200

Ground Scholl r22 Modificado

Embed Size (px)

Citation preview

Page 1: Ground Scholl r22 Modificado
Page 2: Ground Scholl r22 Modificado

GROUND SCHOLL R22

Page 3: Ground Scholl r22 Modificado

ÍNDICE GERAL GROUND SCHOOL R22

• História Robinson

• Pilot Operation Hand Book (POH)

• Teste

• Encerramento

Page 4: Ground Scholl r22 Modificado

HISTÓRIA ROBINSONFundada em 1973 por Frank Robinson , a empresa possui por volta de 1,200 empregados e atualmente produz mais helicópteros anualmente do que todos os outros fabricantes Norte Americanos juntos. Além disso a Robinson tem um programa de revisão geral de aeronaves usadas e conduz mensalmente cursos de segurança para pilotos, instrutores de vôo e para técnicos de manutenção. A empresa possui uma rede global de mais de 110 representantes comerciais e 290 Centros de Serviço em 50 países , incluindo China e Rússia.

A Robinson é um empresa de engenharia com grande ênfase em pesquisa e desenvolvimento. Nos últimos anos, tem dedicado seus esforços em melhorar o projeto do R22 e do R44 visando aumentar o desempenho e diminuir a necessidade de manutenção para ambas aeronaves. Alguns dos mais novos projetos são, comandos hidráulicos e configurações especializadas da aeronave de quatro assentos R44. Destes, o R44 Clipper possui flutuadores fixos ou infláveis para operações sobre a água; o R44 Police Helicopter é totalmente equipado para auxiliar em operações policiais; e o R44 Newscopter é a primeira plataforma aérea especialmente desenvolvida para transmissão ao vivo de alta qualidade.

Page 5: Ground Scholl r22 Modificado

A Robinson está entre as primeiras empresas aeronauticas Norte Americanas a serem premiados com a certificação ISO 9001 de desenvolvimento, produção e serviços de helicópteros. Para manter o mais alto padrão de qualidade, a empresa realiza a maioria das operações. Incluindo solda, usinagem, montagem, pintura e vôos de teste em sua fábrica no aeroporto de Torrance. E Robinson deu mais um passo a frente inaugurando seu novo prédio em 2003 expandindo o seu espaço de fabricação e vagas de emprego em aproximadamente oitenta por cento.

Page 6: Ground Scholl r22 Modificado

Frank Robinson nasceu no estado de Washington, sendo o mais novo de quatro filhos. Concentrou os seus estudos especificamente no projeto de helicópteros, recebendo o seu diploma de engenheiro mecânico em 1957 e logo depois, pós graduação em engenharia aeronáutica.

Começou a sua carreia em 1957 na Cessna Aircraft Company, onde trabalhou por 3 anos e meio, participando do projeto do helicóptero de quatro acentos Skyhook. Após, trabalhou um ano na certificação de um giroplano, e quatro anos e meio na McCulloch Motor Company fazendo estudos sobre a construção de rotores de baixo custo. Depois trabalhou na divisão de pesquisa e desenvolvimento da Bell, onde tinha a reputação de “tail rotor expert”. Em 1969 ele se mudou para Hughes Helicopter Company, onde participou de vários projetos inclusive em um novo rotor de cauda para o Hughes 500 e em um programa de redução de ruídos para helicópteros.

Não conseguindo convencer nenhum de seus empregadores da concepção de um helicóptero pequeno e barato, em 1973, Frank sai da Hughes e funda a Robinson.

Page 7: Ground Scholl r22 Modificado

ÍNDICE GERAL POHSEÇÕES:1. DISPOSIÇÕES GERAIS2. DESCRIÇÕES E SISTEMAS3. PERFORMANCE4. LIMITAÇÕES5. PROCEDIMENTOS NORMAIS6. PROCEDIMENTOS DE EMERGÊNCIA7. PESO E BALANCEAMENTO8. MANUTENÇÃO E MANEJO

Page 8: Ground Scholl r22 Modificado

1. DISPOSIÇÕES GERAIS

1.1 INTRODUÇÃO

1.2 VISÕES DO HELICÓPTERO E SUAS DIMENSÕES

1.3 DADOS DESCRITIVOS• ROTOR PRINCIPAL• ROTOR DE CAUDA• SISTEMA DE TRANSMISSÃO• GRUPO MOTO PROPULSOR (POWERPLANT)• COMBUSTÍVEL• ÓLEO

1.4 ABREVIAÇÕES E DEFINIÇÕES

1.5 TABELA DE CONVERSÃO

Page 9: Ground Scholl r22 Modificado

1.1 INTRODUÇÃO

O Manual de Operação do Piloto é designado para ser um guia de operação para piloto. Ele inclui o material necessário a ser fornecido para o piloto pelo FAR 27 e FAR 21. Ele também contém dados suplementares fornecidos pelo fabricante do helicóptero.

Este manual não é designado para ser um substituto para uma adequada e completa instrução de vôo ou para conhecimento das diretrizes de aeronavegabilidade em vigor, regulamentos do ar e circulares de aviso aplicáveis. Nem é pretendido que ele seja um guia para instruções básicas de vôo ou um manual de treinamento. Ele não deve ser usado para propósitos operacionais a menos que mantido em um estado atualizado

Certificar-se de que o helicóptero esta em condições de aeronavegabilidade é responsabilidade do proprietário. O piloto em comando é responsável em determinar se o helicóptero está seguro para voar. O piloto também é responsável em manter os limites de operação com referência às marcações de instrumentos, avisos (adesivos no helicóptero) e este manual.

Desde que é muito difícil consultar o manual durante o vôo, o piloto deve estudar todo o manual e ficar familiarizado com os limitações, performance, procedimentos e características operacionais de manobrabilidade do helicóptero antes do vôo.

Page 10: Ground Scholl r22 Modificado

1.2 03 VISÕES DO HELICÓPTERO E SUAS DIMENSÕES

193 cm

111,76 cm

383,54 cm

175,26 cm

675,86 cm

876,3 cm

106,8 cm

271,78 cm

Page 11: Ground Scholl r22 Modificado

1.3 DADOS DESCRITIVOS

ROTOR PRINCIPAL

Articulação: Semi-rígido, livre para batimento e coneamento Número de Pás: 2Diâmetro : 25.2 pés (7.68m)Corda da Pá: 7.2 pol. (18.2 cm) constante.Torção da Pá: - 8 grausVelocidade da Pá a 100% RPM: 672 FPS (pés/segundo) aprox. 806 km/h

Observação:

Page 12: Ground Scholl r22 Modificado

ROTOR DE CAUDA

Articulação: Semi-rígido, livre para batimentoNúmero de Pás: 2 (duas)Diâmetro: 3.6 pés (1.1m)Corda da Pá: 4 pol (10.1cm) constanteTorção da Pá: 0 grauÂngulo Pré-cone: 1 grau 11 minutosVelocidade da Pá a 100% RPM: 599 FPS (pés/segundo) aprox. 718 km/h

Page 13: Ground Scholl r22 Modificado

SISTEMA DE TRANSMISSÃO Do motor para a polia superior: Duas correias em V com razão de 0.8536:1 de redução de velocidade. Da polia superior para a Sistema de engrazamento do tipolinha de transmissão: embreagem de roda Livre.

Da linha de transmissão Engrenagens helicoidais com razão depara o rotor principal: 11:47 de redução de velocidade.

Da linha de transmissão Engrenagens helicoidais com razão depara o rotor de cauda: 3:2 de aumento de velocidade.

TRANSMISSÃO DO ROTOR DE CAUDA

TRANSMISSÃO PRINCIPAL

Page 14: Ground Scholl r22 Modificado

GRUPO MOTO-PROPULSOR (POWERPLANT)

Modelo: Lycoming 0-320 ou O-360

Tipo: 4 cilindros, opostos horizontalmente, eixo direto, refrigerado a ar, aspirado normalmente, equipado com carburador

Volume: 319.8 pol. cub.(O-320) ou 361.0 pol.cub.(O-360)

Potência Normal: 150 BHP @ 2700 RPM (standard R22) O-320-A2B 160 BHP @ 2700 RPM (Alfa e Beta) O-320-B2C 180 BHP @ 2700 RPM (Beta II) O-360-J2A Potência Instalada no R22:

Operação Contínua: 124 BHP a 2652 RPM (104% no tacômetro)Decolagem de 5 min. (Beta e Beta II): 131 BHP a 2652 RPM

Sistema de Refrigeração : Linha direta com ventoinha

Page 15: Ground Scholl r22 Modificado

AVCO LYCOMING O-320-B2C (BETA)AVCO LYCOMING O-360-J2A (BETA II)

Page 16: Ground Scholl r22 Modificado
Page 17: Ground Scholl r22 Modificado

COMBUSTÍVELOctanagem do combustível aprovado e capacidade: 100/130 (AVGAS)OBS: octanagem de combustível normal usado em automotivos é de 85 octanas.

ÓLEO

Tipo do óleo durante o amaciamento:Óleo mineral Mil-L-6082 durante as primeiras 25 horas e na primeira troca de óleo de 25 horas. Continue a usar até que o consumo de óleo esteja estabilizado ou até que um total de 50 horas tenha sido acumulado.

Tipo do óleo depois do amaciamento:Tem que ser usado Mil-22851 / SAE 50-J1899 depois de 50 horas ou depois que o consumo de óleo tenha sido estabilizado

CAPACIDADE DO RESERVATORIO DE ÓLEO6 U.S. Quartos de galão americano (5.7 litros)

Page 18: Ground Scholl r22 Modificado

KIAS: Knots Indicated Airspeed. Velocidade indicada em Knots é a velocidade mostrada no indicador de velocidade, corrigida para erro no instrumento.

1.4 ABREVIAÇÕES E DEFINIÇÕES

KCAS: Knots Calibrated Airspeed. Velocidade calibrada em Knots é a velocidade mostrada no indicador de velocidade, corrigida para erro no instrumento e posição.

KTAS: Knots True Airspeed. Velocidade verdadeira em Knots é a velocidade relativa ao ar calmo. É a KCAS corrigida para altitude de pressão e temperatura.

VNE: Never-Exceed Airspeed. Velocidade a nunca ser excedida.

Vy: Velocidade para melhor razão de subida.

Page 19: Ground Scholl r22 Modificado

Altitude MSL: Mean Sea Level Altitude. É a altura em pés acima do nível do mar mostrada pelo altímetro (corrigida para erro de posição e instrumento) quando a pressão barométrica é ajustada à aquela existente no nível do mar.

Altitude de Pressão: É a altitude em pés, indicada pelo altímetro (corrigida para erro de posição e instrumento) quando a pressão barométrica é ajustada em 29.92 polegadas de mercúrio (1013.2mb).

Altitude Densidade: É a altitude em pés tendo a mesma densidade do ar à aquela existente em um dia ISA. (É a altitude de pressão corrigida para OAT).

ISA: International Standard Atmosphere existe quando a pressão no nível do mar é 29.92 polegadas de mercúrio, a temperatura é de 15 ºC e diminui 1.98 ºC por 1.000 pés de altitude.

BHP: Brake Horsepower é a potência efetiva do motor.

GPH: Galões por hora de combustível consumido pelo motor.

Page 20: Ground Scholl r22 Modificado

MAP: Manifold Pressure. Pressão de admissão é a pressão absoluta em polegadas de mercúrio no fluxo de admissão do motor.

RPM: Revoluções por minuto ou velocidade do motor ou rotor principal. (Mostrado no Tacômetro do R22 como uma porcentagem de 2550 RPM do motor ou 510 RPM do rotor principal).

MCP: Maximum Continuous Power. Potência Máxima Contínua.

MTOP: Potência de Decolagem (Potência máxima por 5 minutos).

Altitude Crítica: Altitude na qual, com toda a manete aberta, o motor perde eficiência.

TOGW: Takeoff Gross Weight. Peso máximo de decolagem.

CAT: Carburetor air temperature. Temperatura do ar do carburador.

Page 21: Ground Scholl r22 Modificado

CHT: Cylinder Head Temperature. Temperatura da Cabeça do Cilindro.

AGL: Above Ground Level. Acima do Nível do Solo.

IGE: In ground effect. No Efeito Solo.

OGE: Out of ground effect. Fora do Efeito Solo.

OAT: Out side air temperature. Temperatura do ar externo.

ALT: Alternador.

Page 22: Ground Scholl r22 Modificado

Referência Datum: Um plano vertical imaginário do qual são medidas todas as distâncias horizontais para o propósito de balanceamento.

Estação normalmente: Uma localização ao longo da fuselagem do helicóptero dada em termos de distância em polegadas da referência datum.

Braço: A distância horizontal da referência datum ao centro de gravidade (C.G.) de um item.

Momento: O produto do peso de um item multiplicado pelo seu braço. (Momento dividido por uma constante é usado para simplificar cálculos de balanço pois isso reduz o número de dígitos).

Centro de Gravidade (C.G.): O ponto no qual um helicóptero iria se equilibrar se fosse suspendido. Essa distância da referência datum é achada através da divisão do momento total pelo peso total do helicóptero.

DEFINIÇÕES DE PESO E BALANCEAMENTO

Page 23: Ground Scholl r22 Modificado

Peso Vazio Standard: Peso do Helicóptero standard incluindo combustível não usável, fluidos de operação completos e óleo completo.

Peso Básico Vazio : Peso vazio standard mais equipamento opcional.

Payload: Peso dos ocupantes, carregamento e bagagem.

Useful Load: Diferença entre peso máximo de decolagem e peso básico vazio.

Braço do C.G.: O braço da referência datum obtido pela adição dos momentos individuais do helicóptero e dividindo a soma pelo peso total.

Limites do C.G.: As localizações extremas do centro de gravidade dentro das quais o helicóptero tem que ser operado em um dado peso.

Combustível Usável: Combustível disponível para planejamento de vôo.

Combustível Não Usável: Combustível restante depois que um teste de run out (usar até o fim) tenha sido completado de acordo com a regulamentação.

Page 24: Ground Scholl r22 Modificado

1.5 TABELA DE CONVERÇÕESMÉTRICO PARA O INGLÊS

Multiplique Por Para Obtercentímetros (cm) 0.3937 polegadas (in)kilogramas (kg) 2.2046 libras (lb)quilômetros (km) 0.5400 milhas náuticas (nm)quilômetros (km) 0.6214 milhas terrestres (mi)litros (l) 0.2642 galões, U.S. (gal)litros (l) 1.0567 quartos (qt)metros (m) 3.2808 pés (ft)

INGLÊS PARA O MÉTRICOMultiplique Por Para Obterpés (ft) 0.3048 metros (m)galões, U.S. (gal) 3.785 litros (l)polegadas (in) 2.540 centímetros (cm)polegadas (in) 25.40 milímetros (mm)milhas náuticas (nm) 1.8520 quilômetros (km)libras (lb) 0.4536 kilogramas (kg)quartos (qt) 0.9464 litros (l)milhas terrestres (mi) 1.6093 quilômetros (km)

Page 25: Ground Scholl r22 Modificado

2. DESCRIÇÕES DOS SISTEMAS

2.1 AIRFRAME 2.2 SISTEMAS DO ROTOR 2.3 SISTEMA DE TRANSMISSÃO 2.4 MOTOR 2.5 COMANDOS DE VÔO 2.6 COMANDOS DE VÔO REMOVÍVEIS - OPCIONAIS 2.7 CONTROLE DE TRIM FRICÇÃO 2.8 CONTROLES DO MOTOR 2.9 ACIONADOR DO CLUTCH 2.10 SISTEMA DE COMBUSTÍVEL 2.11 SISTEMA ELÉTRICO 2.12 SISTEMA DE LUZES 2.13 PAINEL DE INSTRUMENTOS 2.14 SISTEMA PITOT-ESTÁTICO 2.15 TACÔMETROS 2.16 LUZES DE AVISO 2.17 AQUECIMENTO E VENTILAÇÃO 2.18 ASSENTOS, CINTOS E BAGAGEIRO 2.19 TREM DE POUSO 2.20 SISTEMA DE PRIMER (OPCIONAL) 2.21 FREIO DO ROTOR

Page 26: Ground Scholl r22 Modificado

2.1 AIRFRAME

O R22 é um helicóptero de dois lugares, um rotor principal, monomotor, construído primariamente de metal e equipado com trem de pouso tipo esqui.

