13
05/06/12 Portal de Engenharia Quimica - Fundamentos 1/13 labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&… FUNDAMENTOS | Imprimir | Fundamentos do equilíbrio líquido-líquido (LLE) A temperaturas suficientemente inferiores aquelas em que se verifica o aparecimento do equillíbrio líquido-vapor, pode observar-se a formação de fases líquidas (ou sólidas) total ou parcialmente imiscíveis. É o que acontece, por exemplo, no sistema cujo diagrama se esquematiza na Figura 1. Figura 01: Esquema ilustrativo do diagrama de fases de um sistema com formação de duas fases líquidas, ? α e ? β , a temperaturas inferiores. T 1 * e T 2 * são as temperaturas de vaporização dos componentes 1 e 2 respectivamente, à pressão P. Observando na Figura 1 verifica-se que partindo de uma mistura binária homogénea, gasosa, no estado representado pelo ponto A, baixando sucessivamente a temperatura (mantendo a pressão), quando se atinge a temperatura T B aparece a primeira gota de líquido (o ponto B está sobre a curva dos pontos de orvalho). Entre B e C, à medida que a temperatura diminui, a quantidade de sistema na fase líquida vai aumentando até que, à temperatura T C , desaparece a último gás (o ponto C localiza-se sobre a curva dos pontos de bolha). Entre T C e T D obtém-se uma única fase líquida, homogénea. À temperatura T D observa-se a formação de uma segunda fase líquida. Se a fase líquida pré-existente estiver a ser agitada, o aparecimento da imiscibilidade (parcial) entre os dois líquidos pode ser facilmente detectado pela ocorrência de turbidez no sistema líquido. Abaixo da temperatura T D têm-se duas fases líquidas, ? α e ? β , parcialmente miscíveis, em equilíbrio. Por exemplo á temperatura T E a mistura de composição global representada pelo ponto E separa-

Equilibrio de Fases

Embed Size (px)

Citation preview

Page 1: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

1/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

FUNDAMENTOS

| Imprimir |

Fundamentos do equilíbrio líquido-líquido (LLE)

A temperaturas suficientemente inferiores aquelas em que se verif ica o aparecimento do equillíbrio líquido-vapor, pode observar-se a

formação de fases líquidas (ou sólidas) total ou parcialmente imiscíveis. É o que acontece, por exemplo, no sistema cujo diagrama se

esquematiza na Figura 1.

Figura 01: Esquema ilustrativo do diagrama de fases de um sistema com formação de duas

fases líquidas, ?α e ?β, a temperaturas inferiores. T1* e T2

* são as temperaturas de

vaporização dos componentes 1 e 2 respectivamente, à pressão P.

Observando na Figura 1 verif ica-se que partindo de uma mistura binária homogénea, gasosa, no estado representado pelo ponto A,

baixando sucessivamente a temperatura (mantendo a pressão), quando se atinge a temperatura TB aparece a primeira gota de líquido

(o ponto B está sobre a curva dos pontos de orvalho). Entre B e C, à medida que a temperatura diminui, a quantidade de sistema na

fase líquida vai aumentando até que, à temperatura TC, desaparece a último gás (o ponto C localiza-se sobre a curva dos pontos de

bolha). Entre TC e TD obtém-se uma única fase líquida, homogénea. À temperatura TD observa-se a formação de uma segunda fase

líquida. Se a fase líquida pré-existente estiver a ser agitada, o aparecimento da imiscibilidade (parcial) entre os dois líquidos pode ser

facilmente detectado pela ocorrência de turbidez no sistema líquido. Abaixo da temperatura TD têm-se duas fases líquidas, ?α e ?β,

parcialmente miscíveis, em equilíbrio. Por exemplo á temperatura TE a mistura de composição global representada pelo ponto E separa-

Page 2: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

2/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

se em duas fases líquidas representadas pelos pontos F e G. A recta horizontal é, obviamente, uma tie-line, visto que une

duas fases em equilíbrio à mesma temperatura e à mesma pressão. Considerando apenas a região inferior do diagrama,

correspondente às temperaturas em que prevalece a coexistência de fases líquidas, podem observar-se três situações, que se

ilustram na Figura 2.

Figura 02: Diagramas (T, x), a pressão constante, ilustrando esquematicamente três tipos

possíveis de imiscibilidade (parcial), líquido α + líquido β: (a) com temperatura crítica de

solubilidade superior (ponto U); (b) com ponto crítico de solubilidade inferior (ponto L); (c)

com existência simultânea de U e L. Retirado de [1].

