Expansões polinomiais das Funções de Bessel

Embed Size (px)

Citation preview

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    1/13

    Polynomial Expansions of Bessel Functions andSome Associated Functions

    By Jet Wimp

    1. Introduction. In this paper we first determine representations for the Anger-Weber functions Jv(ax) and Ev(ax) in series of symmetric Jacobi polynomials.(These include Legendre and Chebyshev polynomials as special cases.) If v is aninteger, these become expansions for the Bessel function of the first kind, since]k(ax) = Jk(ax). In Section 3, corresponding representations are found for(ax)~"Jv(ax). Convenient error bounds are obtained for the above expansions. Inthe fourth section we determine the similar type expansions for the Bessel functions

    Yk (ax) and Kk (ax). In Section 5, the coefficients of some of our expansions are tabu-lated for particularly important values of the various parameters.

    2. Symmetric Jacobi Expansions of Anger-Weber Functions. A function f(x)satisfying certain conditions (for these consult [1]) may be expanded in the series

    (2.1) /(*) = CnPnia-a)(x), -1 x 1, a > -1,

    where Pn{a (x) is called the symmetric Jacobi polynomial of degree n. For ourpresent purposes we shall use a definition given in [2] :

    (2.2) 2nn\Pn(a'a)(x) = (-)n(l - x2yaDn[(\ - x2)a+n).

    Also

    (2.3) C = h"1 /(*)(! - x2yPnla-"\x) dx,

    (2.4) hn = ---y^--p- (u)M = -r^ , (v)o = 1.(n + + i)(n + a + 1)Q T(v)

    Using the representation (2.2) in (2.3) and noticing that all derivatives of(1 x2)a+n up to and including the (n l)st vanish at x 1, we integrate

    (2.3) n times by parts to get:

    (2.5) Cn = (2nn\hnTl J fM(x)(l - x2)a+ndx.

    Consider the integral definition of the Anger-Weber functions [2, v. 2, p. 35]

    (2.6) Uax) + iEv(ax) = tT1 f eiiv^ttXBin*)o> = /(*).Jo

    When v is an integer, J(ax) coincides with the Bessel function of the first kind

    Max) [2, v. 2, p. 4].Now differentiate (2.6) n times under the integral sign, substitute the result in

    Received February 27, 1962.

    446

    License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    2/13

    POLYNOMIAL EXPANSIONS 447

    (2.5) and interchange the order of integration (which is, of course, permissible).The inner integral is known [3] and after evaluating it we have

    C. = (-i)n(n + l)a(hn7rm)l/2\-l

    (2.7)f eiH

    Jo

    $ j a sin ) d4>.

    Use the power series expansion for the Bessel function in (2.7) and integrate term-by-term to get

    (2.8) C = ( -i)n cos ^ + i sin ^ A Rn(v, , a

    where

    A =ann\

    (2.9)|~|-l(?+i+Or(!-i + 1)

    and R is conveniently described in hypergeometric notation [2, v. 1, p. 182] as

    Rn(v,a,a) = jF8|| + -,|+ 1;

    . 3 n , v . . n v , n a2"]

    1.5 -5+ 1; - |-J

    (2.10)

    rv -I- M 4- 2'2 2 '2 2

    Equating real and imaginary parts of (2.6) and (2.1), we get

    J(oi) = ,AttPnla-aHx), -Uil(2.11)

    (2.12)

    where

    (2.13)(2.14)

    and

    (2.15)

    (2.16)

    Ev(ax) = BP(a'a)0r), -lgigl,

    4 = Aj?(u, a, a)v)= 0.

    * The Bessel functions required to commute the coefficients in our expansions can be

    systematically generated on electronic computers with the aid of techniques discussed in[6, 7, 8]. There are numerous tables available for hand calculations. The words "accuracy,""error," and "convergence" in this paper always refer to the properties of the expansionwhen truncated after a finite number of terms.

