200
Ahorro y recuperación de energía en instalaciones de climatización Guía técnica Ahorro y recuperación de energía en instalaciones de climatización Guía técnica

Guia tecnica ahorro y recuperacion de energia

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Guia tecnica ahorro y recuperacion de energia

Ahorro y recuperaciónde energía eninstalacionesde climatización

Guía técnicaAhorro y recuperaciónde energía eninstalacionesde climatización

Guía técnica

Page 2: Guia tecnica ahorro y recuperacion de energia

Ahorro y recuperaciónde energía eninstalacionesde climatización

Guía técnica

Page 3: Guia tecnica ahorro y recuperacion de energia

Ahorro y recuperaciónde energía eninstalacionesde climatización

Guía técnica

Page 4: Guia tecnica ahorro y recuperacion de energia

TÍTULO

Guía técnica de ahorro y recuperación de energía en instalaciones de climatización

AUTOR

La presente guía ha sido redactada por la Asociación Técnica Española de Climatización y

Refrigeración (ATECYR) para el Instituto para la Diversificación y Ahorro de la Energía (IDAE),

con el objetivo de promocionar la eficiencia en el uso final de la energía en los edificios.

AGRADECIMIENTOS

Agradecemos a todas las personas que han participado en la elaboración de esta guía y en

particular a D. Javier Rey y D. Agustín Maillo y al Comité Técnico de ATECYR responsable de

su revisión técnica.

Hacemos extensivo este agradecimiento a la Asociación de Fabricantes de Equipos de

Climatización (AFEC) y a las empresas asociadas que han colaborado en la redacción del

mismo, así como a los técnicos que han participado en el proceso de redacción y revisión

de la guía: Elías Álvarez, Javier Basterrechea, Álvaro Blasco, Luis Buj, Bienvenido Domingo,

Carolina Ferradal, Enrique Gómez, Santiago González , Manuel Herrero, Oscar Maciá, David

de la Merced, Roberto de Paco, Enrique Pérez Navarro, David de Perosanz, José Antonio

Romero, David Rodríguez, Emilio Rodríguez, Rafael Ros, Javier Sanabria, José Antonio Se-

dano, Raúl Tubio, Juan Manuel Vico y José Mª Virgili.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Esta publicación está incluida en el fondo editorial del IDAE, en la serie “Calificación de Eficiencia Energética de Edificios”.

Está permitida la reproducción, parcial o total, de la presente publica-ción, siempre que esté destinada al ejercicio profesional por los técni-cos del sector. Por el contrario, debe contar con la aprobación por es-crito del IDAE, cuando esté destinado a fines editoriales en cualquier soporte impreso o electrónico.

Depósito Legal: M-22206-2012

ISBN: 978-84-96680-53-1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IDAE

Instituto para la Diversificación y Ahorro de la Energía

c/ Madera, 8

E - 28004 - Madrid

[email protected]

www.idae.es

Madrid, junio de 2012

Page 5: Guia tecnica ahorro y recuperacion de energia

Í n d i c e

1 Objeto y campo de aplicación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Enfriamiento gratuito. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.0 Generalidades y normativa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Sistemas de enfriamiento gratuito por aire (free-cooling) . . . . . . . . . . . . . . . . 7

2.2 Sistemas de enfriamiento gratuito por agua. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Sistemas de enfriamiento gratuito por migración de refrigerante . . . . . . . . 36

3 Enfriamiento evaporativo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.0 Generalidades y normativa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Teoría de la refrigeración evaporativa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Clasificación de aparatos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Enfriamiento directo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Enfriamiento indirecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Enfriamiento mixto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Criterios de diseño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Ejemplo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Recuperación de calor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.0 Generalidades y normativa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Recuperadores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Recuperación total o parcial del calor generado en el ciclo frigorífico. . . . 113

4.3 Transferencia energética entre zonas del edificio. . . . . . . . . . . . . . . . . . . . . 154

5 Combinación de sistemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.1 UTA. Enfriamiento gratuito por aire exterior y recuperación de calor . . . . . 181

5.2 Caudal de refrigerante variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Page 6: Guia tecnica ahorro y recuperacion de energia
Page 7: Guia tecnica ahorro y recuperacion de energia

5

Objeto y campo de aplicación

Actualmente existen tres razones importantes que justifi-can la reducción del consumo de energía en los edificios.

La primera es el elevado coste económico de la energía.

La segunda son las perspectivas de escasez energética para las próximas décadas, lo que provoca el atribuir un coste social al consumo de energía.

La tercera y última es el elevado impacto medioam-biental que el consumo energético origina en nuestro planeta debido al efecto invernadero, y que actualmen-te viene regulado mediante Protocolos internacionales, Directivas europeas y Reales Decretos que se deben cumplir.

Un desarrollo sostenible debe buscar soluciones a estos problemas. Con objeto de potenciar y fomentar el uso más racional de la energía en instalaciones térmicas de los edi-ficios, normalmente destinadas a proporcionar de forma segura y eficiente los servicios de climatización necesa-rios, para atender los requisitos de bienestar térmico y de calidad del aire interior, hay que incorporar nuevos avan-ces técnicos compatibles con las exigencias energéticas y medioambientales actuales, mejorando el rendimiento de los equipos y sistemas.

Existen diferentes vías para conseguir un ahorro de energía en los edificios, como son:

i) Disminuir la demanda de energía en los edificios.

ii) Sustituir las fuentes de energía convencionales por energías renovables (solar térmica, fotovol-taica, biomasa o geotérmica).

iii) Utilizar sistemas y equipos térmicos más eficientes.

iv) La recuperación de energía residual y el enfria-miento gratuito.

Dada la importancia que esta situación técnica pre-senta en cuanto al cumplimiento que las instalaciones térmicas deben satisfacer como requisito de eficiencia energética y protección del medio ambiente, se hace necesario el desarrollo de este documento técnico de referencia explicativo de las diferentes tecnologías existentes en el campo de la recuperación de energía y de los sistemas con elevada eficiencia energética.

Los ejemplos que cada sistema propuesto lleva, debe con-siderar el lector que están realizados en unas condiciones “óptimas” para cada uno de los sistemas, y por tanto no se puede extrapolar la energía y/o emisiones de CO2 aho-rradas a otras aplicaciones o con equipos concretos, (se deberá valorar en cada caso la carga interna real, el hora-rio de funcionamiento, las pérdidas de presión añadidas a los ventiladores o bombas, pérdidas térmicas, etc.).

En toda la guía se insiste en la necesidad de realizar simulaciones energéticas de las diferentes combina-ciones, ya sea para estimar realmente las necesidades reales de los edificios (demanda), como las prestacio-nes reales de los equipos (carga parcial, prestaciones en función de las condiciones exteriores, etc.).

Finalmente, las emisiones de CO2 reales ahorradas depen-derán del sistema existente (de sus eficiencias energéticas, EER, COP, tipo de energía utilizada, etc.) y, por tanto, no se puede generalizar; no obstante y con el fin de dar criterios iguales para todos, se ha supuesto en esta guía las corres-pondientes a las instalaciones utilizadas como referencia en los programas oficiales de certificación energética, es decir, por cada kWh ahorrado en electricidad se estima una disminución de 0,649 kg CO2, y por cada kWh térmico ahorrado en calor se estima una disminución de 0,3827 kg CO2 (lo cual supone gas natural y un rendimento del 75%).

Finalmente señalar que tanto en la descripción de los equipos, como en los ejemplos expuestos, se ha contado con las empresas a través de la asociación AFEC (Aso-ciación de Fabricantes de Equipos de Climatización).

Page 8: Guia tecnica ahorro y recuperacion de energia
Page 9: Guia tecnica ahorro y recuperacion de energia

7

Enfriamiento gratuito

2.0 Generalidades y normativa

En cuanto a normativa se reproduce la del Reglamento de Instalaciones Térmicas en los Edificios ( RITE):

IT 1.2.4.5.1 Enfriamiento gratuito por aire exterior:

1 Los subsistemas de climatización del tipo todo aire, de potencia térmica nominal mayor que 70 kW en régimen de refrigeración, dispondrán de un subsistema de enfriamiento gratuito por aire exterior.

2 En los sistemas de climatización del tipo todo aire es válido el diseño de las secciones de compuer-tas siguiendo los apartados 6.6 y 6.7 de la norma UNE-EN 13053 y UNE-EN 1751:

a) Velocidad frontal máxima en las compuer-tas de toma y expulsión de aire: 6 m/s.

b) Eficiencia de temperatura en la sección de mezcla: mayor que el 75%.

3 En los sistemas de climatización de tipo mixto agua-aire, el enfriamiento gratuito se obtendrá mediante agua procedente de torres de refrige-ración, preferentemente de circuito cerrado, o, en caso de empleo de máquinas frigoríficas aire-agua, mediante el empleo de baterías puestas hidráuli-camente en serie con el evaporador.

4 En ambos casos, se evaluará la necesidad de re-ducir la temperatura de congelación del agua mediante el uso de disoluciones de glicol en agua.

En general se pueden distinguir tres tipos de sistemas para poder aprovechar las condiciones energéticas del aire exterior, bien utilizar directamente el aire exterior,

bien utilizar el aire exterior para enfriar agua o bien re-frigerante del sistema de refrigeración empleado.

El objetivo de un sistema de enfriamiento gratuito es reducir la energía necesaria para la adecuación hi-grotérmica del aire impulsado por los sistemas de acondicionamiento.

2.1 sistemas de enfriamiento Gratuito por aire (free-coolinG)

2.1.1 Teoría

El sistema de enfriamiento gratuito por aire exterior, co-múnmente conocido como “free-cooling”, es sin duda el líder del ahorro energético. Consiste en utilizar aire del exterior, normalmente solo filtrado, en vez de recircular aire del retorno, por tener unas características energé-ticas que le hacen más eficiente energéticamente que el aire procedente del retorno.

Aunque las situaciones más habituales son aquellas en las que las características que se precisan para que el aire de impulsión sea capaz de vencer las cargas inter-nas de los locales están más próximas a las que posee el aire del retorno que a las del aire exterior, siendo más ventajoso energéticamente utilizar aire recirculado, aparecen a lo largo del año diferentes situaciones que pueden hacer más conveniente la utilización de aire del exterior que no recircular aire, lo que reduce los consu-mos energéticos y a la calidad del aire interior que se consigue en los locales.

Evidentemente en la estación invernal las demandas principales de los edificios suelen ser de calefacción, pero hay locales que por sus características específi-

Page 10: Guia tecnica ahorro y recuperacion de energia

8

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

cas, como comercios, salas de fiestas, restaurantes, etc., poseen una elevada carga latente y sensible, y si las condiciones existentes en el aire exterior son ade-cuadas, hacen que resulte más eficaz utilizar aire del exterior para enfriar el local que no tener que poner en funcionamiento un sistema de enfriamiento con-vencional por compresión mecánica.

Además de ser más económico utilizar aire frío del ex-terior para disipar las cargas internas, al aumentar el caudal de aire exterior, repercutirá en una mejora de la calidad del aire interior (IAQ).

Para poder utilizar este sistema de enfriamiento gratuito por aire, es necesario que los sistemas de climatización de los locales sean por aire y que las unidades de tratamiento de aire estén equipadas con los adecuados sistemas de compuertas, ventiladores y control, necesarios para realizar un control adecua-do de la instalación.

El sistema free-cooling debe permitir mediante un control adecuado seleccionar las diferentes situa-ciones que se pueden plantear de cargas internas y climáticas, actuando sobre las compuertas de aire y los equipos que deben estar en operación, para conseguir que el aire de impulsión alcance las condi-ciones higrotérmicas adecuadas con el menor coste energético.

2.1.2 Disposiciones y esquemas

Cuando la entalpía del aire exterior, o en su caso la temperatura dependiendo del sistema de control uti-lizado, es inferior a la entalpía o temperatura del aire procedente del local, será más eficiente energética-mente utilizar aire exterior que no recircular aire de retorno del local.

Los sistemas, atendiendo al control, se pueden dividir en tres grandes grupos:

a) Sistemas de enfriamiento gratuito por control de entalpía puro.

b) Sistemas de enfriamiento gratuito por control de temperatura seca.

c) Sistemas de enfriamiento gratuito por control de entalpía mejorado.

El dispositivo consta de un sistema con tres compuer-tas de aire colocadas de manera que la compuerta de aire de retorno está en serie con los ventiladores de aire de retorno e impulsión, mientras que las otras dos compuertas están en paralelo, la de expulsión en el circuito del ventilador de retorno y la de aire exterior en el circuito del ventilador de impulsión, como se pue-de ver en la figura 2.1.

Aire expulsado Aire exterior

Airerecirculado

Aire de mezcla

Zona demezcla

Figura 2.1: Enfriamiento gratuito por aire

Las velocidades frontales de toma y expulsión de aire serán como máximo de 6 m/s y la eficiencia de tempe-ratura en la sección de mezcla debe ser de al menos el 75%.

El diseñador deberá considerar que los caudales de aire en juego pueden ser diferentes en las dos posiciones extremas del dispositivo, al igual que en cualquier posi-ción intermedia del mismo.

Page 11: Guia tecnica ahorro y recuperacion de energia

9

Enfriamiento gratuito

La compuerta de retorno podrá tener un tamaño inferior al de las otras dos compuertas, incluso en la situación en que su tamaño pueda ser insuficiente para poder equilibrar los circuitos. Para un perfecto equilibrado es necesario instalar, en serie con la compuerta de retor-no, una chapa perforada de características adecuadas.

La terna de compuertas se deberá dimensionar con una caída de presión que, por lo menos, sea igual al 10% de la presión del ventilador, con el fin de asegu-rar que las compuertas tengan la debida autoridad. Cuando las pérdidas de presión sean inferiores al 20% es recomendable que las compuertas sean del tipo lamas paralelas, no en oposición, con el fin de que la variación de caudales de aire sea lineal al va-riar la posición de la terna de compuertas.

2.1.3 Criterios de diseño

A continuación se presentan las características prin-cipales de los sistemas que utilizan aire, utilizando para control la entalpía o la temperatura del aire exterior.

El seleccionar el mejor control para el enfriamiento gratuito es complejo, pues la conveniencia de utiliar el aire exterior en vez del de retorno depende de muchos factores, asÍ:

• Sistema con control de temperatura del local o con control de temperatura y humedad.

• Equipos existentes en la unidad de tratamiento de aire, básicamente existencia de enfriamiento eva-porativo indirecto-directo o no.

• Existencia de humectación con agua recirculada o con vapor.

• Condiciones exteriores frecuentes de la localidad frente a las condiciones del local.

• Sistema de climatización de caudal o temperatura variable.

• Equipo de producción de frío por agua o por ex-pansión directa, y en este último caso con sistema inverter o no.

• Coste de la deshumectación frente a coste de en-friamiento sensible.

2.1.3.1 Enfriamiento gratuito por control de en-talpía puro

El control del sistema basado en la comparación de en-talpía es el siguiente:

i) Se miden la temperatura seca (T) y la humedad relativa (HR) del aire exterior y del aire de retor-no. Ambas señales se envían a un controlador (DDC), donde se calculan las entalpías del aire exterior ho y la entalpía del aire de retorno hr, que puede ser recirculado a la instalación, comparando ambos valores.

ii) Si ho > hr el regulador envía una señal al actua-dor del servomotor de las compuertas de aire de modo que las compuertas de aire exterior y aire de expulsión están cerradas en la mínima posición, asegurando el mínimo aporte de aire de renovación. La compuerta de aire recirculado estará abierta completamente (posición máxi-ma permitida).

iii) Si ho ≤ hr el regulador se encargará de que las compuertas de aire exterior y de aire de expul-sión estén completamente abiertas y al mismo tiempo las compuetas de recirculación estarán completamente cerradas.

iv) Un sensor de temperatura mide la temperatura (Tm) de la mezcla (aire exterior y aire recircu-lado). Esta señal es comparada con la del punto de consigna T*. Cuando la temperatura del aire exterior To ≤ T* entonces el regulador del equipo envía una señal al actuador para modular la apertura de las compuertas de aire de expulsión y de recirculación para mantener la temperatura del aire de mezcla en el valor que establece la consigna T*. En esta situación con temperatura del aire exterior inferior a T* el compresor del equipo de producción de frío debe estar desconectado.

En la figura 2.2 se muestra el esquema de operación y el sistema de control, y en la figura 2.3 se tiene la representación de las condiciones exteriores donde actuará el free-cooling entálpico puro (suponiendo unas condiciones interiores de 24 °C y 50% de hume-dad relativa).

Page 12: Guia tecnica ahorro y recuperacion de energia

10

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Aire deexpulsión

Aire recirculado

Aire demezcla

Filtro

Aire de retorno

Aire de impulsión

Máquinaenfriadora

Circuito deagua de refrigeración

Batería deagua fría

Aire exterior

To / HR

o

Tr / HR

r

Tm

DDCControl

-

Figura 2.2: Esquema control enfriamiento gratuito con control de entalpía puro

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1

Figura 2.3: Zona de actuación del control entálpico puro

Page 13: Guia tecnica ahorro y recuperacion de energia

11

Enfriamiento gratuito

Es evidente que existe una zona en que las condicio-nes del aire exterior tienen menos entalpía pero más temperatura que las condiciones del local. En esta zona si la unidad de tratamieno de aire posee un sis-tema de enfriamiento y humectación por evaporación (indirecto-directo, ver más adelante en esta guía) será más conveniente utilizar el aire exterior, pero si el en-friamiento es únicamente por expansión directa o por bateria de agua alimentada por un sistema de compre-sión será perjudicial utilizar el aire exterior.

Por otra parte, existe igualmente una zona donde el aire exterior tiene más entalpía que el aire de retorno, pero menor temperatura, y en este caso no se utiliza el free-cooling; no obstante, si se permite una gran variación de la humedad relativa del local (por ejem-plo hasta alcanzar un 60%) sería interesante utilizar el free-cooling en esta zona hasta que se alcanzara en el local dichas condiciones (esto reducirá drásti-camente dicha zona, existiendo un mayor tiempo de uso del free-cooling).

2.1.3.2 Enfriamiento gratuito por control de tem-peratura seca

Resulta más sencillo comparar solamente temperatu-ras secas utilizando una única sonda de temperatura, que el sistema de medida y control necesario para poder hacer el estudio comparativo de entalpía. La comparación se realiza entre la temperatura del aire exterior To con la temperatura del aire recirculado Tr (o con el valor de un punto de consigna predeterminado). El control de un sistema basado en la comparación de temperaturas es el siguiente:

1 Se comparan las lecturas de las sondas de tem-peratura del aire exterior To con la del aire de retorno Tr.

2 Si To > Tr el regulador del equipo DDC de control envía una señal al actuador del servomotor de las compuertas cerrando las de aire exterior y aire de expulsión hasta la mínima posición, ase-gurando el mínimo aporte de aire de renovación, permaneciendo abierta al máximo la compuerta de aire recirculado.

3 Si To ≤ Tr las compuertas de aire exterior y expul-sión estarán totalmente abiertas, y la compuerta de aire recirculado totalmente cerrada.

4 Al igual que ocurría en el sistema de control por entalpías, existe una sonda de temperatura adicional que mide la temperatura del aire de mezcla. Cuando la temperatura exterior sea infe-rior a la temperatura establecida como consigna del aire de impulsión, To ≤ T*, entonces el regu-lador del equipo DDC modula la posición de las compuertas de aire (exterior, expulsión y recircu-lado) de manera que se mantenga la temperatura de la mezcla del aire en el valor establecido en la consigna T*. En esta situación, al igual que ocu-rría en la analizada anteriormente, el sistema de producción de frío convencional estará parado.

En la figura 2.4 se muestra el esquema de operación y el sistema de control, y en la figura 2.5 se tiene la repre-sentación de las condiciones exteriores donde actuará el free-cooling entálpico puro (suponiendo unas condi-ciones interiores de 24 °C y 50% de humedad relativa).

Page 14: Guia tecnica ahorro y recuperacion de energia

12

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Aire deexpulsión

Aire recirculado

Aire demezcla

Filtro

Aire de retorno

Aire de impulsión

Máquinaenfriadora

Circuito deagua de refrigeración

Batería deagua fría

Aire exterior

To

Tr

Tm

DDCControl

-

Figura 2.4: Esquema control enfriamiento gratuito con control de temperatura seca

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figura 2.5: Zona de actuación del control en temperatura seca

Es evidente que existe una zona en que las condiciones del aire exterior tienen mayor entalpía que el aire de retorno pero menor temperatura. Si en estos casos trabaja la batería de frío de expansión directa es evidente que existirá mayor gasto energético debido a la existencia de deshumectación en el proceso de enfriamiento.

Page 15: Guia tecnica ahorro y recuperacion de energia

13

Enfriamiento gratuito

2.1.4 Comparación de los sistemas de control (térmico y entálpico puro). Control entálpico mejorado

De la comparación de ambos controles se tiene la diferente actuación en las zonas A y B en el diagrama de la figura 2.6

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

A

B

1

Figura 2.6: Diferencia control temperatura seca-entalpía puro

Cuando las condiciones termohigrométricas del aire ex-terior se sitúan dentro del área marcada como A en el diagrama psicrométrico anterior, un control de entalpía consume menos energía para enfriar y deshumidificar el aire. Por otra parte, cuando las condiciones del aire exterior se encuentran en la zona B, un control de tem-peraturas consume normalmente menos energía, a no ser que la UTA disponga de un sistema de refrigeración evaporativa que permita reducir la temperatura humidi-ficando el aire.

Así nace el control de entapía mejorado, que consiste en:

1 Se miden la temperatura seca (T) y la humedad re-lativa (HR) del aire exterior y del aire de retorno. Ambas señales se envían a un controlador (DDC), donde se calculan las entalpías del aire exterior ho y la entalpía del aire de retorno hr, que puede ser recirculado a la instalación, comparando ambos valores.

2 Si ho > hr el regulador envía una señal al actuador del servomotor de las compuertas de aire de modo que las compuertas de aire exterior y aire de expulsión están cerradas en la mínima posición, asegurando el mínimo aporte de aire de renovación. La compuerta

de aire recirculado estará abierta completamente (posición máxima permitida).

3 Si ho ≤ hr y To > Tr el regulador envía una señal al actuador del servomotor de las compuertas de aire de modo que las compuertas de aire exterior y aire de expulsión están cerradas en la mínima posición, asegurando el mínimo aporte de aire de renovación. La compuerta de aire recirculado estará abierta completamente (posición máxima permitida).

4 Si ho ≤ hr y To ≤ Tr el regulador se encargará de que las compuertas de aire exterior y de aire de ex-pulsión estén completamente abiertas y al mismo tiempo las compuetas de recirculación estarán completamente cerradas.

5 Un sensor de temperatura mide la temperatura (Tm) de la mezcla (aire exterior y aire recirculado). Esta señal es comparada con la del punto de con-signa T*. Cuando la temperatura del aire exterior To ≤ T* entonces el regulador del equipo envía una señal al actuador para modular la apertura de las compuertas de aire de expulsión y de recirculación para mantener la temperatura del aire de mezcla en el valor que establece la consigna T*. En esta

Page 16: Guia tecnica ahorro y recuperacion de energia

14

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

situación con temperatura del aire exterior inferior a T* el compresor del equipo de producción de frío, dependiendo de las cargas internas, podría llegar a parar.

En la figura 2.7 se tiene la representación de las condiciones exteriores donde actuará el free-cooling entálpico mejorado (suponiendo unas condiciones interiores de 24 °C y 50% de humedad relativa).

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1

Figura 2.7: Zona de actuación del control de entalpía mejorado

Teóricamente hablando, se consigue más eficien-cia energética con el control de entalpía que con el control de temperatura. Sin embargo, para poder comparar los valores de entalpía se precisan sondas de temperatura y humedad, por lo que desde un pun-to de vista práctico, dado que las sondas de humedad pueden proporcionar errores (incluso del 10%) como consecuencia de una baja precisión o de derivaciones de la calibración en cortos periodos de tiempo que hacen dificultoso su mantenimiento, y adicionalmen-te su precio es relativamente elevado, hacen que el sistema más utilizado de control de enfriamiento gra-tuito sea el de temperatura.

En consecuencia, se recomienda un control de entalpía mejorado en lugares con clima caliente y húmedo. En la mayor parte de las localidades con clima de temperatu-ra y humedad moderados, el ahorro proporcionado por un control por entalpía mejorado es pequeño. Según Spitler y colaboradores (1987), los dos tipos de control difieren sólo entre el 10 y el 20% de ahorro conseguido, y como el mantenimiento de las sondas de humedad necesarias para el control por entalpías es dificultoso, recomiendan el control por temperaturas.

Para localidades con clima seco, el control por tempe-raturas es muy adecuado ya que proporciona niveles de ahorro similares al del control por entalpías. No obstante en estos climas, los sistemas de refrigeración evaporativa, según veremos a continuación, pueden proporcionan ahorros elevados pero precisan en la uni-dad de tratamiento UTA de una etapa adicional para la humidificación, y un mantenimiento estricto del sistema que asegure la limpieza del sistema de bacterias como la Legionella, típica de estos tipos de instalaciones.

2.1.5 Ejemplos

Este ejemplo trata de servir como guía para determinar el ahorro de energía proporcionado por el sistema de enfriamiento gratuito por aire exterior (free-cooling), operando tanto con control térmico como con control entálpico puro.

El desarrollo se presenta en todas las etapas de cál-culo con las tablas y gráficas correspondientes, para la ciudad de Madrid y en el edificio que se describe a continuación.

Page 17: Guia tecnica ahorro y recuperacion de energia

15

Enfriamiento gratuito

1 Descripción del edificio

Superficie. El edificio de nuestro estudio dispone de una superficie con unas dimensiones de 20 x 30 = 600 m2 de una única planta. Dicho edificio dispone de 60 m2 de superficie acristalada (20 m2 de cristal para las orienta-ciones Sur, Oeste, Este).

Altura y volumen. La altura del edificio es de 4,5 m y el volumen del edificio es de 2.700 m3.

Uso del edificio. Este edificio se utilizará como un área de servicio con un nivel de media ocupación que ade-más se supone fija. El horario de funcionamiento es continuo de ooh. a 24h. El número de horas de funcio-namiento anuales serán:

365 días x 24 horas/día = 8.760 h/año

Ocupación. El CTE DB SI-3 “Evacuación de Ocupantes”, en su tabla 2.1 “Densidades de Ocupación” indica que el nivel de ocupación es de 3 m2/pax. Por tanto, para 600 m2 la ocupación se fija en 200 personas (esta ocupación puede ser razonablemente inferior en cálculos para climatiza-ción; no obstante se asume para este ejemplo este valor).

Caudal mínimo de aire exterior de ventilación. Según la “IT 1.1.4.2.3 Caudal mínimo de aire exterior de ventilación”, y por el método A de cálculo indirecto de caudal de aire ex-terior mínimo por persona, para la categoría de calidad de aire interior IDA 3 tenemos un caudal de 8 dm3/s · pax (28,8 m3/h · pax). El caudal total de aire exterior es:

28,8 m3/h · pax · 200 pax = 5.760 m3/h (1,6 m3/s)

2 Base de datos de Climed 1.3

Los datos meteorológicos sintéticos creados por CLIMED 1.3, a partir de los datos climáticos del Ins-tituto Nacional de Meteorología, son descargados de la página oficial del Ministerio de Industria, Turismo y Comercio, (www.mityc.es).

Cada archivo de datos climáticos consta de 8.762 regis-tros, con el siguiente contenido:

• 1er registro y 2° registro. Datos generales:

– Nombre del archivo de datos.

– Longitud de referencia para el cálculo de la hora oficial (grados, positivo hacia el Este, flotante).

– Latitud (grados, positivo hacia el Norte).

– Longitud (grados, positivo hacia el Oeste). Altura (metros).

• Registros 3° a 8.762 (Total 8.760):

– Mes (1 a 12, entero).

– Día (1 a 31, entero).

– Hora (1 a 24, entero).

– Temperatura seca ( °C).

– Temperatura de cielo ( °C).

– Irradiación directa sobre superficie horizontal (w/m2).

– Irradiación difusa sobre superficie horizontal (w/m2).

– Humedad absoluta (kg agua/kg aire seco).

– Humedad relativa (%).

– Velocidad del viento (m/s).

– Dirección del viento (grados respecto al Nor-te, positivo desde el Este).

– Azimut solar (grados, negativo hacia el Este).

– Cenit solar (grados).

A continuación, con estos datos climáticos se elabora la tabla que se describe seguidamente:

Intervalo. Las tablas se ordenan a partir de la primera columna llamada intervalo . En este intervalo de tempe-raturas, que se ha tomado con una amplitud de 1 °C, se agrupan todos los registros de la Base de Datos CLIMED 1.3 que están dentro del mismo.

En el intervalo T < 1 se agrupan todos los registros de temperaturas secas inferiores a 1 °C, y en el intervalo T = 36 °C se agrupan los registros de temperaturas se-cas superiores a 36 °C.

Frecuencias. Nº Registros: indica el total de veces que se ha producido un registro o dato de temperatura en ese intervalo:

Frecuencia del intervalo (Fi): es la relación en % del registro en cada uno de los intervalos y el nº total de registros del año (8.760).

Page 18: Guia tecnica ahorro y recuperacion de energia

16

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Frecuencia acumulada (Fa): es la suma acumulada, incluida la del propio intervalo, de todas las frecuen-cias de intervalo (Fi) anteriores.

Temperaturas y humedades. Las variables utilizadas son:

T. seca: es la media aritmética de las temperaturas secas registradas en ese intervalo de temperatura.

H. Relativa: es la media aritmética de las humedades relativas, coincidentes con las temperaturas, que se han registrado en ese intervalo de temperatura.

H. Absoluta: es la media aritmética de las humedades absolutas, coincidentes con las temperaturas, que se han registrado en ese intervalo de temperatura.

Datos calculados. A partir de la temperatura seca media y de la humedad absoluta media del intervalo se calcu-lan para cada intervalo el:

Ve: volumen específico.

hs, hl, htotal: entalpía sensible, latente y total.

Para Madrid, los datos climatológicos en su horario de uso de 24 horas/día son los de la tabla siguiente:

DATOS CLIMáTICOS

ciudad: Madrid Área de servicio Horario: 00-24 h

intervalo

Base de datos climed 1.3 datos calculados

Frecuencias Temperaturas y humedades Vol. esp. entalpía

número registros

Fi (%)

Fa (%)

T. seca ( °c)

H. relativa (%)

H. absoluta (kga/kgas)

Ve (m3/kgas)

hs hi htotal

(kJ/kg)

T < 1 10 0,11 0,11 0,46 97,9 0,0041 0,845 0,46 10,39 10,85

1-2 35 0,40 0,51 1,61 94,0 0,0043 0,848 1,62 10,86 12,48

2-3 152 1,74 2,25 2,54 88,2 0,0043 0,854 3,51 10,93 14,44

4-5 311 3,55 8,97 4,50 77,2 0,0044 0,857 4,53 10,96 15,49

5-6 366 4,18 13,15 5,45 74,1 0,0045 0,860 5,48 11,25 16,73

6-7 415 4,74 17,89 6,49 71,3 0,0046 0,864 6,53 11,65 18,18

7-8 519 5,92 23,81 7,45 70,2 0,0049 0,867 7,49 12,23 21,08

8-9 503 5,74 29,55 8,44 67,3 0,0050 0,870 8,49 12,59 21,08

9-10 479 5,47 35,02 9,43 65,1 0,0052 0,874 9,48 13,04 22,52

10-11 410 4,68 39,70 10,44 62,2 0,0053 0,877 10,50 13,33 23,83

11-12 367 4,19 43,89 11,44 59,3 0,0054 0,880 11,51 13,59 25,09

12-13 364 4,16 48,05 12,46 58,6 0,0057 0,884 12,53 14,40 26,93

13-14 323 3,69 51,74 13,45 57,2 0,0059 0,887 13,53 15,00 28,53

14-15 319 3,64 55,38 14,43 56,2 0,0062 0,891 14,51 15,73 30,24

15-16 367 4,19 59,57 15,44 54,6 0,0064 0,894 15,53 16,33 31,86

16-17 347 3,96 63,53 16,44 52,4 0,0066 0,897 16,54 16,72 33,26

17-18 361 4,12 67,65 17,44 50,0 0,0067 0,901 17,54 17,01 34,56

18-19 384 4,38 72,03 18,45 49,0 0,0070 0,904 18,56 17,80 36,35

19-20 364 4,16 76,19 19,45 48,0 0,0073 0,908 19,56 18,57 38,14

20-21 312 3,56 79,75 20,45 44,6 0,0072 0,911 20,57 18,37 39,90

21-22 287 3,28 83,03 21,44 41,9 0,0072 0,914 21,56 18,33 39,90

22-23 237 2,71 85,73 22,41 38,4 0,0070 0,916 22,54 17,86 40,40

23-24 200 2,28 88,01 23,42 35,7 0,0069 0,919 23,56 17,65 41,21

24-25 162 1,85 89,86 24,45 32,6 0,0067 0,922 24,59 17,14 41,73

25-26 153 1,75 91,61 25,43 29,9 0,0065 0,925 25,58 16,69 42,26

26-27 149 1,70 93,31 26,43 28,0 0,0065 0,928 26,58 16,57 43,15

27-28 139 1,59 94,90 27,41 26,3 0,0064 0,931 27,57 16,51 44,08

Page 19: Guia tecnica ahorro y recuperacion de energia

17

Enfriamiento gratuito

ciudad: Madrid Área de servicio Horario: 00-24 h

intervalo

Base de datos climed 1.3 datos calculados

Frecuencias Temperaturas y humedades Vol. esp. entalpía

número registros

Fi (%)

Fa (%)

T. seca ( °c)

H. relativa (%)

H. absoluta (kga/kgas)

Ve (m3/kgas)

hs hi htotal

(kJ/kg)

28-29 117 1,34 96,23 28,44 24,3 0,0063 0,934 28,60 16,20 44,80

29-30 100 1,14 97,37 29,46 22,6 0,0062 0,937 29,63 15,98 45,62

30-31 72 0,82 98,20 30,44 21,1 0,0062 0,940 30,62 15,81 46,43

31-32 54 0,62 98,81 31,47 19,8 0,0062 0,943 31,65 15,79 47,45

32-33 43 0,49 99,30 32,45 17,7 0,0058 0,946 32,64 14,94 47,58

33-34 31 0,35 99,66 33,39 17,6 0,0061 0,949 33,58 15,62 49,21

34-35 19 0,22 99,87 34,28 16,7 0,0061 0,952 34,48 15,62 50,10

35-36 8 0,09 99,97 35,39 15,6 0,0060 0,955 35,60 15,53 51,12

T > 36 3 0,03 100,00 36,00 14,1 0,0056 0,957 36,21 14,51 50,72

8.760

Media de los 8.760 registros 14,35 55,9 0,0058 0,890 14,43 15,56 30,00

(continuación)

3 Condiciones de proyecto

Condiciones exteriores: se han considerado los valores de la Norma UNE 100001 para el Nivel de Percentil Esta-cional NPE de la Tabla siguiente:

CiudadesVerano

(NPE 1%)Invierno

(NPE 99%)

TS ( °C) TH ( °C) TS ( °C)

Madrid 36,5 22,6 -4,9

Condiciones interiores de diseño: se han considerado los valores medios de la Tabla 1.4.1.1 de la IT 1.1 Exigen-cia de Bienestar e Higiene del RITE.

Verano Invierno

Tª ( °C) HR (%) Tª ( °C) HR (%)

24 52,5 22 45

4 Cálculo de cargas térmicas

Las cargas térmicas contemplan los cerramientos, el suelo, las cargas internas por ocupación, iluminación o equipos que disipen calor y la ventilación.

Para determinar las cargas térmicas de ventilación, es decir, las del caudal mínimo del aire exterior de venti-lación según la IT 1.1.4.2.3 (Tabla 1.4.2.1) del RITE, se

aplican las ecuaciones típicas; por ejemplo, la carga to-tal se obtendrá por:

Q tot ,vent =

Va ,ext

ve

⎝ ⎜

⎠ ⎟ hint − hext( )

donde:

Va,ext, es el caudal mínimo de ventilación (m3/s).

hint, es la entalpía en las condiciones interiores (kJ/kg).

hext, es la entalpía de las condiciones exteriores (kJ/kg).

ve, es el volumen específico de las condiciones exterio-res (m3/kg).

Qtot,vent, es la potencia térmica total de ventilación (kW).

Potencia térmica total requerida

La potencia térmica total (Qtot) requerida por el edificio para cada uno de los intervalos es la suma para cada uno de los intervalos de todas las cargas anteriores por los cerramientos, internas y de ventilación.

Los valores obtenidos se recogen en la figura 2.8.

Page 20: Guia tecnica ahorro y recuperacion de energia

18

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

-5 0 5 10 15 20 25 30 35 40

100

80

60

40

20

0

-20

-40

-60

-80

Pote

ncia

(W)

Temperatura seca exterior (°C)

Cerramientos (Verano)

Potencia (Verano)

Ventilación (Invierno)

Cargas internas (Verano)

Cerramientos (Invierno)

Potencia (Invierno)

Ventilación (Verano)

Cargas internas

Figura 2.8: Curvas potencia térmica. Área servicio. Madrid

En las tablas siguientes se recogen los resultados agrupados por intervalos de temperatura para la temporada de in-vierno y verano que en este caso está delimitada a 18 °C.

POTENCIA TéRMICA INVIERNO (W)

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Caudal mín. vent. (Qv): 5.760 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 8.760 h

Cond. interiores: 22 °C/45% HR Entalpía (kJ/kg): hS: 22,13; hS: 22,13; hTOTAL: 42,56

Cerramientos Ocupación Otras Subtotal Ventilación Total

Estructural Suelo Latente Sensible Total Cargas Q1 Latente Sensible Qv Qt

T < 1 29.494 8.118 -5.000 -12.000 -17.000 -5.700 14.912 21.141 44.092 65.233 80.145

1-2 26.153 7.602 -5.000 -12.000 -17.000 -5.700 11.055 18.055 38.680 56.734 67.789

2-3 24.959 7.418 -5.000 -12.000 -17.000 -5.700 9.676 17.930 36.790 54.720 64.396

3-4 23.734 7.229 -5.000 -12.000 -17.000 -5.700 8.262 17.800 34.874 52.674 60.936

4-5 22.446 7.030 -5.000 -12.000 -17.000 -5.700 6.776 17.665 32.850 50.515 57.291

5-6 21.227 6.842 -5.000 -12.000 -17.000 -5.700 5.369 17.069 30.955 48.025 53.394

6-7 19.886 6.635 -5.000 -12.000 -17.000 -5.700 3.821 16.259 28.895 45.155 48.975

7-8 18.657 6.445 -5.000 -12.000 -17.000 -5.700 2.402 15.138 27.004 42.142 44.544

8-9 17.383 6.248 -5.000 -12.000 -17.000 -5.700 930 14.409 25.073 39.482 40.412

9-10 16.118 6.053 -5.000 -12.000 -17.000 -5.700 -529 13.534 23.154 36.689 36.160

10-11 14.818 5.852 -5.000 -12.000 -17.000 -5.700 -2.030 12.956 21.214 34.170 32.140

11-12 13.544 5.655 -5.000 -12.000 -17.000 -5.700 -3.500 12.437 19.308 31.745 28.244

12-13 12.236 5.453 -5.000 -12.000 -17.000 -5.700 -5.011 10.913 17.372 28.285 23.274

13-14 10.963 5.257 -5.000 -12.000 -17.000 -5.700 -6.481 9.793 15.510 25.303 18.822

14-15 9.705 5.063 -5.000 -12.000 -17.000 -5.700 -7.932 8.449 13.679 22.128 14.196

Page 21: Guia tecnica ahorro y recuperacion de energia

19

Enfriamiento gratuito

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Caudal mín. vent. (Qv): 5.760 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 8.760 h

Cond. interiores: 22 °C/45% HR Entalpía (kJ/kg): hS: 22,13; hS: 22,13; hTOTAL: 42,56

Cerramientos Ocupación Otras Subtotal Ventilación Total

Estructural Suelo Latente Sensible Total Cargas Q1 Latente Sensible Qv Qt

15-16 8.416 4.863 -5.000 -12.000 -17.000 -5.700 -9.421 7.331 11.808 19.139 9.718

16-17 7.125 4.664 -5.000 -12.000 -17.000 -5.700 -10.910 6.615 9.971 16.586 5.675

17-18 5.846 4.467 -5.000 -12.000 -17.000 -5.700 -12.387 6.068 8.148 14.216 1.829

POTENCIA TéRMICA VERANO (W)

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Caudal mín. vent. (Qv): 5.760 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 8.760 h

Cond. interiores: 24 °C/52,5% HR Entalpía (kJ/kg): hS: 24,14; hS: 27,05; hTOTAL: 51,19

Cerramientos Ocupación Otras Subtotal Ventilación Total

Estructural Suelo Latente Sensible Total Cargas Q1 Latente Sensible Qv Qt

18-19 7.299 4.267 -6.960 -12.649 -19.609 -21.480 -29.522 16.378 9.878 26.256 -3.267

19-20 5.978 4.068 -6.960 -12.649 -19.609 -21.480 -31.043 14.948 8.067 23.015 -8.028

20-21 4.672 3.872 -6.960 -12.649 -19.609 -21.480 -32.544 15.260 6.273 21.533 -11.012

21-22 3.365 3.675 -6.960 -12.649 -19.609 -21.480 -34.049 15.268 4.509 19.776 -14.273

22-23 2.097 3.484 -6.960 -12.649 -19.609 -21.480 -35.508 16.056 2.792 18.848 -16.660

23-24 764 3.283 -6.960 -12.649 -19.609 -21.480 -37.042 16.355 1.015 17.371 -19.671

24-25 -598 3.078 -6.960 -12.649 -19.609 -21.480 -38.609 17.201 -785 16.416 -22.193

25-26 -1.878 2.885 -6.960 -12.649 -19.609 -21.480 -40.082 17.930 -2.487 15.442 -24.640

26-27 -3.194 2.687 -6.960 -12.649 -19.609 -21.480 -41.595 18.068 -4.213 13.855 -27.740

27-28 -4.477 2.494 -6.960 -12.649 -19.609 -21.480 -43.072 18.115 -5.893 12.222 -30.850

28-29 -5.840 2.288 -6.960 -12.649 -19.609 -21.480 -44.640 18.581 -7.632 10.949 -33.691

29-30 -7.172 2.088 -6.960 -12.649 -19.609 -21.480 -46.173 18.895 -9.376 9.520 -36.653

30-31 -8.469 1.892 -6.960 -12.649 -19.609 -21.480 -47.666 19.132 -11.024 8.108 -39.557

31-32 -9.820 1.689 -6.960 -12.649 -19.609 -21.480 -49.220 19.098 -12.744 6.354 -42.865

32-33 -11.103 1.496 -6.960 -12.649 -19.609 -21.480 -50.696 20.493 -14.378 6.116 -44.580

33-34 -12.339 1.309 -6.960 -12.649 -19.609 -21.480 -52.119 19.265 -15.921 3.344 -48.775

34-35 -13.519 1.132 -6.960 -12.649 -19.609 -21.480 -53.476 19.220 -17.380 1.840 -51.636

35-36 -14.969 913 -6.960 -12.649 -19.609 -21.480 -55.144 19.302 -19.189 113 -55.031

T > 36 -15.774 792 -6.960 -12.649 -19.609 -21.480 -56.071 20.972 -20.189 783 -55.288

5 Enfriamiento gratuito por aire exterior (free-cooling)

Caudales de aire

En verano, el caudal de aire exterior que se puede impulsar al local va desde el mínimo de ventilación (Vvent, ext) hasta el máximo que pueda dar el ventilador de impulsión (Vimp), siendo la diferencia un caudal complementario (Vfc) para enfria-miento gratuito (free-cooling), siempre y cuando proceda el hacerlo.

Vimp = Vvent, ext + Vfc + Vret

Caudal de impulsión (Vimp): caudal nominal del ventilador de impulsión del equipo, que es el caudal total que se impulsa al interior.

(continuación)

Page 22: Guia tecnica ahorro y recuperacion de energia

20

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Caudal de retorno (Vret): es el que sale de los locales climatizados que normalmente coincide o es similar al de impulsión (la diferencia es el caudal de aire que es exfiltrado al exterior como consecuencia de mantener los locales en sobrepresión).

Caudal mínimo (Vvent, ext): caudal mínimo del aire exterior de ventilación. (Tabla 1.4.2.1 del RITE).

Caudal complementario (Vfc): caudal de aire exterior a introducir con el fin de compensar las cargas térmicas cuando:

1 Su temperatura sea menor que la del aire del local o de extracción (free-cooling térmico que sólo com-para temperaturas).

2 Su entalpía sea menor que la del aire del local o de extracción (free-cooling entálpico que compara temperaturas y humedades).

3 Comparación con el sistema de entalpia mejorada comentado.

El caudal de aire exterior complementario a introducir Vfc (m

3/h) se calcula a partir de la potencia térmica total requerida por la instalación (Qtot) que es susceptible de ser compensada de forma gratuita. Evidentemente, se dejará de introducir este aire exterior complementario cuando resulte ser una carga térmica.

Vfc =

Qtot ve

hint − hext

Potencia de enfriamiento gratuito

Es la potencia térmica obtenida con el caudal (Vfc) de aire exterior, que ha sido calculado previamente, a par-tir de la expresión:

Qfc =

Vfc

ve

⎝ ⎜

⎠ ⎟ hint − hext( )

En la tabla siguiente se puede observar la potencia Qfc que se puede obtener con el aporte del aire exterior.

POTENCIA TéRMICA DEL FREE-COOLING (W)

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Caudal mín. vent. (Qv): 5.760 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 8.760 h

Cond. interiores: 24 °C/52,5% HR Entalpía (kJ/kg): hS: 24,14; hS: 27,05; hTOTAL: 51,19

Caudal aire exterior: mínimo ventilación Qv: 5.760 m3/h; nominal impulsión Qi: 14.300 m3/h

Subtotal Mínimo ventilación Total Potencia térmica free-cooling Total

P1V

(m3/h)Latente Sensible Qv Qt

Vfc (m3/h)

Latente Sensible Qfc Qc

18 -19 -29.522 5.760 16.378 9.878 26.256 -3.267 717 2.038 1.229 3.267 0

19-20 -31.043 5.760 14.948 8.067 23.015 -8.028 2.009 5.214 2.814 8.028 0

20-21 -32.544 5.760 15.260 6.273 21.533 -11.012 2.946 7.804 3.208 11.012 0

21-22 -34.049 5.760 15.268 4.509 19.776 -14.273 4.157 11.019 3.254 14.273 0

22-23 -35.508 5.760 16.056 2.792 18.848 -16.660 5.091 14.192 2.468 16.660 0

23-24 -37.042 5.760 16.355 1.015 17.371 -19.671 6.523 18.522 1.150 19.671 0

24-25 -38.609 5.760 17.201 -785 16.416 -22.193 7.787 23.254 -1.061 22.193 0

25-26 -40.082 5.760 17.930 -2.487 15.442 -24.640 8.540 26.583 -3.688 22.895 -1.745

26-27 -41.595 5.760 18.068 -4.213 13.855 -27.740 8.540 26.789 -6.247 20.542 -7.198

27-28 -43.072 5.760 18.115 -5.893 12.222 -30.850 8.540 26.858 -8.738 18.121 -12.729

28-29 -44.640 5.760 18.581 -7.632 10.949 -33.691 8.540 27.549 -11.315 16.234 -17.457

29-30 -46.173 5.760 18.895 -9.376 9.520 -36.653 8.540 28.015 -13.901 14.114 -22.539

30-31 -47.666 5.760 19.132 -11.024 8.108 -39.557 8.540 28.366 -16.345 12.022 -27.536

31-32 -49.220 5.760 19.098 -12.744 6.354 -42.865 8.540 28.316 -18.895 9.421 -33.444

32-33 -50.696 5.760 20.493 -14.378 6.116 -44.580 8.540 30.384 -21.317 9.068 -35.513

33-34 -52.119 5.760 19.265 -15.921 3.344 -48.775 8.540 28.564 -23.605 4.958 -43.816

34-35 -53.476 5.760 19.220 -17.380 1.840 -51.636 8.540 28.496 -25.768 2.727 -48.908

35-36 -55.144 5.760 19.302 -19.189 113 -55.031 8.540 28.618 -28.450 168 -54.863

T > 36 -56.071 5.760 20.972 -20.189 783 -55.288 8.540 31.094 -29.933 1.161 -54.127

Page 23: Guia tecnica ahorro y recuperacion de energia

21

Enfriamiento gratuito

En el caso de free-cooling térmico, a partir de 24 °C de temperatura exterior se dejará de introducir aire exte-rior complementario (Vfc) ya que al ser esta temperatura mayor de la debe haber en el interior o de proyecto, el sistema de regulación actuará sobre las compuertas de aire para dejarlas posicionadas de tal forma que sólo se introduzca el Vvent, ext, es decir, el mínimo de aire exterior obligatorio.

En el caso de que se haya optado por un free-cooling entálpico puro,la compuerta de aire exterior perma-necerá abierta totalmente para que el caudal de aire exterior sea el máximo posible, es decir Vimp, con lo que el equipo trabajará con todo aire exterior. Obsérvese que la entalpía del aire exterior es siempre inferior a la del aire de expulsión en las condiciones de diseño del proyecto.

En estas circunstancias se observa, en la tabla Po-tencia Térmica Verano, que en el intervalo 24-25 °C la carga latente interna debida a ocupación (es la única carga latente que se ha contemplado) es de -6.960 W, mientras que la potencia latente de compensación para el Vvent, ext es de +17.201 W, representando la poten-cia sensible de este caudal exterior una carga térmica de –785 W. Por tanto, el mantener las compuertas abiertas por un lado va a disminuir la humedad inte-rior y por otro va a suponer una carga térmica sensible adicional.

Qc (kW): es la potencia térmica que nos queda por aportar, después de haber puesto en funcionamiento el free-cooling; es decir, es la potencia que hay que apor-tar por el compresor.

Analizando los dos posibles casos sobre el con-trol de la humedad relativa, se puede establecer lo siguiente:

1 Si se desea mantener la humedad relativa interior para mantener las condiciones del 52,5%, se ten-dría que estar humectando y al mismo tiempo si se utiliza el free-cooling entálpico a partir de 24 °C estaría creando carga térmica sensible, por lo que habría un gasto de energía para humectar y otro para combatir la carga sensible del aire exterior Vfc, a no ser que el enfriamiento se hiciera con humidi-ficador adiabático que consigue los dos objetivos, humidificar y enfriar.

2 Si no se controla la humedad relativa y por tanto no se humecta, el caudal de aire exterior de 5.760 m3/h bajaría la humedad relativa del interior hasta el 42% y la entalpía a 21,1 kJ/kg, correspondiente a la temperatura interior seca de 24 °C, con lo que

se comportaría igual que el free-cooling térmico, pues a 24 °C es la misma consigna de referencia para cerrar las compuertas de entrada de aire exterior.

6 Ahorro de energía del free-cooling

Una vez seleccionado el equipo para satisfacer las ne-cesidades térmicas en las condiciones de proyecto, cuyo caudal de impulsión de aire Vimp es de 14.300 m3/h, se obtienen los valores de ahorro de energía debidos al enfriamiento gratuito. Las variables utilizadas para determinar el ahorro de energía con los sistemas free-cooling son:

Frecuencias de temporada

Frecuencia del intervalo (Fiv): es la relación en % del registro en cada uno de los intervalos y el nº total de registros de la temporada de verano o, lo que es lo mismo, es la frecuencia anual (Fi) referenciada sólo a la temporada de verano y en el horario especificado.

Frecuencia acumulada (Fav): es la suma acumulada, in-cluida la del propio intervalo, de todas las frecuencias de intervalo (Fiv) anteriores.

Potencias ponderadas en función de la frecuencia. Para determinar la potencia térmica total ponderada (QP) en el intervalo correspondiente se multiplica la potencia térmica total requerida por la frecuencia (Fiv) del mismo dividida por cien.

QP = (Qt x Fiv) / 100

La suma de las QP de cada intervalo proporcionará como resultado el valor medio de Potencia Ponderada Media anual requerida por el edificio (QPm).

Por otra parte, Qfc es la potencia térmica del enfria-miento gratuito y QPfc, la potencia térmica ponderada de enfriamiento gratuito.

QPfc = (Qfc x Fiv) / 100

La suma de todas las QPfc de cada intervalo nos dará como resultado el valor de Potencia Ponderada Media anual de enfriamiento gratuito (QPfcm).

En la tabla siguiente se muestran los valores corres-pondientes al free-cooling térmico que han resultado una vez que se seleccionó el equipo para satisfa-cer las necesidades térmicas en las condiciones de proyecto, siendo su caudal de impulsión de aire de 14.300 m3/h.

Page 24: Guia tecnica ahorro y recuperacion de energia

22

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

POTENCIA TéRMICA PONDERADA DEL FREE-COOLING TéRMICO (W)

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Caudal mín. vent. (Qv): 5.760 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 8.760 h

Cond. interiores: 24 °C/52,5% HR Entalpía (kJ/kg): hS: 24,14; hS: 27,05; hTOTAL: 51,19

IntervaloFrecuencias Carga Térmica FC Térmico

Fiv (%) Fav (%) Qt QP Qfc QP Pfc

18 -19 13,55 13,55 -3.267 -443 3.267 443

19-20 12,84 26,40 -8.028 -1.031 8.028 1.031

20-21 11,01 37,40 -11.012 -1.212 11.012 1.212

21-22 10,13 47,53 -14.273 -1.445 14.273 1.445

22-23 8,36 55,90 -16.660 -1.393 16.660 1.393

23-24 7,06 62,95 -19.671 -1.388 19.671 1.388

24-25 5,72 68,67 -22.193 -1.269 0 0

25-26 5,40 74,07 -24.640 -1.330 0 0

26-27 5,26 79,33 -27.740 -1.459 0 0

27-28 4,90 84,23 -30.850 -1.513 0 0

28-29 4,13 88,36 -33.691 -1.391 0 0

29-30 3,53 91,89 -36.653 -1.293 0 0

30-31 2,54 94,43 -39.557 -1.005 0 0

31-32 1,91 96,34 -42.865 -817 0 0

32-33 1,52 97,85 -44.580 -676 0 0

33-34 1,09 98,95 -48.775 -534 0 0

34-35 0,67 99,62 -51.636 -346 0 0

35-36 0,28 99,90 -55.031 -155 0 0

T > 36 0,11 100,00 -55.288 -59 0 0

-18.760 6.913

QPm QPfcm

Con un free-cooling térmico el valor QPfcm es 6.913 kW y el de QPm es de -18.760 kW, lo que significa que este sistema es capaz de suministrar el 36,9% de la potencia media requerida QPm. Nótese que el free-cooling está activo el 62,95% del tiempo de la temporada de verano.

7 Evaluación de emisiones de CO2

La demanda térmica de la instalación en verano compensada por el enfriamiento gratuito es:

QPfcm x nº horas de uso = 6,913 kW x 8760 h = 60.559 kWh por temporada de verano

Considerando que en las condiciones de temperatura en que está activo el enfriamiento gratuito (entre 18 y 24 °C), el EER del equipo es 4,90 (no se ha considerado el consumo de ventiladores ya que éstos deben trabajar independientemente de que haya o no enfriamiento gratuito), el consumo de energía eléctrica será de:

60.559 kWh / 4,90 = 12.359 kWh

lo que equivale a una reducción de emisiones de:

12.359 kWh x 0,649 kg CO2 /kWh = 8.021 kg CO2

Que son el 36,9% del total de emisiones si no se hubiera puesto el free-cooling.

Page 25: Guia tecnica ahorro y recuperacion de energia

23

Enfriamiento gratuito

En la siguiente tabla se muestran los valores para el caso del free-cooling entálpico que en base a las consideraciones que se han hecho en el apartado anterior no tendría ninguna ventaja respecto del térmico, ya que bajaría la humedad interior y crearía una caga térmica sensible adicional.

