20
UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO DEEC / Secção de Energia Energias Renováveis e Produção Descentralizada EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS 1ª Parte – Princípio de funcionamento J.M. Ferreira de Jesus Rui M.G. Castro Março de 2004 (edição 0)

EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

  • Upload
    doanque

  • View
    221

  • Download
    1

Embed Size (px)

Citation preview

Page 1: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

DEEC / Secção de Energia

Energias Renováveis e Produção Descentralizada

EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS

1ª Parte – Princípio de funcionamento

J.M. Ferreira de Jesus Rui M.G. Castro

Março de 2004 (edição 0)

Page 2: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

ÍNDICE

1. INTRODUÇÃO 3

2. MÁQUINA DE INDUÇÃO COM ROTOR EM GAIOLA 7

3. MÁQUINA DE INDUÇÃO DUPLAMENTE ALIMENTADA 10

4. MÁQUINA SÍNCRONA DE VELOCIDADE VARIÁVEL 17

5. BIBLIOGRAFIA 20

ii

Page 3: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Introdução 3

1. INTRODUÇÃO

Os primeiros Geradores Eólicos (GEOL) que se instalaram em Portugal (no final

dos anos 80, início dos anos 90) encontravam-se equipados com máquinas de indução

de rotor em gaiola. A diferença entre os diversos sistemas residia na forma como a

turbina controlava a potência mecânica: turbinas em que o controlo da potência

mecânica é conseguido através do desenho das pás do rotor, denominadas turbinas

tipo “stall” na literatura, e turbinas em que o controlo da potência mecânica é realizado

por variação do passo das pás do rotor, denominadas turbinas tipo “pitch”. Estes GEOL

caracterizavam-se por possuírem uma velocidade de rotação praticamente constante

(sendo as variações da velocidade de rotação contabilizadas pelo escorregamento) e

por possuírem caixas de velocidade para adaptação da velocidade de rotação nominal

da turbina (cerca de 38 rpm) à velocidade de sincronismo da máquina de indução

(tipicamente 1500 rpm).

No final da década de 90 foram instalados, em Portugal, os primeiros GEOL

equipados com máquinas síncronas, operadas a velocidade variável. Estes

caracterizam-se pela ausência de caixa de velocidades, sendo a adaptação da

frequência das grandezas eléctricas do gerador à frequência da rede, realizada através

de um sistema de conversão corrente alternada / corrente contínua / corrente alternada

(ca/cc/ca). As turbinas que equipam estes GEOL são do tipo “pitch”.

No final da década de 90, são ainda instalados em Portugal GEOL equipados com

máquinas de indução de rotor bobinado, em que existe a possibilidade de variar uma

resistência colocada em série com o rotor da máquina e, consequentemente, a gama

de variação de velocidade do rotor. As turbinas que equipam estes GEOL são do tipo

“pitch”, sendo a adaptação da velocidade do rotor da turbina ao rotor da máquina de

indução realizada através de uma caixa de velocidades.

Actualmente encontram-se em instalação em Portugal GEOL equipados com

máquinas de indução de rotor bobinado com aproveitamento da energia do

escorregamento, uma montagem designada na literatura por máquina de indução de

Page 4: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Introdução 4

dupla alimentação1. Estes GEOL são equipados com turbinas do tipo “pitch” e possuem

uma caixa de velocidades por forma a adaptar a velocidade da turbina à velocidade de

rotação da máquina de indução.

Os diferentes tipos de tecnologia que, ao longo do tempo, têm sido instalados em

Portugal, reflectem a evolução tecnológica que se tem verificado nos GEOL ao longo

dos anos.

A Figura 1 ilustra os diferentes tipo de configuração possíveis para os GEOL.

Tanto quanto é do conhecimento dos autores, das configurações ilustradas, apenas a

correspondente à utilização da máquina de indução de rotor em gaiola ligada à rede de

energia eléctrica através de um sistema de conversão ca/cc/ca, não é oferecida pelos

fabricantes de GEOL.

Figura 1 – Configurações dos GEOL. [Cigrè].

1 Em inglês estas máquinas designam-se por DFIG – Double Fed Induction Generator ou DOIG – Double Output Induction Generators.

Page 5: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Introdução 5

As turbinas que equipam as configurações ilustradas na Figura 1 podem ser quer

do tipo “pitch” quer do tipo “stall”, contudo, nas configurações equipadas com sistemas

de conversão ca/cc/ca para interligação com a rede de energia eléctrica, as turbinas

são geralmente do tipo “pitch”.