A estrutura primária da fuselagem é de tubos de aço cromo-molibdênio soldados e alumínio rebitado. O cone de cauda é uma estrutura monocoque na qual o revestimento de alumínio suporta a carga primária. Fibra de vidro e thermoplastics são usados na estrutura secundária da cabine, sistema de refrigeração do motor e vários outros dutos e carenagem. As portas também são construídas de fibra de vidro e plexiglass .

As portas da cabine são removíveis tirando-se os contra-pinos. Uma janela de inspeção do lado direito dá acesso ao compartimento de transmissão do rotor principal. Para acessos adicionais dos controles e outros componentes, existem painéis removíveis entre os assentos e encostos, em cada lado do compartimento do motor e embaixo da cabine.

O console de instrumentos se abre para cima e para trás para dar acesso à bateria, fiação e conecções dos instrumentos. Pequenas janelas de inspeção estão localizadas no cone de cauda para inspeção interna.

Uma parede de fogo de aço inoxidável está localizada à frente e outra acima do compartimento do motor.

Page 27: Ground Scholl r22 Modificado

CABINE

CONE DE CAUDAROTOR DE CAUDA

ROTOR PRINCIPAL

MASTRO

ESTABILIZADOR

ESQUI

MOTOR

Page 28: Ground Scholl r22 Modificado

2.2 SISTEMAS DO ROTOR

ROTOR PRINCIPAL

O rotor principal tem duas pás feitas de metal, conectadas ao cubo por dobradiças-de-coneamento individuais. O cubo é montado no mastro com uma dobradiça-gangorra localizada acima das dobradiças-de-coneamento. As pás do rotor principal tem bordos de ataque feitos com uma grossa camada de aço inoxidável que irá resistir tanto a corrosão devido ao tempo quanto a erosão devido a areia e a poeira. Os rolamentos de mudança de passo para cada pá estão embutidos num alojamento interno no punho da pá. O alojamento é completado com óleo e é herméticamente selado com um guarda-pó de neoprene. As dobradiças-de-coneamento e a dobradiça-gangorra usam rolamentos de teflon auto-lubrificados.

Os batentes de limitação para as pás do rotor principal são designados a produzir uma restrição de limite na dobradiça-gangorra para impedir que o rotor balance durante a parada ou acionamento.

(VER FOTOS DO SISTEMA DO ROTOR NA PAGINA 23)

Page 29: Ground Scholl r22 Modificado

DOBRADIÇA DECONEAMENTO

DOBRADIÇAGANGORRA

DOBRADIÇA DECONEAMENTO

PUNHO DA PÁ

PUNHO DA PÁ

HASTE DEMUDANÇA DE PASSO

Page 30: Ground Scholl r22 Modificado

ROTOR DE CAUDA

O rotor de cauda tem duas pás todas de metal e um cubo com batimetro com um ângulo fixo de cone. Os rolamentos de mudança de passo e os rolamentos da dobradiça-gangorra possuem um revestimento de teflon auto-lubrificante. As pás do rotor de cauda são construídas com um revestimento de alumínio, longarinas tipo casa de abelha e o encaixe do punho de alumínio forjado.

Page 31: Ground Scholl r22 Modificado

ATUAÇÃO DO ROTOR DE CAUDA

(clique na imagem)

PEDAIS

Page 32: Ground Scholl r22 Modificado

2.3 SISTEMA DE TRANSMISSÃO

Uma polia para correias em V é parafusada no eixo de saída de potência do motor. As correias em V transmitem potência para a polia superior que tem uma embreagem tipo roda livre dentro do seu cubo. O eixo interno da embreagem transmite potência à frente para o rotor principal e para trás para o rotor de cauda. Placas flexíveis estão localizadas na entrada da caixa de transmissão principal e em cada extremidade ao longo do eixo do rotor de cauda.

A caixa de transmissão principal contém um estágio simples de engrenagem helicoidal que é lubrificado por salpico. Um duto de refrigeração abaixo da caixa é conectado ao topo do coletor de ar do fan. A caixa de transmissão principal é colocada no airframe com quatro bases de borracha.

Page 33: Ground Scholl r22 Modificado

Ao longo do eixo de transmissão para o rotor de cauda não existe apoio de rolamento sobre os mancais mas tem um apoio de rolamento localizado na parte dianteira média do eixo com sistema de amortecedor com pré-carga . A caixa de transmissão de cauda também tem engrenagem helicoidal lubrificada por salpico. Os eixos de entrada e saída da caixa de cauda são ambos feitos de aço inoxidável para impedir a corrosão. Os outros eixos do sistema de transmissão, entretanto, são feitos de liga de metal e são sujeitos a corrosão.

Page 34: Ground Scholl r22 Modificado
Page 35: Ground Scholl r22 Modificado

BASE DA CAIXA DE TRANSMISSÃO PRINCIPAL

VISOR DO NIVEL

DE ÓLEO

TRAQUÉIA DE REFRIGERAÇÃO DA TRANSMISSÃO

TELATEMP

CHIP DETECTOR E VALVULA DE DRENAGEM DO ÓLEO

Page 36: Ground Scholl r22 Modificado

RESPIRO

VISOR DO NIVEL DE ÓLEO

CHIP DETECTOR EVALVULA DE DRENAGEM

CAIXA DE TRANSMISSÃO DO ROTOR DE CAUDA

Page 37: Ground Scholl r22 Modificado

2.4 MOTOR

O R22 tem um motor Lycoming 0-320 quatro cilindros, horizontais opostos, válvula na cabeça, refrigeração a ar, motor com carburador e um sistema de óleo com carter úmido. Esse motor tem tração de 124 HP de potência contínua a 2650 RPM quando instalado no R22. É equipado com um motor de arranque, alternador de 60 amp, ignição aterrada , dois magnetos, tubo de tomada silenciosa, radiador de óleo e filtro de ar.

Um ventilador para refrigeração com linha direta, colocado no eixo de saída do motor fornece refrigeração para os cilindros e radiador de óleo através de uma defletora de fibra de vidro e alumínio. Um pequeno duto que sai da defletora fornece refrigeração para o alternador.

O ar induzido entra através de uma abertura do lado direito do helicóptero e passa por um duto flexível para a caixa de ar do carburador. Uma válvula corrediça controlada pelo piloto permite a entrada tanto de ar frio quanto aquecido para dentro da caixa, através de um filtro de ar com entrada de fluxo de 360º e para dentro do carburador. Uma válvula na parte inferior da caixa de ar irá abrir, com alguma perda de pressão de admissão, caso o filtro de ar ou a entrada fiquem entupidos.

O piloto deve ler e seguir os procedimentos recomendados no Lycoming Operator’s Manual para obter máxima vida e eficiência do motor.

(VER FOTOS DO MOTOR NAS PAGINAS 27/28)

Page 38: Ground Scholl r22 Modificado

ALTERNADOR CAIXA DE AR DO CARBURADOR

VENTILADOR

ESCAPAMENTO

MOTOR LADO ESQUERDO EM RELAÇÃO A ANV

TRAQUEIA DE REFRIGERAÇÃO DO ALTERNADOR

VARETA DE NIVEL DE ÓLEO DO MOTOR

Page 39: Ground Scholl r22 Modificado

MOTOR LADO DIREITO EM RELAÇÃO A ANV

TOMADA DE AR PARA O CARBURADOR

DUTO FLEXIVEL (TRAQUÉIA)

RADIADOR DE ÓLEOTRAQUÉIA DE CAPTAÇÃO DE AR QUENTE

PARA AQUECIMENTO DO CARBURADOR CARENAGEM PARA REFRIGERAÇÃO DO MOTOR

JANELA DE INSPEÇÃO DO RADIADOR

MOTOR DE ARRANQUE

Page 40: Ground Scholl r22 Modificado

2.5 COMANDOS DE VÔO

Duplos comandos são equipamentos standart e todos os comandos primários são atuados através de tubos puxa-empurra e bellcranks. Os rolamentos usados no sistema de comando são tanto com bolas seladas ou com revestimento de teflon auto-lubrificante.

Os comandos de vôo do R22 funcionam da mesma maneira que na maioria dos outros helicópteros. O cíclico parece diferente mas o punho de comando se move da mesma maneira que nos outros helicópteros devido ao livre movimento no pivot central. O punho de comando é livre para se mover verticalmente permitindo que o piloto descance seu braço no joelho se ele preferir.

O coletivo também é convencional com um controle de manete. Quando o coletivo é levantado a manete é aberta automaticamente por um acoplamento interconectado de maneira que o piloto precise fazer apenas pequenos ajustes com a manete. Em ajustes de alta potência acima de 4.000 pés, a correlação da manete é menos efetiva e se faz necessário o ajuste manual da manete.

CUIDADOEm ajustes de alta potência acima de 4.000 pés, umexcesso de rotação pode ocorrer se a manete nãofor sendo fechada quando o coletivo é abaixado.

(VER FOTOS DOS COMANDOS DE VÔO NAS PAGINAS 34/35)

Page 41: Ground Scholl r22 Modificado

COMANDO CICLICO E SUA ATUAÇÃO

A IMAGEM ACIMA DEMONSTRA A ATUAÇÃO DO COMANDO CICLICO A FRENTE

01

0203

02

01

04

01 PUNHO DO CICLICO02 BOTÕES DE COMUNICAÇÃO03 PIVO CENTRAL04 PINO DE FIXACAO DO DUPLO COMANDO

Page 42: Ground Scholl r22 Modificado

COLETIVO E SUA ATUAÇÃO

01

02 03

04

01 FRICÇÃO DO COLETICO02 HASTE DE COMANDO03 MANÉTE04 GOVERNADOR

Page 43: Ground Scholl r22 Modificado

2.6 COMANDOS DE VÔO REMOVÍVEIS

Comandos de vôo removíveis são oferecidos como um opcional no R22. Esses comandos podem ser removídos e posteriormente reinstalados pelo pessoal de manutenção qualificado ou pilotos seguindo as seguintes instruções:

1. Para remover o cíclico, remova o pino de segurança apertando o botão e puxando-o, daí puxe o punho de comando esquerdo para fora enquanto segurando a barra vertical.Para reinstalar, faça o procedimento reverso.

CUIDADODepois de remover o cíclico, coloque a tampa plástica de proteção na extremidade do

tubo para evitar possíveis ferimentos.

2. Para remover o coletivo, empurre o guarda-pó para trás para que possa ser possível a retirada do pino de segurança e puxe o coletivo para fora. Para reinstalar, certifique-se de que as placas estão viradas para cima, daí faça o procedimento reverso. Certifique-se de que ambos os pinos estejam completamente travados nos dois buracos. Pode ser necessário que se rode levemente o coletivo para que os pinos se agarrem nos lugares.

Page 44: Ground Scholl r22 Modificado

3. Para remover os pedais do rotor de cauda, destrave o pino, puxe o pedal para cima e gire-o no sentido anti-horário. Para instalar os pedais do rotor de cauda, introduza-os no soquete girados 90º no sentido anti-horário, pressione para baixo e gire no sentido horário até que eles travem.

Page 45: Ground Scholl r22 Modificado

2.7 CONTROLE DE TRIM E FRICÇÃO

Trim de balanceamento são incorporados no ciclico e coletivo. O Trim do coletivo balanceia as forças do rotor permitindo que o piloto remova a sua mão esquerda do coletivo durante a maioria dos regimes de vôo. O ciclico longitudinal tem uma mola fixa que cancela a maior das forças longitudinais do ciclico durante vôo de cruzeiro.

O ciclico lateral é equipado com uma mola tipo liga – desliga para cancelar as forças para a esquerda as quais ocorrem durante regime de alta velocidade (teoria da dissimetria de sustentação). O dispositivo é acionado por um comando puxa – empurra localizado logo a frente do ciclico.

CUIDADOSe o controle da mistura for puxado inadivertidamente, isto irá resultar em uma parada

do motor. Para evitar que se puxe o controle errado, sempre alcance-o pelo lado esquerdo do ciclico.

O cíclico e o coletivo também são equipados com dispositivos de fricção ajustáveis. Uma alavanca articulada está localizada perto da extremidade posterior do coletivo. Ela é acionada para trás para aumentar a fricção e para frente para diminuí-la. A fricção do coletivo é normalmente aplicada somente no solo.

Page 46: Ground Scholl r22 Modificado

O comando da fricção do cíclico está localizado à esquerda do cíclico e é usado tanto no solo quanto durante vôo de cruzeiro. Girando o comando no sentido horário se aplica a fricção para ambos, cíclico longitudinal e lateral.

Os pedais acionam controles puxa-empurra conectados diretamente a mudança de passo do rotor de cauda e não incorporam nenhum dispositivo de trim ou fricção.

CUIDADOControle de fricção tem que ser aplicados com cuidado se usados durante o vôo para

se evitar inadvertida trava dos comandos.

TRIM

SEMPRE ALCANCE-O PELO LADO ESQUERDO DO

CICLICO.

FRICÇÃODO CICLICO

Page 47: Ground Scholl r22 Modificado

2.8 CONTROLES DO MOTOR

Um controle de manete do tipo giratório está localizado em cada coletivo. Eles são interconectados e acionam uma válvula tipo borboleta no carburador através de um sistema de bellcranks e tubos puxa-empurra. Nenhum cabo ou engrenagem é usado no sistema de controle da manete.

O sistema articulado irá abrir a manete quando o coletivo for levantado. Uma mola “overtravel spring” está localizada no tubo puxa-empurra vertical da manete. Essa mola permite que o piloto gire a manete além da posição marcha lenta (spring dente) antes do contato com o solo em um pouso em auto-rotação. Isso evita a correlação da manete de aumentar a RPM do motor quando o coletivo for levantado durante o toque. Com a manete girada na posição “overtravel spring” e segura nesta posição, a borboleta do carburador deve somente se mover ligeiramente quando o coletivo for levantado para a posição todo para cima.

Outros controles do motor incluem um controle da mistura localizado à frente e a direita do cíclico e um controle de aquecimento do carburador localizado a direita e atrás do cíclico.

Page 48: Ground Scholl r22 Modificado

Um indicador da temperatura do ar do carburador no painel é usado para determinar o aquecimento como necessário durante condições de gelo. Aplique aquecimento como necessário para manter o ponteiro fora do arco amarelo quando existirem condições de umidade.

CUIDADOSe a mistura for empobrecida em alta altitude, certifique-se de queela foi empurrada de volta antes de iniciar a descida para altitudes

mais baixas, caso contrário, o motor pode se apagar. Se o motor parar, abaixe o coletivo empurre a mistura para a posição toda

rica e reacione usando a mão esquerda. NÃO desengraze o clutch.

CONTROLE DE MISTURA

CONTROLE DE AQUECIMENTO DO CARBURADOR

MANETE DE CONTROLE DE RPM DO MOTOR

GOVERNADOR ON-OFF

Page 49: Ground Scholl r22 Modificado

2.9 ACIONADOR DO CLUTCH

Após a partida do motor, ele é acoplado ao sistema de transmissão do rotor pelo levantamento da polia superior e tensionamento das correias em V. Um acionador elétrico é localizado entre as duas polias ele levanta a polia superior quando o piloto fecha o switch ENGAGE no console. Um dispositivo no acionador sente a carga comprimida (tensão da correia) e o desliga quando as correias em V estão tensionadas na medida pré estabelecida .Uma luz de aviso no painel se acende quando o acionador está operando, tanto engrazando, desengrazando ou retensionando as correias. A luz não se apaga até que as correias estejam tensionadas ou completamente desengrazadas.

CUIDADONunca decole enquanto a luz de aviso do clutch estiver acesa.