POTENCIA TéRMICA PONDERADA DEL FREE-COOLING ENTáLPICO (W)

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Caudal mín. vent. (Qv): 5.760 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 8.760 h

Cond. interiores: 24 °C/52,5% HR Entalpía (kJ/kg): hS: 24,14; hS: 27,05; hTOTAL: 51,19

IntervaloFrecuencias Carga térmica Fc entálpico

Fiv (%) Fav (%) Qt Qp Qfc Qp pfc

18-19 13,55 13,55 -3.267 -443 3.267 443

19-20 12,84 26,40 -8.028 -1.031 8.028 1.031

20-21 11,01 37,40 -11.012 -1.212 11.012 1.212

21-22 10,13 47,53 -14.273 -1.445 14.273 1.445

22-23 8,36 55,90 -16.660 -1.393 16.660 1.393

23-24 7,06 62,95 -19.671 -1.388 19.671 1.388

24-25 5,72 68,67 -22.193 -1.269 -1.061 -61

25-26 5,40 74,07 -24.640 -1.330 -3.688 -199

26-27 5,26 79,33 -27.740 -1.459 -6.247 -328

27-28 4,90 84,23 -30.850 -1.513 -8.738 -429

28-29 4,13 88,36 -33.691 -1.391 -11.315 -467

29-30 3,53 91,89 -36.653 -1.293 -13.901 -491

30-31 2,54 94,43 -39.557 -1.005 -16.345 -415

31-32 1,91 96,34 -42.865 -817 -18.895 -360

32-33 1,52 97,85 -44.580 -676 -21.317 -323

33-34 1,09 98,95 -48.775 -534 -23.605 -258

34-35 0,67 99,62 -51.636 -346 -25.768 -173

35-36 0,28 99,90 -55.031 -155 -28.450 -80

T > 36 0,11 100,00 -55.288 -59 -29.933 -32

-18.760 3.297

QPm QPfcm

Para el free-cooling entálpico el valor de QPfcm en toda la temporada sería de 3.297 kW que es 17,6% de la potencia media requerida QPm.

En definitiva, en este caso, el free-cooling térmico se comporta mejor que el free-cooling entálpico.

A continuación se muestran gráficamente la potencia ponderada media anual de enfriamiento gratuito (QPfcm) que se consigue, así como el % sobre el consumo de energía total que es capaz de aportar, correspondientes a los valores mostrados en las dos tablas anteriores.

Page 26: Guia tecnica ahorro y recuperacion de energia

24

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

20.000

18.000

16.000

14.000

12.000

10.000

8.000

6.000

4.000

2.000

0

Pote

ncia

(W)

Demandatérmica

FC entálpico FC térmico

Potencia ponderada media anual de enfriamiento

gratuito (free-cooling) (PPfcm)

18.760

3.297

6.913

40

35

30

25

20

15

10

5

0

(%)

Sin FC FC entálpico FC térmico

Porcentaje ahorro de enfriamiento

gratuito (free-cooling)

0,0

17,6

36,9

Figura 2.9: Comparación datos ejemplo

8 Estudio comparativo con otras tipologías de edificios para diferentes zonas climáticas

El estudio se realiza para tres edificios en cinco de las 12 zonas climáticas de la tabla “D.1.- Zonas climáticas” del Apéndi-ce D del DB-HE1, representadas a su vez por una ciudad significativa de la misma. Con esta selección se abarca un amplio espectro de la diversidad climatológica española. Las ciudades son: Burgos, Madrid, Barcelona, Sevilla y Las Palmas.

Uno de los edificios es el área de servicio presentado anteriormente, siendo los otros dos: un edificio de oficinas (ocupación baja y 3.240 horas de funcionamiento año) y una sala de espectáculos (ocupación alta y 1.980 horas de funcionamiento año).

Condiciones exteriores de proyecto: se han considerado los valores de la Norma UNE 100001 para el Nivel de Percentil Estacional NPE de la Tabla siguiente:

CiudadesVerano

(NPE 1%)Invierno

(NPE 99%)

TS ( °C) TH ( °C) TS ( °C)

Sevilla 38,9 25,1 +0,6

Madrid 36,5 22,6 -4,9

Burgos 30,8 20,1 -7,2

Las Palmas 29,5 23,5 +12,1

Barcelona 29,3 24,8 +0,1

Condiciones interiores de diseño: se ha considerado los valores medios de la Tabla 1.4.1.1 de la IT 1.1 Exigencia de Bien-estar e Higiene del RITE.

Verano Invierno

Tª ( °C) HR (%) Tª ( °C) HR (%)

24 52,5 22 45

A continuación se muestran las conclusiones y el resumen de los resultados de las cinco localidades para las tres tipo-logías de edificio. En cada caso se recoge:

1 El tipo de control de enfriamiento gratuito que ha resultado más favorable: free-cooling térmico (FCT) o free-cooling entálpico (FCH).

2 El porcentaje de energía térmica ahorrada anualmente en kWh.

Page 27: Guia tecnica ahorro y recuperacion de energia

25

Enfriamiento gratuito

50

45

40

35

30

25

20

15

10

5

0

(%)

Burgos (FCT)

1.980 horas ocupación alta 8.760 horas ocupación media 3.240 horas ocupación baja

Madrid (FCT) Barcelona (FCH) Sevilla (FCT) Las Palmas (FCH)

43,1

21,4

11,4

19,0 16,2

48,6

36,9

22,124,1

19,6

36,2

11,87,8

9,811,3

Las conclusiones que se pueden extraer son las siguientes:

1 Para zonas húmedas, el porcentaje de ahorro de energía sobre la demanda térmica en modo de refrigeración es ma-yor cuando utilizamos el free-cooling entálpico que el free-cooling térmico para zonas con humedad relativa exterior alta, como Barcelona (zona Climática C2) o Las Palmas de Gran Canaria (zona Climática A3), en las que la entalpía del aire exterior es mayor que la entalpía del aire interior, por debajo de la temperatura seca de proyecto de + 24 °C. En estas situaciones la compuerta de aire exterior se posiciona antes en el mínimo de ventilación con el free-cooling entálpico (FCH) que con el térmico (FCT) lo que impide que no aumente la humedad interior, o lo que es lo mismo, la carga latente y también la carga sensible.

2 Para zonas secas donde la entalpía del aire exterior es menor que la del aire interior, como sucede en las otras tres zonas, Madrid (D3), Burgos (E1) y Sevilla (B4) que se han analizado, con el aire exterior mínimo de ventilación (Vvent) se compensa la carga latente del edificio. Por tanto, sólo se debe tener en cuenta el criterio de comparar temperatura para evitar carga sensible a partir de 24 °C; es decir, que se utilizará el FCT para evitar que aumente la carga sensible, o un control entálpico mejorado.

2.2 sistemas de enfriamiento Gratuito por aGua

2.2.1 Batería adicional

En aplicaciones de climatización se puede producir la circunstancia de que la temperatura del aire exterior es inferior a la temperatura del agua a enfriar. En dichas circunstancias es posible un enfriamiento parcial o total del fluido a refrigerar con el aire exterior que está más frío, por lo tanto el free-cooling por batería adicional es una solución indirecta donde se refrigera el agua utilizada como fluido de transporte térmico.

La aplicación de este free-cooling requiere climas fríos y aplicaciones intensivas con una demanda frigorífica importante, incluso a temperaturas exteriores bajas, lo que en España sucede en muy pocas localidades/instalaciones.

Suelen ser equipos compactos con dos baterías, una de aire-agua y otra aire-refrigerante. Dependiendo de las condi-ciones, el control del equipo decide si este debe trabajar como un aerotermo o como una enfriadora o las dos cosas al mismo tiempo.

La acción del free-cooling debe ser proporcional para poder aprovechar las ocasiones donde la temperatura exterior no es suficientemente baja como para compensar por sí misma la carga frigorífica; en este caso el free-cooling funcionará como un preenfriamiento del agua antes de entrar en el evaporador.

Page 28: Guia tecnica ahorro y recuperacion de energia

26

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Es una técnica muy sencilla y útil dado que no requiere ninguna modificación de la instalación, la planta en-friadora ya dispone de las dos baterías exteriores en paralelo y mediante su control decide cuando trabajar en modo free-cooling, free-cooling + enfriadora, o en-friadora solo.

La enfriadora dispone de una válvula de 3 vías interior que mediante el control centralizado decide si enviar el agua directamente al evaporador o enviarla primero a la batería exterior del free-cooling. Esta decisión se toma en función de la diferencia de temperaturas entre el flui-do a enfriar y la temperatura del aire exterior. Solo con

un grado de diferencia empezará a entrar en acción el free-cooling.

Los compresores funcionarán en paralelo con la bate-ría de free-cooling hasta que la temperatura exterior sea suficientemente baja como para poder compensar completamente la carga de la instalación. A partir de ese punto, la enfriadora parará sus compresores y se comportará como un aerotermo.

A continuación se detallarán los 3 posibles modos de funcionamiento de una enfriadora con free-cooling por batería adicional.

Free-cooling Free-cooling + Enfriadora Enfriadora

-15 -5 5 15 25 35

Figura 2.10: Consumo eléctrico de los diferentes modos de funcionamiento contra equipos standar

Page 29: Guia tecnica ahorro y recuperacion de energia

27

Enfriamiento gratuito

Modo frío

El sistema actúa como una enfriadora convencional, el agua no pasa por la batería de free-cooling dado que el sistema entiende que no aportaría ningún ahorro energético.

Este modo se produce cuando la temperatura de retorno es inferior a la temperatura exterior.

Sistema free-cooling

Intercambiador

Evaporador

+10°C +15°C +35°C

Condensador

Funcionamiento en la estación veraniegaEn el funcionamiento veraniego el grupo frigorífico se porta como un chillereléctrico tradicional; es decir, los compresores frigoríficos están en función.

Compresor

Figura 2.11: Esquema funcionamiento en modo frío

Page 30: Guia tecnica ahorro y recuperacion de energia

28

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Modo frío + free-cooling

El sistema actúa como una enfriadora convencional con un preenfriamiento del agua antes de la entrada al evaporador, el agua pasa por la batería de free-cooling dado que el sistema entiende que en este caso aporta un ahorro energético.

Este modo se produce cuando la temperatura de retorno es superior a la temperatura exterior, pero la temperatura ex-terior no es suficientemente baja como para cubrir la carga frigorífica al 100%.

Durante este proceso pueden modular los ventiladores exteriores, la válvula de 3 vías y el control de capacidad del com-presor para cubrir con exactitud la demanda y con el máximo ahorro energético.

Sistema free-cooling

Intercambiador

Condensador

Funcionamiento en media estaciónEn la media estación es posible parcializar el funcionamiento del compresor frigorífico gracias

a una pre-refrigeración del agua mediante el radiador.

Evaporador

+10°C +15°C +13°C

Compresor

Figura 2.12: Esquema funcionamiento en modo mixto frío + free-cooling

Page 31: Guia tecnica ahorro y recuperacion de energia

29

Enfriamiento gratuito

Modo free-cooling

El sistema actúa como un aerotermo, el agua no pasa por el evaporador y solo pasa por la batería de free-cooling, es el momento de máximo ahorro energético dado que los compresores están parados.

Este modo se produce cuando la temperatura de retorno es superior a la temperatura exterior y la temperatura exterior es suficientemente baja como para cubrir la carga frigorífica al 100%.

Durante este proceso pueden modular tanto los ventiladores exteriores como la válvula de 3 vías para cubrir con exacti-tud la demanda y con el máximo ahorro energético.

Sistema free-cooling

Intercambiador

Evaporador

+10°C +15°C +5 °C

Condensador

Funcionamiento en la estación invernalEn el funcionamiento invernal el agua es totalmente refrigerada por el radiador

limitando al máximo, por consiguiente, el consumo de energía eléctrica.

Compresor

Figura 2.13: Esquema funcionamiento en modo free-cooling

Page 32: Guia tecnica ahorro y recuperacion de energia

30

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ejemplo de cálculo de ahorro energético

A continuación se detallará un cálculo de ahorro ener-gético-económico de una solución de free-cooling con batería adicional respecto a un equipo convencional sin free-cooling.

Los resultados dependen en gran medida del tipo de utilización y la zona geográfica, por lo tanto deberían realizarse cada vez que sea necesario con los datos pertinentes.

Unidad free-cooling

Tipo EnfriadoraFC

Refrigerante R134a

Capacidad frigorífica a la temperatura de condensación fijada

1.167 kW

Evaporador T ent 15 °C

T sal 10 °C

Unidad sin free-cooling

Tipo Enfriadora

Refrigerante R134a

Capacidad frigorífica a la temperatura de condensación fijada

1.134 kW

Evaporador T ent 15 °C

T sal 10 °C

Tabla 1: Datos iniciales del cálculo

Perfil de temperaturas anual

Un perfil clásico de clima frío donde los equipos con free-cooling tienen su utilización.

T ambiente (°C)

Horas al año

T ambiente

(°C)

Horas al año

T ambiente

(°C)

Horas al año

-11 1 7 859 25 190

-9 56 9 699 27 80

-7 34 11 750 29 37

-5 110 13 724 31 17

-3 307 15 725 33 0

-1 425 17 595 35 0

1 497 19 527 37 0

3 675 21 431 39 0

5 701 23 320 41 0

Tabla 2: Perfil de horas anual

Perfil de cargas

Carga constante durante el año y sin variación con la temperatura exterior.

-15 -5 5 15 25 35 45

1.200

1.000

800

600

400

200

0

Carg

a de

refr

iger

ació

n (k

W)

Temperatura del aire exterior (°C)

Figura 2.14: Carga de la instalación

Con las hipótesis de cálculo anteriormente mencio-nadas, los cálculos arrojan un ahorro de un 22% en energía eléctrica.

Este ahorro energético se produce gracias a la gran cantidad de horas de funcionamiento y a las bajas tem-peraturas que se dan en su ubicación geográfica.

Ahorro 22%

E ab

s (k

Wh/

año)

180.000

160.000

140.000

120.000

100.000

80.00060.000

40.000

20.000

-11 -5

Ts, ext

1 7 13 19 25 31 37-

Figura 2.15: Consumo anual equipos free-cooling contra equipo convencional

Potencia consumida de las dos unidades

P ab

s. (k

W)

Ts, ext

-15 15 25 35-5 5

600

500

400

300

200

100

0

Figura 2.16: Consumo anual medio en función de la temperatura exterior de equipos free-cooling contra equipo convencional

Page 33: Guia tecnica ahorro y recuperacion de energia

31

Enfriamiento gratuito

Si tenemos en cuenta que la temperatura exterior máxi-ma para que entre en funcionamiento este sistema será 2 ó 3 °C inferior a la temperatura máxima de retorno del circuito de agua fría (por ejemplo, 15 °C), vemos que será útil cuando la temperatura seca exterior sea infe-rior a 12 °C y, en estos casos, claramente el free-cooling presenta mejores prestaciones.

Como conclusiones podemos establecer:

• Si el sistema de climatización es por aire la utilización de esta técnica de recuperación no tiene aplicación en condiciones de confort, ya que se solapa en su campo de aplicación con el que se puede obtener utilizando solamente el free-cooling, con menores costes, consumos energéticos, y mantenimiento más sencillo. No obstante, si en nuestra instalación se presentan locales con patinillos verticales insuficien-tes para las secciones de conductos del free-cooling, o cuando las tomas y descargas del aire del citado free-cooling se hacen desde la fachada del local y es inviable el paso de conductos de gran sección, será necesario plantearse este sistema.

• Si el sistema es por agua (fan-coils, etc.) puede plantearse la utilización del mismo.

Entre las aplicaciones de este sistema podemos men-cionar las siguientes:

• Cargas frigoríficas poco dependientes de la tempe-ratura exterior.

• Ubicación geográfica con muchas horas/año por debajo de los 10 °C.

• Temperatura del agua lo más alta posible (instala-ciones de techo frío,…).

• Gran número de horas de funcionamiento en zona invernal.

2.2.2 Geotermia

Los sistemas de bomba de calor agua-agua con fuen-te de disipación geotérmica de baja entalpía utilizan la capacidad de fuentes naturales como pozos, lagos o la propia corteza terrestre para ceder o absorber el calor tomado o aportado al ambiente en locales climatizados. Dichas fuentes, que en muchos casos pueden consi-derarse inagotables (formas de energía renovables), tienen como una de sus principales características su elevada inercia, lo que provee de gran estabilidad a los sistemas de climatización que se sirven de ellas.

En el caso más habitual de las bombas que trabajan contra el terreno, el intercambiador de calor exterior consiste gene-ralmente en sondas geotérmicas horizontales o verticales.

Por debajo de una cierta profundidad (unos 15 m), el te-rreno se mantiene a una temperatura estable a lo largo del todo el año, ya que es insensible a la radiación solar y a la temperatura exterior, conservándose dentro de un valor constante a lo largo de todo el año.

Pero en el caso de que haya un equipo bomba de calor que aproveche esta fuente, en la época invernal, en la que hay demanda de calefacción, el calor cedido a los locales climatizados es extraído del terreno, con lo que éste se va enfriando en la zona dentro del entorno de las sondas geotérmicas hasta unos valores admisibles para asegurar el correcto rendimiento del equipo, para lo cual las sondas se habrán dimensionado adecuadamente.

En época estival ocurre justo el fenómeno opuesto. El terreno va absorbiendo el calor extraído de los locales climatizados, y consecuentemente se va calentando, siempre dentro de unos límites admisibles conforme a un diseño adecuado.

Estos valores de la temperatura del terreno varían mucho según las características físicas del terreno (conductividad, calor específico), del punto geométri-co en que se mida (profundidad y distancia a la que se encuentre de la sonda), del tiempo a lo largo del cual se esté trabajando en el mismo régimen y de las condicio-nes de trabajo en los que funcione el equipo.

Pero es en los cambios de ciclo cuando el terreno dispo-ne de una temperatura favorable para la climatización por free-cooling o refrigeración pasiva.

Su utilización típica es al principio de la época estival, y consiste simplemente en aprovechar las bajas tempe-raturas del terreno resultantes durante el invierno para enfriar el agua que luego se recirculará por el interior de los locales, a una temperatura lo suficientemente baja para que no sea necesaria la entrada del compresor del circuito frigorífico (refrigeración activa) y, consecuente-mente, el gasto energético sea mínimo.

Se trata pues de un modo específico de recuperación de calor, puesto que se aprovecha la temperatura exis-tente en el terreno para climatizar de manera que puede considerarse gratuita, con el único gasto energético de las bombas de recirculación de agua.

A continuación se muestra un esquema tipo del circuito de una unidad bomba de calor agua-agua con refrigera-ción pasiva.

Page 34: Guia tecnica ahorro y recuperacion de energia

32

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

FS FS

Inst

alac

ión

Fuente de disipación geotérmica

Válvula de 3 vías parafree-cooling pasivo

Figura 2.17: Esquema básico de enfriamiento gratuito por geotermia

En la figura 2.17 puede verse como un conjunto de vál-vula de tres vías y de intercambiador, incluidos en la unidad bomba de calor, permite transferir el calor en-tre el circuito de la fuente geotérmica y el circuito de climatización.

En este caso, el agua procedente de la sonda geotér-mica atraviesa el intercambiador del circuito frigorífico (condensador en el caso de funcionamiento estival) correspondiente al lado de la sonda sin verse afectado por la actuación de este circuito, puesto que como se ha indicado antes, el compresor permanece apagado.

Este agua circula a través del primario del intercambia-dor del free-cooling. En el secundario, el agua destinada a la refrigeración (o mejor refrescamiento) de los loca-les, es recirculada por la bomba del circuito que integra la unidad, atraviesa el otro intercambiador frigorífico (que haría las funciones de evaporador), desactivado a causa del paro del compresor.

Es el sistema de control el que decidirá la actuación de la válvula de tres vías en coordinación con los otros elementos de la instalación afectados; en concreto, el compresor y las bombas de recirculación.

Los parámetros que establecerán la entrada o no del free-cooling pasivo serán:

• El estado de demanda de refrigeración.

• El valor de consigna de la temperatura del agua a impulsar al local.

• El valor de temperatura del agua procedente de la sonda geotérmica.

En el momento que la temperatura del agua procedente de la sonda geotérmica sea inferior a la requerida por el agua para la climatización, el free-cooling pasivo es activado.

Page 35: Guia tecnica ahorro y recuperacion de energia

33

Enfriamiento gratuito

Una vez el sistema compruebe que no es capaz de alcanzar las condiciones requeridas, porque la temperatura del agua procedente de la sonda sea superior a la requerida, la válvula de 3 vías cerraría el paso de agua hacia el intercambiador y entraría en marcha el compresor, actuando como bomba de calor agua-agua.

Si bien es evidente que el free-cooling pasivo es un modo de recuperación de energía de aplicación directa en este tipo de sistemas, es muy difícil la valoración del ahorro energético si no es por simulación directa del sistema concreto que se vaya a aplicar.

Esto se debe en primer lugar a que es necesario conocer con precisión la evolución anual de la carga que tendrá el sistema a lo largo del año, porque esta es la que definirá a su vez la evolución de la temperatura del terreno y, conse-cuentemente, las condiciones en las que podrá aplicarse este modo de recuperación de calor. Y en segundo lugar a las condiciones de comportamiento térmico del terreno que dependerán de su constitución y de la fisonomía de las sondas.

A priori puede afirmarse que solo los sistemas geotérmicos de bomba de calor con funcionamiento en calefacción en invierno y en refrigeración en verano son susceptibles de utilizarlo, puesto que en este caso es cuando se da la doble condición de que el terreno se encuentra a una temperatura suficientemente baja en momentos en los que es necesaria refrigeración. Esto hace que los países de clima mediterráneo, con demanda de calefacción y de refrigeración, sean los que mayor uso puedan hacer de estos sistemas.

2.2.3 Torre de refrigeración

Existe la posibilidad de aprovechar las condiciones energéticas del aire exterior, mediante el enfriamiento de agua en una torre de refrigeración y utilizar dicha agua enfriada para enfriar, a su vez, el aire de impulsión a los locales por medio de una batería agua-aire situada en la UTA, a continuación del free-cooling y antes de las baterías principales de refri-geración y calefacción.

La disposición del sistema sería similar al de la figura siguiente:

Aire expulsado Aire exterior

Aire de mezcla

Airerecirculado

Batería de enfriamiento de agua

Zona demezcla

Torre de refrigeración

Figura 2.18: Esquema básico de enfriamiento gratuito por batería de agua y refrigerada por torre

Page 36: Guia tecnica ahorro y recuperacion de energia

34

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

La inclusión en la unidad de tratamiento de aire, después del free-cooling, de la citada batería de agua, refrigerada a través de un circuito de torre, supone un ahorro de energía adicional, al evitar la entrada en funcionamiento de la batería principal de refrigeración del sistema.

Si tenemos en cuenta que la mínima temperatura de agua enfriada que podremos obtener siempre será superior en como mínimo 3 °C a la temperatura de bulbo húmedo de la torre, y consideramos un salto térmico mínimo de 4 °C entre la temperatura de entrada y salida de la batería de enfriamiento, obtenemos que la temperatura de impulsión hacia los locales a climatizar superará los 20 °C si la temperatura húmeda exterior es superior a 13 °C; por lo tanto, esta técnica sería de utilización cuando la temperatura húmeda exterior fuera inferior a esos 13 °C, y en estos casos, claramente el free-cooling presenta mejores prestaciones.

En la figura 2.19 se ha representado sobre el psicométrico la situación de operación de una torre, cuyo uso podría ser el enfriamiento de agua para conseguir condiciones de confort con esa agua enfriada por medio de dicha torre.

42 44 46 48 50 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

15°C, hw1=62,17 kJ/kg

19°C, hw1=79,42 kJ/kg

12°C

Salto térmico: 4°CAcercamiento: 3°C

Evolución del aire

Punto 1: Aire exterior18°C, 50% HR, Th=12°C, h1=34,44 kJ/kg

Eficiencia=R/(R+A); Efic=0,57Balance energético:h1+hw1=hw2 hw2=51,12 kJ/kg

Evolución del agua

Punto2: Salida del aire de la torre19°C, 90% HR(aprox.)

Figura 2.19: Evolución en el diagrama psicrométrico

En la figura 2.20 se ha presentado el comparativo entre ambos procesos, así como los rangos operacionales útiles (para instalaciones habituales de climatización).

Page 37: Guia tecnica ahorro y recuperacion de energia

35

Enfriamiento gratuito

Aire expulsado

Bomba circuladora Ventilador torre

Aire exterior

Aire de mezclaAire

recirculado

Batería de enfriamiento de agua

Zona demezcla

Torre de refrigeración

Min. tBH:12°C

�15°C

≥19°C

Tª imp aire ≥21°C

Torre + Batería agua fríaRango operación�14÷19°C (Fuera de este rango HR muy bajas)

Aire expulsado

Enfriamiento gratuito por aire

Aire exterior

Airerecirculado

Aire de mezcla

Zona demezcla

Tª imp aire: mezcla (16°C)÷21°C

Free-coolingRango operación�Tª min. zona÷21°C (Sin limitación por HR )

Para aplicaciones de confort, el free-cooling es más barato y consume menor energía que el conjunto torre-batería (ya que no hacen falta ni la bomba circuladora ni el ventilador de la torre) para conseguir el mismo efecto de refrigeración.

Figura 2.20: Comparativo energético torre-batería de agua/free-cooling

Como conclusiones podemos establecer:

• La utilización de este sistema combinado free-cooling/batería adicional, no tiene aplicación en condiciones de con-fort, ya que se solapa en su campo de aplicación con el que se puede obtener utilizando solamente el free-cooling, con menores costes, consumos energéticos y mantenimiento más sencillo, al no necesitar los ventiladores de la torre, ni la bomba de circulación del circuito torre-batería.

• Tiene sentido la utilización de la batería de enfriamiento en aquellos casos donde no sea posible la utilización del free-cooling:

– Locales con patinillos verticales insuficientes para las secciones de conductos del free-cooling.

Page 38: Guia tecnica ahorro y recuperacion de energia

36

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

– Cuando las tomas y descargas del aire del ci-tado free-cooling se hacen desde la fachada del local y es inviable el paso de conductos de gran sección.

2.3 sistemas de enfriamiento Gratuito por miGración de refriGerante

Los sistemas de enfriamiento gratuito por migración de refrigerante en equipos aire-agua (también denomina-do free-cooling por expansión directa) son soluciones técnicas que, mediante un proceso termodinámico y operativo específico, permiten enfriar agua aprove-chando como energía gratuita las bajas temperaturas exteriores; usando para ello exclusivamente los propios intercambiadores de calor del equipo (condensador y evaporador) y sin requerir del funcionamiento de los compresores.

Se trata por tanto de sistemas que cumplen con lo dis-puesto en el Reglamento de Instalaciones Térmicas en los Edificios (RITE) 2007, en concreto con la I.T.1.2.4.5.1 Enfriamiento Gratuito por aire exterior, al ofrecer solu-ciones que aprovechan la energía gratuita ambiental para transferirla al proceso industrial o de climatización en forma de agua enfriada.

Principio de funcionamiento

El enfriamiento gratuito por migración de refrigerante se fundamenta en un efecto termodinámico denomina-do termosifón, consistente en la migración natural del gas refrigerante desde una región relativamente calien-te a una región relativamente fría, con la consecuente transferencia de calor.

Durante el proceso convencional de refrigeración me-cánica o por ciclo de compresión, el refrigerante es evaporado en unas condiciones de presión y temperatu-ra inferiores a las de condensación como consecuencia de que el medio de evaporación, agua de retorno de la instalación (por ejemplo, a 7/12 °C de salida/entrada) está más frío que el medio de condensación (aire exte-rior, por ejemplo, a 35 °C). Esta diferencia de presión en el circuito frigorífico requiere ser salvada mediante la utilización de procesos mecánicos de compresión y ex-pansión para transferir calor desde el evaporador (foco frío) al condensador (foco caliente). Es decir, que se re-quiere de equipos mecánicos tales como compresor y

dispositivos de expansión para garantizar el ciclo frigo-rífico y, por ende, el proceso de enfriamiento de agua.

Sin embargo, cuando se dan condiciones climatológicas durante las cuales la temperatura exterior (medio de condensación) es significativamente inferior a la tempe-ratura de retorno de agua de la instalación o entrada al evaporador (medio de evaporación) se produce, a partir de una diferencia térmica determinada, una inversión del estado de presiones en el circuito frigorífico. Por efec-to de la baja temperatura exterior (por ejemplo, 0 °C), la presión de condensación correspondiente llega a ser inferior a la presión de evaporación correspondien-te a la temperatura de agua de retorno al evaporador (por ejemplo, 15 °C), creando una diferencia negativa de presión que propicia el efecto de migración natural del refrigerante (no forzada mecánicamente) desde el evaporador (foco caliente y de mayor presión) hasta el condensador (foco frío y de menor presión).

El proceso completo de enfriamiento por migración natural de refrigerante, aprovechando las bajas tempe-raturas exteriores como fuente natural de energía, se basa por tanto en el siguiente ciclo frigorífico:

1 El agua de retorno de la instalación o de entrada al evaporador produce, mediante un proceso de intercambio térmico agua-refrigerante llevado a cabo en el evaporador, la evaporación de este úl-timo. La energía requerida para la evaporación es extraída del agua produciendo su consiguiente enfriamiento.

2 En condiciones favorables para el enfriamiento gratuito; es decir, de diferencia de temperatu-ra y presión en el evaporador con respecto al condensador o, lo que es lo mismo, cuando la temperatura exterior sea suficientemente infe-rior a la temperatura de agua de la instalación, el sistema de control del equipo habilitará un circuito frigorífico que bypaseará el propio del compresor. De esta manera, el vapor de refri-gerante resultante del proceso de enfriamiento anterior migrará de manera natural desde el eva-porador hacia el condensador (foco de menor temperatura y presión).

3 El proceso de condensación se realiza mediante un segundo proceso de intercambio térmico, en este caso refrigerante-aire exterior, durante el cual, la energía requerida para la condensación es extraída

Page 39: Guia tecnica ahorro y recuperacion de energia

37

Enfriamiento gratuito

del refrigerante (previamente absorbida por efecto de la evaporación) y cedida al aire exterior. Mediante la actua-ción sobre los ventiladores y consecuentemente sobre los caudales de aire exterior (elemento de condensación), se regula la presión de condensación en función de la demanda frigorífica del sistema y las condiciones exteriores; actuando por tanto estos como elemento principal de control de capacidad.

4 El refrigerante líquido es retornado nuevamente al evaporador mediante una bomba de refrigerante líquido diseña-da a tales efectos.

10°C 15°C

Figura 2.21: Esquema equipo

En el siguiente diagrama se ilustra de manera simplificada el proceso termodinámico de enfriamiento por migración de refrigerante, contrapuesto al proceso por compresión mecánica.

Page 40: Guia tecnica ahorro y recuperacion de energia

38

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

0,500,600,700,800,901,00

2,00

3,00

4,005,006,007,008,009,00

10,00

20,00

30,00

40,0050,00

140 170 200 230 260 290 320 350 380 410 4400,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 0-20 20 40

60

80

100

-40

00

-10-10

1010

2020

3030

4040

5050 60

6070

70 8080 90

90

-20-20

-30-30

-40

100 100

-40

Ciclo de refrigeración mecánica

Ciclo de enfriamiento gratuito por migración de refrigerante

CompresiónBomba

Evaporación

Condensación

Condensación

R134a

Figura 2.22: Ciclo seguido en el diagrama P-h

Las particularidades entre ambos procesos frigorífi-cos, mecánico o por migración, se resuelven mediante integración de componentes adicionales que, dada su interrelación e integración en el propio ciclo frigorífico, se recomienda formen parte intrínseca del equipo, aun pudiendo ser ofrecidos como configuraciones opciona-les de éstos.

En la siguiente ilustración se muestran los compo-nentes principales de un equipo aire-agua con doble circuito frigorífico y dotado de sistema de enfriamiento gratuito por migración de refrigerante.

2

3 3

4 4

5 5

6 6

7 7 77

1 1

1 - Condensador2 - Evaporador3 - Compresor4 - Válvulas de expansión

5 - Bypass/válvulas de 3 vías6 - Bomba de circulación de refrigerante7 - Válvulas de retención

Figura 2.23: Principales componentes de un equipo aire-agua

Tanto el condensador (1), entendido por tal el conjunto conformado de intercambiador más ventilador, como el evaporador (2), compresor (3), dispositivos de expansión (4) y retención (7) son elementos comunes a un equipo aire-agua, por lo que no requieren de mayor mención.

Los únicos dispositivos adicionales requeridos por y durante el funcionamiento de este sistema de enfria-miento gratuito son:

(5) Válvulas de bypass. La función de estos elementos es la de aislar el compresor, proporcionando un circui-to frigorífico paralelo al mismo con pérdidas de carga mínimas; facilitando de este modo la migración del re-frigerante en condiciones de free-cooling maximizando el rendimiento de este proceso de enfriamiento.

(6) Bomba de refrigerante líquido. La funcionalidad de esta bomba de circulación es la de transferir el refri-gerante líquido desde el condensador al evaporador, venciendo las diferencias de presión entre evaporador y condensador, así como las pérdidas de carga de la línea de líquido del circuito frigorífico.

Adicionalmente a estos componentes mecánicos, el equipo incorporará algoritmos de control específicos para gestión del modo de enfriamiento gratuito.

A efectos de realizar un análisis prestacional y cuan-tificar los ahorros obtenibles hay que tener en cuenta como primera consideración el impacto que, como con-secuencia de un diseño modificado, pudiera tener la opción de enfriamiento gratuito sobre los rendimientos

Page 41: Guia tecnica ahorro y recuperacion de energia

39

Enfriamiento gratuito

del equipo frigorífico cuando éste trabaje en modo de refrigeración por compresión. No obstante, en estos equipos la disminución de rendimiento es insignificante.

La única modificación a tener en cuenta es que la má-quina con opción de free-cooling de expansión directa integrada en la enfriadora, implica una carga de refrige-rante adicional que puede oscilar en torno al 4-5% por termino medio, por circuito.

Respecto a las prestaciones y rendimientos de los propios equipos aire-agua dotados con sistema de enfriamiento gratuito por migración de refrigerante cabe señalar que dependen fundamentalmente de dos factores: tecnología empleada y condiciones de funcionamiento (diferencia temperatura salida agua-temperatura exterior).

A continuación se presentan en la figura 2.24 valores medios típicos de equipos actualmente existentes en el mercado dotados de esta tecnología.

% de la capacidad Nominal (Eurovent)

Eficiencia energética(EER)

Rendimientos de sistemas de enfriamiento gratuito por migración de refrigerante

DT (Tª salida agua - Tª exterior) - (°K)

31%

EER

49%

63%

68% 71%

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

Figura 2.24: Valores medios de EER frente a temp. salida agua-temp. exterior

Tomando como referencia la capacidad frigorífica de dicho equipo operando en modo de enfriamiento mecá-nico por compresión y condiciones nominales Eurovent, en modo de enfriamiento gratuito, con 10 K de diferen-cial de temperatura, se dispondrá, aproximadamente, del 45% al 50% de la capacidad nominal.

A partir de diferenciales térmicos de 20 K entre el agua de impulsión y aire exterior, estos sistemas ofrecen ca-pacidades frigoríficas mediante enfriamiento gratuito superiores al 65% de la capacidad nominal, con índices de eficiencia energética en torno a 25 a 30 kW produci-dos por kW consumido, llegando a los 35 kW producidos por kW consumido.

Considerando como ejemplo un equipo aire-agua de potencia frigorífica aproximado de 500 kW en modo de re-frigeración mecánica y condiciones Eurovent (agua 7/12 °C impulsión y retorno respectivamente y 35 °C de tempera-tura exterior), dicho equipo proporcionaría alrededor de 215 kW a 0 °C exteriores y 10 °C de agua de impulsión, con un índice de eficiencia energética, EER, de 24.

A continuación, a modo de ejemplo y con el fin de va-lorar el comportamiento de la opción de free-cooling por migración de refrigerante, se muestra una tabla del comportamiento de la misma unidad enfriadora de potencia frigorífica aproximada de 500 kW en distintas condiciones de temperatura exterior y temperatura de salida de agua con la opción integrada del free-cooling de expansión directa:

Modo refrigeración por compresión

Tª ext. ( °C)

Pot. Mec. (kW)

Tª sal. agua ( °C)

Tª ent. agua ( °C)

EER ESEER

35 491,4 7 12 3,04 4,34

MODO DE REFRIGERACIóN GRATUITA

Tª Sal. agua 7 °CTemperatura exterior ( °C)

5,0 2,5 0,0 -2,5 -5,0 -7,5 -10,0 -12,5 -15,0 -17,5

Potencia FC (kW) 0,00 0,00 156,0 201,5 244,7 284,7 305,4 312,7 316,3 317,4

% Pot. nominal 0,00 0,00 31,75 41,01 49,80 57,94 62,15 63,63 64,37 64,59

Tª Ent. agua 7,00 7,00 8,63 9,11 9,56 9,98 10,19 10,27 10,31 10,32

EER 0,00 0,00 17,49 22,47 27,15 31,44 33,56 34,19 34,42 34,45

Tª Sal. agua 8 °CTemperatura exterior ( °C)

5,0 2,5 0,0 -2,5 -5,0 -7,5 -10,0 -12,5 -15,0 -17,5

Potencia FC (kW) 0,00 0,00 175,3 22,02 262,9 298,2 313,4 317,5 321,1 320,8

% Pot. nominal 0,00 0,00 35,67 44,81 53,50 60,68 63,78 64,61 65,34 65,28

Tª Ent. agua 8,00 8,00 9,83 10,30 10,75 11,12 11,28 11,32 11,36 11,35

EER 0,00 0,00 19,64 24,56 29,18 32,92 34,43 34,72 34,94 34,82

Page 42: Guia tecnica ahorro y recuperacion de energia

40

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Tª Sal. agua 9 °CTemperatura exterior ( °C)

5,0 2,5 0,0 -2,5 -5,0 -7,5 -10,0 -12,5 -15,0 -17,5

Potencia FC (kW) 0,00 147,90 194,5 238,7 281,2 307,1 318,3 322,4 325,8 323,0

% Pot. nominal 0,00 30,10 39,58 48,58 57,22 62,49 64,77 65,61 66,30 65,73

Tª Ent. agua 9,00 10,55 11,04 11,50 11,94 12,21 12,33 12,37 12,41 12,38

EER 0,00 16,70 21,80 26,63 31,21 33,91 34,98 35,25 35,45 35,06

Tª Sal. agua 10 °CTemperatura exterior ( °C)

5,0 2,5 0,0 -2,5 -5,0 -7,5 -10,0 -12,5 -15,0 -17,5

Potencia FC (kW) 0,00 167,30 213,8 257,3 299,5 316,1 323,3 327,3 330,5 325,2

% Pot. nominal 0,00 34,05 43,51 52,36 60,95 64,33 65,79 66,61 67,26 66,18

Tª Ent. agua 10,00 11,75 12,24 12,69 13,14 13,31 13,39 13,43 13,46 13,41

EER 0,00 18,90 23,96 28,69 33,23 34,90 35,53 35,78 35,97 35,30

Tª Sal. agua 11 °CTemperatura exterior ( °C)

5,0 2,5 0,0 -2,5 -5,0 -7,5 -10,0 -12,5 -15,0 -17,5

Potencia FC (kW) 0,00 186,80 232,6 275,8 308,6 322,2 328,3 332,1 332,8 327,5

% Pot. nominal 0,00 38,01 47,33 56,13 62,80 65,57 66,81 67,58 67,72 66,65

Tª Ent. agua 11,00 12,96 13,44 13,89 14,23 14,38 14,44 14,48 14,49 14,43

EER 0,00 21,90 26,07 30,76 34,25 35,58 36,08 36,32 36,22 35,55

Tª Sal. agua 12 °CTemperatura exterior ( °C)

5,0 2,5 0,0 -2,5 -5,0 -7,5 -10,0 -12,5 -15,0 -17,5

Potencia FC (kW) 159,20 206,30 251,4 294,3 317,7 327,3 333,3 337,0 335,2 329,7

% Pot. nominal 32,40 41,98 51,16 59,89 64,65 66,61 67,83 68,58 68,21 67,09

Tª Ent. agua 13,67 14,16 14,63 15,09 15,333 15,43 15,49 15,53 15,51 15,46

EER 18,12 23,29 28,17 32,82 35,26 36,14 36,63 36,85 36,47 35,79

Para la elaboración de este ejemplo se ha optado por analizar un edificio de oficinas que integra un centro de procesamiento de datos, mediante aplicaciones informáticas específicas y simulaciones energéticas para un periodo completo de un año.

Las consideraciones generales de diseño aplicadas en el análisis se estructuran bajo los siguientes parámetros:

• Como perfil climático de referencia, se ha utilizado el facilitado por el CIEMAT para Logroño: se utilizarán los datos climatológicos medios estadísticos para cada hora del año (Logoño TMY - Typical Meteorological Year).

• Los perfiles de carga y los horarios de funcionamiento se corresponden con los de las aplicaciones tipo del sector.

• Horario de operación de la instalación: 24 horas/día, 365 días/año.

En la figura 2.25 se detalla el perfil climático de Logroño y las curvas de carga de refrigeración para una instalación con necesidad de 600 kW a 36,4 °C, 400 kW a 14,2 °C y 300 kW a -3,0 °C.

El número total de horas-año correspondientes a cada temperatura exterior (para el perfil climático seleccionado y la programación horaria detallada para la instalación) establece el tiempo durante el cual podrán entrar en funcionamiento los equipos y cuales serán las condiciones de trabajo asociadas a dicha operación. En base a estas variables, el proceso de simulación energética evaluará los rendimientos propios de cada unidad.

(continuación)

Page 43: Guia tecnica ahorro y recuperacion de energia

41

Enfriamiento gratuito

700 kW

600 kW

500 kW

400 kW

300 kW

200 kW

100 kW

0 kW

1.600 hrs/a.

1.400 hrs/a.

1.200 hrs/a.

1.000 hrs/a.

800 hrs/a.

600 hrs/a.

400 hrs/a.

200 hrs/a.

0 hrs/a.

-5,3

°C

-2,5

°C

0,3

°C

3,1

°C

5,8

°C

8,6

°C

11,4

°C

14,2

°C

16,9

°C

19,7

°C

22,5

°C

25,3

°C

28,1

°C

30,8

°C

33,6

°C

36,4

°C

Perfil climático y curvas de carga de refrigeración

Temperatura exterior (BIN) SPAIN_LOGROÑO_TMY.HW1

Perfil de cargasinstalación 600 kW

Horas - Año segúntemperatura exterior

Figura 2.25: Perfi l climático de Logroño y las curvas de carga de refrigeración

Por lo que respecta al tipo de unidad implicado en el diseño del proyecto, para evaluar la efi ciencia energética del free-cooling por migración de refrigerante, se comparará el comportamiento de dos equipos en el escenario presentado anteriormente.

Sistema 1: utilización de una enfriadora aire-agua SIN free-cooling por migración de refrigerante. El modelo selecciona-do es una unidad de tornillo con gestión de capacidad mediante válvula de corredera, refrigerante R-134a y evaporador inundado.

Sistema 2: utilización de la misma unidad enfriadora aire-agua del Sistema 1, equipada en este caso CON la opción de free-cooling por migración de refrigerante.

Instalación de referencia 600 kW

Sistema Sistema 1 Sistema 2

Tipo sistema 1 x Enfriadora aire/agua 1 x Enfriadora aire/agua

Refrigerante R-134a R-134-a

Modelo analizadoUnidad con compresores de tornillo.

Equipo sin opción de free-cooling por migración de refrigerante

Unidad con compresores de tornillo. Equipo con opción de free-cooling

por migración de refrigerante

EER (Efi ciencia a plena carga Eurovent) 3,05 3,05

ESEER (Efi ciencia a plena carga Eurovent) 4,21 4,21

SPLV (Efi ciencia a carga parcial sistema) 5,29 5,66

Nota. Los Ratios de Efi ciencia EER y ESEER del Sistema 2 están calculados bajo condiciones idénticas a las del Programa LCP de Eurovent.

Page 44: Guia tecnica ahorro y recuperacion de energia

42

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Para la simulación energética se tendrán en cuenta:

• Las curvas de carga o demanda de la instalación.

• El número total de horas-año en cada condi-ción de temperatura exterior que, según lo descrito, es función de los horarios de funcio-namiento de la instalación y del perfil climático preestablecido.

• Los rendimientos energéticos de los equipos según los porcentajes de capacidad que sea preciso activar (ple-na carga y carga parcial) y las condiciones de trabajo.

• Unos factores de suciedad de 0,0180 m2K/kW en el evaporador.

En las Tablas adjuntas se detallan los resultados de la evaluación en lo que a consumo energético y emisiones de CO2 se refiere:

Comparativo unidades sin y con free-cooling

Bin Temp.

(°C)

Carga edificio

(kW)

Horas funcionamiento

(h)

Energía frigorífica

(kWh)EER

unidad sin FCEER

unidad con FC

36,4 600 23 13.800 3,061 3,061

33,6 575 64 36.800 3,221 3,221

30,8 550 162 89.099 3,528 3,528

28,1 525 255 133.876 3,859 3,859

25,3 500 378 188.999 4,201 4,201

22,5 475 473 224.674 4,605 4,605

19,7 450 786 353.700 5,035 5,035

16,9 425 945 401.625 5,517 5,517

14,2 400 1.137 454.799 6,068 6,068

11,4 384 1.376 528.136 5,885 5,982

8,6 368 1.373 504.767 5,432 5,607

5,8 351 1.021 358.839 5,38 5,374

3,1 335 467 156.574 5,493 7,732

0,3 319 206 65.733 5,624 8,313

-2,5 303 94 28.472 5,776 27,52

8.760 3.539.895

Sistema 1 Sistema 2

Enfriadorasde condensación por aire

Capacidad refrigeración generada (kWh/año)

3.539.895 3.539.895

Consumo energético anual (kWh)

682.150 661.940

Ahorro energético anual (%)

x 2,96

Emisiones de CO2

0,649 Kg CO2/kWh

Emisiones anuales de CO2 (T)

443 430

Ahorro de emisiones (%)

x 2,96

Si tenemos en cuenta que la temperatura exterior máxima para que entre en funcionamiento este sistema será 10 °C inferior a la temperatura máxima de retorno del circuito de agua fría (por ejemplo, 15 °C), vemos que será útil cuando la temperatura seca exterior sea inferior a 5 °C, y en estos casos claramente el free-cooling presenta mejores prestaciones.

Page 45: Guia tecnica ahorro y recuperacion de energia

43

Enfriamiento gratuito

Como conclusiones podemos establecer:

• Sistemas de climatización por aire.

Si tenemos en cuenta que la temperatura exterior máxima para que entre en funcionamiento el free-cooling por migración debe ser 10 °C inferior a la temperatura máxima de producción de agua fría (supongamos 15 °C), se deriva que el proceso se-ría útil cuando la temperatura seca exterior fuese inferior a 5 °C.

Por tanto, esta técnica de recuperación se sola-paría, en aplicaciones de confort y caso de existir, con el free-cooling de aire (tratado en apartados previos), presentando éste último unas mejores prestaciones y un menor coste.

No obstante, si la aplicación carece de la posibili-dad de implantación del free-cooling de aire:

– por presentar locales con patinillos verticales insuficientes para las secciones de conducto de dicho free-cooling,

– o si las tomas y descarga del citado free-cooling se hacen desde fachada y es inviable el paso de conductos de cierta sección,

sería necesario plantearse el free-cooling por migración.

• Si el sistema es por agua (fancoils, etc.) puede plantearse la utilización de este free-coling.

• Entre las aplicaciones del free-cooling por mi-gración podemos mencionar los siguientes:

– Ubicación geográfica con un número elevado de horas/año por debajo de 0 °C.

– Gran número de horas de funcionamiento en refrigeración en periodo invernal.

– Cargas frigoríficas poco dependientes de la temperatura exterior.

– Temperatura de agua lo más alta posible (ins-talaciones de techo frío, suelo refrescante,...).

– Entre otras aplicaciones no afectadas por el Rite:

- Procesos industriales.

- Enfriamiento directo de equipos y maquinaria.

- Centros de cálculo.

Page 46: Guia tecnica ahorro y recuperacion de energia
Page 47: Guia tecnica ahorro y recuperacion de energia

45

3.0 Generalidades y normativa

Los equipos que utilizan este tipo de tecnología, dentro de las instalaciones de climatización, pueden englobarse en dos grandes grupos:

1 Los que se utilizan en procesos cuyo objetivo es el acondicionamiento del aire de los locales, donde el principal objetivo será reducir o eliminar la demanda energética de adecuación térmica de los edificios. Dentro de este grupo se encuentran los refrigeradores, los recuperadores evaporativos y los humectadores de aire de extracción.

2 Sistemas de refrigeración de equipos, como torres de refrigeración y condensadores evaporativos. Estos disposi-tivos permiten optimizar el consumo energético de las instalaciones condensadas por agua, y que por diferentes problemas como la Legionella, están siendo reemplazadas en algunas situaciones.

3.1 teoría de la refriGeración evaporativa

El enfriamiento evaporativo es un proceso de transferencia de calor y masa basado en la conversión del calor sensible en latente. El aire no saturado se enfría, proporcionando el calor sensible que se convertirá en latente para que se produzca la evaporación del agua. Si el proceso ocurre en condiciones adiabáticas la temperatura seca del aire disminuye a medi-da que su calor sensible se transforma en latente aumentando su humedad. Este intercambio de calor sensible y latente tiene lugar hasta que el aire se satura y la temperatura del aire y el agua se igualan, alcanzando un valor denominado “temperatura de saturación adiabática” (y que es prácticamente igual a la temperatura húmeda del aire), mientras el proceso es conocido como “saturación adiabática”.

Para definir esta temperatura se utiliza el concepto de túnel de humidificación adiabático; es decir, sin intercambio de calor con el exterior, en el que se introduce un aire húmedo en unas condiciones cualesquiera y se le somete a una ducha de agua recirculada, de forma que el aire a su salida llegue a saturación.

Se define como temperatura de saturación adiabática Tsat.ad a la temperatura que alcanza el aire a la salida del túnel, cuando se aporta el agua que se evapora a dicha temperatura de saturación adiabática. Un esquema del proceso se presenta en la figura siguiente.

Enfriamiento evaporativo

Page 48: Guia tecnica ahorro y recuperacion de energia

46

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Aire no saturado

Aislamiento

Aislamiento

Aire saturado

Aporte agua a Tsat.ad

Tsat.ad

hsat.ad

= h1

T1

HR1/h

1

HR = 100%

Figura 3.1: Túnel de saturación adiabática

En la parte final del túnel no existirá ni intercambio de masa (el aire se encuentra al 100% de humedad relati-va), ni intercambio de calor (la temperatura del aire y del agua coinciden), por tanto, dichas condiciones son únicamente función de las condiciones del aire a su entrada y, consecuentemente, se puede definir la tem-peratura de saturación adiabática como una propiedad termodinámica del aire húmedo.

Lewis demostró que, para la mezcla aire seco-vapor de agua, la temperatura de salida del aire de un túnel de saturación adiabática (temperatura de saturación adiabática) coincide prácticamente con la temperatura húmeda o de bulbo húmedo. En la realidad existen dife-rencias pequeñas entre ambas temperaturas.

La saturación adiabática rige la mayoría de los enfriado-res evaporativos. Es el proceso básico en aquellos casos donde la temperatura inicial del agua se aproxima a la temperatura de bulbo húmedo del aire de entrada, lo que ocurre generalmente cuando se recircula el agua de enfriamiento continuamente. En teoría, la temperatura del agua permanece constante, toda la evaporación sir-ve para enfriar el aire, no el agua.

Cuando el agua está considerablemente más caliente que la temperatura de saturación adiabática del aire, el

proceso se asemeja al de una torre de enfriamiento don-de se enfrían conjuntamente el aire y el agua.

En los enfriadores evaporativos directos sin bombas, como los de tipo “spray en corriente de aire”, utilizan agua sin recircularla, directamente de la red, pues ahorra costes de bombeo y reduce la corrosión y las incrustaciones, (en este caso la temperatura del agua es independiente de la temperatura húmeda del aire, por lo que el proceso no es estrictamente un proceso a temperatura húmeda constante). No obstante, habrá que tener la precaución en estos sistemas de evitar siempre la salida del proceso de aerosoles capaces de difundir la Legionella e intentar pulverizar una canti-dad de agua que asegure su evaporación total en la corriente de aire.

Existen límites al enfriamiento conseguido por la satura-ción adiabática. La cantidad de calor sensible eliminado no puede ser superior al calor latente necesario para saturar el aire. Las posibilidades de enfriamiento, por tanto, varían inversamente con el contenido en hume-dad del aire. Aire muy saturado de humedad, solo podrá ser enfriado de manera sensible por el intercambio de calor consecuencia de la diferencia de temperaturas aire/agua, no por el calor latente necesario para la eva-poración del agua en aire.

Page 49: Guia tecnica ahorro y recuperacion de energia

47

Enfriamiento evaporativo

A continuación se presentan los procesos ideales de la refrigeración evaporativa. Para una mejor comprensión de estos aspectos analizaremos los procesos con la ayuda de un diagrama psicrométrico, donde se representarán las posibles evoluciones que sufre el aire al ponerle en contacto con agua.

Como se ha indicado, el proceso ideal con recirculación del agua ideal es prácticamente adiabático (la diferencia estriba en la entalpía aportada por el agua de alimentación y que es evaporada), y sigue un proceso a temperatura húmeda constante (casi igual que la línea de entalpía constante), llegando el aire hasta la saturación, la evolución del proceso es hacia arriba y hacia la izquierda del punto de entrada del aire.

En la figura siguiente se presenta un ciclo ideal de saturación adiabática de aire a una temperatura elevada (35 °C) y baja hu-medad (20%) para mostrar cual podría ser el grado de enfriamiento teórico que se conseguiría en un proceso de saturación adiabática ideal. Se observa que la temperatura mínima que se puede conseguir es de 19 °C.

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Línea de temperaturahúmeda constante

Línea de entalpía constanteProceso ideal

1

2

Figura 3.2: Proceso ideal con recirculación

La mayoría de los enfriadores evaporativos difieren del caso adiabático dado que el agua se introduce a una temperatura diferente de la temperatura húmeda del aire, por lo que la propia agua intercambia también ca-lor sensible, y el aire lógicamente tenderá a acercarse a dicha temperatura con un 100% de humedad relativa.

Suponiendo una situación hipotética en la que la tem-peratura del agua se mantenga constante a lo largo del proceso, la evolución del aire entre la entrada y la salida se encontrará sobre la línea que une las condiciones del aire a la entrada y la temperatura del agua, represen-tada ésta sobre la línea de saturación en el diagrama psicrométrico, como se observa en la figura 3.3.

Cuando en un sistema aislado se pone en contacto aire con agua, si el aire gana entalpía, el agua es el que la pierde y se enfría, mientras que si el aire pierde entalpía el agua la gana y se calienta. En un proceso real de con-tacto aire-agua la temperatura del agua va a tender a la de saturación adiabática del aire, como la que alcanza en el túnel de saturación ya expuesto.

Para aclarar esto, se presenta la evolución de una co-rriente de aire que inicialmente se encuentra a 25 °C y 30% de HR en diferentes situaciones para diferentes temperaturas del agua. En el diagrama psicrométrico de la siguiente figura se presentan los diferentes procesos que puede seguir el aire.

