografia

da América Central Ístmica (ACI: Costa Rica e Panamá). Aqui usei DNA

mitocondrial para estimar a divergência genética dentro de 11 espécies de

anfíbios que ocorrem conjuntamente na região. Posteriormente quantifiquei o

papel relativo do isolamento por distância, ambiente e resistência (topografia e

adequação bioclimatica) na modelagem de padrões geográficos de estrutura

genética dentro de cada espécie. No terceiro capítulo, testei como as barreiras

climáticas e topográficas podem influenciar a variação nas chamadas de

anuncio de duas espécies de sapos do gênero Diasporus. Para este capítulo,

gravei vocalizações de anúncio de 170 machos em 21 locais na Costa Rica,

Page 20: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

20

desde o nível do mar até 2800 metros de altitude. Com essa informação eu

documentei a variação acústica intraespecifica e testei se a distância geográfica,

o isolamento gerado pela topografia e o clima, ou a adaptação às condições

locais podem moldar tais padrões.

Referências

Antonelli, A. 2015. Biodiversity: multiple origins of mountain life. - Nature

524: 300–301.

Caro, L. M. et al. 2013. Ecological speciation along an elevational gradient in

a tropical passerine bird? - J. Evol. Biol. 26: 357–374.

Chapman, M. A. et al. 2013. Genomic divergence during speciation driven by

adaptation to altitude. - Mol. Biol. Evol. 30: 2553–2567.

Funk, W. C. et al. 2016. Elevational speciation in action? Restricted gene flow

associated with adaptive divergence across an altitudinal gradient. - J.

Evol. Biol. 29: 241–252.

Graham, C. H. et al. 2004. Integrating phylogenetics and environmental niche

models to explore speciation mechanisms in dendrobatid frogs. -

Evolution. 58: 1781–93.

Graham, C. H. et al. 2014. The origin and maintenance of montane diversity:

integrating evolutionary and ecological processes. - Ecography. 37: 711–

719.

Guarnizo, C. E. et al. 2009. The relative roles of vicariance versus elevational

gradients in the genetic differentiation of the high Andean tree frog,

Dendropsophus labialis. - Mol. Phylogenet. Evol. 50: 84–92.

Page 21: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

21

Hillebrand, H. 2004. On the generality of the latitudinal diversity gradient. -

Am. Nat. 163: 192–211.

Johnson, C. N. 2009. Ecological consequences of Late Quaternary extinctions

of megafauna. - Proc. R. Soc. B 276: 2509–2519.

Knox, E. B. and Palmer, J. D. 1995. Chloroplast DNA variation and the recent

radiation of the giant senecios (Asteraceae) on the tall mountains of

eastern Africa. - Proc. Natl. Acad. Sci. U. S. A. 92: 10349–10353.

Körner, C. et al. 2017. A global inventory of mountains for bio-geographical

applications. - Alp. Bot. 127: 1–15.

Kozak, K. H. and Wiens, J. J. 2006. Does niche conservatism promote

speciation? A case study in North American salamanders. - Evolution. 60:

2604–21.

Mayr, E. 1963. Animal species and evolution. - Eugen. Rev. 55: 226–228.

Menge, B. A. and Sutherland, J. P. 1976. Species Diversity Gradients:

Synthesis of the Roles of Predation, Competition, and Temporal

Heterogeneity. - Am. Nat. 110: 351.

Merckx, V. S. F. T. et al. 2015. Evolution of endemism on a young tropical

mountain. - Nature 524: 347–350.

Moritz, C. et al. 2000. Diversification of rainforest faunas: an integrated

molecular approach. - Annu. Rev. Ecol. Syst. 31: 533–563.

Myers, N. et al. 2000. Biodiversity hotspots for conservation priorities. -

Nature 403: 853–8.

Orme, C. D. L. et al. 2005. Global hotspots of species richness are not

congruent with endemism or threat. - Nature 436: 1016–1019.

Page 22: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

22

Orr, M. R. and Smith, T. B. 1998. Ecology and speciation. - Trends Ecol.

Evol. 13: 502–506.

Ruggiero, A. and Hawkins, B. A. 2008. Why do mountains support so many

species of birds? - Ecography (Cop.). 31: 306–315.

Rull, V. 2005. Biotic diversification in the Guayana Highlands: a proposal. - J.

Biogeogr. 32: 921–927.

Rundle, H. D. and Nosil, P. 2005. Ecological speciation. - Ecol. Lett. 8: 336–

352.

Wiens, J. J. 2011. The causes of species richness patterns across space, time,

and clades and the role of “ecological limits”. - Q. Rev. Biol. 86: 75–96.

Wiens, J. J. and Graham, C. H. 2005. Niche Conservatism: integrating

evolution, ecology, and conservation biology. - Annu. Rev. Ecol. Evol.

Syst. 36: 519–539.

Page 23: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

23

Page 24: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

24

CAPÍTULO I*

Faster amphibian speciation supports the role of mountains as biodiversity pumps

Page 25: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

25

Faster amphibian speciation supports the role of mountains as biodiversity pumps

Adrián García-Rodríguez1,2, Pablo A. Martínez3, Brunno F. Oliveira1,4, R.

Alexander Pyron5 & Gabriel C. Costa6

1 Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal

- RN, Brasil, 59078-900

2 Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José,

Costa Rica.

3 PIBi Lab. (Laboratorio de Pesquisas Integrativas em Biodiversidade), Programa

de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Sergipe,

São Cristóvão, Brasil

4 Department of Wildlife Ecology and Conservation, University of Florida,

Gainesville, FL 32611-0430, USA

5 Department of Biological Sciences, The George Washington University, 2023 G

Street NW, Washington, DC 20052, USA

6 Department of Biology, Auburn University at Montgomery, Montgomery, AL

36124, United States of America.

*Corresponding author; email: [email protected]

Page 26: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

26

ABSTRACT

Continental mountain areas cover less than 15% of global land surface; nevertheless,

around 90% of the hotspots of species diversity and 40% of the hotspots of

endemism are concentrated in these regions. Such high diversities could be

explained by higher diversification rates in regions of high topographic complexity,

giving mountains the character of speciation pumps. We specifically focused on

testing whether speciation is faster in mountains by conducting macro evolutionary

analyses on a near complete Amphibian phylogeny and evaluating geographic

patterns of this evolutionary rate. We accounted for the role of topographic

complexity on speciation patterns across the globe and within zoogeographic realms.

We found that globally, speciation rates are higher in mountainous areas. At a

regional scale, we found the same pattern for most zoogeographical realms.

Moreover, clades showing the fastest speciation rates are groups with predominantly

montane distributions. Our study bolsters the importance of mountains as engines of

speciation at different geographical scales. Due to their remoteness, the real

contribution of such areas to the origin and maintenance of global biodiversity is

probably still underestimated. These facts and the risk these regions face from global

change suggests that mountains around the globe should be conservation priorities

in local and regional agendas.

Keywords: Amphibians, BAMM, Macroecology, Macroevolution, Topographic

Complexity

Page 27: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

27

BACKGROUND

Nearly one-third of the world’s terrestrial species diversity is concentrated in regions

of high topographic complexity [1]. High diversity in mountain regions is a well-

documented pattern [2–4], reported for numerous taxa and regions [5]. In Central

and North America for example, mammal diversity is greater in regions dominated

by mountains and complex reliefs [6]. Likewise, peaks of species richness and

endemism of Afrotropical avifauna occurs within mountains and mountain-lowland

complexes [7] . Worldwide, most global centres of vascular plant richness (>5000

species per 10,000 km2) are located in regions dominated by mountainous areas such

as Costa Rica-Chocó, Tropical Eastern Andes, Atlantic Brazil, Northern Borneo and

New Guinea [8]. As a consequence, despite continental mountain areas covering less

than 15% of global land surface [9], around 90% of the hotspots of species diversity

and 40% of the hotspots of endemism [10,11] are concentrated in these regions.

Although this pattern has been reported for several taxa and across different

regions [5], we still lack a comprehensive understanding of the mechanisms that

drive higher diversity in mountains [12]. From an evolutionary perspective, montane

systems have been hypothesized to be engines of diversification, because of their

potential to drive speciation, both in allopatry and parapatry [13]. Evidence of

allopatric speciation [14] promoted by the vicariant settings implicit in complex

topographies have been widely documented in a variety of taxa [15–17]. For many

Page 28: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

28

groups, the irregular configuration of alternate mountaintops and valleys represent

mosaics of favourable and unfavourable habitats [18] that increases isolation among

populations, thereby increasing opportunities for allopatric speciation [19].

Moreover, the distribution of such suitable regions has varied in response to

historical climatic oscillations, increasing allopatric diversification in the mountains

[20]. Other features of mountains are the wide environmental spectrums they cover

in short distances along their elevational gradients [12,21]. These transitions offer

ideal conditions where ecological speciation in parapatry can take place [22]. In

these circumstances, local pressures can drive adaptive divergence between

populations, leading to the formation of new species, in the absence of hard

geographic barriers [23–26].

Whether by allopatric or parapatric speciation, the idea that mountains act as

cradles of biodiversity has been supported in several studies that linked the

chronology of orogenic events to radiations of clades. For instance, the rise of the

Tibetan Plateau seems to have triggered the rapid radiation of glyptosternoid

catfishes [27]; ranid frogs [28] and plants of the families Asteraceae and Fabaceae

[29,30]. Similarly, accumulating evidences suggests that the Andes uplift impacted

evolutionary dynamics of Neotropical taxa such as hummingbirds from the genus

Adelomyia [31], butterflies from the subtribe Oleriina [32], and a variety of

angiosperm clades [33–36].

Page 29: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

29

Since the processes of speciation, extinction and dispersal are the ultimate

determinants of diversity occurring in a given geographic region [37], identifying

potential factors that drives these processes is crucial to understand the origin and

distribution of past, present, and future biodiversity. Recently, several hypotheses

based on this evolutionary framework have been proposed to explain the rich biotas

in montane regions [12]. One of them is the Montane species pump hypothesis,

which predicts that clades occurring at mountains have higher rates of net

diversification [38] likely as consequence of their higher rates of speciation.

Evidence supporting this model has been reported for Mesoamerican hylid frogs as

well as for tanagers and butterflies from the Andes; in these cases, montane clades

showed higher speciation rates than those whose ranges are restricted to lowlands

[38–40].

However, the few studies testing whether complex topographic regions are

speciation pumps were too restrictive in terms of their phylogenetic scope (i.e. few

specific clades were analysed) and geographical extent (i.e. explored only local to

regional scales), which limits our ability to determine the generality of topographic

complex regions as speciation pumps. Here, we assess the prediction that complex

topographies promote faster speciation rates. To do this, we use amphibians as a

study system, and integrate global information on species distributions, terrain

complexity and novel analyses on evolutionary dynamics across a nearly complete

Page 30: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

30

phylogeny of the group. Amphibians are a particularly suitable study system to test

this hypothesis because they represent an ancient radiation (~7700 species,

www.amphibiaweb.org), with widespread latitudinal and altitudinal distribution

across the globe [41] and a growing availability of phylogenetic information [42,43].

In addition, their high philopatry [44], restricted dispersal capabilities [45], limited

osmotic tolerance [46], high sensitivity to temperature in early developmental stages

[47], and adaptations to particular elevations [48,49] bond their evolutionary fate

strongly to their geographic settings, providing a valuable opportunity to investigate

the forces shaping speciation patterns in montane regions.

METHODS

Amphibian Phylogeny

When inferring diversification dynamics through time, inclusion of all lineages in

focal clades or regions has been proven to be of special importance [50,51].

Considering the known sampling bias towards particular clades and specific

geographic areas as well as the global character of our approach, we attempted to

improve the performance of our analysis by using a tree containing as many species

as possible, even those lacking molecular data. Recent practice enables the

incorporation of lineages lacking genetic data on tree inference using a given set of

priors on branching times [52]. Then, we based our macroevolutionary analyses on

Page 31: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

31

recently published trees which to date represent the most complete amphibian

phylogenetic inference [53]. These trees were constructed using the Phylogenetic

Assembly with Soft Taxonomic Inferences (PASTIS) approach [52] updating an

existing molecular supermatrix [43] that contains sequence data (5 mitochondrial

and 10 nuclear genes) for ~56% of extant amphibian species. A Maximum-

Likelihood (ML) topology for these species then served as backbone for a set of 10,

000 trees containing 7,238 species, which represent ~94% of the known extant

amphibian diversity and includes most families, subfamilies and genera. For detailed

description on dating and tree construction, see [53].

Amphibian Evolutionary Dynamics

In order to estimate evolutionary rates, we modelled macroevolutionary dynamics

across the amphibian phylogeny using Bayesian Analysis of Macroevolutionary

Mixtures (BAMM) [54]. BAMM models complex dynamics of speciation,

extinction and trait evolution on phylogenetic trees, by detecting and quantifying

heterogeneity on those rates while exploring a vast parameter-space of

diversification models via reversible Markov Chain Monte Carlo (MCMC) [55].

This approach is useful since it does not assume that rates of speciation and

extinction are constant, and can account for rate variation through time and among

lineages [56]. The performance and theoretical foundations of BAMM has recently

Page 32: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

32

received criticism, mainly dealing with the algorithm’s likelihood function, the

posterior distribution on the number of rate shifts and the reliability of its

diversification rate estimates [57]. However, BAMM’s authors have provided

detailed evidence to clarify those concerns and demonstrated satisfactory and

consistent performance of the method [58]. BAMM analysis provide speciation and

extinction rates per species as direct output, and is possible to estimate net

diversification rates by subtracting extinction rates from speciation rates [59].

However, we decided to focused our analyses on speciation rates, because they can

be estimated with much more confidence than extinction rates, for which confidence

intervals tend to be large, even when all assumptions of the inference model are

satisfied [60]. Details of this analysis are provided in the supplementary material

(electronic supplementary material, text S1).

Spatial patterns of Amphibian speciation

We used geographical range maps for 6311 amphibian species obtained from the

IUCN (www.iucnredlist.org). These maps represent approximately 85% of the

known extant amphibian species (~7500 species, www.amphibiaweb.org). Although

we estimated macro evolutionary dynamics using ~94% of amphibian diversity

represented in our phylogenetic tree, available range maps limited our analyses to a

smaller number of species projected in the geographical space. We overlaid species

Page 33: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

33

range maps in a 1x1 degree global grid and extracted species presence-absence

within each grid cell, creating a presence-absence matrix for the 6311 species in the

phylogeny that had range maps available. These analyses were conducted in the R

package LetsR [61]. We further estimated speciation rates based on species

composition within each grid cell.

Some authors have argued that species ranges may be too dynamic and this

would mask any potential relationship between current distributions and the

geography of speciation [62]. However, strong evidence supporting range stasis is

available in the literature for a variety of organisms, from fossil molluscs to living

insects and mammals [63–65]. We considered that it is unlikely that all species have

altered their ranges enough to remove geographical signal from their past

distribution. Most amphibian species have low dispersal ability [66] and are highly

sensitivity to environmental conditions, resulting in a high proportion of species of

small range sizes [67,68]. Therefore, the effects of range dynamics on the

geographical signal we are investigating should be a minor concern in this study,

especially at the scales we are working.

Topographic complexity

In order to have an informative proxy of geomorphologic heterogeneity, we

generated a global index of topographic complexity (TC). Using a global layer of

Page 34: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

34

elevation at 30-second resolution (~1km at the equator, http://www.worldclim.org/)

we calculated the standard deviation of differences between 100x100 adjacent

elevations. This procedure has been demonstrated to more accurately represent

topographic roughness than elevation range, which only indicates the strength of a

gradient within a cell [69]. We projected our TC layer to match the 1x1 degree

resolution of our species distribution dataset.

Amphibian speciation in topographic complex regions

TC is not evenly distributed around the world [70]. This pattern reflects in our metric

of TC, for which the number of cells with low values widely exceeds the number of

cells with high values across the globe (Fig. 1c). To account for this, we created two

categories: low topographic complexity (LTC) and high topographic complexity

(HTC). We considered as HTC cells that have a complexity index value higher than

300. Our complexity index is correlated with altitude and a value of 300 assures that

we are selecting regions that are at least 600 meters elevation. This approach is

conservative considering that Körner et al. (2017) defined montains as those areas

above 200m elevation.

To test the montane pump hypothesis, we compared speciation rates between

LTC and HTC regions. According to this hypothesis, HTC areas should show higher

speciation rates than LTC areas. HTC cells represent only a small fraction of the

Page 35: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

35

total number of cells across the globe (2196 cells or 14.5% of all cells analysed).

Therefore, to test for significant differences between LTC and HTC speciation rates

we used a rarefaction procedure [71]. We calculated the average speciation rate for

all HTC cells and next, randomly sampled 2196 cells from the LTC and calculate

the average speciation rate. Finally, we repeated this procedure 10,000 times,

generating a distribution of average speciation rates for LTC. The observed average

for HTC was then compared with the LTC generated distribution to assess

significance. In order to test how speciation rates vary between LTC and HTC

regions at different latitudes, we conducted this same analysis within the updated

zoogeographic realms, a classification that defines robust biogeographic units based

on global distributions and phylogenetic relations from over 20,000 world´s

vertebrate species [71]. Therefore, using this delimitation also allows us to consider

the evolutionary histories of the different zoological Realms.

Finally, we provided some examples to illustrate general patterns, where we

compared mean speciation trajectories between predominantly montane groups and

groups mainly distributed in adjacent lowlands. For this, we gathered species-

specific information on elevation ranges for species belonging to several montane or

lowland genera available at http://www.iucnredlist.org. We used this information to

plot elevational distribution pattern for each genus and extract their respective

Page 36: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

36

speciation rates to visualize how they vary through time and how different they are

between lowland and montane clades.

RESULTS

Evolutionary Dynamics

When checking for convergence of BAMM runs, we obtained values of 210.66 and

418.99 for the effective sample sizes of the log-likelihood and the number of shift

events present in each sample respectively. These values have been shown to be

reasonable for very large datasets confirming convergence of our analyses [72]. We

found strong evidence for heterogeneous diversification dynamics in amphibians.

Based on the values of posterior quasi-probability across all bootstrap replicates

from post burn-in BAMM, we found support for 45 evolutionary rate shifts (mean =

48.35; median = 48) (electronic supplementary material, Fig S1). We focus our

discussion on speciation rates dynamics, however since we found a high positive

linear correlation between speciation and net diversification rates (Pearson's r = 0.97,

p < 0.001) we consider that speciation might provide good insights on the

diversification of amphibians.

Page 37: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

37

Figure 1. Species richness based on the distribution of 6311 species (A); mean speciation rate (B) and topographic complexity (C) per 1° grid cell in a global scale.

Page 38: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

38

Geographic patterns of Amphibian speciation

Mean amphibian speciation-rates are unevenly distributed across the world.

Speciation rates show an inverse latitudinal gradient in the New World, with faster

speciation rates towards the poles. In the Old World speciation rates increase only

towards northern latitudes, while regions such as Africa, Madagascar and Western

Australia are characterized by low speciation rates. A major portion of Southeast

Asia and the Neotropical Region show low to intermediate mean speciation rates

(Fig. 1).

We detected that speciation rates vary widely within regions. Such variability

peaks in Mesoamerica, Patagonia and North America (Fig. 2), where there is a

mixture of groups with both fast and slow speciation rates (Fig. 2). Rapidly

diversifying groups are concentrated in the Neotropical, Panamanian, Nearctic and

Australian regions. In contrast, we found, lowest values of speciation rates in

western Africa and most of the Palearctic region (Fig. 2).

Page 39: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

39

Figure 2. Variability on speciation rates across the world

Page 40: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

40

Topographic complexity as driver of speciation

At the global scale, we found faster speciation rates in HTC regions than in LTC

regions (HTCmean=0.0679, LTCmean=0.0651, p-value <0.0001). Considering

independent evolutionary histories, we applied the same approach across global

biogeographic realms. At this regional scale, we found the same pattern of faster

speciation in HTC in eight out 11 realms (Fig. 3, Table 1). In addition, speciation

rates also tended to be higher in HTC in the realms were statistical difference were

not significant (i.e., Afrotropical, Madagascan and Nearctic realms) (Table 1, Fig 3).

Table 1. Differences in mean speciation rates between LTC and HTC areas in global scale and within the 11 Zoogeographical regions of the world.

Region Mean Speciation Rate in HTC

Mean Speciation Rate in LTC

SD of Speciation Rates in LTC

P-value

Global 0.0679 0.0651 0.0004 <0.001

Neotropical 0.0605 0.0551 0.0002 <0.001

Afrotropical 0.0532 0.0523 0.0005 0.969

Madagascan 0.0500 0.0483 0.0008 <0.001

Australian 0.0648 0.0546 0.0005 <0.001

Nearctic 0.0724 0.0717 0.0002 0.996

Oceania 0.0605 0.0560 0.0002 <0.001

Oriental 0.0639 0.0592 0.0002 <0.001

Panamanian 0.0642 0.0604 0.0004 <0.001

Saharo-Arabian 0.0685 0.0639 0.0006 <0.001

Sinojapanese 0.0746 0.0713 0.0004 <0.001

Palearctic 0.0682 0.0651 0.0002 <0.001

Page 41: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

41

Figure 3. Mean speciation rates for LTC and HTC areas in a global scale and within the different zoogeographic realms. Histograms represent the distribution of values obtained after resampling 10 000 times the number of cells in HTC from the pool of LTC cells. Dashed lines represent the mean values of speciation rate for LTC (blue) and HTC (red) regions.

Page 42: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

42

Faster speciation rates are generally associated with clades that predominantly

inhabit HTC areas. In the New World for example, those clades occur in several

Andean, Mesoamerican and North American mountain chains, and in a series of

islands dominated by steeped topographies such as Jamaica and Dominican

Republic. In the Old World, speciation rates peak at the Himalayans and other major

mountainous systems in China, Philippines and Papua New Guinea. In Australia, we

found speciation rates maxima similar to those of the other regions although they

were not exclusively associated to mountainous areas.