(VER FOTO DO SISTEMA DA CLUTCH NA PAGINA 43)

SWITCH DACLUTCH

Page 50: Ground Scholl r22 Modificado

ATUADOR DA

CLUTCH

TELATEMP DO ROLAMENTO SUPERIOR

CORREIAS

EIXO DE TRANSMISSÃO

SISTEMA DA CLUTCH

Page 51: Ground Scholl r22 Modificado

2.10 SISTEMA DE COMBUSTÍVEL

O sistema de combustível é pela força da gravidade (sem bombas de combustível) e inclui um tanque com respiro de 20 galões, uma válvula de corte na cabine atrás do assento esquerdo e um filtro de combustível. O respiro está localizado dentro da carenagem do mastro acima do tanque de combustível.

Um dreno do tanque está localizado na parte dianteira esquerda do tanque e é acionado quando se empurra o tubo extendido. Um dreno também é localizado no filtro, na parte inferior esquerda da parede de fogo à frente do motor. Ambos os drenos devem ser abertos diariamente antes do primeiro vôo para se checar a presença de água, impureza e combustível.

O indicador de combustível localizado no painel é operado eletronicamente por um transmissor tipo bóia no tanque. Quando o ponteiro do indicador estiver no “E” o tanque está vazio, exceto por uma pequena quantidade de combustível não utilizável. A luz de aviso de baixo combustível no painel é acionada por um circuito separado localizado na parte inferior do tanque. Quando a luz se acende, o tanque tem aproximadamente um galão de combustível.

(VER FOTOS DO SISTEMA DE COMBUSTIVEL NA PAGINA 45/46)

Page 52: Ground Scholl r22 Modificado

O tanque auxiliar opcional é interconectado com o tanque principal e uma válvula controla o fluxo de ambos os tanques. O tanque auxiliar tem um respiro separado, indicador de quantidade e dreno separados.

TANQUE AUX.

TAMPA DO TANQUE AUX.

TANQUE PRINCIPAL

TAMPA DO TANQUE PRINCIPAL

TANQUES DE COMBUSTIVEL

VALVULA DE CORTE

Page 53: Ground Scholl r22 Modificado

PONTOS DE DRENAGEM DO COMBUSTIVEL

1. DRENO DO TANQUE AUX.

2. DRENO DO TANQUE PRINCIPAL

3.DRENO DO FILTRO

Page 54: Ground Scholl r22 Modificado

2.11 SISTEMA ELÉTRICO

O sistema elétrico é composto de um alternador de 14 volt 60 amp, regulador ou controlador de voltagem, contactor da bateria e uma bateria de 12 volt 25 amp-hora. O regulador ou controlador de voltagem, está localizado do lado direito da parede de fogo à frente do motor. Nos R22 mais antigos a bateria está em uma caixa de fibra de vidro localizada na extremidade dianteira do console abaixo do painel de instrumentos. O painel de instrumentos pode ser aberto dobrando-o para cima e para trás, removendo-se dois parafusos um de cada lado do console para manutenção na bateria. Helicópteros mais recentes tem a bateria localizada no lado esquerdo do compartimento do motor.

Vários switches estão localizados no console e os disjuntores estão na saliência logo à frente do assento esquerdo. Os disjuntores são marcados para indicar suas funções e amperagem e são do tipo que se empurra para rearmar. Se um disjuntor saltar para fora, espere alguns segundos para que ele se resfrie antes de rearmá-lo.

Page 55: Ground Scholl r22 Modificado

O swich MASTER BATT no console controla o contactor da bateria que desconecta a bateria de todos os outros circuitos exceto o circuito bypass dos tacômetros. Somente o switch de desesengrazamento do clutch irá disconectar o circuito bypass do tacômetro. Os tacômetros podem receber corrente tanto do barramento quanto do circuito bypass ligado direto na bateria.

O relé de excesso de voltagem protege o equipamento eletrônico de uma momentânea condição de excesso de voltagem ou uma falha do regulador. Se o amperímetro indicar uma descarga durante vôo normal, desligue todos equipamentos elétricos não necessários e desligue o switch ALT e religue-o após um segundo para rearmar o relé de excesso de voltagem. Se o amperímetro ainda indicar uma descarga, termine o vôo assim que praticável.

CUIDADOVôo Contínuo sem o funcionamento do alternador

pode resultar em perda dos tacômetros eletrônicos,produzindo uma condição perigosa de vôo.

(VER ESQUEMA DO SISTEMA ELÉTRICO NA PAGINA 49)

Page 56: Ground Scholl r22 Modificado
Page 57: Ground Scholl r22 Modificado

2.12 SISTEMA DE LUZES

Uma luz estrobo anti-colisão está instalada no cone de cauda como equipamento standard.As luzes noturnas opcionais incluem luzes de navegação em cada lado da cabine e na cauda. Faróis de pouso duplos são instalados no nariz em ângulos verticais diferentes para aumentar o campo de visão do piloto. O uso de dois faróis proporciona um segurança caso um dos faróis se queime. Luzes internas iluminam os instrumentos e uma luz de mapa está localizada proxima aos plugs dos fones de ouvido, para adicional iluminação e uso de emergência em caso de falha das luzes do painel. O switch da luz de mapa está localizado na base da luz. Um controle de dimmer para as luzes do painel está localizado acima do switch NAV.

A luz estrobo, navegação e faróis de pouso tem, cada uma, um disjuntor separado. As luzes do painel são no mesmo disjuntor das luzes de navegação, e a luz de mapa é no disjuntor junto com os instrumentos de painel.

O switch dos faróis de pouso está localizado no console acima dos aviônicos e a direita do switch do engrazamento do clutch.

CUIDADOA localização do switch do farol de pouso deve ser cuidadosamente

memorizada para que ele possa ser ligado sem demora em uma emergência.

(VER LOCALIZAÇÃO DOS SWITCHES NA PAGINA 51)

Page 58: Ground Scholl r22 Modificado

LOCALIZAÇÃO DOS SWITCHES DO SISTEMA DE LUZES

FAROLLUZES DE NAVEGAÇÃO

LUZ STROBE

Page 59: Ground Scholl r22 Modificado

2.13 PAINEL DE INSTRUMENTOS

Os instrumentos de vôo standard incluem um indicador de velocidade, tacômetros duplos do motor e rotor, altímetro sensitivo, indicador de pressão de admissão e bússola magnética. O grupo de instrumentos do motor incluem um amperímetro, pressão de óleo, temperatura de óleo, temperatura da cabeça do cilindro e quantidade de combustível. Também possue um indicador de temperatura do ar do carburador e um indicador digital da temperatura do ar externo. Um horímetro acionado pela pressão do óleo do motor está localizado à frente do assento do piloto.

Localizado no painel de instrumentos estão vários switches elétricos. O painel também tem espaço para instrumentos de vôo opcionais, relógio, indicador omni(vor), rádio nav, transceiver e transponder.

(VER FOTOS DO PAINEL DE INSTRUMENTOS NA PAGINA 53/54)

Page 60: Ground Scholl r22 Modificado

INSTRUMENTOS DE VÔO

TACOMETROS DO MOTOR E ROTOR

INDICADOR DE PRESSÃO DE ADMISSÃO

CLIMB

INDICADOR DE VELOCIDADE

ALTIMETRO

Page 61: Ground Scholl r22 Modificado

IND. DE PRESSÃO DO ÓLEO

AMPERIMETRO

RELÓGIO

LIQUIDOMETRO DO TANQUE AUX.

IND TEMP. DO CARBURADOR

LIQUIDOMETRO DO TANQUE PRINCIPAL

IND. DE TEMPERATURA DO ÓLEO

IND. TEMP. CABEÇA DO CILINDRO

INSTRUMENTOS DO MOTOR

Page 62: Ground Scholl r22 Modificado

2.14 SISTEMA PITOT-ESTÁTICO

O sistema pitot-estático fornece pressão de ar para operar o indicador de velocidade, altímetro e climb. O tubo de pitot está localizado na parte dianteira da carenagem do mastro acima da cabine. A tomada estática está localizada dentro do compartimento de transmissão próximo a dobradiça da janela.

Água pode ser drenada das linhas pitot-estático removendo-se o plug-dreno de plástico que é alcançado através do painel de inspeção removível dentro da cabine. Drenar estas linhas só deve ser necessário se o sistema de velocidade ou altímetro parecerem estar errados.

A abertura de ambos, pitot e tomada estática, deve ser inspecionada freqüentemente para evitar obstruções.

(VER FOTO DO SISTEMA DE PITOT-ESTATICO NA PAGINA 56)

Page 63: Ground Scholl r22 Modificado

TOMADA DE PITOT DINAMICO

TOMADA DE PITOT ESTÁTICO

TOMADAS DE PITOT

Page 64: Ground Scholl r22 Modificado

2.15 TACÔMETROS

O R22 é equipado com tacômetros elétricos duplos do motor e rotor. O sensor para o tacômetro do motor é do tipo “breaker points” em um dos magnetos. O sensor para o tacômetro do rotor é um dispositivo eletrônico que sente a passagem de dois imãs presos a placa flexível da caixa de transmissão principal. Os sinais desse sensor são condicionados a circuitos de estado sólido dentro do tacômetro. Cada tacômetro tem um disjuntor separado completamente independente do outro. Eles podem receber potência tanto do alternador quanto da bateria mesmo se o switch MASTER BATT estiver desligado. Só se o switch CLUTCH também for colocado na posição DISENGAGE a potência do tacômetro vai ser interrompida, desta forma, o clutch NUNCA deve ser desligado em vôo.

CUIDADOA instalação de dispositivos eletrônicos pode afetar a precisão

e a confiabilidade dos tacômetros eletrônicos. Portanto, nenhumequipamento elétrico deve ser instalado no R22 a menos que a instalação seja

especificamente aprovada pela fábrica.

(VER FOTOS DO TACOMETRO NA PAGINA 58)

Page 65: Ground Scholl r22 Modificado

TACOMETROS

ROTOR ENGINE(MOTOR)

Page 66: Ground Scholl r22 Modificado

2.16 LUZES DE AVISO

As luzes de aviso no painel de instrumentos incluem clutch, baixa RPM, baixa pressão de óleo, baixo combustível, luz do detector de limalha da caixa de transmissão principal e de cauda e super aquecimento da caixa de transmissão principal. A luz do clutch indica que o acionador está tensionando ou destensionando as correias em V. Se a luz piscar ou ficar acesa por mais de oito segundos, isso pode indicar uma iminente falha das correias ou dos rolamentos no topo ou abaixo do acionador. A luz e a buzina de aviso de baixa RPM indica RPM em 97% ou abaixo. As luzes de aviso de pressão de óleo e baixo combustível são acionadas por sensores em cada sistema e são independentes dos indicadores.Os detectores de limalha da caixa de transmissão principal e de cauda são dispositivos imantados, localizados nos plugs do dreno de cada caixa de transmissão. Quando as partículas metálicas são atraídas pelos imãs elas fecham um circuito elétrico acendendo a luz de aviso. As partículas de metal podem ser causadas por um defeito no rolamento ou engrenagem, deste modo dando ao piloto um aviso de eminente falha na caixa de transmissão. A luz de aviso de super aquecimento da caixa de transmissão principal, é acionada por um switch de temperatura localizado na caixa proximo do rolamento do pinhão.

Helicópteros mais modernos tem uma luz de aviso ALT que indica baixa voltagem e possível falha do alternador.

(VER FOTO DO SISTEMA DE LUZES DE AVISO NA PAGINA 60)

Page 67: Ground Scholl r22 Modificado

LUZES DE AVISO

GOV OFF LOCALIZADO OU NA PARTE SUPERIOR DO PAINEL OU ACIMA DO PAINEL DE RADIOS

Page 68: Ground Scholl r22 Modificado

2.17 AQUECIMENTO E VENTILAÇÃO

Entradas de ar são localizadas em cada porta e no nariz do helicóptero. As entradas de ar das portas são abertas e fechadas usando o pivot central do sistema articulado do braço duplo. Empurrando o pivot irá selar e travar a entrada de ar na posição fechada. Para máxima ventilação, abra as entradas de ar o máximo possível durante o vôo pairado, mas somente 2.5 cm ou menos durante o cruzeiro. Em alguns modelos, uma apara serve para manter as entradas parcialmente abertas. A entrada de ar do nariz é aberta puxando-se o comando VENT na face do console. O ar que entra pelo nariz pode ser usado para desembassar o para-brisa em vôo à frente.

Um aquecimento da cabine é disponível como opcional. Ele consiste de uma ventoinha elétrica que fica no lado esquerdo do compartimento do motor, um coletor de ar acima do escapamento, uma válvula de controle na parede de fogo dentro do compartimento de bagagem do piloto, uma grade de saída de ar à frente do assento do piloto e dutos de interconecão entre os componentes. O switch de liga-desliga do ventilador e o controle puxa-empurra do aquecimento estão localizados na saliência logo à frente do assento do piloto. O switch liga a ventoinha e o controle de aquecimento aciona a válvula que direciona o aquecimento tanto para dentro da cabine quanto para fora através de uma descarga que sai pela parte inferior externa da cabine.

Page 69: Ground Scholl r22 Modificado

NOTAPara aumentar a vida do escapamento, remova o aquecimento

no começo da primavera e reinstale-o no final do outono.

CUIDADOQuando não estiver em uso ou em caso de fogo no motor, controle de aquecimento

deve estar na posição de fechadopara vedar a área da cabine do compartimento do motor.

Page 70: Ground Scholl r22 Modificado

2.18 ASSENTOS, CINTOS E BAGAGEIRO

Um espaço para bagagem é localizado embaixo de cada assento. O assento se dobra para frente para dar acesso ao bagageiro. Cada assento é equipado com um cinto de segurança combinado e uma tira no ombro com carretel de inércia. Deslize a fivela do cinto até que ele possa ficar confortavelmente afivelado, daí puxe para cima a tira do ombro para tirar o excesso de folga no cinto de segurança. O carretel de inércia é normalmente livre mas ele irá travar se houver um movimento repentino como iria ocorrer em um acidente.

Os assentos não são ajustáveis mas cada helicóptero é equipado com um encosto extra que pode ser colocado atrás das costas do piloto para posicioná-lo para frente. Isto permite que a maioria dos pilotos baixos possam alcançar os pedais, o cíclico na posição mais para frente e os vários comandos e switches no centro do console.

CUIDADOQuando usando o encosto extra, sempre cheque a

liberdade dos comandos com o coletivo todo para cima.

(VER FOTO DOS ASSENTOS, CINTOS E BAGAGEIRO NA PAGINA 64)

Page 71: Ground Scholl r22 Modificado

CINTO DE TRÊS PONTOS

ASSENTO

BAGAGEIRO

ASSENTOS, CINTOS E BAGAGEIRO

Page 72: Ground Scholl r22 Modificado

2.19 TREM DE POUSO

O trem de pouso usado é do tipo esqui, que se cede e absorve o pouso. A maioria dos pousos bruscos irão ser absorvidos pelo trem de pouso elasticamente. Entretanto, em um pouso extremamente brusco, a estrutura irá dobrar para cima e para fora pois o centro dos crosstubes absorvem o impacto. Uma envergadura muito leve do crosstube é aceitável. Entretanto, se houver uma envergadura severa o bastante que permita que o protetor da cauda fique a uma distância de 90cm do solo quando o helicóptero estiver pousado em um piso nivelado, o crosstube deve ser trocado.

Sapatas de aço endurecido são localizadas em três pontos diferentes em cada esqui. Essas sapatas devem ser inspecionadas freqüentemente. Especialmente, se forem feitas auto-rotações com contato com o solo. Sempre que a espessura da sapata for inferior a 0.15 cm, a sapata deve ser trocada.