Page 50: Guia tecnica ahorro y recuperacion de energia

48

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

42 44 46 48 50 0 2 4 6 8-10 -8 -6 -4 -2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

0

2

4

6

8

10

12

14

16

18

20

22

24

26 a

b

c

d

e

Agua

Aire

1

2

Figura 3.3: Procesos ideales a distintas temperaturas del agua

a) La temperatura del agua es superior a la temperatura seca del aire:

– El aire se calienta y humidifica ganando entalpía.

b) La temperatura del agua está entre las de bulbo seco y húmeda del aire:

– El aire se enfría y humidifica ganando entalpía.

c) La temperatura del agua está a la temperatura húmeda del aire:

– El aire se enfría y humidifica, siendo prácticamente su entalpía constante.

d- )La temperatura del agua está entre la temperatura de saturación adiabática y la temperatura de rocío del aire:

– El aire se enfría y humidifica perdiendo entalpía.

e) La temperatura del agua está por debajo de la temperatura de rocío (Tr) del aire:

– El aire se enfría y deshumidifica perdiendo entalpía.

3.2 clasificación de aparatos

El enfriamiento evaporativo puede lograrse mediante sistemas directos, indirectos, o por una combinación multietapa de ambos (sistemas mixtos).

En el sistema directo con recirculación, el agua se evapora directamente en el aire de aporte, El aire cede calor sensible al agua evaporándola, su temperatura de bulbo seco baja y se incrementa la humedad; luego la cantidad de calor inter-cambiado desde el aire iguala a la cantidad de calor absorbida por la evaporación del agua, según se ha explicado en el apartado anterior.

Page 51: Guia tecnica ahorro y recuperacion de energia

49

Enfriamiento evaporativo

Aireexteriorcaliente

Bomba derecirculación

Contactoaire/agua

Aire fríoy húmedo

Figura 3.4: Enfriador evaporativo directo

En el caso del enfriamiento evaporativo indirecto la evaporación del agua se efectúa en una corriente se-cundaria de aire, que intercambia sensiblemente calor, a través de un intercambiador, con la corriente de aire primario (impulsión). De este modo la superficie de transferencia de calor es enfriada por contacto con este aire secundario a la vez que, simultáneamente, por el otro lado del intercambiador la corriente de aire prima-rio experimenta un proceso de enfriamiento sensible (no recibe ninguna humedad). Por ello el proceso es llamado indirecto y se utiliza especialmente en aque-llas aplicaciones donde no se permite la adición de humedad en el aire de renovación ni riesgos de conta-minación, puesto que no hay intercambio directo entre las corrientes de aire.

Aire húmedode enfriamiento

Bomba derecirculación

Aire exteriorcaliente

Contactoaire/agua

Aire deenfriamiento

Aire frío

Intercambiador

Figura 3.5: Enfriador evaporativo indirecto

Las diferentes evoluciones psicrométricas que ex-perimentan las corrientes de aire en los procesos se presentan en la siguiente figura 3.6:

42 44 46 48 50 0 2 4 6 8-10 -8 -6 -4 -2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Aire interior

Aire exterior

Figura 3.6: Representación en el diagrama de un enfriador evaporativo indirecto

Los sistemas mixtos pretenden compatibilizar los dos casos básicos anteriores (directo e indirecto) mediante una serie de módulos secuenciales, destinados a mejorar el rendimiento y ampliar las posibilidades de aplicación.

Page 52: Guia tecnica ahorro y recuperacion de energia

50

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

42 44 46 48 50 0 2 4 6 8-10 -8 -6 -4 -2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Aire interior

Aire exterior

Aireexteriorcaliente

Aire fríoy húmedo

Figura 3.7: Representación en el diagrama de un enfriador evaporativo indirecto-directo

3.3 enfriamiento directo

Como unidades independientes para suministrar aire frío a locales climatizados los refrigeradores evapo-rativos directos están compuestos al menos por un elemento de humectación, un ventilador (generalmente centrífugo para suministrar la presión necesaria y un bajo nivel de ruido), un depósito inferior y una carcasa exterior. En los sistemas con atomización es necesario también disponer de una bomba de circulación que pro-porcione suficiente presión para la pulverización, y sus correspondientes tuberías y boquillas de pulverización o toberas.

Dado que el flujo de masa de vapor de agua en el aire necesario para la refrigeración evaporativa es propor-cional a la superficie de contacto entre ambos medios, los sistemas evaporativos directos, bien desde una su-perficie húmeda o desde un sistema de atomización, tienen como objetivo aumentar la superficie de inter-cambio másico superficie húmedad/aire.

El arrastre de gotas desde una superficie húmeda es más difícil que el obtener aerosoles en las corrientes de aire de salida de los sistemas de pulverización, donde

siempre habrá que poner un separador de gotas eficaz. No obstante, hay que poner especial cuidado en asegu-rar el correcto mantenimiento de todos los sistemas que utilicen refrigeración evaporativa para evitar contami-naciones bacteriológicas como la Legionella.

De acuerdo con las características del medio de humec-tación los enfriadores evaporativos directos pueden clasificarse en:

a) De paneles evaporativos: estos paneles están hechos generalmente de fibras (ver figura 3.8 iz-quierda) con el necesario tratamiento químico para prevenir el crecimiento de microorganismos. Estos paneles son montados en marcos de metal o plás-tico removibles.

b) De medio rígido: éstos están conformados por pla-cas rígidas (ver figura 3.8 derecha) y corrugadas hechas de plástico, celulosa impregnada, fibra de vidrio, etc. El equipo sería similar al presentado anteriormente de paneles evaporativos, sustitu-yendo el relleno de fibra por los paneles rígidos. Las corrientes de aire y agua se disponen usual-mente en flujo cruzado de modo que los canales

Page 53: Guia tecnica ahorro y recuperacion de energia

51

Enfriamiento evaporativo

horizontales correspondan al aire y los verticales al agua. A diferencia del anterior no necesitan marcos de soporte, presentan menores resistencias hidraúlicas y pueden ser limpiados fácilmente con chorros de agua.

Aire

Agua

DistribuidorRelleno de fibras

Marco soporte

Aire calientey seco Aire frío

y húmedo

BombacirculaciónDepósito

Figura 3.8: Esquema con paneles evaporativos y paneles rígidos

c) Rotativos: en éstos el medio de humectación, en forma de rueda rotativa, se construye de materiales resistentes a la co-rrosión como plástico, celulosa impregnada, fibra de vidrio, aleaciones de cobre, etc. Estas ruedas son accionadas por un motor eléctrico y el correspondiente reductor que permite obtener velocidades muy bajas, del orden de 1 ó 2 rpm. La parte inferior de la rueda se sumerge en un depósito con agua y por ello no requieren dispositivos de distribución.

Rellenoimpregnado

de agua

Motor

Rueda rotativa

Paso de aire

Aporte

Purga

M

Depósito de agua

Figura 3.9: Esquema rotativos

d) Pulverización directa: en estos dispositivos la humectación se consigue pulverizando agua en la corriente de aire pri-mario. Aunque la eficacia de los dispositivos de pulverización es muy elevada, los problemas derivados de la posible contaminación bacteriológica como la Legionella, obligan a garantizar una adecuada limpieza y mantenimiento de los mismos, evitando siempre el arrastre de gotas desde el sistema de enfriamiento. Esto hace que se seleccionen preferentemente sistemas de humidificación desde superficie húmeda como los presentados en los apartados a, b y c, menos susceptibles de generar aerosoles. Un esquema de cómo funcionan estos dispositivos, utilizados tradicional-mente también como humidificadores, es el que se presenta en la figura 3.10.

Page 54: Guia tecnica ahorro y recuperacion de energia

52

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Aire fríoy húmedo

Separador de gotasPulverizadores

Contactoaire/aguaBomba de

recirculación

Aire exteriorcaliente

Figura 3.10: Enfriador evaporativo directo por pulverización

Existe y se utiliza la pulverización a alta presión. En este sistema el aire de entrada se canaliza mediante una rejilla de distribución que es capaz de crear en la entrada remolinos de aire que se mantienen a todo lo largo de la sección de humidificación. Se origina un flujo turbulento de aire que garantiza la mezcla con el agua. En el centro de cada remolino se inyecta agua mediante unas boquillas atomizadoras de alta presión (20 a 150 bar).

Las gotas de agua se evaporan a lo largo de toda la sección (cámara de evaporación), enfriando así el aire de entrada. Las gotas no evaporadas, en la mayoría de los casos menos del 20% del agua de entrada, se pueden descargar al drenaje general de la instalación.

Figura 3.11: Enfriador evaporativo directo por pulverización a alta presión

La cámara de evaporación es exteriormente de aluminio resistente a la corrosión e interiormente de acero inoxidable. El sistema consta además de grupo motobomba y unidad de control.

3.4 enfriamiento indirecto

Los elementos de un refrigerador evaporativo indirecto son el intercambiador de calor, donde se enfría el aire primario, las boquillas de atomización, la bomba de recirculación de agua, los filtros de aire, ventiladores de impulsión y retorno y la carcasa de acero inoxidable o plástico para prevenir la corrosión.

Al igual que en el refrigerador directo, en el sistema indirecto el parámetro fundamental de diseño es la superficie de transferencia de calor que separa las corrientes de aire y agua a evaporar. Estas superficies absorben calor del aire primario y lo transfieren al aire que actúa como secundario en el proceso de refrigeración evaporativa. Las superficies

Page 55: Guia tecnica ahorro y recuperacion de energia

53

Enfriamiento evaporativo

pueden ser de metal o plástico y deben conducir fácilmente el calor, mantener las dos corrientes separadas y resistir la corrosión. Dentro de este grupo podemos hacer referencia a los modelos con intercambiadores tubulares o de placas.

3.4.1 Sistema indirecto con intercambiador tubular

La primera referencia a estos sistemas es de 1908 en una patente del inventor alemán Elfert. Posteriormente se desa-rrollan modelos constituidos por un enfriador de ventana, que permite tomar aire exterior al que se le hace pasar por el interior de un banco de tubos horizontales finos y lisos en los que un ventilador impulsa el aire dentro de los tubos, mientras sprays de agua mojan el lado exterior. Desarrollos más modernos de estos modelos utilizan tubos de plástico que soportan mejor la corrosión. En la figura 3.12 se muestra un esquema de operación de este tipo de dispositivos.

Distribuidor de aguaal exterior del haz de tubos

Depósito de aguacon bomba

de recirculación

Paso de airepor el hazde tubos

Figura 3.12: Sistema refrigerador evaporativo indirecto tubular

3.4.2 Sistema indirecto con intercambiador de placas

Este sistema es sin lugar a dudas el sistema de refrigeración evaporativa indirecta más utilizado. La primera refe-rencia al mismo data de 1934, en la misma ya se propone utilizar dos etapas, una primera etapa en la que se enfría el aire de retorno de los locales mediante lavadores de tipo spray (enfriamiento evaporativo directo). Este aire frío se utiliza para enfriar el aire exterior antes de su impulsión a los locales, mientras el aire húmedo es expulsado al exterior. Una de las ventajas de este sistema es que como el agua no toca la superficie de intercambio no aparecen incrustaciones, pero estos equipos son voluminosos y el intercambio térmico aire-aire requiere enormes superfi-cies de transferencia, por lo que no se utilizan.

Un sistema más económico y compacto, diseñado por el Dr. Pernot y, posteriormente, por el Dr. John R. Watt está constituido por un intercambiador de placas vertical que servía como torre de enfriamiento y superficie de enfria-miento. Aire exterior y agua finamente atomizada circulaban por una cara de las placas, enfriándose por efecto evaporativo, mientras por el otro lado un ventilador impulsaba aire seco que intercambiaba sólo calor sensible (ver figura 3.13). Estos sistemas no utilizan recuperación del aire de retorno, sino aire exterior filtrado tanto para la torre como para la impulsión y no presentan problemas de incrustaciones. Al utilizar en una cara parte de líquido, aumentan los coeficientes de película de intercambio térmico mayores, aumentando el coeficiente global de trans-ferencia y reduciendo la superficie necesaria para el intercambio térmico.

Page 56: Guia tecnica ahorro y recuperacion de energia

54

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Sprays

Canales de paso de aguay aire secundario

Canales depaso de aire

Aire secundario

Airehúmedo

Aireexterior

Filtros

Impulsióna locales

Figura 3.13: Esquema del refrigerador evaporativo indirecto de placas y esquema de placas

Como la principal resistencia a la transferencia de calor se encuentra en la película de aire en el lado seco, la ventaja de la conductividad del metal frente al plástico es despreciable y por ello se generalizó rápidamente su empleo.

El plástico, además, previene la corrosión y es estruc-turalmente adecuado para soportar las diferencias de presión con las que se trabaja. En el plástico se colocan protuberancias para generar turbulencia; lográndose en algunos casos incrementar la transferencia de calor, aunque también aumenta la caída de presión hasta tres veces el valor de las placas planas con velocidades entre 0,3 y 1 m/s.

3.5 enfriamiento mixto

Como hemos visto en condiciones de verano cálido y seco, el aire que sale de los refrigeradores evaporativos indirectos mantiene una temperatura seca superior a los 21 °C con una humedad relativa entre el 50 y el 70%, por lo que puede ser eficaz añadir un proceso de refrige-ración evaporativa directa que reduzca la temperatura, aunque aumente la humedad.

Las características de funcionamiento vienen dadas por el modelo utilizado en cada etapa. Así, en la etapa indi-recta se utilizan intercambiadores de placas, enfriando la corriente de aire secundario con agua pulverizada y en la etapa evaporativa directa los del tipo de medio rí-gido con celulosa impregnada.

3.6 criterios de diseño

A continuación se presentan los criterios que hay que tener presentes en el diseño de este tipos de sistemas de enfriamiento.

3.6.1 Diseño de refrigeradores evaporativos directos

El índice fundamental utilizado para evaluar las pres-taciones de los enfriadores evaporativos directos (con recirculación) es la Efectividad de Saturación (εs), que se define como:

11

11 12

11s

h

T T

T Tε

–=

Page 57: Guia tecnica ahorro y recuperacion de energia

55

Enfriamiento evaporativo

donde:

T11: es la temperatura del aire primario a la entrada.

T12: es la temperatura del aire primario a la salida.

Th1: es la temperatura húmeda del aire primario a la entrada.

El valor de la efectividad de saturación depende de los siguientes factores:

1 Velocidad del aire a través del enfriador.

En la mayoría de los enfriadores de tipo directo la velocidad no debe superar los 3 m/s para evitar el arrastre de gotas; en caso contrario se hace necesario instalar un separador de gotas que incrementa sensiblemente la caída de presión.

2 Relación de flujo o razón agua/aire (mw/ma).

Es la relación entre el flujo másico de agua atomizada y el flujo de aire. Un valor elevado suele proporcionar mayor área de contacto entre el aire y el agua y, por tanto, una mayor eficacia de saturación εs.

3 Configuración de la superficie húmeda.

Un medio de humectación que proporcione mayor superficie y tiempo de contacto entre el aire y el agua mejora la eficacia ε s.

Puesto que el aire se pone en contacto directo con superficie humedecida por agua o agua atomizada, este proceso adicionalmente proporciona limpieza al aire eliminando las posibles partículas arrastradas en las corrientes. No obstante, si el aire posee grandes cantidades de polvo o partículas, debe utilizarse un filtro adicional para evitar el ensuciamiento del medio de humectación y las toberas.

En la tabla siguiente se reflejan las características de operación de los enfriadores evaporativos directos de superficie hú-meda que se han presentado anteriormente:

Características de operación de enfriadores evaporativos directos

Tipo εs (%)Velocidad

(m/s)DP primario

(Kpa)Observaciones

Paneles evaporativos 80 0,5 - 1,0 25 Ancho del panel: 0,05 m

Medio rígido 75 - 95 1,0 - 2,0 3-25 Espesor: 0,2-0,3 m

Rotativos 80 - 85 0,50 - 3,0 70 -

Las eficiencias y las pérdidas de presión indicadas en el anterior cuadro son función evidentemente de la tecnología utilizada por cada fabricante y pueden variar considerablemente.

Las ventajas de los sistemas de refrigeración evaporativos son su economía y efectividad, permitiendo una gran versati-lidad de aplicaciones dentro de los sectores residencial, comercial e industrial. Pueden ser utilizados especialmente en aquellos países que posean zonas cálidas y desérticas porque la temperatura mínima de enfriamiento del aire depende de la temperatura de bulbo húmedo del aire ambiente.

Los sistemas de medio rígido no necesitan estructuras de soporte, no emiten partículas y tienen una vida útil prolonga-da, comparativamente permiten una velocidad de flujo más alta, menor caída de presión y una eficacia ε s ligeramente mayor.

Los rotativos poseen una estructura más complicada; sin embargo, no necesitan sistemas de recirculación del agua y son más fáciles de conectar en serie con enfriadores de otro tipo dentro de una climatizadora.

Page 58: Guia tecnica ahorro y recuperacion de energia

56

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Como inconveniente principal puede señalarse el hecho de que al producirse la vaporización del agua a tempe-ratura ambiente, pueden desarrollarse bacterias como la Legionella, por lo que este tipo de sistemas deben es-tar sometidos a un correcto mantenimiento, y cuando se utilice la refrigeración evaporativa en las instalaciones contempladas dentro del Real Decreto de prevención y control de la Legionella, habrá que realizar las opera-ciones de limpieza, medida y control bacteriológico que en el mismo se establecen.

3.6.2 Diseño de refrigeradores evaporativos indirectos

En los enfriadores evaporativos indirectos, aire exterior o de retorno de locales puede ser utilizado tanto como primario como secundario, dependiendo de cual posee la menor temperatura de bulbo húmedo (o saturación adiabática) y por tanto mejores posibilidades para ser utilizado en el enfriamiento evaporativo.

Las características de operación de estos equipos son los flujos másicos de las corrientes fluidas entre las que se intercambia energía y las caídas de presión en cada uno de los canales. Para un equipo específico, a mayor flujo, mayor velocidad del aire a través de las placas, mayor coeficiente de transferencia de calor y mayor caída de presión.

El dimensionado de estos equipos se realiza separando la parte de refrigeración evaporativa de la de intercam-bio térmico.

La de refrigeración evaporativa se dimensiona de manera similar al de una torre de refrigeración, dado que en estos sistemas se suele utilizar la atomización del agua para provocar elevada superficie de contacto y mejorar el flujo másico del vapor al aire. Como valor de diseño límite para la temperatura del agua o aire utilizado en el enfriamiento de la corriente de aire primario, se puede utilizar la tem-peratura de saturación adiabática (o húmeda), calculada a partir de las condiciones climáticas de la localidad.

El intercambiador utilizado en el proceso de enfriamien-to utilizará las reglas de dimensionado convencionales de un intercambiador de energía, ya sea el método DMLT o el método NUT, determinando la superficie de intercambio necesaria para poder intercambiar la po-tencia térmica de diseño.

Dado que los coeficientes de película convectivos para el agua son superiores a los del aire, siempre que se pueda, se utilizará agua como fluido frío en el inter-cambiador. Por otra parte, la velocidad utilizada para el diseño de la corriente de aire primario estará entre

2 y 5 m/s siendo para el secundario inferior, intentando evitar el arrastre de gotas de agua fuera del proceso.

En cuanto a las ventajas de estos sistemas indirectos pueden señalarse su economía y efectividad, permi-tiendo una gran versatilidad de aplicaciones dentro de los sectores residencial, comercial e industrial. Pueden ser utilizados en aplicaciones donde no se permite la adición de humedad en el aire impulsado. Adicionalmente puede señalarse la ausencia de peli-gros de legionelosis en la corriente de aire principal y habitualmente una mejora en las condiciones acús-ticas y de vibraciones respecto a las instalaciones de compresión mecánica.

En cuanto a los inconvenientes, al igual que en otros sistemas de refrigeración evaporativa, hay que indicar que la influencia de las condiciones termohigrométri-cas del aire utilizado en la refrigeración evaporativa afecta sobre la cantidad de calor transferido, precisan-do aire seco susceptible de ser enfriado y humidificado evaporativamente. Además, la utilización de un inter-cambiador intermedio, reduce la eficacia con respecto a los sistemas de refrigeración evaporativa directa.

3.6.3 Purgas de agua en los sistemas de refrigeración evaporativa

Uno de los parámetros que es preciso determinar es el agua de purga con el fin de, por una parte no eliminar demasiado agua con los productos químicos añadidos para realizar el adecuado tratamiento bacteriológico, y por la otra evitar que aumente la concentración de la sal por encima de su solubilidad, generando las correspon-dientes incrustaciones.

Las ventajas que posee la colocación de purgas son:

• Disminuye el riesgo de incrustaciones por sobresa-turación de sal.

• Reduce el riesgo de formación de la biopelícula que protege a la Legionella.

• Mejora el flujo de calor intercambiado al no haber incrustaciones.

Como inconvenientes por un excesivo caudal de purga están:

• Aumenta el consumo de agua.

• Aumenta el consumo de productos químicos para el tratamiento del agua.

Page 59: Guia tecnica ahorro y recuperacion de energia

57

Enfriamiento evaporativo

Un esquema de cualquier proceso donde se genera va-por y se alimenta agua con sales y, por tanto, donde se precisa un sistema de purga de agua se presenta en la siguiente figura 3.14:

Agua de purga

Agua alimentación

Vapor generado

Agua arrastrada porelutriación(Problema de legionella)

P, CP

F, CF

VE, CP

V

Figura 3.14: Esquema de flujos en un proceso con consumo de agua por evaporación

Se presenta la metodología para el cálculo de las pur-gas de agua de este tipo de sistemas que aseguren la eliminación de las sales aportadas en el agua de ali-mentación en este tipo de instalaciones que, como en las torres de refrigeración, están alimentadas por agua en estado líquido que aporta sal, pero producen vapor de agua que no las elimina.

Los parámetros que intervienen en el proceso son:

• Caudales de agua:

– mA: agua de alimentación. Asegura el aporte para mantener la producción de vapor (mV), la purga (mP), así como las pérdidas incontro-ladas de agua en la instalación como mI.

– mV: producción de vapor. Determinado por el flujo vapor de agua evaporado en el proceso. En un sistema de refrigeración evaporativa se puede estimar como el producto del flujo má-sico de aire seco que circula por el proceso y la variación de humedad específica entre la salida y la entrada.

– mP: es el caudal de purga. Se determina a par-tir del resto de los parámetros del proceso y es conveniente que tenga un valor adecuado que asegure un consumo óptimo de agua por los factores apuntados anteriormente.

– mI: agua de pérdidas. En los procesos de refrigeración evaporativa se refiere a las par-tículas arrastradas con el aire a la salida del proceso de humidificación, que son realmen-te el medio de propagación de la Legionella. Se considera que poseen la misma salinidad que el agua de purga. Normalmente se pue-den considerar despreciables.

• Concentraciones de sal en el agua:

– CA: concentración de sal en el agua de alimen-tación. Este valor viene determinado por el tratamiento anterior (si existe) para desalini-zar el agua. Una menor concentración de sal en el agua de alimentación, por ejemplo por haber sido tratado mediante resinas inter-cambiadoras o procesos de ósmosis inversa, reduce el caudal de purga necesario.

– CP: concentración de sal en el agua de purga. El valor más elevado que puede ser tomado coin-cide con el que se pueda tener de concentración de sal en el agua, el cual viene caracterizado por los tipos de sales que haya disueltos, que determinan la máxima concentración para que se produzca la saturación. Cuanto mayor sea el valor que se pueda adoptar menor será el caudal de purgas necesario, pero siempre hay que asegurar la no incrustación de las sales en cualquiera de las partes de los equipos.

Un balance de materia al agua y a la sal, proporciona los caudales de purga y agua de alimentación. Como caso más sencillo, si se consideran despreciables las pérdi-das de agua por arrastre a la salida, los balances que se pueden plantear son:

Balance al agua: mA = mP + mV

Balance a la sal: mA CA= mP CP

El caudal de purga se puede relacionar como: mP = mA CA/CP

Luego: mA = mA CA/CP+ mV

Por tanto, el caudal de agua de alimentación y el caudal de purga en función de la producción de vapor (relaciona-do con la potencia de disipación) puede calcularse como:

mA =mV

1 −CA

CP

mP =mV

CA

CP

− 1

Page 60: Guia tecnica ahorro y recuperacion de energia

58

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Una manera de evitar las incrustaciones puede ser midiendo la conductividad eléctrica del agua (que depende de la salinidad del agua). Cuando aumenta de un determinado valor se procede a realizar la purga hasta recuperar el valor de referencia.

3.7 ejemplo

Estudiaremos la energía que se puede ahorrar en una unidad de tratamiento de aire (UTA), para climatizar un local, que emplea un panel rígido de 200 mm de espesor, por el que se hace circular el aire a una velocidad tal que la efectividad de saturación sea del 80%, y genere una caída de presión de 110 Pa.

El estudio lo haremos en Madrid, con un aparato que funcione los meses de verano (mayo, junio, julio, agosto y septiem-bre), desde las 8 hasta las 19 horas (11 horas de funcionamiento diarias).

En la tabla siguiente se representan la distribución de horas y temperaturas medias, según los intervalos, sacados de la base de datos Climed 1.3 para las horas y meses en estudio. La energía ahorrada se ha calculado para un caudal de 1.000 m3/h.

Intervalo Horas

Aire exterior Valores promedio

Salida humectación Valores promedio Aire húmedo

Q (kg/h)Potencia

kW

Ahorro de energía

kWhTBs ( °C)

HR (%)

TBs ( °C)

HR (%)

X (gr/kg as)

9 3 9,40 69,09 7,18 93,50 6,33 1.167,8 0,72 2,2

10 4 10,53 68,30 8,18 92,88 6,74 1.164,1 0,76 3,0

11 7 11,47 60,84 8,44 91,01 6,72 1.162,8 0,98 6,9

12 7 12,50 57,84 9,07 90,49 6,98 1.159,1 1,10 7,7

13 9 13,54 56,93 9,90 90,32 7,37 1.155,5 1,17 10,5

14 17 14,45 56,69 10,72 89,71 7,74 1.151,9 1,19 20,3

15 30 15,51 54,09 11,36 89,25 8,04 1.149,6 1,32 39,7

16 39 16,52 49,32 11,69 88,41 8,14 1.148,4 1,54 60,1

17 60 17,45 45,11 12,01 87,14 8,20 1.147,2 1,73 104,0

18 91 18,46 42,69 12,65 85,59 8,40 1.143,5 1,85 167,9

19 94 19,49 42,07 13,44 85,16 8,81 1.140,0 1,92 180,1

20 101 20,44 40,22 13,94 84,98 9,08 1.139,0 2,06 207,8

21 107 21,44 38,23 14,55 83,65 9,30 1.135,4 2,17 232,6

22 112 22,39 35,60 14,92 82,93 9,45 1.134,3 2,35 263,6

23 108 23,42 33,50 14,53 82,11 9,67 1.132,0 2,51 271,4

24 102 24,45 30,84 15,90 80,35 9,75 1.130,8 2,69 273,9

25 114 25,41 29,10 16,29 80,18 9,98 1.128,5 2,86 325,9

26 117 26,44 27,36 16,73 79,74 10,21 1.126,3 3,04 355,5

27 124 27,39 26,14 17,36 78,03 10,40 1.124,0 3,13 388,3

28 111 28,45 24,19 17,77 77,20 10,56 1.122,9 3,33 369,9

29 96 29,45 22,50 18,12 76,69 10,73 1.120,6 3,53 338,5

30 72 30,44 21,08 18,54 75,92 10,91 1.119,6 3,70 266,5

31 54 31,47 19,84 19,06 74,73 11,10 1.117,3 3,85 208,0

32 43 32,45 17,75 19,19 74,09 11,09 1.116,1 4,11 176,7

33 31 33,39 17,59 19,84 73,57 11,47 1.114,0 4,19 130,0

34 19 34,28 16,72 20,22 73,08 11,67 1.111,8 4,34 82,5

35 8 35,39 15,62 20,72 72,03 11,87 1.110,8 4,53 36,2

36 3 36 14,12 20,71 71,22 11,72 1.110,6 4,72 14,2

TOTAL 1.683 4.544,0

Page 61: Guia tecnica ahorro y recuperacion de energia

59

Enfriamiento evaporativo

Los 4.544 kWh de energía ahorrada representan el calor sensible que se le ha quitado al caudal de 1.000 m3/h de aire de suministro, dándoselo en forma de calor latente, a través de los 6.511 kg de agua que se le han añadido en forma de vapor de agua. El calor de vaporización para producir ese vapor son los 4.544 kWh.

Aparte del consumo de agua, este sistema consume electricidad para hacer pasar el caudal de aire a través del panel de humectación, que genera una caída de presión de 110 Pa, y la bomba que alimenta de agua el panel, para mantenerlo siempre perfectamente mojado.

La energía eléctrica consumida la calcularemos mediante la siguiente fórmula:

Consumo en el ventilador = V(m3/s) x ∆P(Pa) / (ηvent x ηmotor)

V = 1.000 m3/h

∆P = 110 Pa

ηvent ,podemos considerar 0,60 para un ventilador de acción.

ηmotor, podemos suponer que está alrededor de 0,93 (Eff2)

Consumo = 60 W

Consumo en la bomba. Podemos suponer que para caudales de aire hasta 50.000 m3/h es suficiente una bomba de 0,25 kW y para caudales hasta 100.000 m3/h, de 0,55 kW.

En el caso que nos ocupa, tendremos un consumo de 0,06 + 0,25 = 0,31 kW.

En las 1.683 horas de funcionamiento, la energía consumida será 0,31 x 1.683 = 522 kWh

Equivalencia en CO2: 522 x 0,649 = 339 kg

Energía térmica ahorrada, 4.544 kWh

Equivalencia en CO2: 4.544 x 0,3827 = 1.739 kg

Se reducirá la emisión de CO2 en 1.739 – 339 = 1.400 kg

O lo que es lo mismo, 1,4 kg CO2 por cada m3/h de aire circulando por la UTA en la ciudad de Madrid.

Conclusiones

Se puede decir que en climas secos como los que hay en la zonas del interior peninsular español, el enfriamiento evapo-rativo directo es una opción altamente eficiente y ecológica a considerar, siempre y cuando se tomen las medidas para evitar los riesgos asociados, que son fácilmente evitables, a la proliferación de la “Legionella”.

Page 62: Guia tecnica ahorro y recuperacion de energia
Page 63: Guia tecnica ahorro y recuperacion de energia

61

Recuperación de calor

4.0 Generalidades y normativa

El elevado coste actual de la energía y su impacto en el medio ambiente es ya, en sí mismo, un motivo suficien-te para que se trate de reducir el consumo energético de las instalaciones de climatización en los edificios no industriales. Por otra parte, mantener en un nivel adecuado la calidad del aire interior (IAQ), requiere cau-dales de ventilación que penalizan energéticamente las instalaciones.

Los recuperadores de calor del aire de extracción en los sistemas de climatización permiten mantener una adecuada calidad del aire interior sin penalizar energé-ticamente los sistemas de adecuación higrotérmica del aire impulsado a los locales.

El empleo de recuperadores de calor en instalaciones de climatización permite utilizar el calor sensible y la-tente residual del propio proceso, consiguiendo así:

• Reducir la central energética (costes de inversión).

• Reducir el consumo de energía de funcionamiento (costes de explotación).

El RITE, en su Instrucción Técnica 1.2.4.5.2 establece que:

1 En los sistemas de climatización de los edificios en los que el caudal de aire expulsado al exterior, por medios mecánicos, sea superior a 0,5 m3/s, se re-cuperará la energía del aire expulsado.

2 Sobre el lado del aire de extracción se instalará un aparato de enfriamiento adiabático.

3 Las eficiencias mínimas en calor sensible sobre el aire exterior (%) y las pérdidas de presión máximas (Pa) en función del caudal de aire exterior (m3/s) y de las horas anuales de funcionamiento del sistema deben ser como mínimo las indicadas en la tabla:

Horas anuales de funcionamiento

Caudal de aire exterior (m3/s)

>0,5...1,5 >1,5...3,0 >3,0...6,0 >6,0...12 >12% Pa % Pa % Pa % Pa % Pa

≤ 2000 40 100 44 120 47 140 55 160 60 180

2000 a 4000 44 140 47 160 52 180 58 200 64 220

4000 a 6000 47 160 50 180 55 200 64 220 70 240

> 6000 50 180 55 200 60 220 70 240 75 260

4 En las piscinas climatizadas, la energía térmica contenida en el aire expulsado deberá ser recuperada, con una efi-ciencia mínima y unas pérdidas máximas de presión iguales a las indicadas en la tabla anterior para más de 6.000 horas anuales de funcionamiento, en función del caudal.

5 Alternativamente al uso del aire exterior, el mantenimiento de la humedad relativa del ambiente puede lograrse por medio de una bomba de calor, dimensionada específicamente para esta función, que enfríe, deshumedezca y reca-liente el mismo aire del ambiente en ciclo cerrado.

Page 64: Guia tecnica ahorro y recuperacion de energia

62

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

4.1 recuperadores

4.1.1 Teoría sobre recuperadores de energía

En general, los equipos de recuperación del calor re-sidual son intercambiadores térmicos más o menos complejos, donde pueden intervenir flujos de calor y masa, y como tales pueden ser dimensionados.

Se debe tener presente que toda recuperación de calor ha de constituir un sistema integrado dentro de un pro-ceso, de modo que se reduzca el consumo de energía con un costo global aceptable. Como consecuencia, la recuperación del calor sólo podrá considerarse efectiva como parte integrante de un esquema bien concebido para una determinada aplicación y cuidadosamente diseñado para lograr los objetivos perseguidos con su instalación.

Las reglas del diseñador de instalaciones térmicas se pueden resumir en:

1 Antes de diseñar un sistema de recuperación de calor a priori debe analizarse si es posible evi-tar consumir previamente la energía que se va a recuperar.

2 Al estudiar un sistema de recuperación de calor debe valorarse económicamente el ahorro produ-cido y contrastarlo con el costo de la inversión que puede requerir.

3 Estudiar los puntos donde se puede recuperar y los puntos de consumo.

4 Estimar las emisiones de CO2 evitadas en ese siste-ma completo.

5 Si existe free-cooling se debe by-pasear el recu-perador cuando el enfriamiento gratuito de aire exterior esté activo.

La ecuación que permite calcular la energía recuperada (E) con un recuperador de calor es el producto del cau-dal másico (mas) por la diferencia de entalpía (∆ h) del aire entre la salida y la entrada en el recuperador y por el tiempo de funcionamiento (t):

E = mas ∆h t

E, energía recuperada en kJ.

mas, caudal másico en kg/h de aire seco.

t, intervalo de tiempo en h.

Y recordando la definición de entalpía del aire

h = Cpa T + W(Cf + Cpv T), donde:

Cpa, calor específico del aire seco 1,006 kJ/(kg as °C).

Cpv, calor específico del vapor de agua 1,86 kJ/(kg as °C).

Cf, calor de cambio de fase de vapor a líquido a 0 °C; 2.501 kJ/kg.

Tenemos :

E = mas (Cpa ∆T + Cf ∆ W + Cpv Wsal ∆T + Cpv Tent ∆W ) t = = mas [(Cpa+ Cpv Wsal) ∆T + (Cf + Cpv Tent )∆ W] t

Siendo:

Wsal , la humedad específica a la salida.

Tent, la temperatura seca a la entrada.

A la vista de la ecuación se puede concluir que la ener-gía recuperada del aire de extracción en edificios es tanto mayor cuando:

a) Los caudales de aire exterior de extracción sean elevados (mas alto).

b) El número de horas de funcionamiento de la insta-lación es elevado (t alto).

c) La estación de verano está caracterizada por un elevado número de horas con temperaturas de bulbo seco y bulbo húmedo relativamente eleva-das (∆ W alto) y la estación invernal por un elevado número de grados-días (DT alto).

Por otra parte, los saltos térmicos ∆W y ∆T están relacio-nados con la eficiencia de los sistemas de recuperación y precisamente es la eficiencia mínima lo que se pres-cribe en el RITE.

De modo general se define la eficiencia (ε) de cualquier intercambiador como:

ε =Cantidad de energía recuperada

Cantidad máxima de energía recuperable

y en función del tipo de energía intercambiada que pue-de ser:

a) Sensible (asociada a la temperatura de bulbo seco).

Page 65: Guia tecnica ahorro y recuperacion de energia

63

Recuperación de calor

b) Latente (asociada a la humedad específica) (realmente sería masa de vapor de agua intercambiada).

c) Total (asociada al contenido en entalpía específica).

Como en los recuperadores o intercambiadores de calor intervienen dos fluidos con sus correspondientes condiciones termo-higrométricas, se va a utilizar un sistema de notación formado por dos subíndices:

Primer subíndice, para indicar la corriente de fluido que estamos considerando:

“e” para todas las propiedades o características correspondientes al fluido que entra por primera vez en el recuperador (aire exterior).

“r” para el fluido que entra por segunda vez en el recuperador (aire de retorno y/o extracción).

Segundo subíndice, para indicar en qué punto del recuperador se considera la propiedad o característica utilizada:

“1” para la entrada.

“2” para la salida.

Utilizando la nomenclatura utilizada como ejemplo de los subíndices, se puede expresar la eficiencia como:

εT =m as,ext Cpa + Cpv W e2[ ] Te2 − Te 1( )m as Cpa + Cpv W 2[ ][ ]

minTr 1 − Te 1( )

=m as,ret Cpa + Cpv W r 2[ ] Tr 1 − Tr 2( )m as Cpa + Cpv W 2[ ][ ]

minTr 1 − Te 1( )

εW =mas,ext Cf + Cpv Te 1[ ] We2 − We 1( )mas Cf + Cpv T1[ ][ ]

minWr 1 − We 1( )

=mas,ret Cf + Cpv Tr 1[ ] Wr 1 − Wr 2( )mas Cf + Cpv T1[ ][ ]

minWr 1 − We 1( )

Siendo:

[mas[Cpa+Cpv W2]]min el valor mínimo entre la corriente de aire exterior y retorno.

[mas[Cf+Cpv T1]]min el valor mínimo entre la corriente de aire exterior y retorno.

Y dados los valores relativos de Cf, Cpv y T podemos aproximar a:

εT =mas,ext Te2 − Te 1( )mas[ ]

minTr 1 − Te 1( )

=mas,ret Tr 1 − Tr 2( )mas[ ]

minTr 1 − Te 1( )

εW =mas,ext We2 − We 1( )mas[ ]

minWr 1 − We 1( )

=mas,ret Wr 1 − Wr 2( )mas[ ]

minWr 1 − We 1( )

No obstante la anterior definición general, en la norma UNE EN 308 se define de forma taxativa (por comodidad a la hora de utilizar dicha expresión), una variación sobre la anterior expresión, y que para recuperadores en aire acondicionado se establece como:

Page 66: Guia tecnica ahorro y recuperacion de energia

64

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

εT =Te2 − Te 1( )Tr 1 − Te 1( )

εW =We2 − We 1( )Wr 1 − We 1( )

Siendo estas las expresiones sobre las que se definen eficiencias mínimas en el RITE.

Como observamos de la comparación de ecuaciones, si el caudal másico mínimo que circula por el recuperador es el exterior, las dos expresiones coinciden, y si es el que circula por el retorno existe la relación de masas entre ambos.

Aire exteriorEntrada T

e1

Aire exteriorSalida T

e2

Aire expulsadoEntrada T

r1

Aire expulsadoSalida T

r2

Recuperadorde energía

Figura 4.1: Esquema del proceso de recuperación de energía en un sistema de climatización por aire

El empleo de recuperadores de calor en instalaciones de climatización permite utilizar el calor sensible y la-tente residual del propio proceso, consiguiendo así:

• Reducir la central energética (costes de inversión).

• Reducir el consumo de energía de funcionamiento (costes de explotación).

4.1.2 Clasificación de aparatos

No resulta fácil realizar una clasificación de los recupe-radores de calor, al incluir dentro de esta denominación diferentes: modos de funcionamiento, concepción del sistema, nuevas tecnologías, aparatos, etc. Según di-ferentes autores la clasificación de los recuperadores de calor puede hacerse por subgrupos atendiendo a los medios que transfieren energía, la separación de los fluidos, el tipo de calor recuperado, el contenido de

humedad de las corrientes de aire o el elemento de in-tercambio empleado.

A continuación se presentan los principales tipos de recuperadores utilizados en las instalaciones de clima-tización por aire, para recuperar la energía del aire de expulsado al exterior del edificio climatizado:

• Recuperador de placas.

• Recuperador rotativo.

• Tubos de calor (heat pipe).

• Doble batería de agua.

• Batería exterior.

• Batería en bucle de agua.

• Recuperación activa por circuito frigorífico.

Todos los equipos utilizados permiten intercambiar energía entre las corrientes de aire exterior y de ex-pulsión, pero igualmente todos, van a introducir una pérdida de carga adicional que provocará un aumen-to en el consumo energético de los ventiladores para mantener los mismos caudales en circulación en la ins-talación si no se hubiera dispuesto de un sistema de recuperación de energía.

A continuación se realiza una descripción de los princi-pales equipos utilizados como sistemas de recuperación de energía en edificios donde la climatización se realiza por aire. Alguno de los sistemas solo permitirán recupe-rar energía sensible, mientras que otros (recuperadores entálpicos), podrán aprovechar los contenidos en hu-medad de las corrientes de aire que intervienen en el proceso.

4.1.2.1 Recuperador de placas

Estos intercambiadores estáticos están constituidos por una carcasa de forma rectangular abierta por sus dos extremos, cuya sección transversal se subdivi-de en múltiples pasajes en una configuración celular formada por una matriz de placas de diferentes ma-teriales (plástico, cartón, papel o metal). Cada dos placas adyacentes forman un pequeño conducto para el aire de extracción o el de impulsión. La distancia entre placas varía según los requerimientos de ta-maño y eficiencia. El aire de impulsión pasa a través

Page 67: Guia tecnica ahorro y recuperacion de energia

65

Recuperación de calor

de un lado de la placa y el de extracción a través del otro, efectuándose el intercambio térmico entre los flujos. Estos recuperadores pueden disponer de ale-tas que aumenten el intercambio de energía entre las corrientes.

Un número superior de placas, aunque aumenta la superficie de fricción con los fluidos en circulación, proporciona mayor sección de paso con la conse-cuente reducción de velocidad. El efecto global es que, al aumentar el número de placas de que dispone el recuperador, disminuye la pérdida de carga que experi-mentan los fluidos.

Dado que: V = S v

Un aumento del número de placas amplía:

– El número de canales.

– La sección de paso S.

Por lo tanto, para un mismo caudal V reduce su velocidad v.

Canales de pasode aire de expulsión

Adiciónde placas

Canales de paso de aire exterior

Figura 4.2: Configuración de las placas en un recuperador

De acuerdo con los métodos de clasificación adoptados podríamos definir estos recuperadores como sistemas aire/aire que permiten recuperar, según el material con el que estén fabricados, energía sensible o total.

Existe una gran variedad de materiales que pueden ser utilizados para la confección de las placas. En aplicaciones de climatización para recuperación de calor sensible el material más indicado es el aluminio

y se utiliza también el aluminio acrílico (tratamiento epoxy+poliuretano) en aplicaciones de climatización de piscinas. Dependiendo de la temperatura y del tipo de aplicación pueden utilizarse también los si-guientes materiales: PVC, PP (polipropileno), acero inoxidable AISI 316L y papel o cartón tratado. La se-lección del material obedece al tipo de aplicación y temperatura.

Cuando el recuperador es de papel o cartón, hay que poner especial cuidado en no operar en condiciones donde pueda aparecer condensación de humedad, lo que deterioraría el material de fabricación. Estos siste-mas disponen de sensores de temperatura y humedad que permiten precalentar la corriente fría si existe peli-gro de que la corriente con mayor humedad específica pueda bajar su temperatura por debajo de la tempera-tura de rocío.

En el funcionamiento normal de un recuperador de placas las dos corrientes varían su temperatura, mante-niendo la humedad específica constante.

En condiciones particulares de funcionamiento, cuando la temperatura de uno de los flujos disminuye por deba-jo de su punto de rocío se produce condensación en la misma, lo que conlleva una mejora sustancial del ren-dimiento ya que aprovecha parte del calor latente del agua condensada para ser transferido. En estas circuns-tancias habrá que disponer una bandeja de recogida de condensados, y mantener el sistema en las condiciones adecuadas de limpieza.

A continuación se describen los dos tipos de recupera-dores estáticos atendiendo al sentido de los flujos de aire:

1 Recuperador estático de placas de flujos cruzados

En las figuras siguientes se presentan un intercam-biador de placas con flujos cruzados, construido en aluminio, con el sellado entre placas para evitar la mezcla entre las corrientes de aire que permite la recu-peración de calor sensible entre corrientes de aire y el efecto útil de un recuperador entálpico (o de energía to-tal) y uno construido en cartón, que por ser permeable al vapor de agua, permite intercambiar humedad entre las corrientes de aire.

Page 68: Guia tecnica ahorro y recuperacion de energia

66

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Recuperador de placas de cartón entálpico

Filtros

Ventilador

Ventilador

Recuperador

Filtros

Aire retornoAire exterior

Aire expulsión

Aire recirculadoAire

de impulsión

Cámara de mezcla

Acondicionamiento higrotérmico del aire

Compuertasde regulación

Figura 4.4: Integración de un recuperador de placas de fl ujos cruzados en una UTA

Recuperador de placas con fl ujos cruzado sensible

En casos específi cos como piscinas, cocinas, etc., don-de la recuperación de calor se realiza a partir de aire con un elevado contenido de vapor de agua, aprovechar el calor de la condensación puede reducir hasta un tercio el caudal de aire de extracción para obtener un mismo incremento de temperatura del aire de renovación. En estos casos los materiales deben soportar los efectos del agua de condensación, como corrosión, deterioro del material, etc.

La regulación de estos equipos se limita a instalaciones donde se pueda adaptar una sección de by-pass con compuerta de regulación combinada, que permita el

paso del aire de extracción a través de las placas o por el by-pass, obteniéndose un control de la recuperación.

En climas muy fríos, el aire de extracción puede conden-sar y llegar a formar hielo dentro del recuperador. Un aumento de la presión diferencial en la corriente del aire de extracción puede indicar que se está formando hielo y activar el by-pass durante un período corto de tiempo, evitando así el peligro de la formación de éste.

Como ventajas de este tipo de recuperadores puede indicarse que, en general, se obtienen grandes su-perfi cies de intercambio en espacios reducidos y una

La integración del recuperador en la UTA puede realizarse según se presenta en la siguiente fi gura que contiene una unidad de tratamiento con un recuperador de placas integrado.

Figura 4.3: Recuperadores de placas de fl ujos cruzados

Page 69: Guia tecnica ahorro y recuperacion de energia

67

Recuperación de calor

eficacia muy razonable en función de su precio (entre el 45 y 65%). Respecto a la contaminación del aire de renovación por la corriente de extracción presenta ventajas notables puesto que no permiten el contac-to directo entre las corrientes de aire de extracción e impulsión y muchas casas comerciales suministran certificados de estanqueidad de acuerdo con el tipo de sellado utilizado, normalmente mecánico o con resi-nas. No obstante, hay que asegurar que las tomas de aire limpio y las zonas de expulsión del aire viciado se encuentran dispuestas de manera que no se permita la recirculación del aire.

Como inconvenientes principales pueden señalarse las elevadas caídas de presión y las condensaciones que pueden provocar corrosión y peligro de aparición de hielo cuando las temperaturas exteriores son muy bajas como se ha señalado anteriormente.

En estos sistemas siempre habrá que tener la precau-ción de colocar filtros en las corrientes de aire, tanto la del aire exterior como la que procede del local, con el fin de evitar el ensuciamiento de las placas del intercam-biador, que actuaría como una resistencia adicional para el ventilador (y un consumo energético a contabilizar).

Finalmente, indicar que una de las configuraciones ha-bituales para aumentar la superficie de intercambio es poner los sistemas de recuperación en serie, según se muestra en la figura 4.5. Esta configuración aumenta la pérdida de carga, respecto a la situación de haber puesto en paralelo los dos recuperadores, pero permi-te mantener una velocidad suficientemente alta en las corrientes de aire, evitando que se deposite suciedad y, además, por las variables geométricas que intervienen en esta configuración, habitualmente precisan de me-nos cantidad de espacio.

Aire exterior Aire de retorno

Aire expulsado Aire exterior impulsado

Recuperador

de placas

1

Recuperador

de placas

2

Figura 4.5: Recuperadores de placas en serie

Debido a su diseño modular, no hay limitación de ta-maño, hasta 170.000 m3/h en un bloque. La separación entre placas, dependiendo de los modelos, de la pér-dida de carga requerida y de la eficacia, es variable. Valores habituales son: 3,5; 4; 5; 6,5; 9; 11,5; 15 mm. A mayor separación de placas, menor eficacia, menor pérdida de carga y menor recuperación de energía.

2 Recuperador estático de placas de flujos paralelos

Está formado por un recuperador estático de flujos cru-zados al que se ha añadido, entre los dos vértices, una sección intermedia de placas de aluminio que forman unos canales paralelos por donde los caudales de aire extraído y aire exterior, totalmente separados por estos canales, se desplazan en paralelo y contracorriente.

Se consigue así una transmisión de calor muy eficiente >80%, con bajas pérdidas de carga <150 Pa.

En un diagrama psicrométrico, trabaja de forma idéntica al recuperador estático de flujos cruzados, pero con una eficacia mayor.

Los materiales más comúnmente utilizados son el alu-minio y el aluminio con epoxi, pudiendo incorporar by-pass de aire.

Los caudales de aire suelen estar limitados entre 50 m3/h y 2.000 m3/h, siendo su utilización propia de locales pequeños como cafeterías, comercios, etc.

Page 70: Guia tecnica ahorro y recuperacion de energia

68

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Figura 4.6: Imagen de recuperador estático de placas de flujos paralelos

Ejemplo de cálculo de la energía ahorrada por un recu-perador de placas

En este ejemplo se propone un método para el cálculo de la energía ahorrada con el uso de un recuperador de placas, habiéndose incluido un enfriador adiabático (eficiencia 90%) en el aire de extracción.

Vamos a utilizar la misma estructura en la metodología de cálculo que el ejemplo de enfriamiento gratuito por aire exterior. Para evitar ser reiterativos, se presentan los resultados de una forma más simplificada.

Descripción del edificio:

Superficie. El edificio de un sótano, planta baja y otras 17 plantas, con una superficie total de 335 m2 x 19 plan-tas = 6.365 m2.

Altura y volumen. La altura total es de 66,60 m, siendo la altura entre plantas de 3,70 m. El volumen del edificio es de 6.365 m2 x 3,7 m = 23.550 m3.

Uso del edificio. Este edificio se utilizará como oficina con un nivel de baja ocupación que además se supone fija. El horario de funcionamiento es continuo de 08h a 20h. El número de horas de funcionamiento anuales serán:

270 días x 12 horas/día = 3.240 h/año

Ocupación. El CTE DB SI-3 “Evacuación de Ocupantes”, en su tabla 2.1 “Densidades de Ocupación” indica que el nivel de ocupación es de 10 m2/pax. Por tanto la ocu-pación se fija en 488 personas, (en instalaciones de climatización se suelen utilizar menores densidades de ocupantes, siendo perfectamente válido; además se puede estudiar control de ventilación por cantidad de ocupantes, control por CO2, disminuyendo igualmente la cantidad total de aire exterior tomado).

Caudal mínimo de aire exterior de ventilación. Según la “IT 1.1.4.2.3 Caudal mínimo de aire exterior de venti-lación”, y por el método A de cálculo indirecto de caudal de aire exterior mínimo por persona, para la categoría de calidad de aire interior IDA 2 tenemos un caudal de 45 m3/h · pax (12,5 dm3/s · pax). El caudal total de aire exterior es:

45 m3/h · pax · 488 pax = 21.960 m3/h (6,1 m3/s)

Recuperación de calor del aire de extracción. Según la “IT 1.2.4.5.2 Recuperación de calor del aire de extrac-ción “, para el caudal de aire exterior de 6,1 m3/h y 3.240 horas anuales de funcionamiento, la eficiencia mínima de recuperación en calor sensible sobre el aire exterior tiene que ser de un 58% y la máxima pérdida de presión de 200 Pa.

Determinación de la eficiencia del recuperador y máxima pérdida de carga

Horas anuales de funcionamiento

Caudal de aire exterior (m3/s)

> 0,5 < 1,5 > 1,5 < 3,0 > 3,0 < 6,0 > 6,0 < 12 > 12 % Pa % Pa % Pa % Pa % Pa

≤2.000 40 100 44 120 47 140 55 160 60 180

> 2.000...4.000 44 140 47 160 52 180 58 200 64 220

> 4.000...6.000 47 160 50 180 55 200 64 220 70 240

> 6.000 50 180 55 200 60 220 70 240 75 260

Los datos meteorológicos utilizados son los datos sin-téticos creados por CLIMED 1.3, a partir de los datos climáticos del Instituto Nacional de Meteorología, des-cargados de la página oficial del Ministerio de Industria, Turismo y Comercio, (www.mityc.es).

En las siguientes tablas se muestran los datos cli-máticos utilizados para el desarrollo de los cálculos asociados al edificio de oficinas en Madrid.

Page 71: Guia tecnica ahorro y recuperacion de energia

69

Recuperación de calor

DATOS CLIMáTICOS

Ciudad: Madrid Edificio de oficinas Horario: 08-20 h

Base de datos Climed 1.3 Datos calculados

Frecuencias Temperaturas y humedades Vol. esp. Ve

(m3/kgas)

Entalpía

IntervaloNúmero

RegistrosFi

(%)Fa

(%)T. Seca

( °C)H. Relativa

(%)H.Absoluta (kga/kgas)

hs hl htotal

(kJ/kg)

T < 1 3 0,07 0,07 0,23 100,0 0,0042 0,844 0,23 10,44 10,67

1 - 2 12 0,27 0,34 1,65 96,7 0,0045 0,849 1,66 11,20 12,86

2 - 3 37 0,84 1,19 2,58 92,1 0,0045 0,852 2,60 11,41 14,01

3 - 4 52 1,19 2,37 3,50 87,1 0,0046 0,855 3,52 11,52 15,04

4 - 5 70 1,60 3,97 4,53 81,5 0,0046 0,858 4,56 11,60 16,16

5 - 6 100 2,28 6,26 5,51 77,7 0,0047 0,861 5,54 11,85 17,39

6 - 7 131 2,99 9,25 6,48 73,4 0,0048 0,864 6,52 11,99 18,51

7 - 8 197 4,50 13,74 7,46 70,5 0,0049 0,867 7,50 12,32 19,82

8 - 9 210 4,79 18,54 8,45 66,0 0,0049 0,870 8,50 12,35 20,85

9 - 10 216 4,93 23,47 9,46 62,6 0,0050 0,873 9,52 12,55 22,07

10 - 11 229 5,23 28,70 10,47 59,2 0,0050 0,877 10,53 12,71 23,24

11 - 12 214 4,89 33,58 11,46 55,0 0,0050 0,880 11,53 12,63 24,16

12 - 13 217 4,95 38,54 12,45 52,5 0,0051 0,883 12,52 12,86 25,39

13 - 14 179 4,09 42,63 13,46 49,3 0,0051 0,886 13,54 12,93 26,47

14 - 15 163 3,72 46,35 14,42 47,2 0,0052 0,889 14,50 13,17 27,68

15 - 16 191 4,36 50,71 15,44 46,0 0,0054 0,893 15,53 13,73 29,26

16 - 17 152 3,47 54,18 16,45 44,0 0,0055 0,896 16,55 14,03 30,58

17 - 18 172 3,93 58,11 17,40 42,0 0,0056 0,899 17,50 14,21 31,71

18 -19 165 3,77 61,87 18,45 40,9 0,0058 0,903 18,56 14,83 33,38

19 - 20 137 3,13 65,00 19,47 41,4 0,0063 0,906 19,58 16,01 35,59

20 - 21 147 3,36 68,36 20,43 39,7 0,0064 0,909 20,55 16,33 36,88

21 - 22 140 3,20 71,55 21,43 37,9 0,0065 0,913 21,55 16,55 38,11

22 - 23 140 3,20 74,75 22,40 35,8 0,0065 0,916 22,53 16,60 39,13

23 - 24 132 3,01 77,76 23,42 33,9 0,0066 0,919 23,56 16,74 40,30

24 - 25 120 2,74 80,50 24,45 31,5 0,0065 0,922 24,59 16,55 41,14

25 - 26 133 3,04 83,54 25,41 29,6 0,0064 0,925 25,56 16,48 42,04

26 - 27 139 3,17 86,71 26,44 27,7 0,0064 0,928 26,59 16,45 43,04

27 - 28 135 3,08 89,79 27,40 26,2 0,0064 0,931 27,56 16,47 44,03

28 - 29 117 2,67 92,47 28,44 24,3 0,0063 0,934 28,61 16,21 44,82

29 - 30 100 2,28 94,75 29,46 22,6 0,0062 0,937 29,63 15,98 45,62

30 - 31 72 1,64 96,39 30,44 21,1 0,0062 0,940 30,62 15,81 46,43

31 - 32 54 1,23 97,63 31,47 19,8 0,0062 0,943 31,65 15,79 47,45

32 - 33 43 0,98 98,61 32,45 17,7 0,0058 0,946 32,69 14,98 47,67

33 - 34 31 0,71 99,32 33,39 17,6 0,0061 0,949 33,58 15,62 49,21

34 - 35 19 0,43 99,75 34,28 16,7 0,0061 0,952 34,48 15,62 50,10

35 - 36 8 0,18 99,93 35,39 15,6 0,0060 0,955 35,60 15,53 51,12

T > 36 3 0,07 100,00 36,00 14,1 0,0056 0,957 36,21 14,51 50,72

4.380

Media anual de los 4.380 registros 16,74 47,3 0,0056 0,898 16,84 15,38 32,22

Page 72: Guia tecnica ahorro y recuperacion de energia

70

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Condiciones exteriores de proyecto: valores de la Norma UNE 100001 para el Nivel de Percentil Estacional NPE de la tabla siguiente:

CiudadesVerano (NPE 1%) Invierno (NPE 99%)

TS ( °C) TH ( °C) TS ( °C)

Madrid 36,5 22,6 -4,9

Condiciones interiores de diseño: valores medios de la Tabla 1.4.1.1 de la IT 1.1 Exigencia de Bienestar e Higiene del RITE. Verano Invierno

Tª ( °C) HR (%) Tª ( °C) HR (%)

24 52,5 22 45

Las cargas térmicas se han calculado de igual manera que en el caso del enfriamiento gratuito. Los valores obtenidos se recogen en la figura 4.7.