Dados disponibilizados pelo INEGI2 com data de Março de 2003, que se

apresentam no Quadro 1, permitem quantificar a potência instalada e em construção

em Portugal Continental por tipo de GEOL.

Quadro 1 – Potência instalada em operação/construção por tipo de configuração dos GEOL em Março de 2003.

Tipo Turbina Tipo Gerador Ligação à Rede P instalado [MW] P construção [MW]

Stall Indução, Gaiola de Esquilo Directa 39,4 38,1

Indução, Gaiola de Esquilo Directa 36,7 -

Indução, Duplamente alimentado Sistema de conversão ca/cc/ca (rotor) 7,85 21

Síncrono Sistema de conversão ca/cc/ca 100,5 6

Pitch

Os dados constantes no Quadro 1 reflectem uma tendência que se vem

verificando por parte dos fabricantes que ofereciam sistemas baseados em máquinas

de indução de rotor em gaiola com turbinas de tipo “pitch”, que consiste em, para a

gama de potências actualmente disponibilizadas nos GEOL (2-3 MW), passarem a

oferecer máquinas de indução duplamente alimentadas. Idêntica filosofia pode ser

observada nos fabricantes que oferecem turbinas de tipo “stall” acopladas a máquinas

de indução de rotor em gaiola: na gama dos GEOL com potência nominal de

2-3 MW começam a oferecer turbinas do tipo “pitch” acopladas a máquinas de indução

duplamente alimentadas.

É assim expectável que a penetração de GEOL equipados com turbinas do tipo

“pitch” e máquinas de indução duplamente alimentadas aumente consideravelmente

num futuro próximo.

2 Instituto Nacional de Engenharia e Gestão Industrial, ligado à Faculdade de Engenharia da Universidade do Porto.

Page 6: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Introdução 6

No horizonte temporal de 2010, é expectável que em Portugal Continental os

parque eólicos sejam predominantemente equipados com GEOL de três tipos a saber:

• Turbinas tipo “stall” com geradores de indução de rotor em gaiola.

• Turbinas tipo “pitch” com geradores síncronos de velocidade variável ligados

à rede de energia eléctrica através de conversores ca/cc/ca.

• Turbinas tipo “pitch” com geradores de indução duplamente alimentados,

com o estator directamente ligado à rede de energia eléctrica e o rotor ligado

à rede de energia eléctrica através de conversores ca/cc/ca.

Neste documento descrevem-se os tipos de GEOL que, previsivelmente, estarão

instalados em Portugal até 2010.

A caracterização dos GEOL é realizada separadamente para a máquina de

indução com rotor em gaiola (MIRG), para a máquina de indução duplamente

alimentada (MIDA) e para a máquina síncrona de velocidade variável (MSVV).

Page 7: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução com Rotor em Gaiola 7

2. MÁQUINA DE INDUÇÃO COM ROTOR EM GAIOLA

A máquina de indução com o rotor em gaiola (MIRG) funciona como gerador nas

situações em que a velocidade angular do rotor é superior à velocidade angular do

campo girante, ou seja, para escorregamentos, s, negativos, conforme ilustrado na

Figura 2.

-80

-60

-40

-20

0

20

40

60

-1,5 -1 -0,5 0 0,5 1 1,5s

Tmec [Nm]

Figura 2 – Característica binário–velocidade da máquina de indução de rotor em gaiola.

No modo de funcionamento como gerador a máquina funciona entre os pontos

correspondentes ao escorregamento (aproximadamente) nulo e o correspondente ao

valor máximo da intensidade de corrente admissível no estator, o qual, para a máquina

a que corresponde a característica representada na Figura 2, se verifica para um valor

de s igual a -0.8%. Este valor é consideravelmente inferior àquele para o qual ocorre o

binário máximo (cerca de -8% para a característica representada na Figura 2). Em

virtude da variação da velocidade admissível da máquina em relação à velocidade de

sincronismo ser muito pequena, na prática, esta máquina comporta-se como tendo

velocidade constante.

Page 8: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução com Rotor em Gaiola 8

A Figura 3 ilustra a potência reactiva consumida pela máquina de indução em

função da potência activa gerada.

-320

-300

-280

-260

-240

-220

-200

0 100 200 300 400 500 600 700

P [kW]

Q [k

var]

Figura 3 – Potência reactiva, Q, consumida em função da potência activa gerada, P.