(VER FOTO DO TREM DE POUSO NA PAGINA 66)

Page 73: Ground Scholl r22 Modificado

CROSSTUBE

SAPATA

SAPATA

ESQUI TUBE

PONTO DE FIXAÇÃO DA RODA

TREM DE POUSO

Page 74: Ground Scholl r22 Modificado

2.20 SISTEMA DE PRIMER DO MOTOR (OPCIONAL)

Quando instalado, a bomba do primer está localizada em frente ao assento direito perto do horímetro. O primer é usado para melhorar a partida do motor no frio. O primer é dado como se segue:

1. Destrave a bomba girando a alça no sentido horário até que o pino destrave e a alça salte para cima.

2. Bombe a alça como necessário (normalmente duas ou três vezes).

3. Trave a alça depois de dar o primer, alinhando o pino da trava e a ranhura, empurre a alça para baixo e gire-a aproximadamente 180º .

PRIMER

Page 75: Ground Scholl r22 Modificado

2.21 FREIO DO ROTOR

Quando instalado, o freio do rotor é montado na parte traseira da caixa de transmissão principal e acionado por um cabo conectado a uma alça localizada acima e atrás do ombro esquerdo do piloto. Para parar o rotor, siga o seguinte procedimento:

Depois de puxar a mistura, espere pelo menos 30 segundos.

Daí puxe a alça do freio para frente e para baixo usando força moderada (10 lbs).

Depois que o rotor parar, recolha a alça, ou, se necessário usar como freio de estacionamento, puxe a alça para baixo e empurre algum elo da corrente dentro da ranhura com a mão direita.

Certifique-se de que o freio foi solto antes de reacionar o motor.

Um switch elétrico no freio ativa uma luz de aviso quando o freio é acionado. O switch também desconecta o motor de arranque, impedindo que o motor seja acionado com freio puxado.

Page 76: Ground Scholl r22 Modificado

CUIDADOUsar o freio sem esperar ao menos 30 segundos da parada do motor, ou usar uma força

que pare o motor em menos de 20 segundos pode danificar as sapatas do freio prematuramente.

COMANDO DO FREIO ROTOR

Page 77: Ground Scholl r22 Modificado

3. PERFORMANCE

3.1 GERAL

3.2 CARTA CALIBRAÇÃO DE VELOCIDADE

3.3 CARTA DE ALTITUDE DENSIDADE

3.4 TETO DO PAIRADO NO EFEITO SOLO X PESO BRUTO

3.5 TETO DO PAIRADO FORA DO EFEITO SOLO X PESO BRUTO (Máxima Contínua ou Toda Manete)

3.6 TETO DO PAIRADO FORA DO EFEITO SOLO X PESO BRUTO(Razão de Decolagem de 5 minutos)

3.7 GRÁFICO DE ALTURA X VELOCIDADE (Curva do Homem Morto)

Page 78: Ground Scholl r22 Modificado

3.1 GERAL

O helicóptero tem demonstrado ser controlável no pairado em ventos de 17 kt de qualquer direção até 10.600 pés de altitude densidade. Consulte o gráfico de “IGE hover performance data” (Pairado no Efeito Solo) para o peso máximo permitido.

Use máxima potência RPM (104%) durante decolagem e durante vôo nivelado abaixo de 500 pés AGL ou acima de 5.000 pés de altitude densidade.

Velocidades indicadas (KIAS) mostradas nos gráficos assumem zero erro de instrumento.

CUIDADOOs dados de performance apresentados nesta sessão foram obtidossob condições ideais. A performance sob outras condições pode ser substancialmente menor. A performance no pairado foi obtida

com aquecimento do carburador DESLIGADO.

TEMPERATURA DE OPERAÇÃO DEMONSTRADA

Satisfatória refrigeração do motor foi demonstrada em uma temperatura externa do ar de 38º C (100ºF) ao nível do mar ou 23º C (41º F) acima da standard ISA na altitude

Page 79: Ground Scholl r22 Modificado

3.2 CARTA CALIBRAÇÃO DE VELOCIDADE

Page 80: Ground Scholl r22 Modificado

3.3 CARTA DE ALTITUDE DENSIDADE

Page 81: Ground Scholl r22 Modificado

3.4 TETO DO PAIRADO NO EFEITO SOLO X PESO BRUTO

Page 82: Ground Scholl r22 Modificado

3.5 TETO DO PAIRADO FORA DO EFEITO SOLO X PESO BRUTO (Máxima Contínua ou Toda Manete)

Page 83: Ground Scholl r22 Modificado

3.6 TETO DO PAIRADO FORA DO EFEITO SOLO X PESO BRUTO (Razão de Decolagem de 5 minutos)

Page 84: Ground Scholl r22 Modificado

3.7 GRÁFICO DE ALTURA X VELOCIDADE(Curva do Homem Morto)

Page 85: Ground Scholl r22 Modificado

4. LIMITAÇÕES

4.1 GERAL4.2 CÓDIGO DE CORES PARA MARCAÇÕES DOS INSTRUMENTOS4.3 LIMITAÇÕES DE VELOCIDADE4.4 MARCAÇÕES DO INDICADOR DE VELOCIDADE4.5 LIMITAÇÕES DE VELOCIDADE DO ROTOR4.6 MARCAÇÕES DO TACÔMETRO DO ROTOR4.7 LIMITAÇÕES DO GRUPO MOTO PROPULSOR (POWERPLANT)4.8 MARCAÇÕES DOS INSTRUMENTOS DO POWERPLANT4.9 LIMITES DE PESO4.10 LIMITES DE CENTRO DE GRAVIDADE (C.G.)4.11 LIMITES DE VÔO E MANOBRAS4.12 TIPOS DE LIMITAÇÕES DE OPERAÇÃO4.13 LIMITES DE COMBUSTÍVEL4.14 AVISOS ADESIVOS NO HELICÓPTERO

Page 86: Ground Scholl r22 Modificado

4.1 GERAL

Essa seção inclui limites de operação, marcações dos instrumentos e avisos básicos necessários para a operação segura do helicóptero, seu motor e outros sistemas padrões.

Este helicóptero está aprovado sob Certificado Tipo FAA Nº H10WE como Modelo R22, esta certificação é baseada no sistema de aviso de baixa RPM do rotor e um indicador externo de temperatura estando instalado e funcionando.

Page 87: Ground Scholl r22 Modificado

4.2 CÓDIGO DE CORES PARA AS MARCAÇÕES DOS INSTRUMENTOS

VERMELHOIndica limites de operação. O ponteiro não deve entrar no vermelho durante a operação normal.

AMARELOÁrea de procedimento de operação com precaução ou especial.

VERDEÁrea de operação normal.

Page 88: Ground Scholl r22 Modificado

4.3 LIMITAÇÕES DE VELOCIDADE

VELOCIDADE A NUNCA SER EXCEDIDA (VNE)

Até 3.000 pés de altitude densidade: 102 KIAS Acima de 3.000 pés de altitude densidade: (Cheque os gráficos de altitude pressão x temperatura abaixo)

Todos R22 menos o Beta II R22 Beta II

Page 89: Ground Scholl r22 Modificado

4.4 MARCAÇÕES DO INDICADOR DE VELOCIDADE

Arco verde: 50 - 102 KIAS

Linha vermelha: 102 KIAS

LINHA VERMELHA

INICIO DO ARCO VERDE

Page 90: Ground Scholl r22 Modificado

4.5 LIMITAÇÕES DE VELOCIDADE DO ROTOR EM %

Real Com Potência Leitura No Tacômetro RPM

Máxima 104% 530

Mínima (Beta II) 101% 515 Mínima (Beta) 97%* 495

*Tacômetros que mostram a área verde de 97% a 104% RPM são originais de motores O-320, podendo ser substituídos por tacômetros que mostram a área verde de 101% a 104% RPM.

Sem Potência (auto-rotação)

Máxima 110% 561

Mínima 90% 459

Page 91: Ground Scholl r22 Modificado

4.6 MARCAÇÕES DO TACÔMETRO DO ROTOR

Linha vermelha superior 110%Arco amarelo 104% A 110%Arco Verde 97% A 104%Arco Amarelo 90% A 97%Linha vermelha inferior 90%Arco amarelo inferior 60% A 70% BETA II BETA Arco verde 101% A 104% Arco verde 97% A 104%Arco amarelo 90% A 101% Arco amarelo 90% A 97%

Page 92: Ground Scholl r22 Modificado

4.7 LIMITAÇÕES DO GRUPO MOTO-PROPULSOR

MotorLycoming Modelo O-320 (B) ou O-360 (BII)

Limites de OperaçãoRotação máxima do motor 104% (2652 RPM)Rotação mínima com potência 97% (2474 RPM) Temperatura máxima da Cabeça do Cilindro 500º F (260º C)Temperatura máxima do Óleo 245º F (118º C)

Page 93: Ground Scholl r22 Modificado

4.8 MARCAÇÕES DOS INSTRUMENTOS DO GRUPO MOTO- PROPULSOR

Pressão do Óleo*Linha vermelha inferior 25 psiArco amarelo inferior 25 a 55 psiArco verde 55 a 95 psiArco amarelo superior 95 a 115 psiLinha vermelha superior 115 psi

Mínimo durante marcha lenta 25 psiMínimo durante vôo 55 psiMáximo durante partida e aquecimento 115 psi

Máximo durante vôo 95 psi Quantidade de óleo mínimo para decolagem 4 qt

•Essas limitações se aplicam para todos os motores. Os indicadores antigos de pressão de óleo, mostram o arco verde de 60 a 90 psi e a linha vermelha a 100 psi. As regulamentações exigem que os limites indicados nos mostradores instalados não sejam excedidos.

Page 94: Ground Scholl r22 Modificado

Temperatura do ÓleoArco verde 75 a 245º F (24 A 118º C)Linha vermelha 245º F (118º C)

Temperatura da Cabeça do CilindroArco verde 200 a 500º F (93 A 260º C)Linha vermelha 500º F (260º)

Tacômetro do Motor Arco vermelho superior 104% a 110%

Arco verde 97% a 104%Arco vermelho inferior 90% a 97%

Arco amarelo 60% a 70%

Indicador da Temperatura do Ar do Carburador Arco amarelo -15º a 5º C

Page 95: Ground Scholl r22 Modificado

Pressão de Admissão ( Manifold Pressure )

Arco amarelo denota variação nos limites de PA.

R22 Standard (motor O-320- A2B ou A2C) Arco amarelo 23.2 a 25.9 in. Hg

Linha vermelha 25.9 in. Hg

HP e Alpha (motor O-320-B2C)Arco amarelo 21.0 a 24.1 in. HgLinha vermelha 24.1 in. Hg

Beta (motor O-320-B2C)Arco amarelo 21.0 a 25.2 in. HgLinha vermelha 25.2 in. Hg

Beta II (motor O-360-J2A)Arco amarelo 19.6 a 24.1 in. HgLinha vermelha 24.1 in. Hg

Page 96: Ground Scholl r22 Modificado

4.9 LIMITES DE PESO

Peso máximo de decolagem - Standard e HP: 1300 lbs (590 kg)

Alpha, Beta e Beta II: 1370 lbs (622 kg)

Peso mínimo para decolagem: 920 lbs (417 kg)

Peso máximo por assento incluindo bagageiro: 240 lbs (109 kg)

Peso máximo em qualquer bagageiro: 50 lbs (23 kg)

Peso mínimo do piloto mais bagagem para vôo solo com as portas instaladas é 130 lbs (59 kg) com combustível standard ou 135 lbs (61 kg) com tanque auxiliar, a menos que os cálculos de peso e balanceamento mostrem que o CG está dentro dos limites. Um lastro pode ser necessário.

Page 97: Ground Scholl r22 Modificado

4.10 LIMITES DO CENTRO DE GRAVIDADE (CG)

Localização da Linha Datum: 100 pol à frente do mastro do Rotor Principal

Limite Dianteiro do C.G: 95.5 pol atrás do Datum

Limite traseiro do C.G: 102 pol atrás do Datum

Limite Esquerdo do C.G: 2.2 pol da linha central do Helicóptero

Limite Direiro do C.G: 2.6 pol da linha central do helicóptero

Page 98: Ground Scholl r22 Modificado

4.11 LIMITES DE VÔO E MANOBRAS

CUIDADOEfetuar um "pushover", (movimento brusco do cíclico para frente), a partir de um vôo nivelado, ou se na sequência do mesmo se seguir um "pull-up" (colocar bruscamente o cíclico para trás), causa uma condição de baixo -G, perto do "sem peso" (peso zero), o que pode resultar em uma catastrófica perda de controle lateral. Para eliminar essa condição de baixo-G, imediatamente aplique o cíclico para trás, lentamente. Se uma rolagem para a direita se iniciar durante uma condiçâo de baixo-G, aplique o cíclico para trás lentamente para retomar a inércia do rotor antes de aplicar cíclico lateral para parar a rolagem.

CUIDADONão é permitido itens soltos na cabine durante vôo com portas removidas

CUIDADOEvite movimentos bruscos dos controles. Eles produzem stress causados por alta

fadiga e pode levar a uma pane prematura e catastrófica de um componente crítico.

Page 99: Ground Scholl r22 Modificado

•Vôo acrobático é proibido.

• Movimento brusco do cíclico para frente, (pushover) provocando uma condição de baixo G é proibido.

• Voar em condições de gelo conhecida é proibido.

• Teto máximo operacional é de 14.000 pés de altitude densidade.

• Alternador, sistema de aviso de baixa RPM do rotor e indicador de temperatura externa (OAT) tem que estar funcionando para se voar.

• Vôo solo só no assento direito.

• Cinto de segurança esquerdo tem que estar afivelado.

• Mínima tripulação é um piloto.

• Operação sem portas é aprovado, com uma ou ambas as portas removidas.

Page 100: Ground Scholl r22 Modificado

• As limitações que se seguem (1 a 3) deverão ser observadas, a menos que o piloto em comando tenha 200 horas de vôo ou mais em helicópteros, e pelo menos 50 horas no modelo R22.

1) Voar quando os ventos de superfície sejam superiores a 25 knots, incluindo rajadas, é proibido.

2) Voar quando as rajadas dos ventos de superfície forem superiores a 15 knots, é proibido.

3) Continuar o vôo com turbulência moderada, severa ou extrema, é proibido.

* Ajuste a velocidade à frente entre 60 knots de velocidade indicada (KIAS) e 0,7 da Vne, mas não abaixo de 57 KIAS, uma vez que você encontre inadvertidamente turbulências moderada, severa ou extrema.

Nota: Turbulência moderada é a turbulência que causa : 1- mudanças em altitudes ou atitudes;2- variações na velocidade indicada; 3- os ocupantes da aeronave sentem uma força contra os cintos de segurança.

Page 101: Ground Scholl r22 Modificado

Mast Bumping

Em um vôo normal, quando o comando cíclico é movido, o mesmo inclina o disco do rotor, que carrega consigo a estrutura do helicóptero através do mastro. Essa inclinação do rotor em relação ao mastro é relativamente pequena pois para a ação do disco existe força gravitacional atuando sobre a estrutura do helicóptero fazendo com que o mesmo acompanhe o rotor em seu movimento.

Porém, em situações onde essa carga da estrutura é retirada do disco do rotor devido a força G negativa, como acontece desviando-se abruptamente de um obstáculo vertical. Há uma resultante lateral onde o piloto erroneamente pode tentar compensar essa rolagem usando, inicialmente, o comando cíclico. Causando o choque da cabeça do rotor principal com o mastro.

Page 102: Ground Scholl r22 Modificado

Essa situação se explica pois quando da ausência de tração do rotor principal, a força lateral do rotor de cauda prevalece, empurrado a estrutura e induzindo o piloto a usar cíclico lateral para corrigir esse desvio. Entretanto, um movimento cíclico lateral causará uma inclinação exagerada do rotor e fará com que a cabeça do rotor principal entre em contato com o mastro pois o mesmo está sem carga. Podendo chegar a até mesmo rompe-lo.

Page 103: Ground Scholl r22 Modificado
Page 104: Ground Scholl r22 Modificado

4.12 TIPOS DE LIMITAÇÕES DE OPERAÇÃO

• Vôo IFR é proibido.

