24
FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalho Helder Teixeira Gomes ESTiG/IPB

FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

  • Upload
    buingoc

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

FENÓMENOS DE TRANSFERÊNCIA I

Fichas de Trabalho

Helder Teixeira Gomes

ESTiG/IPB

Page 2: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 2

Ficha de trabalho nº 1: Fundamentos da Transferência de Calor

1) Um débito de calor de 3 kW é conduzido através de um material isolante com área de

secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície interna

(quente) é de 415 °C e a condutividade térmica do material é 0.2 W/mK calcule a

temperatura na superfície externa.

2) Uma parede de cimento com área superficial de 20 m2 e espessura de 0.3 m separa

uma sala com ar condicionado do ar ambiente. A temperatura na superfície interna da

parede é mantida a 25 °C sendo a condutividade térmica do cimento de 1 W/mK.

2.1) Determine a perda de calor através da parede para a gama de temperaturas

ambiente entre –15 °C e 38 °C que correspondem aos extremos atingidos no

Inverno e no Verão, respectivamente. Represente graficamente o resultado

obtido.

2.2) Faça também a representação gráfica dos resultados obtidos nas mesmas

condições para paredes com condutividades térmicas de 0.75 W/mK e 1.25

W/mK. Interprete os resultados obtidos.

3) O débito de calor através de uma placa de madeira com 50 mm de espessura e cujas

temperaturas nas superfícies interna e externa são respectivamente de 40 °C e 20 °C foi

estimado em 40 W/m2. Determine a condutividade térmica da madeira.

4) É do senso comum a sensação de arrefecimento quando se estende a mão para fora da

janela de um automóvel em movimento ou se faz a imersão numa corrente de água fria.

Supondo que a superfície da mão de encontra à temperatura de 30 °C, determine a perda

de calor por convecção nas seguintes situações:

4.1) Veículo a 35 km/h com o ar ambiente a –5 °C sendo o coeficiente de

transferência de calor por convecção de 40 W/m2K.

4.2) Corrente de água com velocidade de 0.2 m/s à temperatura de 10 °C sendo o

coeficiente de transferência de calor por convecção de 900 W/m2K.

Diga em que condições esperaria sentir mais “frio” e compare os resultados obtidos com

a perda de calor de 30 W/m2 observada em condições ambientais normais.

Page 3: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 3

5) No interior de um longo cilindro com diâmetro de 30 mm instalou-se um aquecedor

eléctrico. Quando se faz escoar água perpendicularmente ao cilindro à velocidade de 1

m/s e à temperatura de 25 °C, a potência por unidade de comprimento necessária para

manter a superfície do cilindro à temperatura uniforme de 90 °C é de 28 kW/m. Quando

se repete a operação com ar também a 25 °C mas a uma velocidade de 10 m/s, a

potência necessária para manter a mesma temperatura superficial é de 400 W/m.

Calcule e compare os coeficientes de transferência de calor por convecção para os dois

tipos de escoamento.

6) Um tubo não isolado que transporta vapor de água no seu interior atravessa uma sala

mantida a 25ºC. O diâmetro externo do tubo é 70 mm e a sua superfície está à

temperatura de 200ºC. Calcule a taxa de transferência de calor emitido por radiação por

unidade de comprimento do tubo, considerando a superfície do tubo com

comportamento de corpo negro. Se o coeficiente de transferência de calor por

convecção entre a superfície do tubo e o ar da sala é 15 W/m2K, qual é a taxa de perda

de calor por unidade de comprimento do tubo da superfície?

Page 4: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 4

Ficha de trabalho nº 2:

Condução de Calor Unidimensional em Estado Estacionário

1) Considere a condução de calor em estado estacionário através do sólido representado

na seguinte figura. Considere que a face lateral está completamente isolada e que a área

transversal varia da seguinte forma xxA −= 1)( (m2), a temperatura é dada por

)21(300)( 3xxxT −−= (K) sendo a potência calorifica conduzida 6000=•

q (W).

Determine a variação da condutividade térmica em função da coordenada espacial.

2) Considere a transferência de calor por condução numa placa plana em regime

estacionário num material com condutividade térmica 25 W/mK. A espessura da placa é

de 0.5 m.

Para cada um dos casos abaixo representados determine as grandezas desconhecidas,

represente graficamente o perfil de temperaturas e indique o sentido do fluxo térmico.

x

qx

T1 T2

x

Page 5: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 5

Caso 1T 2T dxdT

(K/m) Aq/

(W/m2)

1 400 K 300 K

2 100 °C -250

3 80 °C +200

4 -5 °C 4000

5 30 °C -3000

3) Considere a condução de calor em estado estacionário no sólido representado na

figura anexa cuja área da secção recta varia de acordo com a seguinte expressão: axeAxA 0)( = sendo 0A e a constantes. Considerando que o sólido tem condutividade

térmica constante k e que a superfície lateral está termicamente isolada, obtenha a

expressão para a taxa de condução de calor xq e para o perfil de temperaturas )(xT .