When comparing speciation rates across the phylogeny, we found faster rates

in salamanders (Caudata = 0.0781±0.034; Anura = 0.053±0.016;

Gymnophiona=0.028±0.001; p = 0.0054, Df = 2). Differences are also significant

among Amphibian families (p<0.0001, Df = 75) as well as among families within

the orders Anura (p<0.0001, Df = 57) and Caudata (p<0.0001, Df = 8). Mean

speciation rates among Gymnophiona families did not differ significantly (p = 0.077,

Df = 8). At the genus level, the fastest speciation rates occur in the Patagonian spiny

frogs Alsodes (mean = 0.1934±0.006, n = 18). Other anuran genera showing high

rates of speciation are the bufonid genera Rhinella and Atelopus, ranids of the genera

Rana, Odorrana, Babina and Amolops, as well as the New World direct developing

frogs of the genus Brachycephalus. Salamanders of the family Plethodonthidae,

which includes genera such as Bolitoglossa, Eurycea, Pseudoeurycea,

Page 43: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

43

Batrachoseps, Thorius, Nototriton and Oedipina (electronic supplementary material,

Fig S2) showed the highest speciation rates at the family level (mean =

0.0982±0.0383, n = 450).

Figure 4. Comparative patterns of altitudinal distributions and speciation trajectories for contrasting montane and lowland anuran genera. A-B. The bufonid highland genus Atelopus from Northern Andes, a closely related genus (Rhaebo)

Page 44: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

44

and a highly diverse hylid genus (Scinax), both distributed in lower elevations mainly the adjacent Amazon Basin; C-D. Three centrolenid genera from the Andean and Mesoamerican Region presenting different altitudinal distributions: Hyalinobatrachium with the lower elevation range and most species occurring below 1000 m.a.s.l and Nymphargus and Centrolene with mean altitudes around 2000 m.a.s.l; E-F. Three Ranid genera from the Old World with different patterns of altitudinal distribution: Pelophylax and Meristogenys with most of their representatives occurring below 500 m.a.sl and Odorrana with a peak of diversity above 1000 m.a.s.l and several species reaching 3000 m.a.s.l

As predicted, most of the rapidly diversifying clades showed predominantly

montane distributions. To exemplify this trend, we compared speciation through

time plots between some of these montane genera and lowland genera. To make it

comparable, we contrast genera with similar richness. In all cases, speciation rates

were higher in clades that are mostly montane, and the differences were constant

through the evolutionary history of these groups, depicting historical differences in

their speciation trajectories (Fig 4).

DISCUSSION

We found that speciation rates are generally higher in HTC regions than in LTC

regions at a global scale, in concordance with the montane-pump hypothesis. In

addition, our results provide evidence showing that maximum speciation rates are

generally associated with clades that predominantly inhabit HTC regions. These

includes several Andean ranges, Mesoamerican mountain chains, various Sierras in

Page 45: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

45

North America, and a series of islands dominated by steeped topographies such as

Jamaica and Hispaniola in the Western Hemisphere. In the Old World, the

Himalayans and other major mountainous systems in China, Philippines and Papua

New Guinea exhibit similar dynamics. This suggests that highly complex reliefs

around the globe, independently of their latitude, have an important role as engines

of speciation. It also suggests that these dynamics are specific to the geographical

setting of montane regions generally, and not specific geographic areas or traits

possessed by specific lineages that confer increased diversification.

A growing body of literature provide evidence supporting the role of

mountains as species cradles for numerous taxa. A few examples are the

Australasian Sky Islands [73,74], the Hendguan Mountains [75,76], and the

Anatolian Mountains in the eastern hemisphere [75,76]. In the New World, evidence

of such tendency has been documented in regions such as the Andes [32,75–80] and

the North American Sky Islands [81,82]. Such studies have often focused on few

clades and specific geographic regions that exhibit high diversity. Our study is the

first to our knowledge to contrast speciation rates between HTC and LTC regions at

global scale. We provide evidence of the general importance of mountain ranges as

speciation pumps. Importantly, our results suggest that mountains affect speciation

rates independently of region, diversity, or specific lineage in amphibians.

Page 46: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

46

Across the phylogeny, we found that salamanders have the highest mean

speciation rates among Amphibians, followed by anurans and caecilians.

Salamanders are abundant in North temperate regions where seven of the 10 families

in the order are distributed (www.amphibiaweb.org). Within the order, we found the

highest speciation rates in Plethodontidae, a family whose representatives reach the

tropics of the western hemisphere [83]. The major radiation of this family is the

Neotropical tribe Bolitoglossini, which occurs throughout complex topographies

within Mesoamerica, and contains nearly 300 species, that accounts for over 65% of

the species in the family and 43% of the diversity in the order [84].

Among anurans, speciation rates also peak in montane-associate clades.

Fastest speciation rates occur in the genera Alsodes [85] and Eupsophus from the

Patagonian Andes (despite the low diversity of this region) and bufonids such as the

Harlequin toads of the genus Atelopus which have mainly radiated in the highlands

of the northern Andes [17]. In mountain ranges of south eastern and eastern Asia,

ranids of the genus Odorrana [86–88] also rank among the anuran clades with the

highest means of speciation rate. As examples of these evolutionary contrasts, we

compared altitudinal distributions and speciation trajectories within these genera

with those of closely relatives or similarly diverse clades occurring in adjacent

lowlands. In all cases, it is evident that montane clades have higher speciation rates

and these differences have been constant through time (Fig 4).

Page 47: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

47

Rates of speciation can be influenced by both intrinsic biological attributes

and extrinsic environmental factors [13,89]. Some of the latter factors may be

magnified in topographically complex landscapes. For example, characteristic

rugged reliefs in mountainous regions are more likely to impose physical barriers,

fragmenting species ranges and promoting geographical isolation [14,16,17,21,90].

Furthermore, altitudinal gradients in these complex landscapes, provide

heterogeneous environmental conditions that could promote ecological

specialization and niche divergence based on trait differences [91,92]. Both

scenarios restrict gene flow, augmenting founder effects and driving speciation

whether in allopatric or parapatric conditions [43,85]. For groups with low dispersal

rates such as amphibians, these conditions appear to have a major impact on the

processes of incipient population differentiation, and ultimately, speciation [43,92].

Our results also provide insights on the latitudinal and zoogeographic patterns

of amphibian speciation. We found high latitudinal variance in amphibian speciation

rates. Such variability is strikingly decoupled from the well-documented latitudinal

diversity gradient (LDG) present in amphibians and many other groups [94] . For

example, mean speciation rates for all amphibians are higher in temperate zones of

both the New and the Old world, while lower mean rates were concentrated in more

speciose regions such as Africa, Madagascar, and Western Australia. Other hotspots

of diversity, including a major portion of Southeast Asia and the Amazon Basin [60],

Page 48: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

48

showed intermediate mean speciation rates. We suggest that the great variability of

speciation rates in speciose areas with heterogeneous species compositions may

obscure the latitudinal patterns of speciation. However, future studies should explore

the relation between latitude and speciation rates more deeply, in order to understand

the main evolutionary forces shaping the LDG in amphibians.

CONCLUSIONS

Our findings bolster the general importance of mountains as engines of

speciation at different geographical scales and independently of latitude. However,

due to their remote conditions, many mountain ranges remain unexplored and their

real contribution to the origin and maintenance of global biodiversity is still

underestimated. For these reasons and the risk these regions face during ongoing

global changes [71], mountains around the world must be considered conservation

priorities in local and regional agendas. The evidence presented here highlights the

role of such areas in the evolutionary history of modern patterns of diversity; further

efforts must be oriented to increase the knowledge of these areas to inform future

decisions for the conservation of their particular biotas.

Page 49: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

49

DATA ACCESSIBILITY

The phylogeny used here is a random tree extracted from the topologies made

available by Jetz & Pyron [53] at https://vertlife.org/files_20170703/#amphibians.

TCI was calculated using an elevation layer available at www.worldclim.org at 30

secs resolution. R code and associated files are available as electronic supplementary

material

AUTHORS' CONTRIBUTIONS

AGR conceived of the study, discussed design, conducted analyses and drafted the

manuscript. PAM conceived of the study and participated in data analyses. BFO

participated in data analyses. RAP participated in data analyses. GCC conceived of

the study, discussed design of analyses and drafted the manuscript. All authors

improved the draft of the manuscript and gave final approval for publication.

COMPETING INTERESTS

We have no competing interests.

FUNDING

AGR was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior, Brazil. GCC thanks CNPq produtivity grant 302297/2015-4. RAP was

Page 50: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

50

supported by US NSF grant DEB-1441719 and DEB-1655737. BFO thanks

University of Florida for providing generous support.

ACKNOWLEDGEMENTS

We thank Marcelo Araya and Juan Pablo Zurano for valuable discussion and

suggestions during the development of this study. To our colleagues Jodi Rowley,

Luis Coloma, Santiago Ron, Alexander Haas, Andreas Nöllert and Brian Gratwicke

that kindly provide permission to use the photos included in figure 3, and Paula

Acosta who helped with the edition and improving of one of those images.

REFERENCES

1. Körner C. 2002 Mountain biodiversity, its causes and function. In Mountain biodiversity: a global assessment (eds C Körner, EM Spehn), pp. 3–20. London, UK: Parthenon Publishing. (doi:10.2307/25094582)

2. Ruggiero A, Hawkins BA. 2008 Why do mountains support so many species of birds? Ecography. 31, 306–315. (doi:10.1111/j.0906-7590.2008.05333.x)

3. Körner C. 2000 Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514.

4. Spehn EM, Messerli B, Körner C. 2002 A global assessment of mountain biodiversity: synthesis. In Mountain biodiversity: a global assessment., London, UK: The Parthenon Publishing Group.

5. Lomolino M V. 2001 Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. (doi:10.1046/j.1466-822x.2001.00229.x)

6. Simpson GG. 1964 Species density of North American recent mammals. Syst.

Page 51: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

51

Zool. 13, 57–73. (doi:10.2307/2411825)

7. De Klerk HM, Crowe TM, Fjelds?? J, Burgess ND. 2002 Biogeographical patterns of endemic terrestrial Afrotropical birds. Divers. Distrib. 8, 147–162. (doi:10.1046/j.1472-4642.2002.00142.x)

8. Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H. 2005 Global centers of vascular plant diversity. Nov. Acta Leopoldina 92, 61–83.

9. Antonelli A. 2015 Biodiversity: multiple origins of mountain life. Nature 524, 300–301. (doi:10.1038/nature14645)

10. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB da, Kent E. 2000 Biodiversity hotspots for conservation priorities. Nature. 403, 853–858. (doi:10.1038/35002501)

11. Orme CDL et al. 2005 Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019. (doi:10.1038/nature03850)

12. Graham CH et al. 2014 The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography. 37, 711–719. (doi:10.1111/ecog.00578)

13. Funk WC, Murphy M., Hoke KL, Muths SM, Amburgey, Lemmon EM, Lemmon A. 2016 Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient. J. Evol. Biol. 29, 241–252.

14. Mayr E. 1963 Animal species and evolution. Eugen. Rev. 55, 226–228. (doi:10.1016/0169-5347(94)90187-2)

15. Guarnizo CE, Amézquita A, Bermingham E. 2009 The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Mol. Phylogenet. Evol. 50, 84–92. (doi:10.1016/j.ympev.2008.10.005)

16. Rull V. 2005 Biotic diversification in the Guayana Highlands: a proposal. J. Biogeogr. 32, 921–927. (doi:10.1111/j.1365-2699.2005.01252.x)

17. Orr MR, Smith TB. 1998 Ecology and speciation. Trends Ecol. Evol. 13, 502–506. (doi:10.1016/S0169-5347(98)01511-0)

18. Kozak KH, Wiens JJ. 2006 Does niche conservatism promote speciation? A case study in North American salamanders. Evolution. 60, 2604–21.

19. Moritz C, Patton JL, Schneider CJ, Smith TB. 2000 Diversification of

Page 52: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

52

rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31, 533–563. (doi:10.1146/annurev.ecolsys.31.1.533)

20. Wiens JJ, Graham CH. 2005 Niche Conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539. (doi:10.1146/annurev.ecolsys.36.102803.095431)

21. Merckx VSFT et al. 2015 Evolution of endemism on a young tropical mountain. Nature 524, 347–350. (doi:10.1038/nature14949)

22. Rundle HD, Nosil P. 2005 Ecological speciation. Ecol. Lett. 8, 336–352. (doi:10.1111/j.1461-0248.2004.00715.x)

23. Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C. 2004 Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution. 58, 1781–93.

24. Caro LM, Caycedo-Rosales PC, Bowie RCK, Slabbekoorn H, Cadena CD. 2013 Ecological speciation along an elevational gradient in a tropical passerine bird? J. Evol. Biol. 26, 357–374. (doi:10.1111/jeb.12055)

25. Chapman MA, Hiscock SJ, Filatov DA. 2013 Genomic divergence during speciation driven by adaptation to altitude. Mol. Biol. Evol. 30, 2553–2567. (doi:10.1093/molbev/mst168)

26. Knox EB, Palmer JD. 1995 Chloroplast DNA variation and the recent radiation of the giant senecios (Asteraceae) on the tall mountains of eastern Africa. Proc. Natl. Acad. Sci. U. S. A. 92, 10349–10353. (doi:10.1073/pnas.92.22.10349)

27. Peng Z, Ho SYW, Zhang Y, He S. 2006 Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes. Mol. Phylogenet. Evol. 39, 568–572. (doi:10.1016/j.ympev.2005.10.016)

28. Zhou WW, Wen Y, Fu J, Xu YB, Jin JQ, Ding L, Min MS, Che J, Zhang YP. 2012 Speciation in the Rana chensinensis species complex and its relationship to the uplift of the Qinghai-Tibetan Plateau. Mol. Ecol. 21, 960–973. (doi:10.1111/j.1365-294X.2011.05411.x)

29. Liu JQ, Wang YJ, Wang AL, Hideaki O, Abbott RJ. 2006 Radiation and diversification within the Ligularia-Cremanthodium- Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 38, 31–49. (doi:10.1016/j.ympev.2005.09.010)

30. Zhang ML, Fritsch PW. 2010 Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification. Plant Syst.

Page 53: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

53

Evol. 288, 191–199. (doi:10.1007/s00606-010-0324-z)

31. Chaves JA, Weir JT, Smith TB. 2011 Diversification in Adelomyia hummingbirds follows Andean uplift. Mol. Ecol. 20, 4564–4576. (doi:10.1111/j.1365-294X.2011.05304.x)

32. De-Silva DL, Elias M, Willmott K, Mallet J, Day JJ. 2016 Diversification of clearwing butterflies with the rise of the Andes. J. Biogeogr. 43, 44–58. (doi:10.1111/jbi.12611)

33. Antonelli A, Nylander JAA, Persson C, Sanmartín I. 2009 Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc. Natl. Acad. Sci. USA 106, 9749–9754. (doi:10.1073/pnas.0811421106)

34. Sanín MJ et al. 2016 The Neogene rise of the tropical Andes facilitated diversification of wax palms (Ceroxylon: Arecaceae) through geographical colonization and climatic niche separation. Bot. J. Linn. Soc. 182, 303–317. (doi:10.1111/boj.12419)

35. Hughes C, Eastwood R. 2006 Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334–10339. (doi:10.1073/pnas.0601928103)

36. Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. 2016 The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442. (doi:10.1111/nph.13920)

37. Hutter CR, Guayasamin JM, Wiens JJ. 2013 Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol. Lett. 16, 1135–1144. (doi:10.1111/ele.12148)

38. Smith SA, De Oca ANM, Reeder TW, Wiens JJ. 2007 A phylogenetic perspective on elevational species richness patterns in middle American treefrogs: why so few species in lowland tropical rainforests? Evolution. 61, 1188–1207. (doi:10.1111/j.1558-5646.2007.00085.x)

39. Fjeldsa J, Rahbek C. 2006 Diversification of tanagers, a species rich bird group, from lowlands to montane regions of South America. Integr. Comp. Biol. 46, 72–81. (doi:10.1093/icb/icj009)

40. Hall JPW. 2005 Montane speciation patterns in Ithomiola butterflies (Lepidoptera: Riodinidae): are they consistently moving up in the world? Proc. R. Soc. B 272, 2457–2466. (doi:10.1098/rspb.2005.3254)

41. Duellman WE. 1999 Patterns of distribution of amphibians: a global

Page 54: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

54

perspective. Baltimore, Maryland.: John Hopkins University Press.

42. Pyron RA, Wiens JJ. 2011 A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–83. (doi:10.1016/j.ympev.2011.06.012)

43. Pyron RA. 2014 Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Syst. Biol. 63, 779–797. (doi:10.1093/sysbio/syu042)

44. Blaustein AR, Wake DB, Sousa WP. 1994 Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv. Biol. 8, 60–71. (doi:10.1046/j.1523-1739.1994.08010060.x)

45. Beebee TJC. 2005 Conservation genetics of amphibians. Heredity. 95, 423–7. (doi:10.1038/sj.hdy.6800736)

46. Balinsky JB. 1981 Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. J. Exp. Zool. 215, 335–350. (doi:10.1002/jez.1402150311)

47. Berven KA, Grudzien TA. 1990 Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evolution. 44, 2047–2056. (doi:10.2307/2409614)

48. Lüddecke H, Sánchez OR. 2002 Are tropical highland frog calls cold-adapted? The case of the Andean frog Hyla labialis. Biotropica 34, 281–288. (doi:10.1111/j.1744-7429.2002.tb00539.x)

49. Bonin A, Taberlet P, Miaud C, Pompanon F. 2006 Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol. Biol. Evol. 23, 773–783. (doi:10.1093/molbev/msj087)

50. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012 The global diversity of birds in space and time. Nature 491, 444–448. (doi:10.1038/nature11631)

51. Morlon H, Parsons TL, Plotkin JB. 2011 Reconciling molecular phylogenies with the fossil record. Proc. Natl. Acad. Sci. USA 108, 16327–32. (doi:10.1073/pnas.1102543108)

52. Thomas GH, Hartmann K, Jetz W, Joy JB, Mimoto A, Mooers AO. 2013

Page 55: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

55

PASTIS: an R package to facilitate phylogenetic assembly with soft taxonomic inferences. Methods Ecol. Evol. 4, 1011–1017.

53. Jetz W, Pyron RA. 2018 The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. In Press.

54. Rabosky DL, Santini F, Eastman J, Smith S a, Sidlauskas B, Chang J, Alfaro ME. 2013 Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958. (doi:10.1038/ncomms2958)

55. Rabosky DL. 2014 Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 9, e89543. (doi:10.1371/journal.pone.0089543)

56. McGuire JA, Witt CC, Remsen J V., Corl A, Rabosky DL, Altshuler DL, Dudley R. 2014 Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916. (doi:10.1016/j.cub.2014.03.016)

57. Moore BR, Höhna S, May MR, Rannala B, Huelsenbeck JP. 2016 Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl. Acad. Sci. 113, 9569–9574. (doi:10.1073/pnas.1518659113)

58. Rabosky DL, Mitchell JS, Chang J. 2017 Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498. (doi:10.1093/sysbio/syx037)

59. Morlon H. 2014 Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525. (doi:10.1111/ele.12251)

60. Rabosky DL, Title PO, Huang H. 2015 Minimal effects of latitude on present-day speciation rates in New World birds. Proc. R. Soc. B 282, 20142889. (doi:10.1098/rspb.2014.2889)

61. Vilela B, Villalobos F. 2015 LetsR: A new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234. (doi:10.1111/2041-210X.12401)

62. Fitzpatrick BM, Turelli M. 2006 The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution. 60, 601–615. (doi:10.1111/j.0014-3820.2006.tb01140.x)

63. Ribera I, Castro A, Díaz JA, Garrido J, Izquierdo A, Jäch MA, Valladares LF.

Page 56: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

56

2011 The geography of speciation in narrow-range endemics of the ‘Haenydra’ lineage (Coleoptera, Hydraenidae, Hydraena). J. Biogeogr. 38, 502–516. (doi:10.1111/j.1365-2699.2010.02417.x)

64. Cardillo M. 2015 Geographic range shifts do not erase the historic signal of speciation in mammals. Am. Nat. 185, 343–353. (doi:10.1086/679663)

65. Martínez-Solano I, Gonçalves HA, Arntzen JW, García-París M. 2004 Phylogenetic relationships and biogeography of midwife toads (Discoglossidae: Alytes). J. Biogeogr. 31, 603–618. (doi:10.1046/j.1365-2699.2003.01033.x)

66. Munguía M, Rahbek C, Rangel TF, Diniz-Filho JAF, Araújo MB. 2012 Equilibrium of global amphibian species distributions with climate. PLoS One 7, e34420. (doi:10.1371/journal.pone.0034420)

67. Buckley LB, Jetz W. 2008 Linking global turnover of species and environments. Proc. Natl. Acad. Sci. USA. 105, 17836–17841. (doi:10.1073/pnas.0803524105)

68. Grenyer R et al. 2006 Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96. (doi:10.1038/nature05237)

69. McCarroll D, Nesje A. 1996 Rock surface roughness as an indicator of degree of rock surface weathering. Earth Surf. Process. Landforms 21, 963–977. (doi:10.1002/(SICI)1096-9837(199610)21:10<963::AID-ESP643>3.0.CO;2-J)

70. Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, M. Spehn E. 2017 A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15. (doi:10.1007/s00035-016-0182-6)

71. Holt BG, Al E. 2013 An updated of Wallace’s zoogeographic regions of the World. Science. 339, 74–79. (doi:10.1126/science.1228282)

72. López-Pujol J, Zhang F-M, Sun H-Q, Ying T-S, Ge S. 2011 Mountains of Southern China as ‘Plant Museums’ and ‘Plant Cradles’: evolutionary and conservation insights. Mt. Res. Dev. 31, 261–269. (doi:10.1659/MRD-JOURNAL-D-11-00058.1)

73. Ansell SW et al. 2017 The importance of Anatolian mountains as the cradle of global diversity in Arabis alpina, a key arctic-alpine species. Ann. Bot. 108, 241–252. (doi:10.1093/aob/mcrl34)

74. Atalay I. 2006 The effects of mountainous areas on biodiversity: a case study

Page 57: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

57

from the northern Anatolian Mountains and the Taurus Mountains. Proc. 8th Int. Symp. High Mt. Remote Sens. Cartogr. 41, 17–26.