• Vôo VFR diurno é aprovado.

• Vôo VFR noturno é permitido somente quando os faróis de pouso, luzes de navegação, instrumento e anti-colisão estiverem instaladas e funcionando. Orientação durante vôo noturno tem que ser mantida por referências visuais a objetos no solo iluminados somente por luzes no solo ou adequada iluminação celestial.

Page 105: Ground Scholl r22 Modificado

4.13 LIMITAÇÕES DE COMBUSTÍVEL Octanagem dos combustíveis aprovados: AVGAS 80 / 87 – somente para motores O-320-A2B ou A2C (R22 Standard). AVGAS 100LL – para todos os motores. AVGAS 100 / 130 – motor O-320-B2C (HP, Alpha e Beta) motor O-360-J2A (Beta II)

Capacidade de combustível Cap. total do tanque principal: 19,8 U.S. gal (74,9 l) Cap.usável do tanque principal 19,2 U.S. gal (72,7 l) Cap. total do tanque auxiliar: 10,9 U.S. gal (41,2 l) Cap. usável do tanque auxiliar: 10,5 U.S. gal (39,7 l)

Page 106: Ground Scholl r22 Modificado

4.14 AVISOS NO HELICÓPTERO (ADESIVOS)

1.Limites operacionais (verso do check list):

Page 107: Ground Scholl r22 Modificado

2. Em local visível pelo piloto:

3. Localizado próximo a tampa do tanque de combustível:

R22 Standard (motor 0-320-A2B ou A2C)

THIS ROTORCRAFT APROVED FOR DAY AND NIGHT VFR OPERATION

Este helicóptero é aprovado para

operações visuais diurnas e noturnas.

COMBUSTIVEL GASOLINADE AVIAÇÃO MIN 80/70 OCTCAPACIDADE DE 72.7 L (19.2 US GAL)

Todos os outros modelos com motor 0-320-B2C

COMBUSTIVEL GASOLINADE AVIAÇÃO MIN 100 OCTCAPACIDADE DE 72.7 L (19.2 US GAL)

Page 108: Ground Scholl r22 Modificado

4. Localizado próximo à tampa do tanque auxiliar (opcional) de combustível:

COMBUSTIVEL AUXILIARGASOLINA DE AVIAÇÃO MIN 100 OCT

CAPACIDADE 39.7 L (10.5 US GAL)

PARA GARANTIR ENCHIMENTO COMPLETO

DE COMBUSTIVEL COMPLETE O

PRIMEIRO TANQUE OUTRA VEZ APÓS TER

COMPLETADO O SEGUNDO TANQUE

5. Localizado perto da válvula de corte de combustível (Shut-off):

FUELON - OFF

Page 109: Ground Scholl r22 Modificado

6. Localizado perto do indicador de combustível do tanque principal:

19.2 US GAL

7. Localizado perto do indicador de combustível do tanque auxiliar:

AUX. 10.5 US GAL

8. Localizado perto do controle do aquecimento, quando instalado:

IN CASE OF ENGINE FIRE PUSH HEATER CONTROL TO OFF

Em caso de fogo no motor desligue o aquecimento

Page 110: Ground Scholl r22 Modificado

9. Localizado em local visível para ambos ocupantes:

NÃO FUME

10. Localizado na parte inferior da ponta de cada pá do rotor principal:

NEVER PULL DOWN PUSH UP OPPOSITE BLADE

Nunca puxe a pá para baixo

levante a pá oposta

11.Localizado em local visível pelo piloto: (Alpha, Beta e Beta II)

MINIMUM SOLO PILOT WEIGHT 130 LB

(135 LB WITH FULL AUX FUEL)

Peso mínimo para vôo solo 130 lb / 59 kg(135 lb / 61kg com tanque auxiliar cheio)

Page 111: Ground Scholl r22 Modificado

12. Localizado em local visível pelo piloto:

SOLO FROM RIGHT SEAT ONLY Vôo solo somente no assento da direita

13. Localizado em local visível pelo piloto:

MANOBRAS QUE PROVOQUEM

(G) NEGATIVO SÃO PROIBIDAS

14. Localizado dentro de cada bagageiro:

CUIDADO NÃO EXCEDA OS SEGUINTES LIMITES: CARGA NO BAGAGEIRO: 23KG (50 LB) CARGA COMBINADA ASSENTO E BAGAGEIRO: 109 KG (240 LB) PESO MAX. DO HELICOPTERO PARA INSTRUÇÕES ADICIONAIS DE CARREGAMENTO CONSULTE O MANUAL DE VÔO. EVITE COLOCAR OBJETOS SÓLIDOS E PONTIAGUDOS NO BAGAGEIRO QUE PODERÃO FERIR O OCUPANTE EM CASO DE POUSO PLACADO.

Page 112: Ground Scholl r22 Modificado

15. Localizado no indicador de temperatura do ar do carburador:

CUIDADOBELOW 18 IN. MP IGNORE GAGE

& APPLY FULL CARB HEAT

CUIDADO Abaixo de 18 in MP ignore a temperatura e aplique

todo o aquecimento do carburador

16. Localizado no transponder quando o altitude encoder ( C ) esta instalado:

ALTITUDE ENCODER INSTALLED Módulo altimétrico instalado (módulo C)

Page 113: Ground Scholl r22 Modificado

5. PROCEDIMENTOS NORMAIS

5.1 VELOCIDADES PARA OPERAÇÃO SEGURA 5.2 CHEQUE DIÁRIO OU PRÉ-VÔO5.3 ANTES DE ACIONAR O MOTOR5.4 PARTIDA DO MOTOR5.5 PROCEDIMENTOS DE DECOLAGEM5.6 CRUZEIRO5.7 PRÁTICA DE AUTO-ROTAÇÃO - COM RECUP. DE POTÊNCIA(Abaixo de 4.000 pés)5.8 PRÁTICA DE AUTO-ROTAÇÃO - COM RECUP. DE POTÊNCIA (Acima de 4.000)5.9 PRÁTICA DE AUTO-ROTAÇÃO - COM CONTATO NO SOLO5.10 USO DO AQUECIMENTO DO CARBURADOR5.11 APROXIMAÇÃO E POUSO5.12 PROCEDIMENTO DE CORTE5.13 ABATIMENTO DE RUÍDO

Page 114: Ground Scholl r22 Modificado

5.1 VELOCIDADES PARA OPERAÇÃO SEGURA

Decolagem e Subida: 60 KIASMáxima Razão de Subida (Vy): 53 KIASMáximo Alcance: 83 KIASAproximação para pouso : 60 KIASAuto-Rotação: 65 KIASVNE: 102 KIAS

Page 115: Ground Scholl r22 Modificado

5.2 CHEQUE DIÁRIO OU PRÉ-VÔO

Remova qualquer capa temporária e em tempo frio remova qualquer acúmulo de gelo ou neve. Verifique as fichas de manutenção para se certificar que o helicóptero está aeronavegável. Durante a inspeção que se segue, verifique as condições gerais do helicóptero e também procure qualquer vazamento, descoloração devido ao aquecimento, entalhes, fricção, escoriações, corrosão e especialmente por rachaduras. Também verifique desgaste nas juntas onde os tubos são soldados. Desgaste de partes de alumínio produz um pó preto fino, enquanto que o aço produz um resíduo marrom avermelhado ou preto. Ligue o switch do master para checar as luzes de aviso. Cheque os Telatemps para verificar inexplicáveis aumentos de temperatura antes do vôo.

CUIDADO:Não puxe as pás do rotor para baixo pois isso pode

causar algum dano. Para abaixar um pá, levante a oposta.

Page 116: Ground Scholl r22 Modificado

1 - Janela de Inspeção

Tanque auxiliar Sem vazamentosDreno de tanque auxiliar ChequeTampa do tanque ApertadaÓleo de transmissão CheioVazamentos de óleo ChequeFreio do rotor Atuação normalPlaca flexível ChequeYoke flanges Sem rachadurasTelatemps (3) NormalTomada estática Sem obstruçãoLuzes de aviso Luzes acesasTerminais esféricos Livres sem folgaJunções dos tubos de aço Sem rachadurasDuto de refrigeração da caixa de transmissão principal SeguraTodas as abraçadeiras ApertadasJanela de inspeção Travada

Page 117: Ground Scholl r22 Modificado

2 - Motor Lado Direito

Traquéia de entrada de ar SeguraConcha do aquecimento do carburador SeguraDefletora Sem rachadurasTerminais elétricos ApertadosVazamentos de combustível NenhumJanela do radiador de óleo ChequeLinhas de óleo Sem vazamentosVálvula da caixa de ar ChequeSistema de escapamento Sem rachadurasCondições gerais do motor ChequeCondição das correias em V ChequeTreliça ChequePrato Flex. Diant. Do rotor de cauda Sem rachaduras, Porcas apertadasPartes soldadas Sem rachadurasControle do rotor de cauda Sem interferência

Page 118: Ground Scholl r22 Modificado

3 - Motor Parte Traseira

Contra-porca do ventilador Apertada e alinhadaRoda do ventilador Sem rachadurasColetor de ar Sem rachadurasTelatemps rolamento inferior(2) NormalRolamento inferior Sem vazamento ou dano no lacre

4 – Empenagem

Estabilizador horizontal e vertical Sem rachadurasAbraçadeiras ApertadasLuz de navegação ChequeQuilha da cauda Cheque

Page 119: Ground Scholl r22 Modificado

5 - Rotor de Cauda

Placa flexível traseira Sem rachaduras - Parafusos ApertadosTelatemp da caixa de transmissão NormalNível do óleo ChequeTerra do detector de limalha Luz acesaPás Limpas - sem rachaduras/danosTerminais esféricos Livres sem folgasBatimento do cubo Livre sem folgaBola do parafuso do batimento Roda com parafusoBellcranck Livre sem folga

6 - Cone de Cauda

Rebites ApertadosRevestimento Sem rachaduras ou entalhesCondição da luz anti-colisão ChequeAntena ChequeParafusos de fixação Apertados

Page 120: Ground Scholl r22 Modificado

7 - Motor Lado Esquerdo

Defletora Sem rachadurasSistema de exaustão Sem rachadurasÓleo do motor 4-6 qtsGascolator DreneSistema articulado da manete OperávelBateria e relé SeguraTensão da correia do alternador ChequeTreliça Sem rachadurasCondição geral do motor Cheque

8 - Tanque de Combustível (Principal)

Vazamento NenhumQuantidade ChequeTampa ApertadaDreno Cheque

Page 121: Ground Scholl r22 Modificado

9 - Rotor Principal

Pás Limpas e sem danos/rachadurasBoots da mudança de paço Sem vazamentosParafusos de punho Porcas apertadasTodos os terminais esféricos Livres sem folgaPorcas do pitch link ApertadasFreno do pitch link SeguroTodas as abraçadeiras ApertadasSuportes do swashplate Sem folga

10 - Fuselagem Lado Esquerdo

Bagageiro ChequeColetivo LivreCintos de Segurança AfiveladoPorta TravadaContra-pino da porta InstaladoTrem de pouso ChequeRoda de manobra no solo RemovidaLuz de navegação Cheque

Page 122: Ground Scholl r22 Modificado

11 - Seção do Nariz

Condição e limpeza do para-brisa ChequeEntrada de ar LivreFaróis de pouso ChequeTubo de pilot Livre

12 - Fuselagem Lado Direito

Trem de Pouso ChequeRoda de Manobra no solo RemovidaLuz de navegação ChequeContra-pino da porta direita InstaladoBagageiro Cheque

CUIDADO:Quando voando solo, carregue primeiro o bagageiroesquerdo antes de usar o compartimento da direita.

Page 123: Ground Scholl r22 Modificado

CUIDADO:Evite colocar no bagageiro objetos pontiagudos que

possam machucar o ocupante no caso de um pouso forçado.

13 - Interior da Cabine

Quantidade de combustível com Master switch ligado ChequeRemova qualquer ferramentas ou outros artigos soltosna cabine RemovidoCondição dos cintos de segurança ChequeCondição dos instrumentos switches e controles Cheque

CUIDADO:Pilotos baixos podem precisar de uma almofadapara obter controle total de todos os comandos.

Page 124: Ground Scholl r22 Modificado

5.3 ANTES DE ACIONAR O MOTOR

Cintos de segurança AfiveladosDisjuntores DentroVálvula de Corte de Combustível LigadaFricção do cíclico/coletivo SoltaCíclico /coletivo/pedais Movimento livreColetivo para baixo Todo abaixo - fricção presaCíclico neutro Fricção presaPedais NeutrosAltímetro Elevação do pisoTodos os switches/aviônicos DesligadosClutch DesengrazadoMistura Toda ricaGuarda mistura InstaladaAquecimento do carburador DesligadoFreio do rotor Solto

Page 125: Ground Scholl r22 Modificado

5.4 PARTIDA DO MOTOR

Master switch LigadoManete FechadaGovernador DesligadoÁrea LivreLuz anti-colisão Ligada

CUIDADO:Certifique-se de que as pás estejam ambas para cima de

maneira que elas não possam bater no cone de cauda.

Switch da ignição Acione e ambosAjuste a marcha lenta 55%

CUIDADO:Evite operação contínua com velocidade do rotor

de 60 a 70% para minimizar ressonância de cauda.

Page 126: Ground Scholl r22 Modificado

Switch do engrazamento do cluch (sem demora) FechadoSwitch do alternador(sem demora) LigadoPá girando Menos de 6 segundosPressão do óleo em 30 segundos 25 psiAviônicos/headsets Ligados/colocadosEspere a luz do clutch ApagarRPM para aquecimento 70-80%Instrumentos do motor VerdeLuzes de aviso ApagadasQueda do magneto a 100% Máximo 7% em 2 segundosCheque aquecimento do carburador Aumento de CATLevante o coletivo, reduza RPM Buzina/luz a 97%Cheque roda livre Ponteiros separados/marcha lenta OKPortas fechadas TravadasIndicador OAT ºCFricção Cíclico/coletivo SoltasGovernador Acelerar para faixa verde (97% a 104%)Área Livre Decole

Page 127: Ground Scholl r22 Modificado

5.5 PROCEDIMENTOS DE DECOLAGEM

1. Ajuste a RPM no meio do arco verde. Lentamente levante o coletivo, usando a manete para manter a RPM no meio do arco verde. (Perto do nível do mar, a correlação da manete irá compensar as mudanças de coletivo quando a Pressão de Admissão estiver em torno de 19 pol. Hg. Em elevações mais altas será necessário adicionar a manete com coletivo). Se o helicóptero for equipado com governador e o mesmo estiver ligado, estes ajustes serão feitos automaticamente.

2. Abaixe o nariz e acelere para a velocidade de subida seguindo o gráfico de altura X velocidade (Curva do Homem Morto). Mantenha rotação do rotor no topo do arco verde durante decolagem e subida.

Page 128: Ground Scholl r22 Modificado

5.6 CRUZEIRO

Puxe o RT TRIM knob.

CUIDADO:Tenha muito cuidado para nunca puxar inadvertidamente o

controle da mistura pois isso irá causar uma parada do motor.

Ajuste a RPM na metade superior do arco verde (100% a 104%). (Se o helicóptero for equipado com governador e o mesmo estiver ligado, estes ajustes serão feitos automaticamente).

Ajuste a Pressão de Admissão com o coletivo para a potência desejada. Use a fricção do cíclico desejada.

CUIDADO:Não é recomendado o empobrecimento da misturaem vôo. Isso pode resultar na parada do motor poisnão há propulsor para manter o motor funcionando

se ocorrer um empobrecimento exagerado.

Page 129: Ground Scholl r22 Modificado

5.7 PRÁTICA DE AUTO-ROTAÇÃO - COM RECUPERAÇÃO DE POTÊNCIA (Abaixo de 4.000 pés)

Sem mudar o ajuste da manete, abaixe o coletivo para posição todo para baixo.

Levante o coletivo o necessário para impedir que a RPM do rotor suba acima do arco verde e ajuste a manete para manter os ponteiros separados.