-5 0 5 10 15 20 25 30 35 40

100

80

60

40

20

0

-20

-40

-60

-80

Pote

ncia

(W)

Temperatura seca exterior (°C)

Cerramientos (Verano)

Potencia (Verano)

Ventilación (Invierno)

Cargas internas (Verano)

Cerramientos (Invierno)

Potencia (Invierno)

Ventilación (Verano)

Cargas internas

Figura 4.7: Cargas térmicas en función de la temperatura exterior

En las tablas siguientes se recogen los valores de los resultados representados en la anterior gráfica para la temporada de invierno y verano.

Page 73: Guia tecnica ahorro y recuperacion de energia

71

Recuperación de calor

POTENCIA TéRMICA INVIERNO (W)

Ciudad: Madrid Local: edificio oficina Calidad aire: IDA2

Caudal mín. vent. (Qv): 21.960 m3/h (1,6 m3/s) Horario: 08-20 h Horas func/año: 3.240 h

Cond. interiores: 22 °C/45% HR Entalpía (kJ/kg): hS: 22,13; hI: 20,43; hTOTAL: 42,57

Cerramientos Otras Subtotal Ventilación Total

Estructural Suelo Cargas P1 Latente Sensible Pv Pt

T < 1 203.897 4.175 -48.000 160.072 72.225 158.283 230.508 390.580

1-2 190.597 4.018 -48.000 146.616 66.317 147.123 213.440 360.056

2-3 181.887 3.916 -48.000 137.803 64.587 139.908 204.495 342.298

3-4 173.270 3.814 -48.000 129.084 63.595 132.828 196.423 325.508

4-5 163.623 3.700 -48.000 119.323 62.772 124.962 187.734 307.057

5-6 154.445 3.592 -48.000 110.036 60.769 117.519 178.289 288.325

6-7 145.360 3.485 -48.000 100.844 59.586 110.214 169.799 270.644

7-8 136.181 3.376 -48.000 91.557 57.054 102.873 159.927 251.484

8-9 126.909 3.267 -48.000 82.176 56.626 95.530 152.156 234.332

9-10 117.449 3.155 -48.000 72.604 55.008 88.083 143.091 215.695

10-11 107.990 3.043 -48.000 63.033 53.694 80.692 134.386 197.419

11-12 98.717 2.934 -48.000 53.651 54.087 73.511 127.598 181.249

12-13 89.445 2.825 -48.000 44.269 52.277 66.366 118.643 162.913

13-14 79.985 2.713 -48.000 34.698 51.634 59.136 110.770 145.468

14-15 70.994 2.607 -48.000 25.601 49.787 52.306 102.093 127.694

15-16 61.441 2.494 -48.000 15.935 45.803 45.092 90.895 106.829

16-17 51.981 2.382 -48.000 6.363 43.541 38.009 81.550 87.913

17-18 43.083 2.277 -48.000 -2.639 42.202 31.397 73.599 70.960

18-19 33.249 2.161 -48.000 -12.590 37.877 24.134 62.011 49.421

19-20 23.696 2.048 -48.000 -22.256 29.749 17.127 46.876 24.620

20-21 14.705 1.942 -48.000 -31.353 27.509 10.591 38.100 6.747

POTENCIA TéRMICA VERANO (W)

Ciudad: Madrid Local: edificio oficina Calidad aire: IDA2

Caudal mín. vent. (Qv): 21.960 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 3.240 h

Cond. interiores: 24 °C/52,5% HR Entalpía (kJ/kg): hS: 24,14; hI: 27,06; hTOTAL: 51,20

Cerramientos Otras Subtotal Ventilación Total

Estructural Suelo Cargas P1 Latente Sensible Pv Pt

20-21 90.958 1.942 -200.566 -107.666 71.929 24.083 96.012 -11.653

21-22 65.480 1.832 -200.566 -133.255 70.175 17.276 87.452 -45.803

22-23 40.765 1.725 -200.566 -158.076 69.657 10.720 80.377 -77.698

23-24 14.777 1.612 -200.566 -184.177 68.427 3.872 72.300 -111.877

24-25 -11.465 1.498 -200.566 -210.533 69.473 -2.994 66.479 -144.054

25-26 -35.925 1.392 -200.566 -235.099 69.729 -9.353 60.377 -174.722

26-27 -62.167 1.278 -200.566 -261.455 69.689 -16.130 53.559 -207.896

27-28 -86.627 1.172 -200.566 -286.021 69.341 -22.404 46.937 -239.084

28-29 -113.124 1.057 -200.566 -312.633 70.775 -29.161 41.614 -271.020

29-30 -139.112 944 -200.566 -338.734 72.038 -35.744 36.294 -302.440

30-31 -164.081 836 -200.566 -363.811 72.942 -42.029 30.913 -332.898

Page 74: Guia tecnica ahorro y recuperacion de energia

72

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ciudad: Madrid Local: edificio oficina Calidad aire: IDA2

Caudal mín. vent. (Qv): 21.960 m3/h (1,6 m3/s) Horario: 00-24 h Horas func/año: 3.240 h

Cond. interiores: 24 °C/52,5% HR Entalpía (kJ/kg): hS: 24,14; hI: 27,06; hTOTAL: 51,20

Cerramientos Otras Subtotal Ventilación Total

Estructural Suelo Cargas P1 Latente Sensible Pv Pt

31-32 -190.324 722 -200.566 -390.168 72.812 -48.587 24.226 -365.942

32-33 -216.567 608 -200.566 -416.525 77.838 -55.128 22.710 -393.815

33-34 -239.242 510 -200.566 -439.299 73.449 -60.700 12.749 -426.549

34-35 -261.918 411 -200.566 -462.073 73.275 -66.261 7.013 -455.059

35-36 -290.199 289 -200.566 -490.477 73.588 -73.156 432 -490.045

T > 36 -305.741 221 -200.566 -506.086 79.956 -76.971 2.985 -503.100

Cálculo de los recuperadores de calor

Condiciones exteriores. Para el cálculo de los recupera-dores se utilizan los datos de la ciudad, tipo de edificio y horario de uso, utilizando como datos climáticos para el cálculo de temperatura seca y humedad los siguientes:

• T. Seca Tª (°C): es la temperatura seca media para el número de registros contabilizados en el inter-valo correspondiente.

• Humedad Relativa HR (%): es la humedad relativa media para el número de registros contabilizados en el intervalo correspondiente.

Características recuperador. Se especifican los valo-res medios de recuperadores comerciales del mercado actualmente.

• Nº Unidades: se especifica el número de unidades de recuperadores a instalar.

Potencia recuperada

• Potencia total Qrp (kW): potencia total del recupe-rador tipo placas.

• Potencia sensible Qrps (kW): indica la potencia sensible del recuperador tipo placas.

• Potencia latente Qrpl (kW): indica la potencia la-tente del recuperador tipo placas.

Datos aire exterior

• Tª entrada aire (°C) y Humedad Relativa (%): son las condiciones de entrada del aire exterior al re-cuperador, que son las condiciones exteriores del intervalo elegido.

• Tª salida aire (°C) y Humedad Relativa (%): son las condiciones de salida del aire exterior tras pasar por el recuperador, que posteriormente será trata-do por las correspondientes baterías de frío o calor antes de ser impulsado al local.

• Eficiencia calculada (%): indica la eficiencia del recuperador en % para las condiciones anteriores y para el caudal (Qae) de aire exterior mínimo de ventilación de esta aplicación.

• Perdida de presión (Pa): es la pérdida de presión que se produce en el recuperador en el circuito de aire exterior-impulsión.

Datos aire extracción

• Tª entrada aire (°C) y Humedad Relativa (%): son las condiciones de entrada del aire del recuperador en la extracción, que coinciden con las condiciones interiores del local.

• Tª salida aire (°C) y Humedad Relativa (%): son las condiciones de salida del aire de extracción tras pa-sar por el recuperador y que se expulsa al exterior.

• Perdida de presión (Pa): es la pérdida de presión de este lado del recuperador.

En las tablas que se muestran a continuación se recogen los resultados obtenidos para un recuperador de pla-cas. Además, se utiliza un enfriador adiabático con una eficiencia del 90% en la corriente de aire de extracción procedente del local, colocado antes del propio recupe-rador. Este sistema permite enfriar la corriente de aire, para aumentar la diferencia de temperatura en el recupe-rador e intercambiar mayor cantidad de energía sensible, aprovechando mejor de esta manera las condiciones hi-grotérmicas del aire de extracción antes de ser expulsado.

(continuación)

Page 75: Guia tecnica ahorro y recuperacion de energia

73

Recuperación de calor

En condiciones invierno lógicamente no se utiliza enfriamiento evaporativo indirecto.

RECUPERADOR DE PLACAS

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA2

Caudal mín. vent: 21.960 m3/h (6,1 m3/s) Horario: 08-20 h Horas func/año: 3.240 h

Cond. interiores: Inv. 22°C/45%HR Ver. 24°C/52,5%HR

Entalpía interior: 51,2 kJ/Kg

Condiciones exteriores

Características recuperador

placas

Potencia recuperada

Datos aire exterior Datos aire extracción

IntervTª

(°C)% Hr Modelo

Nº unidades

Prp (kW)

Prps (kW)

Prpl (kW)

Tª entrada aire (°C)

Humedad relativa

(%)

Tª salida aire (°C)

Humedad relativa

(%)

Eficiencia calculada

(%)

Perdida de presión

(Pa)

Tª entrada

aire (°C)

Humedad relativa

(%)

Tª salida

aire (°C)

Humedad relativa

(%)

Perdida de presión

(Pa)

CPI -4,9 98,0 --- 6 128,04 128,04 - -4,9 98,0 12,4 28 64 19 22 45 7,7 90 22

04-05 4,5 81,5 --- 6 73,38 73,38 - 4,53 81,51 15 40 59 20 22 45 12 85 22

09-10 9,5 62,6 --- 6 56,16 56,16 - 9,46 62,61 16,6 39 59 21 22 45 14,4 73 22

16-17 16,5 44,0 --- 6 + H 60% 17,28 17,28 - 16,45 44 18,4 39 59 21 24 52,5 17,6 90 22

22-23 22,4 35,8 --- 6 + H 60% -8,64 -8,64 - 22,4 35,75 20,8 39 59 22 24 52,5 21,2 73 22

27-28 27,4 26,2 --- 6 + H 60% -30,24 -30,24 - 27,4 26,23 22,9 34 59 22 24 52,5 24,1 63 22

32-33 32,5 17,8 --- 6 + H 60% -51,84 -51,84 32,45 17,75 24,9 27 59 23 24 52,5 27,1 51 22

CPV 36,5 32,0 --- 6 + H 60% -69,12 -69,12 - 36,5 32 26,6 56 59 24 24 52,5 29,4 44 22

16-17 16,5 44,0 --- 6 + H 90% 17,28 17,28 - 16,45 44 17,2 45 59 22 24 52,5 16,8 100 22

22-23 22,4 35,8 --- 6 + H 90% -17,28 -17,28 - 22,4 35,75 19,6 52 59 22 24 52,5 20,4 82 22

27-28 27,4 26,2 --- 6 + H 90% -38,88 -38,88 - 27,4 26,23 21,7 43 59 22 24 52,5 23,3 68 22

32-33 32,5 17,8 --- 6 + H 90% -60,48 -60,48 - 32,45 17,75 23,8 29 59 23 24 52,5 26,2 57 22

CPV 36,5 32,0 --- 6 + H 90% -77,7 -77,7 - 36,5 32 25,4 60 59 23 24 52,5 28,6 50 22

-10 -5 0 5 10 15 20 25 30 35 40

250

200

150

100

50

0

-50

-100

Pote

ncia

(kW

)

Temperatura (°C)

Madrid. Edificio de oficinas. Recuperador de placas

HR60%Polinómica (HR60%)

HR90%Polinómica (HR90%)

Inv.Polinómica (Inv.)

Page 76: Guia tecnica ahorro y recuperacion de energia

74

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Las instalaciones reales disponen de sistemas free-cooling y recuperadores de energía dentro del mismo sistema, por lo que debe hacerse el análisis del comportamiento de los sistemas conjuntamente.

En la tabla siguiente se recogen los valores de la potencia térmica requerida Qt y la potencia obtenida de enfriamiento gratuito Qfc, que es la que se tomará como primera etapa de recuperación, ya que es la más eficiente al no consumir energía en su proceso de recuperación y además proporciona una sobreventilación que es positiva utilizando criterios de bienestar e higiene.

Como segunda etapa actuará el sistema de recuperación de calor que se está analizando.

La nomenclatura utilizada en la tabla es:

• Qt: es la potencia que es necesario aportar para el intervalo de temperatura.

• Qrp (H90%): potencia del recuperador de placas.

• Qr: potencia de recuperación que nos aporta el recuperador una vez que ha funcionado el free-cooling en la primera etapa durante el verano.

• Qc (kW): potencia térmica que falta por aportar, después de haber puesto en funcionamiento el free-cooling en la primera etapa y el recuperador en la segunda etapa.

La potencia frigorífica que aún quede por compensar se hará con los equipos generadores de frío (equipos frigoríficos) de la instalación convencional.

FUNCIONAMIENTO FREE-COOLING TéRMICO + RECUPERADOR PLACAS (kW)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano 24°C/52,5% HR Horas func/año:

Intervalo PtFC Térmico Recuperador placas

Pfc Pc Prp (H90%) Pr Pc

T < 1 390,58 111,90 -111,90 278,68

1-2 360,06 90,50 -90,50 269,56

2-3 342,30 85,24 -85,24 257,05

3-4 325,51 80,31 -80,31 245,20

4-5 307,06 75,70 -75,70 231,36

5-6 288,33 71,40 -71,40 216,92

6-7 270,64 67,43 -67,43 203,21

7-8 251,48 63,78 -63,78 187,71

8-9 234,33 60,45 -60,45 173,88

9-10 215,70 57,44 -57,44 158,26

10-11 197,42 54,75 -54,75 142,67

11-12 181,25 52,38 -52,38 128,87

12-13 162,91 50,33 -50,33 112,58

13-14 145,47 48,60 -48,60 96,86

14-15 127,69 47,20 -47,20 80,49

15-16 106,83 46,11 -46,11 60,72

16-17 87,91 45,35 -45,35 42,56

17-18 70,96 44,91 -44,91 26,05

18-19 49,42 44,78 -44,78 4,64

19-20 24,62 35,00 -24,62 0,00

Page 77: Guia tecnica ahorro y recuperacion de energia

75

Recuperación de calor

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano 24°C/52,5% HR Horas func/año:

Intervalo PtFC Térmico Recuperador placas

Pfc Pc Prp (H90%) Pr Pc

20-21 -11,65 11,65 0,00 -10,54 0,00 0,00

21-22 -45,80 45,80 0,00 -15,41 0,00 0,00

22-23 -77,70 77,70 0,00 -20,02 0,00 0,00

23-24 -111,88 111,88 0,00 -24,45 0,00 0,00

24-25 -144,05 0,00 -144,05 -28,76 28,76 -115,29

25-26 -174,72 0,00 -174,72 -33,00 33,00 -141,73

26-27 -207,90 0,00 -207,90 -37,20 37,20 -170,70

27-28 -239,08 0,00 -239,08 -41,40 41,40 -197,68

28-29 -271,02 0,00 -271,02 -45,63 45,63 -225,39

29-30 -302,44 0,00 -302,44 -49,90 49,90 -252,54

30-31 -332,90 0,00 -332,90 -54,20 54,20 -278,70

31-32 -365,94 0,00 -365,94 -58,53 58,53 -307,42

32-33 -393,81 0,00 -393,81 -62,87 62,87 -330,95

33-34 -426,55 0,00 -426,55 -67,20 67,20 -359,35

34-35 -455,06 0,00 -455,06 -71,48 71,48 -383,58

35-36 -490,04 0,00 -490,04 -75,66 75,66 -414,38

T > 36 -503,10 0,00 -503,10 -79,69 79,69 -423,41

(continuación)

Finalmente, se muestran las tablas de los cálculos ener-géticos para el sistema de recuperación analizado. La nomenclatura utilizada en las tablas es:

Intervalo: representa las temperaturas secas medias inferiores en el intervalo correspondiente. Obsérvese que en el caso de T < 1 se hace referencia a todos las temperaturas secas inferiores a 1 que existen hasta la condición de proyecto para invierno, calculándose la media aritmética de dichos valores. La misma nomen-clatura se utiliza para verano, estableciendo los valores de temperatura superiores a 36 °C como denominando el intervalo como T > 36.

Frecuencias corregidas

• Fii: representa la frecuencia absoluta en % de cada uno de los intervalos de temperatura respecto al total correspondiente a la temporada de invierno.

• Fiv: representa la frecuencia absoluta en % de cada uno de los intervalos de temperatura respecto al to-tal correspondiente a la temporada de verano.

• Fai: representa la frecuencia acumulada en la tem-porada de invierno.

• Fav: representa la frecuencia acumulada en la tem-porada de verano.

Potencias instantáneas

• Carga Térmica Total Qt (kW): potencia térmica total requerida por el edificio.

• Q. Total Rec. Invierno (kW): potencia de recupera-ción que nos aporta el recuperador en condiciones de invierno.

• Qr (kW): potencia de recuperación que nos aporta el recuperador con un humidificador del 90% en condiciones de verano y como segunda etapa, ya que la primera es la del free-cooling que corres-ponda en cada caso.

Potencias ponderadas. Se calculan las potencias pon-deradas para las potencias instantáneas Qt y Qr de cada intervalo, que han sido mencionadas en el párrafo anterior.

• QP (kW): potencia total ponderada. La pondera-ción se calcula aplicando la siguiente fórmula:

– QP = Fi (verano o invierno) · Potencia instan-tánea Qt o Qr / 100

Page 78: Guia tecnica ahorro y recuperacion de energia

76

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

• QPA(kW): potencia total ponderada acumulada.

• QPPm (kW): es el resultado final de QPA y representa el valor medio anual de la potencia requerida o, en su caso, el valor medio anual de la potencia recuperada.

Energía demandada y ahorrada o recuperada. Se calculan multiplicando las potencias medias anuales (QPm) por el número de horas de funcionamiento.

• Edi, Edv (kWh): es la demanda anual de energía de la instalación en invierno y en verano, respectivamente.

• Eri, Erv (kWh): es la energía anual recuperada o ahorrada por el sistema de recuperación de la instalación en invier-no y en verano, respectivamente.

ENERGÍA AHORRADA POR RECUPERADOR PLACAS (kWh)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Verano 24°C/52,5% HR Horas func/año: 3.240

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi FaFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

P. Total rec. Invierno

(kW)

Pr (kW)

Carga térmica total (kW)

P. Total rec. Invierno (kW)

P. Total rec. Verano H90% (kW)

Pp (kW)

Ppa (kW)

Pp (kW)

Ppa (kW)

Pp (kW)

Ppa (kW)

T < 1 0,11 0,11 0,11 0,11 390,58 111,90 0,41 0,41 0,12 0,12

1 - 2 0,40 0,51 0,42 0,53 360,06 90,50 1,52 1,93 0,38 0,50

2 - 3 1,74 2,25 1,30 1,83 342,30 85,24 4,45 6,38 1,11 1,61

3 - 4 3,17 5,42 1,83 3,65 325,51 80,31 5,95 12,32 1,47 3,07

4 - 5 3,55 8,97 2,46 6,11 307,06 75,70 7,55 19,87 1,86 4,94

5 - 6 4,18 13,15 3,51 9,62 288,33 71,40 10,13 30,00 2,51 7,44

6 - 7 4,74 17,89 4,60 14,23 270,64 67,43 12,45 42,45 3,10 10,55

7 - 8 5,92 23,81 6,92 21,15 251,48 63,78 17,40 59,85 4,41 14,96

8 - 9 5,74 29,55 7,38 28,52 234,33 60,45 17,28 77,14 4,46 19,42

9 - 10 5,47 35,02 7,59 36,11 215,70 57,44 16,36 93,50 4,36 23,78

10 - 11 4,68 39,70 8,04 44,15 197,42 54,75 15,88 109,38 4,40 28,18

11 - 12 4,19 43,89 7,52 51,67 181,25 52,38 13,62 123,01 3,94 32,12

12 - 13 4,16 48,05 7,62 59,29 162,91 50,33 12,42 135,43 3,84 35,95

13 - 14 3,69 51,74 6,29 65,58 145,47 48,60 9,15 144,57 3,06 39,01

14 - 15 3,64 55,38 5,73 71,30 127,69 47,20 7,31 151,88 2,70 41,71

15 - 16 4,19 59,57 6,71 78,01 106,83 46,11 7,17 159,05 3,09 44,80

16 - 17 3,96 63,53 5,34 83,35 87,91 45,35 4,69 163,74 2,42 47,23

17 - 18 4,12 67,65 6,04 89,39 70,96 44,91 4,29 168,03 2,71 49,94

18 - 19 4,38 72,03 5,80 95,19 49,42 44,78 2,86 170,89 2,60 52,53

19 - 20 4,16 76,19 4,81 100,00 24,62 1,18 172,08 0,00 52,53

2.468 PPm 172,08 PP Inv. 52,53

Edi 424.771 Eri 129.679

20 - 21 3,56 3,56 9,59 9,59 -11,65 0,00 -1,12 -1,12 0,00 0,00

21 - 22 3,28 6,84 9,13 18,72 -45,80 0,00 -4,18 -5,30 0,00 0,00

22 - 23 2,71 9,54 9,13 27,85 -77,70 0,00 -7,10 -12,40 0,00 0,00

23 - 24 2,28 11,83 8,61 36,46 -111,88 0,00 -9,63 -22,03 0,00 0,00

24 - 25 1,85 13,68 7,83 44,29 -144,05 28,76 -11,28 -33,31 2,25 2,25

Page 79: Guia tecnica ahorro y recuperacion de energia

77

Recuperación de calor

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Verano 24°C/52,5% HR Horas func/año: 3.240

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi FaFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

P. Total rec. Invierno

(kW)

Pr (kW)

Carga térmica total (kW)

P. Total rec. Invierno (kW)

P. Total rec. Verano H90% (kW)

Pp (kW)

Ppa (kW)

Pp (kW)

Ppa (kW)

Pp (kW)

Ppa (kW)

25 - 26 1,75 15,42 8,68 52,97 -174,72 33,00 -15,16 -48,46 2,86 5,11

26 - 27 1,70 17,12 9,07 62,04 -207,90 37,20 -18,85 -67,31 3,37 8,49

27 - 28 1,59 18,71 8,81 70,84 -239,08 41,40 -21,05 -88,37 3,65 12,13

28 - 29 1,34 20,05 7,63 78,47 -271,02 45,63 -20,68 -109,05 3,48 15,62

29 - 30 1,14 21,19 6,52 85,00 -302,44 49,90 -19,73 -128,78 3,25 18,87

30 - 31 0,82 22,01 4,70 89,69 -332,90 54,20 -15,64 -144,42 2,55 21,42

31 - 32 0,62 22,63 3,52 93,22 -365,94 58,53 -12,89 -157,31 2,06 23,48

32 - 33 0,49 23,12 2,80 96,02 -393,81 62,87 -11,05 -168,35 1,76 25,24

33 - 34 0,35 23,47 2,02 98,04 -426,55 67,20 -8,63 -176,98 1,36 26,60

34 - 35 0,22 23,69 1,24 99,28 -455,06 71,48 -5,64 -182,62 0,89 27,49

35 - 36 0,09 23,78 0,52 99,80 -490,04 75,66 -2,56 -185,18 0,39 27,88

T > 36 0,03 23,81 0,20 100,00 -503,10 79,69 -0,98 -186,16 0,16 28,04

772 PPm -186,16 PPrpm 28,04

PPm x Horas Func/Año: Edv 143.629 Erv 21.631

En la siguiente tabla se muestran resumidos los valo-res obtenidos para el ejemplo analizado. Puede verse que la energía total anual recuperada es de 151.310 kWh sobre una demanda anual de 568.400 kWh, lo que re-presenta un porcentaje del 27% de energía ahorrada sobre la demanda total de la instalación.

Local Edificio de oficinas

Ciudad Madrid

Horas 3.240 h

Horas func: 21.960 m3/h

Eficiencia min RITE: 58%

Ocupación 100%

Placa

Demanda instalación

(kWh)

Energía recuperada

(kWh)

Invierno 424.771 129.679

Verano humidif. 90% 143.629 21.631

Total energía recuperada 568.400 151.310

Porcentajes 27%

El consumo eléctrico en verano, considerando la utiliza-ción de un equipo frigorífico con un EER estacional de 3,5, es:

143.629 kWh térmico / 3,5 = 41.034 kWh eléctrico

Las emisiones de CO2 en verano, considerando un factor de conversión de kWh eléctricos a kg CO2 de 0,649, será:

41.034 kWh x 0,649 = 26.849 kg CO2

La utilización del recuperador de placas representa un ahorro de energía térmica de 21.631 kWh, correspon-diendo, utilizando un equipo de EER estacional = 3,5, un consumo eléctrico de 6.180 kWh.

El exceso de consumo de los motores de los ventiladores para vencer la pérdida de carga de los recuperadores (22 Pa) se calcula según la expresión, (esta pérdida de presión puede ser superior en muchos equipos reales, además del prefiltro que existirá):

Pot abs vent = Potvent / η = (V x ∆P) / η = = (6,1 m3/s x 22 Pa) / 0,63 = 213 W

Donde:

V es el caudal de ventilación que pasa a través del recu-perador, en m3 /s.

η es el rendimiento global (aerólico, transmisión y eléc-trico) del ventilador.

(continuación)

Page 80: Guia tecnica ahorro y recuperacion de energia

78

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Considerando los dos ventiladores (introducción y ex-tracción), el exceso de consumo de motores es:

Consumo motores = 213 W x 2 x 772 h = 329 kWh

Por lo tanto, el ahorro neto de consumo eléctrico será:

6.180 kWh – 329 kWh = 5.851 kWh

Lo que se corresponde con una disminución de emisio-nes de:

5.851 kWh x 0,649 = 3.797 kg CO2

representando un 14,14% sobre el total de emisiones en la temporada de verano.

Para la temporada de invierno, consideramos que la ge-neración de calor se realiza con una caldera.

Las emisiones de CO2, considerando un factor de con-versión de kWh térmico a kg CO2 de 0,3827, serán:

424.771 kWh x 0,3827 = 162.560 kg CO2

La utilización del recuperador de placas representa un ahorro de energía térmica de 129.679 kWh, correspon-diendo unas emisiones de 49.628 kg CO2.

El exceso de consumo eléctrico de los motores de dos ventiladores es de:

213 W x 2 x 2.468 h = 1.051 kWh

lo que representa unas emisiones de 682 kg CO2.

Así pues, la reducción total de emisiones de CO2 en in-vierno será de:

49.628 kgCO2 – 682 kgCO2 = 48.946 kg CO2

representando un 30,11 % sobre el total de emisiones en la temporada de invierno.

La reducción de emisiones de CO2 anual debida al uso del recuperador de placas es de 52.743 kg CO2 frente a 189.409 kg CO2, lo que representa una disminución del 27,85 %.

Se representan a continuacion dos ejemplos sobre el diagrama:

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

0 5 10 15 20 25 30 35 40 45

33,5

44,5

55,5

66,5

77,5

88,5

99,510

10,511

11,512

12,513

13,514

e,1

E

L

L

E

e,1

e,2

e,2

r,1

r,1

r,2

r,2

Tipo de recuperador: Placas flujos paralelosCaudales del aire exterior y del aire extraído: 2.000 m3/h

Eficiencia térmica: Invierno=86,4%; Verano=81,5%

Page 81: Guia tecnica ahorro y recuperacion de energia

79

Recuperación de calorH

umed

ad e

spec

ífica

W (g

/kg

a.s)

Temperatura seca Ts (°C)

0 5 10 15 20 25 30

Tipo de recuperador: Placas flujos cruzadosCaudales del aire exterior y del aire extraído: 12.000 m3/h

Eficiencia térmica: Invierno=56,6%; Verano=83,4%

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

L

L r,1

r,1

E

E

e,1

e,1

e,2

e,2

r,2

r,2

4.1.2.2 Recuperador rotativo

Están formados por una carcasa que contiene una rueda o tambor que gira construida con un material permea-ble al aire y caracterizado por una gran superficie de contacto resistente a la abrasión. Dos sectores separan el flujo del aire exterior del flujo de aire de expulsión (adyacente y en contracorriente). Al girar la rueda o tambor, el material de construcción es atravesado al-ternativamente por las dos corrientes de aire, con un período que queda definido en función de la velocidad de rotación. En la figura se presentan una fotografía del aspecto exterior y el esquema de circulación de las co-rrientes de aire en el recuperador rotativo.

Puede observarse que durante el giro el rotor absorbe calor de la corriente de aire más caliente, calentando el material de relleno, y lo cede sucesivamente a la co-rriente de aire más frío, enfriándose. El calentamiento y enfriamiento sucesivo permite transportar energía sensible entre las dos corrientes de aire que circulan a través del recuperador.

De acuerdo con los métodos de clasificación adoptados podríamos definir estos recuperadores como regenera-tivos, dado que las dos corrientes de aire circulan por el

mismo espacio físico, que en este caso son los caminos de la estructura sólida del recuperador rotativo.

Los recuperadores rotativos pueden, no obstante, intercambiar calor sensible (según se ha explicado anteriormente) o calor sensible y latente (recuperador entálpico o de energía total) según sean las caracterís-ticas higroscópicas del rotor.

Recuperador rotativo sensible

Un recuperador rotativo de rotor no higroscópico recupera solo calor sensible y, si en invierno el aire de ex-tracción alcanza la temperatura de rocío, habrá también una cierta recuperación de energía asociada a la conden-sación de humedad (es decir, sí que existirá una cierta cantidad de agua transferida entre ambas corrientes). Su construcción se basa en colocar en el rotor una masa acumuladora que no tiene ningún tipo de tratamiento su-perficial que le permita captar y ceder alternativamente humedad. Trabajan de forma similar a los recuperadores estáticos de placas, en verano e invierno, si no se alcanza la curva de saturación. Si hay transferencia de humedad en invierno, ésta se transfiere por la condensación de la humedad contenida en el aire de extracción y posterior evaporación de ésta en el aire exterior seco.

Page 82: Guia tecnica ahorro y recuperacion de energia

80

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Recuperador rotativo entálpico

Un recuperador rotativo entálpico de rotor higro-scópico recupera calor sensible más calor latente; es decir, varía la temperatura y humedad del aire. El ro-tor, construido de forma idéntica al de un recuperador rotativo sensible, lleva un tratamiento higroscópico de tal forma que toma vapor de agua de la corriente de aire más húmeda y lo cede a la corriente más seca. Cu-ando el aire de extracción de un local acondicionado pasa a través del rotor tratado higroscópicamente ac-túa de regenerador del material, pudiendo ser el aire de renovación enfriado y deshumidificado en verano, o calentado y humidificado en invierno.

La transferencia de calor sensible está determinada por la diferencia entre las temperaturas de bulbo seco de los dos flujos de aire, mientras la transferencia de calor la-tente (humedad) está determinada por los gradientes de las presiones de vapor entre la superficie tratada y las corrientes de aire entre las que se intercambia humedad.

Los materiales utilizados en la construcción de este tipo de recuperadores pueden ser metales (como por ejemplo, capas alternativas de aluminio corrugado y aluminio plano), que son los materiales más comunes por su elevada densidad y calor específico, pero tam-bién se utilizan fibras inorgánicas o polímeros sintéticos y orgánicos, cuando se tratan las superficies higroscó-

picamente para intercambiar humedad. Las secciones de paso del aire pueden tener disposiciones irregulares o estar orientadas en el sentido del flujo.

Para obtener el máximo rendimiento es necesario que:

1 El aire de renovación y el de extracción se muevan en contracorriente.

2 La instalación posea dispositivos adecuados para drenar agua o hielo que pueda acumularse por condensación.

3 Se utilicen ventiladores a velocidad variable.

4 En verano, el aire descargado por el recuperador tiene todavía una temperatura de bulbo húme-do relativamente baja, y puede ser empleado para alimentar una torre o un condensador por evaporación.

Un aspecto a considerar en estos equipos es la conta-minación de la corriente de aire de impulsión con la de extracción, donde puede alcanzarse hasta un 1 ó 2% de mezcla; para reducirla se dispone en el diseño de una sección de purga, pasando parte del aire exterior al de expulsión eliminando el fluido retenido y manteniendo los conductos del aire exterior a mayor presión que los de retorno.

Zona de purga

Aire de Expulsión

Aire del exterior

Sentido del giro

Figura 4.8 A: Recuperador rotativo. Sección de purga

Page 83: Guia tecnica ahorro y recuperacion de energia

81

Recuperación de calor

Figura 4.8 B: Recuperador rotativo

Los recuperadores rotativos pueden ser de revolucio-nes constantes o variables, utilizando como variables de control la temperatura, la humedad y la entalpía, para evitar congelaciones, controlar energía recupera-da, etc.

Se utilizan generalmente en instalaciones de climati-zación que requieren una alta recuperación de calor sensible (temperatura) y una cierta recuperación de calor latente (humedad) tanto en invierno como en ve-rano, y se recomiendan para climas intermedios que no requieren una alta deshumectación del aire exterior en verano.

Como ventajas principales de estos recuperadores pueden señalarse su alta eficiencia y las posibilidades de regula-ción efectiva de acuerdo a las condiciones de operación.

Como inconvenientes aparece el problema de la con-taminación si no hay zona de purga, o si la hay su reducción de eficacia, la necesidad de que los conduc-tos de extracción e impulsión coincidan en el espacio del recuperador, lo que puede ocasionar problemas en la ejecución de la instalación, y las posibles obstruccio-nes de la masa acumuladora.

Recuperador rotativo de sorción. Rotor higroscópico

Físicamente es idéntico a un recuperador rotativo en-tálpico, a excepción de que el rotor ha sido tratado superficialmente mediante un recubrimiento de zeolitas.

El vapor de agua queda retenido por capilaridad en la masa acumuladora de aluminio que ha sido recubierta con una capa de zeolitas, que le proporciona una gran po-rosidad y una adsorción muy selectiva del vapor de agua. No hay formación de olores, ni crecimiento bacterial. La capa de zeolita formada en el rotor de aluminio es de gran estabilidad, teniendo una alta velocidad de adsorción y de sorción. No requiere regeneración de ningún tipo.

Trabaja a contracorriente. El rotor puede girar a velocidad constante o variable entre las dos corrientes de aire. La masa acumuladora, en su giro, transfiere de una corrien-te a otra el calor sensible y el vapor de agua retenido.

Debido a su alta eficiencia se suele utilizar en ins-talaciones de climatización que requieren una alta recuperación de calor sensible (temperatura) y una alta recuperación de calor latente (humedad) tanto en in-vierno como en verano. Muy recomendado para climas húmedos que requieran una alta deshumectación del aire exterior en verano.

Figura 4.8 C: Recuperador rotativo de sorción

Page 84: Guia tecnica ahorro y recuperacion de energia

82

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ejemplo de condiciones de funcionamiento de un recuperador rotativo de sorción.

Condiciones de trabajo

Invierno Verano

Temperatura del aire exterior °C 0,1 29,3

Humedad relativa del aire exterior % 90,0 61,0

Caudal del aire exterior estándar m3/h 12.000,0 12.000,0

Temperatura del aire extraído °C 22,0 24,0

Humedad relativa del aire extraído % 50,0 50,0

Caudal del aire extraído estándar m3/h 12.000,0 12.000,0

Pérdidas de carga máximas Pa 150,0 150,0

Altura sobre el nivel del mar m 0.0

Temperatura mínima de la zona °C 0.0

Datos de funcionamiento

Invierno Verano

Eficacia térmica del recuperador % 70,9 71,2

Eficacia higrométrica del recuperador % 74,4 68,1

Temperatura del aire de entrada °C 15,6 25,5

Humedad relativa del aire de entrada %HR 63,5 55,4

Temperatura del aire expulsado °C 6,5 27,8

Humedad relativa del aire expulsado %HR 77,2 58,0

Potencia recuperada de calor sensible kW 63,1 16,2

Potencia recuperada de calor sensible + latente kW 98,6 58,8

Humedad recuperada kg/h 51,2 61,3

Pérdidas de carga - aire exterior Pa 106,9 127,1

Pérdidas de carga - aire exterior (cond. estándar) Pa 120,8 120,8

Pérdidas de carga - aire extracción Pa 122,1 123,4

Pérdidas de carga - aire extracción (cond. estándar) Pa 120,8 120,8

Ejemplo de cálculo de la energía ahorrada por un recuperador rotativo entálpico

Utilizamos el mismo método de cálculo de la energía ahorrada y el mismo edificio que en el ejemplo para el recuperador de placas.

Potencia Recuperada

• Potencia total Qrr (kW): potencia total del recuperador tipo rotativo entálpico.

• Potencia sensible Qrrs (kW): indica la potencia sensible del recuperador tipo rotativo entálpico.

• Potencia latente Qrrl (kW): indica la potencia latente del recuperador tipo rotativo entálpico.

En las tablas que se muestran a continuación se recogen los resultados obtenidos para un recuperador rotativo entálpi-co. Al igual que en el ejemplo anterior, se utiliza un enfriador adiabático con una eficiencia del 90% en la corriente de aire de extracción procedente del local, colocado antes del propio recuperador.

Page 85: Guia tecnica ahorro y recuperacion de energia

83

Recuperación de calor

RECUPERADOR ROTATIVO ENTáLPICO

Ciudad: MadridLocal: edifi cio de ofi cinasCalidad aire: IDA2

Caudal mín. vent: 21.960 m3/h (6,1 m3/s)Horario: 08-20 hHoras func/año: 3.240 h

Cond. interiores: Inv: 22°C/45% HR Ver: 24°C/52,5% HR

Entalpía interior: 51,2 kJ/Kg

Condiciones exteriores

Características recuperador

placas

Potencia recuperada

Datos aire exterior Datos aire extracción

IntervTª

(°C)% Hr Modelo

Nº unidades

Prp (kW)

Prps (kW)

Prpl (kW)

Tª entrada

aire (°C)

Humedad relativa

(%)

Tª salida aire (°C)

Humedad relativa

(%)

Efi ciencia calculada

(%)

Perdida de

presión (Pa)

Tª entrada

aire (°C)

Humedad relativa

(%)

Tª salida

aire (°C)

Humedad relativa

(%)

Perdida de

presión (Pa)

CPI -4,9 98,0 --- 2 203,2 150,8 52,4 -4,9 98,0 15,5 49 76 126 22 45 2,0 95 149

04-05 4,5 81,5 --- 2 119,2 98,4 20,8 4,5 81,5 17,8 41 76 134 22 45 8,8 89 149

09-10 9,5 62,6 --- 2 82,0 70,8 11,2 9,5 62,6 19,0 40 76 139 22 45 12,5 75 149

16-17 16,5 44,0 --- 2 + H 60% 42,4 20,2 22,2 16,5 44,0 19,1 53 76 145 24 52,5 17,3 83 148

22-23 22,4 35,8 --- 2 + H 60% 7,2 -13,2 20,4 22,4 35,8 20,6 50 76 150 24 52,5 21,8 63 148

27-28 27,4 26,2 --- 2 + H 60% -19,2 -41,6 22,4 27,4 26,2 21,8 44 76 154 24 52,5 25,6 49 148

32-33 32,5 17,8 --- 2 + H 60% -45,0 -70,0 25,0 32,5 17,8 22,9 39 76 158 24 52,5 29,5 39 148

CPV 36,5 32,0 --- 2 + H 60% -97,2 -93,8 -3,4 36,5 32,0 23,9 65 76 162 24 52,5 32,6 38 148

16-17 16,5 44,0 --- 2 + H 90% 56,6 9,4 47,2 16,5 44,0 17,6 69 76 145 24 52,5 16,8 80 146

22-23 22,4 35,8 --- 2 + H 90% -1,2 -24,6 23,4 22,4 35,8 19,0 57 76 150 24 52,5 21,3 68 146

27-28 27,4 26,2 --- 2 + H 90% -27,4 -52,8 25,4 27,4 26,2 20,2 50 76 154 24 52,5 25,1 54 146

32-33 32,5 17,8 --- 2 + H 90% -53,2 -81,2 28,0 32,5 17,8 21,4 44 76 158 24 52,5 29,0 42 146

CPV 36,5 32,0 --- 2 + H 90% -105,4 -105,0 -0,4 36,5 32,0 22,4 72 76 162 24 52,5 32,1 41 146

-10 -5 0 5 10 15 20 25 30 35

250

200

150

100

50

0

-50

-100

Pote

ncia

(kW

)

Temperatura (°C)

Madrid. Edificio de oficinas. Recuperador rotativo entálpico

H60%Polinómica (H60%)

H90%Polinómica (H90%)

Inv.Polinómica (Inv.)

Page 86: Guia tecnica ahorro y recuperacion de energia

84

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

La nomenclatura utilizada en la tabla es:

• Qt: es la potencia que es necesario aportar para el intervalo de temperatura.

• Qrr (H90%): potencia del recuperador rotativo entálpico.

• Qr: potencia de recuperación que nos aporta el recuperador una vez que ha funcionado el free-cooling en la primera etapa durante el verano.

• Qc (kW): potencia térmica que falta por aportar, después de haber puesto en funcionamiento el free-cooling en la primera etapa y el recuperador en la segunda etapa.

La potencia frigorífica que aún quede por compensar se hará con los equipos generadores de frío (equipos frigoríficos) de la instalación convencional.

FUNCIONAMIENTO FREE-COOLING TéRMICO + RECUPERADOR ROTATIVO ENTáLPICO (kW)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano: 24°C/52,5% HR Horas func/año:

Intervalo PtFC Térmico Recuperador rotativo entálpico

Pfc Pc Prr (H90%) Pr Pc

T < 1 390,58 180,50 -180,50 210,08

1-2 360,06 148,67 -148,67 211,38

2-3 342,30 140,08 -140,08 202,21

3-4 325,51 131,69 -131,69 193,82

4-5 307,06 123,48 -123,48 183,58

5-6 288,33 115,46 -115,46 172,87

6-7 270,64 107,63 -107,63 163,01

7-8 251,48 99,99 -99,99 151,49

8-9 234,33 92,54 -92,54 141,79

9-10 215,70 85,28 -85,28 130,41

10-11 197,42 78,21 -78,21 119,20

11-12 181,25 71,33 -71,33 109,91

12-13 162,91 64,64 -64,64 98,27

13-14 145,47 58,14 -58,14 87,32

14-15 127,69 51,83 -51,83 75,86

15-16 106,83 45,71 -45,71 61,12

16-17 87,91 39,78 -39,78 48,13

17-18 70,96 34,04 -34,04 36,92

18-19 49,42 28,49 -28,49 20,93

19-20 24,62 23,13 -23,13 1,49

20-21 -11,65 11,65 0,00 0,00 0,00

21-22 -45,80 45,80 0,00 0,00 0,00

22-23 -77,70 77,70 0,00 -4,71 0,00 0,00

23-24 -111,88 111,88 0,00 -10,47 0,00 0,00

24-25 -144,05 0,00 -144,05 -15,69 15,69 -128,36

25-26 -174,72 0,00 -174,72 -20,53 20,53 -154,19

26-27 -207,90 0,00 -207,90 -25,12 25,12 -182,77

27-28 -239,08 0,00 -239,08 -29,63 29,63 -209,46

Page 87: Guia tecnica ahorro y recuperacion de energia

85

Recuperación de calor

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano: 24°C/52,5% HR Horas func/año:

Intervalo PtFC Térmico Recuperador rotativo entálpico

Pfc Pc Prr (H90%) Pr Pc

28-29 -271,02 0,00 -271,02 -34,19 34,19 -236,83

29-30 -302,44 0,00 -302,44 -38,95 38,95 -263,49

30-31 -332,90 0,00 -332,90 -44,07 44,07 -288,83

31-32 -365,94 0,00 -365,94 -49,69 49,69 -316,26

32-33 -393,81 0,00 -393,81 -55,95 55,95 -337,86

33-34 -426,55 0,00 -426,55 -63,02 63,02 -363,53

34-35 -455,06 0,00 -455,06 -71,03 71,03 -384,03

35-36 -490,04 0,00 -490,04 -80,14 80,14 -409,91

T > 36 -503,10 0,00 -503,10 -90,48 90,48 -412,62

Energía recuperada

ENERGÍA AHORRADA POR RECUPERADOR ROTATIVO ENTáLPICO (kWh)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Verano 24°C/52,5% HR Horas func/año: 3.240

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi FaFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

P. Total rec. Invierno

(kW)

Pr (kW)

Carga térmica total (kW)

P. Total rec. Invierno (kW)

P. Total rec. Verano H90% (kW)

Pp (kW) Ppa (kW) Pp (kW) Ppa (kW) Pp (kW) Ppa (kW)

T < 1 0,11 0,11 0,11 0,11 390,58 180,50 0,41 0,41 0,19 0,19

1-2 0,40 0,51 0,42 0,53 360,06 148,67 1,52 1,93 0,63 0,82

2-3 1,74 2,25 1,30 1,83 342,30 140,08 4,45 6,38 1,82 2,64

3-4 3,17 5,42 1,83 3,65 325,51 131,69 5,95 12,32 2,41 5,04

4-5 3,55 8,97 2,46 6,11 307,06 123,48 7,55 19,87 3,04 8,08

5-6 4,18 13,15 3,51 9,62 288,33 115,46 10,13 30,00 4,06 12,13

6-7 4,74 17,89 4,60 14,23 270,64 107,63 12,45 42,45 4,95 17,09

7-8 5,92 23,81 6,92 21,15 251,48 99,99 17,40 59,85 6,92 24,01

8-9 5,74 29,55 7,38 28,52 234,33 92,54 17,28 77,14 6,83 30,83

9-10 5,47 35,02 7,59 36,11 215,70 85,28 16,36 93,50 6,47 37,30

10-11 4,68 39,70 8,04 44,15 197,42 78,21 15,88 109,38 6,29 43,59

11-12 4,19 43,89 7,52 51,67 181,25 71,33 13,62 123,01 5,36 48,96

12-13 4,16 48,05 7,62 59,29 162,91 64,64 12,42 135,43 4,93 53,88

13-14 3,69 51,74 6,29 65,58 145,47 58,14 9,15 144,57 3,66 57,54

14-15 3,64 55,38 5,73 71,30 127,69 51,83 7,31 151,88 2,97 60,51

15-16 4,19 59,57 6,71 78,01 106,83 45,71 7,17 159,05 3,07 63,57

16-17 3,96 63,53 5,34 83,35 87,91 39,78 4,69 163,74 2,12 65,70

17-18 4,12 67,65 6,04 89,39 70,96 34,04 4,29 168,03 2,06 67,75

18-19 4,38 72,03 5,80 95,19 49,42 28,49 2,86 170,89 1,65 69,40

19-20 4,16 76,19 4,81 100,00 24,62 23,13 1,18 172,08 1,11 70,52

2468 Ppm 172,08 Pp inv. 70,52

Edi 424.771 Eri 174.071

(continuación)

Page 88: Guia tecnica ahorro y recuperacion de energia

86

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Verano 24°C/52,5% HR Horas func/año: 3.240

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi FaFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

P. Total rec. Invierno

(kW)

Pr (kW)

Carga térmica total (kW)

P. Total rec. Invierno (kW)

P. Total rec. Verano H90% (kW)

Pp (kW) Ppa (kW) Pp (kW) Ppa (kW) Pp (kW) Ppa (kW)

20-21 3,56 3,56 9,59 9,59 -11,65 0,00 -1,12 -1,12 0,00 0,00

21-22 3,28 6,84 9,13 18,72 -45,80 0,00 -4,18 -5,30 0,00 0,00

22-23 2,71 9,54 9,13 27,85 -77,70 0,00 -7,10 -12,40 0,00 0,00

23-24 2,28 11,83 8,61 36,46 -111,88 0,00 -9,63 -22,03 0,00 0,00

24-25 1,85 13,68 7,83 44,29 -144,05 15,69 -11,28 -33,31 1,23 1,23

25-26 1,75 15,42 8,68 52,97 -174,72 20,53 -15,16 -48,46 1,78 3,01

26-27 1,70 17,12 9,07 62,04 -207,90 25,12 -18,85 -67,31 2,28 5,29

27-28 1,59 18,71 8,81 70,84 -239,08 29,63 -21,05 -88,37 2,61 7,90

28-29 1,34 20,05 7,63 78,47 -271,02 34,19 -20,68 -109,05 2,61 10,51

29-30 1,14 21,19 6,52 85,00 -302,44 38,95 -19,73 -128,78 2,54 13,05

30-31 0,82 22,01 4,70 89,69 -332,90 44,07 -15,64 -144,42 2,07 15,12

31-32 0,62 22,63 3,52 93,22 -365,94 49,69 -12,89 -157,31 1,75 16,87

32-33 0,49 23,12 2,80 96,02 -393,81 55,95 -11,05 -168,35 1,57 18,44

33-34 0,35 23,47 2,02 98,04 -426,55 63,02 -8,63 -176,98 1,27 19,71

34-35 0,22 23,69 1,24 99,28 -455,06 71,03 -5,64 -182,62 0,88 20,59

35-36 0,09 23,78 0,52 99,80 -490,04 80,14 -2,56 -185,18 0,42 21,01

T > 36 0,03 23,81 0,20 100,00 -503,10 90,48 -0,98 -186,16 0,18 21,19

772 Ppm -186,16 Pprpm 21,19

PPm x horas func/año: Edv 143.629 Erv 16.345

(continuación)

En la tabla siguiente se muestran resumidos los valores obtenidos para el ejemplo analizado. Puede verse que la energía total anual recuperada es de 190.416 kWh sobre una demanda anual de 568.400 kWh, lo que re-presenta un porcentaje del 34% de energía ahorrada sobre la demanda total de la instalación.

Rotativo entálpico

Demanda instalación

(kWh)

Energía recuperada

(kWh)

Invierno 424.771 174.071

Verano humidif. 90% 143.629 16.345

Total energía recuperada 568.400 190.416

Porcentajes 34%

El consumo eléctrico en verano, considerando la utilización de un equipo frigorífico con un EER estacional de 3,5, es:

143.629 kWh térmico / 3,5 = 41.034 kWh eléctrico

Las emisiones de CO2 en verano, considerando un factor de conversión de kWh eléctricos a kg CO2 de 0,649, será:

41.034 kWh x 0,649 = 26.849 kg CO2

La utilización del recuperador rotativo representa un ahorro de energía térmica de 16.345 kWh, correspon-diendo, utilizando un equipo de EER estacional = 3,5, un consumo eléctrico de 4.679 kWh.

El exceso de consumo de los motores de los ventilado-res para vencer la pérdida de carga de los recuperadores (150 Pa) se calcula según la expresión:

Pot abs vent = Pot vent / η = ( V x ∆P) / η = = (6,1 m3/s x 150 Pa) / 0,63 = 1.452 W

Considerando los dos ventiladores (introducción y ex-tracción), el exceso de consumo de motores es:

Page 89: Guia tecnica ahorro y recuperacion de energia

87

Recuperación de calor

Consumo motores = 1.452 W x 2 x 772 h = 2.242 kWh

Por lo tanto, el ahorro neto de consumo eléctrico será:

4.670 kWh – 2.242 kWh = 2.428 kWh

Lo que se corresponde con una disminución de emisio-nes de:

2.428 kWh x 0,649 = 1.576 kg CO2

representando un 5,87 % sobre el total de emisiones en la temporada de verano.

Para la temporada de invierno, consideramos que la ge-neración de calor se realiza con una caldera.

Las emisiones de CO2, considerando un factor de con-versión de kWh térmico a kg CO2 de 0,3827, serán:

424.771 kWh x 0,3827 = 162.560 kg CO2

La utilización del recuperador rotativo representa un ahorro de energía térmica de 174.071 kWh, correspon-diendo unas emisiones de 66.617 kg CO2.

El exceso de consumo eléctrico de los motores de los ventiladores es de:

1.452 W x 2 x 2.468 h = 7.167 kWh

lo que representa unas emisiones de 4.651 kg CO2.

Así pues, la reducción total de emisiones de CO2 en in-vierno será de:

66.617 kgCO2 – 4.651 kgCO2 = 61.966 kg CO2

representando un 38,12% sobre el total de emisiones en la temporada de invierno.

La reducción de emisiones de CO2 anual debida al uso del recuperador rotativo es de 63.542 kg CO2 frente a 189.409 kg CO2, lo que representa una disminución del 33,55 %.