Faça a sua representação gráfica.

4) Um tubo com 0.12 m de diâmetro e espessura desprezável onde circula vapor de água

encontra-se isolado termicamente com uma camada de silicato de cálcio (condutividade

térmica 0.089 W/mK). A camada de isolamento térmico tem uma espessura de 20 mm

sendo as temperaturas nas superfícies interna e externa mantidas a 800 K e 490 K,

respectivamente. Determine a taxa de perda de calor por unidade de comprimento do

tubo.

5) Uma esfera oca de alumínio com um aquecedor eléctrico no seu centro é usada em

testes para determinar a condutividade térmica de materiais isolantes. Os raios interno e

externo da esfera são 0.15 m e 0.18 m, respectivamente. Os testes são realizados em

condições estacionárias com a superfície interna da esfera mantida a 250 °C. Num

x L

A0 qx

Page 6: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 6

determinado teste, a esfera é envolta numa camada de um material isolante com

espessura de 0.12 m. A temperatura do ar ambiente é de 20 °C sendo o coeficiente de

transferência de calor por convecção entre o material isolante e o ar de 30 W/m2K. Se

nestas condições a potência debitada pelo aquecedor eléctrico for de 80 W, calcule a

condutividade térmica do material isolante. Considere kAlumínio (300 K) = 237 W/m.K.

6) O vidro de um automóvel é desembaciado através da passagem de ar quente sobre a

sua superfície interna. Se o ar quente estiver à temperatura de 40=∞iT °C e o

correspondente coeficiente de transferência de calor por convecção for 30=ih W/m2K,

determine as temperaturas interna e externa do vidro sabendo que este tem 4 mm de

espessura sendo a temperatura ambiente no exterior 10−=∞eT °C com um coeficiente

de convecção 65=eh W/m2K. Dado: condutividade térmica do vidro 4.1=k W/mK.

7) As paredes de um edifício são compostas por três camadas: uma placa de gesso

(interior) com 10 mm de espessura, espuma de poliuretano com 50 mm de espessura e

madeira com 10 mm de espessura (exterior). Num dia típico de Inverno, as temperaturas

do ar dos lados externo e interno da parede são de –15 °C e 20 °C, respectivamente. Os

correspondentes coeficientes de transferência de calor por convecção são 15=eh

W/m2K e 5=ih W/m2K.

7.1) Qual a potência calorifica de aquecimento por unidade de área necessária

nesta situação.

7.2) Efectue os mesmos cálculos para o caso em que a parede composta é

substituída por vidro com 3 mm de espessura.

7.3) Resolva o mesmo problema para o caso em que a parede é substituída por

vidro duplo com lâminas de 3 mm de espessura separadas entre si por uma

camada de 5 mm de ar estagnado.

Condutividades térmicas: Gesso: 0.17 W/mK, Poliuretano: 0.026 W/mK, Madeira: 0.12

W/mK, Vidro: 1.4 W/mK, Ar estagnado: 0.0263 W/mK.

8) Uma parede composta inclui um painel de madeira com 8 mm de espessura, travessas

de suporte em madeira com dimensões de 40 mm por 130 mm sendo o espaço livre

Page 7: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 7

preenchido com isolamento de fibra de vidro existindo ainda uma camada de 12 mm de

gesso, conforme representado na figura.

Calcule a resistência térmica de uma parede com 2.5 m de altura e 6.5 m de largura, ou

seja com 10 travessas de suporte.

Condutividades térmicas: Madeira: 0.094 W/mK, Travessas: 0.16 W/mK, Gesso: 0.17

W/mK, Isolante: 0.038 W/mK.

9) Um tanque cilíndrico de água quente tem a face lateral e as extremidades isoladas

com poliuretano ( k = 0.026 W/mK). Considere que a espessura do tanque é desprezável

sendo a da camada de isolamento de 40 mm. O tanque tem uma altura de 2 m e

diâmetro interno de 0.8 m. O ambiente onde se encontra o tanque permanece à

temperatura de 10 °C sendo o coeficiente de transferência de calor por convecção

10=h W/m2K. Calcule o custo diário despendido para manter a água no tanque a 55 °C

considerando que esta é aquecida por uma resistência eléctrica sendo o preço da energia

de 0.075 €/kWh.

10) A parede interna de um tubo onde passa vapor de água é mantida à temperatura

constante de 500 K. O tubo é constituído por dois materiais diferentes (A e B) sendo o

raio interno 50 mm e o externo 100 mm. A superfície externa está exposta ao ar

ambiente à temperatura de 300 K sendo o coeficiente de transferência de calor por

convecção 25=h W/m2K.