75. Kattan GH, Franco P, Rojas V, Morales G. 2004 Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J. Biogeogr. 31, 1829–1839. (doi:10.1111/j.1365-2699.2004.01109.x)

76. Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. 2009 Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol. 7, 0448–0461. (doi:10.1371/journal.pbio.1000056)

77. Mendoza ÁM, Ospina OE, Cárdenas-Henao H, García-R JC. 2015 A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Mol. Phylogenet. Evol. 85, 50–58. (doi:10.1016/j.ympev.2015.02.001)

78. Sedano RE, Burns KJ. 2010 Are the Northern Andes a species pump for Neotropical birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves: Thraupini). J. Biogeogr. 37, 325–343. (doi:10.1111/j.1365-2699.2009.02200.x)

79. Fjeldsa J, Bowie RCK, Rahbek C. 2012 The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265. (doi:10.1146/annurev-ecolsys-102710-145113)

80. McGuire JA, Witt CC, Remsen J V., Corl A, Rabosky DL, Altshuler DL, Dudley R. 2014 Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916. (doi:10.1016/j.cub.2014.03.016)

81. Shepard DB, Burbrink FT. 2008 Lineage diversification and historical demography of a sky island salamander, Plethodon ouachitae, from the Interior Highlands. Mol. Ecol. 17, 5315–35. (doi:10.1111/j.1365-294X.2008.03998.x)

82. Knowles LL. 2000 Tests of pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western north America. Evolution. 54, 1337–1348. (doi:10.1111/j.0014-3820.2000.tb00566.x)

83. Bell T. 1843 Reptiles. In The Zoology of the Voyage of the H.M.S. Beagle, Under the Command of Captain Fitzroy, R.N., During the Years 1832 to 1836. (ed C ed. Darwin), p. 1–51. London, UK: Smith, Elder and Co.

Page 58: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

58

84. Noonan BP, Gaucher P. 2005 Phylogeography and demography of Guianan harlequin toads (Atelopus): diversification within a refuge. Mol. Ecol. 14, 3017–31. (doi:10.1111/j.1365-294X.2005.02624.x)

85. Frost D. 2017 Amphibian Species of the World: an Online Reference. Am. Museum Nat. Hist. Version 6., 6–8. (doi:http://research.amnh.org/herpetology/amphibia/index.php.)

86. Koscinski D, Yates AG, Handford P, Lougheed SC. 2009 Effects of landscape and history on diversification of a montane, stream-breeding amphibian. J. Biogeogr. 36, 255–265. (doi:10.1111/j.1365-2699.2008.02009.x)

87. Wollenberg KC, Vieites DR, van der Meijden A, Glaw F, Cannatella DC, Vences M. 2008 Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution. 62, 1890–907. (doi:10.1111/j.1558-5646.2008.00420.x)

88. Smith BT et al. 2014 The drivers of tropical speciation. Nature 515, 1–8. (doi:10.1038/nature13687)

89. Kozak KH, Wiens JJ. 2007 Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. R. Soc. B 274, 2995–3003. (doi:10.1098/rspb.2007.1106)

90. Rundle HD, Nosil P. 2005 Ecological speciation. Ecol. Lett. 8, 336–352. (doi:10.1111/j.1461-0248.2004.00715.x)

91. Guarnizo CE, Cannatella DC. 2013 Genetic divergence within frog species is greater in topographically more complex regions. J. Zool. Syst. Evol. Res. 51, 333–340. (doi:10.1111/jzs.12027)

92. Rodríguez A, Börner M, Pabijan M, Gehara M, Haddad CFB, Vences M. 2015 Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evol. Ecol. 29, 765–785. (doi:10.1007/s10682-015-9774-7)

93. Wiens JJ. 2007 Global patterns of diversification and species richness in amphibians. Am. Nat. 170, 86–106. (doi:10.1086/519396)

94. Weir JT, Schluter D. 2007 The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science. 315, 1574–1576. (doi:10.1126/science.1135590)

Page 59: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

59

-Electronic Supplementary Material-

Faster amphibian speciation in mountains support their role as biodiversity pumps Supplementary material, text S1.

BAMM analysis

To perform the BAMM analysis we first used the 'setBAMMpriors' function

to generate a prior block in accordance with the scale of our tree. We ran 60,000,000

generations of reversible-jump MCMC sampling on our phylogeny with samples

drawn from the posterior every 5,000 generations. Considering the massive number

of tips in our tree we used a poisson prior of 0.033, which correspond to 30 expected

shifts of diversification. The selection of low values for this parameter allows the

algorithm to explore a broader range of shift configurations, facilitating

convergence. We used the BAMMtools R package -version 2.0-[1] in R, to analyze

consistency among BAMM outputs. We visually checked for convergence of the

MCMC algorithm by inspecting the relation between likelihood scores and sampled

generations. Then, we reviewed adequate mixing of chains, examined for effective

sample sizes above at least 10% of our sampled generations, discarded the first 20%

of samples as burn-in and used the 80% left to estimate evolutionary rate values for

each tip and resulting shifts of diversification across the tree. We used the R package

‘coda’ [2] to diagnose convergence, considering as satisfactory values of effective

Page 60: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

60

sample size of the log-likelihood and the number of shift events present in each

sample above 200. BAMM analyses provide speciation and extinction rates per

species as direct output and is possible to estimate net diversification rates by

subtracting extinction rates from speciation rates [3]. However, we focused our

analyses on speciation rates, because they can be estimated with much more

confidence than extinction rates, for which confidence intervals tend to be large,

even when all assumptions of the inference model are satisfied [4]

Supplementary References

1. Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H,

Larson JG. 2014 BAMMtools: An R package for the analysis of evolutionary

dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707.

(doi:10.1111/2041-210X.12199)

2. Plummer M, Best N, Cowles K, Vines K. 2006 CODA: Convergence

Diagnostics and Output Analysis for MCMC. R News 6, 7–10.

3. Morlon H. 2014 Phylogenetic approaches for studying diversification. Ecol.

Lett. 17, 508–525. (doi:10.1111/ele.12251)

4. Rabosky DL, Title PO, Huang H. 2015 Minimal effects of latitude on present-

day speciation rates in New World birds. Proc. R. Soc. B 282, 20142889.

(doi:10.1098/rspb.2014.2889)

Page 61: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

61

SUPPLEMENTARY FIGURES

Figure S1. Tree showing best configuration of speciation rate shifts among groups in extant Amphibians. Colours in branches represent speciation rate dynamics, blue represent slower while red represent faster rates. Red dots highlights the regions of the phylogeny where major shifts were detected

.

Page 62: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

62

1

Figure S2. Clade-specific speciation trajectories for some of the groups with the highest values of speciation rates detected. A. Patagonian Spiny frogs (Alsodes, 18 species); B. South American Harlequin toads (Atelopus,97 spp); C. Neotropical true toads (Rhinella, 35 spp); D, E and F. Bolitoglossine salamanders (Bolitoglossa, 137 spp; Oedipina, 36 spp and Pseudoeurycea, 50 spp).

Page 63: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

63

CAPÍTULO II**

Idiosyncratic responses to drivers of genetic differentiation in the complex landscapes of Isthmian Central America

Page 64: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

64

Idiosyncratic responses to drivers of genetic differentiation in the complex

landscapes of Isthmian Central America

Adrián García-Rodríguez1,2, Carlos E. Guarnizo3, Andrew J. Crawford3,4, Adrian A.

Garda1 & Gabriel C. Costa5

1Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal,

59078-900 RN, Brasil.

2Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José,

Costa Rica.

3Departamento de Ciencias Biológicas, Universidad de los Andes, A.A. 4976,

Bogotá, Colombia.

3Smithsonian Tropical Research Institute, Apartado, 0843–03092, Panamá,

Republic of Panama.

5Department of Biology, Auburn University at Montgomery, Montgomery AL

36124.

Corresponding author: Adrián García-Rodríguez

[email protected]

Page 65: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

65

ABSTRACT

The isthmian portion of Central America (ICA) is one of the most biodiverse regions

in the world, hosting the highest number of species per unit area, for many taxa. Due

to the geological history of this region, the assembly of this biota is relatively recent

and results from dispersal events and in situ diversification processes across a

complex landscape. Here, we combined information on mitochondrial DNA

sequence variation with climatic and physical environmental features to understand

abiotic forces that might have promoted diversification. To this end, we evaluated

the role of isolation by distance, topography, habitat suitability, and environment in

shaping patterns of genetic differentiation in eleven amphibian species with

disparate life histories co-distributed in the region. In seven of the species studied,

we found that at least one the factors tested, significantly explains genetic divergence

patterns. Instead of finding a major force responsible for the intraspecific genetic

divergence in ICA, our results reveal idiosyncratic responses of each species,

suggesting that intrinsic characteristics of each species play an important role in

determining responses to different drivers of isolation. We show that confluence of

several determinants of isolation with a heterogeneous biota having different life

histories, geographic origins, and arrival times to ICA maximizes the chances of

genetic differentiation. We conclude that evolutionary dynamics of ICA’s biota is

far more complex than simply vicariance between Caribbean and Pacific clades as a

main form of speciation in the region. Drivers of diversification likely act even in

short distances in complex landscapes, contributing to high levels of endemism as is

the case LCA. More research is needed, not only to understand the causal relation

between environment and genetic differentiation, but also to better document a

diversity that is still remains underestimated.

Page 66: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

66

Keywords: Gene flow, Isolation by distance, Isolation by resistance, Isolation by

environment, Generalized dissimilarity Modeling, Multiple matrix regression with

randomization

Page 67: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

67

INTRODUCTION

Isthmian Central America (ICA), centered at Costa Rica and Panama, is one of the

most diverse regions in the globe (Myers et al. 2000). Inserted in the Mesoamerican

hotspot of biodiversity, this region roughly covers 0.1% of earth's land surface,

nonetheless harbors an immense number of species; reaching estimates for some

taxonomic groups of 4-10% of the global biodiversity residing in Costa Rica alone

and Panama may be more diverse (Bagley and Johnson, 2014). Some examples of

highly diverse taxa in the region includes birds (>1,000 spp), amphibians (~300 spp),

reptiles (~500 spp), insects (>300,000 spp) and vascular plants (> 20,000 spp)

(Anger and Dean, 2010; Garrigues and Dean, 2014; Frost, 2017).

ICA has a relatively recent geological origin, nevertheless, the precise timing

of the formation of the region´s major landscape features is still under debate

(Montes et al., 2012; O’Dea et al., 2016). Historically, the most accepted hypothesis

was that the Panama Isthmus closed relatively recently, around 3-4 million years ago

(Ma) (Coates et al., 1992). Multiple independent sources of evidence supported this

hypothesis, including divergence times in marine organisms separated by the

Isthmus, and the fossil record found at the Panama Canal area (Keigwin, 1978;

O’Dea et al., 2016). However, recent studies using sources of evidence such as

petrographic, geochronological, and termo-chronological data suggests that the

Panama Isthmus closed much earlier, around 15 Ma (Montes et al., 2012). This

Page 68: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

68

earlier date is also supported by recent molecular-based studies showing early

dispersal between North and South America around 10 Ma (Pinto-Sánchez et al.,

2012; Bacon et al., 2015).

Independently of the debate regarding the precise date of the Isthmus closing,

this geological formation precipitated one of the greatest biogeographic events of

the Cenozoic, the Great American Biotic Interchange (GABI), a bidirectional

dispersal of terrestrial mammals between the previously isolated North and South

American landmasses, around 2 Ma (Marshall, 1988; Webb, 2006). Evidence

available for other groups such as frogs, birds and invertebrates (Webb, 2006; Weir

et al., 2009; Pinto-Sánchez et al., 2012; Wilson et al., 2014) also highlights the

important influence of the rising of the isthmus in the conformation of the regional

biota. In consequence, biodiversity in ICA is largely constituted by northern and

southern lineages that arrived after the completion of the land bridge (Janzen, 1991;

Savage, 2002). Surprisingly, the Isthmian fauna also has a striking high number of

endemics (e.g. Rodriguez-Herrera et al. 2004; Kluge & Kessler 2006; Savage &

Bolaños 2009; Bogarín et al. 2013; Garrigues & Dean 2014), including lineages of

considerably old age (Wang et al., 2008) . This high prevalence of endemism

highlights the importance of in situ processes of diversification contributing to this

region´s biota.

Page 69: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

69

The complex tectonic and geological history of LCA resulted in a steep

topography where a variety of habitats and climatic regimes converges in a small

surface (Weyl, 1980; Gabb et al., 2007). For example, in less than 1000 km along

the Pacific coast of Costa Rica, mean annual precipitation varies from ~1800 mm in

some areas of the northern dry forest of Guanacaste to nearly 5000 mm in the very

humid rainforests of Peninsula de Osa (Savage, 1966; Coen, 1991). The

physiography of the region is characterized by NW-trending volcanic cordilleras that

can reach altitudes over 3000 m in several peaks (Luteyn, 1999). Such cordilleras

are bisected by valleys which result in a mosaic of sky-islands along with steep

altitudinal gradients, microclimates, and diverse vegetation zones (Marshall, 2007;

Bagley and Johnson, 2014). In addition, climatic and sea level fluctuations during

the Quaternary (Horn, 1990; Islebe et al., 1995, 1996) likely promoted species range

contractions and expansions throughout this complex landscape, imposing or

removing barriers to gene flow and playing a central role in diversification processes

(Hewitt, 2004). Given all these conditions, allopatric speciation (Mayr, 1942)

through vicariant events promoted by physical barriers and parapatric speciation

(Doebeli and Dieckmann, 2003) across environmental gradients may have occurred

in the region, although strong evidence of the latter is still scarce around the globe.

Considering its recent geologic history and high levels of richness and

endemism, ICA represent an ideal natural laboratory to study the role of landscape

Page 70: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

70

factors in driving early phases of genetic differentiation. One way to understand the

role that such factors have had on the in-situ diversification of the ICA is to study

the relationship between geographic or environmental variables and intraspecific

genetic divergence. In the simplest of these relationships, called isolation by

distance (IBD), genetic differentiation is expected to increase with geographic

distance due to restricted gene flow by individuals (Wright, 1943; Slatkin, 1993).

However, in highly heterogeneous regions, dispersal across the landscape is more

restricted due to the effect of barriers imposed by complex topographies and their

associated climatic gradients (Manel and Holderegger, 2013). Consequently, genetic

isolation is expected to be more associated with landscape heterogeneity than with

geographic distances alone. Isolation by resistance (IBR) accounts for the reduced

dispersal among populations caused by the relative unsuitability or ‘friction’

presented by heterogeneous landscape components located in between two

populations (McRae, 2006). In contrast, Isolation by Environment (IBE) has been

recently proposed to describe a pattern in which genetic isolation between two

populations increases with environmental differences at the respective localities,

independently of the resistance imposed by the landscape found between the two

populations (Wang and Bradburd, 2014).

Discerning between IBD, IBR, and IBE can help discriminate among different

forces promoting genetic divergence within species and its relationship with the

Page 71: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

71

prevalent endemism of ICA. An ideal study system with which to test this idea are

amphibians: their low dispersal capabilities (Blaustein et al., 1994) prevent them

from moving across landscapes as much as other vertebrates (Beebee 2005),

promoting the accumulation of genetic differences among populations (Funk et al.,

2005; Wollenberg et al., 2011). Because of their permeable skin and poikliothermic

physiology, amphibians are also thought to be relatively sensitive to environmental

variation (Navas & Otani 2007; Cruz-Piedrahita et al. 2018). Thus, amphibians

should show a marked imprint of the potential effects of historical, ecological and

geographic factors in driving genetic divergence among populations.

In this study, we explore how ICA´s landscape features predict patterns of

genetic variation within eleven nominal species of amphibian belonging to 7

taxonomic families. We quantified the relative role of geographic distance (IBD),

topography (IBRt) and climate (IBRsuitability and IBE) in shaping genetic

divergence in each species. Using this information, we tested the following

hypotheses and related predictions applied to amphibian species with diverse life

histories.

1) Linear geographic distance itself is not a good predictor of genetic divergence in

the complex landscapes of ICA. Variation in genetic divergence is better explained

by metrics that acknowledge the topographic and climatic heterogeneity among

populations.

Page 72: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

72

2) Prominent mountain chains in the region represent major vicariant barriers for the

local fauna. Due to the massive dimensions of these orogenic formations, we expect

major genetic structure in species occurring on both the Pacific and Caribbean

lowlands, regardless of their biology.

3) Climatic suitability increases the probability of a population to persist in the

environment. We predict that genetic structure may be explain by patterns of

isolation due to patchy distribution of climatically suitable habitats in the complex

landscapes of the region.

4) High climatic heterogeneity, promotes divergence among populations of the same

species occurring in distinct environments. Different climatic regimes within the

region promoted adaptation to local conditions and such process may reflect the

patterns of genetic divergence.

METHODS

Study species

We used as study system a set of 11 amphibian species, including nine anurans and

two salamanders for which we had mitochondrial DNA (mtDNA) sequence data.

Such species represent a variety of reproductive strategies, body sizes, dispersal

capabilities, and distribution ranges (see details in Table 1).

Page 73: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

73

Table 1. Amphibian species studied with details on several biological attributes and genetic data analyzed. 1

2 Family Species SVL

(mm)

Reproductive Mode Clutch

Size

Elevation

(m)

Genes Localities

Plethodontidae Bolitoglossa lignicolor 46-81 Direct Development Unknown 0-900 11 (16S) 9

Plethodontidae Oedipina alleni 40-58 Direct Development Unknown 0-900 5 (16S) 4

Eleutherodactylidae Diasporus diastema 16-24 Direct Development

Arboreal eggs

7 to 19 1- 1500 11 (COI) 8

Strabomantidae Pristimantis ridens 16-25 Direct Development

Terrestrial eggs

Unknown 15-1600 14 (16S) 11

Centrolenidae Sachatamia albomaculata 20 -32 Arboreal eggs

tadpoles into streams

Unknown 0-850 14 (16S),

14 (COI)

7,7

Centrolenidae Espadarana prosoblepon 21 -31 Arboreal eggs,

tadpoles into streams

~20 20-1900 26 (16S) 12

Hylidae Dendropsophus ebraccatus 23-35 Arboreal eggs,tadpoles into

puddles, ponds, streams

15 to 296 0-1300 24 (16S) 10

Hylidae Smilisca phaeota 40-78 Eggs and tadpoles in small

ponds or shallow streamlets

1.5K -> 2K 0-1000 9 (16S) 8

Hylidae Agalychnis callidryas 30-71 Arboreal eggs, tadpoles into

puddles, ponds, streams

11 to 104 1 -1000 51 (16S) 14

Ranidae Lithobates warszewitschii 37-52 Eggs /tadpoles in lotic water Unknown 1 - 1750 29 (16S) 11

Bufonidae Rhinella marina 85-175 Eggs /tadpoles in lentic water 5K - 25K 1 - 2100 9 (16S) 8

Page 74: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

74

We selected these species from a bigger data set of mtDNA from which we discarded

cryptic species or species with less than 5 sampled localities. The final set analyzed

here included sequences from 350 individual amphibians, corresponding to 95

nominal species sampled from localities across Costa Rica (Fig. 1).

Figure 1. Maps with the distribution of available genetic data for the 11 amphibian species included in this study

Page 75: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

75

Sampling and sequencing methods

Most tissues used in this study were obtained from samples deposited at the

Herpetology Collection of the Museo de Zoología de la Universidad de Costa Rica

(UCR). These new data were supplemented with sequence data available in

GenBank obtained from Costa Rica as well as from Panama. The final dataset

analyzed here contained 136 sequences of the cytochrome oxidase I (COI-5’, also

known as the Barcode of Life fragment [Hebert et al. 2003]) and 321 sequences of

a fragment of the 16S ribosomal RNA gene. Species names, field collection

numbers, museum numbers, localities, Barcode of Life Data Systems (BoLD;

Ratnasingham and Hebert 2007) Process ID for each specimen, and GenBank

accession numbers for each sequence used in the present study are provided in Table

S1.

DNA extraction was carried out on a BioSprint 96 (Qiagen) robotic extractor based

on magnetic beads, including digestion with proteinase K (0.4 mg/mL) at 55 °C. We

amplified two mitochondrial gene fragments, the fast-evolving COI, and the more

slowly-evolving 16S gene, following Crawford et al. (2010). The primer pairs used

to amplify and Sanger-sequence the COI-5’ gene were: dgHCO2198 (5′-TAA ACT

TCA GGG TGA CCA AAR AAY CA-3′) and dgLCO1490 (5′-GGT CAA CAA

ATC ATA AAG AYA TYG G-3′) (Folmer et al. 1994; Meyer et al. 2005) and 0.25

µg/µL of bovine serum albumin. The 16S gene fragment was amplified and

Page 76: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

76

sequenced with primers 16SB-H (aka, 16Sbr-H) (5′-CCG GTC TGA ACT CAG

ATC ACG T-3′) and 16SA-L (aka, 16Sar-L) (5′-CGC CTG TTT ATC AAA AAC

AT-3′) (Kessing et al. 2004). PCR products were cleaned using ExoI and SAP

enzymes (Werle et al. 1994), with Sanger sequencing reactions run on ABI 3130

automated sequencers. All enzymatic and sequencing reactions were performed in a

high-throughput 96-well format. Both genes were sequenced bi-directionally to

confirm base calls. The sequences of each gene were aligned independently using

default parameters in MUSCLE (Edgar, 2004) -available at

https://www.ebi.ac.uk/Tools/msa/muscle/ - and reviewed by eye.