Se representan a continuacion tres ejemplos sobre el diagrama:

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)-5 0 5 10 15 20 25 30 35 40

11

10,5

10

9,5

9

8,5

8

7,5

7

6,5

6

5,5

5

4,5

4

3,5

3

2,5

Ee,1e,2

E

e,1

e,2

L

L

r,1

r,1

r,2

r,2

Tipo de recuperador: Rotativo de calor sensibleCaudales del aire exterior y del aire extraído: 12.000 m3/h

Eficiencia térmica: Invierno=69,4%; Verano=70,02%

Page 90: Guia tecnica ahorro y recuperacion de energia

88

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

0 5 10 15 20 25 30 35

17

16

15

14

13

12

11

10

8

8

7

6

5

4

3

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

L

L

E

E

e,1

e,2

e,2

r,2

r,2

r,1

r,1

e,1

Tipo de recuperador: Rotativo sorciónCaudales del aire exterior y del aire extraído: 12.000 m3/h

Eficiencia térmica: Invierno=70,9%; Verano=71,2%Eficiencia higrométrica: Invierno=74,4%; Verano=68,1%

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Temperatura seca Ts (°C)

0 5 10 15 20 25 30 353

3,54

4,55

5,56

6,57

7,58

8,59

9,510

10,511

11,512

12,513

13,514

14,5

e,1E

L

e,2

r,1

r,2

Ee,1

e,2

L

r,1

r,2

Tipo de recuperador: Rotativo entálpicoCaudales del aire exterior y del aire extraído: 12.000 m3/h

Eficiencia térmica: Invierno=69,5%; Verano=70,1%Eficiencia higrométrica: Invierno=50,9%; Verano=21,2%

Page 91: Guia tecnica ahorro y recuperacion de energia

89

Recuperación de calor

4.1.2.3 Recuperador con tubo de calor (heat pipe)

En su forma más simple estos recuperadores están constituidos por tubos aleteados, que reducen la resistencia a la transmisión de calor por convección en el aire, formando una batería. Los tubos de calor están constituidos esencial-mente por un tubo metálico sellado, en el que se ha hecho el vacío y “cargado” con un líquido de trabajo del tipo de los refrigerantes, según se muestra en la figura.

Lef

Condensador

EvaporadorΔ PCond

Δ PV

Δ PG

Δ PEvap

Δ PL

α

Figura 4.9: Recuperador de tubos de calor

La batería contiene un determinado número de estos dispositivos, los cuales se dividen en dos secciones que actúan como evaporador o condensador dependiendo de la temperatura del aire que recorre cada zona, sien-do el evaporador la de mayor temperatura, donde toma calor del ambiente, y el condensador la de menor, ce-diendo calor al ambiente.

Los materiales de construcción empleados deben ser aptos para las condiciones de trabajo que estén pre-vistas. En el campo del aire acondicionado es normal utilizar bastidores de acero galvanizado, tubos de co-bre, tabiques de cobre poroso y aletas de aluminio o cobre. Existen dos tipos de dispositivos dependiendo de cual sea la fuerza que obliga a retornar el fluido des-de el condensador al evaporador: termosifones y los dispositivos heat pipe.

Recuperadores por termosifón

Estos dispositivos se colocan de manera vertical, para que el retorno del líquido se produzca por la fuerza de la gravedad, obligando a que el evaporador se coloque en la parte más baja y el condensador en la más alta, según se muestra en la siguiente figura.

Temperatura baja

Condensador

Temperatura elevada

Evaporador

Retorno porgravedad

Estructura de un termosifón

Q

Q

Q

Q

Figura 4.10: Recuperador de tubos de calor por termosifón

Cuando se calienta el extremo inferior del tubo, el fluido de trabajo se evapora y asciende hacia el ex-tremo opuesto, donde se pone en contacto con el aire más frío y condensa. Las gotas de líquido descien-

Page 92: Guia tecnica ahorro y recuperacion de energia

90

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

den por gravedad a la parte inferior de cada tubo, donde se vuelven a evaporar debido al aire caliente, determinando así la continuidad del ciclo. El empleo de un aleteado exterior en los tubos permite mejorar la transmisión del calor. El retorno por gravedad obliga a que el flujo de aire más frío, que provoca la conden-sación del vapor del refrigerante, atraviese siempre la parte alta del recuperador y que el aire más caliente atraviese siempre la parte baja.

Este tipo de dispositivos se emplean en la actualidad en las instalaciones solares denominadas “colectores solares de alto vacío”.

Existen otros modelos de este intercambiador en forma de anillos cerrados, donde líquido y vapor circulan por tubos diferentes y, en muchos casos, buscando efica-cias más elevadas.

El inconveniente de esos dispositivos se pone de manifiesto cuando tienen que operar en estaciones in-termedias entre verano e invierno, pues se necesita que la instalación esté dotada de un sistema de conductos y compuertas que permitan poder intercambiar entre ellos el flujo del aire exterior y el de extracción al cam-

bio de las estaciones, de manera que el flujo de aire más frío atraviese siempre la parte superior del intercambia-dor para que se produzca el retorno por gravedad. En otra situación el dispositivo no puede funcionar.

Entre sus ventajas se pueden citar: la ausencia de cual-quier contaminación entre los dos flujos de aire, los costes de mantenimiento reducidos y la adaptabilidad a atmósferas industriales peligrosas.

Como principal inconveniente, además de los ya pre-sentados por la geometría intrínseca del dispositivo, se destaca su elevado coste y las dificultades de ins-talación, dado que estos sistemas son sellados, deben estar sometidos a vacío antes de la carga del fluido de trabajo y eso requiere sistemas de fabricación más o menos complicados.

Recuperadores de tipo heat pipe

Estos tubos de calor están constituidos esencialmente por un tubo metálico sellado en el que se ha hecho el vacío y “cargado” con un líquido de trabajo del tipo de los refrigerantes. En la figura siguiente se presentan las partes de un tubo de calor o heat pipe.

Retorno de líquido

Relleno capilar

CondensadorEvaporador Zona adiabática

Q Q

QQ

Condensación

Flujo de vapor

Evaporación

Figura 4.11: Esquema de operación y constructivo de un heat pipe

A diferencia de los termosifones que trabajaban utili-zado el retorno por gravedad, los tubos de calor están revestidos interiormente por un material poroso de modo que el retorno del condensado a la extremidad caliente del tubo se realiza por las fuerzas capilares que se desarrollan en el relleno capilar.

Obsérvese que la evaporación del líquido en la extre-midad caliente retira de la estructura porosa fluido en fase líquida que será aportado por el transporte capilar existente en la estructura; este proceso determina un

continuo flujo del propio líquido de la sección de con-densación a la de evaporación. El flujo del líquido no depende de la fuerza de gravedad, si bien puede ser ayudado por ella.

Al colocar varios tubos de calor en una batería de tubos aleteados se tiene un intercambiador que se monta en un marco metálico con las conexiones a los conductos por los que circulan las corrientes de aire entre las que haya que intercambiar calor. Este dispositivo permite una completa reversibilidad, dado que cada uno de los

Page 93: Guia tecnica ahorro y recuperacion de energia

91

Recuperación de calor

dos extremos puede funcionar igual como evaporador o condensador, pudiendo hacerlo tanto en posición horizontal o con inclinación variable, adoptando las configuraciones de asistido o impedido por la gravedad, pudiendo optimizar la posición que permita la máxima recuperación de energía, para un determinado clima, a lo largo de todo el año.

Los materiales de construcción empleados deben ser adecuados a las condiciones de trabajo, teniendo en cuenta las características específicas del fluido caloportador utilizado y la presencia de posibles agentes contaminantes en las corrientes de aire. En la figura 4.12 se presenta una batería de tubos de calor utilizada para recuperación de energía en sistemas de climatización.

Figura 4.12: Batería de heat pipe aleteados en acero inoxidable

Ejemplo de cálculo de la energía ahorrada por un recuperador tipo tubo de calor

Utilizamos el mismo método de cálculo de la energía ahorrada y el mismo edificio de oficinas en Madrid que en los ejem-plos anteriores.

Potencia recuperada

• Potencia total Qrh (kW): potencia total del recuperador tipo tubo de calor (heat pipe).

• Potencia sensible Qrhs (kW): indica la potencia sensible del recuperador tipo tubo de calor (heat pipe).

• Potencia latente Qrhl (kW): indica la potencia latente del recuperador tipo tubo de calor (heat pipe).

En las tablas que se muestran a continuación se recogen los resultados obtenidos para un recuperador tipo tubo de calor. Al igual que en ejemplos anteriores, se utiliza un enfriador adiabático con una eficiencia del 90% en la corriente de aire de extracción procedente del local, colocado antes del propio recuperador.

Page 94: Guia tecnica ahorro y recuperacion de energia

92

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

RECUPERADOR HEAT PIPE

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA2

Caudal mín. vent: 21.960 m3/h (6,1 m3/s) Horario: 08-20 h Horas func/año: 3.240 h

Cond. interiores: Inv: 22°C/45% HR Ver: 24°C/52,5% HR

Entalpía interior: 51,2 kJ/Kg

Condiciones exteriores

Características recuperador

placas

Potencia recuperada

Datos aire exterior Datos aire extracción

Interv Tª (°c) % Hr ModeloN°

unidadesPrp

(kW)Prps (kW)

Prpl (kW)

Tª entrada

aire (°c)

Humedad relativa

(%)

Tª salida

aire (°c)

Humedad relativa

(%)

Eficiencia calculada

(%)

Perdida de presión

(Pa)

Tª entrada

aire (°c)

Humedad relativa

(%)

Tª salida

aire (°c)

Humedad relativa

(%)

Perdida de

presión (Pa)

CPI -4,9 98,0 --- 6 127,1 127,1 - -4,9 98,0 12,2 28 58 11 22 45 7,4 99 12

04-05 4,5 81,5 --- 6 72,0 72,0 - 4,5 81,5 14,6 32 58 12 22 45 11,6 87 12

09-10 9,5 62,6 --- 6 49,5 49,5 - 9,5 62,6 16,5 39 58 12 22 45 14,9 70 12

16-17 16,5 44,0 --- 6 + H 60% 7,9 7,9 - 16,5 44,0 17,6 41 58 12 24 52,5 18,8 84 12

23-24 23,4 33,9 --- 6 + H 60% -15,5 -15,5 - 23,4 33,9 21,1 73 58 12 24 52,5 22,3 36 12

27-28 27,4 26,2 --- 6 + H 60% -23,7 -23,7 - 27,4 26,2 23,8 62 58 12 24 52,5 23,6 33 12

32-33 32,5 17,8 --- 6 + H 60% -35,7 -35,7 - 32,5 17,8 27,0 51 58 12 24 52,5 25,3 27 12

CPV 36,5 32,0 --- 6 + H 60% -44,3 -44,3 - 36,5 32,0 29,5 44 58 12 24 52,5 26,7 56 12

22-23 22,4 35,8 --- 6 + H 90% -17,4 -17,4 - 22,4 35,8 19,8 85 58 12 24 52,5 20,7 40 12

27-28 27,4 26,2 --- 6 + H 90% -28,3 -28,3 - 27,4 26,2 23,1 69 58 12 24 52,5 22,3 36 12

32-33 32,5 17,8 --- 6 + H 90% -40,9 -40,9 - 32,5 17,8 26,2 57 58 12 24 52,5 24,1 29 12

CPV 36,5 32,0 --- 6 + H 90% -48,7 -48,7 - 36,5 32,0 28,8 49 58 12 24 52,5 25,5 60 12

250

200

150

100

50

0

-50

-100

Pote

ncia

(kW

)

Temperatura (°C)

Madrid. Edificio de oficinas. Recuperador Heat Pipe

Verano H60%Polinómica (Verano H60%)

Verano H90%Polinómica (Verano H90%)

InviernoPolinómica (Invierno)

-5-10 0 5 10 15 20 25 30 35 40

Page 95: Guia tecnica ahorro y recuperacion de energia

93

Recuperación de calor

La nomenclatura utilizada en la tabla es:

• Qt: es la potencia que es necesario aportar para el intervalo de temperatura.

• Qrh (H90%): potencia del recuperador tipo tubo de calor.

• Qr: potencia de recuperación que nos aporta el recuperador una vez que ha funcionado el free-cooling en la primera etapa durante el verano.

• Qc (kW): potencia térmica que falta por aportar, después de haber puesto en funcionamiento el free-cooling en la primera etapa y el recuperador en la segunda etapa.

La potencia frigorífica que aún quede por compensar se hará con los equipos generadores de frío (equipos frigoríficos) de la instalación convencional.

FUNCIONAMIENTO FREE-COOLING TéRMICO + RECUPERADOR HEAT PIPE (kW)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano: 24°C/52,5% HR Horas func/año:

Intervalo PtFC Térmico Recuperador heat pipe

Pfc Pc Prh (H90%) Pr Pc

T < 1 390,58 111,80 -111,80 278,78

1-2 360,06 90,79 -90,79 269,27

2-3 342,30 85,24 -85,24 257,05

3-4 325,51 79,88 -79,88 245,63

4-5 307,06 74,69 -74,69 232,37

5-6 288,33 69,68 -69,68 218,65

6-7 270,64 64,84 -64,84 205,80

7-8 251,48 60,18 -60,18 191,30

8-9 234,33 55,70 -55,70 178,63

9-10 215,70 51,39 -51,39 164,30

10-11 197,42 47,27 -47,27 150,15

11-12 181,25 43,32 -43,32 137,93

12-13 162,91 39,54 -39,54 123,37

13-14 145,47 35,95 -35,95 109,52

14-15 127,69 32,53 -32,53 95,17

15-16 106,83 29,28 -29,28 77,55

16-17 87,91 26,22 -26,22 61,70

17-18 70,96 23,33 -23,33 47,63

18-19 49,42 20,62 -20,62 28,80

19-20 24,62 18,08 -18,08 6,54

20-21 -11,65 11,65 0,00 -14,91 0,00 0,00

21-22 -45,80 45,80 0,00 -16,29 0,00 0,00

22-23 -77,70 77,70 0,00 -17,94 0,00 0,00

23-24 -111,88 111,88 0,00 -19,82 0,00 0,00

24-25 -144,05 0,00 -144,05 -21,89 21,89 -122,16

25-26 -174,72 0,00 -174,72 -24,12 24,12 -150,60

26-27 -207,90 0,00 -207,90 -26,46 26,46 -181,43

Page 96: Guia tecnica ahorro y recuperacion de energia

94

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano: 24°C/52,5% HR Horas func/año:

Intervalo PtFC Térmico Recuperador heat pipe

Pfc Pc Prh (H90%) Pr Pc

27-28 -239,08 0,00 -239,08 -28,88 28,88 -210,21

28-29 -271,02 0,00 -271,02 -31,32 31,32 -239,70

29-30 -302,44 0,00 -302,44 -33,76 33,76 -268,68

30-31 -332,90 0,00 -332,90 -36,15 36,15 -296,75

31-32 -365,94 0,00 -365,94 -38,45 38,45 -327,49

32-33 -393,81 0,00 -393,81 -40,63 40,63 -353,19

33-34 -426,55 0,00 -426,55 -42,63 42,63 -383,92

34-35 -455,06 0,00 -455,06 -44,43 44,43 -410,63

35-36 -490,04 0,00 -490,04 -45,97 45,97 -444,07

T > 36 -503,10 0,00 -503,10 -47,23 47,23 -455,87 Cálculos de energía recuperada

ENERGÍA AHORRADA POR RECUPERADOR HEAT PIPE (kWh)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Ver. 24°C/52,5% HR Horas func/año: 3.240

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi Fa Fii Invierno Fiv Verano Fai InviernoFav

VeranoPt

(kW)

P. Total Rec. Invierno

(kW)Pr (kW)

Carga Térmica Total (kW)

P. Total Rec. Invierno (kW)

P. Total Rec. Verano H90% (kW)

PP (kW) PPA (kW) PP (kW) PPA (kW) PP (kW) PPA (kW)

T < 1 0,11 0,11 0,11 0,11 390,58 111,80 0,41 0,41 0,12 0,12

1-2 0,40 0,51 0,42 0,53 360,06 90,79 1,52 1,93 0,38 0,50

2-3 1,74 2,25 1,30 1,83 342,30 85,24 4,45 6,38 1,11 1,61

3-4 3,17 5,42 1,83 3,65 325,51 79,88 5,95 12,32 1,46 3,07

4-5 3,55 8,97 2,46 6,11 307,06 74,69 7,55 19,87 1,84 4,90

5-6 4,18 13,15 3,51 9,62 288,33 69,68 10,13 30,00 2,45 7,35

6-7 4,74 17,89 4,60 14,23 270,64 64,84 12,45 42,45 2,98 10,33

7-8 5,92 23,81 6,92 21,15 251,48 60,18 17,40 59,85 4,16 14,50

8-9 5,74 29,55 7,38 28,52 234,33 55,70 17,28 77,14 4,11 18,61

9-10 5,47 35,02 7,59 36,11 215,70 51,39 16,36 93,50 3,90 22,51

10-11 4,68 39,70 8,04 44,15 197,42 47,27 15,88 109,38 3,80 26,31

11-12 4,19 43,89 7,52 51,67 181,25 43,32 13,62 123,01 3,26 29,56

12-13 4,16 48,05 7,62 59,29 162,91 39,54 12,42 135,43 3,01 32,58

13-14 3,69 51,74 6,29 65,58 145,47 35,95 9,15 144,57 2,26 34,84

14-15 3,64 55,38 5,73 71,30 127,69 32,53 7,31 151,88 1,86 36,70

15-16 4,19 59,57 6,71 78,01 106,83 29,28 7,17 159,05 1,96 38,67

16-17 3,96 63,53 5,34 83,35 87,91 26,22 4,69 163,74 1,40 40,06

17-18 4,12 67,65 6,04 89,39 70,96 23,33 4,29 168,03 1,41 41,47

18-19 4,38 72,03 5,80 95,19 49,42 20,62 2,86 170,89 1,19 42,67

19-20 4,16 76,19 4,81 100,00 24,62 18,08 1,18 172,08 0,87 43,54

2468 PPm 172,08 PP Inv. 43,54

Edi 424.771 Eri 107.476

(continuación)

Page 97: Guia tecnica ahorro y recuperacion de energia

95

Recuperación de calor

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Ver. 24°C/52,5% HR Horas func/año: 3.240

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi Fa Fii Invierno Fiv Verano Fai InviernoFav

VeranoPt

(kW)

P. Total Rec. Invierno

(kW)Pr (kW)

Carga Térmica Total (kW)

P. Total Rec. Invierno (kW)

P. Total Rec. Verano H90% (kW)

PP (kW) PPA (kW) PP (kW) PPA (kW) PP (kW) PPA (kW)

20-21 3,56 3,56 9,59 9,59 -11,65 0,00 -1,12 -1,12 0,00 0,00

21-22 3,28 6,84 9,13 18,72 -45,80 0,00 -4,18 -5,30 0,00 0,00

22-23 2,71 9,54 9,13 27,85 -77,70 0,00 -7,10 -12,40 0,00 0,00

23-24 2,28 11,83 8,61 36,46 -111,88 0,00 -9,63 -22,03 0,00 0,00

24-25 1,85 13,68 7,83 44,29 -144,05 21,89 -11,28 -33,31 1,71 1,71

25-26 1,75 15,42 8,68 52,97 -174,72 24,12 -15,16 -48,46 2,09 3,81

26-27 1,70 17,12 9,07 62,04 -207,90 26,46 -18,85 -67,31 2,40 6,21

27-28 1,59 18,71 8,81 70,84 -239,08 28,88 -21,05 -88,37 2,54 8,75

28-29 1,34 20,05 7,63 78,47 -271,02 31,32 -20,68 -109,05 2,39 11,14

29-30 1,14 21,19 6,52 85,00 -302,44 33,76 -19,73 -128,78 2,20 13,34

30-31 0,82 22,01 4,70 89,69 -332,90 36,15 -15,64 -144,42 1,70 15,04

31-32 0,62 22,63 3,52 93,22 -365,94 38,45 -12,89 -157,31 1,35 16,39

32-33 0,49 23,12 2,80 96,02 -393,81 40,63 -11,05 -168,35 1,14 17,53

33-34 0,35 23,47 2,02 98,04 -426,55 42,63 -8,63 -176,98 0,86 18,40

34-35 0,22 23,69 1,24 99,28 -455,06 44,43 -5,64 -182,62 0,55 18,95

35-36 0,09 23,78 0,52 99,80 -490,04 45,97 -2,56 -185,18 0,24 19,19

T > 36 0,03 23,81 0,20 100,00 -503,10 47,23 -0,98 -186,16 0,09 19,28

772 PPm -186,16 PPrpm 19,28

PPm x Horas Func/Año: Edv 143.629 Erv 14.874

(continuación)

En la siguiente tabla se muestran resumidos los valores obtenidos para el ejemplo analizado. Puede verse que la energía total anual recuperada es de 122.350 kWh sobre una demanda anual de 568.400 kWh, lo que re-presenta un porcentaje del 22% de energía ahorrada sobre la demanda total de la instalación.

Heat Pipe

Demanda instalación

(kWh)

Energía recuperada

(kWh)

Invierno 424.771 107.476

Verano humidif. 90% 143.629 14.874

Total energía recuperada 568.400 122.350

Porcentajes 22%

El consumo eléctrico en verano, considerando la utiliza-ción de un equipo frigorífico con un EER estacional de 3,5, es:

143.629 kWh térmico / 3,5 = 41.034 kWh eléctrico

Las emisiones de CO2 en verano, considerando un fac-tor de conversión de kWh eléctricos a kg CO2 de 0,649, será:

41.034 kWh x 0,649 = 26.849 kg CO2

La utilización del recuperador de tubos de calor repre-senta un ahorro de energía térmica de 14.874 kWh, correspondiendo, utilizando un equipo de EER estacio-nal = 3,5, un consumo eléctrico de 4.250 kWh.

El exceso de consumo de los motores de los ventilado-res para vencer la pérdida de carga de los recuperadores (12 Pa), (esta pérdida de presión puede ser más elevada según el modelo y la contabilización de prefiltros) se calcula según la expresión:

Pot abs vent = Pot vent / η = ( V ∆P) / η = = (6,1 m3/s x 12 Pa) / 0,63 = 116 W

Page 98: Guia tecnica ahorro y recuperacion de energia

96

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Considerando los dos ventiladores (introducción y ex-tracción), el exceso de consumo de motores es:

Consumo motores = 116 W x 2 x 772 h = 179 kWh

Por lo tanto, el ahorro neto de consumo eléctrico será:

4.250 kWh – 179 kWh = 4.071 kWh

Lo que se corresponde con una disminución de emisio-nes de:

4.071 kWh x 0,649 = 2.642 kg CO2

representando un 9,8% sobre el total de emisiones en la temporada de verano.

Para la temporada de invierno, consideramos que la ge-neración de calor se realiza con una caldera.

Las emisiones de CO2, considerando un factor de con-versión de kWh térmico a kg CO2 de 0,3827, serán:

424.771 kWh x 0,3827 = 162.560 kg CO2

La utilización del recuperador de tubos de calor repre-senta un ahorro de energía térmica de 107.476 kWh, correspondiendo unas emisiones de 41.131 kg CO2.

El exceso de consumo eléctrico de los motores de los ventiladores es de: 116 W x 2 x 2.468 h = 573 kWh, lo que representa unas emisiones de 372 kg CO2.

Así pues, la reducción total de emisiones de CO2 en in-vierno será de:

41.131 kgCO2 – 372 kgCO2 = 40.759 kg CO2

representando un 25,07% sobre el total de emisiones en la temporada de invierno.

La reducción de emisiones de CO2 anual debida al uso del recuperador de tubos de calor es de 43.401 kg CO2 frente a 189.409 kg CO2, lo que representa una disminu-ción del 22,91 %.

4.1.2.4 Recuperador de dos baterías con bomba

Estas instalaciones, también llamadas run-around, están constituidas por dos baterías aleteadas unidas entre sí mediante un circuito de transferencia de la energía térmica recuperada. Una bomba hace circular el líquido portador de calor (normalmente agua o una solución acuosa de etilenglicol cuando hay peligro de congelación) entre las dos baterías.

El calor es absorbido del flujo de aire con temperatura más elevada y cedido al flujo de aire con temperatu-ra más baja. Durante el invierno, por lo tanto, el calor será cedido del aire de extracción al aire de renovación, mientras que durante el verano, el calor será cedido del aire de renovación al aire de extracción. Un esquema de operación se presenta en la figura 4.13.

Aire de expulsión

Vaso deexpansión

Bomba decirculación

Válvulade tres víasderivadora

Aire exterior

Control

Figura 4.13: Recuperador de dos baterías con bomba

Page 99: Guia tecnica ahorro y recuperacion de energia

97

Recuperación de calor

Las baterías están formadas por un conjunto de tu-bos de cobre con aletas, normalmente de lámina de aluminio al ser menor su coste, o aletas de co-bre en el caso de ambientes salinos para evitar la corrosión por par galvánico. No se precisan otras especificaciones para el resto de los componentes. Este sistema se adopta generalmente para recupe-rar sólo el calor sensible, por lo que se aplican las mismas consideraciones ya hechas para los inter-cambiadores de placas, con respecto a la posibilidad de condensación que provocan caídas de presión elevadas, corrosión y congelación.

Para evitar problemas como el de la congelación du-rante la temporada invernal se dispone de la válvula de 3 vías, con lo que se garantiza un caudal suficiente de líquido de manera que la temperatura del mismo a la entrada de la batería de enfriamiento permanezca suficientemente elevada y pueda evitar la congela-ción del agua condensado en la corriente de aire de

expulsión. De forma similar permite controlar la tem-peratura del aire de renovación en un límite prefijado.

Como todas las instalaciones en circuito cerrado, dado que se modifica la temperatura, se provocan variacio-nes en la densidad del líquido que se encuentra en circulación por lo que siempre es necesario poner el correspondiente vaso de expansión que absorba las variaciones de volumen que experimenta el fluido ca-loportador y la válvula de seguridad que corresponda.

La instalación de recuperación de calor de dos bate-rías es muy flexible, puesto que puede ser utilizada aunque las tomas de aire exterior y de extracción es-tén distantes entre sí, o cuando existen más tomas de aire exterior y/o de extracción (ver figura 4.14). Se presta, por tanto, para ser aplicadas a instalaciones de acondicionamiento existentes o en instalaciones industriales, donde normalmente se utilizan grandes caudales de aire.

Aire de expulsión de Zona 1

Aire de expulsión de Zona 2

Aire de expulsión de Zona 3

Aire de impulsiónAire exterior U.T.A.

Figura 4.14: Sistemas de varios recuperadores de dos baterías con bomba en una instalación con diferentes zonas de extracción

Como inconvenientes principales debe señalarse su re-ducción de la eficiencia por el doble intercambio térmico aire-líquido-aire. Además hay peligro de oxidación y/o corrosión, por lo que se recomienda la utilización de so-luciones con inhibidores y el control periódico del PH del fluido caloportador que circula entre las baterías.

Cuando se tenga que trabajar la temporada de invier-no, lo más normal es que el fluido del circuito sea una mezcla de agua con anticongelante en la proporción que se ajuste a las temperaturas requeridas por las condiciones climáticas y las propias del intercambio térmico aire-agua de la batería del lado exterior.

Page 100: Guia tecnica ahorro y recuperacion de energia

98

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ejemplo de cálculo de la energía ahorrada por un recuperador de doble batería

Temporada de invierno

Utilizando el mismo procedimiento y en el mismo edificio de oficinas en Madrid que en los ejemplos de otros recuperadores vistos anteriormente, a continuación se determina la energía ahorrada durante la temporada de invierno.

Potencia del recuperador

• Potencia total Qrw (kW): potencia total del recuperador tipo doble batería.

• Potencia sensible Qrws (kW): indica la potencia sensible del recuperador tipo doble batería.

• Potencia latente Qrwl (kW): indica la potencia latente del recuperador tipo doble batería, que en este caso es cero.

En las tablas que se muestran a continuación se recogen los resultados obtenidos para un recuperador de doble batería funcionando sólo en la temporada de invierno.

RECUPERADOR AGUA GLICOLADA

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA2

Horario: 08-20 h Caudal mín. vent: 21.960 m3/h (6,1 m3/s) Horas func/año:

Cond. interiores:Inv. 22°C/45% HR Ver. 24°C/52,5% HR

Entalpía interior: 51,2 kJ/Kg

Condiciones exteriores

Características recuperador

de agua glicolada

Potencia recuperada

Datos aire exterior Datos aire extracción

Interv.Tª

(°c)% Hr Modelo

N° unidades

Prw (kW)

Prws (kW)

Prwl (kW)

Tª entrada

aire (°c)

Humedad relativa

(%)

Tª salida

aire (°c)

Humedad relativa

(%)

Eficiencia calculada

(%)

Perdida de

presión (Pa)

Tª entrada

aire (°c)

Humedad relativa

(%)

Tª salida

aire (°c)

Humedad relativa

(%)

Perdida de

presión (Pa)

CPI -4,9 98,0 ---6 (8 Filas /

15 circuitos)19,5 19,5 - -4,9 98,0 10,7 31 58 26 22 45 8,1 99 30

04-05 4,5 81,5 ---6 (8 Filas /

15 circuitos)12,2 12,2 - 4,5 81,5 14,5 42 58 26 22 45 12,0 85 30

09-10 9,5 62,6 ---6 (8 Filas /

15 circuitos)8,8 8,8 - 9,5 62,6 16,6 39 58 27 22 45 14,9 70 30

14-15 14,4 47,2 ---6 (8 Filas /

15 circuitos)5,3 5,3 - 14,4 47,2 18,8 36 58 27 22 45 17,6 59 30

Page 101: Guia tecnica ahorro y recuperacion de energia

99

Recuperación de calor

25

20

15

10

05

00

Pote

ncia

(kW

)

Temperatura (°C)

Madrid. Edificio de oficinas. Recuperador agua glicolada

Inv.Línea (Inv)

-05-10 00 05 10 15 20

Análisis del sistema de recuperación.

La nomenclatura utilizada en la tabla es:

• Qt: es la potencia que es necesario aportar para el intervalo de temperatura.

• Qrw: potencia del recuperador doble batería.

• Qr: potencia recuperada, que en este caso coincide con Prw.

• Qc (kW): potencia térmica que falta por aportar.

Page 102: Guia tecnica ahorro y recuperacion de energia

100

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

FUNCIONAMIENTO FREE-COOLING TéRMICO + RECUPERADOR DOBLE BATERÍA (kW)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Invierno: 22°C/45% HR Horas func/año: 2.468 h

Intervalo PtFC Térmico Recuperador doble batería

Pfc Pc Prw Pr Pc

T < 1 390,58 105,64 -105,64 284,94

1-2 360,06 90,22 -90,22 269,84

2-3 342,30 85,81 -85,81 256,48

3-4 325,51 81,41 -81,41 244,10

4-5 307,06 77,00 -77,00 230,05

5-6 288,33 72,60 -72,60 215,73

6-7 270,64 68,19 -68,19 202,45

7-8 251,48 63,79 -63,79 187,70

8-9 234,33 59,38 -59,38 174,95

9-10 215,70 54,97 -54,97 160,72

10-11 197,42 50,57 -50,57 146,85

11-12 181,25 46,16 -46,16 135,09

12-13 162,91 41,76 -41,76 121,16

13-14 145,47 37,35 -37,35 108,12

14-15 127,69 32,94 -32,94 94,75

15-16 106,83 28,54 -28,54 78,29

16-17 87,91 24,13 -24,13 63,78

17-18 70,96 19,73 -19,73 51,23

18-19 49,42 15,32 -15,32 34,10

19-20 24,62 10,92 -10,92 13,70

Cálculo de energía recuperada

D3.02.17 ENERGÍA AHORRADA POR RECUPERADOR AGUA GLICOLADA (kWh)

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Verano: 22°C/52,5% HR Horas func/año: 2.468 h

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi FaFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

P. Total rec. Invierno

(kW)

Pr (kW)

Carga térmica total

(kW)

P. Total rec. Invierno

(kW)

P. Total rec. Verano H90% (kW)

Pp (kW)

Ppa (kW)

Pp kW)

Ppa (kW)

Pp (kW)

Ppa (kW)

T < 1 0,11 0,11 0,11 0,11 390,58 105,64 0,41 0,41 0,11 0,11

1 - 2 0,40 0,51 0,42 0,53 360,06 90,22 1,52 1,93 0,38 0,49

2 - 3 1,74 2,25 1,30 1,83 342,30 85,81 4,45 6,38 1,12 1,61

3 - 4 3,17 5,42 1,83 3,65 325,51 81,41 5,95 12,32 1,49 3,09

4 - 5 3,55 8,97 2,46 6,11 307,06 77,00 7,55 19,87 1,89 4,99

5 - 6 4,18 13,15 3,51 9,62 288,33 72,60 10,13 30,00 2,55 7,54

6 - 7 4,74 17,89 4,60 14,23 270,64 68,19 12,45 42,45 3,14 10,67

7 - 8 5,92 23,81 6,92 21,15 251,48 63,79 17,40 59,85 4,41 15,09

Page 103: Guia tecnica ahorro y recuperacion de energia

101

Recuperación de calor

Ciudad: Madrid Local: edificio de oficinas Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 21.960 m3/h (6,1 m3/s) Caudal nominal: 85.800 m3/h

Cond. interiores: Verano: 22°C/52,5% HR Horas func/año: 2.468 h

Frec anuales Frecuencia temporada Potencias instantáneas Potencias ponderadas

Intervalo Fi FaFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

P. Total rec. Invierno

(kW)

Pr (kW)

Carga térmica total

(kW)

P. Total rec. Invierno

(kW)

P. Total rec. Verano H90% (kW)

Pp (kW)

Ppa (kW)

Pp kW)

Ppa (kW)

Pp (kW)

Ppa (kW)

8 - 9 5,74 29,55 7,38 28,52 234,33 59,38 17,28 77,14 4,38 19,47

9 - 10 5,47 35,02 7,59 36,11 215,70 54,97 16,36 93,50 4,17 23,64

10 - 11 4,68 39,70 8,04 44,15 197,42 50,57 15,88 109,38 4,07 27,71

11 - 12 4,19 43,89 7,52 51,67 181,25 46,16 13,62 123,01 3,47 31,18

12 - 13 4,16 48,05 7,62 59,29 162,91 41,76 12,42 135,43 3,18 34,36

13 - 14 3,69 51,74 6,29 65,58 145,47 37,35 9,15 144,57 2,35 36,71

14 - 15 3,64 55,38 5,73 71,30 127,69 32,94 7,31 151,88 1,89 38,59

15 - 16 4,19 59,57 6,71 78,01 106,83 28,54 7,17 159,05 1,91 40,51

16 - 17 3,96 63,53 5,34 83,35 87,91 24,13 4,69 163,74 1,29 41,80

17 - 18 4,12 67,65 6,04 89,39 70,96 19,73 4,29 168,03 1,19 42,99

18 - 19 4,38 72,03 5,80 95,19 49,42 15,32 2,86 170,89 0,89 43,88

19 - 20 4,16 76,19 4,81 100,00 24,62 10,92 1,18 172,08 0,53 44,40

2468 PPm 172,08 PP Inv. 44,40

Edi 424.771 Eri 109.605

(continuación)

En la tabla siguiente, donde se muestran resumidos los valores obtenidos para el ejemplo analizado, puede verse que la energía total recuperada es de 109.605 kWh sobre una demanda en la temporada (2.468 h) de invierno de 424.771 kWh, lo que representa un porcentaje del 26% de energía ahorrada sobre la demanda total de la instalación.

Doble batería

Demanda instalación

(kWh)

Energía recuperada

(kWh)

Verano humidif. 90% 424.771 109.665

Total energía recuperada 424.771 109.665

Porcentajes 26%

Si se considera que la generación de calor se realiza con una caldera, las emisiones de CO2, considerando un factor de conversión de kWh térmico a kg CO2 de 0,3827, serán:

424.771 kWh x 0,3827 = 162.560 kg CO2

La utilización del recuperador de doble batería repre-senta un ahorro de energía térmica de 109.605 kWh, correspondiendo unas emisiones de 41.946 kg CO2.

El exceso de consumo de los motores eléctricos para producir este ahorro es:

a) Lado agua. Bomba de circulación.

La potencia eléctrica absorbida (Pabs) por la bomba de circulación es directamente proporcional al cau-dal volumétrico (V) a circular y a la diferencia de presión (∆P) que tiene que dar, y se puede calcular con la siguiente fórmula:

Potabs bomba = V ∆P / η

Siendo,

Potabs bomba, la potencia absorbida en W.

V, el caudal volumétrico en m3 /s.

∆P, la presión diferencial en Pa.

η, el rendimiento global considerando el de la bomba y el del motor eléctrico.

Si se trabaja con un salto térmico en agua de 6 °C, para una potencia de batería de 105.640

Page 104: Guia tecnica ahorro y recuperacion de energia

102

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

W la bomba ha de mover un caudal de 15,2 m3/h de solución agua y 30% etilenglicol (punto con-gelación -12,8 °C), con una pérdida de presión de 10 m c.a. (≈100.000 Pa).

Si se considera que la densidad es ρ=1,024 y se supone un rendimiento global η = 0,6, el consumo de esta bomba es de 707 W.

b) Lado aire. Ventiladores.

La potencia de los ventiladores para vencer la pérdida de carga de los recuperadores (30 Pa) se calcula según la expresión:

Pot abs vent = Pot vent / η = V ∆P / η = = (6,1 m3/s x 30 Pa) / 0,63 = 290,5 W

Considerando los dos ventiladores (introducción y extracción), el exceso de consumo de motores de ventiladores es de 581 W.

Teniendo en cuenta los dos consumos anteriores de bomba y extra de ventiladores, el consumo eléc-trico en la temporada de invierno es:

Consumo motores eléctricos (707+ 581) W x 2.468 h = 3.179 kWh

y considerando el factor de conversión de kWh eléc-tricos a kg CO2 de 0,649, representa unas emisiones de 2.063 kg CO2.

Así pues, la reducción total de emisiones de CO2 en invierno será de:

41.946 kgCO2 – 2.063 kgCO2 = 39.883 kg CO2

representando una reducción neta del 24,6 % so-bre el total de emisiones (162.560 kg CO2) en la temporada de invierno.

Temporada de verano

Se utiliza el mismo procedimiento para determinar el cál-culo de la energía ahorrada para un Edificio tipo “Área de Servicio” en Madrid, de funcionamiento 24 horas al día, con un total de 2.834 horas en la temporada de verano.

Análisis del sistema de recuperación.

En las tablas que se muestran a continuación se recogen los resultados obtenidos para un recuperador de doble ba-tería funcionando sólo en la temporada de verano. En este caso, se utiliza un enfriador adiabático con una eficiencia del 90% en la corriente de aire de extracción procedente del local, colocado antes del propio recuperador.

FUNCIONAMIENTO FREE-COOLING TéRMICO + RECUPERADOR DOBLE BATERÍA (kW)

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 5.760 m3/h (1,6 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano: 24°C/52,5% HR Horas func/año: 2.834 h

Intervalo PtFC Térmico Recuperador doble batería

Pfc Pc Prw Pr Pc

18-19 -3,27 3,27 0,00

19-20 -8,03 8,03 0,00

20-21 -11,01 11,01 0,00

21-22 -14,27 14,27 0,00

22-23 -16,66 16,66 0,00

23-24 -19,67 19,67 0,00

24-25 -22,19 0,00 -22,19 6,70 6,70 -15,49

25-26 -24,64 0,00 -24,64 7,70 7,70 -16,94

26-27 -27,74 0,00 -27,74 8,70 8,70 -19,04

27-28 -30,85 0,00 -30,85 9,70 9,70 -21,15

28-29 -33,69 0,00 -33,69 10,60 10,60 -23,09

29-30 -36,65 0,00 -36,65 11,60 11,60 -25,05

30-31 -39,56 0,00 -39,56 12,60 12,60 -26,96

31-32 -42,87 0,00 -42,87 13,60 13,60 -29,27

32-33 -44,58 0,00 -44,58 14,60 14,60 -29,98

Page 105: Guia tecnica ahorro y recuperacion de energia

103

Recuperación de calor

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Horario: 08-20 h Caudal mín: 5.760 m3/h (1,6 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano: 24°C/52,5% HR Horas func/año: 2.834 h

Intervalo PtFC Térmico Recuperador doble batería

Pfc Pc Prw Pr Pc

33-34 -48,77 0,00 -48,77 15,60 15,60 -33,17

34-35 -51,64 0,00 -51,64 16,50 16,50 -35,14

35-36 -55,03 0,00 -55,03 17,50 17,50 -37,53

T > 36 -55,29 0,00 -55,29 18,10 18,10 -37,19

Cálculo de la energía recuperada.

ENERGÍA AHORRADA POR RECUPERADOR DOBLE BATERÍA (kWh)

Ciudad: Madrid Local: área de servicio Calidad aire: IDA3

Horario: 00-24 h Caudal mín: 5.760 m3/h (1,6 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Verano: 24°C/52,5% HR Horas func/año: 2.834 h

Frec anuales

Frecuencia temporadaPotencias

instantáneasPotencias ponderadas

Intervalo Fi FaFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

P. Total rec.

Invierno (kW)

Pr (kW)

Carga térmica

total (kW)

P. Total rec. Invierno

(kW)

P. Total rec.

Verano H90% (kW)

Pp (kW)

Ppa kW)

Pp kW)

Ppa (kW)

Pp (kW)

Ppa (kW)

18-19 4,38 4,38 13,55 13,55 -3,27 -0,44 -0,44

19-20 4,16 8,54 12,84 26,40 -8,03 -1,03 -1,47

20-21 3,56 12,10 11,01 37,40 -11,01 -1,21 -2,69

21-22 3,28 15,38 10,13 47,53 -14,27 -1,45 -4,13

22-23 2,71 18,08 8,36 55,90 -16,66 -1,39 -5,52

23-24 2,28 20,37 7,06 62,95 -19,67 -1,39 -6,91

24-25 1,85 22,21 5,72 68,67 -22,19 6,70 -1,27 -8,18 0,38 0,38

25-26 1,75 23,96 5,40 74,07 -24,64 7,70 -1,33 -9,51 0,42 0,80

26-27 1,70 25,66 5,26 79,33 -27,74 8,70 -1,46 -10,97 0,46 1,26

27-28 1,59 27,25 4,90 84,23 -30,85 9,70 -1,51 -12,48 0,48 1,73

28-29 1,34 28,58 4,13 88,36 -33,69 10,60 -1,39 -13,87 0,44 2,17

29-30 1,14 29,73 3,53 91,89 -36,65 11,60 -1,29 -15,17 0,41 2,58

30-31 0,82 30,55 2,54 94,43 -39,56 12,60 -1,01 -16,17 0,32 2,90

31-32 0,62 31,16 1,91 96,34 -42,87 13,60 -0,82 -16,99 0,26 3,16

32-33 0,49 31,66 1,52 97,85 -44,58 14,60 -0,68 -17,67 0,22 3,38

33-34 0,35 32,01 1,09 98,95 -48,77 15,60 -0,53 -18,20 0,17 3,55

34-35 0,22 32,23 0,67 99,62 -51,64 16,50 -0,35 -18,55 0,11 3,66

35-36 0,09 32,32 0,28 99,90 -55,03 17,50 -0,16 -18,70 0,05 3,71

T > 36 0,03 32,35 0,11 100,00 -55,29 18,10 -0,06 -18,76 0,02 3,73

2834 PPm -18,76 PPrpm 3,73

PPm x Horas Func/Año: Edv 53.166 Erv 10.570

(continuación)

Page 106: Guia tecnica ahorro y recuperacion de energia

104

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

En la tabla siguiente, donde se muestran resumidos los valores obtenidos para el ejemplo analizado, puede verse que la energía total recuperada es de 10.570 kWh sobre una demanda en la temporada de verano de 53.166 kWh, lo que representa un porcentaje del 20% de energía ahorrada sobre la demanda total de la instalación.

Doble batería

Demanda instalación

(kWh)

Energía recuperada

(kWh)

Verano humidif. 90% 53.166 10.570

Total energía recuperada 53.166 10.570

Porcentajes 20%

El consumo eléctrico en verano para satisfacer la demanda, considerando la utilización de un equipo fri-gorífico con un EER estacional de 3,5, es:

53.166 kWh térmico / 3,5 = 15.190 kWh eléctrico

Las emisiones de CO2 en verano, considerando el factor de conversión de kWh eléctricos a kg CO2 de 0,649, será:

15.190 kWh x 0,649 = 9.859 kg CO2

La utilización del recuperador de doble batería repre-senta un ahorro de energía térmica de 10.570 kWh, correspondiendo, utilizando un equipo frigorífico de EER estacional = 3,5, un consumo eléctrico de 3.020 kWh con unas emisiones de:

3.020 kWh x 0,649 = 1.960 kg CO2

El exceso de consumo de los motores eléctricos por el sistema de recuperación para producir este ahorro es:

a) Lado agua. Bomba de circulación.

Si se trabaja con un salto térmico en agua de 6 °C , para una potencia de batería de 18.100 W, la bom-ba ha de mover un caudal de 2,6 m3/h de agua, con una presión de 10 m c.a.

Si se considera que se trabaja con agua la densi-dad es ρ = 1,0 y se supone un rendimiento global η = 0,55, el consumo de esta bomba (utilizando las ecuaciones vistas anteriormente) será de 129 W.

b) Lado aire de los ventiladores. Para vencer la pérdi-da de carga de las dos baterías (63 Pa) se tiene:

Pot abs vent = Pot vent / η = V ∆P / η = = 2 x (1,6 m3/s x 63 Pa) / 0,63 = 320 W

Teniendo en cuenta los dos consumos anteriores de bomba y extra de ventiladores el consumo eléc-trico en la temporada de verano es:

Consumo motores eléctricos(0,129+0,320) kW x 2.468 h = 1.108 kWh

y considerando el factor de conversión de kWh eléctricos a kg CO2 de 0,649, representa unas emi-siones de 719 kg CO2.

Así pues, la reducción total de emisiones de CO2 en verano será de:

1.960 kg CO2 – 719 kgCO2 = 1.241 kg CO2

representando una reducción del 12,6 % sobre el total de emisiones en la temporada de verano.

4.1.2.5 Batería en bucle de agua

Las instalaciones en bucle de agua se caracterizan por-que, durante su funcionamiento, las bombas de calor vuelcan (en modo frío) o captan (en modo calor) del agua que circula por el bucle el calor necesario para su funcionamiento.

Para garantizar el funcionamiento de dichas bom-bas de calor, la temperatura del agua que circula por el bucle se debe mantener entre unos márgenes prefijados, impidiendo que baje por debajo de un cierto límite inferior, que se suele fijar en 15 °C, o que suba por encima de un límite superior que se esta-blece generalmente en 35 °C (estos valores pueden variar a criterio del proyectista de acuerdo con las características de los equipos seleccionados para la instalación).

El atemperamiento del agua del bucle se logra habi-tualmente empleando unos dispositivos centrales, cuya función es añadir o retirar calor del sistema cuando se traspasan los límites fijados. Dichos dispositivos cen-trales suelen ser una caldera (a gas o a gasóleo) y una torre de refrigeración (seca o evaporativa). También se suele recurrir a una captación geotérmica para el atem-peramiento del agua del bucle.

El principio de trabajo del sistema de recuperación propuesto en este apartado consiste en emplear como primera etapa de atemperamiento una batería aire-agua que se conecta hidráulicamente en serie con el bucle de agua y por la que se hace pasar el aire de extracción an-tes de su expulsión al ambiente exterior del edificio. De este modo, conseguiremos, en condiciones de invierno, una elevación de la temperatura del agua del anillo, y

Page 107: Guia tecnica ahorro y recuperacion de energia

105

Recuperación de calor

en verano, una reducción de la misma, lo que dará lu-gar a una reducción del tiempo de funcionamiento de la caldera y la torre, con la consecuente disminución de consumos energéticos de estos equipos.

Como se ve, en lugar de emplear la energía recuperada para precalentar o preenfriar el aire primario de venti-lación que se introduce al edificio, tal y como ocurre en sistemas convencionales de recuperación de calor, en este caso la energía recuperada se emplea para me-jorar la eficiencia global de la instalación al reducir el consumo de determinados equipos.

En la figura 4.15 se ha representado una unidad de tra-tamiento de aire de extracción diseñada para poder efectuar la recuperación del calor de dicho aire y su aprovechamiento en el atemperamiento del bucle de agua, en su disposición más habitual.

La unidad de tratamiento consta de las siguientes secciones:

• Una sección de entrada con embocadura de co-nexión para el conducto de extracción que llega del edificio.

• Una sección de filtración para proteger los restan-tes elementos de la unidad.

• Una batería de tratamiento de aire, con tubos de cobre y aletas de aluminio.

• Un ventilador de extracción con su motor eléctrico de accionamiento.

• Y una sección de salida con caperuza antilluvia y malla antipájaros en la descarga de aire al exterior.

Conducto de extracción de aire

+30°C +35°Cbucle de agua

Descarga de aire al exterior

Batería de agua

VentiladorFiltro

Figura 4.15: Esquema básico de la recuperación de calor con batería en bucle de agua

La conexión puede ser en serie directa, o bien puede tener un by-pass comandado por una válvula de dos o tres vías, siendo especialmente interesante en diseños el bucle de agua a caudal variable.

En la tabla mostrada a continuación se recogen los ahorros energéticos que se obtienen al enfriar o calentar el agua del anillo aprovechando la energía del aire extraído en condiciones interiores de proyecto, en un ejemplo con una extracción de aire de 3 m3/s, y un caudal de agua derivada del anillo de 3.200 l/h.

Condiciones de invierno Condiciones de verano

Caudal de aire de extracción 10.800 m3/h

Caudal de agua derivado del bucle al recuperador 3.200 l/h

Temperatura de entrada del aire de extracción 20 °CBS / 50% H.R. 27 °CBS / 47% H.R.

Temperatura de entrada del agua del bucle 10 °C 35 °C

Temperatura de salida del agua del bucle 15 °C 30 °C

Potencia calorífica o frigorífica recuperada para el bucle 18.400 W 15.700 W

Potencia absorbida por el motor del ventilador (P.E.D. 150 Pa) 2.870 W

Partiendo de la instalación básica de una batería mostrada en el apartado anterior, existen diversas variantes que pasan por emplear varias unidades de extracción, de menor tamaño, colocadas donde interese y conectadas al anillo. En el

Page 108: Guia tecnica ahorro y recuperacion de energia

106

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

límite, se pueden emplear incluso unidades ventiloconvectoras con presión disponible como elementos del sistema de recuperación, colocadas por plantas o por zonas del edificio. Ello da una gran flexibilidad y facilidad de instalación del sistema.

Por otra parte, existe la posibilidad de realizar un “free-cooling” para refrigerar el agua del bucle con aire exterior cuan-do sus condiciones térmicas sean más adecuadas que las del aire interior. Se debe valorar esta posibilidad en función de las condiciones climáticas de la zona geográfica en la que se proyecte la instalación.

Para disponer de esta funcionalidad, solo es necesario prever una sección de mezcla de dos compuertas en la unidad de tratamiento de aire de recuperación, tal y como se muestra en la figura 4.16. Con ella, se puede optar bien por el aire exterior, bien por el aire extraído, para realizar el atemperamiento del anillo. Esta posibilidad debe conjugarse con las necesidades de extracción de aire en función de su grado de contaminación.

Conducto de extracción de aire

+30°C +35°Cbucle de agua

Descarga de aire al exterior

Batería de agua

Toma aire exterior“free-cooling”

VentiladorFiltro

Figura 4.16: Variante con posibilidad de “free-cooling” sobre el bucle de agua

Otra variante que permite aumentar la eficiencia de la recuperación consiste en poder regular la velocidad del ventilador mediante un dispositivo variador de frecuencia, con lo que el caudal extraído se podrá adaptar en cada caso en función del grado de contaminación del ambiente y a las necesidades y posibilidades de recuperación de calor.

En el estudio de viabilidad energética de este tipo de recuperación de calor hay que tener en cuenta que a la energía recuperada se le debe deducir la energía consumida por los siguientes conceptos:

• Potencia absorbida por el motor eléctrico de accionamiento del ventilador de extracción: dependerá del caudal de aire extraído y de la pérdida de carga en el recorrido del aire desde las rejillas interiores hasta su descarga al exterior.

• Potencia adicional absorbida por las bombas de circulación del bucle de agua para vencer la pérdida de carga adi-cional en el paso del agua por la batería de la unidad de recuperación de calor.

4.1.2.6 Recuperación activa por circuito frigorífico

Este sistema utiliza una máquina a compresión mecánica que transfiere energía de una fuente fría a una caliente, utilizando un fluido intermedio que absorbe o cede calor en un ciclo termodinámico o circuito frigorífico.

La utilización de un sistema de bomba de calor como recuperador se basa en colocar la que se conoce como unidad exte-rior, que cede calor en verano actuando como condensador y toma calor en invierno actuando como evaporador del ciclo frigorífico, en el conducto de aire de expulsión, aprovechando el nivel térmico más adecuado de esta corriente de aire. En

Page 109: Guia tecnica ahorro y recuperacion de energia

107

Recuperación de calor

definitiva, es bastante más eficiente en invierno calentar el evaporador de una máquina frigorífica con aire de expulsión a 20° C, que con aire exterior a -4 ó -5 °C, y también es más eficiente refrigerar la unidad condensadora con aire de expulsión a 25° C que con aire exterior a 35 ó 40° C. Tanto en el ciclo de calefacción como en el de refrigeración, el COP y EER del equipo será del orden de un 50% superior operando con el aire de extracción que con el aire exterior.

En el caso de que opere como recuperador de energía en sistemas de climatización del tipo aire/aire, una unidad se encuentra en el aire de extracción o expulsión al exterior y la otra en el aire nuevo de ventilación a introducir en los locales a climatizar.

Aire exterior Aire impulsión

Aire expulsión Aire retorno /Aire extracción

Figura 4.17: Esquema recuperación activa por circuito frigorífico

En sistemas de climatización que utilicen agua como fluido caloportador la recuperación de calor del aire de extracción puede hacerse con una bomba de calor aire-agua de ventilador centrífugo que es el encargado de la extracción del aire. La energía recuperada en el lado interior sobre agua puede utilizarse tanto para refrigeración, calefacción, integración como generador frío/calor en un bucle de agua o precalentamiento de agua caliente sanitaria.

Es evidente que el inconveniente que presenta este tipo de instalaciones, al igual que en la utilización de otros tipos de recuperadores de energía, reside en la necesidad de disponer de un conducto de aire de retorno donde colocar la unidad exterior de la bomba de calor. En muchas de las instalaciones existentes, sobre todo de tamaño reducido, el retorno no es conducido, y el aire expulsado sale por exfiltración impidiendo la recuperación energética de esta corriente.

Ejemplo de recuperación activo mediante circuito frigorífico en un sistema aire-aire

Con el mismo procedimiento utilizado en ejemplos anteriores para determinar el cálculo de la energía ahorrada, en este caso se hará para un edificio tipo “Sala de espectáculos” en Barcelona, con horario de funcionamiento de 16 h (p.m.) a 01 horas (a.m.), con un total de 1.980 horas anuales.

En primer lugar, se parte de los datos característicos del sistema de recuperación y de la instalación donde se va a aplicar.

Potencia del sistema de recuperación activa

• Potencia total Qra (kW): potencia total del sistema de recuperación activa que es la potencia térmica cedida por el circuito frigorífico (condensador en invierno y evaporador en verano) en el lado de aire interior.

• Potencia absorbida Qabs (kW): indica la potencia absorbida por los compresores.

Page 110: Guia tecnica ahorro y recuperacion de energia

108

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

En las tablas siguientes se muestran los datos característicos del sistema de recuperación. En este ejemplo no se utiliza el enfriamiento adiabático previo del aire de expulsión ya que no influye prácticamente en la mejora de la eficiencia del circuito frigorífico de recuperación.

RECUPERACIóN ACTIVA

Ciudad: Barcelona Local: sala de espectáculos Calidad aire: IDA3

Horario: 16-01 h Caudal mín: 5.241 m3/h (1,5 m3/s) Horas func/año: 1.980

Cond. interiores:Inv. 22°C/45% HR Ver. 24°C/52,5% HR

Entalpía interior: 51,2 kJ/Kg

Condiciones exteriores

Características recuperación activa

Datos aire exterior Datos aire extracciónPotencia circuito de recuperación

IntervTª

(°C)% Hr Modelo

N° Unidades

Tª entrada

aire (°C)

Humedad relativa

(%)

Perdida de

presión (Pa)

Tª entrada

aire (°C)

Humedad relativa

(%)

Perdida de presión

(Pa)

Pt (kW)

Pabs (kW)

CPI -4,9 98,0 1 -4,9 98,0 35 22 45,0 30 15,9 3,5

04-05 4,5 77,2 1 4,5 77,2 35 22 45,0 30 17,9 3,8

09-10 9,4 65,2 1 9,4 65,2 35 22 45,0 30 19,5 4,0

16-17 16,4 52,4 1 16,4 52,4 35 24 52,5 30 -17,8 4,3

22-23 22,4 38,4 1 22,4 38,4 35 24 52,5 30 -19,3 4,4

27-28 27,4 26,3 1 27,4 26,3 35 24 52,5 30 -20,4 4,4

32-33 32,5 17,8 1 32,5 17,8 35 24 52,5 30 -21,7 4,5

CPV 36,5 32,0 1 36,5 32,0 35 24 52,5 30 -22,7 4,6

Invierno.Polinómica (Inv.)