Isolante Gesso

Madeira

Travessas 130 mm

40 mm

0.65 m

Isolante

A

B

Page 8: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 8

Identifique o circuito térmico do sistema e todas as resistências pertinentes e determine

o débito de perda de calor para o ambiente bem como as temperaturas nas superfícies

externas dos dois materiais. Dados: Ak = 2 W/mK, Bk = 0.25 W/mK.

11) Considere um reservatório criogénico esférico contendo azoto líquido à sua

temperatura de ebulição (-196ºC). O reservatório possui uma parede metálica dupla (de

espessura desprezável), sendo o espaço entre elas preenchido com ar a 0.1 atm. A

superfície externa do reservatório possui ainda um material isolante com 1 cm de

espessura. Sabendo que R1 = 0.5 m, R2 = 0.51 m, T1 = -190ºC, T2 = -40ºC e T∞ = 20ºC:

a) Represente o circuito térmico que descreve o mecanismo de transferência de

calor entre o ar exterior e o fluído no interior do reservatório.

b) Calcule a taxa de transferência de calor em estado estacionário entre o ar

exterior e o fluído no interior do reservatório. Considere kAr = 0.01781

W/m.ºC.

c) Como variaria a taxa de transferência de calor calculada na alínea a), se o

espaço entre as paredes do reservatório estivesse sob vácuo (P = 0)?

Justifique convenientemente.

Exame 1ª Chamada 2004/2005

12) Uma longa barra cilíndrica com 100 mm de raio é constituída por material nuclear

reactivo ( k = 0.5 W/mK) que gera calor de forma uniforme em todo o seu volume à taxa

de 24000 W/m3. A barra está encapsulada no interior de um tubo com 200 mm de raio

Page 9: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 9

externo cujo material tem uma condutividade térmica k = 4 W/mK. Sobre a superfície

externa do tubo circula um fluído à temperatura de 100 °C sendo o coeficiente de

transferência de calor por convecção 20=h W/m2K. Calcule as temperaturas na

interface entre os dois cilindros e na face externa do tubo.

13) Considere uma placa plana constituída por três materiais diferentes com as

superfícies externas expostas a um fluído à temperatura de 25 °C sendo o coeficiente de

transferência de calor por convecção 1000=h W/m2K, conforme representado na

figura anexa.

No interior do material B há geração uniforme de calor à taxa volumétrica VBq•

. A

temperatura na interface A-B é de 261 °C e em B-C de 211 °C. São conhecidas as

condutividades dos materiais A e C: Ak = 25 W/mK, Ck = 50 W/mK.

13.1) Determine a taxa volumétrica de geração de calor e a condutividade

térmica do material B.

13.2) Faça a representação gráfica do perfil de temperaturas na placa.

13.3) Considerando a ausência de convecção do lado do material A calcule as

novas temperaturas nas interfaces dos diferentes materiais e faça a representação

gráfica do perfil de temperaturas.

14) Uma esfera de aço inoxidável é usada para armazenar detritos radioactivos. Os raios

interno e externo da esfera são 0.5 m e 0.6 m , respectivamente. As condutividades

térmicas do aço e do material nuclear são Ak = 15 W/mK, Dk = 20 W/mK,

respectivamente. Os detritos nucleares geram calor à taxa volumétrica constante de 105

W/m3. A superfície externa do recipiente está exposta a uma corrente de água à

A

B

C

25 °C

25 °C

30 mm 60 mm 20 mm

Page 10: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 10

temperatura de 25 °C com coeficiente de transferência de calor por convecção 1000=h

W/m2K. Em estado estacionário, calcule as temperaturas interna e externa do recipiente

e obtenha a expressão para o perfil de temperaturas no interior dos detritos nucleares.

Alhetas

15) A água de um tanque é aquecida através da passagem de gases de combustão à

temperatura de 750 K em tubos de cobre submersos na água. Os tubos são de parede

fina e o seu diâmetro é de 50 mm. Para melhorar a transferência de calor para a água,

são colocadas quatro alhetas rectangulares de secção recta uniforme no interior dos

tubos em forma de cruz.

As alhetas possuem 5 mm de espessura sendo também construídas em cobre ( k =400

W/mK). Se a temperatura na superfície do tubo permanecer a 350 K e o coeficiente de

transferência de calor por convecção do lado do gás for de 30 W/m2K, calcule a taxa de

transferência de calor para a água por metro de tubo.

16) Uma alheta triangular de aço inoxidável está fixa a uma superfície mantida a 460

°C. A espessura da alheta na base é de 6.4 mm e o seu comprimento é de 2.5 cm. O ar

ambiente que rodeia a alheta está a 93 °C sendo nestas condições o coeficiente de

transferência por convecção h =28 W/m2K. Considerando para a condutividade do aço

k =16.3 W/mK, calcule a potência calorifica dissipada através da alheta.