Potential cryptic species handling

Preliminary genetic analyses showed that some museum voucher specimens were

misidentified, a common mistake in mega-diverse regions such as ICA, where a high

number of sister species maintain morphological stasis after speciation (Padial and

De La Riva, 2009; Funk et al., 2012). To prevent potential errors assigning DNA

sequences to species: First, we used the Automated Barcode Gap Discovery (ABGD)

algorithm (http://wwwabi.snv.jussieu.fr/public/abgd/), which identifies clusters of

sequences that may correspond to more than one species based on the distribution of

pairwise genetic distances between the aligned DNA sequences. This method

statistically infers multiple potential barcode gaps or thresholds, and partitions the

sequences such that the distance between two sequences taken from distinct clusters

Page 77: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

77

is larger than the barcode gap (Puillandre et al., 2012). This method performs well

in terms of efficiency and success in species identification compared with other

DNA barcode algorithms (Paz and Crawford, 2012). The COI, 16S, and

concatenated alignments were processed in ABGD assuming a Kimura two-

parameter (K2P) nucleotide substitution model (Kimura, 1980) and the following

settings: prior for the maximum value of intraspecific divergence between 0.001 and

0.1, with 10 recursive steps within the primary partitions defined by the first

estimated gap, and a gap width of 1.0. K2P is the standard model of DNA

substitution for barcode studies, performing as well as other more complex models

in identifying specimens (Collins and Cruickshank, 2012). Even though there are

not many DNA substitution models available in ABGD, a recent study suggests that

species identification success rate is not affected by the model (Collins et al., 2012)

We corroborated the ABGD results by checking if there was evidence of

highly divergent DNA sequences in sympatry, which may suggest potential

misidentifications. To do this, we contrasted geographic versus genetic distances for

each nominal species and searched for cases where genetic divergence at short

geographic distances (in sympatry) were above 5% for COI and 2.5% for 16S. We

selected these thresholds considering those proposed for candidate species in frogs,

10% for COI and 5% (Vences et al., 2005) or 3% (Fouquet et al. 2007) 16S. The

Page 78: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

78

total number of sequences and nominal species that we ended up after the ABDG

analyses are in Table S

Estimation of genetic distances

Pairwise genetic p-distances were estimated between 16S and COI sequences

available for each species (See Table 1). We chose the best-fit model of nucleotide

substitution for each set of sequences using jModelTest (Posada, 2008) based on the

Akaike information criterion (AIC). Then, we estimated genetic distances with

MEGA 4.0 (Tamura et al., 2013) using the pairwise-deletion option, therefore

excluding inferred gaps in each pair of sequences for the genetic distance

calculations. We used these genetic distances as a proxy for gene flow (Rousset,

1997; Selonen et al., 2010). We estimated separately genetic distances for COI or

16S (we did not concatenated both genes) since in many nominal species there were

no sequences available for both genes. We used the landscape genetics approach,

where the individual sequence is the unit of analysis, to avoid biases in the

identification of populations (step needed to estimate other genetic divergence

measurements, such as Fst).

Estimation of geographic, resistance and environmental distances

To understand the relationship between geography and the intraspecific genetic

divergence we estimated landscape derived distances, including geographic distance

Page 79: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

79

(IBD), and resistance distances that account for topography (IBRt) and climatic

suitability (IBRcs) as well as local environmental dissimilarity (IBE) between all

individual pairwise combinations within each species. This method allowed us to

compare the relative importance of different landscape variables in explaining

genetic divergence within each species.

To test for IBD, we estimated linear geographic distances as pairwise

Euclidean distances (in km) between the geographic position of each pair of

individuals of each species using the R package raster (Hijmans and van Etten,

2010). To test for IBR we estimated resistance distances using topography and

environmental suitability as friction layers based on a circuit-theory approach

conducted in Circuitscape V.4.0 (Shah and McRae, 2008). For topography, we

created a layer that quantifies local terrain complexity, using a raster grid of

elevation with a resolution of 30 arcseconds (~0.8 km at the equator) and estimated

the standard deviation of a set of adjacent cells to obtain a value of topographic

complexity for cells of ~5 by 5 km resolution. In the case of environmental

suitability, we used the inverse of species distribution model suitability (SDMs) for

each species, assuming that areas with low suitability have higher resistance for

dispersal (Wang, Yang, et al., 2008).

To construct SDMs, we gathered additional occurrence data from the Global

Biodiversity Information Facility and the Collection of Herpetology of Universidad

Page 80: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

80

de Costa Rica. We generated SDMs using 11 out of the 19 bioclimatic variables

available at worldclim.org (2.5 arcmin resolution ~ 4.5 km at the equator) for current

conditions. We excluded variables using a Variance Inflation Factor Analysis to

avoid predictor redundancy. We created all models with a Maximum Entropy

algorithm using the R package dismo (Hijmans et al., 2012) after a process of

parameter tuning and evaluation conducted in the R package ENMeval (Muscarella

et al., 2014). We provide details on modeling procedures in the supplementary

material. We also quantified historical isolation by projecting these models to Mid

Holoce (~ 6 Kya) and Last Glacial Maximum -LGM- (~ 22 Kya) conditions and

using the inverse of these projections as friction layers.

To test for IBE, we estimated environmental dissimilarity between locality

pairs. For each sampled locality, we extracted the values for the 19 bioclimatic

variables available in the worldclim data set (worldclim.org) at 30 arcseconds

resolution (~ 1km). Then we estimated Euclidean pairwise distances in the

multidimensional space using the function dist in R which computes specific

distances between the rows of a multivariate matrix.

Quantifying the relative effects of IBD, IBR and IBE

We tested for the independent association between geographic, resistance (i.e.

topographic and climatic suitability), and climatic distances against genetic distances

Page 81: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

81

using Multiple Matrix Regression with Randomization Analysis (MMRR) and

Generalized Dissimilarity Matrix. MMRR uses randomized permutation to account

for the fact that distances are not independent from each other (Wang et al., 2013).

We preferred this method to partial Mantel tests because of the well-known high

type-I error rate and low power characteristic of these kind of tests (Raufaste and

Rousset 2001; Harmon and Glor 2010; Guillot and Rousset 2013). In contrast to

partial Mantel tests, MMRR provides the independent effect of each variable as beta

coefficients, allowing simultaneous comparisons among them. Because all estimated

distances are at different scales, we normalized (subtracted the mean and divided by

the standard deviation) them to facilitate the interpretation of the beta coefficients.

We performed the MMRR method using the R function provided by Wang (2013)

with 10,000 permutations.

In addition, to further explore how our explanatory variables shape the

patterns of genetic differentiation observed in the study species, we also

implemented a Generalized Dissimilarity Modelling (GDM). This matrix regression

technique can fit nonlinear relationships of environmental variables to biological

variation using I-spline basis functions (more details in Ferrier et al. 2007). The

splines plots are very informative because they provide insights into the total

magnitude of biological change as a function of each gradient and where those

changes are most pronounced along each gradient.

Page 82: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

82

We fitted the initial model using as response variable our matrices of genetic

distance and the previously described matrices of isolation (IBD, IBRt, IBRcs,

IBRlgm and IBE) as predictor variables. Then, we plotted the I-splines to assess how

magnitudes and rates of genetic differentiation varied along the gradients

represented in our predictor variables. To confirm the significance obtained in the

GDM, we estimated variable importance and significance using matrix permutation

and backward elimination (as detailed in Ferrier et al. 2007). After summing the

coefficients of the I-splines, we discarded the less contributing predictor, and then

using this reduced set of n-1 predictors, we fitted a second GDM model. We ran 500

random permutations and excluded the variable with the least significant

contribution to explained deviance in a stepwise procedure. At each step of the

procedure, the unique contribution of each variable to total explained deviance was

calculated. We repeated the method until all variables retained in the final model

made significant unique contributions to explained deviance (P ≤ 0.05). We

performed these analyses with the R package ‘gdm’ (Manion et al. 2017).

RESULTS

Intraspecific patterns of genetic differentiation

For the two salamander species in our data set, both of them having distributions in

the Pacific, our ABGD analysis recovered two clades. In Bolitoglossa lignicolor, we

Page 83: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

83

found a break between populations in the Central Pacific Region and those extending

from the Southern Pacific of Costa Rica to Peninsula de Azuero in Panama. In the

case of O. alleni the break seems to be altitudinal, since strictly coastal individuals

grouped apart from those individuals in slightly higher elevations.

Among the direct-developing frogs (Terrarana), we found two major clades

for Diasporus diastema; one including Caribbean populations from the slopes of

Cordillera de Tilarán to the Chiriquí Province in Panama and other containing

samples from Coclé Region in Central Panama. For Pristimantis ridens we found

support for a clade represented by Costa Rican populations and a clade containing

all Panamanian populations. Among the glass frogs, we found two clades with high

support for Sachatamia albomaculata, one on the Caribbean and other on the Pacific

versant of Costa Rica. For 16S, for which we have a wider geographic sampling for

this species, we found divergence between populations in the Caribbean and Pacific

of Costa Rica as well as between the central region of Panama and the eastern portion

of the Cordillera de Talamanca, which lays in Panama. In Espadarana prosobleplon,

we found four clades with high support: Darien Region, Eastern Canal Zone,

Cordillera Central de Panama and Pacific versant of Costa Rica.

In our hylid species, we found four genetically differentiated groups in

Agalychnis callidryas, two on the Pacific and two on the Caribbean; in Smilisca

phaeota, samples grouped in two major clusters, although these are not clearly

Page 84: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

84

differentiated in the geography. In Dendropsophus ebbraccatus we detected the

major genetic divergence between samples from southern Pacific of Costa Rica and

a group including samples from Central Pacific and all the Caribbean versant

In the ranid Rana (Lithobates) warszewitschii, we found one clade widely

distributed in both the Pacific and the Caribbean versants of Costa Rica, which

differs from two clades occurring in Panama, one in the Eastern Canal Zone and the

other in the Cordillera Central. Finally, in the common cane toad Rhinella horribilis,

we detected two clusters, although their geographic distribution is not clearly

differentiated.

Relative role of IBD, IBRt, IBRcs and IBE on genetic differentiation

From the MMRR analyses, we found that at least one of the factors here tested,

significantly explained the patterns of genetic differentiation in seven out of the 11

species studied (Fig. 2). None of the models tested here explained genetic

differentiation in the salamander species (O. alleni and B. lignicolor), the hylid frog

S. phaeota and the toad R. horribilis.In the species where the full model significantly

explained genetic differentiations among populations, we found idiosyncratic

responses to the predictors tested.

Page 85: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

85

Figure 2. Contribution of different types of isolation in explaining genetic differentiation within our study species. Black bars in the first colum represent the percentange of variance in the genetic data significantly explained by the full model. Second to fifth colums show beta values for the tested predictors, black bars represent predictors significantly associated with patterns of genetic differentiation

Page 86: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

86

Geographic distance played an important role in the genetic differentiation of

P. ridens (βD=0.648, P<0.001), topography (IBRt) explained most genetic

divergence for A. callidryas (βT=0.580, P<0.001) and S. albomaculata, for both

available genes: 16S (βT=0.580, P<0.001) and COI (βT=1.173, P<0.001). While

climatic suitability (IBRcs) represented the main driver of genetic divergence for D.

ebracattus (βCS=0.998, P<0.001), D. diastema (βCS=0.816, P<0.001), and L.

warszewitschii (βCS=0.947, P<0.001), local environmental dissimilarity (IBE) was

the major factor explaining genetic variation within E. prosoblepon (βED=0.486,

P<0.001).

From the GDM we found that, not only the responses of each species are

idiosyncratic to the drivers of genetic differentiation but, also the magnitude and

rates in which each species are affected along the gradient of variation of each

predictor. In figure 3, we show this heterogeneity by presenting the spline plots for

the two variables that contribute more within the species in which the full model was

significant in explaining patterns of genetic differentiation.

Page 87: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

87

Figure 3. Generalized dissimilarity model-fitted I-splines for variables significantly associated with genetic differentiation in seven of our study species. The maximum height reached by each curve, indicates the total amount of genetic differentiation associated with the respective variable, holding all other variables constant. The shape of each function shows how the rate of genetic differentiation varies along the gradients.

Page 88: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

88

DISCUSSION

Despite its young geological history, ICA hosts an immense number of species,

higher than any other region of the globe with similar area (Bagley and Johnson,

2014). Such richness was assembled a combination of dispersal events and in situ

diversification, reflected in high levels of endemism (Marshall 1988; Webb 2006;

Kluge & Kessler 2006; Savage & Bolaños 2009; Bogarín et al. 2013). Here, we

quantified the role that different components of the landscape has had on driving

isolation between populations and restricting gene flow.

In almost all species studied, we found that at least one of the factors tested,

significantly explained patterns of spatial genetic differentiation in ICA. However,

instead of finding a major force that generally explained intraspecific genetic

divergence across the region, our results reveal idiosyncratic responses, so the

drivers we tested differentially affect each species. Previous studies focused on

describing spatial patterns of amphibian genetic divergence in the ICA, have also

showed that phylogeographic histories among species have few patterns in common

(Weigt et al. 2005; Crawford et al. 2007; Wang et al. 2008; Robertson et al. 2009).

In a recent review, Bagley & Johnson (2014), summarized the emerging

phylogeographic patterns in the region by collecting over 50 studies dealing with

more than 90 nominal taxa distributed in LCA. Such work compiles at least 31

phylogeographic breaks - recovered from mitochondrial DNA markers - in a region

Page 89: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

89

spanning only ~127 000 km2 (Bagley and Johnson, 2014). Our findings support this

observation and provide strong evidence of intense processes of in situ lineage

diversification promoted not necessarily by a dominant factor but by multiple drivers

in the complex landscapes of ICA. By applying the same analyses over a multi-

species data set containing the same molecular markers, we were able to make robust

comparisons and go a step further, as we aimed to test for causality in the observed

patterns of genetic differentiation and disentangle the relative contribution of its

drivers. By combining MMRR and GDM approaches, we were able not only to make

a partition of the variation explained by each predictor (Wang, 2013; Wang et al.,

2013) but also to quantify the intensity and rate in which genetic divergence is drove

along the gradient of each tested variable (Ferrier et al., 2007).

Even geographic distance (IBD), which was not expected to be a good

predictor in the roughed landscapes of the ICA, was the major factor in explaining

genetic structure in two species, E. prosoblepon and P. ridens. In such cases, we

hypothesized that the major geographic gap between our Costa Rican and

Panamanian samples could influence such result. E. prosoblepon is a small species

distributed from lowlands to almost 2000 altitude (Kubicki, 2007), despite its wide

altitudinal range, reproduction in this species is restricted to streams, a typical feature

of glass frogs (Castroviejo-Fisher et al., 2014). It may promote isolation between

watersheds instead of along altitudinal gradients, explaining the increase in genetic

Page 90: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

90

differentiation with geographic distance due to restricted dispersal between more

distant populations as expected by IBD (Wright, 1943; Slatkin, 1993).

Complementarily, previous studies has documented phylogeographic breaks

separating frog lineages from Costa Rica and western Panama from those occurring

in Central Panama, probably as result of a the vicariance generated by a Dry Forest

Barrier (Crawford et al., 2007). In P. ridens for example, phylogeographic

approaches, revealed a Panamanian lineage showing long-term geographic stasis and

another showing rapid geographic expansion occurring from Costa Rica to Honduras

(Wang, Crawford, et al., 2008). These dynamics, although potentially resulting from

climatic factors, could explain the higher divergence between our Costa Rican and

Panamanian samples and the signal we recovered of IBD driving such pattern.

The region’s abundant mountainous reliefs reflect a rich geological history

mainly dominated by orogeny of volcanic and tectonic origin (Gabb et al., 2007)

which results in major physical barriers (IBRt). Within a species, genetic divergence

is expected to be greater in areas of higher topographic complexity (Guarnizo and

Cannatella, 2013). In our case, IBRt significantly explained divergence patterns in

the red-eye tree frog A. callidryas and the cascade glass frog S. albomaculata. For

these species, we analyzed samples from both, the Pacific and the Caribbean versant.

Our results highlight the role of the three main Cordilleras that bisect the region

serving as a vicariant barrier between lowland populations in both slopes.

Page 91: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

91

In the case of A. callidryas, the dimension of this effect is evident even at the

phenotypic level, previously documented on the variation in flank coloration among

individuals from Caribbean and Pacific populations (Robertson and Zamudio, 2009).

Genetic variation assessed in that same work among 20 populations, recovered five

well-supported mitochondrial clades, some of which the authors explain by IBD

(Robertson and Zamudio, 2009), the second force in contributing to the patterns of

genetic divergence we found. To our knowledge, our study is the first in evaluating

genetic divergence among populations of S. albomaculata, our geographic sampling

on both sides of the Cordilleras as well as our results are similar to A. callidryas.

Sachatamia albomaculata has been reported to reach the 1500 m elevation (Savage,

2002) but, it is more common below 1000 m (Kubicki, 2007). This fact, in

combination with life history traits of this species such as its small size and high

levels of phylopatry -restricted to forest covered streams- (Solís et al., 2010), may

explain the resistance imposed by topographic barriers not only among versants, but

also between peaks within the same mountainous range.

A similar pattern to the one found at the intra-specific level for these two

species could have led to speciation in many groups in the region for which sister

taxa occur. On each side of major mountain systems, such as several anurans

including Dendropsophus microcephalus and D. phlebodes, Oophaga granulifera

and O. pumilio or Phyllobates lugubris and P.vittatus (Savage, 2002). Among

Page 92: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

92

reptiles some examples include snakes as Lachesis stenophrys and L. melanocephala

(Solórzano and Cerdas, 2010), the lizards Basiliscus basiliscus and B. vittatus,

Sphaerodactylus graptolaemus and S. homolepis or Leposoma flavimaculatum and

L. reticulatum (Savage, 2002). This pattern occurs even in representatives of groups

with higher dispersal abilities such as the birds Amazilia decorata and A. amabilis,

Cotinga ridwayi and C. amabilis as well as Manacus candei and M. aurantiacus

(Prum et al., 2000; Brumfield and Braun, 2001; Stiles et al., 2017). Divergence

between Pacific and Caribbean groups is expected to be more evident in eastern

Costa Rica and western Panama, where topographic barriers becomes stronger as

mountains reaches their higher elevations (>3000 m) in Cordillera de Talamanca (de

Boer et al., 1995). In western Costa Rica instead, vicariant events may derive from

sky island dynamics, because high elevation habitats in those regions are isolated

and surrounded by lower intervening valleys. In such cases species tend to have

restricted distributions limited to mountain tops, as occur in many microendemic

amphibians including Nototriton Guanacaste and N. gamezi, representatives of

Crepidophryne, Incilius periglenes, I. holdridgei and I. fastidiosus (Savage, 2002;

Vaughan and Mendelson, 2007; Abarca et al., 2010).

We also hypothesized that either current or historical barriers imposed by

climatic conditions that determine niche suitability (IBRsuit) for each species could

promote isolation and influence genetic differentiation in the study region. We found

Page 93: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

93

that such explanation fits in the case of D. ebraccatus, D. diastema and L.

warszewitschii. In all cases, the resistance imposed by less suitable regions between

sampled localities is the factor that best explains genetic differentiation in these

species. Such trend follows the principles of niche conservatism, the tendency of

species to retain ancestral ecological characteristics (Wiens and Graham, 2005;

Wiens et al., 2010). At the intraspecific level, it could result either from the

fragmentation of continuous distributions due to climatic oscillations that reflect on

range contractions (Hewitt, 2003, 2004) or from disjointed distributions that result

from different routes of colonization. In both cases populations could become

isolated by means of unsuitable conditions in the regions that connect them.

In our fourth hypothesis, we predicted that climatic heterogeneity in the region

might promote adaptation to local conditions (IBE) and influence the patterns of

genetic differentiation. We found that this scenario explains genetic differentiation

in the COI gene of S. albomaculata.

Certainly, one of the most striking characteristics of LCA is the vast variety of

climates that converges in such a small area (Coen, 1991). For example, transitions

between arid and very humid conditions occur in few hundreds of kilometers in the

Pacific of Costa Rica while temperature may change significantly in short distances

along elevation gradients in the mountain systems of the region (Coen, 1991;

Savage, 2002). Variation in species-specific tolerances and local adaptation to such

Page 94: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

94

diverse climates seems to influence distribution of several taxa in the region. It

occurs even in groups considered good dispersers, such as birds (Garrigues and

Dean, 2014) and volant mammals like the vespertilionid bats Rhogeessa bickhami

and R. io.

Finally, our full model containing all predictors was not able to significantly

explain genetic divergence in four species: the salamanders B. lignicolor and O.

alleni, the masked tree frog S. phaeota and the toad R. horribilis. These species have

several particularities that may account for such lack of relation between our

predictors and their genetic structure. Both salamanders have distributions restricted

to the Pacific slope of the study region, in elevations below 900 meters (Savage,

2002). This removes the opportunity to test for topographic or climatic barriers along

broad altitudinal gradients. Conversely, it also highlights the role that physical

barriers and climate play as primary constraints of distributions by limiting species

potential for dispersion and establishment, depending on their specific tolerances to

abiotic conditions (Grinnell, 1917; Barve et al., 2011).

The two anurans can be considered more generalists in their preferences and

thus are expected to have wider distributions. Such distributions can be maintained

due to their, broader tolerances and higher dispersal capabilities, probably as result

of their intrinsic biological features. For example, S. phaeota a common species, is

the largest tree frog among the hylids included in this study (Savage, 2002). This

Page 95: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

95

species has extended breeding through the year, reproduces in small ponds or

shallow streamlets even in altered habitats, clutch size can reach the 2000 eggs and

tadpoles are resistant enough to survive up to 24 hours out of the water (Valerio,

1971; Savage, 2002). Rhinella horribilis was only recently described as a cryptic

species related to the common cane toad R. marina (Acevedo et al., 2016). Rhinella

mariana, is widely distributed in the Neotropics, has high dispersal potential and is

known for one of the most aggressive invasions in Australia (Phillips et al., 2006,

2010). In their native range these species are common even in altered habitats from

sea level to above 2000 meters elevation where they lay up to 25000 eggs in lentic

water bodies (Savage, 2002).

Morphological features, high dispersal ability, intrinsic physiological

tolerances and behavioral strategies in these large species may explain its

distribution and persistence under heterogeneous environmental pressures (Hilje and

Arévalo-Huezo, 2012; Mccann et al., 2014). For these reasons, we consider that

barriers affecting other anurans do not necessarily represent major drivers of

isolation and gene flow must be higher in this species.