    License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    4/13

    POLYNOMIAL EXPANSIONS 449

    may be truncated and rearranged in powers of x. Clenshtw [9], though, by using therecursion formulas satisfied by the Chebyshev polynomials, has formulated a con-

    venient nesting procedure which allows one to utilize such expansions directly. Thescheme is as follows. Consider

    (2.25) f\x) = AnmTn* () , 0 g x ^ a,n-o \a/

    (2.26) f2)(x) = t An

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    5/13

    450 JET WIMP

    and likewise for Bn . Also [2, v. 2, p. 206]

    (2.36) max I Pnia'a)(x) I = (n + ") , ^ -\.

    Letejv denote the error incurred by taking just N terms of (2.11) or (2.12). Becauseof the rapidity of convergence of the expansions, as shown by (2.35), the (N + l)thterm furnishes us with a convenient error estimate

    a)i-| |JV Tya+(l/2) 1/2(237) MV-r(^ + 1)r(4^ + i)r( + i),I +where a * , N > v, 1 i 1.

    Among the values of considered, it follows from (2.37) that the choice a = |,i.e., the Chebyshev case, yields the smallest error term for large N.

    3. Expansions of Bessel Functions of the First Kind of Nonintegral Order.Results in the previous section gave symmetric Jacobi polynomial expansions forJ(ax) and Iv(ax) for integral v. When v is nonintegral, these functions are nolonger entire functions of x, and it is convenient to derive an expansion for the entirefunction

    (3.1) T(u + l)(ax/2yju(ax) = 0Fi (v + 1; - ~Y

    Corresponding expansions for T(v + 1) (ax/2) ~~"IV(ax) then follow, as before, from

    (2.24).Let/(x) in (2.5) be the right-hand side of (3.1). Then we have

    (3.2) Jv(ax) = (axY AnP&a)(x), -1 x S 1,n=0

    where

    A _(-)"(2a)2"_

    n 2V2(2n + 2 + l)2(n + \)^,m/ 1 3 n2\

    jjn+i; u + n+l, 2n + + t ; - a- \ .

    These equations also follow from a result in [4]. Indeed, using a general expansiongiven there, an alternative formula for (3.3) can be stated. We have

    (3.4) iF3

    An =

    2

    PS

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    6/13

    POLYNOMIAL EXPANSIONS 451

    For the Chebyshev case of (3.2) a = \ and

    (3.6) Max) = (axY CnT2n(x), -1 g x rg 1,

    where

    . i'_^('^, /i^2 rn + |; v + n + 1, 2n + 1;(3.7) Cn = t"(~na/4),2"^1F2

    2"n! r(u + n + 1)

    Notice that when u = , (3.3) simplifies. Also, since

    / \-(l/2)

    = I 1 cos (ax),(3.8) J-d/2)(aa;)

    we infer the expansion

    (3.9) cos (ax) = YJCnPana)(x), -liln=0

    where

    (_)V/22-"+(1/2,(2n + + |)(2n + + 1)(3.10) C = ,a+(l/2) J,2n+ u.

    Concerning the optimum choice of a in (3.2), see the discussion surrounding (2.37).

    4. Expansions of Bessel Functions of the Second Kind. The Bessel function andmodified Bessel function of the second kind are denoted by Yv(z) and Kv(z), re-

    spectively, and a treatment of them can be found in [2, v. 2, Ch. VII]. If v is non-integral, then

    (4.1) F(z) = [sin (wr)rV.(*) cos (wr) - /_(*)},

    and

    (4.2) K(z) = J [sin (wr)rtf-.() - /(a)]

    so for such values of u expansions for the functions follow directly from the resultsof Section 3.

    If v is an integer, it can be shown that

    (4.3) Yk(ax) - | [

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    7/13

    452 JET WIMP

    and

    (

    where

    4.4) Kk(ax) = ( - )k+1 [y + In (^jj Ik(ax) - - i Nk_x(iax) + ^ Wh(iax),

    (4.5)

    and

    (4.6)

    Nk-i(ax) =

    1 *1 / \2

    V m-O \ /

    (k -m - 1)!wi!