17) Num tubo com 2.5 cm de diâmetro estão colocadas alhetas circulares com um passo

9.5 mm. As alhetas são construídas em alumínio sendo a sua espessura de 0.8 mm e o

comprimento de 12.5 mm. A superfície do tubo é mantida a 200 °C estando o ar

ambiente a 93 °C. O coeficiente de transferência de calor por convecção foi avaliado em

Page 11: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 11

110 W/m2K sendo a condutividade do alumínio k =204 W/mK. Calcule a potência

calorífica dissipada por metro de tubo.

Page 12: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 12

Ficha de trabalho nº 3: Condução de Calor em Estado Transiente

1) Esferas de aço com 12 mm de diâmetro são temperadas através do seu aquecimento a

1150 K seguido de arrefecimento até 400 K por exposição a uma corrente de ar à

temperatura de 325 K. Nestas condições, o valor do coeficiente de transferência de calor

por convecção é h =20 W/m2K. Considere para aço as propriedades termofísicas k =40

W/mK, ρ =7800 kg/m3, Pc =600 J/kgK. Calcule o tempo necessário para o processo de

arrefecimento das esferas.

2) Cilindros de aço com 0.1 m de diâmetro sofrem um tratamento térmico que consiste

no seu aquecimento em fornalhas por contacto com gases que se encontram à

temperatura de 1200 K. O coeficiente de transferência de calor por convecção foi

avaliado em h =100 W/m2K. Considerando que os cilindros entram no forno à

temperatura de 300K, calcule o tempo que devem ai permanecer até que a temperatura

no seu eixo central seja de 800K. Propriedades termofísicas do aço usado k =51.2

W/mK, ρ =7832 kg/m3, Pc =541 J/kgK.

3) Um chip tem a forma superficial de um quadrado ( L =5 mm) com uma espessura de

1 mm. Este componente está fixo a uma base cerâmica e a sua superfície é arrefecida

por convecção através de um líquido à temperatura de ∞T =20 °C sendo o coeficiente de

transferência de calor respectivo h =150 W/m2K. Quando está desligado, o chip

encontra-se em equilíbrio térmico com o líquido refrigerante: ∞= TT . Quando se

efectua a sua ligação, verifica-se a geração interna de calor no chip à taxa volumétrica

de 9x106 W/m3. Considerando desprezável a resistência interna à transferência de calor,

determine a temperatura em estado estacionário do componente em funcionamento.

Calcule também o tempo necessário, depois da sua activação, para que o chip fique a 1

°C da temperatura de estado estacionário. Dados termofísicos: ρ =2000 kg/m3, Pc =700

J/kgK.

4) Um fio de cobre condutor de comprimento L e diâmetro d = 5 mm, encontra-se

inicialmente a uma temperatura Ti = 5ºC, em equilíbrio com a temperatura do ar que o

rodeia. Num dado instante, o condutor é aquecido internamente com um débito de

Page 13: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 13

energia gerada por unidade de volume vq•

(W/m3). Despreze efeitos de transferência de

calor por radiação.

a) Considerando desprezável a resistência interna à transferência de calor por condução,

deduza uma equação diferencial para a resposta transiente da temperatura do condutor.

b) Qual é a principal hipótese considerada na simplificação introduzida na alínea a)?

Dados adicionais: ρcobre = 8933 kg/m3, cp cobre = 385 J/(kg.K), kcobre = 400 W/(m.K) Exame 2ª Chamada 2004/2005

5) Suponha que num pavimento de asfalto e num dia quente de verão é atingida a

temperatura uniforme de 50 °C ao longo de toda a sua espessura. Repentinamente,

devido a uma tempestade, a temperatura na sua superfície passa para 20 °C. Calcule a

quantidade de energia por metro quadrado de pavimento que será libertada durante 30

min nestas condições. Dados termofísicos: ρ =2115 kg/m3, Pc =920 J/kgK, k =0.062

W/mK

6) A parede de um forno vai ser fabricada com tijolos refractários (α =7.1x10-7 m2/s)

devendo a sua superfície ser mantida a 1100 K durante os seus períodos de operação. A

parede é projectada por forma que, para uma temperatura inicial uniforme de 300 K, não

seja ultrapassada após 4 h de operação 325 K no seu ponto intermédio. Calcule a

espessura mínima que a parede deve ter considerando que esta pode ser tratada como

um meio semi-infinito.

7) Uma chapa muito espessa com difusividade térmica α =5.6x10-6 m2/s e

condutividade k =20 W/mK está inicialmente à temperatura uniforme de 325 °C.

Repentinamente, a sua superfície é exposta a um material refrigerante à temperatura de

15 °C sendo o correspondente coeficiente de transferência de calor por convecção h

=100 W/m2K. Calcule as temperaturas na superfície e a uma profundidade de 45 mm

passados 3 min.