Na MIRG, o campo electromagnético, essencial para a conversão de energia

mecânica em energia eléctrica, é estabelecido através do estator da máquina. Tal facto

implica que a máquina absorve sempre potência reactiva da rede, conforme ilustrado na

Figura 3. Note-se a escala negativa no eixo dos y, para ilustrar a absorção de potência

reactiva, na convenção gerador.

O factor de potência da máquina aumenta com o aumento da potência activa

gerada, sendo esta variação não linear, conforme ilustrado nesta figura. Para a

máquina com a característica ilustrada na Figura 3, o factor de potência varia entre 0,18

e 0,91 (capacitivo) para valores da potência activa entre 40 kW e 660 kW,

respectivamente.

Page 9: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução com Rotor em Gaiola 9

Os GEOL equipados com MIRG são sempre equipados com baterias de

condensadores por forma a compensar o factor de potência das máquinas. Os

fabricantes compensam, geralmente, o factor de potência para o valor unitário, por meio

de bancos de condensadores, tipicamente com dois escalões.

Alguns fabricantes oferecem MIRG com um número variável de pares de pólos

(tipicamente 2-3): o número a usar depende da velocidade da turbina. Esta solução

permite adaptar a velocidade específica da ponta da pá, λ, a um valor que maximize o

coeficiente de potência, Cp.

Page 10: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução Duplamente Alimentada 10

3. MÁQUINA DE INDUÇÃO DUPLAMENTE ALIMENTADA

O principio de funcionamento da máquina de indução (com rotor bobinado)

duplamente alimentada (MIDA) baseia-se na possibilidade de controlar a sua

velocidade por variação da resistência do rotor. A Figura 4 ilustra a alteração das

curvas binário / escorregamento da máquina de indução devido à variação de uma

resistência ligada em série com a do enrolamento do rotor.

-80

-60

-40

-20

0

20

40

60

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1s [pu]

T [Nm]

Rr1 Rr2 Rr3 Rr4 Tmec

Figura 4 – Curvas características binário - velocidade para diferentes valores de resistência do rotor: Rr4 > Rr3 > Rr2 > Rr1

Na Figura 4 observa-se que, para um dado binário mecânico, T, é possível variar a

velocidade da máquina de indução variando a resistência rotórica. Se em lugar de uma

resistência variável, se instalar um sistema de conversão ca/cc/ca ligado ao rotor, é

possível extrair potência activa pelo rotor da máquina e assim controlar a velocidade. É

este o princípio do aproveitamento da energia de escorregamento nos motores de

indução de rotor bobinado.

Page 11: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução Duplamente Alimentada 11

O modo de funcionamento das MIDA utilizadas nos GEOL baseia-se no princípio

acima descrito: para escorregamentos negativos, até se atingir a intensidade de

corrente nominal do estator da máquina, a potência extraída pelo rotor da máquina é

controlada por forma a optimizar a velocidade específica da ponta da pá do rotor, λ, e

assim maximizar o valor do coeficiente de potência, Cp, da turbina.

Para escorregamentos negativos, superiores (em módulo) àquele em que a

intensidade da corrente no estator atinge o valor nominal, a potência activa no estator e

rotor permanecem constantes.

Este princípio do controlo da velocidade por aproveitamento da energia de

escorregamento, leva a que esta máquina possa funcionar como gerador para

escorregamentos positivos. Por forma a garantir este modo de operação, torna-se

necessário fornecer potência activa ao rotor.

A Figura 5 ilustra a característica Cp(v) para turbinas de velocidade fixa (v f) e de

velocidade variável (v v).

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 5 10 15 20 25 30

v [m/s]

Cp

v v v f

Figura 5 – Característica Cp(v) para turbinas de velocidade fixa (v f) e de velocidade variável (v v).

Page 12: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução Duplamente Alimentada 12

Para a mesma velocidade do vento incidente, as turbinas apresentam as

características Pmec(v) representadas na Figura 6.

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

v [m/s]

Pmec

[kW

]

v v v f

Figura 6 – Características Pmec (v) para turbinas de velocidade variável (vv) e explorada a velocidade fixa (vf).

A Figura 5 e a Figura 6 ilustram as vantagens de explorar uma turbina a

velocidade variável: a potência mecânica disponível para conversão em potência

eléctrica é claramente superior, quer na zona das mais baixas quer na das mais

elevadas velocidades de vento.

A Figura 7 ilustra a velocidade do rotor de uma máquina de indução com dois

pares de pólos acoplada a uma turbina eólica operada a velocidade fixa ou variável.

Da Figura 7 conclui-se que, para a máquina ser operada a velocidade variável e

assim optimizar o valor de Cp da turbina, necessita funcionar como gerador para

velocidades abaixo da velocidade de sincronismo (1500 rpm neste caso).