    [0,

    >0

    fc= 0,

    IF _\ v / v. (o.x\ m [hm+k + m]Wk(ax) = 2-, (-) Itt) ,/; i-\V

    m=o \ 2 / m!(/c + ra)!In the above 7 = 0.57721 = Euler's constant and

    (4.7) /im = l + i+---+i, o = 1m

    We assume the value of log (ax/2) is known. Then, since expansions for Jk (ax)and Ik(ax) were found in Section 2, and since Nk-i(ax) is simply a polynomial inl/(aa;), we need expand only the entire part of (4.3), i.e., Wk(ax), in symmetricJacobi polynomials.

    Using the representation (4.6) as/(a:) in formula (2.5), a straight-forward deriva-

    tion gives the series

    (4.8)

    where

    (4.9)

    An

    Wk(ax) = T,AnPn{a'a)(x), -1 S * 2 1,

    [(-)* + (-)"](n++l)(n + + i)2"+2a+l

    2 7">=0 /

    V

    (-)"(-*

    m +

    re n +

    2m). /aV+2m [fc+m+ hm]m\(k + ra)!'

    2 /n+0+1

    We note that the expansion for Y0(ax) may also be obtained by partially differ-entiating (3.2) with respect to v since

    (4.10) Yo(ax) = 2tt"-i)dJv(ax)

    A similar procedure yields the expansion for K0(ax). The Jacobi series for Yk(ax)and Kk (ax) for k > 0, however, are not so easily obtained in this manner.

    For re = 0 and 1, the Chebyshev cases of (4.3) and (4.4) are

    (4.11) Yo(ax) = ? f7 + In f\ J0(ax) + En T2n(x), 0 < x ^ 1,

    (4.12) Yax) bM")]j,(ax) - + Fn r2n+1(x), 0 < x 1,License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    8/13

    POLYNOMIAL EXPANSIONS 453

    (4.13) Ko(ax) = - y + hi fe) h(ax) + G T2n(x), 0

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    9/13

    454 JET WIMP

    'Soa

    a

    -H 5;J >.m ^^ co

    i

    O

    eo8W]

    ii

    1o

    8W|

    II

    }e

    8W]