8) A superfície de uma placa muito espessa de cobre é subitamente exposta a um fluxo

constante de calor de 0.32 MW/m2. Qual a temperatura na superfície da placa e a 15 cm

de profundidade passados 5 min se a sua temperatura inicial for de 30 °C. Dados

termofísicos: α =11.23x10-5 m2/s, k =386 W/mK.

Page 14: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 14

9) Num processo de têmpera, uma lâmina de vidro que se encontra inicialmente à

temperatura uniforme 0T é subitamente arrefecida mantendo-se ambas as faces à

temperatura ST . A lâmina tem de espessura 20 mm sendo a difusividade térmica do

vidro α =6x10-7 m2/s. Supondo que STT −0 =300 °C, calcule o tempo necessário para

que a temperatura no plano intermédio seja a correspondente a 50% do máximo de

variação esperado e estime o gradiente de temperatura máximo ⎟⎟⎠

⎞⎜⎜⎝

maxdxdT no vidro no

instante calculado.

10) Após um cansativo dia de aulas, você e um amigo decidem recuperar energia

comendo um suculento bife. A carne encontra-se no congelador à temperatura de –6 °C

e está partida em bifes em forma de placa plana com 50 mm de espessura. Os bifes irão

ser descongelados por exposição à temperatura ambiente que é de 23 °C sendo o

coeficiente de transferência de calor por convecção h =10 W/m2K. Considerando que os

bifes se encontram descongelados quando a temperatura no seu plano intermédio for de

4 °C, determine o tempo que devem esperar. Dados termofísicos: ρ =1000 kg/m3, Pc

=4217 J/kgK, k =0.659 W/mK.

11) Repita o exercício anterior, considerando agora que para descongelar o bife mais

rapidamente, o colocaram entre duas chapas aquecidas, uma à temperatura de 50ºC e a

outra à temperatura de 30ºC.

12) Calcule o tempo necessário para cozinhar uma salsicha em água a ferver

considerando que a salsicha se encontra inicialmente à temperatura de 6 °C e que o

coeficiente de transferência de calor por convecção é h =100 W/m2K. Trate a salsicha

como um longo cilindro com 20 mm de diâmetro e admita que a mesma se encontra

cozinhada quando a temperatura no seu eixo for de 80 °C. Dados termofísicos: ρ =880

kg/m3, Pc =3350 J/kgK, k =0.52 W/mK.

13) Uma esfera com 80 mm de diâmetro que se encontra inicialmente a uma

temperatura uniforme é subitamente arrefecida através da sua imersão num banho de

óleo mantido a 50 °C. O coeficiente de transferência de calor por convecção foi

Page 15: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 15

avaliado em 1000 W/m2K. Num dado instante, mediu-se a temperatura na superfície da

esfera obtendo-se o valor de 150 °C. Calcule a temperatura no centro da esfera no

mesmo instante. Dados termofísicos: α =1.5x10-6 m2/s, k =50 W/mK.

14) Uma pedra esférica de granizo com 5 mm de diâmetro é formada a –30 °C numa

nuvem a grande altitude. Se a pedra começar a cair através do ar à temperatura de 5 °C,

quanto tempo demora até que a sua superfície comece a derreter. Calcule a temperatura

no centro da pedra nesse instante e a energia que foi transferida para a pedra até esse

momento. Dados termofísicos: ρ =920 kg/m3, Pc =1945 J/kgK, k =2.03 W/mK, h =250

W/m2K.

Page 16: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 16

Ficha de trabalho nº 4: Transferência de Calor por Convecção

1) No escoamento laminar de um fluído sobre uma placa plana, determinou-se que o

coeficiente local de transferência de calor por convecção varia da seguinte forma:

xCxhL =)( , em que x representa a distância sobre a placa medida relativamente à

sua aresta frontal (ver figura). Determine a razão entre o coeficiente médio de

transferência de calor até à distância x (h(x)) e o coeficiente local nesse ponto (hL(x)).

2) No escoamento laminar de um fluído

sobre uma superfície vertical (ver figura

anexa) determinou-se que 41

)(−

= CxxhL .

Obtenha uma expressão para )(/)( xhxh L e

faça a sua representação gráfica.

3) O escoamento de ar atmosférico paralelo a uma placa plana com L =3 m de

comprimento é perturbado por uma série de cilindros posicionados transversalmente à

trajectória do fluído. Em laboratório, efectuaram-se medidas do coeficiente local de

transferência de calor por convecção, tendo resultado a seguinte correlação: 24.36.137.0)( xxxhL −+= (W/m2K). Calcule o coeficiente médio de transferência de

calor por convecção sobre toda a placa, )(Lh , e a razão )(/)( LhLh L .

x

x

-

Page 17: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 17

4) Ar atmosférico à temperatura de 25 °C e a uma velocidade de 5 m/s é usado para

arrefecer uma placa plana quadrada com 1 m de lado que se encontra à temperatura de

75 °C. As propriedades termofísicas da corrente gasosa à temperatura do filme são as

seguintes: ρ =1.085 kg/m3, k =0.028 W/mK, ν = 18.2x10-6 m2/s, PC =1.008 kJ/kgK.