Page 96: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

96

CONCLUSIONS

The convergence of several drivers of isolation and the co-occurrence of such

a heterogeneous biota with different life histories, origins and arrival times to the

complex landscapes of ICA maximize the chances of genetic differentiation in the

region. Different types of isolation such as IBD and IBE (both reviewed in Sexton

et al. 2014) or IBR driven by topographic and climatic barriers (Rodríguez et al.,

2015; Thomas et al., 2015; Oliveira et al., 2017) are proved forces involved in the

genetic differentiation of different taxa around the globe. Our study highlights how

they can act simultaneously and differentially affect co-distributed taxa in a

relatively small area. Certainly, the intrinsic characteristics of each species play an

important role in how a given species respond to different drivers of isolation; and

such interaction between organisms and their environment must be considered when

trying to understand patterns of genetic divergence (Paz et al., 2015; Rodríguez et

al., 2015). The evolutionary dynamic of ICA is far from the simplistic view that

point out vicariance between Caribbean and Pacific clades as the main form of

speciation in the region. In situ diversification plays an important role in shaping

richness patterns in the region and its biota is undoubtedly underestimated. For that

reason, further efforts must be oriented to first document unknown diversity and then

add more groups to this kind of analysis.

Page 97: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

97

ACKNOWLEDGEMENTS

Javier Guevara and Sistema Nacional de Areas de Conservación de Costa Rica

provided permits to researchers of Museo de Zoología, Universidad de Costa Rica

(MZUCR). We = thank Federico Bolaños (MZUCR) for permission and access to

the samples sequenced for this study; Sandra Flechas for his patient collaboration

during lab procedures. NAOS Island Laboratories of the Smithsonian Tropical

Research Institute for support during lab work A.G.R acknowledges Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES) for the financial

support and Gerardo Chaves (MZUCR) for his teachings during innumerous field

trips, as well as for the constant discussion on the herpetology of Central America

and his comments on early versions of this manuscript.

AUTHOR CONTRIBUTIONS

A.G.R, C.E.G and G.C.C conceived the study; A.G.R and A.J.C conducted field

work and collected DNA sequence data; A.G.R and C.E.G analyzed data; A.G.R,

C.E.G and G.C.C wrote the first drafts of the manuscript; All authors provide vital

inputs, discussed, edited, and improved the final version of this study.

Page 98: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

98

REFERENCES

Abarca J, Chaves G, Garcia-Rodriguez A, Vargas R (2010). Reconsidering extinction : rediscovery of Incilius holdridgei (Anura: Bufonidae) in Costa Rica after 25 years. Herpetol Rev 41: 150–152.

Acevedo AA, Lampo M, Cipriani R (2016). The cane or marine toad, Rhinella marina (Anura, Bufonidae): two genetically and morphologically distinct species. Zootaxa 4103: 574–586.

Anger GR, Dean R (2010). The Birds of Panama: a Field Guide. Zona Tropical Publication: San José.

Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci 112: 6110–6115.

Bagley JC, Johnson JB (2014). Phylogeography and biogeography of the lower Central American Neotropics: Diversification between two continents and between two seas. Biol Rev 89: 767–790.

Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson a. T, et al. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell 222: 1810–1819.

Blaustein AR, Wake DB, Sousa WP (1994). Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8: 60–71.

de Boer JZ, Drummond MS, Bordelon MJ, Defant MJ, Bellon H, Maury RC (1995). Cenozoic magmatic phases of the Costa Rican island arc (Cordillera de Talamanca). Geol Soc Am Spec Pap 295: 35–56.

Bogarín D, Pupulin F, Arrocha C, Warner J (2013). Orchids without borders: studying the hotspot of Costa Rica and Panama. Lankesteriana 13: 13–26.

Brumfield RT, Braun MJ (2001). Phylogenetic relationships in bearded manakins (Pipridae : Manacus) indicate that male plumage color is a misleading taxonomic marker. Condor 103: 248–258.

Castroviejo-Fisher S, Guayasamin JM, Gonzalez-Voyer A, Vilà C (2014). Neotropical diversification seen through glassfrogs. J Biogeogr 41: 66–80.

Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowtsett HJ, Bybell LM, et al. (1992). Closure of the Isthmus of Panama: The near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104: 814–828.

Coen E (1991). Climate. In: Janzen DH (ed) Historia Natural de Costa Rica, Editorial de la Universidad de Costa Rica: San José, Costa Rica, p 822.

Collins RA, Boykin LM, Cruickshank RH, Armstrong KF (2012). Barcoding’s next top model: An evaluation of nucleotide substitution models for specimen

Page 99: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

99

identification. Methods Ecol Evol 3: 457–465. Collins RA, Cruickshank RH (2012). The seven deadly sins of DNA barcoding. Mol

Ecol Resour 13: 969–975. Crawford AJ, Bermingham E, Carolina PS (2007). The role of tropical dry forest as

a long-term barrier to dispersal: a comparative phylogeographical analysis of dry forest tolerant and intolerant frogs. Mol Ecol 16: 4789–807.

Doebeli M, Dieckmann U (2003). Speciation along environmental gradients. Nature 421: 259–264.

Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

Ferrier S, Manion G, Elith J, Richardson K (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13: 252–264.

Frost DR (2017). Amphibian species of the world: an online reference. Version 6.0 (August 2017). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.

Funk WC, Blouin MS, Corn PS, Maxell B a, Pilliod DS, Amish S, et al. (2005). Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14: 483–96.

Funk WC, Caminer M, Ron SR (2012). High levels of cryptic species diversity uncovered in Amazonian frogs. Proc R Soc B 279: 1806–14.

Gabb WM, Lücke OH, Gutiérrez V, Soto G (2007). On the geology of the Republic of Costa Rica. 203: 103–118.

Garrigues R, Dean R (2014). The Birds of Costa Rica. Zona Tropical Publication: San José, Costa Rica.

Grinnell J (1917). Field tests of theories concerning distributional control. Am Nat 51: 115–128.

Guarnizo CE, Cannatella DC (2013). Genetic divergence within frog species is greater in topographically more complex regions. J Zool Syst Evol Res 51: 333–340.

Hewitt G (2003). Ice ages: their impact on species distributions and evolution. In: Rothschild LJ, Lister AM (eds) Evolution on Planet Earth: The Impact of the Physical Environment, Academic Press: New York, pp 339–361.

Hewitt GM (2004). Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359: 183–95; discussion 195.

Hijmans RJ, van Etten J (2010). raster: Geographic analysis and modeling with raster data. R Packag version 1.

Hijmans RJ, Phillips S, Leathwick J, Elith J (2012). Package ‘dismo’. Species distribution modeling. R package version 0.8-11. <CRANR-project.org/

Page 100: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

100

Packag. Hilje B, Arévalo-Huezo E (2012). Aestivation in the cane toad Rhinella marina

Linnaeus, 1758 (Anura, Bufonidae) during the peak of a dry season in a tropical dry forest, Costa Rica. Herpetol Notes 5: 533–534.

Horn S (1990). Timing of deglaciation in the Cordillera de Talamanca, Costa Rica. Clim Res 1: 81–83.

Islebe GA, Van Der Borg K, Hooghiemstra H (1995). The Younger Dryas climatic event in the Cordillera de Talamanca, Costa Rica. Geol en Mijnb 74: 281–283.

Islebe GA, Hooghiemstra H, van´t Veer R (1996). Holocene vegetation and water level history in two bogs of the Cordillera de Talamanca, Costa Rica. Vegetatio 124: 155–171.

Janzen DH (1991). Historia Natural de Costa Rica, Primera (D Janzen, Ed.). Editorial San José, Universidad de Costa Rica: San José, Costa Rica.

Keigwin LD (1978). Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology 6: 630–634.

Kimura M (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.

Kluge J, Kessler M (2006). Fern endemism and its correlates: contribution from an elevational transect in Costa Rica. Divers Distrib 12: 535–545.

Kubicki B (2007). Ranas de Vidrio de Costa Rica, 1st edn. Instituto Nacional de Biodiversidad: Santo Domingo de Heredia, Costa Rica.

Luteyn J (1999). Paramos: A checklist of plant diversity, geographical distribution, and botanical literature. Mem N Y Bot Gard 84: 138–141.

Manel S, Holderegger R (2013). Ten years of landscape genetics. Trends Ecol Evol 28: 614–621.

Marshall LG (1988). Land mammals and the great American interchange. Am Sci 76: 380–388.

Marshall JS (2007). The geomorphology and physiographic provinces of Central America. In: Bundschuh & Alvarado (ed) Central America: Geology, Resources and Hazards,, pp 1–51.

Mayr E (1942). Systematics and the origin of species, 1st edn. Columbia University Press: New York.

Mccann S, Greenlees MJ, Newell D, Shine R (2014). Rapid acclimation to cold allows the cane toad to invade montane areas within its Australian range. Funct Ecol 28: 1166–1174.

McRae BH (2006). Isolation by resistance. Evolution 60: 1551–1561. Montes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrepo-Moreno S, et

al. (2012). Evidence for middle Eocene and younger land emergence in central

Page 101: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

101

Panama: Implications for Isthmus closure. Bull Geol Soc Am 124: 780–799. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al.

(2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5: 1198–1205.

O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, et al. (2016). Formation of the Isthmus of Panama. Sci Adv 2: 1–12.

Oliveira EF, Martinez PA, São-Pedro VA, Gehara M, Burbrink FT, Mesquita DO, et al. (2017). Climatic suitability, isolation by distance and river resistance explain genetic variation in a Brazilian whiptail lizard. Heredity (Edinb) 120: 251–265.

Padial JM, De La Riva I (2009). Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura: Strabomantidae). Zool J Linn Soc 155: 97–122.

Paz A, Crawford AJ (2012). Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians. J Biosci 37: 887–896.

Paz A, Ibáñez R, Lips KR, Crawford AJ (2015). Testing the role of ecology and life history in structuring genetic variation across a landscape: a trait-based phylogeographic approach. Mol Ecol 24: 3723–3737.

Phillips BL, Brown GP, Shine R (2010). Evolutionarily accelerated invasions: the rate of dispersal evolves upwards during the range advance of cane toads. J Evol Biol 23: 2595–2601.

Phillips BL, Brown GP, Webb JK, Shine R (2006). Invasion and the evolution of speed in toads. Nature 439: 803.

Pinto-Sánchez NR, Ibañez R, Madriñán S, Sanjur OI, Bermingham E, Crawford AJ (2012). The Great American Biotic Interchange in frogs: multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol Phylogenet Evol 62: 954–972.

Posada D (2008). jModelTest: Phylogenetic model averaging. Mol Biol Evol 25: 1253–1256.

Prum R, Rice NH, Mobley J, Dimmick W (2000). A preliminary phylogenetic hypothesis for the cotingas (Cotingidae) based on mitochondrial DNA. Auk 117: 236–241.

Puillandre N, Lambert A, Brouillet S, Achaz G (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21: 1864–1877.

Robertson JM, Duryea MC, Zamudio KR (2009). Discordant patterns of evolutionary differentiation in two Neotropical treefrogs. Mol Ecol 18: 1375–1395.

Robertson JM, Zamudio KR (2009). Genetic diversification, vicariance, and selection in a polytypic frog. J Hered 100: 715–731.

Page 102: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

102

Rodriguez-Herrera B, Chinchilla F a., May-collado L (2004). Lista de especies, endemismo y conservación de los de mamíferos de Costa Rica. Rev Mex Mastozool 6: 19–41.

Rodríguez A, Börner M, Pabijan M, Gehara M, Haddad CFB, Vences M (2015). Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evol Ecol 29: 765–785.

Rousset F (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.

Savage JM (1966). The origins and history of the Central American herpetofauna. Copeia 1966: 719–766.

Savage JM (2002). The Amphibians and Reptiles of Costa Rica: A Herpetofauna Between Two Continents, Between Two Seas. University of Chicago press.

Savage J, Bolaños F (2009). A checklist of the amphibians and reptiles of Costa Rica: additions and nomenclatural revisions. Zootaxa 2005: 1–23.

Selonen V, Hanski IK, Painter JN (2010). Gene flow and natal dispersal in the Siberian flying squirrel based on direct and indirect data. Conserv Genet 11: 1257–1264.

Sexton JP, Hangartner SB, Hoffmann AA (2014). Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution 68: 1–15.

Shah VB, McRae BH (2008). Circuitscape : a tool for landscape ecology. Proc 7th Python Sci Conf: 62–65.

Slatkin M (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279.

Solís F, Ibáñez R, Chaves G, Savage J, Jaramillo C, Fuenmayor Q, et al. (2010). Sachatamia albomaculata. IUCN Red List Threat Species 2010.

Solórzano A, Cerdas L (2010). A New Subspecies of the Bushmaster , Lachesis muta , from southeastern Costa Rica. J Herpetol 20: 463–466.

Stiles G, Remsen J V., McGuire JA (2017). The generic classification of the Trochilini (Aves: Trochilidae): reconciling taxonomy with phylogeny. Zootaxa 4353: 401–424.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.

Thomas L, Kennington WJ, Stat M, Wilkinson SP, Kool JT, Kendrick GA (2015). Isolation by resistance across a complex coral reef seascape. Proc R Soc B Biol Sci 282: 20151217.

Valerio C. (1971). Ability of some tropical tadpoles to survive without water. Copeia 2: 364–365.

Vaughan A, Mendelson JR (2007). Taxonomy and ecology of the Central American toads of the genus Crepidophryne (Anura: Bufonidae). Copeia 2007: 304–314.

Page 103: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

103

Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR (2005). Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2: 5.

Wang IJ (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67: 3403–3411.

Wang IJ, Bradburd GS (2014). Isolation by environment. Mol Ecol 23: 5649–5662. Wang IJ, Crawford AJ, Bermingham E (2008). Phylogeography of the Pygmy Rain

Frog (Pristimantis ridens) across the lowland wet forests of isthmian Central America. Mol Phylogenet Evol 47: 992–1004.

Wang IJ, Glor RE, Losos JB (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16: 175–82.

Wang Y-H, Yang K-C, Bridgman CL, Lin L-K (2008). Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc Ecol 23: 989–1000.

Webb SD (2006). The Great American Biotic Interchange: patterns and processes. Ann Missouri Bot Gard 93: 245–257.

Weigt L a, Crawford AJ, Rand a S, Ryan MJ (2005). Biogeography of the túngara frog, Physalaemus pustulosus: a molecular perspective. Mol Ecol 14: 3857–76.

Weir JT, Bermingham E, Schluter D (2009). The Great American Biotic Interchange in birds. Proc Natl Acad Sci U S A 106: 21737–42.

Weyl R (1980). Geology of Central America. Gebrueder Borntraeger: Berlin-Stuttgart.

Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell H V, et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13: 1310–24.

Wiens JJ, Graham CH (2005). Niche Conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36: 519–539.

Wilson JS, Carril OM, Sipes SD (2014). Revisiting the Great American Biotic Interchange through analyses of amphitropical bees. Ecography 37: 791–796.

Wollenberg KC, Vieites DR, Glaw F, Vences M (2011). Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol Biol 11: 217.

Wright S (1943). Isolation by Distance. Genetics 28: 114–138.

Page 104: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

104

-Supplementary Material-

Idiosyncratic responses to drivers of genetic differentiation in the complex

landscapes of lower central america

Ecological Niche Modeling details

Model Evaluation and Tuning

We built a series of candidate models, using MaxEnt algorithm with a variety of

user-defined settings and provided multiple evaluation metrics to aid in selecting

optimal model settings. We built multiple models for each species varying the values

of regularization multipliers from 1 to 5 at 0.5 intervals and testing several feature

classes (linear, quadratic, hinge, linear) in all their possible combinations. We

created the models using a training and test datasets generated using the block

partition method, which divides occurrences into four bins based on the lines of

latitude and longitude that divide occurrence localities as equally as possible

(Radosavljevic & Anderson 2014)

Model Selection

Between candidate models, we choose the optimal settings assessing the values of 4

metrics in the following order of priority: Omission rate of Minimum training

presence threshold, Area under the curve (AUC) for test data (AUCtest), AUC

difference between training and test data (AUCdiff) and Akaike Information Criteria

Page 105: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

105

(AICc). The area under the curve based on test data (AUCtest) measures model

ability to discriminate conditions at withheld occurrence localities from those at

background samples (Radosavljevic & Anderson 2014). AUCdiff quantifies model

overfitting by comparing training and test AUC, values for this metric should be

high in the case of overfit models (Warren & Seifert, 2011). AICc provides

information on the relative quality of a model given the data (Burnham & Anderson

2004; Warren & Seifert 2011).

Variables Used

We eliminated variables with VIF values above 10 and kept the following 11

variables: Mean Diurnal Range of Temperature, Isothermality, Temperature

seasonality, Temperature Annual Range, Mean Temperature of Wettest Quarter,

Annual Precipitation, Precipitation of Wettest Month, Precipitation of Driest Month,

Precipitation Seasonality, Precipitation of Warmest Quarter and Precipitation of

Coldest Quarter.

Page 106: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

106

Table S1. Details on source, accession, locality and coordinates of each sample included in this study.

Species Source Accession Marker Country Locality Latitude Longitude

Agalychnis callidryas GenBank FJ489260 16s Costa Rica Cabo Blanco 9.581 -85.125

Agalychnis callidryas GenBank FJ489261 16s Costa Rica Cabo Blanco 9.581 -85.125

Agalychnis callidryas GenBank FJ489262 16s Costa Rica Cabo Blanco 9.581 -85.125

Agalychnis callidryas GenBank FJ489263 16s Costa Rica Cabo Blanco 9.581 -85.125

Agalychnis callidryas GenBank FJ489264 16s Costa Rica Cahuita 9.719 -82.814

Agalychnis callidryas GenBank FJ489265 16s Costa Rica Cahuita 9.719 -82.814

Agalychnis callidryas GenBank FJ489266 16s Costa Rica Cahuita 9.719 -82.814

Agalychnis callidryas GenBank FJ489276 16s Panama El Cope 8.630 -80.592

Agalychnis callidryas GenBank FJ489277 16s Panama El Cope 8.630 -80.592

Agalychnis callidryas GenBank FJ489278 16s Panama El Cope 8.630 -80.592

Agalychnis callidryas GenBank FJ489279 16s Panama El Cope 8.630 -80.592

Agalychnis callidryas GenBank FJ489280 16s Costa Rica Guacimo 10.237 -83.567

Agalychnis callidryas GenBank FJ489281 16s Costa Rica Guacimo 10.237 -83.567

Agalychnis callidryas GenBank FJ489282 16s Costa Rica Guacimo 10.237 -83.567

Agalychnis callidryas GenBank FJ489283 16s Costa Rica Guacimo 10.237 -83.567

Agalychnis callidryas GenBank FJ489284 16s Panama El Valle 8.630 -80.116

Agalychnis callidryas GenBank FJ489285 16s Panama El Valle 8.630 -80.116

Agalychnis callidryas GenBank FJ489286 16s Panama El Valle 8.630 -80.116

Agalychnis callidryas GenBank FJ489288 16s Panama Gamboa 9.123 -79.693

Agalychnis callidryas GenBank FJ489289 16s Panama Gamboa 9.123 -79.693

Agalychnis callidryas GenBank FJ489290 16s Panama Gamboa 9.123 -79.693

Agalychnis callidryas GenBank FJ489291 16s Costa Rica La Selva 10.433 -84.008

Agalychnis callidryas GenBank FJ489292 16s Costa Rica La Selva 10.433 -84.008

Agalychnis callidryas GenBank FJ489293 16s Costa Rica La Selva 10.433 -84.008

Agalychnis callidryas GenBank FJ489294 16s Costa Rica La Selva 10.433 -84.008

Agalychnis callidryas GenBank FJ489295 16s Costa Rica La Selva 10.433 -84.008

Agalychnis callidryas GenBank FJ489296 16s Costa Rica La Selva 10.433 -84.008

Page 107: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

107

Agalychnis callidryas GenBank FJ489297 16s Costa Rica Manzanillo 9.633 -82.656

Agalychnis callidryas GenBank FJ489298 16s Costa Rica Manzanillo 9.633 -82.656

Agalychnis callidryas GenBank FJ489299 16s Costa Rica Manzanillo 9.633 -82.656

Agalychnis callidryas GenBank FJ489301 16s Costa Rica Manzanillo 9.633 -82.656

Agalychnis callidryas GenBank FJ489302 16s Costa Rica Manzanillo 9.633 -82.656

Agalychnis callidryas GenBank FJ489307 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489308 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489309 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489310 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489311 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489312 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489313 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489314 16s Costa Rica Bandera 9.519 -84.377

Agalychnis callidryas GenBank FJ489315 16s Panama Santa Fe 8.507 -81.114

Agalychnis callidryas GenBank FJ489316 16s Panama Santa Fe 8.507 -81.114

Agalychnis callidryas GenBank FJ489321 16s Costa Rica Siquirres 8.889 -83.477

Agalychnis callidryas GenBank FJ489322 16s Costa Rica San Ramon 10.234 -84.529

Agalychnis callidryas GenBank FJ489323 16s Costa Rica San Ramon 10.234 -84.529

Agalychnis callidryas GenBank FJ489324 16s Costa Rica Tilaran 10.516 -84.960

Agalychnis callidryas GenBank FJ489325 16s Costa Rica Tilaran 10.516 -84.960

Agalychnis callidryas GenBank FJ489327 16s Costa Rica Uvita 9.124 -83.701

Agalychnis callidryas GenBank FJ489328 16s Costa Rica Uvita 9.124 -83.701

Agalychnis callidryas GenBank FJ489331 16s Costa Rica Uvita 9.124 -83.701

Agalychnis callidryas GenBank FJ489333 16s Costa Rica Uvita 9.124 -83.701

Bolitoglossa lignicolor BoLD BSUCR444 16s Costa Rica S. Isidro de Dota

9.677 -84.076

Bolitoglossa lignicolor BoLD BSUCR441 16s Costa Rica Dominical 9.264 -83.872

Bolitoglossa lignicolor GenBank JX434638 16s Panama Santa Clara 8.830 -82.780

Bolitoglossa lignicolor GenBank JX434639 16s Panama Buenos Aires 8.470 -81.510

Bolitoglossa lignicolor BoLD BSUCR442 16s Costa Rica La Gamba 8.675 -83.203

Page 108: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

108

Bolitoglossa lignicolor GenBank JX434640 16s Panama Cerro Hoya 7.320 -80.790

Bolitoglossa lignicolor GenBank JX434643 16s Panama Cerro Hoya 7.320 -80.790

Bolitoglossa lignicolor GenBank JX434641 16s Panama Cerro Hoya 7.320 -80.790

Bolitoglossa lignicolor GenBank JX434642 16s Panama Guacá 8.500 -82.430

Bolitoglossa lignicolor GenBank AF218484 16s Costa Rica Osa 9.150 -83.335

Bolitoglossa lignicolor BoLD BSUCR443 16s Costa Rica Potrero Grande 9.098 -83.113