Page 13: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução Duplamente Alimentada 13

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

5 7 9 11 13 15 17 19 21 23 25

v [m/s]

Nr

[rpm

]

v v v f

Figura 7 – Velocidade do rotor em função da velocidade do vento de uma máquina de indução com 2 pares de pólos num sistema operado a velocidade fixa (v f) ou a velocidade variável (v v).

A Figura 8 ilustra as potências activas no estator, Ps(vv), no rotor, Pr, e total Pt(vv)

(=Ps-Pr) de uma MIDA que equipa o GEOL explorado a velocidade variável e a potência

activa no estator, Ps(vf), da MIRG de velocidade constante.

A análise da Figura 8 permite a identificação de três zonas na característica

potência – velocidade de rotação da MIDA: uma zona abaixo da velocidade de

sincronismo em que é fornecida potência activa ao rotor da máquina; uma zona próximo

da velocidade de sincronismo em que o trânsito de potência activa no rotor da máquina

é praticamente nulo; uma zona, a partir de cerca de 1512 rpm, em que a máquina

fornece potência activa à rede pelo estator e pelo rotor. Estas zonas que se observam

na Figura 8 são típicas nos GEOL equipados com MIDA correntemente

comercializados.

Page 14: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução Duplamente Alimentada 14

-50

50

150

250

350

450

550

650

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650

Nr [rpm]

P [k

W]

Ps (v v) Pr Ps (v f) Pt (v v)

Figura 8 – Potências activas das MIRG (v f) e MIDA (v v) em função da velocidade do rotor.

Na Figura 9 apresenta-se o esquema de ligações da máquina de indução

duplamente alimentada.

Figura 9 – Esquema de ligações da máquina de indução duplamente alimentada [Ekanayake].

O estator da máquina de indução encontra-se directamente ligado à rede de

energia eléctrica; o rotor está ligado à rede através de um sistema de conversão

ca/cc/ca e de um transformador elevador.

Page 15: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução Duplamente Alimentada 15

Os conversores ca/cc/ca que interligam o rotor da máquina à rede, através do

transformador elevador, são pontes conversoras a seis pulsos equipados com

transistores bipolares de porta isolada (IGBT’s) com um sistema de comando por

modulação da largura do impulso. Tipicamente, nos GEOL equipados com MIDA, o

conversor ligado ao transformador elevador controla a tensão contínua aos terminais do

condensador do subsistema de corrente contínua e controla o factor de potência no

ponto comum aos circuitos do rotor e estator. O conversor directamente ligado ao rotor

da máquina de indução controla o módulo e argumento da intensidade de corrente

injectada / extraída pelo circuito rotórico.

O princípio de funcionamento do sistema de controlo por modulação da largura de

impulso dos conversores permite impor uma forma de onda alternada sinusoidal com

frequência, amplitude e fase ajustáveis aos terminais de corrente alternada dos

conversores [Mohan].

No caso que ora se apresenta, o conversor ca/cc ligado ao rotor da máquina de

indução, permite o controlo da frequência da forma de onda aplicada ao rotor (igual à

frequência de escorregamento da máquina num dado ponto de operação) e,

simultaneamente, o controlo do módulo e argumento da intensidade de corrente no

rotor. No conversor ca/cc ligado ao transformador elevador, é controlada a amplitude da

tensão contínua aos terminais do condensador, a frequência da onda de corrente

alternada é igual á frequência da rede com que o conversor se encontra interligado e o

controlo de fase permite impor o factor de potência.

Esta propriedade do sistema de comando por modulação da largura do impulso de

ajustar a fase da onda de tensão/intensidade de corrente, permite dispensar a utilização

de baterias de condensadores na grande maioria dos casos. Tipicamente, os

fabricantes asseguram um controlo do factor de potência entre cerca de 0,9 indutivo e

cerca de 0,9 capacitivo aos terminais da máquina.

Page 16: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina de Indução Duplamente Alimentada 16

O sistema de controlo dos conversores ca/cc/ca visa assegurar a maximização do

valor do coeficiente de potência, Cp, da turbina, na região da característica P(v) em que

a potência não é controlada. Adicionalmente, o sistema de controlo destes conversores

mantém um dado valor do factor de potência no ponto de interligação da MIDA com a

rede de energia eléctrica.