Com base na solução de Blasius para a camada limite ⎟⎟⎠

⎞⎜⎜⎝

⎛≈= 3

1

Pr)()(,

Re5)(

xx

xx

Tx δδδ e a

correspondente correlação 3121 PrRe332.0 xxNu = calcule: a espessura da camada

limite fluidodinâmica e o fluxo térmico local à saída da placa. Determine também a taxa

total de transferência de calor a partir da placa.

5) Um óleo lubrificante à temperatura de 100 °C escoa sobre uma placa plana à

velocidade de 0.1 m/s. A placa tem 1 m de comprimento e está à temperatura de 20 °C.

Calcule as espessuras das camadas limite fluidodinâmica e térmica e o fluxo térmico

local à saída da placa. Determine e faça a representação gráfica da variação com o

comprimento da placa das espessuras das camadas limite, do coeficiente local de

transferência de calor por convecção e do fluxo térmico local. Diga qual o débito total

de transferência de calor por unidade de largura da placa. Dados termofísicos: ρ =865.8

kg/m3, Pc = 2035 J/kgK, k =0.141 W/mK, ν = 96.6x10-6 m2/s.

6) Partículas esféricas de ureia com um diâmetro de 2.5 mm são arrefecidas numa torre

de arrefecimento por contacto com uma corrente de ar. Assumindo que a velocidade do

ar na torre é de 4.5 m/s, que a temperatura média do ar é de 35ºC e que a temperatura

média na superfície das partículas de ureia é de 85ºC, estime o coeficiente de

transferência de calor por convecção entre as partículas e o ar. Exame Época Finalistas 2005/2006

3 m x

Page 18: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 18

Ficha de trabalho nº 5: Permutadores de Calor

1) Numa caldeira tubular, os produtos de combustão de um gás, escoam no interior de

um feixe de tubos com paredes finas com o objectivo de aquecer água que circula sobre

os tubos. Quando o sistema iniciou o seu funcionamento, o coeficiente global de

transferência de calor era de 400 W/m2K. Após um ano de uso, verificou-se a formação

de incrustações nas superfícies interna e externa dos tubos devido à deposição de

impurezas. Em consequência, foram identificadas duas novas resistências à

transferência de calor: iAR =0.0015 m2K/W e eAR =0.0005 m2K/W, em que A

representa a área de transferência de calor. Com base na avaliação do novo coeficiente

global de transferência de calor, diga se deve ser efectuada uma paragem para limpeza

do sistema.

2) Um tubo de aço ( k =50 W/mK) com diâmetros interno e externo de 20 mm e 26 mm,

respectivamente, é usado para transferir calor dos gases quentes que escoam no seu

exterior para a água fria que circula no seu interior. Os coeficientes de transferência de

calor por convecção do lado externo e interno são eh =200 W/m2K e ih =8000 W/m2K,

respectivamente. Calcule o coeficiente global de transferência de calor baseado na área

interna do tubo.

3) Um permutador de calor bitubular (tubos concêntricos) opera em contracorrente e foi

projectado para aquecer água de 20 °C para 80 °C recorrendo a óleo quente que entra no

permutador a 160 °C e sai a 140 °C. O tubo interno é de parede delgada e tem um

diâmetro de 20 mm sendo o coeficiente global de transferência de calor de 500 W/m2K.

Nas condições de projecto, a taxa total de transferência de calor no permutador é de

3000 W. Calcule o comprimento do permutador de calor. Após três anos de operação, a

eficiência do permutador diminui substancialmente devido à formação de incrustações

nas tubagens, de tal modo que, para os mesmos débitos mássicos e temperaturas de

alimentação, a temperatura de saída da água é apenas de 65 °C. Nestas condições,

calcule: a taxa global de transferência de calor, a temperatura de saída do óleo e o

coeficiente global de transferência de calor.

Page 19: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 19

4) Um permutador de calor de tubos concêntricos vai ser usado para arrefecer um óleo

de 160 °C para 60 °C recorrendo a água disponível a 25 °C. Os débitos mássicos das

duas correntes são iguais a 2 kg/s. O diâmetro do tubo interno (parede delgada) é de 0.5

m sendo o correspondente coeficiente global de transferência de calor de 250 W/m2K.

Diga se a operação se deve realizar em cocorrente ou contracorrente e determine o

comprimento do permutador de calor. Óleo: PC =2260 J/kgK, Água: PC =4179 J/kgK.

5) Um permutador de calor de tubos concêntricos a operar em contracorrente é usado

para aquecer amoníaco líquido de 10 °C para 30 °C recorrendo a uma corrente de água

disponível a 60 °C. O caudal mássico da água é de 5 kg/s e o coeficiente global de

transferência de calor vale 800 W/m2K. Sabendo que a área de transferência de calor é

de 30 m2 calcule o débito mássico de amoníaco.