Diasporus diastema GenBank FJ766809 COI Panama Cocle 8.670 -80.590

Diasporus diastema GenBank FJ766810 COI Panama Cocle 8.670 -80.590

Diasporus diastema GenBank KT186558 COI Panama Fortuna 8.719 -82.232

Diasporus diastema GenBank JN991347 COI Costa Rica San Ramon 10.220 -84.540

Diasporus diastema BoLD BSUCR240 COI Costa Rica Sabalito 8.944 -82.753

Diasporus diastema BoLD BSUCR241 COI Costa Rica Sabalito 8.944 -82.753

Diasporus diastema BoLD BSUCR234 COI Costa Rica Balsa 10.186 -84.508

Diasporus diastema BoLD BSUCR097 COI Costa Rica Balsa 10.186 -84.508

Diasporus diastema BoLD BSUCR223 COI Costa Rica Guayacan 10.050 -83.550

Diasporus diastema BoLD BSUCR218 COI Costa Rica Veragua 9.926 -83.188

Diasporus diastema BoLD BSUCR224 COI Costa Rica Tapanti 9.775 -83.797

Dendropsophus ebraccatus GenBank FJ542181 16s Costa Rica Manzanillo 9.633 -82.654

Dendropsophus ebraccatus GenBank FJ542180 16s Costa Rica Manzanillo 9.633 -82.654

Dendropsophus ebraccatus GenBank FJ542179 16s Costa Rica Manzanillo 9.633 -82.654

Dendropsophus ebraccatus GenBank FJ542195 16s Costa Rica Uvita 9.994 -83.032

Dendropsophus ebraccatus GenBank FJ542194 16s Costa Rica Uvita 9.994 -83.032

Dendropsophus ebraccatus GenBank FJ542184 16s Costa Rica Pavones 8.388 -83.140

Dendropsophus ebraccatus GenBank FJ542197 16s Costa Rica Uvita 9.994 -83.032

Dendropsophus ebraccatus BoLD BSUCR267 16s Costa Rica Golfito 8.651 -83.180

Dendropsophus ebraccatus BoLD BSUCR268 16s Costa Rica Piro 8.411 -83.344

Dendropsophus ebraccatus BoLD BSUCR400 16s Costa Rica Altamira 8.784 -83.019

Dendropsophus ebraccatus GenBank FJ542196 16s Costa Rica Uvita 9.994 -83.032

Dendropsophus ebraccatus GenBank FJ542185 16s Costa Rica Pavones 8.387 -83.140

Dendropsophus ebraccatus GenBank FJ542183 16s Costa Rica Pavones 8.387 -83.140

Page 109: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

109

Dendropsophus ebraccatus GenBank FJ542182 16s Costa Rica Pavones 8.387 -83.140

Dendropsophus ebraccatus GenBank FJ542193 16s Costa Rica Siquirres 10.092 -83.515

Dendropsophus ebraccatus GenBank FJ542192 16s Costa Rica Siquirres 10.092 -83.515

Dendropsophus ebraccatus GenBank FJ542191 16s Costa Rica Siquirres 10.092 -83.515

Dendropsophus ebraccatus GenBank FJ542189 16s Costa Rica Bandera 9.523 -84.412

Dendropsophus ebraccatus GenBank FJ542188 16s Costa Rica Bandera 9.523 -84.412

Dendropsophus ebraccatus GenBank FJ542186 16s Costa Rica Bandera 9.523 -84.412

Dendropsophus ebraccatus GenBank FJ542190 16s Costa Rica Bandera 9.523 -84.412

Dendropsophus ebraccatus GenBank FJ542187 16s Costa Rica Bandera 9.523 -84.412

Dendropsophus ebraccatus GenBank FJ542178 16s Costa Rica La Selva 10.430 -84.008

Dendropsophus ebraccatus BoLD BSUCR271 16s Costa Rica Veragua 9.926 -83.188

Espadarana prosoblepon GenBank KR863251 16s Panama Cerro Brewster 9.320 -79.289

Espadarana prosoblepon GenBank KR863250 16s Panama Rio Chagres 9.265 -79.508

Espadarana prosoblepon GenBank KR863246 16s Panama Rio Chagres 9.265 -79.508

Espadarana prosoblepon GenBank KR863235 16s Panama Cerro Brewster 9.320 -79.289

Espadarana prosoblepon GenBank KR863241 16s Panama Cerro Brewster 9.320 -79.289

Espadarana prosoblepon GenBank KR863253 16s Panama Cerro Azul 9.231 -79.403

Espadarana prosoblepon GenBank KR863245 16s Panama Cerro Azul 9.231 -79.403

Espadarana prosoblepon BoLD BSUCR056 16s Costa Rica Balsa 10.189 -84.504

Espadarana prosoblepon BoLD BSUCR055 16s Costa Rica Balsa 10.186 -84.508

Espadarana prosoblepon BoLD BSUCR148 16s Costa Rica Londres de Quepos

9.462 -84.063

Espadarana prosoblepon BoLD BSUCR147 16s Costa Rica Potrero Grande 9.098 -83.113

Espadarana prosoblepon GenBank FJ784362 16s Panama El Cope 8.667 -80.592

Espadarana prosoblepon GenBank FJ784363 16s Panama El Cope 8.667 -80.592

Espadarana prosoblepon BoLD BSUCR054 16s Costa Rica Rodeo 9.904 -84.280

Espadarana prosoblepon GenBank KR863252 16s Panama Cana Station 7.756 -77.684

Espadarana prosoblepon GenBank KR863249 16s Panama Cana Station 7.756 -77.684

Espadarana prosoblepon GenBank KR863248 16s Panama Cana Station 7.756 -77.684

Espadarana prosoblepon GenBank KR863243 16s Panama Rio Cana 7.762 -77.724

Page 110: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

110

Espadarana prosoblepon GenBank KR863242 16s Panama Rio Cana 7.762 -77.724

Espadarana prosoblepon GenBank KR863238 16s Panama Rio Cana 7.762 -77.724

Espadarana prosoblepon GenBank KR863237 16s Panama Rio Cana 7.762 -77.724

Espadarana prosoblepon GenBank KR863247 16s Panama Cana Station 7.756 -77.684

Espadarana prosoblepon GenBank KR863244 16s Panama Rio Cana 7.762 -77.724

Espadarana prosoblepon GenBank KR863240 16s Panama Rio Cana 7.762 -77.724

Espadarana prosoblepon GenBank KR863239 16s Panama Rio Cana 7.762 -77.724

Espadarana prosoblepon GenBank KR863234 16s Panama Rio Cana 7.762 -77.724

Lithobates warscewitschii GenBank FJ784384 16s Panama El Cope 8.667 -80.592

Lithobates warscewitschii GenBank KR863272 16s Panama Cerro Brewster 9.320 -79.289

Lithobates warscewitschii GenBank KR863282 16s Panama Cerro Brewster 9.320 -79.289

Lithobates warscewitschii GenBank KR863281 16s Panama Rio Chagres 9.265 -79.508

Lithobates warscewitschii GenBank KR863280 16s Panama Cerro Brewster 9.320 -79.289

Lithobates warscewitschii GenBank KR863279 16s Panama Cerro Brewster 9.320 -79.289

Lithobates warscewitschii GenBank KR863276 16s Panama Rio Chagres 9.265 -79.508

Lithobates warscewitschii GenBank KR863275 16s Panama Rio Chagres 9.265 -79.508

Lithobates warscewitschii GenBank KR863274 16s Panama Cerro Azul 9.231 -79.403

Lithobates warscewitschii GenBank KR863271 16s Panama Cerro Brewster 9.320 -79.289

Lithobates warscewitschii GenBank KR863284 16s Panama Cerro Azul 9.231 -79.403

Lithobates warscewitschii GenBank KR863283 16s Panama Cerro Azul 9.231 -79.403

Lithobates warscewitschii GenBank KR863278 16s Panama Cerro Azul 9.231 -79.403

Lithobates warscewitschii GenBank KR863277 16s Panama Cerro Azul 9.231 -79.403

Lithobates warscewitschii GenBank KR863273 16s Panama Cerro Brewster 9.320 -79.289

Lithobates warscewitschii GenBank FJ784454 16s Panama El Cope 8.667 -80.592

Lithobates warscewitschii GenBank KR911917 16s Panama El Cope 8.667 -80.592

Lithobates warscewitschii GenBank KR911916 16s Panama El Cope 8.667 -80.592

Lithobates warscewitschii GenBank KR911918 16s Panama El Cope 8.667 -80.592

Lithobates warscewitschii BoLD BSUCR366 16s Costa Rica Fila Matama 9.618 -83.283

Lithobates warscewitschii BoLD BSUCR364 16s Costa Rica Fila Matama 9.618 -83.268

Lithobates warscewitschii BoLD BSUCR365 16s Costa Rica Fila Matama 9.618 -83.283

Page 111: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

111

Lithobates warscewitschii BoLD BSUCR367 16s Costa Rica Fila Matama 9.605 -83.280

Lithobates warscewitschii BoLD BSUCR129 16s Costa Rica Talamanca 9.357 -83.229

Lithobates warscewitschii BoLD BSUCR382 16s Costa Rica Talamanca 9.357 -83.229

Lithobates warscewitschii BoLD BSUCR372 16s Costa Rica Balsa 10.183 -84.510

Lithobates warscewitschii BoLD BSUCR373 16s Costa Rica Veragua 9.926 -83.188

Lithobates warscewitschii BoLD BSUCR370 16s Costa Rica Potrero Grande 9.102 -83.114

Lithobates warscewitschii BoLD BSUCR378 16s Costa Rica La Gamba 8.679 -83.202

Oedipina alleni BoLD BSUCR464 16s Costa Rica S. Isidro de Dota

9.677 -84.076

Oedipina alleni BoLD BSUCR465 16s Costa Rica Londres 9.462 -84.063

Oedipina alleni GenBank AF199209 16s Costa Rica Cerro Zapote 8.750 -82.983

Oedipina alleni GenBank AF199208 16s Costa Rica Damas 9.462 -84.224

Oedipina alleni GenBank AF199207 16s Costa Rica Sirena 8.481 -83.594

Pristimantis ridens GenBank FJ784399 16s Panama El Cope 8.667 -80.592

Pristimantis ridens GenBank FJ784398 16s Panama El Cope 8.667 -80.592

Pristimantis ridens GenBank JN991466 16s Costa Rica Rio Claro 8.740 -82.960

Pristimantis ridens BoLD BSUCR415 16s Costa Rica Veragua 9.926 -83.188

Pristimantis ridens BoLD BSUCR414 16s Costa Rica Balsa 10.186 -84.508

Pristimantis ridens BoLD BSUCR416 16s Costa Rica S. Isidro de Dota

9.677 -84.076

Pristimantis ridens BoLD BSUCR420 16s Costa Rica Potrero Grande 9.117 -83.097

Pristimantis ridens GenBank KR863320 16s Panama Cerro Azul 9.217 -79.422

Pristimantis ridens GenBank KR863318 16s Panama Cerro Azul 9.231 -79.403

Pristimantis ridens GenBank KR863319 16s Panama Cerro Azul 9.231 -79.403

Pristimantis ridens GenBank JN991465 16s Panama Nusgandi 9.317 -78.983

Pristimantis ridens GenBank KR863317 16s Panama Cerro Brewster 9.290 -79.300

Pristimantis ridens GenBank FJ784389 16s Panama El Cope 8.667 -80.592

Pristimantis ridens GenBank FJ784388 16s Panama El Cope 8.667 -80.592

Rhinella horribilis BoLD BSUCR042 16s Costa Rica Veragua 10.877 -84.329

Rhinella horribilis GenBank DQ415563 16s Costa Rica - 10.453 -84.081

Page 112: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

112

Rhinella horribilis BoLD BSUCR123 16s Costa Rica Los Chiles 10.947 -84.725

Rhinella horribilis BoLD BSUCR124 16s Costa Rica Medio Queso 11.032 -84.691

Rhinella horribilis BoLD BSUCR041 16s Costa Rica Veragua 10.871 -84.350

Rhinella horribilis BoLD BSUCR127 16s Costa Rica Crucitas 10.877 -84.329

Rhinella horribilis BoLD BSUCR125 16s Costa Rica Golfito 8.604 -83.170

Rhinella horribilis GenBank FJ784357 16s Panama El Cope 8.667 -80.592

Rhinella horribilis BoLD BSUCR126 16s Costa Rica Veragua 9.926 -83.188

Sachatamia albomaculata BoLD BSUCR159 16S Costa Rica Veragua 9.926 -83.188

Sachatamia albomaculata BoLD BSUCR157 16S Costa Rica Talamanca 9.618 -83.268

Sachatamia albomaculata BoLD BSUCR156 16S Costa Rica La Tirimbina 10.402 -84.108

Sachatamia albomaculata BoLD BSUCR158 16S Costa Rica Londres 9.462 -84.063

Sachatamia albomaculata BoLD BSUCR059 16S Costa Rica Rodeo 9.904 -84.280

Sachatamia albomaculata GenBank FJ784392 16S Panama El Cope 8.667 -80.592

Sachatamia albomaculata GenBank FJ784550 16S Panama El Cope 8.667 -80.592

Sachatamia albomaculata GenBank FJ784441 16S Panama El Cope 8.667 -80.592

Sachatamia albomaculata GenBank FJ784474 16S Panama El Cope 8.667 -80.592

Sachatamia albomaculata GenBank FJ784468 16S Panama El Cope 8.667 -80.592

Sachatamia albomaculata GenBank KR863349 16S Panama Cerro Azul 9.231 -79.403

Sachatamia albomaculata GenBank KR863347 16S Panama Cerro Azul 9.231 -79.403

Sachatamia albomaculata GenBank KR863346 16S Panama Cerro Azul 9.231 -79.403

Sachatamia albomaculata GenBank KR863348 16S Panama Cerro Azul 9.231 -79.403

Sachatamia albomaculata BoLD BSUCR158 COI Costa Rica Londres 9.462 -84.063

Sachatamia albomaculata BoLD BSUCR160 COI Costa Rica Potrero Grande 9.098 -83.113

Sachatamia albomaculata BoLD BSUCR156 COI Costa Rica La Tirimbina 10.402 -84.108

Sachatamia albomaculata BoLD BSUCR157 COI Costa Rica Talamanca 9.618 -83.268

Sachatamia albomaculata BoLD BSUCR159 COI Costa Rica Veragua 9.926 -83.188

Sachatamia albomaculata GenBank KR863092 COI Panama Cerro Azul 9.231 -79.403

Sachatamia albomaculata GenBank KR863091 COI Panama Cerro Azul 9.231 -79.403

Sachatamia albomaculata GenBank KR863090 COI Panama Cerro Azul 9.231 -79.403

Sachatamia albomaculata GenBank FJ766595 COI Panama Cocle 8.670 -80.590

Page 113: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

113

Sachatamia albomaculata GenBank FJ766594 COI Panama Cocle 8.670 -80.590

Sachatamia albomaculata GenBank FJ766598 COI Panama Cocle 8.670 -80.590

Sachatamia albomaculata GenBank FJ766596 COI Panama Cocle 8.670 -80.590

Sachatamia albomaculata GenBank FJ766599 COI Panama Cocle 8.670 -80.590

Sachatamia albomaculata GenBank KR863089 COI Panama Cerro Azul 9.231 -79.403

Smilisca phaeota GenBank AY326040 16s Costa Rica La Lola 10.100 -83.383

Smilisca phaeota BoLD BSUCR321 16s Costa Rica Veragua 9.926 -83.188

Smilisca phaeota BoLD BSUCR318 16s Costa Rica Balsa 10.189 -84.509

Smilisca phaeota GenBank FJ784433 16s Panama El Cope 8.667 -80.592

Smilisca phaeota GenBank FJ784413 16s Panama El Cope 8.667 -80.592

Smilisca phaeota BoLD BSUCR317 16s Costa Rica Piro 8.411 -83.344

Smilisca phaeota BoLD BSUCR320 16s Costa Rica S. Isidro de Dota

9.677 -84.076

Smilisca phaeota BoLD BSUCR311 16s Costa Rica Crucitas 10.868 -84.345

Smilisca phaeota BoLD BSUCR319 16s Costa Rica Londres 9.462 -84.063

Page 114: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

114

CAPÍTULO III***

The role of geography, topography and climate in the acoustic divergence of Neotropical Diasporus frogs

Page 115: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

115

The role of geography, topography and climate in the acoustic divergence of Neotropical Diasporus frogs

Adrián García-Rodríguez1,2, Marcelo Araya-Salas3, & Gabriel C. Costa4

1Departamento de Ecologia, Universidade Federal do Rio Grande do Norte,

Natal - RN, Brasil, 59078-900

2Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San

José, Costa Rica.

3Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road,

Ithaca, New York 14850, USA

4Department of Biology, Auburn University at Montgomery, Montgomery AL

36124.

Correspondence: [email protected]

Page 116: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

116

Abstract

Background. Acoustic communication is central in the biology of most anuran

species. Geographic variation in acoustic signals can led to failure in

conspecific recognition, becoming an important mechanism of reproductive

isolation and a primer of speciation. Here we documented patterns of acoustic

variation among 21 populations of two species of Diasporus frogs. Then, we

assessed whether geographic distance, topography, connectivity of suitable

habitats and local climate have a role in shaping those patterns.

Results. We found deep acoustic divergence in both species. Pacific

populations of D. diastema vocalize at lower frequencies than Caribbean

populations. Males of D. hylaeformis from Tapantí, showed striking differences

in call duration. Topography explained ~30% of the deviance in the acoustic

divergence of D.diastema. In D. hylaeformis our model was not able to explain

acoustic variation, although, we found a signature of association with isolation

by environment and isolation by topography.

Conclusions. Most abiotic factors tested here clearly promote isolation among

populations due to the complexity of the Costa Rican landscapes. However,

only topography –significantly- and climatic dissimilarity –marginally

explained patterns of acoustic divergence in these species. Considering the high

levels of acoustic variation detected, we conclude that signal evolution in this

case is likely determined by a combination of mechanisms operating

independently in local scales on isolated populations such as sexual selection,

character displacement or genetic drift.

Keywords: Advertisement calls, isolation by distance, isolation by resistance, isolation by environment, generalized dissimilarity modeling

Page 117: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

117

Background

In a broad range of taxonomic groups, from insects to mammals,

communication is essentially mediated by acoustic signals [1]. These signals

have evolved to efficiently transfer information that is encoded by a sender and

then is decoded by a receiver [2,3]. However, for this process to be efficient

signals must be first recognized and then interpreted on the basis of their

spectro-temporal features [4,5]. For organisms depending on acoustic

communication for mating purposes, these signals are crucial to discriminate

between conspecifics and individuals of other species [6]. This process is

possible due to the evolution of highly stereotyped call characteristics that

assures receivers the recognition at species level [7,8]. Acoustic signals in this

context are even more relevant for organisms that attract mates over relatively

long distances [9–11] or interact in complex environments with limited

visibility [12,13]. This is the case of many anurans, a group where the vast

majority of species are active at night and many reproduces in noisy settings

[14].

Anuran advertisement calls, produced by males in reproductive contexts,

must be highly stereotype to minimize energetic costs associated to non-viable

crosses [15,16]. Since failure in recognition during mating affects reproductive

success, divergence on advertisement calls has been proposed as a pre-mating

Page 118: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

118

isolation mechanism [17,18]. Hence, call divergence, has evolutionary

implications on population differentiation and may ultimately play a relevant

role on speciation process [19–21]. Although several studies have documented

intraspecific divergence in anuran advertisement calls, fewer efforts have been

oriented to understand what factors promote such patterns of variation [22–25].

Sexual selection, reproductive character displacement, genetic drift and

ecological selection, haven been hypothesized as the most important

mechanisms driving divergence in the evolution of anuran calls [21,26–28]. In

the case of sexual selection, evidence suggest female preferences can select for

acoustic parameters that have impact on mating success [29]. Under a scenario

of reproductive character displacement, acoustic signals are expected to evolve

in order to minimize costs of interspecific competition or maladaptive

hybridization when in sympatry with closely related taxa [30]. Under a scenario

of genetic drift, is expected that populations breeding further apart have more

distinct genomes and therefore more distinct phenotypes that could influence

acoustic traits [31]. It has been also proposed that pressures set by ecological

factors are responsible of shaping patterns of geographic call divergence [32] as

predicted by the Acoustic Adaptation hypothesis (AAH), which expects that

structural differences among habitat influences signal evolution through the

constraints of signal transmission [33]. A way to understand whether ecologica

Page 119: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

119

factors have promoted acoustic divergence, is by evaluating the relationship

between geographic and/or environmental variables and geographic patterns of

call variation.

Several hypotheses has been proposed in other fields to evaluate causal

relation between environmental variables and a given response variable, as is

molecular divergence in landscape genetics studies [34,35]. For example,

isolation by distance (IBD), states that genetic differentiation is expected to

increase with geographic distance due to restricted dispersal among populations

[36,37]. Isolation by resistance (IBR), goes a step further and evaluates how the

friction imposed by landscape components such as topography or habitat

suitability influence genetic variation [38]. Isolation by Environment (IBE), in

contrast, has been recently proposed to describe a pattern in which genetic

differences increase with the environmental differences between sampling

localities, independently of geographic distance or the resistance imposed by

the landscape that connects populations [39].

In this study, we used such reasoning to test whether isolation promoted

by different landscape features can explain observed patterns of divergence in

acoustic traits within species. To this end, we first documented geographic call

variation in two direct-developing frog species of the genus Diasporus,

occurring across the complex landscapes of Isthmian Central America. Then,

Page 120: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

120

we explored the potential causes of such variation patterns by assessing the role

of distance, topography, connectivity of suitable habitats and influence of local

climate for each species. To quantify the effect of these factors in shaping

acoustic divergence we tested hypotheses and predictions diagramed in figure

1. By assessing acoustic variation within species and its potential drivers we

aim to reach a better understanding of the mechanisms promoting divergence

and early phases of speciation.