Verano.Polinómica (Ver.)

-10 -5 0 5 10 15 20 25 30 35 40

25

20

15

10

5

0

-5

-10

-15

-20

-25

Pote

ncia

(kW

)

Temperatura (°C)

Barcelona. Sala de espectáculos. Recuperación activa

Page 111: Guia tecnica ahorro y recuperacion de energia

109

Recuperación de calor

Los datos de la integración del sistema de recuperación en la curva de demanda de la instalación se pueden ver en la tabla siguiente.

La nomenclatura utilizada en la tabla es:

• Qt: es la potencia que es necesario aportar para el intervalo de temperatura.

• Qra: potencia total del sistema de recuperación.

• Qr: potencia recuperada.

• Qc (kW): potencia térmica que falta por aportar.

FUNCIONAMIENTO RECUPERADORES

Ciudad: Barcelona Local: sala de espectáculos Calidad aire: IDA3

Horario: 16-01 h Caudal mín: 5.241 m3/h (1,5 m3/s) Caudal nominal: 14.300 m3/h

Cond. interiores: Ver. 24°C/52,5% HR Horas func/año: 8.760 h

Recuperación activa

IntervaloP total

(kW)

Pra

(kW)

Pr

(kW)

Pc

(kW)

T<3 51,87 16,35 16,35 35,53

3-4 48,89 16,80 16,80 32,09

4-5 45,29 17,18 17,18 28,11

5-6 41,97 17,43 17,43 24,54

6-7 39,13 17,63 17,63 21,50

7-8 34,87 17,80 17,80 17,07

8-9 31,12 17,96 17,96 13,16

9-10 27,02 18,12 18,12 8,91

10-11 23,54 18,27 18,27 5,27

11-12 19,42 18,44 18,44 0,98

12-13 15,54 18,65 15,54 0,00

13-14 10,57 18,84 10,57 0,00

14-15 6,71 19,15 6,71 0,00

15-16 1,61 19,52 1,61 0,00

16-17 -0,01 -17,80 -0,01 0,00

17-18 -0,03 -17,97 -0,03 0,00

18-19 -5,48 -18,15 -5,48 0,00

19-20 -9,86 -18,32 -9,86 0,00

20-21 -16,87 -18,49 -16,87 0,00

21-22 -21,97 -18,77 -18,77 -3,20

22-23 -25,08 -19,06 -19,06 -6,01

23-24 -29,22 -19,35 -19,35 -9,88

24-25 -31,38 -19,63 -19,63 -11,74

25-26 -34,93 -19,92 -19,92 -15,01

26-27 -37,71 -20,21 -20,21 -17,50

27-28 -41,03 -20,49 -20,49 -20,53

28-29 -43,82 -20,78 -20,78 -23,04

29-30 -46,20 -21,07 -21,07 -25,14

30-31 -48,39 -21,45 -21,45 -26,93

T>31 -51,37 -21,74 -21,74 -29,62

Page 112: Guia tecnica ahorro y recuperacion de energia

110

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Como puede apreciarse, la potencia térmica Qt necesaria en cada intervalo de temperatura se com-pensa en parte con la potencia Qra suministrada por el sistema de recuperación, quedando la diferencia de potencia Qc para ser compensada por los generadores de frío y calor de la instalación, siendo Qr la potencia recuperada en dicho intervalo. Como puede verse en el rango de temperaturas exteriores desde 12 °C a 21 °C la potencia recuperada Qr es menor que la que po-dría suministrar el sistema Qra por el hecho de que la carga Qt es menor que la potencia disponible Qra. Las conclusiones que se pueden sacar es que los sis-temas de recuperación disminuyen la potencia en los generadores principales de la instalación y también que el exceso de potencia (Qra–Qr) es susceptible de

emplearse en otros servicios a través de condensado-res de aire o agua suplementarios.

Multiplicando en cada intervalo de temperatura los datos anteriores de potencia por su correspondiente fre-cuencia acumulada por temporada (Fai, para invierno y Fav para verano) se obtienen las potencias ponderadas medias (QPm en kW) para las cargas, para la recupera-ción y para la potencia absorbida.

Si estas potencias QPm se multiplican por el número de ho-ras de cada temporada, concretamente 1.029 h en invierno y 951 h en verano, se tiene la energía demandada Ev (kWh), la energía recuperada Er y la energía absorbida por los compresores, tal como puede verse en la tabla siguiente:

ENERGÍA AHORRADA POR RECUPERACIóN ACTIVA (kWh)

Ciudad: Barcelona Local: sala de espectáculos Calidad aire: IDA3

Horario: 16-01 h Caudal mín: 5.241 m3/h (1,5 m3/s) Caudal nominal: 12.000 m3/h

Cond. interiores: Ver. 24°C/52,5% HR Horas func/año: 1.980 h

Frecuencia temporadaPotencias

instantáneasPotencias ponderadas

Pot. Abs. compresor recup.

IntervaloFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

Potencia recuperada

Carga térmica

total

Potencia recuperada

total

Potencia compresor

P. Inst.

P. Abs. total

Pr (kW)

PPA (kW)

PPA (kW)

Pc (kW)

PP (kW)

PPA (kW)

2-3 0,05 0,05 51,87 16,35 0,03 0,01 3,60 0,01 0,01

3-4 0,37 0,42 48,89 16,80 0,21 0,07 3,70 0,05 0,07

4-5 1,48 1,90 45,29 17,18 0,88 0,32 3,80 0,09 0,16

5-6 2,37 4,27 41,97 17,43 1,87 0,74 3,83 0,12 0,28

6-7 3,06 7,33 39,13 17,63 3,07 1,28 3,86 0,23 0,51

7-8 5,96 13,28 34,87 17,80 5,15 2,34 3,90 0,38 0,88

8-9 9,70 22,98 31,12 17,96 8,16 4,08 3,95 0,46 1,34

9-10 11,65 34,64 27,02 18,12 11,31 6,19 4,00 0,50 1,84

10-11 12,39 47,02 23,54 18,27 14,23 8,45 4,05 0,51 2,35

11-12 12,65 59,68 19,42 18,44 16,69 10,79 4,10 0,45 2,80

12-13 10,91 70,59 15,54 15,54 18,38 12,48 3,46 0,33 3,13

13-14 9,65 80,24 10,57 10,57 19,40 13,50 2,33 0,24 3,37

14-15 10,39 90,62 6,71 6,71 20,10 14,20 1,47 0,14 3,51

15-16 9,38 100,01 1,61 1,61 20,25 14,35 0,35 0,00 3,51

1029 PPm 20,25 PPrm 14,35 PPcm 3,51

Edi 20.838 Eri 14.768 Eci 3.614

16-17 10,90 10,90 -0,01 -0,01 0,00 0,00 0,00 0,002 0,000 0,00

17-18 10,61 21,50 -0,03 -0,03 0,00 0,00 0,00 0,01 0,000 0,00

18-19 9,41 30,92 -5,48 -5,48 -0,52 -0,52 -0,52 1,30 0,000 0,00

19-20 10,27 41,18 -9,86 -9,86 -1,53 -1,01 -1,53 2,31 0,000 0,00

20-21 10,44 51,62 -16,87 -16,87 -3,29 -1,76 -3,29 4,01 0,46 0,46

21-22 11,52 63,15 -21,97 -18,77 -5,83 -2,16 -5,46 4,40 0,44 0,90

Page 113: Guia tecnica ahorro y recuperacion de energia

111

Recuperación de calor

Ciudad: Barcelona Local: sala de espectáculos Calidad aire: IDA3

Horario: 16-01 h Caudal mín: 5.241 m3/h (1,5 m3/s) Caudal nominal: 12.000 m3/h

Cond. interiores: Ver. 24°C/52,5% HR Horas func/año: 1.980 h

Frecuencia temporadaPotencias

instantáneasPotencias ponderadas

Pot. Abs. compresor recup.

IntervaloFii

inviernoFiv

veranoFai

inviernoFav

veranoPt

(kW)

Potencia recuperada

Carga térmica

total

Potencia recuperada

total

Potencia compresor

P. Inst.

P. Abs. total

Pr (kW)

PPA (kW)

PPA (kW)

Pc (kW)

PP (kW)

PPA (kW)

22-23 9,93 73,07 -25,08 -19,06 -8,31 -1,89 -7,35 4,40 0,32 1,22

23-24 7,24 80,32 -29,22 -19,35 -10,43 -1,40 -8,75 4,40 0,27 1,48

24-25 6,05 86,36 -31,38 -19,63 -12,33 -1,19 -9,94 4,40 0,20 1,68

25-26 4,56 90,92 -34,93 -19,92 -13,92 -0,91 -10,85 4,40 0,15 1,84

26-27 3,48 94,40 -37,71 -20,21 -15,23 -0,70 -11,55 4,40 0,12 1,95

27-28 2,62 97,03 -41,03 -20,49 -16,31 -0,54 -12,09 4,40 0,08 2,03

28-29 1,77 98,80 -43,82 -20,78 -17,09 -0,37 -12,45 4,40 0,03 2,06

29-30 0,57 99,37 -46,20 -21,07 -17,35 -0,12 -12,58 4,40 0,02 2,07

30-31 0,40 99,77 -48,39 -21,45 -17,54 -0,09 -12,66 4,50 0,01 2,08

T>31 0,23 99,99 -51,37 -21,74 -17,66 -0,05 -12,71 4,50 0,00 2,08

951 PPm -17,66 PPrm -12,71 PPcm 2,08

PPm x Horas Func/Año: Edv 16.793 Erv 12.087 Ecv 1.982

A modo de resumen, en la tabla siguiente se muestran los valores obtenidos para el ejemplo analizado. Pue-de verse que la energía total recuperada durante todo el año es de 26.855 kWh sobre una demanda anual de 37.631 kWh, lo que representa un porcentaje del 71,36% de energía ahorrada sobre la demanda total de la instalación.

Local Sala de espectáculos

Ciudad Barcelona

Horas 1.980 h

Horas func: 5.241 m3/h

Eficiencia min RITE: 44%

Ocupación 100%

Recuperación activa

Demanda instalación

(kWh)

Energía recuperada

(kWh)

Invierno 20.838 14.768

Verano 16.793 12.087

Total energía recuperada 37.631 26.855

Porcentajes 71%

Temporada de invierno

Si se considera que la generación de calor se realiza con una caldera, las emisiones de CO2, considerando un fac-tor de conversión de kWh térmico a kg CO2 de 0,3827, serán:

20.838 kWh x 0,3827 = 7.975 kg CO2

La utilización del sistema de recuperación activa re-presenta un ahorro de energía térmica de 14.768 kWh, correspondiendo unas emisiones de 5.652 kg CO2.

Para producir este ahorro el consumo de energía eléc-trica es el siguiente:

• Compresores : 3.614 kWh.

• Potencia ventilador de extracción:

Para un caudal de 5.241 m3/h y una pérdida de pre-sión de 30 Pa

Pot abs vent. = V ∆P /(3.600 x η) = = (5.241/3.600) 30 /0,6 = 73 W

(continuación)

Page 114: Guia tecnica ahorro y recuperacion de energia

112

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

• Potencia ventilador de impulsión, para el mismo caudal y 35 Pa.

Pot abs vent. = V ∆P /(3.600 x η) = (5.241/3.600) 35 /0,6 = 85 W

El consumo eléctrico de los dos ventiladores es:

(0,073 + 0,085) x 1.029 h = 163 kWh

Y el consumo eléctrico global es de:

E= 3.614 + 163 = 3.777 kWh

Siendo 0,649 el factor de conversión a kg CO2 , supone unas emisiones de 2.451 kg CO2.

Por tanto, la reducción es 5.652 – 2.451 = 3.201 kg CO2.

O lo que es lo mismo, el sistema de recuperación activa permite reducir las emisiones de CO2 en un 40% respecto a las emisiones de la demanda.

Temporada de verano

Si se considera que la generación de frío se realiza con un equipo frigorífico de una eficiencia media de 3,5, y el factor de emisiones de la electricidad es 0,649, la demanda provoca una emisiones globales de:

0,649 x 16.793 kWh / 3,5 = 3.114 kg CO2

La utilización del sistema de recuperación activa representa un ahorro de energía térmica equivalente a unas emisiones de:

0,649 x 12.087 kWh /3,5 = 2.241 kg CO2

Para producir este ahorro el consumo de energía eléctrica es el siguiente:

• Compresor: 1.982 kWh.

• De los dos ventiladores es:

0,158 x 951 h = 150 kWh

Y el consumo eléctrico global es de:

E= 1.982 + 150 = 2.132 kWh

que supone unas emisiones de 1.384 kg CO2

Por tanto, la reducción es 2.241 – 1.384 = 857 kg CO2.

Lo que es lo mismo, el sistema de recuperación activa permite reducir las emisiones de CO2 en un 27,52% respecto a la demanda.

En el cómputo global del año, el sistema de recuperación activa permite una reducción de emisiones de 4.058 kg CO2, que respecto de las 11.089 kg CO2 emitidas por la demanda, supone un 36,6% de reducción global.

Page 115: Guia tecnica ahorro y recuperacion de energia

113

Recuperación de calor

4.2 recuperación total o parcial del calor Generado en el ciclo friGorífico

4.2.1 Introducción

En la figura 4.18 se representa el ciclo frigorífico en el diagrama P-h.

0,25

0,5

1

2

4

150 200 250 300 350 400 450

T=-30°C

-20

-20

-30

-40

-10

0

c.p.o

10

20

30

40

50

60

P [MPa]

h [kJ/kg]

R410a

A

B

C

Figura 4.18: Ciclo frigorífico en el diagrama P-h

De forma convencional, cuando el condensador está formado por un intercambiador refrigerante-aire (uni-dades aire-agua), el calor es disipado a la atmósfera sin que exista aprovechamiento energético alguno del mismo. Cuando el intercambiador es de tipo refrigeran-te-agua (unidades agua-agua y agua-aire), el calor es disipado al agua, repitiéndose el proceso de nulo apro-vechamiento energético del mismo.

El objetivo de los sistemas de recuperación total o parcial del calor generado en el ciclo frigorífico es la utilización de dicha energía, de forma integra (calor de condensación) o sólo de parte (calor de compresión), para la producción de agua caliente destinada a dife-rentes usos: calefacción, ACS, procesos industriales, calentamiento de piscinas.

Page 116: Guia tecnica ahorro y recuperacion de energia

114

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Como se puede ver en la figura 4.18, partiendo de las condiciones de un ciclo estándar (en violeta) se muestra un ciclo para temperatura de condensación más elevada (en rojo) y otro para una temperatura de condensación menor (en verde).

Tal y como se ha definido, existirá producción de agua caliente cuando, simultáneamente y de forma prioritaria, exista demanda de refrigeración a cubrir en otros puntos de la instalación, dado que solo se dispondrá de calor a recuperar si existe en paralelo y de forma simultánea efecto refrigeración y calor de compresión.

4.2.1.1 Recuperación de calor y normativa vigen-te asociada

Código Técnico de la Edificación. Real Decreto 314/2006, de 17 de marzo

La recuperación de calor está relacionada con los con-dicionantes detallados en el Documento Básico DB HE de “Ahorro de Energía”. En la sección HE 4, “Con-tribución solar mínima de agua caliente sanitaria”, se cuantifica esta contribución en base a la demanda de ACS, la zona climática y la fuente de energía de apoyo.

En el punto 1.1, “Ambito de aplicación”, apartado 2, se especifica que “la contribución solar mínima determina-da en aplicación de la exigencia básica que se desarrolla en esta Sección, podrá disminuirse justificadamente en los siguientes casos:

a) Cuando se cubra ese aporte energético de agua caliente mediante el aprovechamiento de energías renovables, procesos de cogeneración o fuentes de energía residual procedentes de la instalación de recuperadores de calor ajenos a la propia gene-ración de calor del edificio”.

Reglamento de Instalaciones Térmicas en los Edifi-cios (RITE, Real Decreto 1027/2007, de 20 de julio), siendo este Reglamento el Documento Básico DB HE, Sección HE 2: “Rendimiento de las Instalaciones Térmicas”.

Al analizar la IT 1.2 (Exigencia de Eficiencia Energética), el punto 5 de la IT 1.2.3 introduce la necesidad de docu-mentar la eficiencia del sistema definido en el proyecto

de las instalaciones: “En el proyecto o memoria técnica se justificará el sistema de climatización y de produc-ción de agua caliente sanitaria elegido desde el punto de vista de la eficiencia energética”.

En las instalaciones a las que aplique el punto 6, esta justificación incluirá “la comparación del sistema de producción de energía elegido con otros alternativos”, entendiendo como tales aquellos que sean “viables técnica, medioambiental y económicamente, en función del clima y de las características específicas del edificio y su entorno”, como:

d) La calefacción y refrigeración centralizada.

Caso de no haberse considerado en el diseño de partida, la recuperación del calor de condensación quedaría in-mersa dentro de los requisitos del mencionado punto 6.

Por otro lado, al tratar la “Recuperación de Energía”, IT 1.2.4.5, el RITE abarca el enfriamiento gratuito por aire exterior, la recuperación de calor del aire de extracción, la estratificación, la zonificación y el ahorro de energía en piscinas.

Bajo este epígrafe, la recuperación del calor de conden-sación tiene su aplicación al evaluar:

• La “Zonificación” (IT 1.2.4.5.4).

En particular, las necesidades de refrigeración y cale-facción simultáneas:

• El “Tratamiento de piscinas” (IT 1.2.4.5.5).

En el apartado de “Aprovechamiento de Energías Re-novables” (IT 1.2.4.6), la recuperación de calor es aplicable al punto de “Climatización de espacios abier-tos” (IT 1.2.4.6.4) mediante energías residuales.

En el apartado de “Limitación de la Utilización de la Energía Convencional” (IT 1.2.4.7), la recuperación está relacionada con los apartados:

• 7.1 “Limitación de la utilización de la energía con-vencional para la producción de calefacción”.

• 7.2 “Locales sin climatización”.

• 7.3 “Acción simultánea de fluidos con temperatura opuesta”.

Page 117: Guia tecnica ahorro y recuperacion de energia

115

Recuperación de calor

4.2.1.2 Aplicaciones

Siempre que se requiera de forma simultánea refrigeración en otra zona de la instalación, el calor de condensación recupe-rado presenta múltiples aplicaciones:

• Climatización en instalaciones de demanda simultánea frío-calor:

– Calentamiento de zonas.

– Calentamiento del aire de ventilación.

– Recalentamiento.

• Generación de agua caliente sanitaria:

– O precalentamiento si la temperatura alcanzada no es suficiente.

• Generación de agua caliente:

– Zonas de lavandería (hoteles, apartamentos, hospitales,...).

– Procesos industriales.

– Procesos de deshumidificación asociados a confort ambiental.

• Aplicación en piscinas:

– Tratamiento en deshumidificación del ambiente.

– Calentamiento del agua del vaso.

– Instalaciones de Spa.

En algunas aplicaciones, puede ser necesaria la instalación de un intercambiador intermedio para la transferencia de calor entre el circuito hidráulico de recuperación y la instalación tratada. Estos casos están asociados a condicionantes de tipo:

• Efectos de corrosión (tratamiento de piscinas).

• Normativa sobre calentamiento de agua potable y riesgos de contaminación de la misma.

4.2.2 Generación de agua caliente mediante la recuperación del calor de condensación

4.2.2.1 Calor recuperado

El objetivo de los sistemas de recuperación TOTAL del calor de condensación generado en el ciclo frigorífico es el apro-vechamiento de la energía representada por la suma de los diferenciales de entalpía 1,2 y 3 de la figura 4.19, para la producción de agua caliente sanitaria destinada a los usos mencionados en el apartado 4.2.1.3, previamente desarrollado.

Page 118: Guia tecnica ahorro y recuperacion de energia

116

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

0,25

0,5

1

2

4

T=-30°C

-20

-20

-30

-40

-10

0

c.p.o

10

20

30

40

50

60

P [MPa]

h [kJ/kg]

R410a

Notas.1. Calor de sobrecalentamiento.2. Calor de cambio de estado de condensación.3. Calor de subenfriamiento.1+2+3. Calor TOTAL de condensación.

2 13

Figura 4.19: Ciclo frigorífico en el diagrama P-h

4.2.2.2 Medida de la eficiencia energética

En función del tipo de equipo analizado, la eficiencia energética se evaluará bajo unas condiciones específicas para cada uno de los fluidos implicados en el ciclo frigorífico.

De forma general, las enfriadoras aire-agua certifican su eficiencia energética mediante el programa LCP / A (conden-sadas por aire) / P (compactas) / C (solo frío) / AC (aplicaciones de aire acondicionado) de Eurovent. Este programa permite certificar equipos de hasta 600 kW, pero excluye explícitamente la recuperación de calor.

Las enfriadoras agua-agua certifican su eficiencia energética mediante el programa LCP / W (condensadas por agua) / P (compactas) / C (solo frío) / N (sin conductos) de Eurovent. Este programa permite certificar equipos de hasta 1.500 kW, pero excluye explícitamente aplicaciones de free-cooling así como de recuperación de calor.

En ausencia de Programa Eurovent específico, los ratios de eficiencia de las unidades de recuperación podrán estable-cerse, según los modos de trabajo, bajo las siguientes condiciones:

Page 119: Guia tecnica ahorro y recuperacion de energia

117

Recuperación de calor

• Temperaturas de entrada/salida de generación de agua fría de:

12 °C/7 °C (idénticas a las del Programa LCP).

• Temperatura seca de entrada de aire exterior (uni-dades aire-agua):

35 °C (Programa LCP).

• Temperaturas de entrada/salida del agua de con-densación (unidades agua-agua):

30 °C/35 °C (Programa LCP).

• Temperaturas de entrada/salida de generación de agua caliente recuperada:

40 °C/45 °C.

• En el caso de cargas parciales, se considerará la curva de ponderación, los ratios de carga en máquina y las temperaturas de entrada de aire es-tablecidos en Eurovent para la determinación del ESEER.

A continuación se detallan los ratios de evaluación de la Eficiencia a Plena Carga de las unidades con capacidad de recuperación:

• Cuando el equipo aire-agua condensa exclusi-vamente mediante las baterías de aire o cuando la unidad agua-agua condensa exclusivamente mediante agua de torre (modo de refrigeración y modo de recuperación sin demanda de calor), la eficiencia se determina mediante un ratio idéntico al definido por Eurovent para el EER.

• Cuando el equipo aire-agua condensa exclusi-vamente mediante el intercambiador de agua o cuando la unidad agua-agua trabaja en régimen de aprovechamiento de la energía (modo de recupera-ción con demanda de calor), se podrán utilizar los siguientes ratios:

Eficiencia de Calor = Cap. Calor Recuperado (kW) / Cap. Consumida (kW)

Eficiencia de Frío = Cap. Frigorífica (kW) / Cap. Consumida (kW)

EER Combinado = Cap. Frigorífica (kW) + Cap. Calor Recuperada (kW)

Capacidad Consumida (kW)

La eficiencia a carga parcial se establecerá mediante:

• Cuando el equipo aire-agua condensa exclusiva-mente mediante las baterías de aire o la unidad agua-agua condensa mediante la torre, utilizando un ratio de eficiencia estacional idéntico al defini-do por Eurovent para el ESEER.

• Cuando los equipos aire-agua o agua-agua tra-bajan en régimen de aprovechamiento energético del calor del ciclo, utilizando el SPLV (System Part Load Value) COMBINADO aportado por el fabrican-te, que permite considerar cargas parciales en la unidad y generación constante de agua caliente en valores próximos a 45 °C, para el perfil climático específico de la instalación evaluada.

A modo de ejemplo, supongamos un equipo aire-agua, compresor de tornillo en el entorno de los 500 kW (± 5%).

• Si la unidad NO incorporase recuperador de calor, estaría caracterizada por los siguientes ratios de eficiencia en condiciones Eurovent:

– Cap. Frigorífica: 522,4 kW

– Consumo total: 156,7 kW (sin incluir bombas o elementos hidráulicos)

– EER: 3,33

– ESEER: 4,37

• Al incorporar la opción de condensadores de re-cuperación, esa misma unidad se caracterizaría por:

– Funcionamiento condensando exclusivamen-te mediante ventiladores:

- Cap. Frigorífica: 513,5 kW

- Consumo total: 155,4 kW (según lo descrito anteriormente)

- EER: 3,30

- ESEER: 4,33

- Trabajando contra las baterías de aire, la capacidad frigorífica del equipo se redu-ciría ligeramente frente a su versión sin recuperación.

Page 120: Guia tecnica ahorro y recuperacion de energia

118

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

– Funcionamiento condensando exclusivamen-te mediante el recuperador (en condiciones de temperatura del agua caliente de 40 °C/45 °C):

- Cap. Frigorífica: 505,4 kW

- Cap. Calorífica: 633,4 kW (recuperada)

- Consumo total: 140,7 kW (según lo descrito anteriormente)

- EER-Frío: 3,59

- COP-Calor: 4,50

- EER-Combinado: 8,09

- El consumo considerado es, fundamental-mente, el de los compresores.

Si la unidad es agua-agua, está equipada con com-presores scroll y un condensador sin circuito de calor adicional, y su capacidad se sitúa en el entorno de los 300 kW.

• Si la unidad NO operase en recuperación de calor, estaría caracterizada por los siguientes ratios de eficiencia en condiciones Eurovent:

– Cap. Frigorífica: 300 kW

– Consumo total: 62 kW (sin incluir bombas o elementos hidráulicos)

– EER: 4,84

– ESEER: 6,38

• En la condición de recuperación de agua a 40 °C/45 °C, la misma unidad queda como sigue:

– Cap. Frigorífica: 270 kW

– Consumo total: 75,4 kW (según lo descrito anteriormente)

– EER-Frío: 3,58

– COP-Calor: 4,52

– EER-Combinado: 8,10

• Si las condiciones de recuperación se establecie-ran para mayores temperaturas de salida de agua caliente, manteniendo un salto de 5 °C entre las temperaturas de entrada y salida del recuperador, se produciría un doble fenómeno al evaluar la eficiencia del equipo condensando totalmente por agua:

– Por un lado, la capacidad frigorífica y la de calor recuperado se reducirían.

– Por otro, los coeficientes de eficiencia de frío y calor (EER y COP), también disminuirían.

– La situación sería la contraria al establecer-se menores temperaturas de generación de agua caliente.

En el cálculo de los ratios de eficiencia considerados, se ha evaluado el consumo bajo criterios Eurovent, sin considerar el consumo asociado a bombas u otros ele-mentos hidráulicos.

En el modo recuperación, al consumo establecido en el circuito hidráulico para la producción de agua fría (prin-cipalmente asociado al bombeo), habría que sumar el consumo del circuito hidráulico del lado de recupera-ción, caracterizado por su propio sistema de bombas.

4.2.2.3 Unidades aire-agua

Principios de operación

Las unidades aire-agua con capacidad para llevar a cabo el proceso de recuperación de calor incorporan, adicionalmente a las baterías refrigerante-aire, inter-cambiadores refrigerante-agua que pueden actuar como condensadores en el modo recuperación.

Desde el punto de vista constructivo, puede existir un único condensador de agua o múltiples intercambiado-res, en función del número de circuitos frigoríficos que presente la unidad y del número de circuitos de agua que presenten los condensadores de recuperación.

Los condensadores de recuperación total más habitua-les son de tipo carcasa y tubos (multitubulares), tanto de expansión directa como inundados, y de placas (en los sistemas que recuperan exclusivamente el calor de la descarga de los compresores, los intercambiadores de agua suelen ser de placas).

Page 121: Guia tecnica ahorro y recuperacion de energia

119

Recuperación de calor

De esta forma, estos equipos presentan dos modos de operación diferenciados:

• Modo refrigeración

En el que la unidad trabaja de forma convencional, produciendo agua fría en función de la demanda existente y disi-pando el calor de condensación a la atmósfera mediante la batería refrigerante-aire.

El equipo podrá trabajar con uno o más circuitos en modo refrigeración.

• Modo recuperación.

En el que la unidad producirá agua fría en función de la demanda existente y generará agua caliente al utilizar los intercambiadores de agua como condensadores.

En este modo, la unidad podrá trabajar sólo con los condensadores de agua, con ambos tipos de condensadores, agua y aire, o solo con los condensadores de aire, en función de la demanda de calor existente.

Por tanto, el equipo podrá trabajar con todos los circuitos activos en recuperación, con algún circuito activo en re-cuperación y otro/s en condensación por aire o podrá trabajar con todos los circuitos activos condensando por aire.

En el modo refrigeración, los límites operativos a régimen de las unidades aire-agua suelen situarse en el siguiente en-torno, dependiendo de la tecnología de los equipos:

• Temperatura de salida de agua (evaporador):

– Máxima: Entre 15 y 20 °C.

– Mínima: En función del fluido utilizado y del control de la unidad, desde –10 a –12 °C.

• Temperatura de entrada del aire al condensador de aire:

– Máxima: En función de la gestión existente de la carga parcial, desde 48 a 55 °C.

– Mínima: En función del control de presión de condensación, hasta –20 °C.

En el modo recuperación, los límites operativos a régimen del condensador de agua se sitúan en el entorno de:

• Temperatura de salida de agua:

– Máxima: Entre 55 y 60 °C.

– Mínima: Entre 20 y 25 °C.

• Para temperaturas de entrada por debajo de 12,5-15°C (tanto en procesos de arranque como de operación a ré-gimen), se hace necesaria la instalación de una válvula proporcional de tres vías como elemento de control de la presión de condensación.

Arquitectura constructiva: implantación, componentes y operativa

Dos son las arquitecturas viables en la implantación de los condensadores de recuperación de agua caliente en un equi-po aire-agua: en serie con la baterías de aire (figura 4.20) o en paralelo con dichas baterías (figura 4.21).

Page 122: Guia tecnica ahorro y recuperacion de energia

120

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

A2 A1

EXV

HR_LWT

HR_EWT

1

2

3

5

6

8

9

10

111213

14

15

17

18

16

7

4

Leyenda 1 Condensador de recuperación de calor circuito A 2 Válvula de tres vías 3 Bomba de condensador 4 Interruptor de desconexión-dispositivo de seguridad del cliente en el circuito de agua 5 Válvula de corte del condensador motorizada 6 Válvula de retención del condensador 7 Condensador refrigerado por aire, fuera del circuito en modo de recuperación de calor 8 Línea de descarga (válvula de retención y de solenoide de la línea de líquido) 9 Mirilla de líquido 10 Circuito de refrigeración del motor 11 Entrada y salida de agua del evaporador

12 Lado del evaporador circuito A 13 Lado del evaporador circuito B 14 Bombas de aceite 15 Silenciador 16 Filtro de aceite previo 17 Separador de aceite circuito A 18 Opción 50B (véase el diagrama en la sección “Válvula de tres vías” HR_EWT Entrada de agua al condensador de recuperación de calorHR_LWT Salida de agua al condensador de recuperación de calor A1, A2 Compresores

Figura 4.20: Condensadores de aire y agua en serie

Page 123: Guia tecnica ahorro y recuperacion de energia

121

Recuperación de calor

1

2

3 3

4 45 5

6 6

7 7

8 8

9 9

10 10

10 10

11 11

12 12

1 EvaporadorLeyenda

2 Condensador de recuperación de calor3 Condensador de aire (baterías)4 Compresor5 Dispositivo de expansión (EXV)6 Válvula motorizada: modo de recuperación de calor7 Válvula motorizada: modo de refrigeración8 Válvula de solenoide: recuperación de carga en modo de recuperación de calor9 Válvula de solenoide: recuperación de carga en modo de refrigeración

10 Válvula de retención 11 Medición de presión y temperatura para calcular el subenfriamiento del líquido para optimizar la recuperación de carga12 Válvula de retención con capilar

Figura 4.21: Condensadores de aire y agua en paralelo

Los condensadores en paralelo presentan la ventaja de permitir optimizar la carga de refrigerante en la unidad aire-agua con recuperación (comparándola con la versión del equipo sin recuperación).

Page 124: Guia tecnica ahorro y recuperacion de energia

122

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Si se toma como referencia actual la implantación de condensadores de agua en paralelo, ante la existencia de demanda de generación de agua caliente se estable-cerá el siguiente proceso funcional:

• Puesta en marcha de la bomba del condensador de recuperación.

• Verificación del estado del interruptor de flujo del circuito hidráulico de recuperación.

• Activación de la secuencia de evacuación o purga de refrigerante de las baterías de aire. Este proceso se controla en base a las temperaturas saturadas de condensación y aspiración, y al subenfriamiento:

– Apertura mínima de la EXV (componente 5 de la figura 4.21).

– Cierre de la válvula de aislamiento de la/s batería/s de aire (7).

– Apertura de la válvula de aislamiento del condensador de agua (6).

– Apertura de la solenoide de recogida de refri-gerante en modo recuperación de calor (8).

– Cierre de la solenoide de recogida de refrige-rante en modo refrigeración (9).

• La secuencia será inversa cuando desaparezca la demanda de calor, llevándose a cabo la evacuación del refrigerante del condensador de agua caliente.

Gestión de la demanda

Mientras exista demanda de refrigeración, la gestión de la demanda de calefacción y la determinación de la capacidad de calor a suministrar se llevará a cabo por el control integrado en la unidad enfriadora.

En el modo de recuperación, se establecen dos bucles de control:

• Un bucle prioritario de lógica PID, asociado a la producción de agua fría.

Las necesidades de refrigeración de la instalación generan una determinada demanda que, identifi-cada por el control del equipo, le llevará a activar un determinado % de capacidad de la unidad.

Deberá existir demanda de refrigeración para que exista recuperación. Y el control de la demanda

de refrigeración es el que determina la capacidad a activar del equipo y, por tanto, el calor a disipar disponible.

• Un bucle secundario, colateral al anterior, asocia-do a la producción de agua caliente mediante la recuperación.

La activación de una capacidad frigorífica espe-cífica en la unidad implicará la existencia de su correspondiente calor de condensación.

Este calor se disipará a través de las baterías de aire, de los intercambiadores de agua o de ambos, en función de la demanda de agua caliente identi-ficada por el control del equipo.

La identificación de la demanda de calor será función de la comparación establecida entre el punto de consigna de calor configurado por el usuario y la temperatura de agua medida (retorno e impulsión) en el bucle hidráuli-co de recuperación.

En función de la demanda y de la velocidad de cambio de temperatura del sistema, se activará la capacidad de calor requerida. La estabilidad de la temperatura del bucle de calor será función de la capacidad del pro-pio control y del volumen de agua de la instalación (el gobierno de esta variable puede ser especialmente sig-nificativo en aplicaciones sobre procesos industriales).

Si la capacidad de calor se gestiona mediante un nú-mero concreto de etapas (asociadas, generalmente, al número de circuitos frigoríficos existentes en la unidad):

• Los circuitos cuyo calor de condensación se requie-ra para cubrir la demanda de generación de agua caliente condensarán mediante el intercambiador de agua.

• El resto de circuitos condensarán mediante la ba-tería de aire.

• Si no existe demanda de calor, todos los circuitos condensarán por aire.

• En el modo recuperación, para cada uno de los cir-cuitos frigoríficos existirá un número máximo de cambios entre condensación por aire y condensa-ción por agua.

El control del equipo podrá gestionar, asimismo, la/s bomba/s del condensador de recuperación, la segu-ridad asociada a la detección de caudal de agua, las protecciones anticongelación por condiciones ambien-

Page 125: Guia tecnica ahorro y recuperacion de energia

123

Recuperación de calor

tales externas y la presión de condensación. La protección anticongelación incluye procesos de activación de la bomba y del calefactor del condensador en función de la temperatura exterior.

Cuando la temperatura de entrada del agua del circuito de recuperación es baja (ver apartado de “principios de opera-ción”) es recomendable la instalación de una válvula proporcional de tres vías, comandada por el control del equipo, al objeto de estabilizar la presión de condensación, garantizar el funcionamiento de la recuperación y mantener la tempe-ratura de salida. O bien una bomba de caudal variable.

En las figuras 4.22 y 4.23 se detallan algunas implantaciones comunes en el bucle hidráulico de recuperación.

1 2 3

6

6

7

4 5

1 Válvula de control2 Purga de aire3 Interruptor de flujo para condensador (incluido)4 Conexión flexible5 Condensador6 Sensor de temperatura (incluido)7 Drenaje8 Depósito amortiguador (en caso necesario)9 Filtro (luz de malla 1,2 mm = 20 mallas por pulgada)

10 Depósito de dilatación11 Válvula de llenado

Leyenda

8

911

10

Figura 4.22

1

2

35

4

1 Condensador de recuperación de calor2 Sensor de temperatura del agua entrante (suministrado)3 Sensor de temperatura del agua saliente (suministrado)4 Interruptor del caudal de agua del condensador (suministrado)5 Válvula de tres vías (no suministrada)

Leyenda

Figura 4.23

Simulación energética

Para la elaboración de este ejemplo se ha optado por analizar una instalación del sector hotelero, realizando, mediante apli-caciones informáticas específicas, simulaciones energéticas para un periodo completo de un año.

Estas simulaciones incluirán tanto el establecimiento de los consumos de energía anuales como los ahorros energéticos y los niveles de emisiones de CO2 asociados a que hubiere lugar en cada uno de los escenarios planteados.

Las consideraciones generales de diseño aplicadas en el análisis se estructuran bajo los siguientes parámetros:

• Como perfil climático de referencia, se ha utilizado el facilitado por el CIEMAT para Madrid: se utilizarán los datos climatológicos medios estadísticos para cada hora del año (Madrid TMY - Typical Meteorological Year).

• Los perfiles de carga y los horarios de funcionamiento se corresponden con los de las aplicaciones tipo del sector:

– Horario de operación de la instalación: 24 horas/día, 365 días/año.

– Perfil de cargas lineal desde la capacidad frigorífica máxima de la enfriadora a 36,2 °C, hasta una carga del 30% de la capacidad frigorífica máxima de la enfriadora a 16 °C de temperatura exterior.

Page 126: Guia tecnica ahorro y recuperacion de energia

124

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

En la fi gura 4.24 se detalla el perfi l climático de Madrid y las curvas de carga de refrigeración para cuatro instalaciones tipo con necesidades de 250 kW / 500 kW / 1.000 kW / 1.400 kW.

El número total de horas-año correspondientes a cada temperatura exterior (para el perfi l climático seleccionado y la programación horaria detallada para la instalación) establece el tiempo durante el cual podrán entrar en funcionamiento los equipos y cuáles serán las condiciones de trabajo asociadas a dicha operación. En base a estas variables, el proceso de simulación energética evaluará los rendimientos propios de cada unidad.

Asimismo, en la simulación energética se consideran las curvas de carga o, lo que es lo mismo, los hipotéticos perfi les de demanda de la instalación. Estos perfi les determinan el régimen operativo o porcentaje de capacidad exigible al equipo analizado, permitiendo así considerar el efecto que tiene la efi ciencia a carga parcial sobre el cómputo energético global.

700 kW

600 kW

800 kW

900 kW

1000 kW

1100 kW

1200 kW

1300 kW

500 kW

400 kW

300 kW

200 kW

100 kW

0 kW

1400 hrs/a.

1200 hrs/a.

1000 hrs/a.

800 hrs/a.

600 hrs/a.

400 hrs/a.

200 hrs/a.

0 hrs/a.

-5,3

°C

-2,5

°C

0,3

°C

3,1

°C

5,8

°C

8,6

°C

11,4

°C

14,2

°C

16,9

°C

19,7

°C

22,5

°C

25,3

°C

28,1

°C

30,8

°C

33,6

°C

36,4

°C

Perfil Climático y curvas de Carga de Refrigeración

Temperatura Exterior (BIN) SPAIN_MADRID_TMY.HW1

Horas-Año segúntemperatura exterior

1. Perfil de cargasinstalación 250 kW

2. Perfil de cargasinstalación 500 kW

3. Perfil de cargasinstalación 750 kW

4. Perfil de cargasinstalación 1.000 kW

5. Perfil de cargasinstalación 1.250 kW

Figura 4.24

Por lo que respecta al tipo de unidad implicado en el di-seño del proyecto, para evaluar la efi ciencia energética de la recuperación de calor, se comparará el comporta-miento de dos equipos en tres escenarios diferentes de climatización (fi gura 4.25).

Sistema 1: utilización de una enfriadora aire-agua sin recu-peración de calor. El modelo seleccionado es una unidad de tornillo con gestión de capacidad mediante válvula de corredera, refrigerante R-134a y evaporador inundado.

No se considera la aplicación de sistemas free-cooling en las enfriadoras, sea por migración de refrigerante o mediante baterías agua-aire adicionales.

Sistema 2: utilización de la misma unidad enfriadora aire-agua del Sistema 1, equipada en este caso con la opción de recuperación de calor.

El modelo recoge el comportamiento de la unidad si ésta no llegase a entrar en el modo recuperación (al no

existir demanda de agua caliente), trabajando exclusi-vamente mediante condensación por aire.

Sistema 3: utilización de la misma unidad enfriadora aire-agua del Sistema 1, equipada en este caso con la opción de recuperación de calor.

El modelo recoge el comportamiento de la unidad generando agua caliente (trabajando exclusivamen-te mediante condensación por agua) y se caracteriza por:

• El equipo presentará dos ratios de rendimiento energético a plena carga: uno asociado a la capaci-dad de refrigeración y otro asociado a la capacidad de generación de agua caliente.

• A carga parcial se ha optado por considerar los ratios de rendimiento combinado, como varia-bles representativas del comportamiento en recuperación.

Page 127: Guia tecnica ahorro y recuperacion de energia

125

Recuperación de calor

Instalación de referencia: 500 kW

Sistema Sistema 1 Sistema 2 Sistema 3

Tipo sistema 1 x enfriadora aire/agua 1 x enfriadora aire/agua 1 x enfriadora aire/agua

Refrigerante R-134 a R-134 a R-134 a

Modelo analizado

Unidad con compresores de tornillo. Equipo sin

opción de recuperación de calor.

Unidad con compresores de tornillo. Equipo con opción de recuperación

de calor. Condensando por aire.

Unidad con compresores de tornillo. Equipo con opción de recuperación

de calor. Condensando por agua.

EER (Eficiencia a plena carga s/Eurovent)

3,33 3,30 (1) 3,59 frío (2)

COP (Eficiencia a plena carga)

n.a. n.a. 4,50 calor (2)

EER combinado (Eficiencia a plena carga)

n.a. n.a. 8,09 (2)

ESEER (Eficiencia a carga parcial/Eurovent)

4,37 4,33 (1) x

SPLV (Eficiencia a carga parcial)

4,67 4,63 7,78/3,48 (3)

Notas.(1). Ratios fuera del Programa de Certificación Eurovent. Calculados bajo las condiciones del Programa LCP de Eurovent.(2). Ratios fuera del Programa de Certificación Eurovent. Calculados en las siguientes condiciones simultáneas de temperatura de agua fría y

caliente: 12 °C/7 °C y 40 °C/45 °C, respectivamente.(3). Ratio de eficiencia a carga parcial COMBINADA / En REFRIGERACIÓN fuera del Programa Eurovent. Calculado en las siguientes condiciones

simultáneas de temperatura de agua fría y caliente, mantenidas de forma constante: Salida agua fría a 7 °C y salida de agua caliente en el entorno de 45 °C.

Figura 4.25

Por tanto, para la simulación energética se tendrán en cuenta:

• Las curvas de carga o demanda de la instalación.

• El número total de horas-año en cada condición de temperatura exterior que, según lo descrito, es función de los horarios de funcionamiento de la instalación y del perfil climático preestablecido.

• Los rendimientos energéticos de los equipos se-gún los porcentajes de capacidad que sea preciso activar (plena carga y carga parcial) y las condicio-nes de trabajo.

• Unos factores de suciedad de 0,0180 m2K/kW, tan-to en evaporador como en condensador.

• Una generación continua de agua caliente en el sistema 3, asumiendo que existe demanda sufi-ciente para aprovechar dicha capacidad calorífica.

En las figuras 4.25, 4.26 y 4.27 se detallan los resulta-dos de la evaluación, incluyendo:

• Condiciones de temperatura exterior.

• Carga del edificio.

• Capacidad frigorífica generada.

• Eficiencia en la generación de la capacidad frigorífica.

• Capacidad calorífica generada.

• Eficiencia combinada de las capacidades de frío y calor generadas.

• Consumo energético.

• Nivel de emisiones de CO2.

Page 128: Guia tecnica ahorro y recuperacion de energia

126

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Sistema 3. Unidad con opción de recuperación. Trabajando bajo demanda continua de agua caliente

Bin temp. (°C)

Carga edificio

(kW)

Horas funcionamiento

(h)

Energía frigorífica

(kWh)

EER refrigeración

Calor recuperado

(kW)

Energía recuperada

(kWh)

Eficiencia combinada

36,4 490 20 9.801 4,35 605,81 12.116 9,70

33,6 446 160 71.360 4,17 551,41 88.226 9,32

30,8 402 279 112.156 4,22 497,01 138.666 9,46

28,1 358 427 152.860 4,33 442,61 188.995 9,65

25,3 314 530 166.407 4,46 388,21 205.753 10,03

22,5 270 610 164.684 4,10 333,81 203.626 9,15

19,7 226 801 180.998 3,58 279,41 223.811 8,02

16,9 182 954 173.592 3,02 225,01 214.664 6,78

14,2 138 932 128.576 2,40 170,62 159.014 5,41

11,4 94 1.051 98.743 1,72 116,22 122.144 3,82

8,6 50 1.180 58.935 0,96 61,82 72.944 2,15

5,8 6 938 5.571 0,31 7,42 6.958 0,71

7.882 1.323.684 1.636.917Figura 4.26

Sistema 1 Sistema 2 Sistema 3

Capacidad generada anual

Eficiencia carga parcial 4,67 4,63 7,78 SPLV

Incremento de la eficiencia x x 67,30 % S3 v S1

Capacidad refrigeración aportada 1.323.684 1.323.684 1.323.684 kWh/año

Capacidad calefacción aportada n.a. n.a. 1.636.917 kWh/año

Consumo energético anual

287.047 289.606 456.737 kWh/año

Emisiones de co2 asociadas al consumo energético

Conversión: 0,649 Kg CO2 / kWh 186 188 296 T/año

Ahorro de emisiones asociado a la recuperación

Conversión: 0,3827 Kg CO2 / kWh n.a. n.a. 626 T/añoFigura 4.27

Conclusiones:

• Frente a un equipo aire-agua sin opción de recupe-ración, la incorporación de dicha opción reducirá ligeramente la eficiencia energética en refrigera-ción a plena carga y a carga parcial de la unidad recuperadora, cuando ésta condense exclusiva-mente mediante aire.

• Cuando la unidad con la opción de recuperación condense exclusivamente por agua, su eficiencia en refrigeración a plena carga será superior a la eficiencia energética a plena carga de dicho equipo condensando exclusivamente por aire. Sin embargo, la eficiencia en refrigeración a carga parcial será me-nor, dado que el funcionamiento parcial del sistema irá parejo a la necesidad de mantener la temperatura de salida del agua caliente recuperada en el entorno

de los 45 °C (no se producirá una reducción significa-tiva de la temperatura del agua caliente).

• Esta menor eficiencia parcial en refrigeración queda compensada por una elevada eficiencia combinada (considerando de forma simultánea la capacidad aportada en refrigeración y calefacción).

Obtener valores de incremento en el entorno del 65-70% frente a la eficiencia del sistema sin recu-peración es una situación factible.

• La menor eficiencia en refrigeración a carga parcial implicará un mayor consumo para conseguir gene-rar la misma capacidad frigorífica anual.

• Este mayor consumo es uno de los costes de ope-ración asociados a la producción de agua caliente.

Page 129: Guia tecnica ahorro y recuperacion de energia

127

Recuperación de calor

4.2.2.4 Unidades agua-agua

Principios de operación

Las unidades agua-agua, con capacidad para llevar a cabo el proceso de recuperación de calor, pueden ser de dos tipos si nos atenemos a la parte constructiva frigorífica:

a) Incorporando un circuito de calor extra del tipo carcasa-tubos (multitubulares), refrigerante-agua, y quedando por lo tanto con un intercambiador que dispone de 3 circuitos independientes.

Circuito Nº 1: El refrigerante circula por el interior de la carcasa y exteriormente a los tubos.

Circuito Nº 2: El agua de enfriamiento que proviene de la torre de refrigeración** circula a través de los tubos, por su propio circuito.

Circuito Nº 3: El agua para calefacción*, que re-cupera el calor sobrante, circula a través de los tubos por su propio circuito.

* Torre de refrigeración, de pozo, de río, de agua de mar, etc.

** Calefacción, proceso industrial, etc.

El intercambiador de calor, en su lado “agua de recupe-ración”, está calculado para poder disipar todo el calor generado por el sistema, igual que en el lado “torre de refrigeración**”.

b) Sin incorporar circuito adicional. Que a su vez pue-den ser de dos tipos si nos atenemos a la parte electrónica de control. Es decir, la máquina podrá estar gestionada mediante diferentes alternativas de control:

I) La unidad dispone de un único punto de con-signa que permite controlar la demanda de frío. Las etapas de compresión se activarán en función de la demanda de refrigeración existente y el calor de condensación evacua-do permitirá producir agua caliente mediante dispositivos externos auxiliares que regula-rán la temperatura.

II) La unidad dispone de dos consignas alterna-tivas de temperatura. Una permite controlar

en base a la demanda de frío –como en el caso anterior. La otra permite gestionar el equipo en base a las necesidades del lado de calor. Cuando trabaja controlando por calor se activarán las etapas de compresión para satisfacer la consigna de temperatura del lado de condensación. Se generará una capa-cidad de refrigeración asociada que deberá ser disipada en el evaporador y que quedará controlada solamente por el límite que mar-que el dispositivo antihielo que llevan todas las enfriadoras. Podemos decir entonces que la máquina recupera frío. A este tipo de má-quinas se las denomina también “máquinas de calor”.

De esta forma, tanto en un tipo como en el otro, es-tos equipos presentan dos modos de operación diferenciados:

• Modo refrigeración

En el que la unidad trabaja de forma convencional, produciendo agua fría en función de la demanda existente y disipando el calor de condensación mediante un sistema de enfriamiento por agua, comúnmente una torre de refrigeración, aunque también en sistemas de geotermia o de aguas subterráneas.

El equipo podrá trabajar con uno o más circuitos en modo refrigeración.

• Modo recuperación

– Unidades con intercambiador con circuito adicional diferenciado, en el que la unidad producirá agua fría en función de la demanda existente y generará agua caliente al utilizar el circuito Nº 3, anulando parcial o totalmen-te la disipación del calor a través de la torre de refrigeración**.

– Unidades con el mismo intercambiador sin incorporación de otro circuito adicional. Se produce agua fría en el evaporador con el único límite del antihielo y el control del pro-ceso se hace por el lado del calor. La bomba adaptará el caudal a la potencia que se va a disipar, por ser diferente a la que se daría trabajando en condiciones más bajas de tem-peratura –ver figura 1-.

En ambos casos, el equipo podrá trabajar con todos los circuitos activos en recuperación, en

Page 130: Guia tecnica ahorro y recuperacion de energia

128

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

función de la capacidad que se haya de disipar y la cantidad de calor demandada en función de las necesidades térmicas.

Tanto en modo refrigeración como en modo recupera-ción los límites vienen marcados por:

• El tipo de refrigerante (cada refrigerante tiene sus propias propiedades físicas: la presión de conden-sación, punto crítico, etc.).

• Limitaciones mecánicas del equipo: compresor, es-pesor de los tubos, etc.

Límites aproximados operativos a régimen del circuito de recuperación de calor:

• Temperatura de salida de agua caliente de recuperación:

– Máxima: Entre 55 y 60 °C.

– Mínima: Entre 20 y 25 °C.

• Para temperaturas de entrada por debajo de 12,5-15°C (tanto en procesos de arranque como de operación a régimen), se hace necesaria la instala-ción de una válvula proporcional de tres vías como elemento de control de la presión de condensación.

La arquitectura típica de una enfriadora con recupera-ción de calor mediante un intercambiador de calor con 3 circuitos independientes se muestra en la fi gura 4.28:

Caldera Auxiliar

Condensadorde calor o auxiliar

Condensadorde torre

Torre de enfriamiento

Recuperaciónde calor

Recuperaciónde calor

Evaporador

Baja Presión Vapor

Alta Presión Líquido

Alta Presión Vapor

Baja Presión Líquido

Torre derecuperación

Torre derecuperaciónVálvula de

bypass de torreCarga de

calorBomba de

agua caliente

MotorCompresor

Evaporador

Bomba de torre

Bomba de agua fría

Carga de frío

TXV

TXV: Válvula de expansión (termoestática)

Bypass de gascaliente

Esquema hidráulico de un sistema con recuperación de calor

Esquema frigorífico de un equipo agua-aguacon recuperación de calor y doble circuito frigorífico

Figura 4.28: Arquitectura típica con 3 circuitos independientes

Gestión de la demanda

Es la misma que la especifi cada para el caso aire-agua, excepto que en modo recuperación la activación de una capacidad frigorífi ca específi ca en la unidad im-plicará la existencia de su correspondiente calor de condensación.

Este calor se disipará a través del circuito conecta-do a la torre de refrigeración, o a través del circuito conectado al sistema de calefacción (circuito de recu-peración) en función de la demanda de agua caliente

identifi cada por el control del equipo o ambos (si las necesidades térmicas son inferiores a la capacidad ca-lorífi ca a disipar).

Instalaciones de múltiples productores

Hasta ahora hemos hablado prácticamente de sistemas de generador único pero merece la pena que analicemos las instalaciones de múltiples productores combinadas, cómo infl uye en la adaptabilidad y en el rendimiento la disposición de las enfriadoras y el modo de control den-tro de sistemas desacoplados.

Page 131: Guia tecnica ahorro y recuperacion de energia

129

Recuperación de calor

Analizaremos 3 casos que por su importancia pueden resultar esclarecedores, aunque hay innumerables diseños hi-dráulicos que cada uno aporta sus peculiaridades y que asociados cada uno a una lógica de control, se adaptarán mejor o peor al perfil de necesidades de calor y de frío de la instalación.

Caso de diseño estándar desacoplado

En la figura 4.29 podemos ver en un sistema de múltiples enfriadoras la combinación de una de ellas sin recuperación con otra/s de recuperación. Se trataría de un sistema desacoplado con caudal variable en el secundario y constante en primario.

Vamos a asumir que la demanda de calor es mayor que la que una sola enfriadora proporciona y el control se hace por frío, por lo que el sistema controla la temperatura de frío.

Agua fría de suministro

Exceso de

flujo

7°C

Retorno de la inst.Retorno a maq.

(mezcla)12°C

Salida de agua fría

Agua caliente recuperada

7°C

7°C 7°C

< 12°C< 12°C

< 12°C

Secundario

Byp

ass

Primario

Enfr

iado

raco

nre

cupe

raci

ón

Enfr

iado

rasi

nre

cupe

raci

ón

Figura 4.29: Diseño estándar desacoplado

Este sistema, en estas condiciones, dejará de tener flujo en el bypass, pero para el resto de condiciones sí que lo tendrá y si tenemos en cuenta que la máquina más eficiente será la de recuperación, quizá ésta no sea la mejor disposición, porque la máquina de recuperación se descargará tanto como las demás al verse controlada por la misma temperatura de retorno.