Água: PC =4180 J/kgK, Amoníaco: PC =4800 J/kgK.

Page 20: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 20

Ficha de trabalho nº 6: Transferência de Calor por Radiação

1) Considere uma esfera com 20 cm de diâmetro mantida a uma temperatura de 800 K,

suspensa no ar com o auxílio de um pequeno fio metálico. Supondo que se pode

aproximar a esfera a um corpo negro, determine:

a) O poder emissivo total da esfera.

b) A quantidade total de energia emitida por radiação pela esfera durante 5 minutos.

c) O poder emissivo espectral da esfera com comprimento de onda de 3 μm.

2) Considere a radiação que emerge de uma pequena abertura de um forno que opera a

1000 K. Calcule o poder emissivo total da abertura. Determine o poder emissivo

espectral com comprimento de onda de 2 μm. Calcule a razão entre o poder emissivo

espectral a 2 μm e a 6 μm. Determine a fracção do poder emissivo total que se encontra

entre 2 μm e 6 μm.

3) A temperatura do filamento de uma lâmpada incandescente é de 2500 K. Supondo

que o filamento se comporta como um corpo negro, determine a fracção da energia

radiante emitida na gama do visível (0.40 μm ≤ λ ≤ 0.76 μm). Determine ainda o

comprimento de onda para o qual a emissão da radiação do filamento atinge o valor

máximo.

4) A pele humana absorve apenas 50% da radiação solar incidente entre os

comprimento de onda de 0.52 μm e 1.55 μm e absorve totalmente a radiação solar

incidente com comprimentos de onda inferiores a 0.52 μm e superiores a 1.55 μm.

Um astronauta a trabalhar no exterior de uma nave espacial no espaço usa um fato que

bloqueia completamente a radiação solar, excepto a que passa através do vidro da

viseira que possui, expondo a sua face. Sabendo que a transmitividade do vidro é de 0.9

na gama de comprimentos de onda entre 0.4 μm e 0.7 μm e 0.3 para todos os outros

comprimentos de onda, qual é a fracção da radiação solar incidente sobre a viseira do

astronauta que é absorvida pela pele da sua face (temperatura do sol ≈ 5800 K)? Exame Época Normal 2006/2007

Page 21: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 21

5) Considere uma pequena superfície com área 1A =10-4 m2 que emite difusamente com

um poder emissivo total hemisférico 1E =5x104 W/m2.

Determine qual a taxa a que esta emissão é interceptada pela superfície 2A cuja área é

de 5x10-4 m2 (ver figura). Calcule o valor da irradiação 2G sobre 2A .

6) A distribuição espectral da radiação emitida por uma superfície difusa é a que se

representa no gráfico seguinte:

Calcule o poder emissivo total da superfície. Determine o valor da intensidade total da

radiação emitida na direcção normal e na direcção afastada 30o da normal. Determine a

fracção do poder emissivo total que deixa a superfície entre as direcções 24 πθπ ≤≤ .

7) De acordo com a sua distribuição direccional, a radiação solar que incide sobre a

superfície terrestre pode ser dividida em duas parcelas. A parcela difusa e a parcela

directa que é constituída por raios paralelos que incidem segundo um ângulo fixo θ

(relativamente à normal). Considere um dia de céu claro em que a radiação directa

incide com um ângulo θ =30o e com um fluxo total (baseado na área normal aos raios)

G = 1000 W/m2. A intensidade total da radiação difusa é idI =70 W/m2sr. Determine o

valor da irradiação solar total na superfície terrestre.

5 10 15 20

λ(μm)

0

E λ(W

/m2 μm

)

100

200

A1

A2

r2=0.5 m

n1

n2

60o

30o

Page 22: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 22

8) Um forno possui uma abertura de 20 mm de diâmetro e um poder emissivo (difuso)

de 3.72x105 W/m2. Pretende-se calibrar um sensor de fluxo térmico que possui uma área

sensível à radiação de 1.6x10-5 m2. Calcule a distância (na direcção normal à abertura) a

que deve ser posicionado o sensor para receber uma irradiação de 1000 W/m2. Se o

sensor for desviado desta direcção 20o diga qual o valor da irradiação a que está sujeito.

Para ângulos de desvio 0o, 20o e 60o, calcule a irradiação no sensor quando se encontra

às distâncias de 100 e 300 mm da abertura.

9) Numa esfera de alumínio com diâmetro interno de 2 m é feito vácuo. A superfície

interna da esfera é revestida com negro de fumo e mantida a 600 K. Considerando que a

superfície da esfera se comporta como um corpo negro, diga qual a irradiação incidente

sobre uma pequena placa colocada no interior da esfera. Se a superfície interna da esfera

não estivesse revestida e fosse mantida à mesma temperatura, qual seria o valor da

irradiação sobre a placa.