Mantenha a RPM no arco verde e velocidade entre 60 - 70 KIAS.

A aproximadamente 40 pés AGL, comece um flare com cíclico para reduzir a velocidade à frente.

A aproximadamente 8 pés AGL, coloque o cíclico para frente para nivelar o helicóptero e levante o coletivo para parar a descida. Adicione a manete o suficiente para manter a RPM no arco verde.

Page 130: Ground Scholl r22 Modificado

5.8 PRÁTICA DE AUTO-ROTAÇÃO - COM RECUPERAÇÃO DE POTÊNCIA (Acima de 4.000 pés)

O mesmo procedimento que para baixo de 4.000 pés, exceto que a manete deve ser reduzida levemente antes de abaixar o coletivo e aumentada levemente quando o coletivo for levantado.

Page 131: Ground Scholl r22 Modificado

5.9 PRÁTICA DE AUTO-ROTAÇÃO - COM CONTATO NO SOLO

Se a prática de auto-rotação com contato no solo for necessária para propósito de demonstração, ela deve ser feita da mesma maneira que a auto-rotação com recuperação de potência, exceto por:

Antes do flare com o cíclico, gire a manete para a posição “detent spring” e segure-a nesta posição até que a auto-rotação esteja completa. (Isso evita a correlação da manete com o coletivo impedindo o aumento de RPM com a subida do coletivo.)

Sempre toque no solo com os esquis nivelados e nariz à frente.

CUIDADO:O R22 tem um sistema de inércia baixo e suave. A maioria

da energia que é usada para se completar uma auto-rotaçãobem sucedida está armazenada no momentum dianteiro do

helicóptero e não no rotor. Desta maneira, é necessárioque o flare com cíclico seja feito na hora certa e que a

RPM do rotor seja mantida no arco verde até poucoantes do contato com o solo.

Page 132: Ground Scholl r22 Modificado

CUIDADO:Durante falhas de potência simuladas, irá ocorrer uma rápida queda

de RPM necessitando uma imediata redução do coletivo para impediruma perigosa baixa RPM do rotor. Falhas de potência simuladas devem

ser iniciadas com a RPM em 104%. Um mínimo de 80% de RPM dorotor seguido do abaixamento do coletivo foi demonstrado durante

testes de falha de motor simulada.

Page 133: Ground Scholl r22 Modificado

5.10 USO DO AQUECIMENTO DO CARBURADOR

Quando condições que possam levar a formação de gelo no carburador forem conhecidas ou suspeitas como nevoeiro, chuva, alta umidade ou quando operando perto da água, use o aquecimento do carburador como se segue:

Durante o vôo pairado ou cruzeiro abaixo de 18 pol de P.A . use o aquecimento do carburador como necessário para manter o indicador CAT fora do Arco Amarelo. Se uma inexplicável queda de P.A ou RPM ocorrer, aplique todo o aquecimento do carburador por aproximadamente um minuto e verifique um aumento de P.A . ou RPM.Durante auto-rotação ou potência reduzida abaixo de 18 pol de P.A, aplique todo o aquecimento do carburador independente da temperatura do indicador CAT.Quando a potência for reaplicada, retorne o controle de aquecimento do carburador todo para baixo ou na posição de aquecimento parcial.

CUIDADO:O indicador CAT só é efetivo acima de 18 pol. De P.A .Durante descidas ou auto-rotações sob condições queindiquem gelo no carburador, ignore o indicador e use

todo aquecimento do carburador.

Page 134: Ground Scholl r22 Modificado

GELO NO CARBURADOR

Gelo poderá se formar no carburador pois há uma queda de temperatura no venturi durante a vaporização do combustível. Logo após o venturi, está localizada a borboleta do carburador, que dosa e por onde passa a mistura ar/combustível. A umidade presente no ar se condensa na borboleta e venturi podendo vir a se transformar em gelo caso a temperatura do carburador esteja abaixo de 0°. Esse gelo irá diminuir a eficiência do venturi e também restringir a passagem de ar na borboleta. Ocasionando, assim, uma perda de potência e até mesmo o apagamento do motor.

Page 135: Ground Scholl r22 Modificado

A queda de temperatura no carburador poderá ser de 20°c em relação à temperatura ambiente. Assim, condições de formação de gelo poderão ser encontradas em temperaturas externas relativamente altas.

Page 136: Ground Scholl r22 Modificado

5.11 APROXIMAÇÃO E POUSO

1. Faça a aproximação final contra o vento na mais baixa razão de descida praticável com uma velocidade inicial de 60 Knots.

2. Reduza velocidade e altitude vagarosamente até o pairado. (Certifique-se que a razão de descida é menor que 300 FPM antes que a velocidade seja reduzida abaixo de 30 KIAS).

3. Do pairado, abaixe o coletivo gradualmente até o contato com o solo.

4. Depois do contato inicial com o solo, abaixe o coletivo para a posição todo para baixo.

CUIDADO:Quando pousando em um terreno inclinado, retorne o cíclico

para a posição neutra após baixar todo o coletivo.

Page 137: Ground Scholl r22 Modificado

5.12 PROCEDIMENTO DE CORTE

Coletivo para baixo: Fricção presaCíclico/pedais neutro: Fricção presaGovernador: DesligadoRotação a 70-80%: Queda de temperatura do cilindroManete: FechadaClutch: DesengrazadoEspere 30 segundos: Puxe o comando da misturaGuarda da mistura: Reinstale a guarda da misturaEspere 30 segundos: Use o freio do rotorLuz do clutch: Desligue todos os switches

CUIDADO:Não diminua a rotação do rotor levantando o coletivo durante o corte. As pás podem

flapear e se chocarem com o cone de calda.

Page 138: Ground Scholl r22 Modificado

5 .13 REDUÇÃO DE RUÍDO

Para melhorar a qualidade de nosso meio ambiente e dissuadir o público a não fazer restrições ao uso de helicópteros, é imperativo que todo piloto se conscientize da necessidade de produzir o menor nível de ruído possível durante o vôo. A seguir estão algumas técnicas de redução de ruído, as quais deverão ser empregadas sempre que possível.

1. Evite voar sobre concertos ao ar livre, partidas de futebol ou outras aglomerações de pessoas. Quando isso não puder ser evitado, voe tão alto quanto praticável, de preferência acima de 2.000 pés AGL.

2. Evite o “Blade Slap”. Normalmente ele ocorre durante uma descida rasa feita em alta velocidade, especialmente durante curvas. Isso pode ser evitado se fazendo descidas mais íngremes e com velocidades mais lentas. Com a porta direita removida, o piloto pode facilmente determinar as condições de vôo que produzem “blade slap” e desenvolver técnicas de pilotagem que irão eliminar ou reduzir estes irritantes meios de barulho.

Page 139: Ground Scholl r22 Modificado

3. Quando decolando ou aproximando para pouso, evite vôos prolongados à baixa altitude perto de áreas residenciais, escolas, hospitais e outras áreas propicias a

aglomeracão de pessoas.

4. Barulho repetitivo é muito mais irritante do que uma simples ocorrência. Se você tiver que voar acima da mesma área mais de uma vez, varie sua rota de maneira que não sobrevoe os mesmos prédios todas as vezes.

NOTA:Os procedimentos recomendados acima não se aplicam onde elespossam conflitar com instruções do ATC ou quando no julgamento

do piloto eles possam resultar em uma rota de vôo inseguro.

Page 140: Ground Scholl r22 Modificado

6. PROCEDIMENTOS DE EMERGÊNCIA6.1 GERAL6.2 FALHA DE POTÊNCIA – GERAL6.3 FALHA DE POTÊNCIA ACIMA DE 500 PÉS AGL6.4 FALHA DE POTÊNCIA ENTRE 8 E 500 PÉS AGL6.5 FALHA DE POTÊNCIA ABAIXO DE 8 PÉS6.6 CONFIGURAÇÃO DE MÁXIMA DISTÂNCIA DE PLANEIO6.7 PROCEDIMENTO DE REACIONAMENTO EM VÔO6.8 POUSO NA ÁGUA - SEM POTÊNCIA6.9 POUSO NA ÁGUA - COM POTÊNCIA6.10 FALHA DO ROTOR DE CAUDA DURANTE VÔO NIVELADO6.11 FALHA DO ROTOR DE CAUDA DURANTE VÔO PAIRADO6.12 FOGO EM VÔO 6.13 FOGO no motor durante acionamento no solo 6.14 FOGO NA PARTE ELÉTRICA EM VÔO6.141 PANE DO GOVERNADOR6.15 PANE DE TACÔMETRO6.16 LUZES DE AVISO VERMELHAS6.17 LUZES DE AVISO ÂMBAR6.18 BUZINA E LUZ DE AVISO - LOW RPM DO ROTOR6.19 ROLAGEM A DIREITA NA CONDIÇÃO DE BAIXO “G”6.20 CABRADA, PICADA, ROLAGEM OU GUINADA INCONTROLADA RESULTANTE DE UM VÔO EM TURBULÊNCIA.6.21 ENCONTRO INADVERTIDO COM TURBULENCIA MODERADA, SEVERA OU EXTREMA .

Page 141: Ground Scholl r22 Modificado

6.1 GERAL

As informações contidas na Seção 3, Procedimentos de Emergência, são aprovadas pela Federal Aviation Administration (FAA).

DEFINIÇÕES:

Pouse imediatamente - Pouse na área mais próxima onde uma aproximação normal e segura possa ser feita. Esteja preparado (a) para entrar em auto rotação durante a aproximação, se necessário.

Pouse assim que praticável - Pouse no aeródromo mais próximo ou em outras instalações onde uma manutenção de emergência possa ser feita.

Page 142: Ground Scholl r22 Modificado

6.2 FALHA DE POTÊNCIA – GERAL

1. Uma falha de potência pode ser causada pelo motor ou pelo sistema de transmissão e será normalmente, indicada pela buzina de baixa RPM.

2. Uma falha no motor pode ser indicada por uma mudança no nível de ruído, uma guinada à esquerda, luz da pressão de óleo ou queda da RPM do motor.

3. Uma falha no sistema de transmissão pode ser indicada por um ruído incomum ou vibração, guinada à direita ou esquerda ou queda da RPM do rotor enquanto a RPM do motor está subindo.

CUIDADOCíclico para trás é necessário quando o coletivo for

baixado em alta velocidade e CG à frente.

CUIDADOEvite colocar o cíclico para trás durante o toque ou durante

o corrido no solo, para evitar uma possível batida dapá no cone de cauda.

Page 143: Ground Scholl r22 Modificado

6.3 FALHA DE POTÊNCIA ACIMA DE 500 PÉS AGL

1. Baixar o coletivo Imediatamente para manter RPM e entre em auto-rotação normal.

2. Estabeleça um planeio constante a aproximadamente 65 KIAS.

3. Ajuste o coletivo para manter a RPM do rotor no arco verde, ou aplique todo o coletivo para baixo se o leve peso impedir de alcançar acima de 97%.

4. Selecione um lugar para pouso e se altitude permitir, manobre de modo que ao pousar, seja contra o vento.

5. Um re-acionamento pode ser tentado a critério do piloto se houver tempo suficiente disponível. (Consulte a página 52 "Procedimento para Re-acionamento no Ar”)

6. Se não for possível re-acionar, desligue os switches não necessários e feche a válvula de corte de combustível.

7. A aproximadamente 40 pés AGL, comece o flare com cíclico para reduzir a razão de descida e a velocidade à frente.

Page 144: Ground Scholl r22 Modificado

8. A aproximadamente 8 pés AGL, aplique o cíclico para frente para nivelar helicóptero e levante o coletivo pouco antes do toque para amortecer o pouso. Toque o solo em atitude nivelada com o nariz sempre para frente.

NOTASe uma falha de potencia ocorrer à noite, não ligue o farol de

pouso acima de 1.000 pés AGL para preservar a carga da bateria.

Page 145: Ground Scholl r22 Modificado

6.4 FALHA DE POTÊNCIA ENTRE 8 E 500 PÉS AGL

1. A operação de decolagem deve ser conduzida de acordo com o Gráfico de altura X velocidade para o vôo auto-rotativo (Curva do Homem Morto).

2. Se a falha de potência ocorrer, baixar o coletivo imediatamente para manter a RPM do rotor.

3. Ajuste o coletivo para manter a RPM do rotor no arco verde, ou aplique todo o coletivo para baixo se o leve peso impedir de alcançar acima de 97%.

4. Mantenha velocidade até que o solo esteja próximo, dai comece um flare com cíclico para reduzir a razão de descida e a velocidade à frente.

5. A aproximadamente 8 pés AGL, coloque o cíclico à frente para nivelar o helicóptero e levante o coletivo pouco antes do toque, para amortecer o pouso. Toque o solo com esquis

nivelados e nariz sempre à frente.

Page 146: Ground Scholl r22 Modificado

6.5 FALHA DE POTÊNCIA ABAIXO DE 8 PÉS AGL

1. Aplique pedal direito o suficiente para impedir a guinada.

2. Permita o helicóptero assentar.

3. Levante o coletivo pouco antes do toque no solo para amortecer o pouso.

Page 147: Ground Scholl r22 Modificado

6.6 CONFIGURAÇÃO DE MÁXIMA DISTÂNCIA DE PLANEIO

1. Velocidade de aproximadamente 75 KIAS.

2. RPM do rotor de aproximadamente 90%.

3. A Melhor razão de planeio é por volta de 4:1 ou 1 NM por 1.500 pés AGL.

CUIDADOAumente a RPM do rotor para no mínimo 97%, quando efetuando

auto-rotação abaixo de 500 pés AGL.

Page 148: Ground Scholl r22 Modificado

6.7 PROCEDIMENTOS DE REACIONAMENTO EM VÔO

1. Mistura - toda rica.

2. Primer (se instalado) - baixado e travado.

3. Manete - fechada, daí aberta levemente.

4. Atue o starter com a mão esquerda.

CUIDADONão tente re-acionar se houver suspeita de mal

funcionamento do motor ou até que uma auto-rotaçãosegura seja estabelecida

Page 149: Ground Scholl r22 Modificado

6.8 POUSO NA ÁGUA (DITCHING) - SEM POTÊNCIA (POWER OFF).

1. Siga o mesmo procedimento para falha de potência no motor sobre a terra até tocar a água.

2. Aplique cíclico lateral esquerdo quando o helicóptero tocar na água para parar as pás de girarem.

3. Solte o cinto de segurança rapidamente saia do helicóptero quando as pás pararem de girar.

Page 150: Ground Scholl r22 Modificado

6.9 POUSO NA ÁGUA (DITCHING) - COM POTÊNCIA (POWER ON).

1. Desça para um pairado sobre a água.

2. Soltar as portas.

3. Passageiro sai do helicóptero.

4. Voe a uma distância segura do passageiro para impedir possíveis ferimentos pelas pás.

5. Desligue o switch da bateria e do alternador.

6. Gire a manete até a posição "além do batente" (overtravel spring).

7. Mantenha o helicóptero nivelado e aplique todo o coletivo enquanto o helicóptero toca na água

8. Aplique cíclico lateral esquerdo para ajudar as pás a pararem.

9. Solte o cinto de segurança e rapidamente saia do helicóptero quando as pás pararem de girar.

Page 151: Ground Scholl r22 Modificado

6.10 FALHA DO ROTOR DE CAUDA DURANTE VÔO RETO E NIVELADO

1. A falha é geralmente indicada por uma guinada à direita a qual não pode ser corrigida aplicando o pedal esquerdo.

2. Imediatamente entre em auto-rotação.

3. Mantenha pelo menos 70 KIAS de velocidade se praticável.

4. Selecione o lugar para o pouso, gire a manete até a posição "além do batente" (overtravel spring) e execute o pouso em auto-rotação.

NOTAQuando um local apropriado para pouso não está disponível, o estabilizador vertical

pode permitir vôo controlado limitado com ajustes muito baixos de potência e velocidades aerodinâmicas acima de 70 kias; entretanto, antes de fazer a redução

da velocidade, re-entre em total auto-rotação.