Figure 1. Schematic representation of hypotheses tested in this study and their respective predictions

Page 121: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

121

Methods Study Species. Five of the eleven species in the genus Diasporus occur in Costa

Rica [40]. D. diastema is distributed in both slopes of the main cordilleras of

the country, from sea level to above 1500 meters elevation, with exception of

the dry forest, D. hylaeformis, can be found above 1300 meters in humid lower

montane forests in the cordilleras of Talamanca, Volcanica Central, Tilarán and

Guanacaste [41] and D. vocator has been documented on the southwestern

portion of the country from 2 to 1600 m (Savage, 2002; A. García-Rodríguez,

pers. observ.). The other two species have restricted distributions: D. tigrillo is

known only from the valley of the Río Lari, Limón, Province (250-440) [41,42]

and D. ventrimaculatus is endemic to a highland valley (2500) in Cordillera de

Talamanca known as Valle del Silencio [43]. All species are abundant and

highly vocal, call from perches hidden into dense vegetation from where

produce calls characterized by short duration and high frequencies, especially

during the rainy season [41,42,44]. We focused our analyses on D. diastema

and D. hylaeformis, the two species with wider distributions in Costa Rica. The

wider geographic spread of these species allow us to document the acoustic

characteristics of several populations in order to assess geographic variation and

test for potential factors (Fig.1) promoting those patterns across complex

landscapes.

Page 122: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

122

Field Work. We documented advertisement calls of our study species all over

Costa Rica. We recorded calling males at 23 different localities across all the

regions covered by the distribution of the genus in the country, at elevations

from the sea level to near 2800 m altitude (Fig. 2). It includes the Caribbean and

the Pacific lowlands as well as the four main NW-trending volcanic cordilleras

that bisects the country. Calls were recorded with a Sennheiser ME66 shotgun

microphone and a Marantz PMD-660 digital recorder (.wav file format; 44.1

Khz sampling rate and 16 bit accuracy), a SONY TCM-500EV analogic

recorder (La Selva and La Guaria sites) or a SONY TCM-150 analogic recorder

(Volcán Tenorio and Fortuna sites). We digitalized these analogic recordings

using the software Adobe Audition at a 44.1 kHz sample rate and sample size

of 16 bits.

We recorded all males by positioning the microphone at less than 2

meters of distance. In order to avoid replicated recordings of the same male, at

each locality we walked linearly while searching for calling individuals. When

collected, voucher specimens were deposited at the collection of Herpetology

of the Museo de Zoología, Universidad de Costa Rica (MZUCR).

Page 123: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

123

Figure 2. Localities sampled for the 2 species of Diasporus analyzed in this study.

Acoustic Analyses. For each species, we identified individual calls in

recordings through an automatic detection procedure, based on amplitude and

duration thresholds applied within the frequency range of the species. From the

calls detected in each recording we selected those with the highest signal-to-

noise ratio, for a maximum of 8 calls per recording. We visually inspected the

spectrograms of the detected calls, removed undesired sounds or calls that

overlapped in time with other sounds and manually adjusted time and frequency

of selections when necessary using.

Page 124: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

124

We analyzed calls from audio recordings belonging to 170 males (D.

diastema = 98, D. hylaeformis = 72). For each male we analyzed a mean of

6.7±1.3 calls, for a total of 1241 calls evaluated. We measured 26 acoustic

parameters (detailed in table S1). Acoustic parameters were BoxCox-

transformed to improved normality. We also removed collinear variables,

identified as those with a mean-absolute Pearson correlation coefficient higher

than 0.95. We used unsupervised random forest (RF) [45] on the acoustic

parameters to identify underlying acoustic structure within species and to

evaluate the relative contribution of the parameters to overall acoustic

differences. Briefly, this method randomizes the data to create a new synthetic

data set [46]. These two data sets (“original” and “synthetic”) are then used in

a two-class classification model using supervised RF, which creates multiple

decision trees using different parameter subsets to discriminate between the

classes [45]. This predictive model generates a proximity matrix, which

contains counts of times in which each pair of items are found in the same tree

node. Hence, this matrix represents the similarity between calls as more similar

calls are expected to be together more often across trees. Thus, we converted it

to a distance matrix by subtracting it from 1 and used it in subsequent analysis

as a measure of pairwise acoustic dissimilarity. Individual models were built for

each species. Distance matrices were calculated between all calls, between

Page 125: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

125

individuals and between sites (based on average pairwise similarities between

individuals and sites, respectively). This procedure was run separately for each

species. All acoustic analyses were done using the packages tuneR [47],

Seewave [48], and warbler [49].

Potential Abiotic Drivers of Acoustic Variation. We tested whether patterns

of IBD, IBR or IBE, are able to explain variation in acoustic structure at the

intra-specific level in our study species. To this end we used coordinates

recorded in almost all the study sites using a GPS Garmin 63st. In few cases,

sites were georeferenced a posteriori using the software QGIS 2.16.3. We used

such geographic information to create pairwise distance matrices among

localities. To estimate IBD, we calculated euclidean distances in kilometers

among localities of the same species using the R package raster [50].

To estimate IBR, we considered two factors acting as potential barriers

between localities: topography (IBRt) and poor climatic suitability (IBRs). We

estimated resistance distances using such factors as independent friction layers

based on a circuit-theory approach conducted in the program Circuitscape V.4.0

[51]. To calculate topographic cost distances among localities, we first

generated a friction layer that accounts for topographic complexity. To this, we

used a layer of elevation at 30-second resolution (~1km at the equator,

http://www.worldclim.org/) and calculated the standard deviation of differences

Page 126: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

126

between 5x5 adjacent elevations using the R package raster [50]. This procedure

has been demonstrated to more accurately represent topographic roughness than

elevation range, which only indicates the strength of a gradient within a cell

[52].

To estimate distances mediated by climatic suitability (IBRs) among

localities we first generated distribution models for each species. To create

them, we gathered occurrence points, for each species, from the Global

Biodiversity Information Facility and the Herpetology Collection held at Museo

de Zoología at the University of Costa Rica. Then we projected and clean those

occurences for georreferencing errors by visualizing geographic outliers and

excluding points outside the known altitudinal range for each species. We used

as predictors the 19 bioclimatic variables available for current conditions at

www.worldclim.org at a resolution of 30 arc seconds (~1km at the Equator). For

each species we ran 52 candidate models using a Maximum Entropy algorithm

[53,54] with different parametrizations, varying regularization multipliers and

features classes [55]. All these procedures were conducted in R using the

packages ENMeval, dismo and raster [50,56,57]. We determined the best

models as those having a combination of the highest mean AUC values and the

lowest mean omission rate of the 10th percentile. Finally, we used as friction

Page 127: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

127

surface the inverse of suitability derived from the selected ENM’s for each

species.

To test for IBE, we estimated environmental dissimilarity among locality

pairs, independently of the climatic conditions in the areas that separate them.

For each sampled locality, we extracted the values for the 19 bioclimatic

variables available in the Worldclim data set (worldclim.org) at 30 arcseconds

resolution (~1km at the equator). Then, we estimated Euclidean pairwise

distances in the multidimensional space using the function dist in R, which

computes specific distances between the rows of a multivariate matrix. All data

used in this calculation is derived from temperature and precipitation means

[58], which are variables known to have a direct or indirect influence (i.e

humidity) on sound transmission [59]. Then, we consider this metric a proxy to

test the hypothesis of acoustic adaptation.

Generalized Dissimilarity Modelling. Using the acoustic distances between

localities as response matrix and the IBD, IBRt, IBRs and IBE matrices as

predictors we conducted a Generalized Dissimilarity Modelling (GDM). GDM,

is a distance-based statistical approach that uses regression techniques to relate

geographic or environmental distances and dissimilarities in a biological trait

between sites [60]. Contrary to other distance-based approaches, such as

Mantel, Partial Mantel and Multiple Matrix of Regression with Randomization

Page 128: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

128

(MMRR), GDM is able to fit the nonlinear responses, commonly encountered

in ecological datasets [61]. This technique deals with nonlinear relationships of

environmental variables to biological variation by using I-spline basis functions

(more details in [60]). Such splines plots provide insights into the total

magnitude of biological change as a function of each gradient and where those

changes are most pronounced along each gradient [62].

Results

Acoustic variation. From the supervised Random Forest analysis on the data

set containing both species we obtained a test data error rate of 0.1650

(e.g.83.5% of the calls correctly classified, ntree=10000; mtry=5, accuracy p-

value<0.0001). The most important variables contributing to this classification

were: spectral flatness, mean frequency, duration and standard deviation of

frequency.

At the intra-specific level for D. diastema we obtained a classification

accuracy of 88.04% on the test data set (ntree=10000; mtry=5; accuracy p-

value<0.0001). In this case, the most important variables were mean frequency,

spectral flatness, standard deviation of frequency and the interquartile

frequency range (Fig 3). In D. hylaeformis, the classification accuracy of the RF

analyses was of 94.65% on the test data and the most important variables for

Page 129: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

129

this classification were mean frequency, duration, spectral flatness and

minimum dominant frequency (Fig 4).

Isolation levels among populations. After estimating IBD matrices, we

found geographic linear distances, among localities, ranging between ~1 (La

Selva- La Guaria) and 314 km (Piro-Volcan Tenorio) for D. diastema and

between seven (Queverí-Tapantí) and 113 km (Tapantí-Monteverde) for the

highland frog D. hylaeformis. In the case of IBR based on topographic features,

we confirmed from the resulting connectivity voltage maps, that among studied

populations of D. diastema the most evident geographic barriers are the NW-

trending volcanic cordilleras separating the Caribbean and Pacific lowlands.

Page 130: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

130

Figure 3. Variation in the four acoustic variables that most contributed in the discrimination among of calls of Diasporus diastema among sites: mean frequency; spectral flatness, standard deviation of frequency, interquartile of frequency range .

Page 131: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

131

Figure 4. Variation in the four acoustic variables that most contributed in the discrimination among of calls of Diasporus hylaeformis among sites: mean frequency, call duration, spectral flatness and minimum dominant frequency.

Page 132: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

132

For D. hylaeformis instead, the intermontane valleys, below 1300 m represent

a major barrier that limits connectivity, especially among the sites sampled for

this species. The most evident barrier separates the locality we sampled at

Cordillera de Tilaran and the rest of localities sampled within the Cordillera de

Talamanca-Cordillera Central complex. In terms of bioclimatic suitability

(IBRs), this separation is not evident, and all areas between localities of D.

hylaeformis seems to be accessible when accounting for this variable as a

resistance factor (Fig 5).

Figure 5. IBR among sites based on topographic barriers and bioclimatically unsuitable regions. A and B correspond to isolation by habitat suitability and topography, for D. diastema, respectively. C and D represent the same variables for D. hylaeformis.

Page 133: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

133

Climatic dissimilarity among studied sites (IBE) for D. diastema was higher

between Agua Buena in the southwestern (South Pacific) and Cahuita in the

northwestern (South Caribbean) portion of the country. As expected due to their

geographic proximity, the most similar pair of sites for this species was La

Selva-Guaria. In D. hylaeformis, local climatic conditions are more different

between Dantas and Tapantí; and more similar between Montserrat and Volcán

Poás, although this two localities are not the closer ones.

Drivers of acoustic divergence. We fitted a generalized dissimilarity model

(GDM) of the acoustic divergence as a function of the different types of

isolation. The GDM explained 30.68% of the deviance the in acoustic

divergence of D.diastema (full model p-value< 0.001). In terms of variable

importance, for D. diastema isolation by topography and isolation by distance

were the two variables that contributed in explaining acoustic divergence (Fig.

6a). For D. hylaeformis the full model was not able to significantly explain

acoustic variation (full model p-value=0.162), although, we obtained a

signature of association with isolation by environment and isolation by

topography (Fig. 6d). The shape of the I-splines of all these variables were all

similar, depicting increases in divergence with the increase in the degree of

isolation (Fig. 6). However, in D. diastema the rate of change in acoustic traits

varies exponentially as topographic isolation increases, while the rate of change

Page 134: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

134

associated to IBD in this species and to IBE in D. hylaeformis showed a

logarithmic growth.

Page 135: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

135

Figure 6. Variable importance and generalized dissimilarity model-fitted I-splines for variables associated with acoustic divergence in D. diastema (A-C) and D. hylaeformis (D- F). The maximum height reached by each curve, indicates the total amount of divergence associated with the respective variable, holding all other variables constant. The shape of each function shows how the rate of acoustic divergence varies along the tested gradients.

Page 136: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

136

Discussion

Our study provide the first quantitative evidence of intra-specific acoustic variation

in the direct-developing frogs Diasporus diastema and D. hylaeformis. High

classificatory power of our RF algorithm (>86% in D. diastema and ~95% in D.

hylaeformis) reveals deep acoustic intra-specific divergences among populations of

each species. Lower discrimination power in D. diastema could be affected by the

potential inclusion of meta-populations from near localities that may obscured

optimal discrimination. Higher discrimination power in D. hylaeformis results from

deeper mean divergences among localities.

For D. diastema we found that calls tend to be more similar among localities

within the Pacific and within the Caribbean, than between versants. The most

variable feature in the calls of this species was mean frequency, with a trend of

Pacific populations to vocalize at lower frequencies. In most anurans, frequency is

constrained by body size, larger males, are expected to have vocal cords of larger

mass, making them able to produce lower frequencies. Although out of the scope of

our study, we have evidence that males from Pacific tend to be bigger than those

from the Caribbean (García-Rodríguez, unpublished data). In the case of D.

hylaeformis, we did not found a clear geographic pattern of variation, nevertheless,

calls from Tapantí were notably different among all sampled sites. Males from this

locality produces remarkably long calls, with more than twice the duration of all

Page 137: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

137

other populations. In several species, longer call duration has been proposed as an

indicator of genetic quality [63,64], such evidence support the idea that females are

enabled to choose males of higher quality thorough their mating preferences (i.e

good genes hypothesis [65]) and highlights the importance of biotic pressures on the

evolution of calls. Certainly, is not easy to explain why only females from that

locality may specifically select for that trait. Then, habitat particularities affecting

signal transmission such as vegetation structure, noise sources or even the

composition of the local soundscape may have influenced this striking variation.

Intra-specific geographic variation in acoustic signals as documented here, has

been long reported in anurans (reviewed by [66]). Through time it also has become

a topic of interest in evolutionary research due to its potential as a mechanism of

reproductive isolation and incipient speciation [67]. Ever since such patterns of

variation in communication systems can provide insights on drivers of evolutionary

processes, we evaluated the potential role of several abiotic forces (e.g. distance,

topography, habitat suitability and climatic dissimilarity) in shaping them. Our

results showed that irregular topographies likely influenced divergence patterns in

the advertisement calls of D. diastema. Contrary, none of the factors tested

significantly explained acoustic variation within D. hylaeformis, although climatic

dissimilarity among sites showed an association with acoustic divergence.

Page 138: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

138

In D. diastema, detected differences between versants highlights the role of

topographic barriers. This pattern is expectable, considering that this species rarely

occur above 1500 m altitude [41], the cordilleras of the country may represent a

major vicariant barrier. For D. diastema and other lowland species distributed in

both Pacific and Caribbean versants, IBRt should be more evident in the eastern

portion of the country, where Cordillera de Talamanca reaches elevations above

3500 meters [68]. Talamanca has a dynamic geological history with an uplift rate of

approximately 1km/1Ma [69] that has turned into the most evident physical barrier

for lowland organisms in Costa Rica, affecting for example, phylogeographic

patterns in several taxa [reviewed in 72]. In the eastern portion of the country

(Cordillera de Tilaran and Guanacaste), mountain passes are lower, however

influenced by dry conditions from the Northern Pacific [68]. It may be the factor

limiting dispersal between versants in this region, maintaining between versant

isolation and indirectly increasing the effect of the mountainous barriers.

In D. hylaeformis, patterns of acoustic variation could be better explained by

local biotic pressures. For example, local female choices based on call duration may

act as a directional pressure selecting and fixing longer calls in D.hyalaeformis from

Tapantí. Interestingly, in our dataset, Tapantí is the only locality where we have

found sympatric populations of D. diastema and D.hylaeformis, with males calling

at less than 1km from the other species (García-Rodríguez, unpublished data).

Page 139: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

139

Hence, another possibility is that substantial differences in the call of D. hylaeformis

there, could be driven by the syntopic occurrence of both species as predicted by

pre-reproductive character displacement: mate attracting signals differ more in

sympatric than in allopatric areas of closely related species [71]. Such shifts are

hypothesized to arise in order to minimize agonistic hetero-specific interactions or

the production of costly hybrids, however evidence of this phenomena associated

with acoustic traits are still scarce [31]. While the focus of our study was to assess

the potential role of abiotic factors drivers of isolation in explaining acoustic

divergence, the above cited factors could be understand as biotic mechanisms driven

by interactions among individuals and should be addressed more deeply in future

studies with these species. Finally although not statistically significant, we recovered

a signal of correlation between climatic dissimilarity and acoustic divergence. It also

could give insights of local pressures such as climate or vegetation structure shaping

call structure according to the acoustic adaptation hypothesis [33].

Previous studies testing the influence of IBD on acoustic divergence,

including some conducted in the same landscapes of Costa Rica, have found

correlations between linear distance and acoustic dissimilarity in birds [72–74],

frogs [22,75,76] and rodents [59]. In some cases as in the Andean frog Colostethus

palmatus [77] or the singing mice Scotinomys teguina [59], these patterns are also

explained by genetic distances, suggesting an important contribution of genetic drift

Page 140: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

140

in shaping patterns of acoustic variation. Contrary, in the strawberry poison frog

Dendrobates pumilio and the tree frog Hyla leucophyllata, among population call

variation follows a geographic cline without a strict acoustic separation between

genetic groups [22,78]. It reflects that acoustic divergence is not necessarily

predicted by genetic divergence or at least, that genes used in those studies evolved

slower genes underlying sexual signals [22]. We found a small contribution of IBD

in the GDM of D. diastema, in our opinion, IBR based on topographic complexity

which better explained acoustic variation, is a more robust metric to describe

patterns of isolation in the irregular landscapes of Costa Rica. In this case it also

likely reflects genetic drift as the mechanism leading to major acustic differentiation

between Pacific and Caribbean populations.

Conclusions

Most abiotic factors tested here, failed in significantly explain patterns of acoustic

divergence in our study species, even though they clearly promoted patterns of

isolation among populations due to the topographic and climatic heterogeneity of

the Costa Rican landscapes. Then, given the high levels of acoustic variation

detected, we conclude that signal evolution in this case is likely determined by a

combination of mechanisms like sexual selection [e.g. 22,81,82], character

displacement [e.g 73,83–85] or genetic drift [e.g 23,29,76,77] operating

independently in local scales on isolated populations. Data presented here comes

Page 141: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

141

from a genus with a complex taxonomy due to the potential existence of cryptic

diversity [41,44,84]. A recently published molecular analysis for this group

supported the hypothesis of masked cryptic diversity within the genus and

highlighted the potential use of bioacoustics as a powerful approach to solve this

issue [44]. Information on acoustic divergence have been successfully incorporated

as a complementary source of evidence in the field of integrative taxonomy

[23,42,85,86]. In many anuran groups, the definition of species boundaries based

merely on morphological approaches becomes a hard task due to their highly

conserved morphology [87,88]. In these cases, bioacoustic approaches has proved

to be useful and has helped disentangling the taxonomy of cryptic complexes

where many species were masked under one name [88–90]. From that perspective,

our study adds valuable information for future studies concerned with addressing

such questions.

Acknowledgements

We are profoundly grateful to all the people involved in the fieldwork conducted to

obtain the recordings analyzed in this study: Víctor Acosta, Kathia Alfaro,

Esmeralda Arévalo, Erick Arias, Gilbert Barrantes, Eliana Faria de Oliveira,

Francisco Fonseca, Sofía Granados, Castiele Holanda Bezerra, Brian Kubicki,

Page 142: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

142

Daniela Masís, Francesca Protti, Sofía Rodríguez, Luis Sandoval, Vinicius São

Pedro, Rodolfo Vargas, Beatriz Willink and Héctor Zumbado. Branko Hilje and

Mark Wainwright provided recordings from La Selva and La Guaria, and

Monteverde, respectively. AGR thanks Federico Bolaños, Gilbert Barrantes and

Gerardo Chaves for initial discussions on this topic.

Funding

This research was partially funded by the National Geographic Society [grant

number W-346-14]. AGR was supported by Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior, Brazil.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AGR and GCC designed the study; AGR collected data; AGR and MAS analyzed

data; AGR draft the manuscript, subsequently improved by all co-authors.

References

1. Whitlow WL. Animal bioacoustics. J. Acoust. Soc. Am. 1999;106:1204.

Page 143: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

143

2. Marler P. Animal communication signals: we are beginning to understand how

the structure of animal signals relates to the function they serve. Science (80-. ).

[Internet]. 1967;157:769–74. Available from:

http://www.sciencemag.org/content/157/3790/769.abstract

3. Seyfarth RM, Cheney DL, Bergman T, Fischer J, Zuberbühler K,

Hammerschmidt K. The central importance of information in studies of animal

communication. Anim. Behav. 2010;80:3–8.

4. Ryan MJ. Species recognition and sexual selection as a unitary problem in

animal communication. Evolution (N. Y). 1993;47:647–57.

5. Ord TJ, King L, Young AR. Contrasting theory with the empirical data of

species recognition. Evolution (N. Y). 2011;65:2572–91.

6. Okamoto KW, Grether GF. The evolution of species recognition in competitive

and mating contexts: the relative efficacy of alternative mechanisms of character

displacement. Ecol. Lett. 2013;16:670–8.

7. Schwartz JJ. The importance of spectral and temporal properties in species and

call recognition in a neotropical treefrog with a complex vocal repertoire. Anim.

Behav. 1987;35:340–7.

8. Ryan MJ, Phelps SM, Rand AS. How evolutionary history shapes recognition

Page 144: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

144

mechanisms. Trends Cogn. Sci. 2001;5:143–8.

9. Ryan M, Kime N. Selection on long-distance acoustic signals. In: Simmons AM,

Popper AN FR, editor. Acoust. Commun. New York: Springer-Verlag; 2003. p.

225–74.

10. Michelsen A, Nocke H. Biophysical aspects of sound communication in

insects. Adv. In Insect Phys. 1974;10:247–96.