Page 132: Guia tecnica ahorro y recuperacion de energia

130

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Caso de sistema desacoplado con diseño de carga preferente en frío

Agua fría de suministro

Exceso de

flujo

7°C

Retorno de la inst. Retorno a maq.(con mezcla)12°C

Salida de agua fríaAgua caliente recuperada

7°C

7°C 7°C

< 12°C12°C

< 12°C

Secundario

Byp

ass

Primario

Enfr

iado

raco

nre

cupe

raci

ón

Enfr

iado

rasi

nre

cupe

raci

ón

Figura 4.30: Sistema desacoplado con diseño de carga preferente en frío

Como se puede apreciar en la figura 4.30 la enfriadora a la izquierda del bypass –al estar en un sistema de caudal va-riable– recibe el retorno constante para cargas superiores a su capacidad. Dicho de otra manera, es la que se carga preferentemente. Si los sensores están bien posicionados y la secuencia se hace correctamente es la máquina que pri-mero funciona y no arrancaría otra hasta no estar ésta al 100%. De ese modo queda garantizado el máximo rendimiento siempre que haya donde disipar el calor

Caso de sistemas desacoplados paralelos con acoplamiento lateral o side stream

Para los casos en los que la demanda de calor sea variable y no ocupe una máquina al 100%, se utiliza este tipo de implantación hidráulica (figura 4.31). Y se diferencian del anterior en que el control de la enfriadora se hace por calor, siendo esto lo preferencial. Por lo que podemos decir que lo que la máquina recupera es frío.

Page 133: Guia tecnica ahorro y recuperacion de energia

131

Recuperación de calor

Agua fría de suministro

Exceso de

flujo

7°C

Retorno de la inst. Retorno a maq.(mezcla)12°C

Salida de agua fríaAgua caliente recuperada

7°C

7°C

< 12°C12°C...7°C12°C

< 12°C

Secundario

Byp

ass

Primario

Enfr

iado

raco

nre

cupe

raci

ón

Enfr

iado

rasi

nre

cupe

raci

ón

Figura 4.31: Sistemas desacoplados paralelos con acoplamiento lateral o side stream

Como vemos, por definición –caudal variable– el sis-tema retornará a 12 °C y la máquina enfriará su caudal dependiendo de lo que esté cargada por el lado de ca-lor. Siendo éste un parámetro que le marcará el lado de calor. De este modo la enfriadora siempre que haya un mínimo de demanda de frío estará en orden de funcio-namiento para calor. Y además será la primera que se cargue al no entrar en las rotaciones. Dando el máximo rendimiento al sistema.

Simulación energética

Para la elaboración de este ejemplo se ha optado por analizar una instalación del sector residencial, reali-zando, mediante aplicaciones informáticas específicas, simulaciones energéticas para un periodo completo de un año.

Las consideraciones generales de diseño aplicadas en el análisis se estructuran bajo los siguientes parámetros:

• Como perfil climático de referencia, se ha uti-lizado el facilitado por el CIEMAT para Madrid:

se utilizarán los datos climatológicos medios es-tadísticos para cada hora del año (Madrid TMY - Typical Meteorological Year).

• Los perfiles de carga y los horarios de funciona-miento se corresponden con los de las aplicaciones tipo del sector:

– Horario de operación de la instalación: 24 horas/día, 365 días/año.

– Perfil de cargas lineal desde la capacidad frigorífica máxima de la enfriadora a 36,4 °C, hasta una carga del 71% de la capacidad fri-gorífica máxima de la enfriadora a 16 °C de temperatura exterior.

En la figura 4.32 se detalla el perfil climático de Madrid y las curvas de carga de refrigeración para la instala-ción con necesidades de 450 kW.

El número total de horas-año correspondientes a cada temperatura exterior (para el perfil climático selec-

Page 134: Guia tecnica ahorro y recuperacion de energia

132

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

cionado y la programación horaria detallada para la instalación) establece el tiempo durante el cual podrán entrar en funcionamiento los equipos y cuáles serán las condiciones de trabajo asociadas a dicha operación. Asimismo, en la simulación energética se consideran la curva de carga o, lo que es lo mismo, el hipotético perfi l de demanda de la insta-lación. Este perfi l determina el régimen operativo o porcentaje de capacidad exigible al equipo analizado, permitiendo así considerar el efecto que tiene la efi ciencia a carga parcial sobre el cómputo energético global.

100 kW

200 kW

300 kW

400 kW

500 kW

0 kW

1.400 hrs/a.

1.200 hrs/a.

1.000 hrs/a.

800 hrs/a.

600 hrs/a.

400 hrs/a.

200 hrs/a.

0 hrs/a.

-5,3

°C

-2,5

°C

0,3

°C

3,1

°C

5,8

°C

8,6

°C

11,4

°C

14,2

°C

16,9

°C

19,7

°C

22,5

°C

25,3

°C

28,1

°C

30,8

°C

33,6

°C

36,4

°C

Perfil climático y curvas de carga de refrigeración

Temperatura exterior (BIN) SPAIN_MADRID _TMY.HW1

Perfil de cargasinstalación 450 kW

Horas - Año Segúntemperatura exterior

Figura 4.32: Perfi l de carga

Por lo que respecta al tipo de unidad implicado en el di-seño del proyecto, para evaluar la efi ciencia energética de la recuperación de calor, se comparará el compor-tamiento de dos tipos de enfriadora en dos escenarios diferentes de climatización (fi gura 4.33).

Sistema 1: utilización de una enfriadora agua-agua sin recuperación de calor. El modelo seleccionado es una unidad de tornillo con gestión de capacidad mediante válvula de corredera, refrigerante R-134a y evaporador inundado. Para hacer el estudio coherente se utiliza una máquina con la opción de alta temperatura de conden-sación aunque no se utilice. La curva de descenso de la temperatura de condensación desciende con la car-ga hasta los 20 °C, que es el mínimo de funcionamiento para algunas unidades.

Sistema 2: utilización de la misma unidad enfriadora agua-agua del Sistema 1, equipada en este caso con

la opción de recuperación de calor. Entendiendo que en el estudio siempre hay sufi ciente demanda de ca-lor. Precalentamiento de ACS en un gran sistema de almacenamiento. La temperatura de condensación se mantiene constante en la entrada de la unidad a 40 °C, siendo variable la de salida de la enfriadora.

El modelo recoge el comportamiento de la unidad gene-rando agua caliente y se caracteriza por:

• El equipo presentará dos ratios de rendimiento energético a plena carga: uno asociado a la capaci-dad de refrigeración y otro asociado a la capacidad de generación de agua caliente.

• A carga parcial se ha optado por considerar los ratios de rendimiento combinado, como varia-bles representativas del comportamiento en recuperación.

Page 135: Guia tecnica ahorro y recuperacion de energia

133

Recuperación de calor

Instalación de referencia: 500 kW

Sistema Sistema 1 Sistema 2

Tipo sistema 1 x enfriadora aire/agua 1 x enfriadora aire/agua

Refrigerante R-134 a R-134 a

Modelo analizado

Unidad con compresores de tornillo. Equipo con opción de

recuperación de calor. Condensando por agua de torre

Unidad con compresores de tornillo. Equipo con opción de

recuperación de calor. Condensando por agua

EER (Eficiencia a plena carga s/Eurovent) 5,26 (1) 3,76 Frío (2)

COP (Eficiencia a plena carga) n.a. 4,66 calor (2)

EER combinado (Eficiencia a plena carga) n.a. 8,42 (2)

ESEER (Eficiencia a carga parcial/Eurovent) 7,00 (1) x

SPLV (Eficiencia a carga parcial) 6,44 8,48/3,78 (3)Notas.(1). Ratios fuera del Programa de Certificación Eurovent. Calculados bajo las condiciones del Programa LCP de Eurovent.(2). Ratios fuera del Programa de Certificación Eurovent. Calculados en las siguientes condiciones simultáneas de temperatura de agua fría y caliente:

12 °C/7 °C y 40 °C/45 °C, respectivamente.(3). Ratio de eficiencia a carga parcial COMBINADA / En REFRIGERACIÓN fuera del Programa Eurovent. Calculado en las siguientes condiciones

simultáneas de temperatura de agua fría y caliente, mantenidas de forma constante: Salida agua fría a 7 °C y salida de agua caliente en el entorno de 45 °C.

Figura 4.33

Por tanto, para la simulación energética se tendrán en cuenta:

• Las curvas de carga o demanda de la instalación.

• El número total de horas-año en cada condición de temperatura exterior que, según lo descrito, es función de los horarios de funcionamiento de la instalación y del perfil climático preestablecido.

• Los rendimientos energéticos de los equipos según los porcentajes de capacidad que sea preciso activar (plena carga y carga parcial) y las condiciones de trabajo.

• Unos factores de suciedad de 0,0180 m2K/kW, tanto en evaporador como en condensador.

En la figura 4.34 se detallan los resultados de la evaluación, tanto en lo que a consumo energético se refiere, como a nivel de emisiones de CO2.

Sistema 1 Sistema 2 Sistema 3

Capacidad generada anual

Eficiencia carga parcial 6,44 8,48 SPLV

Incremento de la eficiencia x 31,70 % S2 v S1

Capacidad refrigeración aportada 2.752.328 2.752.328 kWh/año

Capacidad calefacción aportada n.a. 3.418.985 kWh/año

Consumo energético anual

427,380 726,361 kWh/año

Emisiones de co2 equiv. 0,649 Kg/kwh

277,370 471,408 kg/año

Ahorro de co2 térmicos equiv. 0,3827 Kg/kwh

0 1.308.446 kg/año

Emisiones absolutas de co2

277.370 -837.037 kg/año

Diferencia de emisiones de co2

-1.114.407 kg/año

Figura 4.34: Resumen resultados simulación

Page 136: Guia tecnica ahorro y recuperacion de energia

134

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Conclusiones

• Una enfriadora en ciclo de recuperación con una temperatura más alta que la que pudiera tener de la torre va a ver aumentado su consumo. Y más todavía si la temperatura del lado de calor se ha de mantener constante.

• Podemos observar que el consumo del sistema de nuestro ejemplo se ha incrementado en casi 300.000 kWh gracias a los cuales se han obtenido 3.418.985 kWh en el lado de calor. Por lo que podríamos decir que el COP para obtener estos kW es superior a 11 si se contemplase aisladamente la recuperación.

Es necesario conocer el perfil de carga diario de frío y de calor porque podría ocurrir que la demanda de calor fuese opuesta a la de frío y –a no ser que se acumule, con el incremento de costes que ello supone– no se pueda dar la situa-ción de poder recuperar calor.

Asimismo, es necesario analizar el citado perfil diario porque, especialmente en los sistemas de precalentamiento de ACS en hoteles de ciudad, se dan puntas de consumo en horarios en los que el sistema no está en carga, impidiendo cubrir esa demanda.

4.2.2.5 Unidades agua-aire. Aprovechamiento para deshumectación

Fundamentos del sistema y del ahorro energético

La producción de agua caliente en una bomba de calor agua-aire puede lograrse, básicamente, mediante dos métodos:

• Recuperación total del calor cedido en el condensador cuando la unidad funciona en modo refrigeración.

• Recuperación parcial del calor mediante un dispositivo des-recalentador o desuperheater, independientemente de que el equipo funcione en modo recuperación o en modo calefacción.

De estas dos soluciones, la primera se emplea en la práctica únicamente en aplicaciones de deshumidificación propor-cional como la que vamos a ver a continuación.

La segunda solución se emplea con frecuencia en aplicaciones residenciales geotérmicas, y por su interés se explica con mayor detalle en el apartado 4.2.3.5 de esta guía.

El fundamento de la recuperación total del calor se muestra en el diagrama de Mollier representado en la figura 4.35. Du-rante el funcionamiento en modo frío, cuando existe demanda de refrigeración en los locales climatizados, se toma aire de éstos y se hace pasar por una batería de tratamiento que funciona como evaporador frigorífico; con ello, se está reti-rando energía térmica de dicha corriente de aire retornado de los locales. El aire, al pasar por la batería de tratamiento y ceder calor, pierde temperatura y, en ocasiones, humedad absoluta, al alcanzarse la temperatura de rocío. A conti-nuación se envía de nuevo a los locales que se quiere climatizar, más frío y con menor contenido absoluto de humedad.

Page 137: Guia tecnica ahorro y recuperacion de energia

135

Recuperación de calor (b

ar)

(kJ/kg)

0,70,80,91,0

2,0

3,0

4,0

5,0

6,0

7,08,09,010

20

30

40

50

120 140 160 180 200 220 240 260 280 300 320 360 380 400 420 440 460 480 500 520 540 560 580 600 620340

-20

-30

-40

-50

-10

0

10

20

30

40

50

60Ejemplo de funcionamiento de ciclo frigorífico con refrigerante R410a

Calor total cedido en el ciclo

Recalentamiento

2,50

2,40

2,30

2,20

2,10

2,00

1,901,

80

1,70

1,601,

50

1,40

1,30

1,20

1,10

1,00

0,90

0,80

0,70

0,700,60

0,50

0,40

0,30

0,25

0,20

0,15

0,120,100

0,080

0,060

0,050

0,040

0,0300,025

0,020

0,01000,0080

0,00600,0050

0,00400,012

0,015

190

180

180

160

150

140

130

120

110

10090807060504030201010 0

-20

-30

-40

-50

Figura 4.35: Ciclo frigorífico representado en un diagrama de Mollier

En zonas climáticas de alta humedad relativa, el intentar alcanzar la temperatura de consigna implicaría la consecución, en paralelo, de una humedad relativa más alta de lo deseado, lo que generaría una falta significativa de confort. Una solución técnicamente viable, pero descartada por su escasa eficiencia energética y por estar limitada por la reglamen-tación, sería realizar un recalentamiento del aire a la salida del evaporador con una batería eléctrica.

Ahora bien, existe otra posibilidad que cuenta con el visto bueno reglamentario y no supone consumos adicionales de energía: podemos emplear el calor cedido en el condensador para realizar un recalentamiento proporcional del aire des-humidificado que sale del evaporador, elevando su temperatura hasta alcanzar un nivel adecuado.

En el diagrama psicrométrico que se muestra a continuación (figura 4.36) puede observarse el proceso de recalentamiento.

Page 138: Guia tecnica ahorro y recuperacion de energia

136

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

42 44 46 48 50 0 2 4 6 8-10 -8 -6 -4 -2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Temperatura seca Ts (°C)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Hum

edad

esp

ecífi

ca W

(g/k

g a.

s)

Enfriamiento en evaporado

Recalentamiento con agua decondensación

Figura 4.36: Proceso de deshumidificación: enfriamiento y poscalentamiento del aire

Esquema de funcionamiento básico

A continuación se muestra (figura 4.37) un montaje típico que permite aprovechar el agua caliente del condensador para realizar el recalentamiento proporcional del aire enfriado:

Salida de agua(al bucle)

Entrada de agua(al bucle)

Válvula mezcladorade acción proporcional

Entrada refrigerante(modo frío)

Salida refrigerante(modo frío)

Aire de retorno

Aire de impulsión

Bomba interna

Batería de recalentamiento

Condensador(en modo frío)

Evaporador(en modo frío)

Figura 4.37: Esquema de principio hidráulico de una bomba de calor agua-aire con dispositivo de recalentamiento

Page 139: Guia tecnica ahorro y recuperacion de energia

137

Recuperación de calor

En el esquema se aprecia el bucle interno que deriva el agua caliente desde la salida del condensador hasta la batería de recalentamiento, mediante el concurso de una bomba y por activación de la válvula mezcladora.

Frente a otros sistemas de recalentamiento, como aquellos que derivan refrigerante a un condensador refrigerante-aire colocado a continuación del evapora-dor, el control proporcional es mucho más sencillo, y el equipo en conjunto resulta más fiable y de fabricación más económica.

Variantes y posibilidades de instalación

Existen equipos comerciales que llevan integrados to-dos los elementos necesarios para realizar la función de deshumidificación. No obstante, se trata de un monta-je que se puede realizar a medida a partir de cualquier bomba de calor agua-agua o agua-aire.

Consumos eléctricos

Tal y como se ha indicado, se debe considerar el consumo adicional de la bomba de circulación, que debe seleccionar-se para el caudal nominal de condensación y para vencer la pérdida de carga en la batería de poscalentamiento.

Igualmente, el ventilador de impulsión de la unidad de tratamiento debe vencer la pérdida de carga adicional en aire de la batería de poscalentamiento, por lo que existirá un pequeño incremento en el consumo.

Estrategia de control

Actuando proporcionalmente sobre la válvula mezcla-dora en función de una señal analógica procedente del aire impulsado al local, se puede regular la capacidad de la batería de recalentamiento y mantener la tempe-ratura de impulsión constante, independientemente de la temperatura de retorno.

Igualmente, es posible inhibir el funcionamiento del dispositivo de recalentamiento cuando mediante una sonda higrotérmica se detecte que la humedad relativa es la adecuada.

Conclusiones

En la práctica, se tiene un recalentamiento casi gratui-to, puesto que los consumos adicionales (la bomba de circulación, principalmente) son mínimos.

Y, al emplear una energía residual que de otro modo se perdería, el sistema es plenamente admisible desde el punto de vista de la reglamentación.

Ejemplo

Tomemos una bomba de calor agua-aire reversible de 8,1 kW de capacidad frigorífica nominal:

Modo frío:

Capacidad frigorífica: 7.940 W

Consumo eléctrico: 1.850 W

Calor cedido al bucle: 9.790 W

EER: 4,30

Temperatura de entrada del agua en lado condensa-ción: 30 °C

Temperatura de entrada del aire en evaporación: 27 °CBS/19 °CBH

Caudal de agua: 34,2 l/min

Caudal de aire: 1.700 m3/h

En caso de realizar un recalentamiento proporcional con batería de poscalentamiento hidrónica empleando el agua caliente procedente del condensador, se empleará una bomba de recirculación que moverá un caudal que permita una temperatura de trabajo más elevada, en torno a 50 °C a la salida del condensador. En esas con-diciones, se modifica el punto de trabajo del compresor y el consumo eléctrico, por tanto, varía, quedando los datos de funcionamiento así:

Modo frío:

Capacidad frigorífica: 6.870 W

Consumo eléctrico: 2.390 W

Calor cedido al bucle: 9.260 W

EER: 2,87

Temperatura de entrada del agua en lado condensa-ción: 45 °C

Temperatura de entrada del aire en evaporación: 27 °CBS/19 °CBH

Caudal de agua: 34,2 l/min

Caudal de aire: 1.700 m3/h

Page 140: Guia tecnica ahorro y recuperacion de energia

138

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Pérdida de carga en el condensador: 27,6 kPa

Consumo eléctrico bomba circulación: <50 W

Incremento de consumo de ventilador: <50 W

Vemos que se produce una merma en la capacidad y un incremento del consumo eléctrico, lo que da lugar a un rendimiento inferior. Los cálculos son:

Pérdida de capacidad: 7.940 - 6.870 = 1.070 W

Rendimiento EER: 2,87

Consumo eléctrico bomba de calor: 2.390 W

Consumo eléctrico bomba de circulación: 100 W

Capacidad calorífica de recalentamiento: 9.260 W

Potencia adicional consumida durante el modo de recalentamiento:

• Consumo adicional en el grupo frigorífico: 2.390 – 1.850 = 540 W

• Consumo adicional en la bomba de circulación: 50 W

• Consumo adicional en ventilador de impulsión: 50 W

• Suma de consumos adicionales al funcionar el re-calentamiento: 640 W

• Rendimiento COP del proceso de calefacción para recalentamiento: 9.260/640 = 14,5

• Emisiones de CO2 por kWh de energía térmica aprovechada para el proceso de recalentamiento: (1/14,5) kW x 1 h x 0,649 kg CO2 /kWh = 0,448 kg CO2.

Deshumectación en piscinas climatizadas

El ejemplo propuesto es el de una piscina polivalente, que tiene unas dimensiones de lámina de agua de 416,5 m2, (25 x 16,66 m) y profundidad media de 1,6 m (volumen 665 m3) con una ocupación de 90 ocupantes (70 bañistas + 20 espectadores).

Las condiciones interiores se han escogido teniendo en cuenta el RITE 2007 (IT 1.1.4.1.2, apartado 3), y son:

• Condiciones interiores: temperatura seca 27,5 °C y 60% de humedad relativa (HR).

• Temperatura agua del vaso: 26 °C.

• Horario de apertura al público: de 9 a 23 h.

El ejemplo se desarrolla en cuatro ciudades: Bilbao, Barcelona, Madrid y Sevilla, correspondientes a las zo-nas climáticas I, II, IV y V.

Con los datos anteriores se puede obtener que la canti-dad de agua evaporada por hora (Me en kg/h) durante el día (las 14 horas de uso) y la noche (agua en reposo y con barrera térmica) para cada localidad son los siguientes:

Flujo másico de agua evaporada por m2 de día (14 h)

Zona I Zona II Zona IV Zona V

Bilbao Barcelona Madrid Sevilla

Me (kg/h) 130,3 128,8 139,9 130,3(kg/h / m2) 0,313 0,309 0,336 0,313

Flujo másico de agua evaporada por m2 de noche (10 h)Zona I Zona II Zona IV Zona VBilbao Barcelona Madrid Sevilla

Me (kg/h) 5,06 5,0 5,46 5,06(kg/h / m2) 0,0121 0,012 0,0131 0,0121

Si se deshumecta con aire exterior, el caudal a introducir se puede evaluar a partir del balance de materia del agua apor-tada de la evaporación y el eliminado por ventilación, cuyo caudal Vae (m

3/h) se calcula a partir de la cantidad de agua evaporada me y de la diferencia entre la humedad absoluta del aire interior (Wai) y la del exterior (Wae)

Vae = ve me /(Wai-Wae)

siendo ve el volumen específico del aire.

Page 141: Guia tecnica ahorro y recuperacion de energia

139

Recuperación de calor

Como ejemplo, en la tabla se muestran los valores de caudal de aire (Vae) en Barcelona, en función de los diferentes intervalos de temperatura exterior:

CAUDAL AIRE EXTERIOR NECESARIO ZONA II. BARCELONA HORARIO 09-23 H

Intervalo T. seca TS (°C)

Fi (%)

T. seca TS

(°C)

Hum. abs. (Wai – Wae) (kga/kgas)

Vae (m3/h)

CPI 0,00 0,1 0,0102 9.876

T < 5 0,72 4,2 0,0093 10.918

5-9 7,43 7,6 0,0088 11.688

9-13 20,96 11,1 0,0082 12.708

13-17 22,80 14,9 0,0072 14.680

17-21 20,96 18,9 0,0054 19.866

21-25 20,44 22,9 0,0029 37.420

25-27 6,69 25,9 0,0020 54.568

y en la gráfica se recogen los resultados para las cuatro ciudades analizadas en el ejemplo.

CPI T>5 5-9 9-13 13-17 17-21 21-25 25-27

60.000

50.000

40.000

30.000

20.000

10.000

0

Bilbao

Sevilla

Barcelona

Madrid

Caudal aire exterior necesario

Qae

(m3 /h

)

Intervalo temperatura (°C)

Una vez determinado el caudal de aire exterior necesario para la deshumidificación, se pueden evaluar las necesi-dades térmicas para mantener las condiciones interiores. La demanda energética dependerá del caudal de aire introducido (determinado por las condiciones de deshu-midificación), pérdidas de calor del vaso (evaporación, renovación de agua y conducción por las paredes) y las pérdidas de transmisión por las paredes del recinto.

A continuación se muestran los valores de los requeri-mientos térmicas del agua del vaso:

• Potencia y energía térmica necesaria para deshu-mectación con aire exterior:

Qc = Vae ρ Cp (Ti – Ts)

donde: Vae(m3/s): Caudal aire exterior

En la tabla siguiente aparecen las potencias me-dias anuales ponderadas con las frecuencias de cada intervalo y también la demanada energética (kWh) anual en la que se habra considerado un número total de horas de funcionamiento de 4.050 horas/año (3.780 horas en el día y 270 horas equi-valentes en la noche suponiendo que la lámina de agua tiene la barrera térmica).

Page 142: Guia tecnica ahorro y recuperacion de energia

140

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Zona I Zona II Zona IV Zona V

Bilbao Barcelona Madrid Sevilla

Potencia media (kW) 62 61 51 50

Energía anual (kWh) 252.821 248.617 205.039 202.950

• Pérdidas de calor del agua del vaso

En la tabla siguiente se presentan los valores para las cuatro zonas analizadas de la potencia térmica necesaria (Qt) para compensar las pérdidas y las demandas energéticas anuales (kWh en temporada de 270 días) del vaso.

Bilbao Barcelona Madrid Sevilla

Potencia total diaria (kW) 127 126 134 127

Demanda diaria (Kwh) 565.110 560.790 591.570 565.110

• Deshumectación con bomba de calor (BC) con recuperación de calor

El sistema se basa en utilizar el calor de condensación del agua del aire de la piscina en la batería deshumectadora (expansión directa o batería de agua), que a través de los correspondientes circuitos frigoríficos se cede a los con-densadores (de expansión directa o de agua) con el fin de aprovechar este calor recuperado para calentamiento del aire ambiente, del agua del vaso o precalentamiento de ACS.

El esquema de funcionamiento correspondiente a una bomba de calor tipo aire-aire (en una aplicación de bomba de calor agua-agua más una UTA el esquema sería conceptualmente el mismo) se muestra en la siguiente figura 4.38:

Batería condensadora Batería apoyo de agua

Ventilador de impulsión

Batería evaporadora

Entrada

Salida

C2

Intercambiadorde placas

C1

Figura 4.38: Esquema conceptual

A partir de las necesidades de deshumidificación, de las condiciones climáticas y de las frecuencias, se puede determi-nar lo que deshumecta el aire exterior de ventilación a introducir (2,5 dm3/s, según IT 1.1.4.2.3) y consecuentemente el factor de uso de la bomba de calor deshumectadora, y finalmente la energía recuperada.

Page 143: Guia tecnica ahorro y recuperacion de energia

141

Recuperación de calor

Para el caso de Bilbao la determinación de la energía total ahorrada se calcula como sigue:

• Factor de uso anualizado (FUA) del 74,4% para Zona I.

• Horas de funcionamiento en deshumectación: 4.050 h/año.

• Potencia recuperada (Qr): será la potencia calorí-fica total útil (Qcu) de los condensadores de aire (batería freon-aire) y de agua (intercambiador de placas freon-agua). Esta potencia calorífica útil Qcu, es la potencia calorífica total de los conden-sadores (Qct) menos la potencia sensible de la bateria deshumectadora (Psbd).

Qr = Qcu= Qct – Qsbd = 224,9 kW - 92,6 kW = 132,3 kW

Suponiendo que toda esta potencia de recuperación (Qr) se utilice para compensar las pérdidas caloríficas

del edifício y servir de apoyo para calentamiento del agua del vaso y de la producción de ACS, la energía que se podría recuperar es:

Energía recuperada (Er) = 132,3 kW x 4.050 h x 0,744 = 398.646 kWh/año

Energía consumida por caldera deshumectando con aire exterior:

Ec = 62.425 kW x 4.050 h = 252.821 kWh/año

Energía térmica total ahorrada: Ea = 398.646 + 252.821 = 651.467 kWh/año

Utilizando el mismo procedimiento de cálculo para el resto de las localidades, los resultados de ahorro ener-gético utilizando una bomba de calor son los que se muestran en la siguiente tabla:

Energía total ahorrada por la BC

Zona I Zona II Zona IV Zona V

Bilbao Barcelona Madrid Sevilla

Potencia de recuperación (kW) 87,3 87,3 87,3 87,3

Factor uso anual (%) 74,40 74,16 78,06 70,33

Energía recuperada Er (kWh) 398.646 397.360 418.257 376.838

Energía consumida deshumectando con aire exterior 252.821 248.617 205.039 202.950

Energía térmica total ahorrada 651.476 645.977 623.296 579.788

En cuanto a reducción de emisiones de CO2 hay que tener en cuenta que la potencia calorífica de la bomba de calor se obtiene a partir de consumo de energía eléctrica de los compresores de 45 kW de potencia.

Energía eléctrica consumida (Ec) = 45 kW x 4.050 h x 0,744 = 135.594 kWh/año

Emisiones de CO2 : 398.646 x 0,649 = 88.001 kWh/año

Resumen emisiones en kg CO2 deshumectando con la BC

Zona I Zona II Zona IV Zona V

Bilbao Barcelona Madrid Sevilla

Reducción por Er (factor 0,3827) 152.562 152.070 160.067 144.216

Aumento por consumo energía eléctrica -88.001 -87.717 -92.330 -83.187

Reducción neta por deshumectación con BC 64.651 64.353 67.737 61.029

Emisiones por deshumectación por aire exterior 96.755 95.146 78.468 77.669

Reducción global si se deshumecta con BC con recuperación de calor condensación

161.406 159.499 146.205 138.698

Conclusiones

Si la deshumectación en piscinas climatizadas cubiertas se hace mediante la utilización de equipos frigoríficos tipo bombas de calor que utilizan el evaporador de expansión directa o el agua enfriada para deshumectar y se aprovecha el calor de la condensación en condensadores de aire o de agua para el calentamiento del aire ambiente interior, existen situaciones en que pueden obtenerse ahorros energéticos y reducción de emisiones de CO2 muy importantes.

Page 144: Guia tecnica ahorro y recuperacion de energia

142

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

4.2.3 Generación de agua caliente mediante la recuperación del calor de compresión (descarga de gases calientes)

4.2.3.1 Calor recuperado

El objetivo de los sistemas de recuperación de los gases de descarga del compresor, también llamados desuperheaters, desrecalentadores, desobrecalentadores o sistemas de recuperación parcial, es el aprovechamiento de la energía repre-sentada por el diferencial de entalpía 1 de la figura 4.39, para la producción de agua caliente sanitaria destinada a los usos mencionados en el apartado 4.2.1.3, previamente desarrollado.

El calor recuperado mediante este procedimiento representa de un 20% a un 25% del calor total de condensación en condiciones nominales. El resto del calor (no recuperado) se disipa en el condensador principal del equipo. Además de la cantidad de calor recuperada, una diferencia adicional frente a los sistemas de recuperación total está en la capacidad del desuperheater para generar agua a una temperatura de salida mayor (de 60 a 80 °C).

0,25

0,5

1

2

4

T=-30°C

-20

-20

-30

-40

-10

0

c.p.o

10

20

30

40

50

60

P [MPa]

h [kJ/kg]

R410a

Notas.1. Calor de sobrecalentamiento.2. Calor de cambio de estado de condensación.3. Calor de subenfriamiento.1+2+3. Calor TOTAL de condensación.

2 13

Fig. 4.39: Diagrama p-h

Page 145: Guia tecnica ahorro y recuperacion de energia

143

Recuperación de calor

4.2.3.2 Medida de la eficiencia energética

La recuperación parcial del calor de los gases de descarga del compresor permite incrementar el ren-dimiento global de una planta enfriadora. Mientras la unidad está produciendo agua fría para satisfacer la demanda de la instalación, parte del calor recogido es trasvasado en el intercambiador de placas menciona-do arriba a un circuito de agua. Este agua calentada puede utilizarse en aplicaciones de calefacción, pre-calentamiento de aire de ventilación, agua caliente sanitaria, procesos,...

A diferencia de la recuperación total de calor en en-friadoras/bombas de calor, esta técnica recupera sólo parte del calor que se recoge en el evaporador y compresor de la unidad (en torno al 20 ó 25% en condiciones nominales). El resto se disipa en el con-densador principal del equipo. A pesar de ello, una ventaja importante es que permite la generación de agua caliente a mayor temperatura, requerida en de-terminadas aplicaciones, por recoger el calor fuera de la curva de saturación.

La cantidad de calor recuperada es función de varios parámetros:

• Carga de la unidad o número de compresores en funcionamiento.

• La temperatura de entrada de agua caliente al desrecalentador. Aproximadamente, una disminu-ción de 5 °C en la temperatura de entrada del agua supone un aumento de un 20% en la cantidad de calor recuperada.

• La temperatura de condensación del refrigerante.

En un equipo aire-agua, la potencia recuperada con una temperatura del aire a 35 °C es aproximadamente el do-ble de la recuperada con aire a 25 °C. Como la cantidad de calor recuperado en comparación con la cantidad de calor total disipado aumenta en proporción con la temperatura de condensación saturada, algunos fabri-cantes permiten fijar un mínimo a esta temperatura de condensación para mantener la cantidad de calor recu-perada en los niveles requeridos.

En las unidades aire-agua y agua-agua, los ratios de medición de la eficiencia son similares a los definidos para el caso de la recuperación total. Las diferencias existentes se detallan a continuación:

• Condiciones de evaluación de los ratios.

• Temperaturas de entrada/salida de generación de agua caliente recuperada: Generalmente, Entrada 50 °C / Salida 60 °C.

• Ratios a carga parcial.

• Utilizando el SPLV (System Part Load Value) combinado aportado por el fabricante, que per-mite considerar cargas parciales en la unidad y generación constante de agua caliente en valores próximos, generalmente, a 60 °C.

A la hora de simular el comportamiento de estos sis-temas es necesario relacionar el perfil climático con el perfil de demanda de frío y el de demanda de ACS Cuando se dan perfiles muy diferentes de gasto de ACS y de demanda de frío, los sistemas de desrecalen-tadores han de ir ligados a depósitos de acumulación. En estos casos, en la evaluación de la eficiencia ener-gética interviene el tamaño de estos depósitos, la combinación con otros sistemas de calentamiento del agua (la existencia o no de placas solares), el ∆T de diseño considerado en ACS, el número de elementos recuperadores y las secuencias de control decididas. Por todo ello, la evaluación de viabilidades de estos sistemas siempre ha de ir vinculada a un programa de simulación energética.

La recuperación parcial de calor no interfiere en el ren-dimiento de las enfriadoras si comparamos las mismas con su equivalente sin recuperación. Tan solo en el caso de que la unidad recuperadora incorpore algún tipo de control de presión de condensación para mantener la presión de condensación elevada, la eficiencia variaría.

A modo de ejemplo, supongamos un equipo aire-agua, compresores de scroll en el entorno de los 350 kW (± 5%).

• Funcionamiento condensando exclusivamente mediante ventiladores (unidad sin demanda de recuperación parcial de calor):

– Cap. Frigorífica: 358,5 kW

– Consumo total: 127,5 kW

– EER: 2,81

– ESEER: 4,08

• Funcionamiento utilizando el recuperador de calor (unidad con demanda de recuperación parcial en condiciones de temperatura del agua caliente de 50 °C/60 °C):

Page 146: Guia tecnica ahorro y recuperacion de energia

144

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

– Cap. Frigorífica: 358,5 kW

– Cap. Calorífica: 110,1 kW (recuperada)

– Consumo total: 27,5 kW

– EER-Frío: 2,81

– COP-Calor: 0,86

– EER o COP Combinado: 3,67

Si suponemos un equipo agua-agua con una potencia de diseño de 300 kW de clase energética A, que funcio-ne bajo las condiciones del ESEER que marca Eurovent, implantado en una instalación en la que siempre que exista demanda de frío exista también demanda de ca-lor simultánea (con agua a 40 °C/50 °C), tendremos:

• Funcionamiento condensando sin demanda de recuperación parcial de calor (temperatura de entrada/salida de agua de condensación de 30 °C/35 °C).

– Cap. Frigorífica: 300 kW

– Consumo total: 62 kW

– EER: 4,84

– ESEER: 6,38

• Funcionamiento utilizando el recuperador de calor (unidad con demanda de recuperación parcial en condiciones de temperatura del agua caliente de 40 °C/50 °C):

– Cap. Frigorífica: 300 kW

– Cap. Calorífica: 72 kW (recuperada)

– Consumo total: 62 kW

– EER-Frío: 4,84

– COP-Calor: 1,16

– EER o COP Combinado: 6,00

En el cálculo de los ratios de eficiencia considerados se ha evaluado el consumo bajo criterios Eurovent, sin considerar el consumo asociado a bombas u otros elementos hidráulicos de los circuitos de agua fría y de agua caliente.

4.2.3.3 Unidades aire-agua

Principios de operación

Las unidades aire-agua con capacidad para llevar a cabo el proceso de recuperación de calor de los gases de compresión incorporan, tanto en el caso de los equi-pos sólo frío como en el caso de las bombas de calor reversibles, un intercambiador refrigerante-agua adi-cional en serie con el intercambiador que conforma el condensador principal. Este intercambiador de recu-peración se instala en la línea de descarga de gases calientes del compresor.

Desde el punto de vista constructivo, suele existir un intercambiador por circuito, con su bucle de agua co-rrespondiente. Los intercambiadores habituales para este tipo de aplicación son de placas, a diferencia de los utilizados en la recuperación total del calor de conden-sación, que suelen ser de carcasa y tubos.

En el caso de enfriadoras, la unidad trabaja siempre en modo frío regulando su capacidad en función de carga frigorífica impuesta al evaporador, generalmente con-trolando la temperatura de impulsión de agua fría. No existe un “modo recuperación” como tal (con posibili-dad de ser activado o desactivado), puesto que el gas refrigerante de la descarga del compresor siempre pasa por el recuperador.

En el caso de bombas de calor reversibles trabajan-do en modo calor, en el recuperador se obtiene parte del calor y la otra parte se obtiene en el condensa-dor principal (intercambiador refrigerante-agua). La diferencia, además de la cantidad de calor, está en que en el recuperador es posible obtener el agua a temperatura de salida más alta (60 a 80 °C) que en el condensador de agua (45 a 50 °C). En este caso de funcionamiento en modo calor no es posible hablar de “recuperación”, ya que el calor obtenido en el inter-cambiador de recuperación disminuye la potencia obtenible en el intercambiador principal (aunque a una temperatura más elevada).

Los límites operativos de la unidad suelen situarse en torno a los siguientes valores, dependiendo de la tecno-logía aplicada en la unidad y del fabricante:

• Recuperador

– Temperatura del agua de entrada al arranque:

- Mínima: 25 °C

- Máxima: 75 °C

Page 147: Guia tecnica ahorro y recuperacion de energia

145

Recuperación de calor

• Temperatura del agua a la salida en funcionamiento

– Mínima: 30 °C

– Máxima: 80 °C

• Condensador de aire

– Máxima: En función de la gestión existente de la carga parcial, desde 48 a 55 °C.

– Mínima: En función del control de presión de condensación, hasta –20 °C.

Uno de los aspectos más críticos es el arranque. En este caso, la temperatura mínima de agua suele estar en torno a los 25 °C para mantener un nivel de condensación mínimo. Para ello puede ser necesario instalar una válvula de tres vías que recircule el agua que pasa por el recuperador para mantener una temperatura adecuada. Esta válvula irá recirculan-do cada vez menos caudal a medida que la temperatura vaya subiendo.

Arquitectura constructiva: implantación, componentes y operativa

En la figura 4.40 se presenta un esquema típico de una unidad con recuperación de los gases del condensador:

Page 148: Guia tecnica ahorro y recuperacion de energia

146

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Leyendas Componentes de la unidad 1 Evaporador 2 Compresor 3 Desobrecalentador (intercambiador 4 Condensador de aire (baterías) 5 Válvula de expansión (EXV) 6 Válvula de seguridad 7 Calentador eléctrico para proteger el desobrecalentador contra la congelación (no suministrado) 8 Aislamiento del desobrecalentador (no suministrado) 9 Caja de control de la unidad 10 N/D 11 Entrada de agua del desobrecalentador 22 Salida de agua del desobrecalentador 13 Entrada de agua del evaporador 14 Salida de agua del evaporador 15 Unidad con opción de desobrecalentador sin módulo hidrónico 16 Carga térmica del sistema 17 Borde entre la unidad y la instlación típica

Componentes de la instalación (ejemplo de instalación) 20 Bomba (circuito hidrónico del circuito del desobrecalentador) 21 Válvula de parada 22 Válvula de control y equilibrado del caudal de agua del desobrecalentador 23 Válvula de seguridad 24 Depósito de expansión 25 Válvula de carga o drenaje 26 Purga de aire 27 Batería del intercambiador de calor o intercambiador de calor de placas 28 Manómetro 29 Interruptor de caudal 30 Bomba (circuito de agua caliente sanitaria) 31 Válvula de tres vías + controlador 32 Filtro para proteger la bomba y los desobrecalentadores 33 Suministro de agua centralizado 34 Salida de agua caliente sanitaria

4 4

1 556 6

78

17

25

25

2226

23

24

2029

27

30 31 33

34

32

16

21

2121

22

25

11 12 14 13 12 11

8

9

15

1 23 3

7Enfriadora

Instalación

Figura 4.40: Esquema típico de una unidad con recuperación de los gases del condensador

Page 149: Guia tecnica ahorro y recuperacion de energia

147

Recuperación de calor

Cuando existe más de un circuito, el suministro de agua al recuperador suele hacerse en paralelo. Es necesario ins-talar válvulas de control y equilibrado de caudal de agua en la salida de cada intercambiador de calor, ajustando la caída de presión y caudal a las condiciones de diseño.

El arranque de la bomba de circulación (20) del agua del recuperador suele enclavarse con el arranque del primer compresor de la máquina. Algunos fabricantes disponen de esta posibilidad conectando directamen-te la bomba al cuadro de la máquina. Es recomendable establecer un dispositivo de seguridad que detecte cualquier problema que pueda surgir con la bomba, como por ejemplo un interruptor de caudal.

Debido a las limitaciones en la temperatura mínima ad-misible en la entrada del recuperador, es conveniente que el volumen de agua del circuito de recuperación sea el mínimo posible. Para conseguirlo, puede utilizarse una válvula de tres vías (31) y un control que regule la temperatura de entrada mediante un sensor.

El circuito de agua caliente del recuperador debe incluir también una válvula de seguridad y un depósito de ex-pansión diseñado para el volumen del circuito y para una temperatura máxima de 120 °C. Además, puede ser necesaria la protección anticongelación del intercam-biador de calor de recuperación.

Simulación energética

Para la elaboración de este ejemplo se ha optado por analizar una instalación del sector hotelero, realizando,

mediante aplicaciones informáticas específi cas, simula-ciones energéticas para un periodo completo de un año.

Estas simulaciones incluirán tanto el establecimiento de los consumos de energía anuales como los ahorros ener-géticos y los niveles de emisiones de CO2 asociados a que hubiere lugar en cada uno de los escenarios planteados.

Las consideraciones generales de diseño aplicadas en el análisis se estructuran bajo los siguientes parámetros:

• Como perfi l climático de referencia, se ha utiliza-do el facilitado ASHRAE para Palma de Mallorca. Se utilizarán los datos climatológicos medios estadísticos para cada hora del año (Palma de Mallorca_ASHRAE_IWEC).

• Los perfi les de carga y los horarios de funciona-miento se corresponden con los de las aplicaciones tipo del sector.

• Horario de operación de la instalación: 24 horas/día, 365 días/año.

• Perfi l de cargas lineal desde 350 kW a la tempera-tura máxima 33,6 °C, hasta una carga del 30% de la máxima (105 kW) a 16 °C de temperatura exterior. Por debajo de 14 °C se supone que la carga es nula por funcionamiento de free-cooling de aire.

En la fi gura 4.41 se detalla el perfi l climático de Palma de Mallorca y la curva de carga de refrigeración para la instalación tipo estudiada de 350 kW de frío.

400 kW

300 kW

200 kW

100 kW

0 kW

1.400 hrs/a.

1.200 hrs/a.

1.000 hrs/a.

800 hrs/a.

600 hrs/a.

400 hrs/a.

200 hrs/a.

0 hrs/a.

-5,3

°C

-2,5

°C

0,3

°C

3,1

°C

5,8

°C

8,6

°C

11,4

°C

14,2

°C

16,9

°C

19,7

°C

22,5

°C

25,3

°C

28,1

°C

30,8

°C

33,6

°C

Perfil climático y curvas de carga de refrigeración

Temperatura exterior (BIN) SPAIN_PALMA DE MALLORCA_ASHRAE_IWEC.HW1

Horas-Año segúntemperatura exterior

1. Perfil de cargasinstalación 350 kW

Figura 4.41: Perfi l climático

Page 150: Guia tecnica ahorro y recuperacion de energia

148

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Como en los casos anteriores se tendrán en cuenta en la simulación:

• El número total de horas-año correspondientes a cada temperatura exterior.

• Las condiciones de trabajo asociadas a dicha operación.

• Las curvas de carga considerando el efecto de cargas.

Por lo que respecta al tipo de unidad implicado en el di-seño del proyecto, para evaluar la eficiencia energética de la recuperación de calor, se comparará el comporta-miento de dos equipos (figura 4.42).

Sistema 1: utilización de una enfriadora aire-agua sin recuperación de calor. El modelo seleccionado es una unidad de dos circuitos y 6 compresores scroll, con gestión de capacidad mediante arranque/parada de compresores, mínima capacidad 15%, refrigerante R-410a y evaporador de expansión directa.

Sistema 2: utilización de la misma unidad enfriadora aire-agua del Sistema 1, equipada en este caso con la opción de recuperación de calor de los gases de des-carga mediante desrecalentadores. El modelo recoge el comportamiento de la unidad generando agua caliente todo el tiempo de funcionamiento y en la cantidad po-sible dependiendo de la temperatura de condensación (temperatura del aire) y de la carga de la unidad (nú-mero de compresores en funcionamiento), usando el control de condensación estándar de la enfriadora.

En este caso se considera despreciable las diferen-cias de rendimientos en la producción de frío entre la enfriadora estándar y la equipada con desrecalenta-dores. Esto no sería así en el caso de uso de la función de control de condensación para incrementar la po-tencia de calor.

No se considera la aplicación de sistemas free-cooling en las enfriadoras, sea por migración de refrigerante o mediante baterías agua-aire adicionales.

Por tanto, para la simulación energética se tendrán en cuenta:

• Las curvas de carga o demanda de la instalación.

• El número total de horas-año en cada condi-ción de temperatura exterior que, según lo descrito, es función de los horarios de funcio-namiento de la instalación y del perfil climático preestablecido.

• Los rendimientos energéticos de los equipos se-gún los porcentajes de capacidad que sea preciso activar (plena carga y carga parcial) y las condicio-nes de trabajo.

• Unos factores de suciedad de 0,0180 m2K/kW, tan-to en el evaporador como en el condensador de recuperación.

Se muestran a continuación los resultados de la simulación:

Tamaño instalación de referencia: 350 kW

Sistema Sistema 1 Sistema 2

Tipo sistema 1 x enfriadora aire/agua 1 x enfriadora aire/agua

Refrigerante R410a R410a

Modela analizadoUnidad con compresores scroll.

Equipo sin opción de recuperación de calor por sobrecalentador

Unidad con compresores scroll. Equipo con opción de recuperación

de calor por sobrecalentador

EER (Eficiencia a plena carga s/Eurovent) 2,81 2,81 (1)

COP (Eficiencia lado calor a plena carga) --- 0,86 (1)

ESEER (Eficiencia a carga parcial s/Eurovent) 4,08 4,08 (1)

SPLV (Eficiencia a carga parcial sistema) 4,44 5,07

Producción de frío (kWh) 1.019.898 1.019.898

Producción de calor recuperado 0 148.100

Incremento en eficiencia energética (%) --- 14,20%

Consumo energético anual (kWhe) 233.487 233.487

Notas.(1) Ratios fuera del Programa de Certificación Eurovent. Calculados en las siguientes condiciones simultáneas de temperatura de agua fría y

caliente: 12 °C/7 °C y 50 °C/60 °C, respectivamente; aire exterior 35 °C.Figura 4.42: Equipos comparados

Page 151: Guia tecnica ahorro y recuperacion de energia

149

Recuperación de calor

Bin Temp (°C)

Carga frío edificio

(kW)

Horas funcionamiento

Energía frío (kWh)

EERPotencia

calor recup (kWh)

Energía calor recup

(kWh)

Eficiencia combinada

33,6 350 25 8.750 2,97 98,0 2.451 3,80

30,8 311 232 72.236 3,41 70,9 16.439 4,20

28,1 273 571 155.719 3,83 48,9 27.909 4,53

25,3 234 771 180.467 4,20 31,3 24.139 4,74

22,5 195 861 168.260 4,50 25,6 22.038 5,13

19,7 157 1.144 179.360 4,69 20,2 23.148 5,37

16,9 118 1.222 144.367 5,00 14,9 18.258 5,54

14,2 79 1.393 110.739 5,23 9,8 13.719 5,92

Total: 6.219 1.019.898 148.100

SPLV en frío= 4,44

SPLV combinado= 5,07

Capacidad calorífica anual recuperada (kWh/año)

148.100Factor de conversión de kWh térmicos a kg de CO2

0,3827Ahorro de T de CO2 asociado a la recuperación

56,68

Conclusiones

• Frente a un equipo aire-agua sin opción de recu-peración por gases de descarga del compresor (desrecalentador), la incorporación de dicha opción no reducirá la eficiencia energética en refrigeración, a plena carga y a carga parcial, siem-pre que se emplee un control de condensación específico para mantener alta la condensación y aumentar la capacidad de calor recuperada. Si no se emplea dicho control, el calor recuperado puede considerarse gratuito.

• La cantidad recuperada dependerá de la carga de frío de la enfriadora y de la temperatura de aire exterior. Para su cálculo, será necesario hacer una simulación que tenga en cuenta el perfil de tem-peraturas de la ciudad, y el perfil de cargas del edificio, así como los rendimientos en carga parcial según las condiciones de trabajo y el % de carga.

• Es objetivo considerar que la incorporación de la opción de recuperación de los gases calientes, en aquellas instalaciones y perfiles climáticos nacionales que permiten su aprovechamiento, incrementa la eficiencia del sistema, medida me-diante el ratio SPLV combinado, en valores en el entorno del 15%.

4.2.3.4 Unidades agua-agua

Principios de operación

Los principios de operación son idénticos a las unida-des aire-agua, quizás recordar los límites aproximados operativos:

• Temperatura del agua a la salida en funcionamiento

– Mínima: 30 °C

– Máxima: 80 °C

Y que uno de los aspectos más críticos es el arranque. En este caso, la temperatura mínima de agua puede es-tar muy por debajo de la de diseño. En esas condiciones podría ocurrir que el vapor sobrecalentado proveniente del compresor no sólo se enfríe sino que se condense en este intercambiador que suele ser de placas y crear una especie de tapón de refrigerante líquido en el cir-cuito frigorífico, con mucha pérdida de carga estrés térmico y poniendo en peligro el funcionamiento mecá-nico del compresor. Para ello es necesario instalar un sistema que lo evite. Puede ser una válvula de tres vías que recircule el agua que pasa por el recuperador para mantener una temperatura adecuada. O una bomba de caudal variable que controle la temperatura de salida.

Page 152: Guia tecnica ahorro y recuperacion de energia

150

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Esta válvula irá recirculando cada vez menos caudal a medida que la temperatura vaya subiendo. En el caso de bomba de caudal variable, éste irá subiendo cuando vaya subiendo la temperatura.

Arquitectura constructiva: implantación, componentes y operativa

En la figura 4.43 se presenta un esquema típico de una unidad con recuperación de los gases del condensador:

Compresor

Condensador (modo calor)Evaporador (modo frío)

Consumo(Load)

Línea de líquido

Válvula de expansión

Válvula inversora

Captación/Disipación(source) Producción

de A.C.S.

Desrecalentador(Desuperheater)

Aspiración

DescargaFiltro secador

Condensador (modo frío)Evaporador (modo calor)

Flujo de refrigerante en modo calefacción

Flujo de refrigerante en modo refrigeración

Posición modo calor Posición modo frío

Figura 4.43: Se presenta un esquema típico de una unidad con recuperación de los gases del condensador

Debido a las limitaciones en la temperatura mínima ad-misible en la entrada del recuperador, es conveniente que el volumen de agua del circuito de recuperación sea el mínimo posible. Para conseguirlo, puede utilizarse una válvula de tres vías o un sistema que varíe el caudal de agua –bomba de caudal variable, por ejemplo– y un control que regule la temperatura de entrada mediante un sensor. En la figura 4.44 se representa un esquema tipo con control por válvula de 3 vías.

Como en el caso del equipo aire-agua, el circuito de agua caliente del recuperador debe incluir también una válvula de seguridad y un depósito de expansión diseñado para el volumen del circuito y para una tempe-ratura máxima de 120 °C; además, puede ser necesaria la protección anticongelación del intercambiador de calor y de la tubería de este circuito de recuperación si estuviese en exteriores y se prevén heladas.

Tomas de presión

Purgador

Válvula de vaciado

Válvula de aislamiento. Normalmente abierta

Válvula de control de 3 vías

Válvula de control de caudal

Filtro

Sistema de recuperación de calor

Figura 4.44: Esquema tipo con control por válvula de 3 vías

Page 153: Guia tecnica ahorro y recuperacion de energia

151

Recuperación de calor

4.2.3.5 Unidades agua-aire

Fundamentos del sistema y del ahorro energético

La producción de agua caliente en una bomba de calor agua-aire puede lograrse, básicamente, mediante dos métodos:

• Recuperación total del calor cedido en el con-densador cuando la unidad funciona en modo refrigeración.

• Recuperación parcial del calor mediante un dispo-sitivo desrecalentador o desuperheater.

De estas dos soluciones, la más empleada en bombas de calor de condensación por agua es la segunda, de-bido principalmente a que se tiene la posibilidad de

producir agua caliente tanto en funcionamiento en modo frío como en modo calor, siempre que funcione el o los compresores, y que exista demanda.

Por tanto, nos centraremos en esta opción. En cambio, la primera opción es útil en aplicaciones de deshumidi-ficación por recalentamiento con energía residual, pero esta función se desarrollará en el apartado 4.2.2.5.

Esquema de funcionamiento básico

El fundamento se muestra en el diagrama de Mollier representado en la figura 4.45. Consiste en aprove-char una parte del calor contenido en el refrigerante a la salida del compresor. Dicho refrigerante en estado gaseoso tendrá una temperatura superior a la tem-peratura de condensación a la presión de salida del compresor.

(bar

)

(kJ/kg)

0,70,80,91,0

2,0

3,0

4,0

5,0

6,0

7,08,09,010

20

30

40

50

120 140 160 180 200 220 240 260 280 300 320 360 380 400 420 440 460 480 500 520 540 560 580 600 620340

-20

-30

-40

-50

-10

0

10

20

30

40

50

60Ejemplo de funcionamiento de ciclo frigorífico con refrigerante R410a

Calor total cedido en el ciclo

Recalentamiento

2,50

2,40

2,30

2,20

2,10

2,00

1,901,

80

1,70

1,601,

50

1,40

1,30

1,20

1,10

1,00

0,90

0,80

0,70

0,700,60

0,50

0,40

0,30

0,25

0,20

0,15

0,120,100

0,080

0,060

0,050

0,040

0,0300,025

0,020

0,01000,0080

0,00600,0050

0,00400,012

0,015

190

180

180

160

150

140

130

120

110

10090807060504030201010 0

-20

-30

-40

-50

Figura 4.45: Ciclo frigorífico representado en un diagrama de Mollier

La diferencia entre la temperatura del refrigerante a la salida del compresor y la temperatura de condensación se deno-mina sobrecalentamiento. Como en casos anteriores, antes de pasar por el condensador, se hace circular el refrigerante gaseoso por un primer intercambiador en el que cede calor a una corriente de agua, hasta alcanzar la temperatura de condensación, pero sin llegar a producirse condensación del gas caliente.

Page 154: Guia tecnica ahorro y recuperacion de energia

152

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

De ahí, el gas pasa a la válvula inversora de cuatro vías, desde la que se deriva bien al bucle de condensación exterior (en modo refrigeración) o bien a la batería de tratamiento interior (en modo calefacción). Una vez en el condensador, el gas sigue cediendo calor –ahora a temperatura constante– y por tanto condensándose.

En la figura 4.46 mostrada a continuación se muestra el esquema frigorífico de una bomba de calor agua-aire con pro-ducción de ACS mediante desuperheater.