Page 152: Ground Scholl r22 Modificado

6.11 FALHA DO ROTOR DE CAUDA DURANTE VÔO PAIRADO PRÓXIMO AO SOLO

1. A falha é geralmente indicada por uma guinada à direita a qual não pode ser parada aplicando pedal esquerdo.

2. Gire a manete até a posição "além do batente" (overtravel spring) e permita o helicóptero assentar.

3. Levante o coletivo pouco antes de tocar no solo para amortecer o pouso.

Page 153: Ground Scholl r22 Modificado

6.12 FOGO EM VÔO

1. Entre em auto-rotação.

2. Desligue o switch do master bat (se o tempo permitir).

3. Desligue o aquecimento da cabine (se instalado e o tempo permitir).

4. Abra a ventilação da cabine (se o tempo permitir)

5. Se o motor estiver funcionando, faça um pouso normal e imediatamente feche a válvula de corte de combustível.

6. Se o motor parar de funcionar, feche a válvula de corte e execute o pouso em auto-rotação como descrito anteriormente.

Page 154: Ground Scholl r22 Modificado

6.13 FOGO NO MOTOR DURANTE ACIONAMENTO NO SOLO

1. Continue abrindo a manete e tente acionar, isso sugaria as chamas e o excesso de combustível através do carburador para dentro do motor.

2. Se o motor ligar, acelere entre 50% a 60% de RPM por um curto período de tempo, desligue e inspecione os danos.

3. Se o motor falhar no acionamento, feche a válvula de corte de combustível e o switch do master batt.

4. Apague o fogo com um extintor de incêndio, cobertor de lã ou areia.

5. Inspecione os danos.

Page 155: Ground Scholl r22 Modificado

6.14 FOGO NA PARTE ELÉTRICA EM VÔO

1. Desligue o switch do master batt.

2. Desligue o switch do alternador.

3. Pouse imediatamente.

4. Apague o fogo e inspecione os danos.

CUIDADOO sistema de aviso de baixa RPM (Buzina!!!) e o governador não operam com ambos os

switches do master batt. e do alternador desligados.

6.15 PANE DO GOVERNADOR

1. Se o governador de RPM do motor apresentar mal funcionamento, segure a manete firmemente para ignorar o governador, daí desligue o governador. Complete o vôo usando manualmente a manete.

Page 156: Ground Scholl r22 Modificado

6.16 FALHA DO TACÔMETRO

1. Se o Tacômetro R (Rotor) ou E (Motor) tiver mal funcionamento em vôo, use o tacômetro remanescente para monitorar a RPM. Se não tiver claro qual tacômetro tem mal funcionamento ou ambos estarem com mal funcionamento, permita que o governador controle a RPM e pouse assim que praticável.

NOTACada tacômetro, o governador e a buzina de aviso de baixa RPM estão ligados emcircuitos separados. A bateria ou o alternador podem independentemente fornecer

energia para os tacômetros. Um circuito especial permite que a bateria forneça energia para os tacômetros mesmo se o switch da master batt. estiver desligado.

Page 157: Ground Scholl r22 Modificado

6.17 LUZES DE AVISO VERMELHAS (WARNING/CAUTION LIGHTS).

NOTAQuando uma luz causar excessiva luminosidade a noite, a lâmpada pode ser apagada ao puxar o disjuntor correspondente afim de eliminar a luminosidade durante o pouso

MR TEMP Indica temperatura excessiva na caixa da transmissão rotor principal. Veja nota abaixo!

MR CHIP Indica presença de partículas metálicas na transmissão do rotor principal. Veja nota abaixo!

TR CHIP Indica presença de partículas metálicas na transmissão do rotor de cauda.

Veja nota abaixo!

Page 158: Ground Scholl r22 Modificado

LOW FUEL A luz se acende quando tem aproximadamente um galão de combustível remanescente. Indicando

que o motor pode parar dentro de 5 minutos.

CUIDADONão use a luz de aviso de LOW FUEL como

uma indicação de quantidade de combustível.

ÓLEO Indica possível perda de pressão do óleo do motor,cheque o Tacômetro do motor para confirmar perdade potência. Cheque a pressão do óleo no instrumentocorrespondente, se confirmada perda de pressão,Pouse imediatamente.Continuar a operação, sem pressão de óleo, irá causar sérios danos ao motor

e possível travamento do mesmo.

Page 159: Ground Scholl r22 Modificado

NOTAS:Se a luz de aviso vermelha for acompanhada por alguma outra indicação do problema, como barulho, Vibração ou aumento de temperatura, POUSE IMEDIATAMENTE. Se não houver outra indicação de problema, pouse assim que praticável.

Limalhas vão ocasionalmente ativar a luz do chip. Se nenhuma partícula ou lasca de metal for encontrada no plug detector, drene e complete novamente a caixa com novo óleo. Paire por pelo menos 30 minutos. Se a luz do chip se acender novamente, substitua a caixa de transmissão do helicóptero antes de voar novamente.

Page 160: Ground Scholl r22 Modificado

6.18 LUZES DE AVISO ÂMBAR

LUZ AMBAR DO CLUTCH:

A luz indica que o circuito do clutch está ligado, tanto engrazando quanto desengranzando o clutch. Quando o switch está na posição ENGAGE, a luz fica acesa até que as correias estejam bem tencionadas. Nunca decole até que a luz se apague.

NOTA:A luz do clutch pode acender momentaneamente durante o aquecimento ou durante o vôo para re-tencionar as correias, enquanto elas se aquecem e se esticam ligeiramente. Isso é normal. Se, no entanto, a luz piscar ou se acender em vôo e não se apagar entre 7 ou 8 segundos, puxe o disjuntor do CLUTCH, reduza a potencia e pouse imediatamente. Esteja preparado para entrar em auto-rotação. Inspecione o sistema de transmissão para um possível mal funcionamento.

Page 161: Ground Scholl r22 Modificado

LUZ AMBAR DO ALTERNADOR:

A luz indica baixa voltagem e possível falha no alternador. Desligue os equipamentos elétricos não necessários, desligue o switch ALT e religue-o após um segundo para resetar o relé de alta voltagem. Se a luz continuar acesa, pouse assim que praticável. Continuar o vôo sem que o alternador esteja funcionando, pode resultar na perda do tacômetro eletrônico, o que levaria a uma condição de vôo perigoso.

LUZ AMBAR DO FREIO DO ROTOR:

A luz indica que o freio do rotor está acoplado. Solte imediatamente em vôo ou antes de acionar o motor.

Page 162: Ground Scholl r22 Modificado

6.19 BUZINA DE AVISO E LUZ DE PRECAUÇÃO - LOW RPM DO ROTOR

O som alto de uma buzina e uma luz de aviso de cor âmbar indicam que a RPM do rotor está abaixo dos limites de segurança. Para restaurar a RPM, imediatamente abra a manete, baixe o coletivo e, no vôo a frente, aplique cíclico para traz. A buzina para de tocar e a luz se apaga quando o coletivo está todo baixado.

6.20 ROLAGEM A DIREITA NA CONDIÇÃO DE BAIXO “G”

Gradualmente aplique cíclico atrás para restaurar as forças do “G” positivo e a pressão do rotor principal. Não aplique cíclico lateral até que as forças do “G” positivo tenha sido estabelecidas.

6.21 CABRADA, PICADA, ROLAGEM OU GUINADA INCONTROLADA RESULTANTE DE UM VÔO EM TURBULÊNCIA.

Gradualmente aplique os controle para manter a RPM do rotor, forças do “G” positivo e eliminar glissada. Minimize o controle cíclico investidos na turbulência; Não exceda nos controles.

Page 163: Ground Scholl r22 Modificado

6.22 ENCONTRO INADVERTIDO COM TURBULÊNCIA MODERADA, SEVERA OU EXTREMA .

Se a área da turbulência é isolada, saia desta área; do contrário, pouse o helicóptero assim que praticável.

Page 164: Ground Scholl r22 Modificado

7. PESO E BALANCEAMENTO

7.1 GERAL

7.2 POSIÇÃO DO C.G. LATERAL

7.3 INSTRUÇÕES PARA CARREGAMENTO

Page 165: Ground Scholl r22 Modificado

7.1 GERAL

O helicóptero só pode ser voado dentro dos limites de peso e balanceamento específicos.Carregar o helicóptero fora destes limites pode resultar em insuficiente movimento dos comandos para controlar o helicóptero.Os limites de peso e balanceamento longitudinal específicos são expressos como momentos totais. Os momentos totais podem ser determinados usando o método dado em INSTRUÇÕES PARA CARREGAMENTO.

CUIDADOO combustível não está localizado no CG deste helicóptero e uma mudança na

localização do CG vai ocorrer durante o vôo. Sempre determine um carregamento seguro com zero combustível bem como com combustível de decolagem. A quantidade

de combustível que pode ser retirado para permitir um maior payload é limitado pela localização do CG dianteiro com zero combustível.

Page 166: Ground Scholl r22 Modificado

7.2 POSIÇÃO DO CG LATERAL

Normalmente não é necessário determinar a posição do CG lateral pois a maioria dos equipamentos opcionais estão localizados perto da linha central do helicóptero.Entretanto, se ocorrer alguma instalação ou carregamento diferente que possa afetar o CG lateral, sua posição deve ser checada no envelope do CG. A posição do CG lateral pode ser calculada pela multiplicação dos pesos de todos os ítens, não simétricos sobre a linha central, vezes seus braços da linha central. Considerando todos os ítens da direita como positivos e os da esquerda como negativos, some os momentos e divida o total pelo peso do helicóptero carregado. Isso lhe dará a posição lateral que junto com a posição do CG atrás do datum, pode ser comparado com o CG permitido no envelope.

As localizações de CG que se seguem devem ser usadas para determinar a posição do CG do helicóptero.

CGLONG CGLATPiloto e Bagagem debaixo do assento Direito 78.0 + 10.7Passageiro e Bagagem debaixo do assento Esquerdo 78.0 - 9.3Combustível no Tanque Principal 108.6 - 11.0Combustível no Tanque Auxiliar(opcional) 103.8 + 11.2

Page 167: Ground Scholl r22 Modificado

7.3 INSTRUÇÕES PARA CARREGAMENTO

Limite do CG Longitudinal com Zero Combustível

1. Coloque o peso básico de seu helicóptero na primeira linha da coluna WEIGHT (esse valor vai ser encontrado na ficha de peso e balanceamento de seu helicóptero).

2. Coloque o peso dos passageiros e bagagem na segunda linha da mesma coluna.

3. Some estes dois dados e coloque o resultado na terceira linha da mesma coluna.

4. Coloque o braço de seu helicóptero na primeira linha da coluna ARM (esse valor vai ser encontrado na ficha de peso e balanceamento de seu helicóptero).

5. Multiplique os dois dados da primeira linha e coloque o resultado na terceira coluna da mesma linha.

6. Multiplique os dois resultados da segunda linha e coloque o resultado na terceira coluna da mesma linha.

Page 168: Ground Scholl r22 Modificado

7. Some os dois resultados da terceira coluna e coloque o total na terceira linha da mesma coluna.

8. Divida este resultado pelo resultado que se encontra na primeira coluna da mesma linha e coloque o total na segunda coluna desta mesma linha

9. Plote os dois primeiros resultados da terceira linha no envelope do CG e verifique se o CG

está dentro dos limites (este é o limite do CG com zero combustível).

Page 169: Ground Scholl r22 Modificado

Limite do CG Longitudinal com Full Combustível

1. Multiplique a quantidade de combustível em galões do tanque principal por 6 (seis) e coloque o resultado na quarta linha da primeira coluna.

2. Multiplique este resultado por 108.6 (como visto anteriormente) e coloque o resultado na terceira coluna da mesma linha.

3. Multiplique a quantidade de combustível em galões do tanque auxiliar por 6 (seis) e coloque o resultado na quinta linha da primeira coluna.

4. Multiplique este resultado por 103.8 (como visto anteriormente) e coloque o resultado na terceira coluna da mesma linha.

5. Some os dados da terceira, quarta e quinta linha da primeira coluna e coloque o resultado na sexta linha desta mesma coluna.

6. Some os dados da terceira, quarta e quinta linha da terceira coluna e coloque o resultado na sexta linha desta mesma coluna.

Page 170: Ground Scholl r22 Modificado

7. Divida este resultado pelo resultado que se encontra na primeira coluna da mesma linha coloque o total na segunda coluna desta mesma linha.

8. Plote os dois primeiros resultados da sexta linha no envelope do CG e verifique se o CG está dentro dos limites (este é o limite do CG com full combustível).

Page 171: Ground Scholl r22 Modificado

Limite do CG Lateral com Zero Combustível

1. Coloque o peso básico de seu helicóptero na primeira linha da coluna WEIGHT ( esse valor vai ser encontrado na ficha de peso e balanceamento de seu helicóptero).

2. Coloque o peso do assento direito na segunda linha da mesma coluna.

3. Coloque o peso do assento esquerdo na terceira linha da mesma coluna.

4. Some este três valores e coloque o resultado na quarta linha desta mesma coluna.

5. Coloque o braço de seu helicóptero na primeira linha da coluna ARM (esse valor vai ser encontrado na ficha de peso e balanceamento de seu helicóptero).

6. Multiplique os dois dados da primeira linha e coloque o resultado na terceira coluna da mesma linha.

7. Multiplique os dois dados da segunda linha e coloque o resultado na terceira coluna da mesma linha.

8. Multiplique os dois dados da terceira linha e coloque o resultado na terceira coluna da mesma linha.

Page 172: Ground Scholl r22 Modificado

9. Some estes três valores e coloque o resultado na quarta linha desta mesma coluna.

10. Divida este resultado pelo resultado que se encontra na primeira coluna da mesma linha e coloque o total na segunda coluna desta mesma linha.

11. Plote os dois primeiros resultados da quarta linha no envelope do CG e verifique se o CG está dentro dos limites (este é o limite do CG com zero combustível).

Page 173: Ground Scholl r22 Modificado

Limite do CG Lateral com Full Combustível

1. Multiplique a quantidade de combustível em galões do tanque principal por 6 (seis) e coloque o resultado na quinta linha da primeira coluna.

2. Multiplique este resultado por -11.0 (como visto anteriormente) e coloque o resultado na terceira coluna da mesma linha.

3. Multiplique a quantidade de combustível em galões do tanque auxiliar por 6 (seis) e coloque o resultado na sexta linha da primeira coluna.

4. Multiplique este resultado por +11.2 (como visto anteriormente) e coloque o resultado na terceira coluna da mesma linha.

5. Some os dados da quarta , quinta e sexta linha da primeira coluna e coloque o resultado na sétima linha desta mesma coluna.

6. Some os dados da quarta, quinta e sexta linha da terceira coluna e coloque o resultado na sexta linha desta mesma coluna.

7. Divida este resultado pelo resultado que se encontra na primeira coluna da mesma linha e coloque o total na segunda coluna desta mesma linha.

Page 174: Ground Scholl r22 Modificado

8. Plote os dois primeiros resultados da sétima linha no envelope do CG e verifique se o CG está dentro dos limites (este é o limite do CG com full combustível).

Page 175: Ground Scholl r22 Modificado
Page 176: Ground Scholl r22 Modificado

8. MANUTENÇÃO E MANEJO

8.1 GERAL8.2 DOCUMENTOS EXIGIDOS A BORDO8.3 INSPEÇÕES EXIGIDAS8.4 MANUTENÇÃO PREVENTIVA PELO PILOTO8.5 ALTERAÇÕES NA AERONAVE8.6 MANUSEIO NO SOLO8.7 ESTACIONAMENTO E AMARRA8.8 ÓLEO DO MOTOR8.9 COMBUSTÍVEL8.10 MANUTENÇÃO DA BATERIA8.11 JUMP STARTING O MOTOR (CHUPETA)8.12 ÓLEO DA CAIXA DE TRANSMISSÃO DO ROTOR DE CAUDA8.13 LIMPEZA DO HELICÓPTERO

Page 177: Ground Scholl r22 Modificado

8.1 GERAL

Essa seção resume os procedimentos necessários para manejo, conserto e manutenção do R22. Todo proprietário deve manter contato com seu revendedor Robinson para obter as últimas informações disponíveis que dizem respeito ao R22. O proprietário deve também ser registrado na fábrica para que ele receba os boletins de serviço, mudanças no seu manual e outras informações úteis.