    ii

    s

    .H,

    8WlII

    1?o

    s

    iVil

    Vil

    q

    t-HOOt-H COooooo

    +++1 I I I I I I(NWOOOCO

    CO O -* CMOOOH

    n co^o concocelaos-h eo-* coHHCOONTflMr-HOO

    ON CO "* COcor- n o ioClcOOOOt'CO cDOOO CMCMi 00

    00 0Oco os as co o

    CD O i CO 00CD-* COO "*

    N OSC "* COCO CD CD "* CDCO i CO CO O

    r- co T-Ho cmNCOOWHi * O N -*CO CO N i i

    N CO OSCO 5

    COOO OCO o(M :* O O "*CO OS CO OS *O CO O N iCD >0 CM O T-H

    (M -* CO OS T-H

    I I

    n co T-Hco co

    I I I

    CMxf-:r-H r-H

    I I

    IM CO-* INOJ00

    CO CO

    csfr- 00

    * OlO icacoCOt*-OS tM

    i-l CM

    .-< CO O

    777ocat^ r-t COLOcoo

    - cocoQOQIO

    OCOCM"cHi-HCM

    ooco*CMCOOr-- * io* O*Nein

    HHCC^CO N0MCDH iHCNCN

    CO*

    77CO-*l-t 00O 00*COO IM

    * OoooCMo

    CO00o * SO o t~O COOO O 00O O O .-H CM

    O t^ 00 i-H coOrtNOirt

    NCCNCOOO O 00 CO CMOCJOMH

    i-1 CO iI CM *

    I I I I I

    ,-H * O ^H CMooooo+++1 ICO * CO t^ ooooooI I I I I

    O OS OS O OsONTfiOOO "* CO OS00 rH CM CM CDCO 00 N COCO

    O O T-HCO osOO Os -* * *0"H **-* OSO O O N Nt^ lO OS 00 (M

    O CO IQ CO N!> O CO * ir-iO CO CM 00 lO-*-* OHC* os COo co

    NOr-COOCO CO 00 CO Is-00 OO OCOCM CMCD"* OCD t- CO OS"*

    O CMCM -* OSHiOOOOCM T-H Os^ I--CM "* OS CO N00 CD T-H T-H T-H

    CM-* CO00 U3as co co o osOCTiOONo CO lO OS 00T-H T-H as CO ooco oo as co coCM "* T-H-* OSt- T-HGO O 00CD T-H CO T-H 00HOCON

    CMOS CMCO "O00 CO --H CD OCO O T-H I- CMi "* lO CO t-* irjooH -*

    t-- t- as as cmr- o oo oo iCO CM OS CM-*T-H "* T-H CMHiQINMO

    OOSCMt-h CMr*"OOWO00 CO CM CD CDOS CM O 00 T-HCOO (Mi-*

    CD T-H T-H CO CO CM T-H CO N T-H

    I I

    T-H T-H T-H CM CMoooooMill II I II

    CMi i i t-OCOcO"* OsCO CM "* * CO00 OO i"* CM"* T-H CO N "*

    -* T-H-* os o"* "* o o ot-HM * OCOO 00 CO i COCO CO CM T-H T-H

    OOiONCCM* cm r- i(M CD i i NCO CO CM Is- -*O CD CD > CO

    ooo oohCDt CM CO OSCMCO OS N CDOS-* CONCMas * -* t- asCO CO t- CD O* o T-Hascoo os ^* i as"* 00 CMt- "*i T-H t^ -* 00