A situação de imiscibilidade parcial que acaba de ser descrita está representada na Figura 2(a). As composições dos dois líquidos em

equilíbrio (?a e ?b) à temperatura TE são, respectivamente, x1α e x1

β. A temperatura TU é denominada temperatura crítica de

solubilidade superior: acima dessa temperatura existe uma única fase líquida em toda a gama de composições (0 ≤ x1 ≤ 1). A linha

é denominada curva binodal. O troço , à esquerda de U, corresponde às composições da fase líquida ?a (mais rica

no componente 2) ao passo que o troço , à direita de U, dá as composições da fase líquida ?b (mais rica no componente 1): a

cada temperatura T (<TU) as composições x1α e x1

β dos dois líquidos em equilíbrio são determinadas pela intersecção da curva

binodal com a tie-line (horizontal) respectiva. É claro que a temperaturas sucessivamente mais baixas as fases líquidas acabarão por

solidif icar e a curva binodal terminará na linha de solidif icação. No ponto U as duas fases líquidas tornam-se indistinguíveis. A

designação de ponto crítico de solubilidade para U (e de temperatura crítica de solubilidade para TU), resulta disto mesmo por analogia

com o ponto crítico das substâncias puras, onde duas fases (líquida e gasosa) também se tornam idênticas, com as mesmas

propriedades. A Figura 2(b) ilustra um outro caso possível de imiscibilidade parcial de duas fases líquidas, onde agora o ponto L

corresponde a uma temperatura crítica de solubilidade inferior. Abaixo da temperatura TL existe uma só fase líquida em toda a

gama de composições. A curva binodal é limitada superiormente pelas suas intersecções com a curva dos pontos de bolha no

equilíbrio (líquido + vapor). O caso representado na Figura 2(c), em que a curva binodal se fecha sobre si própria, com existência

simultânea de dois pontos críticos, superior e inferior (U e L, respectivamente), é bastante mais raro: neste caso a imiscibilidade

parcial das duas fases líquidas só pode ocorrer a temperaturas entre TU e TL.

Diagramas ternários

Page 3: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

3/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Para representar sistemas ternários recorre-se à geometria dos prismas de base triangular onde às ordenadas se faz corresponder a

temperatura ou a pressão e à base (um triângulo equilátero) se associa a composição dos componentes em fracção molar (ou

percentagens molares) (x1, x2 e x3) ou fracções (ou percentagens ponderais) (w 1, w 2 e w 3). Como a soma das distâncias de um

ponto no interior de um triângulo (equilátero) aos três lados é igual à sua altura, h, (ver Figura 3), será h=a+b+c. Normalizando, ter-se-á

que a/h= x1 (ou w1), b/h=x2 (ou w2) e c/h=x3 (ou w3) e desta forma verif ica-se a relação entre as fracções molares

(ou, entre fracções mássicas, ).

Figura 03: Triângulo equilátero utilizado na representação das variáveis de composição em

sistemas ternários. A altura h é h=a+b+c, pelo que x1(ou w1)=a/h, x2(ou w2)=b/h e x3(ou

w3)=c/h.

Aos vértices do triângulo fazem-se corresponder os componentes puros da mistura ternária. Qualquer ponto sobre um dos lados do

triângulo representa, assim, (a composição de) uma mistura binária, enquanto os pontos no interior do triângulo representam misturas

dos três componentes, como se ilustra na Figura 4. Misturando dois sistemas ternários cujas composições sejam dadas pelos pontos P

e Q obtém-se, sempre, um sistema cuja composição global é dada por um ponto sobre a recta . A localização exacta do ponto

representativo do sistema final R dependerá das massas relativas de P e Q que se misturarem. Se a uma mistura binária dos

componentes 2 e 3 representada pelo ponto E, formos adicionando quantidades crescentes do componente 1 obtemos um sistema

ternário cuja composição é representada por sucessivos pontos sobre a recta [1SE], uma vez que as proporções dos componentes 2

e 3 no sistema se mantêm. Quanto maior for a quantidade de componente 1 adicionada mais o ponto (S) que representa o sistema

ternário se afastará da base, i.e. do ponto E, sobre o lado [23], e se aproximará do vértice 1, correspondente à substância que está a

ser adicionada. Se, pelo contrário, partimos de um sistema ternário de composição dada por S e se dele formos removendo o

componente 1 (por exemplo, por evaporação), a composição global do sistema vai evoluindo de modo que a sua representação se

desloca sobre a recta [1SE] aproximando-se do ponto E.

Page 4: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

4/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 04: Representação da composição de um sistema ternário. Os wi são as fracções

ponderais dos componentes. Os vértices 1, 2 e 3 representam os componentes puros; D

representa uma mistura binária dos componentes 1 e 2; E é uma mistura binária de 2 e 3;

os pontos P, Q, R e S representam misturas dos três componentes (1, 2 e 3).

Vamos agora ver como se interpretam geometricamente os diagramas de fases ternários onde os três componentes (1, 2 e 3) do

sistema são líquidos à temperatura e à pressão consideradas.