O Federal Aviation Regulations responsabiliza o proprietário e operador pela manutenção do helicóptero. O proprietário tem que se certificar que todas as manutenções foram feitas por um mecânico qualificado e de acordo com todos os requerimentos de aeronavegabilidade estabelecidos.

Todas as exigências de limites, procedimentos, práticas seguras, limites de tempo, conserto e manutenção contidas neste manual são consideradas mandatórias.

Revendedores autorizados Robinson terão as modificações recomendadas, procedimentos de conserto e operação publicados tanto pelo FAA quanto pela Robinson Helicopter Company. Essas informações vão ser úteis na obtenção da máxima utilidade e segurança do R22.

Page 178: Ground Scholl r22 Modificado

8.2 DOCUMENTOS EXIGIDOS

Por parte da aeronave, deve-se ter os seguintes documentos, a bordo, durante o vôo.

• FIAM – Ficha de inspeção anual de manutenção.

• CA – Certificado de Aeronavegabilidade.

• CM – Certificado de Matricula

• FISTEL – Ficha de comprovação de pagamento da Licença de Estação

• Licença de Estação – Documento comprovando que aquela aeronave possui autorização pela ANATEL a ter um estação móvel ( radio )

• NSMA 3.5 – Comunicação de Acidentes e Incidentes Aeronáuticos

• NSMA 3.7 – Responsabilidades dos operadores de aeronaves em caso de acidentes e incidentes Aeronáuticos.

Page 179: Ground Scholl r22 Modificado

• Manual de vôo – Devendo ser sempre o original, vem acompanhado da aeronave e deve ser sempre atualizado.

• Check List – Procedimento completo descrevendo do acionamento ao corte da aeronave deve sempre ser sequido a risca pelo Piloto

• Seguro RETA – Seguro obrigatório a toda aeronave voando em território nacional e com matrícula Brasileira.

Page 180: Ground Scholl r22 Modificado

Por Parte dos tripulantes (Instrutores e Alunos)

• CHT – Certificado de Habilitação Técnica para aquela aeronave ( somente nos casos de PPH, PCH, INVH, PLAH )

• CCF – Certificado de Capacidade Física ( Obrigatório a todos que se destinem ao vôo ou a instrução )

• Documento de Identidade – Nos casos de Pilotos Alunos que não possuem ainda um CHT

Page 181: Ground Scholl r22 Modificado

8.3 INSPEÇÕES EXIGIDAS

O Federal Aviation Regulations exige que toda aeronave civil seja submetida a uma inspeção completa (anual) a cada doze meses. Essa inspeção anual tem que ser assinada por um mecânico autorizado ou um representante.

Essa inspeção é necessária quer seja o helicóptero usado comercialmente ou só para lazer.

Em adição a inspeção anual, o Manual de Manutenção do R22 exige uma inspeção completa depois de 100 horas de operação.O projeto do R22 inclui muitos aspectos únicos. Mesmo com a ajuda do Manual de manutenção, um mecânico de Célula e Motor não é qualificado para fazer as inspeções no R22 sem um treinamento adicional.

Portanto, essas inspeções devem somente ser feitas por pessoal qualificado que tenha um curso de manutenção aprovado na fábrica.

O Federal Aviation Administration (FAA) ocasionalmente publica Diretrizes de Aeronavegabilidade (ADs) que se aplicam a específicos grupos de aeronaves.

Essas diretrizes são mudanças mandatórias ou inspeções que tem que ser cumpridas dentro do tempo limite especificado.

Page 182: Ground Scholl r22 Modificado

Quando uma AD é publicada, ela é mandada para o último proprietário registrado da aeronave afetada e aos assinantes do serviço.

O proprietário deve periodicamente checar com seu revendedor Robinson para se certificar de que a última AD publicada foi cumprida.

Page 183: Ground Scholl r22 Modificado
Page 184: Ground Scholl r22 Modificado
Page 185: Ground Scholl r22 Modificado

8.4 MANUTENÇÃO PREVENTIVA PELO PILOTO

Parte 43 do Federal Aviation Regulations (FAR) permite que pilotos certificados, que possuam ou operem uma aeronave, de obter um manual de manutenção para a aeronave e que façam certas manutenções limitadas. Essas manutenções são definidas na regulamentação acima, e, como elas se aplicam ao R22, geralmente incluem o seguinte:

1. Substituir frenos ou contra-pinos defeituosos.2. Remover ou substituir portas ou entradas de ar.3. Substituir lâmpadas, refletores e lentes das luzes de posição e faróis de pouso4. Substituir, limpar ou ajustar velas. 5. Substituir filtro de ar do motor.6. Limpar ou polir o exterior da aeronave. 7. Substituir as sapatas do trem de pouso.8. Revisar ou substituir a bateria.

Embora os serviços acima sejam permitidos por lei, eles devem somente ser feitos pelo piloto quando ele for consciente que é qualificado para completar com segurança o serviço necessário. Qualquer serviço feito pelo piloto tem que ser feito de acordo com o manual de manutenção do helicóptero.

Page 186: Ground Scholl r22 Modificado

Depois de completar o serviço, o piloto tem que relatar os seguintes itens no logbook apropriado:

1. Data do serviço feito.e descrição do serviço.2. Total de horas da aeronave3. Número do certificado do piloto .Assinatura do piloto.

Page 187: Ground Scholl r22 Modificado

8.5 ALTERAÇÕES NA AERONAVE

O tamanho pequeno e compacto e muitos aspectos únicos do projeto do R22 fazem com que qualquer modificação na aeronave não seja aconselhável. As características dinâmicas e suscetibilidade de fadiga do rotor do helicóptero, transmissão e sistemas de controle fazem com que qualquer modificação desses sistemas seja extremamente perigosa.

Também perigosa é a instalação de qualquer equipamento eletrônico ou aviônico não aprovado e não fornecidos pela fábrica. O tamanho compacto do console e dos túneis contendo todos os comandos e fios fazem com que a instalação de fios adicionais possam interferir no livre movimento dos controles. E mais importante, os tacômetros eletrônicos usados no R22 são afetados por outros dispositivos elétricos. A confiabilidade e precisão destes tacômetros é essencial para uma operação segura do helicóptero e a instalação de um dispositivo elétrico, não testado e aprovado pela fábrica, pode facilmente resultar em uma condição muito perigosa.

Por causa desse perigo potencial , a Robinson Helicopter Company não aprova qualquer modificação ou alteração no R22 diferentes daquelas que são fornecidas pela fábrica e instaladas pelo pessoal treinado na mesma.

Page 188: Ground Scholl r22 Modificado

8.6 MANUSEIO NO SOLO

Para nivelar, içar, guinchar ou rebocar o helicóptero, veja a sessão apropriada do manual de manutenção.

O helicóptero é normalmente manobrado no solo usando-se as rodas de manuseio.

Instalação das rodas:

1. Segure a haste e roda com o eixo ressaltado na sua posição mais baixa.

2. Encaixe o eixo dentro do suporte montado no esqui. Certifique-se que o eixo está todo para dentro.

3. Puxe a haste acima do centro para levantar o helicóptero e trave a roda na posição.

4. Se o helicóptero não estiver apoiado completamente nos esquis, o eixo pode não ir todo para dentro. Neste caso, puxe a estrutura traseira para abrir o trem de pouso o suficiente para que possa ser possível a instalação das rodas.

Page 189: Ground Scholl r22 Modificado

CUIDADOQuando colocando e retirando as rodas de manuseio nosolo, a haste tem a tendência de se soltar rapidamente.

Movendo o helicóptero nas rodas de manuseio no solo:

• Mova o helicóptero segurando na caixa de transmissão do rotor de cauda e atrás da seção do cone de cauda.

• Se ajuda adicional for necessária para mover o helicóptero, uma pessoa pode empurrar em um dos tubos verticais da estrutura de aço localizada atrás do motor ou nariz.

CUIDADONão mova o helicóptero segurando pelo estabilizador vertical, estabilizador

horizontal, rotor de cauda ou controles do rotor de cauda.

Page 190: Ground Scholl r22 Modificado

8.7 ESTACIONAMENTO E AMARRA

1. Coloque o cíclico na posição neutra e aplique toda fricção.

2. Coloque o coletivo todo para baixo e aplique toda fricção.

3. Alinhe as pás do rotor aproximadamente para frente e para trás e certifique-se que elas estão niveladas.

4. Se ventos maiores de 30 mph não forem esperados, não há necessidade da amarra.

5. Sempre que condições de tempestade ou ventos com velocidade maior que 30 mph forem previstos, o helicóptero deve ser hangarado ou retirado para uma área segura.

Page 191: Ground Scholl r22 Modificado

8.8 ÓLEO DO MOTOR

A quantidade máxima de óleo recomendada é seis quartos e o mínimo para decolagem é quatro quartos. O óleo deve ser trocado depois de 25 horas e a cada 50 horas subseqüentes. Trocar o óleo ao menos a cada seis meses se o helicóptero tiver voando menos de 50.

Page 192: Ground Scholl r22 Modificado

8.9 COMBUSTÍVEL

Uma pequena quantidade deve ser drenada do gascolator usando o dreno rápido e do tanque usando tubo estendido do dreno, antes do primeiro vôo de cada dia. O combustível drenado deve ser checado quanto a presença de contaminação de água ou impurezas e cor aprovada. Se for suspeita a contaminação do combustível, remova e drene o depósito do gascolator. Abra o dreno do lado esquerdo do tanque de combustível e esguiche o tanque com combustível limpo.

Page 193: Ground Scholl r22 Modificado

8.10 MANUTENÇÃO DA BATERIA

Para acesso a bateria de 12 volt, remova os dois parafusos (um em cada lado do console) e levante o painel de instrumento para cima e para trás. Isso irá expor a caixa de bateria localizada no nariz do helicóptero. Cheque a bateria para próprio nível de fluido mas NÃO complete acima das placas. Complete somente com água, não ácido. R22s mais recentes tem a bateria no lado esquerdo do compartimento do motor.

Page 194: Ground Scholl r22 Modificado

8.11 JUMPER PARA O ACIONAMENTO DO MOTOR (CHUPETA)

NÃO deve ser feita uma chupeta em uma bateria “morta” (sem corrente). Uma bateria descarregada NÃO É AERONAVEGAVEL porque ela não terá a capacidade necessária de reserva para operar o sistema elétrico caso o sistema geral falhe em vôo. Também, a carga rápida do alternador irá danificar a bateria e resultar em uma falha prematura da bateria.

No entanto, se em uma emergência tiver que ser feita uma chupeta usando um cabo automotivo, conecte o terminal positivo da bateria do carro ao relé do motor de arranque do helicóptero. (O relé está localizado na parte inferior direita do compartimento do motor e o terminal é o que está conectado a bateria do helicóptero). Usando outro cabo, conecte o terminal negativo da bateria do carro ao motor do helicóptero ou a algum terra. Ligue o motor do carro e permita que ele funcione em uma marcha lenta rápida. Espere alguns minutos e então dê a partida no motor do helicóptero. Desconecte os cabos na ordem reversa que eles foram conectados.

CUIDADOBaterias exalam um gás que é inflamável e explosivo. Mantenha chamas ou faiscas elétricas longe da bateria. Não fume perto da bateria. Baterias também contém ácido que pode causar ferimentos nas pessoas principalmente nos olhos. Proteja seus olhos, face e outras áreas expostas quando trabalhando perto de uma bateria.

Page 195: Ground Scholl r22 Modificado

8.12 ÓLEO DA CAIXA DE TRANSMISSÃO DO ROTOR DE CAUDA

Se uma janela do nível de óleo não se completar com óleo quando a cauda do helicóptero é puxada toda para baixo, tem que se adicionar óleo.

Para adicionar óleo, complete os seguintes passos:

1. Remova o freno do plug combinado respiro-funil localizado no topo da caixa de transmissão.

2. Use apenas óleo obtido na Robinson e identificado com “part number A257-2”

3. Complete bem lentamente até que o óleo seja visível na janela. NÃO coloque muito óleo. (Menos de uma colher de chá é normalmente necessário).

4. Reinstale o plug respiro-funil. Certifique-se de que a vedação está no lugar.

5. Frene como antes. Certifique-se que o freno está aplicando tensão na direção em que se aperta o plug.

Page 196: Ground Scholl r22 Modificado

8.13 LIMPEZA DO HELICÓPTERO

Limpeza do Motor

Antes de limpar o motor, coloque uma tira de fita adesiva no respiro do magnetopara impedir que qualquer solvente entre.

1. Coloque uma bandeja grande embaixo do motor para reter qualquer resíduo.

2. Pulverize ou escove o motor com solvente ou uma mistura de solvente e removedor de graxa. Para remover especialmente sujeira pesada e graxa, pode ser necessário escovar as áreas que foram pulverizadas.

CUIDADONão pulverize solvente no alternador, motor de

arranque, entradas de ar ou correias em V.

3. Deixe que o solvente permaneça no motor de cinco a dez minutos. Daí enxague o motor limpo com mais solvente e deixe-o secar.

Page 197: Ground Scholl r22 Modificado

CUIDADONão gire o motor até que o excesso de

solvente tenha evaporado ou sido removido.Remova a fita adesiva de proteção dos magnetos.

4. Remova a fita adesiva de proteção dos magnetos.

Page 198: Ground Scholl r22 Modificado

Limpeza das Superfícies Exteriores

O helicóptero deve ser lavado com um sabão suave e água. Abrasivos fortes, sabão ou detergente alcalino poderiam fazer riscos nas superfícies pintadas ou plásticas ou poderia causar corrosão nos metais. Cubra as áreas onde as soluções de limpeza possam causar danos. Use o seguinte procedimento:

1. Esguiche a sujeira solta com água.

2. Aplique a solução de limpeza com um pano macio, uma esponja ou uma escova com cerdas macias.

3. Para remover óleo ou graxa difíceis de serem removidas, use um pano umidecido em nafta.

4. Enxague completamente todas as superfícies.

5. Qualquer cera automotiva pode ser usada para preservar as superfícies pintadas. Panos de limpeza macios ou uma flanela podem ser usados para evitar arranhões quando limpando ou polindo.

Page 199: Ground Scholl r22 Modificado

Limpeza do Para-brisa e Janelas

1. Remova sujeira , barro e qualquer outras partículas soltas das superfícies exteriores com água limpa.

2. Lave com sabão suave e água morna ou com limpador de plástico. Use um pano macio ou esponja em um movimento reto para frente e para trás. Não esfregue severamente.

3. Remova óleo e graxa com um pano umidecido em querosene.

CUIDADONão use gasolina, álcool, benzina, carbono tetraclorido,

thiner, acetona ou pulverizadores para limpeza das janelas.

4. Depois de limpar as superfícies de plástico, aplique uma fina camada de cera polidora. Esfregue suavemente com um pano macio. Não faça movimentos circulares.

Page 200: Ground Scholl r22 Modificado

Limpeza da Tapeçaria e Assentos

1. Aspire e escove, daí limpe com um pano úmido. Seque imediatamente.

2. Tapeçaria manchada pode ser limpa com um bom limpador de tapeçaria adequado para o material. Cuidadosamente siga as instruções do fabricante. Evite molhar ou esfregar severamente.

CUIDADOLimpadores solventes necessitam ventilação adequada.

Limpeza de Carpetes

Para limpar carpetes, primeiro remova a sujeira solta com uma vassourinha ou aspirador depó. Para lugares sujos e manchados use um limpador líquido não inflamável.