    CM CO 00 OSCOO CD T-H t-O^ T-H OS ico -Hi * asO "* OS CM O

    CM T-H CM OS T

    I I

    T-H i T-H i T-H

    ! I

    i T-HCOOCOt-CD CDr-coT-H CDascoOCOCO-*CO"*

    CMCMOiOCO icooooo

    I I

    T-H CO I

    7T7CO"* COCMN

    N CMCMT-H 00 T-Hi OSOS"* CONN Or-HOCMOas T-HcoOOOCO**COO00 t- COT-H CO OSO O T-HT-HNCO

    T-H T-H i OS 00 i CM O iI CO i CD N

    CM"*

    77oo asiNCO (MOS ^H(Mi

    as cmT-H CO"* CDT-H"*T-HTH

    CO00CM i00 NCOCOT-H CD

    CMCM

    T-H CO i

    777KM CMos as T-Has oo -*CM OS T-HT-H i"*

    CO OS ios co asO (M-*CONOT-H GOO

    H1C5CT-H GOOOS CONcm as -*GO "* GO

    r-H CM CM

    I I

    Ot-hCMCO'* iOcONCOOs Ot-HCM

    License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    10/13

    POLYNOMIAL EXPANSIONS 455

    03

    ooooo

    +++1 I I I I I I* il O * *o* to* ioI CO CO CO No* co co i00N N CO i

    IN N 1(5 O COCO CO CO O iCO COCO 00*O O O O 00

    N O 00 I I

    CO CM00 O **N CO**co cmn oooCO CO * * *

    N* OO*

    O00 O *CM* O * I *O O CO CO *co co os N ico co n co nnoo*n

    N 00 * 00 oO 00 CO I ItO O CO CMCOn cmco n coW5NCONIOCO 00 O O 0000 CO CO O COO0N1OC 0000OIOK5O

    CO CO 00O CO OO 00*O CO COCOCO O

    CO**00*NO 00 oCONOCOOO

    O IONCO CO*

    N* OCO 00 CO00 CO 00

    *CMCOO00 *CMCO*CO * CO CO

    I I I I ICO I CO O0 O

    oooooI I I I I

    *COU3

    777CO * * 00 COnoo***CO*N

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    11/13

    JET WIMP

    *oo * COooooo+++1 I I I I I I III

    NCO OOOOO*NCO OiI CO CO CO Nooco oca oo*CM O* *

    . .OiOlv* CO O NICCD CO CON 00* N COCO*

    co*o*i*NllQ* O O O II 00 * I N

    * * ION CO

    CO CO I COCOCO I I cooO CO 00* OCONCO 00 00I O CO CM *

    *C0 i* oO CO 00 i *CM00*0 O* 00* O o* O o o oO OOlNN

    fCO CONN*N O *NCMl*O CO CO CO *

    CO * I *CM

    I I I I I I I I I IONOC0 O* CO O COCOCO I O CO COCMCOO*CO00 00 i CO *

    00 O IN 00O* O COCOCO IO* o

    O O 00 CO IOllQCO CDO * O CO i

    N* COCO O*N ** 00

    NO*l** * CO O COOO CO* ICON OOOII* CO * 00

    * N I I CO

    N ** CO 00COCOO*CO* O CO COO*eoco conCO COCO*CO

    00 CO i * *

    I I I* coco to*I I I

    >oo+++1 I

    COlOOO ooo o o*I I I I I

    COCO* *C0O IO CO*CO CO * 00 iI O CMO CDO*C0 00 CO

    ***OiC0

    CO O O CONOCO OO COCO I CO CO CO

    N * i* COCO*coo to*

    00 I i CO CO* CO 00 I 00N I COO O** I CO CO

    N O COCO *

    CON** O00 CO O CM** CO 00 00 c

    O* iiNN00 00N

    NCO 00

    CO O CO00 O I

    N* COO O COCO I CO

    Oco*NN*CO O I

    SSSSCO-* "5

    T-H CO I

    777s;

    * ** CO

    -JCDNto * CO* N CO

    COICOCO i *I CO CM

    N CO CT>O OS I

    * COCOCONN00 CO 00O* *ooocoCOCO CO

    CO * I

    777N 00 COO CO COCO**IN I* cooCOCON* oooO COCOIOiN* cor*CM*0CO CO*

    N I *00 00 *ooo

    Noococoeo ***coi coos-

    EQ

    CO

    * it* o *ooooo++++1 I I I I I

    00 CO GO N ios i -* ascoOS CO "* CD "*"*N CD CO 00

    N CD CO CM CO

    COCO N CMioo ** os i asO-* CO CO CM"* OSN -*t-h

    (MNO50T-H OOSOOll

    BS3c800*00*N* * I N *ooco O O

    COOS N CD

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    12/13

    POLYNOMIAL EXPANSIONS 457

    N = [n(n + 2 + 1)] , y = (1 + 2a)/4. In general, if values of f(x) for com-plex x are desired, it is wisest to choose a such that the expansions are interpolatory

    along a suitable ray in the complex x-plane and to stay as close as possible to thisray.

    Suppose we have the truncated expansion

    AT

    (5.2) f(x) = ZAX(i) + e+1= 4>(x)+ i//+i, -1 * 1,n=0

    and

    oo

    (5.3) ey+i = E Anrn(l)

    Then

  • 7/25/2019 Expanses polinomiais das Funes de Bessel

    13/13

    458 JET WIMP

    7. M. Goldstein, & R. M. Thaler, "Recurrence techniques for the calculation of Besselfunctions," MTAC, v. XIII, p. 102-108.

    8. F. J. Corbat, & J. L. Uretsky, "Generation of spherical Bessel functions in digital

    computers," J. Assoc Comp. Mach., VI, p. 366-375.9. C. W. Clenshaw, "A note on the summation of Chebyshev series," MTAC, v. IX, p.118-120.

    10. Jerry L. Fields, & Yudell L. Luke, "Asymptotic expansions of a class of hyper-geometric polynomials with respect to the order I," to appear.

    11. N. I. Achieser, Theory of Approximation, Ungar, New York, 1956, p. 57.

    License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use