Se dois dos componentes forem parcialmente miscíveis, o diagrama representativo das diversas composições apresentará o aspecto

ilustrado na Figura 5. É um diagrama do tipo I.

Page 5: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

5/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 05: Esquema para ilustração de um diagrama ternário (1,2,3) em que os componentes

2 e 3 são parcialmente miscíveis (à temperatura e à pressão consideradas). P é o ponto de

enlace. A recta CD é uma tie-line.

À temperatura e pressão consideradas, no interior da área limitada pelos pontos [ACPDB] existem duas fases (líquidas) imiscíveis: o

ponto A representa o limite de solubilidade do componente 3 no componente 2; em contrapartida, o ponto B representa o limite de

solubilidade do componente 2 no componente 3; quando o sistema contém, também, o componente 1 e a composição global é

representada por um ponto no interior da área [ACPDB] o sistema desdobra-se em duas fases líquidas ternárias em equilíbrio

termodinâmico. Por exemplo, um sistema ternário de composição global dada pelo ponto R apresenta-se como sendo constituído por

duas fases líquidas cujas composições são dadas pelos pontos C e D. A linha recta [CRD] une duas fases em equilíbrio: uma (a fase

com a composição do ponto D) mais rica no componente 3 e outra (a fase com a composição dada pelo ponto C) mais rica no

componente 2. Quer dizer: a adição do componente 1 aos sistemas binários de componentes 2 e 3 cuja composição inicial esteja

compreendida entre as de A e B dá origem ao aumento da solubilidade mútua de 2 e 3, de modo que a zona bifásica vai diminuindo, até

se atingir um ponto também ternário de composição dada por P, em que a solubilidade de 2 em 3 e a de 3 em 2 se igualam. O ponto P

designa-se por ponto de enlace ou ponto crítico (ou plait point, em Inglês). As rectas como [CD] que unem duas fases em

equilíbrio são denominadas tie-lines, na designação em língua inglesa, que se generalizou. Pelo que f icou dito se conclui que a linha

[ACP] é a curva de solubilidade do componente 3 no sistema constituído pelos três líquidos 1, 2 e 3, enquanto que a curva [PDB]

representa os limites de solubiliddae do componente 2 no sistema ternário. A curva de solubilidade limitante da zona bifásica [ACPDB]

denomina-se curva binodal. No exterior da curva binodal um sistema ternário como o que estamos a tratar é monofásico.

À medida que aumenta a temperatura a solubilidade mútua dos componentes aumenta (geralmente) devido à agitação molecular, pelo

que a área bifásica nos diagramas triangulares como o da Figura 5 vai sendo cada vez mais reduzida, como se torna evidente

observando a Figura 6. Em projecção sobre a base do prisma triangular obtêm-se as curvas de solubilidade às diversas temperaturas

como se esquematiza na Figura 6(b).

Page 6: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

6/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 06: Diagrama ternário (T, wi) esquemático, a pressão constante. Até temperaturas

pouco superiores a T3 os componentes 2 e 3 são parcialmente imiscíveis. A temperaturas

superiores à do ponto P o sistema é homogéneo (monofásico). Retirado de [1].

Por vezes acontece que dentre os três líquidos há dois pares (e não um só) que são parcialmente imiscíveis. São os diagramas do tipo

II. Nesta situação o diagrama triangular tem o aspecto que se mostra na Figura 7. Se a temperatura baixar as duas zonas bifásicas

aumentam de área, de forma que poderão intersectar-se, coalescendo, como se mostra na Figura 8. Neste caso o diagrama (T, w i), ou

(T, xi), teria o aspecto ilustrado na Figura 9.

Page 7: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

7/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 07: Diagrama triangular em que os pares 1-3 e 1-2 são parcialmente imiscíveis. As

rectas no interior das zonas bifásicas representam tie-lines. Retirado de [1].

Figura 08: Os pares 1-3 e 1-2 são parcialmente imiscíveis e as áreas de imiscibilidade mútua

intersectam-se. As rectas no interior da zona bifásica são tie-lines. Retirado de [1].

Page 8: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

8/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 09: Diagrama ternário (T, wi), esquemático, em que os pares (de líquidos) 1-2 e 1-3

são parcialmente imiscíveis até temperaturas ligeiramente abaixo de T´. Acima da

temperatura T´e até T´´ a situação de imiscibilidade parcial só se observa para o par 1-2.

Retirado de [1].

Quando os três líquidos forem parcialmente imiscíveis dois a dois e se as suas áreas de imiscibilidade parcial se intersectarem o

diagrama triangular respectivo toma o aspecto que se mostra na Figura 10. São geralmente designados por diagramas do tipo III.

Page 9: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

9/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 10: Diagrama triangular em que os componentes 1, 2 e 3 são parcialmente imiscíveis

à temperatura considerada. As regiões A são monofásicas, as áreas B são bifásicas e o

interior do triângulo C corresponde à coexistência de três fases (cujas composições são

dadas pelos pontos a, b e c). Retirado de [1].