11. Oliveira DAG, Ades C. Long-distance calls in Neotropical primates. An. Acad.

Bras. Cienc. 2004. p. 393–8.

12. Haddad CFB, Giaretta AA. Visual and acoustic communication in the brazilian

torrent frog, Hylodes asper (Anura: Leptodactylidae). Herpetologica. 1999;55:324–

33.

13. Kime NM. The transmission of advertisement calls in Central American frogs.

Behav. Ecol. 2000;11:71–83.

14. Wells KD. The ecology & behavior of Amphibians. Chicago and London: The

University of Chicago Press; 2008.

15. Kelley DB. Vocal communication in frogs. Curr. Opin. Neurobiol. 2004. p.

751–7.

16. Duellman WE, Trueb L. Biology of Amphibians. Second. Baltimore,

Page 145: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

145

Maryland: Johns Hopkins University Press; 1994.

17. Littlejohn MJ. Premating isolation in the Hyla ewingi complex Anura:

Hylidae). Evolution (N. Y). 1965;19:234–43.

18. Blair WF. Mating call and stage of speciation in the Microhyla olivacea–M.

carolinensis complex. Evolution (N. Y). 1955;9:469–480.

19. Hoskin CJ, Higgie M. Speciation via species interactions: the divergence of

mating traits within species. Ecol. Lett. 2010;13:409–20.

20. Funk WC, Murphy M., Hoke KL, Muths SM, Amburgey, Lemmon EM, et al.

Elevational speciation in action? Restricted gene flow associated with adaptive

divergence across an altitudinal gradient. J. Evol. Biol. 2016;29:241–52.

21. Boul KE, Funk WC, Darst CR, Cannatella DC, Ryan MJ. Sexual selection

drives speciation in an Amazonian frog. Proc. R. Soc. B [Internet]. 2007 [cited

2011 Jul 23];274:399–406. Available from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1702375&tool=pmcent

rez&rendertype=abstract

22. Pröhl H, Hagemann S, Karsch J, Höbel G. Geographic variation in male sexual

signals in strawberry poison frogs (Dendrobates pumilio). Ethology [Internet].

2007 [cited 2011 Sep 19];113:825–37. Available from:

Page 146: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

146

http://doi.wiley.com/10.1111/j.1439-0310.2007.01396.x

23. Heyer WR, García-Lopez JM, Cardoso AJ. Advertisement call variation in the

Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a

description of a new sibling species. Amphibia-Reptilia. 1996;17:7–31.

24. Asquith A, Altig R, Zimba P. Geographic variation in the mating call of the

green treefrog Hyla cinerea. Am. Midl. Nat. [Internet]. 1988;119:101–10.

Available from: http://links.jstor.org/sici?sici=0003-

0031(198801)119:1%3C101:GVITMC%3E2.0.CO;2-M

25. Hasegawa Y, Ueda H, Sumida M. Clinal geographic variation in the

advertisement call of the wrinkled frog, Rana rugosa. Herpetologica.

1999;55:318–24.

26. Hoskin CJ, Higgie M, Mcdonald KR, Moritz C. Reinforcement drives rapid

allopatric speciation. Nature. 2005;437:10–3.

27. Röhr DL, Paterno GB, Camurugi F, Juncá FA, Garda AA. Background noise as

a selective pressure: stream-breeding anurans call at higher frequencies. Org.

Divers. Evol. 2016;16:269–73.

28. Lee KH, Shaner PJL, Lin YP, Lin SM. Geographic variation in advertisement

calls of a microhylid frog - testing the role of drift and ecology. Ecol. Evol.

Page 147: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

147

2016;6:3289–98.

29. Ritchie MG. The shape of female mating preferences. Proc. Natl. Acad. Sci. U.

S. A. 1996;93:14628–31.

30. Lemmon EM. Diversification of conspecific signals in sympatry: geographic

overlap drives multidimensional reproductive character displacement in frogs.

Evolution. 2009;63:1155–70.

31. Wilkins MR, Scordato ESC, Semenov GA, Karaardiç H, Shizuka D, Rubtsov

A, et al. Global song divergence in barn swallows (Hirundo rustica ): exploring the

roles of genetic , geographical and climatic distance in sympatry and allopatry.

Biol. J. Linn. Soc. 2018;1–25.

32. Wilkins MR, Seddon N, Safran RJ. Evolutionary divergence in acoustic

signals: causes and consequences. Trends Ecol. Evol. 2013;28:156–66.

33. Morton ES. Ecological sources of selection on avian sounds. Am. Nat.

1975;109:17–34.

34. Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner K. Use of resistance

surfaces for landscape genetic studies: considerations for parameterization and

analysis. Mol. Ecol. 2010;19:3576–91.

35. Manel S, Holderegger R. Ten years of landscape genetics. Trends Ecol. Evol.

Page 148: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

148

2013. p. 614–21.

36. Wright S. Isolation by Distance. Genetics. 1943;28:114–38.

37. Slatkin M. Isolation by distance in equilibrium and non-equilibrium

populations. Evolution (N. Y). 1993;47:264–79.

38. McRae BH. Isolation by resistance. Evolution (N. Y). 2006;60:1551–61.

39. Wang IJ, Bradburd GS. Isolation by environment. Mol. Ecol. 2014. p. 5649–

62.

40. Frost DR. Amphibian species of the world: an online reference. Version 6.0

(August 2017). Electronic Database accessible at

http://research.amnh.org/herpetology/amphibia/index.html. American Museum of

Natural History, New York, USA. 2017.

41. Savage JM. The Amphibians and Reptiles of Costa Rica: a herpetofauna

between two continents, between two seas. University of Chicago press; 2002.

42. García-Rodríguez A, Arias E, Chaves G. Multiple lines of evidence support the

species status of the poorly known Diasporus tigrillo and the recently described

Diasporus citrinobapheus (Anura: Eleutherodactylidae). Neotrop. Biodivers.

2016;2:59–68.

43. Chaves G, García-Rodríguez A, Mora A, Leal A. A new species of dink frog

Page 149: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

149

(Anura: Eleutherodactylidae: Diasporus) from Cordillera de Talamanca, Costa

Rica. Zootaxa. 2009;2088:1–14.

44. Batista A, Köhler G, Mebert K, Hertz A, Veselý M. An integrative approach to

reveal speciation and species richness in the genus Diasporus (Amphibia: Anura:

Eleutherodactylidae) in eastern Panama. Zool. J. Linn. Soc. 2016;178:267–311.

45. Breiman L. Random Forests. Mach. Learn. 2001;45:5–32.

46. Afanador NL, Smolinska A, Tran TN, Blanchet L. Unsupervised random

forest: a tutorial with case studies. J. Chemom. 2016;30:232–41.

47. Ligges U, Krey S, Mersmann O, Schnackenberg S. tuneR: Analysis of music.

[Internet]. 2013. Available from: //r-forge.r-project.org/projects/tuner/.

48. Sueur J, Aubin T, Simonis C. Seewave: a free modular tool for sound analysis

and synthesis. Bioacoustics. 2008;18:213–26.

49. Araya-Salas M, Smith-Vidaurre G. warbleR: an r package to streamline

analysis of animal acoustic signals. Methods Ecol. Evol. 2017;8:184–91.

50. Hijmans RJ, van Etten J. raster: Geographic analysis and modeling with raster

data. R Packag. version. 2010.

51. Shah VB, McRae BH. Circuitscape : a tool for landscape ecology. Proc. 7th

Python Sci. Conf. 2008;62–5.

Page 150: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

150

52. McCarroll D, Nesje A. Rock surface roughness as an indicator of degree of

rock surface weathering. Earth Surf. Process. Landforms. 1996;21:963–77.

53. Elith J, Phillips S, Hastie T. A statistical explanation of MaxEnt for ecologists.

Divers. Distrib. 2011;17:43–57.

54. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species

geographic distributions. 2006;190:231–59.

55. Radosavljevic A, Anderson RP. Making better Maxent models of species

distributions: complexity, overfitting and evaluation. J. Biogeogr. 2014;41:629–43.

56. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et

al. ENMeval: An R package for conducting spatially independent evaluations and

estimating optimal model complexity for MaxEnt ecological niche models.

Methods Ecol. Evol. 2014;5:1198–205.

57. Hijmans RJ, Phillips S, Leathwick J, Elith J. Package “dismo”. Species

distribution modeling. R package version 0.8-11. <CRAN.R-project.org/ Packag.

2012;

58. Hijmans RJ, Cameron S, Parra J. Very high resolution interpolated climate

surfaces for global land areas. Int. J. Climatol. 2005;25:1965–78.

59. Campbell P, Pasch B, Pino JL, Crino OL, Phillips M, Phelps SM. Geographic

Page 151: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

151

variation in the songs of neotropical singing mice: testing the relative importance

of drift and local adaptation. Evolution (N. Y). 2010;64:1955–72.

60. Ferrier S, Manion G, Elith J, Richardson K. Using generalized dissimilarity

modelling to analyse and predict patterns of beta diversity in regional biodiversity

assessment. Divers. Distrib. 2007;13:252–64.

61. Ferrier S. Mapping spatial pattern in biodiversity for regional conservation

planning: Where to from here? Syst. Biol. 2002;51:331–63.

62. Oliveira EF, Martinez PA, São-Pedro VA, Gehara M, Burbrink FT, Mesquita

DO, et al. Climatic suitability, isolation by distance and river resistance explain

genetic variation in a Brazilian whiptail lizard. Heredity (Edinb). 2017;120:251–

65.

63. Welch AM, Semlitsch RD, Gerhardt HC. Call duration as an indicator of

genetic quality in male gray tree frogs. Science (80-. ). 1998;280:1995–7.

64. Doty G V, Welch AM. Advertisement call duration indicates good genes for

offspring feeding rate in gray tree frogs (Hyla versicolor). Behav. Ecol. Sociobiol.

2001;150–6.

65. Hamilton W, Zuk M. Heritable true fitness and bright birds: a role for

parasites? Science (80-. ). 1982;218:384–7.

Page 152: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

152

66. Gerhardt HC. The evolution of vocalization in frogs and toads. Annu. Rev.

Ecol. Syst. 1994;25:293–324.

67. Endler JA. Signals, signal conditions, and the direction of evolution. Am. Nat.

1992;139:125–53.

68. Janzen DH. Historia Natural de Costa Rica. Primera. Janzen D, editor. San

José, Costa Rica: Editorial San José, Universidad de Costa Rica; 1991.

69. Gräfe K, Frisch W, Villa IM, Meschede M. Geodynamic evolution of southern

Costa Rica related to low-angle subduction of the Cocos Ridge: Constraints from

thermochronology. Tectonophysics. 2002;348:187–204.

70. Bagley JC, Johnson JB. Phylogeography and biogeography of the lower

Central American Neotropics: diversification between two continents and between

two seas. Biol. Rev. 2014;89:767–790.

71. Höbel G, Gerhardt HC. Reproductive character displacement in the acoustic

communication system of green tree frogs (Hyla cinerea). Evolution (N. Y).

2003;57:894–904.

72. Wei C, Jia C, Dong L, Wang D, Xia C, Zhang Y, et al. Geographic variation in

the calls of the Common Cuckoo (Cuculus canorus): isolation by distance and

divergence among subspecies. J. Ornithol. 2014;156:533–42.

Page 153: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

153

73. Irwin DE, Thimgan MP, Irwin JH. Call divergence is correlated with

geographic and genetic distance in greenish warblers (Phylloscopus trochiloides): a

strong role for stochasticity in signal evolution? J. Evol. Biol. 2008;21:435–48.

74. Sosa-López JR, Mennill DJ, Navarro-Sigüenza AG. Geographic variation and

the evolution of song in Mesoamerican rufous-naped wrens Campylorhynchus

rufinucha. J. Avian Biol. 2013;44:27–38.

75. Pröhl H, Koshy R, Mueller U, Rand S, Ryan M. Geographic variation of

genetic and behavioral traits in northern and southern Túngara frogs. Evolution (N.

Y). 2006;60:1669–79.

76. Amézquita A, Lima AP, Jehle R, Castellanos L, Ramos Ó, Crawford AJ, et al.

Calls, colours, shape, and genes: a multi-trait approach to the study of geographic

variation in the Amazonian frog Allobates femoralis. Biol. J. Linn. Soc.

2009;98:826–38.

77. Bernal XE, Guarnizo C, Lüddecke H. Geographic variation in advertisement

call and genetic structure of Colostethus palmatus (Anura, Dendrobatidae) from

the Colombian Andes. 2009;61:395–408.

78. Lougheed SC, Austin JD, Bogart JP, Boag PT, Chek A a. Multi-character

perspectives on the evolution of intraspecific differentiation in a neotropical hylid

frog. BMC Evol. Biol. 2006;6:23.

Page 154: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

154

79. Searcy WA, Andersson M. Sexual selection and the evolution of song. Annu.

Rev. Ecol. Syst. 1986;17:507–33.

80. Ryan MJ, Rand AS. The sensory basis of sexual selection for complex calls in

the tungara frog , Physalaemus pustulosus. Evolution (N. Y). 1990;44:305–14.

81. Kirschel ANG, Blumstein DT, Smith TB. Character displacement of song and

morphology in African tinkerbirds. Proc. Natl. Acad. Sci. 2009;106:8256–61.

82. Lemmon EM. Diversification of conspecific signals in sympatry: Geographic

overlap drives multidimensional reproductive character displacement in frogs.

Evolution (N. Y). 2009;63:1155–70.

83. Pfennig KS, Ryan MJ. Character displacement and the evolution of mate

choice: an artificial neural network approach. Philos. Trans. R. Soc. Lond. B. Biol.

Sci. 2007;362:411–9.

84. Ibáñez R, Rand S, Jaramillo C. The Amphibians of Barro Colorado Nature

Monument, Soberania Natural Park and Adjacent Areas. 1999.

85. Wycherley J, Doran S, Beebee TJC. Male advertisement call characters as

phylogeographical indicators in European water frogs. Biol. J. Linn. Soc.

2002;77:355–65.

86. Angulo AA, Cocroft RB. Species identity in the genus Adenomera (Anura :

Page 155: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

155

Leptodactylidae) in southeastern Peru. Herpetologica. 2003;59:490–504.

87. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic

species as a window on diversity and conservation. Evolution (N. Y). 2006;22.

88. Padial JM, De La Riva I. Integrative taxonomy reveals cryptic Amazonian

species of Pristimantis (Anura: Strabomantidae). Zool. J. Linn. Soc. 2009;155:97–

122.

89. Vences M, Wake DB. Speciation, species boundaries and phylogeography of

amphibians. In: Heatwole HH, Tyler M, editors. Amphib. Biol. (Vol. 6). Chipping

Norton.: Surrey Beatty & Sons; 2007. p. 2613–2669.

90. Goicoechea N, De La Riva I, Padial JM. Recovering phylogenetic signal from

frog mating calls. Zool. Scr. 2010;39:141–54.

Page 156: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

156

-Supplementary Material-

The role of geography, topography and climate in the acoustic divergence of Neotropical Diasporus frogs

Table S1. Acoustic variables measured for each recording analyzed in this study

Acoustic Variable Definition

Mean frequency Weighted average of frequency by amplitude (in kHz)

Minimum dominant frequency Lower frequency bound of the call

Start dominant frequency Dominant frequency measurement at the start of the signal

Frequency median The frequency at which the signal is divided in two frequency intervals of equal energy (in kHz)

Mean dominant frequency Average of dominant frequency measured across the acoustic signal

Mean peak frequency Frequency with highest energy from the mean spectrum

First quartile of frequency The frequency at which the signal is divided in two frequency intervals of 25% and 75% energy respectively (in kHz)

End dominant frequency Dominant frequency measurement at the end of the signal

Maximum dominant frequency Higher frequency bound of the call

Dominant frequency slope Slope of the change in dominant frequency through time ((enddom-startdom)/duration).Units are kHz/s.

Dominant frequency Range Range of dominant frequency measured across the acoustic signal

Modulation index Cumulative absolute difference between adjacent measurements of dominant frequencies divided by the dominant frequency range. 1 means the signals is not modulated.

Standard deviation frequency SD of frequency weighted by amplitude

Time entropy Energy distribution on the time envelope. Pure tone ~ 0; noisy ~ 1.

Duration Length of signal (in s)

First quartile time The time at which the signal is divided in two time intervals of 25% and 75% energy respectively (in s).

Third quartile time The time at which the signal is divided in two time intervals of 75% and 25% energy respectively (in s).

Time median The time at which the signal is divided in two time intervals of equal energy (in s)

Page 157: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

157

Interquartile time range Time range between 'time.Q25' and 'time.Q75' (in s).

Interquartile frequency range Frequency range between 'freq.Q25' and 'freq.Q75' (in kHz)

Third quartile frequency The frequency at which the signal is divided in two frequency intervals of 75% and 25% energy respectively (in kHz)

Spectral flatness Similar to sp.ent (Pure tone ~ 0; noisy ~ 1).

Entropy Product of time and spectral entropy sp.ent * time.ent.

Spectral entropy Energy distribution; pure tone ~ 0; noisy ~ 1

Skewness Asymmetry of the spectrum

Kurtosis Peakedness of the spectrum

Page 158: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

158

CONSIDERAÇÕES FINAIS

Nesta dissertação pretendi avaliar a influência da heterogeneidade ambiental

contida em regiões complexas, na geração de padrões de variação em diversas

dimensões biológicas. Meu interesse foi abordar essa questão de maneira

complementar, explorando tanto processos macroevolutivos, como por

exemplo a diversificação de grupos taxonômicos superiores quanto processos

microevolutivos, como a diferenciação de linhagens e divergência de

características comportamentais na escala intraespecífica.

O estudo traz valiosas informações que revelam a importância das regiões

montanhosas como motores evolutivos que sustentam ricas biotas numa escala

global. Mostra também como múltiplas particularidades das paisagens

complexas como a heterogeneidade climática e a irregularidade topográfica são

capazes de promover fases incipientes da especiação a nível regional,

funcionando como “combustível desses motores”. Demostrei que as taxas de

especiação de anfíbios são mais rápidas em áreas montanhosas numa escala

global. O padrão encontrado é robusto e se mantem, na maioria dos casos,

quando é desconstruído e testado a nível de regiões zoogeográficas.

Além disso, apresento evidência comparativa e quantitativa de que a

evolução numa região complexa específica pode ser promovida por múltiplas

forças ao invés de ser explicada por uma pressão exclusiva. Por exemplo,

Page 159: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

159

encontramos que a variação genética em 11 espécies que co-ocorrem no Istmo

da América Central é induzida por diversos fatores abióticos da região, como

são a heterogeneidade climática e a topografia montanhosa. O efeito desses

fatores varia em intensidade dependendo da espécie, provavelmente devido as

histórias de vida particulares de cada organismo. Também encontrei que em

fases de especiação ainda mais incipientes, como a divergência em sinais

acústicos envolvidas na reprodução, os padrões de variação não

necessariamente são explicados pelas forças que geram isolamento entre

populações. Neste caso, processos estocásticos que atuam a nível local sob essas

populações isoladas são os prováveis responsáveis da evolução acústica. Porém,

o efeito indireto das paisagens complexas gerando altos níveis de isolamento

certamente acelera esse processo de evolução independente.

Como todo estudo, o meu trabalhalho possui algumas limitações. A

espacialização de padrões evolutivos é certamente uma tarefa complexa que só

agora está começando a ser abordada. Porém, achamos válida e robusta a forma

em que procedemos com este objetivo no primeiro capítulo, mais ainda

considerando a escala geográfica e a quantidade de espécies envolvidas no

estudo. Não duvidamos que no futuro serão desenvolvidos métodos para lidar

melhor com a projeção de taxas evolutivas no espaço. No segundo capítulo, o

uso exclusivo de sequências mitocondriais tem suas fraquezas, mas a natureza

Page 160: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

160

de um estudo comparativo incluindo múltiplas espécies, limita a incorporação

de mais marcadores quando eles não estão disponíveis para todas as espécies.

A incorporação de mais marcadores e mais grupos taxonômicos dever ser o

objetivo em futuro estudos. No terceiro capítulo, consideramos que os objetivos

foram atingidos, porém a incorporação de mais populações especificamente na

espécie de altas altitudes poderia ajudar a ter evidências mais conclusivas com

relação ao peso das barreiras testadas como drivers de evolução dos cantos.

Em definitiva as montanhas do mundo têm um papel muito importante na

evolução, montagem e manutenção da biodiversidade. Proporcionam um

fascinante modelo de estudo, com réplicas distribuídas pelo globo, com

diferentes particularidades como idades, configurações, regimes climáticos e

rugosidade de terreno que permitem testar sua influência nos processos

evolutivos. Pessoalmente tenho interesse de continuar explorando essas

questões de maneira integrativa desde as perspectivas macro e microevolutivas.

Por exemplo pretendo continuar essa linha de macroevolução para mapear na

escala global quais regiões do mundo funcionam como bombas e quais como

museus de espécies. Também para testar se as altas taxas de especiação achadas

nessa dissertação podem explicar padrões biogeográficos gerais como os

gradientes latitudinais de diversidade. A nível micro meus esforços serão

orientados a incorporar informação genômica que permita estudar associações

Page 161: DETERMINANTES ECOLÓGICOS DE PROCESSOS MACRO E … · Biblioteca Setorial Prof. Leopoldo Nelson -Centro de Biociências - CB García-Rodríguez, Adrián. Determinantes ecológicos

161

entre genótipos e variantes climáticas especificas ao longo de gradientes

climáticos comuns em regiões montanhosas, para entender melhor o processo

de seleção adaptativa e incrementar nosso ainda incompleto conhecimento do

mecanismo de evolução parapátrica.

Finalmente, gostaria de complementar meu programa de pesquisa com

estudos que incorporem particularidades da configuração geomorfológica das

montanhas na avaliação de dinâmicas de contração e expansão de amplitudes

de distribuição de espécies em cenário futuros de mudança climática. Uma

caracterização, não só de quais são os grupos biológicos mais ameaçados, mas

também de quais são os sistemas montanhosos que por suas características

físicas são mais vulneráveis nesse contexto. Essa informação é estritamente

necessária para definir prioridades e informar as ações de conservação dessas

regiões, que temos demostrado são muito importantes para o origem e

manutenção da biodiversidade.