Na região de potência controlada da característica P(v) da turbina, o controlador

do sistema de conversão ca/cc/ca mantém constante a potência total, Pt, extraída pelo

estator e rotor da máquina, sendo complementado pelo sistema de controlo do ângulo

de passo das pás do rotor.

Do exposto conclui-se que o sistema de controlo dos GEOL equipados com MIDA

visa maximizar a potência eléctrica entregue à rede na gama de variação da velocidade

do vento.

Page 17: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina Síncrona de Velocidade Variável 17

4. MÁQUINA SÍNCRONA DE VELOCIDADE VARIÁVEL

A Figura 10 ilustra o esquema de ligações dos geradores eólicos equipados com

máquinas síncronas de velocidade variável (MSVV).

Figura 10 – Esquema de Ligações de um GEOL equipado com um gerador síncrono explorado a velocidade variável.

Nestes sistemas a máquina síncrona encontra-se ligada à rede através de um

sistema de conversão ca/cc/ca, já que a frequência das grandezas estatóricas (idêntica

à frequência angular de rotação do rotor) é diferente da frequência da rede de energia

eléctrica.

Os GEOL deste tipo instalados em Portugal, não possuem caixa de velocidades,

pelo que a velocidade mecânica de rotação do rotor é idêntica à velocidade de rotação

da turbina. Tipicamente a velocidade de rotação da turbina (e do rotor da máquina

síncrona) varia entre 17 rpm e 36 rpm, pelo que a máquina possui um número de pares

de pólos elevado (32 nalgumas das instalações existentes).

Page 18: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina Síncrona de Velocidade Variável 18

O estator da máquina síncrona é hexafásico e encontra-se ligado a dois sistemas

de conversão ca/cc/ca independentes. O paralelo entre os dois sistemas de conversão

é efectuado à saída dos conversores cc/ca (conversores de rede) que se encontram

ligados ao transformador elevador.

Cada um dos conversores ca/cc ligados ao gerador (conversores de gerador) é

constituído por uma ponte conversora a seis pulsos equipadas com tiristores. Estes

tiristores funcionam com um ângulo de disparo constante.

A tensão contínua aos terminais do condensador colocado em paralelo na ligação

em corrente contínua tem de ser regulada para um valor constante. Contudo, para

valores baixos da velocidade do rotor, o sistema de excitação da máquina síncrona não

tem capacidade para assegurar aquele valor, sendo necessário recorrer a um “chopper”

(conversor cc/cc) instalado entre o conversor do gerador e o condensador, o qual é

desligado quando a velocidade do rotor excede um determinado valor.

O conversor de rede é constituído por uma ponte conversora a seis pulsos

equipada com IGBT’s, com um sistema de comando por modulação da largura do

impulso. Este conversor controla a potência activa injectada na rede e o factor de

potência. O controlo de potência activa no conversor de rede permite a imposição de

um binário electromagnético (resistente) ao gerador, tornando assim possível o controlo

da velocidade de rotação do grupo turbina eólica – gerador, por forma a obter a

velocidade específica da ponta da pá óptima, λ, para cada valor da velocidade de

vento.

A Figura 11 ilustra a potência activa e reactiva fornecida pelo conversor de rede de

um GEOL deste tipo em função da velocidade de rotação do rotor.

Page 19: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Máquina Síncrona de Velocidade Variável 19

0

100

200

300

400

500

600

700

16 18 20 22 24 26 28 30 32 34 36

Nr [rpm]

P; Q

[kW

/kVa

r]

P Q

Figura 11 – Potência activa e reactiva fornecida por um GEOL equipado com gerador síncrono explorado a velocidade variável em função da velocidade do rotor.

Page 20: EQUIPAMENTO ELÉCTRICO DOS GERADORES EÓLICOS J.M

Bibliografia 20

5. BIBLIOGRAFIA

[Akhmatov] Akhmatov; “Variable-Speed Wind Turbines with Doubly-Fed Induction Generators

– Part I: Modelling in Dynamic Simulation Tools”, Wind Engineering, Vol 26, nº 2,

2002.

[Cigrè] CIGRÉ Task Force 38.01.10, 2001.

[Ekanayake] Ekanayake; Holdsworth; Wu; Jenkins; “Dynamic Modelling of Doubly Fed

Induction Generator Wind Turbines”, IEEE Transactions on Power Systems,

vol.18, nº 2, May 2003.

[Manwell] Manwell; McGowan; Rogers; “Wind Energy Explained”, John Wiley & Sons, 2002.

[Mohan] Mohan; Undeland; Robbins; “Power Electronics – Converters, Applications and

Design”, John Wiley & Sons, 2003.