Para ilustrar alguns casos práticos, na Figura 11 mostra-se um conjunto de diagramas de equilíbrio líquído-líquido ara sistemas aquosos

de etanol e esteres. Na f igura podemos verif icar a existência de diagramas de tipo I e tipo II.

Page 10: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

10/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 11: Diagramas ternários para o sistemas do tipo água+ester+etanol e água+acetato

de N-butilo+acetato de etilo a 25 ºC.

Os diagramas ternários envolvendo fases líquidas são úteis para a compreensão da operação de extracção. Neste contexto usam-se

as chamadas curvas de distribuição. Estas são construídas a partir dos diagramas triangulares, representando a concentração do

componente que é solúvel nas duas fases parcialmente miscíveis, uma em função da outra. Podem surgir aqui várias situações

indicadas na Figura 12. Por exemplo, se os componentes 1 e 2 forem parcialmente imiscíveis e o componente 3 for completamente

miscível quer com o componente 1 quer com o componente 2, designando por w3,1 a concentração (em fracção ponderal) do

componente 3 na fase mais rica no componente 1 e por w3,2 a concentração do componente 3 na fase mais rica no componente 2

obtém-se do diagrama triangular a curva de distribuição respectiva como se ilustra na Figura 12(a). Nesta f igura apresenta-se, de

forma genérica, o processo de construção.

Page 11: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

11/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Figura 12: Diversos tipos de curvas de distribuição. O exemplo (c) é de um sistema

solutrópico: a inclinação das tie-lines diverge, passando de positiva a negativa. No diagrama

(b) não há ponto de enlace. Retirado de [1].

Estes conceitos são muito importantes na extracção líquido-líquido tão importantes que a nomenclatura desta operação unitária

adoptou designações particulares para os componentes e para as fases em equilíbrio. Para assentar conceitos considere-se a Figura

13 onde se representa um diagrama ternário em que à temperatura considerada os componentes 1 e 2 são completamente miscíveis

Page 12: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

12/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

(como, aliás também acontece com o par 1-3).

Figura 13: Diagrama ternário a temperatura constante. As linhas a tracejado são tie-lines.

Retirado de [1].

Admitamos que pretendiamos separar as substâncias líquidas 1 e 2 existentes numa mistura (binária) inicial representada pelo ponto F.

Adicionando quantidades crescentes de componente 3 (que se designa por solvente) à mistura F a composição global do sistema

mover-se-á ao longo da recta [FM3]. Por adição de quantidade adequada do componente 3, a composição global do sistema (ternário)

passa a ser representada pelo ponto M. Neste ponto o sistema é heterogéneo, separando-se em duas fases cujas composições são

dadas pelos pontos P e Q.

A fase Q tem uma composição mais rica no solvente (componente 3). Esta fase, em terminologia de extracção líquido-líquido, é

denominada fase extracto (ou fase solvente). A fase P, que tem um mais baixo conteúdo em solvente, chama-se fase refinado

(ou fase resíduo). Eliminando progressivamente o solvente (componente 3) da fase extracto (Q), por destilação ou outra operação

equivalente, obtém-se um extracto livre de solvente cuja composição é representada pelo ponto S na Figura 10. Da mesma forma, o

refinado (ou resíduo), R, é obtido da fase P por eliminação do solvente. Assim, por extracção líquido-líquido (que começa pela adição

de solvente à mistura binária inicial, F) e separação das duas fases resultantes (P e Q) seguida de remoção do solvente (componente

3) de cada uma das fases em equilíbrio, a mistura original (F) pode ser separada em duas outras misturas binárias (R e S).

Comparando com a mistura inicial (F) a mistura S tem uma composição mais elevada no componente 1 e a mistura R contém uma menor

fracção deste componente. Este princípio de separação pode ser repetido sequencialmente com vista à separação dos componentes

1 e 2 (completamente miscíveis) em extractos e refinados progressivamente mais ricos nos componentes (1 ou 2) que se querem

separar por extracção líquido-líquido. É claro que a extensão do processo de extracção está condicionada pela temperatura e

pressão, pela área coberta pela curva de solubilidade e pela natureza do sistema ternário.

Page 13: Equilibrio de Fases

05/06/12 Portal de Engenharia Quimica - Fundamentos

13/13labvirtual.eq.uc.pt/siteJoomla/index2.php?option=com_content&task=view&id=150&Itemid=&pop=1&…

Bibliografia

1. Lobo, L. Q.; Ferreira, A. G. M. Termodinâmica e Propriedades Termofísicas, Volume I, Termodinâmica das Fases;

Imprensa da Universidade de Coimbra: Coimbra, 2006.

Fechar janela