10) Admitindo que a superfície da Terra se comporta como um corpo negro, estime a

sua temperatura considerando que o sol tem o comportamento de um corpo negro à

temperatura de 5800 K. Os diâmetros do sol e da Terra são 1.39x109 m e 1.29x107 m,

respectivamente e a distância entre o sol e a Terra é 1.5x1011 m (centro a centro).

11) A emissividade espectral hemisférica do tungsténio é dada pela distribuição

representada na figura anexa. Considere um filamento de tungsténio cilíndrico com

diâmetro D=0.8 mm e comprimento L=20 mm. O filamento encontra-se no interior de

um tubo onde foi feito vácuo e é aquecido por uma corrente eléctrica que o mantêm à

temperatura constante de 2900 K.

n

Page 23: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 23

Calcule a emissividade total hemisférica do filamento a esta temperatura. Admitindo

que as redondezas se encontram à temperatura de 300 K, determine a taxa de

arrefecimento do filamento quando este é desligado. Faça um esboço gráfico da

emissividade do filamento em função da sua temperatura no intervalo 29001300 ≤≤ T .

Estime o tempo necessário para que o filamento arrefeça de 2900 para 1300 K.

Tungsténio: PC =185 J/kgK, ρ =19300 kg/m3.

12) Considere uma superfície que emite radiação térmica direccionalmente selectiva

conforme é representado na figura anexa. Supondo que a superfície é isotrópica na

direcção φ , calcule a razão entre a emissividade normal e a emissividade hemisférica

13) Uma superfície que emite de forma difusa, está exposta a uma fonte de radiação que

lhe causa uma irradiação de 1000 W/m2. A intensidade de emissão é de 143 W/m2sr e a

reflectividade da superfície é de 0.8. Determine o poder emissivo e a radiosidade da

superfície. Qual o valor do fluxo líquido radiante para a superfície?

14) Um grande telhado metálico horizontal e plano está exposto à irradiação solar que

apresenta um valor de 1100 W/m2. O vento que sopra sobre o telhado mantém o

coeficiente de transferência de calor por convecção em 25 W/m2K. A temperatura do ar

é de 27 °C sendo a absorptividade da superfície metálica para a radiação solar de 0.6 e a

sua emissividade de 0.2. Considerando que a parte inferir do telhado se encontra isolada

termicamente, calcule a sua temperatura em estado estacionário.

0 2 4

λ(μm)

0.1

0.45

ελ

45o

0.8

0.3 εθ

εθ θ

Page 24: FENÓMENOS DE TRANSFERÊNCIA I Fichas de Trabalhohtgomes/FTI/Fichas de Trabalho-FTI_2011_2012.pdf · secção recta de 10 m2 e espessura de 2.5 cm. Se a temperatura na superfície

Licenciatura em Engenharia Química e Biológica/Fenómenos de Transferência I 24

15) Em regiões desérticas, a temperatura do céu durante a noite desce em muitas

ocasiões a –40 °C. Se a temperatura do ar ambiente for de 20 °C, e o coeficiente de

transferência de calor por convecção valer 5 W/m2K, diga se água colocada num

recipiente pode congelar. Considere que o céu se comporta como um corpo negro e a

água como uma superfície cinzenta. Emissividade da água ε =0.96.

16) Dois discos paralelos comportam-se como corpos negros estando separados entre si

por uma distância de 0.25 m sendo o seu diâmetro de 1 m. Um disco é mantido à

temperatura de 60 °C e o outro a 20 °C. Os discos encontram-se no interior de uma sala

cujas paredes estão a 40 °C. Admitindo que as superfícies externas dos discos (as que

não estão frente a frente) estão isoladas termicamente, determine a taxa de transferência

de energia radiante entre os discos e entre os discos e a sala.

17) Considere as superfícies negras representadas na figura

anexa. As superfícies são mantidas às temperaturas

uniformes 1T =1000 K e 2T =800 K. Determine a taxa de

transferência de energia entre as superfícies (por unidade de

comprimento). Considere a situação em que uma terceira

superfície é colocada ao longo da linha tracejada sendo que a

sua parte posterior é isolada termicamente. Calcule a taxa

global de transferência de energia para a superfície 2A e

determine a temperatura da superfície isolada termicamente.

18) Um forno com duas secções de aquecimento tem no

seu interior uma fina placa metálica. As dimensões do

forno e da placa são de 2x2 m (ver figura anexa). As faces

superior e inferior do forno são isoladas termicamente e

as faces expostas têm emissividade ε =0.9. A placa e as

paredes laterais do forno têm emissividades de 0.6 e 0.3,

respectivamente. Esboce o circuito eléctrico equivalente

do sistema e calcule a potência eléctrica exigida bem

como a temperatura da placa.

100 mm

100 mm

A2

A1 60o

1m 800K

800K

400K