Compresor

Condensador (modo calor)Evaporador (modo frío)

Línea de líquido

Impulsión Retorno

Válvula de expansión

Válvula inversora

Captación/Disipación(source) Producción

de A.C.S.

Desrecalentador(Desuperheater)

Aspiración

DescargaFiltro secador

Condensador (modo frío)Evaporador (modo calor)

Flujo de refrigerante en modo calefacción

Flujo de refrigerante en modo refrigeración

Posición modo calor Posición modo frío

BateríaTratam.

Figura 4.46: Esquema frigorífico de una bomba de calor agua-aire con desuperheater

Estrategias de control

La producción de agua caliente sanitaria mediante desuperheater presenta una ventaja fundamental:

• Se puede producir agua caliente siempre que funcione el compresor, ya sea por demanda de ca-lefacción o de refrigeración.

En cambio, presentan un inconveniente:

• No se puede atender demanda de agua caliente sanitaria si no existe demanda de calefacción o de refrigeración.

Por ello, estos sistemas se suelen instalar en cascada con un segundo sistema de producción de agua caliente sanitaria, cuyo concurso será necesario especialmente en épocas intermedias con escasa demanda de refrige-ración o calefacción.

Por otra parte, se debe tener en cuenta que, si se pre-tende producir agua caliente sanitaria cuando la bomba de calor está funcionando en modo calefacción, se le estará retirando una parte de su capacidad calorífica.

Esto solo será crítico en climatologías frías donde la carga punta de calefacción supere a la carga punta de

refrigeración. En esos casos, se debe poder desconec-tar mediante el control la producción de ACS cuando no se esté alcanzando la temperatura de consigna en los locales climatizados.

Consumos eléctricos

Dado que estamos aprovechando una energía sobrante, el consumo eléctrico adicional del sistema con desuper-heater es mínimo, y viene marcado básicamente por la pérdida de carga adicional del refrigerante al paso por el intercambiador, así como por la pérdida de rendi-miento en el condensador.

Lógicamente, la producción de agua caliente sanitaria se tendrá al recircular el agua desde el dispositivo desu-perheater a un depósito interacumulador de ACS, y para ello necesitaremos una bomba de circulación, pero no se debe contabilizar dicho consumo dado que se tendría el mismo con cualquier otro sistema de producción con-vencional de ACS.

Conclusiones

Este dispositivo resulta muy interesante por el aho-rro en la producción de ACS, particularmente en dos aplicaciones:

Page 155: Guia tecnica ahorro y recuperacion de energia

153

Recuperación de calor

• Instalaciones residenciales de climatización sobre captación geotérmica: instalación muy típica en EE.UU. La bomba de calor agua-aire geotérmica con desuperheater permite calefactar o refrigerar las estancias de la casa y proveer de buena parte de las necesidades de agua caliente sanitaria. Allí es típico instalar una resistencia eléctrica de apo-yo en el depósito interacumulador, con objeto de cubrir los periodos en los que la bomba de calor funciona menos tiempo.

• Instalaciones comerciales en bucle de agua: al-gunas de las bombas de calor agua-aire pueden incorporar este dispositivo, con lo que se puede mantener caliente de forma gratuita el agua ne-cesaria para los núcleos de: aseos en oficinas, centros comerciales, residencias, etc.

Ejemplo

Tomemos una bomba de calor agua-aire reversible de 8,1 kW de capacidad frigorífica nominal, en sus dos ver-siones, con y sin dispositivo desuperheater:

Unidad sin desuperheater

Modo frío:

Capacidad frigorífica: 7.940 W

Consumo eléctrico: 1.850 W

EER: 4,30

Temperatura de entrada del agua en lado con-densación: 30 °C

Temperatura de entrada del aire en evapora-ción: 27 °CBS/19 °CBH

Caudal de agua: 34,2 l/min

Caudal de aire: 1.700 m3/h

Modo calor:

Capacidad calorífica: 9.710 W

Consumo eléctrico: 1.940 W

COP: 5,01

Temperatura de entrada del agua en lado con-densación: 20 °C

Temperatura de entrada del aire en evapora-ción: 20 °CBS

Caudal de agua: 34,2 l/min

Caudal de aire: 1.700 m3/h

Unidad con desuperheater

Modo frío:

Capacidad frigorífica: 7.940 W

Consumo eléctrico: 1.850 W

EER: 4,30

Temperatura de entrada del agua en lado con-densación: 30 °C

Temperatura de entrada del aire en evapora-ción: 27 °CBS/19 °CBH

Caudal de agua: 34,2 l/min

Caudal de aire: 1.700 m3/h

Capacidad de calefacción en desuperheater: 1.300 W

Modo calor:

Capacidad calorífica: 8.510 W

Consumo eléctrico: 1.940 W

COP: 5,01

Temperatura de entrada del agua en lado con-densación: 20 °C

Temperatura de entrada del aire en evapora-ción: 20 °CBS

Caudal de agua: 34,2 l/min

Caudal de aire: 1.700 m3/h

Capacidad de calefacción en desuperheater: 1.200 W

Tomando el caso más desfavorable (funcionamiento en modo calor), se tiene:

Page 156: Guia tecnica ahorro y recuperacion de energia

154

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

• Capacidad de calefacción en desuperheater: 1.200 W.

• Consumo equivalente de una bomba de calor agua-agua con COP=3,5 produciendo agua caliente en las mismas condiciones: 1.200/3,5 = 343 W.

• Emisiones de CO2 que se dejan de producir por kWh de energía térmica recuperada en el desuperheater: 0,343 kW x 1 h x 0,649 kg CO2 /kWh = 0,222 kg CO2.

4.3 transferencia enerGética entre zonas del edificio

4.3.1 Sistemas de caudal de refrigerante variable

Descipción general

Los sistemas de caudal de refrigerante variable, son unidades de acondicionamiento de aire, de expansión directa en sistema múltiple que, como su nombre indica, basan su funcionamiento en el envío del flujo de refri-gerante requerido por la instalación en cada momento (gracias al uso de sistemas INVERTER), en función de la demanda de la misma.

Según la definición anterior, la composición física de un sistema de caudal de refrigerante variable está forma-da por una o varias unidades exteriores conexionadas frigorífica y eléctricamente a varias unidades interiores, siendo cada una de estas independiente en su opera-ción y demanda de temperatura.

Figura 4.47: Composición de un sistema de caudal de refrigerante variable en modo “bomba de calor” (condensación por aire)

Los sistemas de caudal de refrigerante variable se co-mercializan en los siguientes modos de operación y condensación:

Condensación por aire (figuras 4.47, 4.48 y 4.49)

• Sistemas solo frío (solo dan refrigeración).

• Sistemas bomba de calor (reversibles, pueden fun-cionar en refrigeración y/o calefacción).

• Sistemas de recuperación de calor, en el que cada unidad interior es autónoma en su modo de operación (refrigeración o calefacción) con independencia del resto de unidades interiores pertenecientes a un sistema.

Condensación por agua

• Sistemas bomba de calor (reversibles, pueden fun-cionar en refrigeración y/o calefacción).

• Sistemas de recuperación de calor, en el que cada unidad interior es autónoma en su modo de operación (refrigeración o calefacción) con independencia del resto de unidades interiores pertenecientes a un sistema.

Figura 4.48: Sistema de caudal de refrigerante variable en modo refrigeración (condensación por aire)

Figura 4.49: Sistema de caudal de refrigerante variable en modo recuperación de calor (condensación por aire)

Page 157: Guia tecnica ahorro y recuperacion de energia

155

Recuperación de calor

Figura 4.50: Sistema de caudal de refrigerante variable en modo “bomba de calor” (condensación por agua)

Figura 4.51: Sistema de caudal de refrigerante variable en modo “recuperación de calor (condensación por agua)

En las figuras 4.47 y 4.50, podemos observar sistemas de tipo “bomba de calor” funcionando en modo cale-facción (todas las unidades interiores funcionan en régimen de calefacción, con su propia consigna en cuan-to a temperatura, horarios y velocidad del ventilador).

Los sistemas mostrados en las figuras 4.47, 4.48 y 4.50 corresponden a los dos primeros tipos citados en la clasificación por el modo de operación, pudiendo ser, de tipo “bomba de calor” en todos los casos, o del tipo “solo frío” cuando se trate de funcionar con todas las unidades en refrigeración (figura 4.48).

Las figuras 4.49 y 4.51, muestran sistemas de caudal de refrigerante variable, operando en modo de recu-peración de calor. Como puede observarse, para una

misma unidad exterior, existen unidades interiores funcionando en refrigeración, mientras que otras lo hacen en modo calefacción; esto supone una transfe-rencia de energía de unas zonas a otras del edificio, lo que se traduce en muy bajo consumo energético, ya que el compresor trabaja a un ritmo muy inferior al de cual-quier proceso de compresión clásico.

Cuando se utilizan equipos condensados por agua, se pueden conectar dichas unidades a bucles de agua –también denominados lazos hidráulicos energéti-cos (LHE)– o a grandes fuentes naturales de energía –geotermia, agua de mar o ríos, etc.–, que eviten me-dios auxiliares (torres de refrigeración y/o calderas o equipos bomba de calor) para mantener las tempera-turas operativas óptimas del LHE (aproximadamente 27-30 °C), lo que consigue valores EER/COP puntuales cercanos a 10, cuando las cargas están compensadas y estacionales medios superiores a 6.

Existe gran variedad de modelos conectables, y por tan-to permite la adaptación de estos sistemas a cualquier tipo de local o edificio.

Descripción de funcionamiento de los sistemas de cau-dal de refrigerante variable

Desde el o los compresores situados en la unidad exterior, se envía el refrigerante (gas o líquido) a las baterías de intercambio freón-aire, situadas en la/s unidades exterior e interiores, actuando las mismas como evaporador 0 condensador, según demande el sistema y controlando el funcionamiento de los com-presores y el flujo de refrigerante enviado al sistema gracias al sistema inverter y a través de las válvulas de expansión electrónicas.

Page 158: Guia tecnica ahorro y recuperacion de energia

156

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

sv

svsenph

senpl

hps hps hpsSepa

rado

rde

ace

ite

Sepa

rado

rde

ace

ite

Sepa

rado

rde

ace

ite

sv

Compresorinv

Compresorstb1

Compresorstb2

7

X B Y C

VF

E

UD

N

RQP

A

O

J

M

A

C

B

W

G

M

8

9

6

1

543

2

Acumulador

Válvulasolenoide

Válvula de control Válvula de control

Válvula de control

Válvula de cuatro vías

Válvula de expansión electrónica

Válvula de expansión electrónica

Válvula reguladorade presión

Válvula de control

Válvulasolenoide

Válvula de cierre (con compuerta de servicio de Ø 7,9 mm con conexión abocardada)

Presostatode alta

Presostatode alta

Presostatode alta

Sensor depresión baja

Sensor de presión alta

Filtro

A unidades interiores

Esquema frigorífico unidad exterior

Esquema de unidad interior

Filtro Filtro

Filtro

Filtro

Filtro Filtro

FiltroFiltroFiltro

De unidadexterior

Intercambiador de calor

Distribuidor

Ventilador

Filtro Filtro

Filtro

Tubocapilar

Válvula solenoide

Válvula de control

Válvula de expansión electrónica

Compuertade conexión deltubo de líquido

Compuertade conexión dela tubería de gas

Th4

Th3

Th2

Th1

Figura 4.52: Ciclo frigorífico en un sistema bomba de calor

Page 159: Guia tecnica ahorro y recuperacion de energia

157

Recuperación de calor

El número de unidades interiores que pueden conectarse a un sistema es variable, dependiendo del tipo y capacidad de dicho sistema, pudiendo llegarse hasta un máximo de 80 en algunos modelos de equipos “bomba de calor” existentes en el mercado.

Gracias al uso del inverter se puede mantener a carga parcial temperaturas muy cercanas a las de consigna (± 0,5 °C) y como consecuencia a carga parcial (que es como funciona una instalación durante el mayor porcentaje de su operación), el ahorro de energía conseguido es muy grande.

Arranque lento

Mantiene estable la temperatura

Repite ciclos de frío y calor

Diferencia detemperatura más pequeña

Diferencia detemperatura grande

Reducción de 1/3 del tiempo de puesta en marcha

Punto de ajuste

Climatización sin inverter

Climatización con inverter

Figura 4.53 A: Comparativo entre operación con y sin inverter

50Refrigeración 43°CDB

Tipo bomba de calor Tipo recuperador de calor

Calefacción 15,5°CWB

-15°CBs

-20°CBh-20

-15

-10

-5

10

20

30

40

50

-20

-15

-10

-5

10

20

30

40

Refrigeración 43°CDB

Calefacción 15,5°CWB

Refrigeración y calefacción

15,5°CWB

-15°CBs

-20°CBh

-5°CBh

Rangos de operación de sistemas de caudal de refrigerante variable

Figura 4.53 B: Límites exteriores de operación en equipos condensados por aire

Page 160: Guia tecnica ahorro y recuperacion de energia

158

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Siendo en estas fi guras:

°CDB: Temperatura de bulbo seco en °C.

°CWB: Temperatura de bulbo húmedo en °C.

Límites operacionales y de instalación

50 m

. (90

m3)

Dife

renc

ia d

e ni

vel e

ntre

la

s ud

s. in

teri

ores

y la

ext

erio

r

90 m

. Con

o m

áxim

o

165

m. L

ongi

tud

de tu

berí

a re

al

30 m

. Dife

renc

ia d

e ni

vel e

ntre

uds

. int

erio

res

Figura 4.54: Ejemplo de limitación de tuberías en circuitos frigorífi cos. Estas longitudes dependen del fabricante y modelo seleccionado

Selección de sistemas de caudal de refrigerante variable

El proceso de selección de las unidades es el siguiente:

• Con los cálculos de cargas de cada local a climati-zar, seleccionar las unidades interiores, teniendo en cuenta las potencias sensibles y totales así como las correcciones correspondientes por la lon-gitud de circuito desde la unidad exterior hasta la unidad interior correspondiente y las correcciones por la temperatura de operación (si procede). Los fabricantes disponen de programas de selección que contemplan estos parámetros y seleccionan directamente las unidades de acuerdo a estos requisitos.

• La suma de las capacidades totales de las unida-des interiores seleccionadas, dará un valor global de potencia en kW.

• Este valor global debe corresponder a la capacidad Total (sensible y total) de la unidad exterior. Estos sistemas de caudal de refrigerante variable, admi-ten por regla general un desfase superior o inferior entre la capacidad total de las unidades interiores instaladas y la de la unidad exterior seleccionada.

• A este desfase se le llama relación de conexión; podemos asimilar esta relación de conexión, es algo similar a la simultaneidad en instalaciones con plantas enfriadoras o bombas de calor.

• En estos sistemas se admite una relación de co-nexión comprendida normalmente entre el 50% y el 150%, aunque esta relación de conexión de-penderá del fabricante y del modelo del equipo seleccionado.

50% Σ. capacidad uds interiores ≥ Relación deconexión ≤ 150% Σ capacidad uds interiores

• Hay que tener en cuenta que a mayor relación de conexión, disminuye la capacidad entregada por cada unidad interior (aunque se produce un pe-queño incremento en la capacidad entregada por la unidad exterior).

Ventajas derivadas de la utilización de sistemas de caudal de refrigerante variable

• Altos valores de EER/COP en los propios equipos, especialmente en los funcionamientos de las ins-talaciones a carga parcial y sobre todo en sistemas de recuperación de calor por transferencia de ener-gía entre zonas del edifi cio.

• Mejora del rendimiento global de las instalaciones al eliminar elementos como bombas de circulación necesarios en instalaciones convencionales en cualquier condición de utilización (tanto a carga muy parcializada como en máxima demanda).

• Menores espacios requeridos para el transporte de la energía. A modo de ejemplo, para transportar 100 kW de potencia según el medio de transferen-cia utilizado, mostramos los siguientes espacios:

– Agua: 2 tuberías aisladas, aprox. 340 x 170mm

– Aire: conductos, aprox. 980 x 980mm

– Refrigerante: 2 tuberías aisladas, aprox. 180 x 121mm

Page 161: Guia tecnica ahorro y recuperacion de energia

159

Recuperación de calor

• Menor superficie ocupada por las unidades exte-riores e interiores frente a otros sistemas.

• Unidades modulares y ligeras (se eliminan en mu-chos casos refuerzos estructurales, grúas de izado de unidades exteriores, etc.).

• Función back-up, con lo que se eliminan equipos de reserva.

• Bajos niveles sonoros y de vibraciones con el con-siguiente ahorro en soluciones acústicas.

• Instalación simplificada frente a otros tipos de sistemas.

• Sencillez de mantenimiento.

Transferencia energética entre zonas del edificio

Los sistemas de caudal de refrigerante variable de tipo “solo frío” y “bomba de calor”, presentan de forma orientativa los siguientes coeficientes de rendimiento:

• Valores EER* para equipos solo frío y bomba de ca-lor condensados por aire: 3,00 ≥ Coef EER ≤ 4,00

• Valores COP* para equipos solo frío y bomba de calor condensados por aire: 3,70 ≥ Coef COP ≤ 4,3

* Valores dados en condiciones EUROVENT y con una relación de conexión del 100%. Es decir, con 27 °CBS y 19 °CBH interiores y 35 °C exteriores en verano y con 20 °CBS interiores y 7 °CBS, 6 °CBH exteriores en invierno; así como para una longitud frigorífica equi-valente de 8 m, con 0 m de desnivel.

Para otros valores se deberán aplicar las correcciones correspondientes.

Estos valores, que dependerán de cada fabricante, pue-den verse incrementados hasta en un 30% si se utilizan combinaciones de alto rendimiento.

En este caso, los valores EER/COP de los equipos son los netos de la instalación, ya que no existen ele-mentos auxiliares al transporte e intercambio de la energía (bombas de circulación, ventiladores, baterías de climatizadores, intercambiadores de calor, etc.), que penalicen los coeficientes de los equipos.

De forma análoga:

• Valores netos aproximados EER** para equipos bomba de calor condensados por agua:

Coef EER 3,76

• Valores COP*** para equipos bomba de calor con-densados por agua:

Coef COP 5,95

** Valores dados para una temperatura del bucle de agua de 30 °C y reducidos en un 20% por los con-sumos de bombas de circulación y ventiladores de unidades interiores y torre de enfriamiento.

*** Este valor tan elevado será aplicable en el caso de equipos instalados en bucle de agua (preferente-mente los de recuperación de calor) con las cargas compensadas (el mismo número de unidades traba-jando en refrigeración y en calefacción), o cuando se utilicen fuentes naturales como la geotermia, a aguas superficiales de mar o de río.

Si no existe compensación mediante los propios equipos conectados al bucle o a través de las fuentes naturales citadas, el calor requerido, habrá que aportarlo, desde calderas o similares, debiendo replantearse en este caso la conveniencia de utilizar este tipo de equipos, analizan-do el rendimiento global de la instalación durante todo el ejercicio anual, (esto deberá hacerse teniendo en cuenta multitud de datos y utilizando programas informáticos). Si existe compensación se pueden llegar a obtener –si las potencias entregadas y absorbidas al anillo hidráu-lico están compensadas– COP puntuales de hasta 10 y COPs estacionales del entorno de 6.

Estos sistemas pueden sustituir a los tradicionales de cuatro tubos en lo relativo a la operación independien-te en refrigeración o calefacción de cada unidad interior, con las ventajas de la simplicidad de la instalación frente a las de tipo clásico y la del ahorro de energía derivado de los altos coeficientes EER/COP propios de los mismos.

Ejemplo

A modo de ejemplo, los coeficientes COP de una unidad de 28 kW de potencia nominal de refrigeración, puede tener, a distintas situaciones de funcionamiento nomi-nal, los siguientes valores:

Page 162: Guia tecnica ahorro y recuperacion de energia

160

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

VALORES COEFICIENTES EER/COP A DIFERENTES SITUACIONES DE FUNCIONAMIENTO. RELACIóN CONEXIóN 110%

Modo de operación Pot Refrig (kW) Pot Calef. (kW) Tª Exterior (°C) Tª Interior (°C) EER COP

100% Refrigeración 0% Calefacción 28,50 0,00 35 27/22 3,99 0,00

25% Refrigeración 75% Calefacción 7,06 21,49

7

27/22

6,01

11 6,35

15 6,62

50% Refrigeración 50% Calefacción 12,49 14,70

7

27/22

7,52

11 7,87

15 8,29

75% Refrigeración 25% Calefacción 20,26 7,23

7

27/22

8,39

11 7,94

15 7,44

0% Refrigeración 100% Calefacción 0,00 32,40 7 27/22 0,00 4,24

De la observación de la tabla anterior, se puede apreciar que los mejores coeficientes se obtienen cuando la demanda de refrigeración está en torno al 70% de la producción de la unidad exterior en refrigeración y el resto en calefacción; ello es debido a que a la potencia de condensación se añade al calor aportado por los compresores del circuito, que aproxi-damente pueden llegar a suponer un 25% de la potencia de evaporación.

Sea la planta intermedia de oficinas siguiente:

Norte

Z.3 Z.4 Z.5

15 Z.2 Z.8 Z.6

Z.1 Z.8 Z.7

30

Datos de partida:

• Condiciones interiores: 25 °C, 50% H.R. en verano y 22 °C en invierno.

• Funcionamiento: 300 días/año, 12 horas diarias.

• Carga de calefacción zona perimetral: 32,0 kW.

• Carga de refrigeración zona perimetral: 50,8kW.

• Carga zona interna (solo refrigeración): 42,7kW (constante).

Para simplificar el cálculo no se considera la ventilación, la cual es neutralizada por otros equipos.

Page 163: Guia tecnica ahorro y recuperacion de energia

161

Recuperación de calor

Opción 1. Utilizando bomba de calor

2 Equipos bomba de calor: Fachadas

Potencia nominal unitaria equipo:

28 kW (refrigeración)

31,5 kW (calefacción)

Relación de conexión 100%

1 equipo solo frío: zona interna

Potencia nominal equipo: 56 kW (refrigeración)

Relación de conexión 100%

Potencia total nominal instalada (2 bombas de calor y 1 equipo sólo frío)

112 kW (refrigeración)

63 kW (calefacción)

Opción 2. Utilizando recuperación de calor

2 Equipos con recuperación de calor

Potencia nominal unitaria equipo:

57 kW (refrigeración)

64,8 kW (calefacción)

Relación de conexión 100%

Potencia total nominal instalada (2 equipos)

114 kW (refrigeración)

129,6 kW (calefacción)

Como los consumos de las unidades interiores serán los mismos con sistemas “bomba de calor” que con sistemas “con recuperación de calor”, no los tendremos en cuenta.

Dado que se trata de equipos del mismo tipo, con coeficientes EER muy parecidos, no se considera el fun-cionamiento de la instalación en modo refrigeración, ya que las diferencias (de haberlas), serán muy pequeñas.

Periodo de calefaccion (150 días)

Opción 1

Demanda de calefacción en zona perimetral: 2.7648,00 kWh

Tomando una temperatura media estacional de 11 °C tendremos:

Potencia de calefacción de los equipos instalados: 63,00 kW

Consumo de equipos: 13,68 kW

Esto supone un COP estacional de:COP = (63,00)/13,68 = 4,6

Los equipos funcionarán en estas condiciones el núme-ro de horas suficientes para satisfacer la demanda de calefacción, esto es:

Horas de funcionamiento27.648 kWh (calefacción)/63 kW = 438,86 horas

Energía consumida por los dos sistemas “bomba de calor” (calefacción zona perimetral)

438,86 horas · 13,68 kW = 6.003,60 kWh

Demanda de energía de refrigeración por la zona inter-na = 150 días · 12 horas/día · 42,7 kW = 76.860,00 Kwh

Para una temperatura exterior estacional de 11 °C (la misma que para la zona perimetral), el equipo de caudal de refrigerante variable entrega:

Pot refrigeración del equipo instalado: 52,40 kW

Consumo del equipo: 8,02 kW

Esto supone un EER estacional de: EER= (52,40)/8,02 = 6,53

El número de horas de funcionamiento de este conjunto será:

nº horas =76.680,00 kWh/52,40 kW=1.463,36 horas

El consumo de este conjunto de caudal de refrigerante variable (refrigeración de zona interna) será

1.463,36 horas x 8,02 kW =11.736,15 Kwh

Page 164: Guia tecnica ahorro y recuperacion de energia

162

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

CONSUMO= nº horas funcionamiento equipos cale-facción zona perimetral + nº horas funcionamiento. Refrigeración zona interna.

CONSUMO CALEF (bomba de calor/solo frío) = 6.003,60 + 11.736,15 = 17.739 kWh

Opción 2

Durante el periodo de calefacción, la relación media en-tre la carga de calor y la de frío es de:

Porcentaje de demanda de calefacción %(32 / (32 + 42,7)) · 100 = 43%

Porcentaje de demanda de refrigeración %100 - 43 = 57%.

Para la determinación de las prestaciones de los equi-pos adoptaremos la relación 60-40% en este ejemplo.

Demanda neta estacional de calefacción zona perime-tral: 27.648,00 kWh.

Demanda de refrigeración de la zona interna: 76.860,00 kWh.

La capacidad total estimada de los dos equipos de caudal de refrigerante variable a 11 °C exteriores y funcionando el 60% en refrigeración y el 40% en calefacción es:

Potencia de calefacción entregada por los equipos 60% refrig/40% calef: 51,72 kW

Pot refrigeración Idem: 57,64 kW

Con un COP de: 7,90;

Esto supone un consumo de Consumo = (51,72 + 57,64)/ 7,90 = 13,84 kW.

(Estos valores se han interpolado entre las condicio-nes de funcionamiento 50% refrig/50% calefacc. y 75% refrig/25% calefacc., dadas por el fabricante).

Cuando los equipos funcionen en modo 100% refrigera-ción, 0% calefacción, con 11 °C de temperatura exterior, tendremos resultados similares a un equipo convencio-nal “solo frío” funcionando en estas condiciones, es decir:

Pot de refrigeración entregada por los equipos 100% Refrig.: 52,40 kW

Con un consumo de: 8,02 kW

Esto supone un EER = (52,40)/8,02 = 6,53

Los equipos funcionarán en modo “recuperación de ca-lor” el número de horas suficientes para satisfacer la demanda de calefacción, esto es:

Horas funcionamiento al 60%-40%27.648 kWh (calefacción)/51,72 kW = 534,57horas.

Energía aportada a la refrigeración de la zona interna en modo recuperación de calor

534,57 horas · 57,64kW = 30.812,61kWh

Energía de refrigeración a aportar por los equipos de caudal de Refrig. Variable funcionando solo en refrige-ración = 76.860,00-30.812,61 = 45.867,38 kWh

Horas de funcionamiento en refrigeración del equipo de la zona interna =45.867,38 kWh/52,40 = 875,33 horas

CONSUMO= nº horas funcionamiento al 60/40% · 13,84 Kw + nº horas fun. Refrigeración · 8,02 kW

CONSUMO CALEF (con equipos con recup. de calor) =534,57 · 13,84+875,33 · 8,02 = 14.418,60 kWh

Conclusiones

• Con la utilización de sistemas de caudal de re-frigerante variable en edificios con demanda de refrigeración durante todo el año (edificios de oficinas con amplias zonas internas, CPD, locales de reprografía integrados en galerías comerciales, etc.), se consiguen reducciones en el consumo de energía anual de calefacción que pueden ser supe-riores al 20% de la demanda de temporada.

• Si nos referimos al ejemplo anterior:

El consumo de energía durante la temporada de calefacción, utilizando sistemas de caudal de refri-gerante variable, de tipo “bomba de calor” y “solo frío” para la zona interna, asciende a 17.739,75 kWh.

El consumo de energía durante la tempo-rada de calefacción, utilizando sistemas de caudal de refrigerante variable con recuperación de calor, que climatizan todo el edificio, asciende a 14.418,60 kWh.

A la vista de este estudio se deduce que “la utiliza-ción de equipos con recuperación de calor ahorra aproximadamente un 18,7% respecto a una que no la incluya”, (en este caso el ahorro de energía con-seguido asciende a 3.321,15 kWh).

Page 165: Guia tecnica ahorro y recuperacion de energia

163

Recuperación de calor

Consecuentemente con la cifra de ahorro de energía anterior (3.321,15 kWh), se produce una reducción de las emi-siones de CO2 de 2.155,43 Kg por año de funcionamiento de la instalación.

Este porcentaje variará según la tipología de la instalación y el edificio, siendo mayor a medida que el número de horas de funcionamiento en modo de recuperación de calor aumente y alcanzando valores óptimos cuando la rela-ción de funcionamiento refrigeración/calefacción sea del 70%-30%.

4.3.2 Bucle de agua

Introducción

Frecuentemente, en edificios con un gran núcleo central y una envolvente con distintas orientaciones, se producen car-gas opuestas simultáneas; es decir, refrigeración durante todo el año en el núcleo, mientras que en la envolvente se demanda calefacción en invierno y refrigeración en verano. En épocas intermedias, la demanda de la envolvente puede evolucionar de calor a primeras horas de la mañana, a reclamar frío en las horas centrales del día.

El bucle de agua, o Lazo Hidráulico Energético, o también Anillo Térmico, ofrece una gran eficiencia y versatilidad, cuan-do los elementos terminales del mismo pertenecen a algún sistema de recuperación de calor, en cuyo caso se optimizan los coeficientes EER/COP (a plena carga) y ESEER (a carga parcial) y se superpone el aumento de eficiencia del sistema de recuperación de calor, con el propio del bucle de agua, también de recuperación de calor.

La temperatura constante del anillo hidráulico se consigue mediante el funcionamiento alternativo de una torre y de una caldera, para mantener el agua a una temperatura constante de alrededor de 30 °C.

Este sistema es el denominado “bucle de agua” (también “lazo hidráulico energético” – LHE) que describimos a continuación.

Descripción

Es un sistema formado por unidades de condensación por agua, que pueden funcionar en modo frío y en modo bomba de calor, cediendo y captando la energía necesaria para completar el ciclo frigorífico (evaporación/condensación) de un anillo hidráulico de temperatura constante, mantenida esa temperatura mediante medios auxiliares externos.

El así denominado bucle de agua, consta, como se indica en la figura 4.55 de los siguientes elementos:

Page 166: Guia tecnica ahorro y recuperacion de energia

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

10

10

9

8

6

1

3

5

2

4

7

9

H

G

F

E

A

D

B

C

Local a climatizar

Torre de refrigeración

Caldera

T

TM

M

M

M

M

M

M M

M

T

T

T

T

T

P

T

LF

Depósito de expansión

Depósito de expansión

Operación en refrigeración

Equipos del 1 al 9: unidad terminal de bucle de agua sistema clásicoEquipo 10: unidad terminal de bucle de agua con caudal de refrigerante variable

Operación en calefacción

Figura 4.55: Bucle de agua con torre y caldera

Page 167: Guia tecnica ahorro y recuperacion de energia

165

Recuperación de calor

La tipología de unidades susceptibles de poder ser co-nectadas a un bucle de agua, comprende una amplia gama de unidades terminales de bucle, entre las que se pueden incluir las siguientes:

• Unidades específi cas para aplicación en bucle.

• Sistemas de caudal de refrigerante variable con-densados por agua.

• Enfriadoras y bombas de calor de condensación por agua.

• Equipos compactos de condensación por agua.

• Condensadores (de refrigeración por agua) de equipos de frío industrial.

Cuando un equipo tiene una demanda en frío utiliza el anillo hidráulico como medio de condensación, produ-ciendo por tanto frío en el evaporador, mientras que el equipo que demanda calor, utiliza el agua del anillo hi-dráulico como medio para evaporar el refrigerante del evaporador, produciendo agua caliente para satisfacer la demanda de calefacción.

Producción de frío Producción de calor

Figura 4.56: Producción de calor o frío variando la posición de la válvula reversible de 4 vías

Aplicaciones

El bucle de agua o bucle energético, es uno de los sistemas más efi cientes y respetuosos con el medio ambiente, sistemas de alta efi ciencia en climatización de edifi cios, en un rango de potencias ilimitado, pueden instalarse casi en cualquier ubicación del edifi cio. Cada equipo terminal corresponde únicamente a la demanda de frío y de calor de la zona a la que pertenece. Esto per-mite un excelente nivel de confort para sus ocupantes, un control más efi ciente de la energía consumida y un menor coste operacional a lo largo de todo el año.

El Air-Conditioning Refrigeration Institute (ARI) y la In-ternational Standard Organization (ISO), han publicado normativas en las que indican las aplicaciones más re-comendables para el bucle de agua.

A continuación se indican las aplicaciones más reco-mendadas para este sistema según la ISO y que están disponibles en muchos fabricantes actuales de equipos de climatización.

Este sistema presenta ventajas por los grandes valores de efi ciencia que se consiguen.

Aplicación TORRE/CALDERA: ARI 320/ISO 13256-1

La aplicación torre/caldera utiliza un sistema hidráulico sencillo de dos tubos que aporta calor, extrae calor, o lo transfi ere a otros equipos del mismo edifi cio.

El agua para calefacción se encuentra a una tempe-ratura entre 18 y 20 °C; esta temperatura se consigue mediante una caldera localizada en la sala de calderas.

La temperatura del agua de condensación, en los mese de refrigeración, se mantiene entre 30 y 35 °C y, para conseguir esta temperatura, se requiere la utilización de una torre de refrigeración, para disipar el calor de condensación.

La torre de refrigeración se pueden localizar en la cu-bierta del edifi cio, en el interior, o adyacente al mismo.

Page 168: Guia tecnica ahorro y recuperacion de energia

166

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

La norma ASHRAE 90.1 establece que las bombas de circulación de más de 8 kW, deben llevar variador de frecuencia sistema Inverter®, y la instalación de ais-lamiento en la tubería, siempre que la temperatura del agua se encuentre por debajo de 16 °C y superior a 40° C.

Aplicación bucle abierto con agua de pozo: ARI 325/ISO 13256-1

Los sistemas de bucle abierto con agua de pozo que uti-liza agua del subsuelo, añade o elimina calor del agua interior del bucle de agua.

El mayor beneficio de un sistema de bucle abierto es el mantenimiento de la temperatura constante, normal-mente entre 10 y 15 °C, lo que permite un funcionamiento muy eficiente al menor coste de explotación.

Es práctica habitual el añadir un intercambiador de ca-lor, para aislar el circuito hidráulico del edificio del agua del pozo. La utilización de este intercambiador permi-te reducir los costes de mantenimiento, mientras que permite la transferencia de energía entre unidades ter-minales, como en el sistema torre/caldera.

Un buen diseño del sistema permite la utilización de un gran caudal de agua del subsuelo ( 1,5 l/h por kW) y pre-ver la descarga del agua utilizada, otra vez de vuelta al acuífero.

Las aplicaciones de bucle con sistema abierto se uti-lizan frecuentemente en zonas costeras, donde las características del terreno permiten la reinyección del agua al acuífero.

Téngase en cuenta que hay normativa sobre la profun-didad de los pozos, la distancia que debe existir entre el pozo de extracción y el de reinyección.

Una mala calidad del agua puede causar problemas de suciedad en el intercambiador de calor, mientras que los sólidos en suspensión, pueden erosionar los inter-cambiadores. Deben utilizarse filtros para evitar los problemas producidos por los sólidos en suspensión.

Aplicación de geotermia de bucle cerrado: ARI 330/ISO 13256-1

Las aplicaciones de bucle cerrado en vertical se instalan perforando agujeros verticales e insertando tuberías de impulsión y retorno de polietileno.

Los pozos verticales están conectados en paralelo, se-gún el sistema de retorno invertido, para permitir que el agua del edificio circule por igual a través de todo el terreno.

El fluido circulante disipa calor al terreno de una forma similar a la torre de refrigeración y añade calor al bucle, como lo hacía la caldera.

Si el bucle está bien diseñado, el terreno deberá mante-ner la temperatura del bucle del edificio, sin necesidad de utilizar una torre ni una caldera.

Page 169: Guia tecnica ahorro y recuperacion de energia

167

Recuperación de calor

El rango de temperaturas en climas nórdicos se en-cuentra entre 3 y 35 °C, mientras que en climas más meridionales se encuentra entre 5 y 38 °C.

El número y la profundidad de las perforaciones deben determinarse utilizando el software específico diseña-do para aplicaciones de geotermias verticales.

Una profundidad típica en bucles verticales se encuen-tra entre 40 y 120 m y normalmente se requiere 20 m por cada kW de refrigeración.

Una aplicación horizontal de circuito cerrado es similar al bucle de la aplicación en vertical, con excepción de que los bucles se instalan en zanjas aproximadamente a 1,5 m de la superficie del terreno.

Las tuberías deben instalarse siguiendo una disposi-ción de 4 ó 6 tubos y pueden requerirse entre 40 y 55 m2 por kW de refrigeración.

Las temperaturas del bucle para aplicaciones comercia-les se encuentran entre 4 y 35 °C en climas nórdicos, mientras que en climas más meridionales se encuen-tran entre 5 y 38 °C.

Los bucles horizontales normalmente no se insta-lan en zonas urbanas, ya que el coste del terreno es prohibitivo.

Nuevos avances en los procedimientos de instalación han mejorado el tiempo de montaje de bucles horizon-tales, manteniendo el coste inicial, menor al del bucle vertical.

Aplicación lagos y aguas superficiales

Un sistema de bucle cerrado de agua de la superficie, o de un lago, es un bucle geotérmico que se instala directamente en un lago que se encuentre cerca del edificio. En muchas ocasiones, el agua que se va a uti-lizar se coloca en la parte superior del edificio para permitir el drenaje del agua y cumplir un cierto diseño estético.

Los tubos del bucle están fabricados de polietileno, de igual forma que los bucles horizontales o verticales, utilizando un diseño de retorno invertido. La profun-didad y el tamaño del lago son factores críticos para este sistema.

Debe obtenerse una certificación expedida por la Con-federación Hidrográfica a la que se pertenece, en el

que se indique el volumen de agua que quiere utilizarse puede soportar los consumos del edificio.

El rango de temperaturas que se utilizan en este siste-ma, se encuentra entre 2 y 30 °C y proporciona el mejor rendimiento para la condensación y el menor coste de implantación de los 3 bucles geotérmicos descritos.

Algunas aplicaciones no podrán realizarse debido a que entorpezcan accesos públicos o produzcan humedades debidas a inundaciones.

Ejemplos

Aplicación TORRE/CALDERA

El siguiente ejemplo explica una selección típica para una zona, según un sistema caldera/torre en un edificio comercial.

El programa de estimación de las cargas térmicas del edificio determina las siguientes necesidades en la zona a climatizar:

Demandas de la zona:

Demanda de frío total: 11,2 kW

Demanda sensible de frío: 9,3 kW

Carga total de calefacción: 10,8 kW

Caudal de aire: 2.565 m3/h

Temp. retorno en frío: 26,7 °C bulbo seco/19,4 °C bul-bo húmedo

Un rango típico de caudales para las aplicaciones calde-ra/torre está entre 0,55 y 0,68 m3/h.

Page 170: Guia tecnica ahorro y recuperacion de energia

168

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Recurriendo al listado de equipos de bucle de agua de los distintos fabricantes, diseñados especialmente para la apli-cación caldera/torre, se considera el modelo BDATC 042, que produce la siguiente potencia frigorífica y de calefacción:

Selección:

Modelo: BDATC 042 (modelo Bucle De Agua para aplicación Torre / Caldera)

Modelo BDATC 042

TamañoCaudal de

aire (l/s)

Cauda de agua (l/s)

Potencia en frío (kW)

Potencia absorbida

(kW)EER ESEEER

Potencia en calor

(kW)

Potencia absorbida

(kW)COP

BDATC 042 661 0,68 12,59 2,86 4,4 4,6 14,84 2,97 5

En Condiciones Eurovent: agua fría 7/12 °C, condensación 30/35 °C

Potencia frigorífica total (Temp. entrada agua 32 °C): 11,9 kW

Potencia frigorífica sensible (Temp. entrada agua 32 °C): 9,6 kW

Potencia calor total (Temp. agua entrada 21 °C): 15,2 kW

Caudal de aire: 42,7 m3/h (presión disponible 150 mm c.a.)

Caudal de agua para aportar la potencia: 13,6 m3/h

Caída de presión en la batería de agua: 2,1 m. c.a

Aplicación Geotermia

En el siguiente ejemplo, se muestra la selección de la misma zona con aplicación de geotermia.

Las demandas para la zona son, como en el ejercicio anterior, las siguientes:

Demandas de la zona:

Demanda de frío total: 11,2 kW

Demanda sensible de frío: 9,3 kW

Carga total de calefacción: 10,8 kW

Caudal de aire: 2.565 m3/h

Temp. retorno en frío: 26,7 °C bulbo seco / 19,4 °C bulbo

Page 171: Guia tecnica ahorro y recuperacion de energia

169

Recuperación de calor

Existen programas de selección para bucles de geotermia, para dimensionar el bucle correspondiente. Estos progra-mas basan sus datos en los siguientes parámetros:

• Temperatura del agua de entrada al sistema.

• Superficie disponible para el bucle, lo que permite unas temperaturas máximas/mínimas para la selección de la unidades.

La temperatura de retorno de agua puede estar en su entorno de más alta temperatura entre 30 y 28 °C, mientras que en el entorno más bajo se encuentra alrededor de los -1 °C, según la situación geográfica del edificio.

Los valores típicos de caudal de agua se encuentran entre 70,8 l/h y 84,5 l/h por kW, y es necesaria la utilización de anticongelantes en la mayoría de las aplicaciones en la zona norte del país.

Se elige un equipo de bucle de agua para aplicaciones de geotermia, modelo BDAG, que incluye el aislamiento de la tubería de agua, para evitar la condensación, y un termostato antihielo, para evitar la entrada de agua al sistema, con temperaturas inferiores a 4 °C (debe utilizarse anticongelante).

Las potencias frigoríficas deben recalcularse utilizando el factor de reducción por utilización de etilenglicol.

El modelo BDAG 042 es el que elegimos, pero puede que no cumpla con las demandas de calefacción, debido a las bajas temperaturas de agua de entrada (1,6 °C) y a la utilización de etilenglicol como anticongelante al 20%.

Modelo: BDAG 042 (modelo de Bucle de Agua para aplicación de Geotermia)

Modelo BDAG 042

TamañoCaudal de

aire (l/s)

Cauda de agua (l/s)

Potencia en frío (kW)

Potencia absorbida

(kW)EER ESEEER

Potencia en calor

(kW)

Potencia absorbida

(kW)COP

BDAG 042 661 0,68 13,03 2,61 5 5,8 9,42 2,55 3,7

En Condiciones Eurovent: agua fría 7/12 °C, condensación 30/35 °C

Demandas de la zona:

Potencia frigorífica total (Temp. entrada agua 28 °C): 11,8 x 0,98 = 11,5 kW

Potencia frigorífica sensible (Temp. entrada agua 28 °C): 9,4 x 0,98 = 9,2 kW

Potencia calor total (Temp. agua entrada 1,6 °C): 1,2 x 0,975 = 10,9 kW

Caudal de aire: 25,6 m3/h (presión disponible 180 mm c.a.)

Caudal de agua para aportar la potencia: 18,4 m3/h

Caída de presión en la batería de agua: 4,4 m c.a

Page 172: Guia tecnica ahorro y recuperacion de energia

170

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ejemplo bucle de agua a centro de negocios (ver figura 4.55).

A continuación, se resume en un cuadro las demandas de frío, calor y la energía de calor anual recuperada en el centro de negocios del esquema mostrado en el apartado:

Enero Febrero Marzo

Local N° Referencia Frío Rec. Calef. Frío Rec. Calef. Frío Rec.

1 Reprografía 1.200 1.500 1.200 1.500 2.000 2.500

2 Local comercial 2.000 2.000

3 CPD 3.800 4.750 3.800 4.750 5.000 6.250

4 Local comercial 2.500 2.500

5 Local comercial 3.000 3.000

6 Sala técnica 1 2.400 3.000 2.400 3.000 3.000 3.750

7 Local comercial 2.500 2.500

8 Sala técnica 2 2.400 3.000 2.400 3.000 3.000 3.750

9 Local comercial 3.000 3.000

10 Gimnasio 4.400 5.500 4.400 5.500 6.000 3.750

Energía demandada en kWh mensualesNOTA: los locales en fondo azul oscuro, demandan refrigeración durante todo el año.

Abril - Septiembre Octubre Noviembre Diciembre

Local N° Referencia Calef. Frío Rec. Frío Rec. Calef. Frío Rec. Calef. Frío Rec. Calef.

1 Reprografía 2.000 2.500 2.000 2.500 1.200 1.500 1.200 1.500

2 Local comercial 1.200 1.100 1.375 1.100 1.375 1.200 2.000 2.000

3 CPD 5.000 6.250 5.000 6.250 3.800 4.750 3.800 4.750

4 Local comercial 1.800 1.600 2.000 1.500 1.875 1.800 2.500 2.500

5 Local comercial 2.200 2.400 3.000 2.200 2.750 2.200 3.000 3.000

6 Sala técnica 1 3.000 3.750 3.000 3.750 2.400 3.000 2.400 3.000

7 Local comercial 2.000 2.200 2.750 2.000 2.500 2.000 2.500 2.500

8 Sala técnica 2 3.000 3.750 3.000 3.750 2.400 3.000 2.400 3.000

9 Local comercial 2.600 3.200 4.000 3.100 3.875 2.600 3.000 3.000

10 Gimnasio 6.000 7.500 6.000 7.500 4.400 5.500 4.400 5.500

Estimándose unas necesidades de producción de ACS de 165.000 kWh para el gimnasio, el resumen de demandas anua-les de refrigeración y calefacción es el siguiente.

Totales anuales

Refrig (kWh) 252.200

Recuperado (kWh) 315. 250

Calefacción (kWh) 71.600

ACS (kWh) 165.000

165.000

350.000

300.000

250.000

200.000

150.000

100.000

50.000

0

Demandas Energéticas anuales

1

Refrig kWh

Recuperado kWh

Calefacción kWh

ACS kWh

Page 173: Guia tecnica ahorro y recuperacion de energia

171

Recuperación de calor

Como puede verse, el potencial de energía térmica recu-perada por el sistema es de 315.250 kWh. A la vista de los resultados, puede deducirse las siguientes conclu-siones de la aplicación del bucle de agua:

1 Con el simple funcionamiento de las máquinas de los locales de: reprografía, centro de proceso de datos, gimnasio y salas técnicas 1 y 2 que demandan frío todo el año, se consiguen recuperar, en los meses de calefacción (enero febrero, marzo, octubre, noviem-bre y diciembre), una energía de 107.125 kWh.

2 La demanda de calefacción es de 71.600 kWh anuales, por lo que puede concluirse que toda la potencia de calefacción está producida por la re-cuperación de energía de condensación de las máquinas que funcionan en frío durante todo el año, que transfieren su energía de condensación a las zonas con demanda de calefacción.

3 Si no se hubiera elegido este sistema, hubiese sido necesario la producción de una energía en ca-lefacción de 71.600 kWh mediante otros equipos de generación de calor.

4 Durante los meses de verano (abril- septiembre) se recupera una energía de 208.125 kWh en agua caliente a 50 °c , que puede utilizarse para cubrir el 100% de las necesidades de agua caliente sa-nitaria del gimnasio, en los meses antes citados (abril-septiembre).

Si realizamos el cálculo del ahorro de vertidos de CO2 a la atmósfera, llegamos a la siguiente conclusión:

Totales anuales kg CO2

Refrig (kWh) 252.200

Recuperado (kWh) 315. 250

Calefacción (kWh) 71.600 11.617

ACS (kWh) 165.000 26.771

Total 38.388

Debido a la recuperación de calor, y estimando un COP estacional de 4, para la producción de calefacción y agua caliente sanitaria se ahorran 38.388 Kg anuales de emisiones de co2 a la atmósfera, que corresponderían al consumo eléctrico del equipo bomba de calor aire-agua. Que sería necesario para la producción de calefacción y agua caliente sanitaria, si no se hubiera podido utilizar la recuperación de calor del sistema de bucle de agua.

Principales aplicaciones del bucle de agua

Entre las aplicaciones del bucle de agua cabe destacar las siguientes:

1 Centros comerciales, donde se proporciona el ser-vicio de agua de torre a cada local.

2 Sedes sociales o grandes edificios muy com-partimentados, donde se producen demandas simultaneas de frío y de calor en distintas zonas.

3 Edificios donde existen demandas de refrigera-ción durante todo el año, que permitan recuperar energía para otras zonas que demanden calor. Por ejemplo: centros de procesos de datos, estudios de grabación, salas técnicas, quirófanos, secade-ros industriales,…

4 En aquellos emplazamientos donde exista disponi-bilidad de aguas subterráneas o superficiales, con temperatura más o menos constante durante todo el año (aplicación de bucle con geotermia).

5 En aquellos proyectos en los que se quiera utilizar terminales autónomos de condensación por agua, para maximizar la eficiencia energética, o donde no es posible la condensación por aire.

Conclusiones

El sistema bucle de agua, por su propia configuración, se utiliza en aquellas instalaciones en las que existen locales con demanda de frío todo el año, y demandas de calefacción simultáneamente en otros.

El bucle de agua pierde su máxima aplicación si no se produce esta circunstancia de recuperación de calor.

El bucle es interesante si se quiere maximizar el valor del rendimiento estacional, al ser un sistema de con-densación por agua, llegándose a valores de ESEER de alrededor de 6,5.

Sistema ideal para proyectos de ingeniería e instala-dor, ya que los equipos se seleccionan en un catálogo de fabricante y el cálculo de la instalación se reduce al cálculo de las tuberías, bombas hidráulicas, válvulas y accesorios del circuito hidráulico.

Page 174: Guia tecnica ahorro y recuperacion de energia

172

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

4.3.3 Máquinas multiciclo. (Producción simultánea de frío y calor)

Introducción

Los equipos multiciclo son equipos que pueden trabajar de forma automática en los diferentes ciclos frigorífi-cos, incluyendo la recuperación con el fin de optimizar energéticamente y de forma dinámica la producción de frío y calor manteniendo una alto confort.

Normalmente suelen ser equipos a 4 tubos que directa-mente se conectan a la instalación de clima y calefacción, funcionan en modo automático, realizando ciclos de recuperación de energía, siempre y cuando detectan una demanda de frío y de calor contemporánea en la instalación.

Los equipos de última generación son capaces de reuti-lizar el calor residual en un circuito independiente que

se puede emplear en la producción de agua caliente sa-nitaria u otras aplicaciones como el calentamiento de piscinas, apoyo en la calefacción en instalaciones a 4 tubos, etc.

Siempre que los equipos tengan una demanda de frío, podrán recuperar en forma de calor la misma potencia frigorífica más un 20-30% aproximadamente.

El 20-30% es una estimación que proviene del consumo eléctrico de los compresores, y en el que influyen varios factores entre los que se pueden destacar las condi-ciones exteriores, la eficiencia del equipo y el grado de utilización del mismo.

Sistemas multiciclo de recuperación dinámica de calor

Los equipos multiciclo son capaces de gestionar de for-ma automática e independiente 2 circuitos hidráulicos, uno de agua fría y el otro de agua caliente.

Depósitoinercia

Máquina multiciclo

RetornoAF 12°C

ImpulsiónAF 7°C

ImpulsiónAC 45°C

Clima frío

Clima calor

Red de agua Acumulaciónconvencional

Distribución de ACS

Caldera

Calentamiento de piscinas

RetornoAC 40°C

Depósitoinercia

Figura 4.57: Esquema hidráulico de un sistema multiciclo a 4 tubos

Page 175: Guia tecnica ahorro y recuperacion de energia

173

Recuperación de calor

Estos equipos se diferencian de otras opciones como la bomba de calor con recuperación o la enfriadora con recupera-ción en que siempre pueden suministrar el 100% de calor y el 100% de frío en cualquier circunstancia y en un rango de temperaturas exteriores de -10 °C a 46 °C.

El equipo multiciclo se caracteriza por disponer físicamente de 4 tubos, que se conectan directamente a la instalación formando los circuitos de frío y calor.

El equipo funciona todo el año en modo automático monitorizando variaciones de temperatura en el circuito de agua fría y en el de agua caliente. En caso de detectar una demanda en cualquiera de los dos circuitos actúa sobre estos aportando la energía necesaria. Por lo tanto, desde el punto de vista del control, es como tener dos equipos con un punto de consigna para frío y otro para calor.

Otro punto de gran importancia es la recuperación automática de calor. Siempre que el equipo multiciclo detecte una de-manda simultánea de frío y calor, intentará cubrir la demanda de calor (total o parcialmente) con la recuperación del frío, con el consiguiente ahorro energético.

En caso de no ser capaz de cubrir el 100% del calor necesario mediante la recuperación del frío, se complementará con el ciclo de bomba de calor.

Para este fin es imprescindible que cada circuito frigorífico pueda trabajar en diferentes modos de funcionamiento como si fuesen dos equipos independientes.

Por ejemplo, en caso de necesitar un 80% de calor y un 40% de frío, un circuito trabajaría en modo frío con recuperación al 80%, mientras el otro trabajaría en bomba de calor modulando entre el 70 y el 80%.

Siempre que se detecte una demanda simultánea de frío y calor, el sistema de control del equipo multiciclo intentará aprovechar el ciclo de recuperación de calor generado en la producción de frío.

Por lo tanto, en instalaciones con demandas constantes de frío como procesos industriales o en instalaciones de clima a 4 tubos que puedan tener una demanda simultánea de frío y calor como hospitales, centros comerciales o edificios de oficinas, se producirán grandes cantidades de calor gratuito que se podrá reutilizar mediante el ciclo de recuperación.

Ciclos de trabajo

Como ciclos de trabajo frigoríficos se entienden los modos de funcionamiento en los que puede trabajar un equipo frigo-rífico. Los que incluyen los equipos son:

Page 176: Guia tecnica ahorro y recuperacion de energia

174

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Modo frío

La condensación de refrigerante se produce en el intercambiador exterior aire/agua y la evaporación se produce sobre el circuito de agua fría.

Condensador

Modalidad sólo refrigeraciónLa unidad se porta como un chiller tradicional con condensación por aire.

Las tres modalidades de funcionamiento: “sólo refrigeración”, “refrigeración-calefacción” y “sólo calefacción” encuentran su aplicación en unidad pluri-compresor.

Evaporador

Separador de líquido

Receptorde líquido

+7°C +12°C

+35°C

Compresor

Figura 4.58: Esquema frigorífico de un circuito funcionando en el ciclo de frío

Page 177: Guia tecnica ahorro y recuperacion de energia

175

Recuperación de calor

Modo Bomba de calor

La evaporación del refrigerante se produce en el intercambiador exterior aire/agua y la condensación se produce sobre el circuito de agua caliente.

Condensador

Evaporador

Modalidad sólo calefacción: producción sólo de agua caliente.La unidad se porta como una bomba de calor donde, sin embargo, la producción de agua

caliente se produce en el recuperador y el evaporador de haz de tubos es excluido.Las tres modalidades de funcionamiento: “sólo refrigeración”, “refrigeración-calefacción” y “sólo calefacción”

encuentran su aplicación en unidad pluri-compresor.

Separador de líquido

Receptorde líquido

+7°C

+45°C

Compresor

+40°C

Figura 4.59: Esquema frigorífico de un circuito funcionando en el ciclo de calor

Page 178: Guia tecnica ahorro y recuperacion de energia

176

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Modo recuperación

La condensación de refrigerante se produce en el intercambiador de agua caliente y la evaporación se produce sobre el circuito de agua fría.

No se utiliza para nada el intercambiador aire/agua, por lo tanto se pueden parar los ventiladores exteriores.

Evaporador

+7°C +12°C

Condensador

Modalidad sólo calefacción: producción sólo de agua caliente.La unidad se porta como una bomba de calor donde, sin embargo, la producción de agua

caliente se produce en el recuperador y el evaporador de haz de tubos es excluido.Las tres modalidades de funcionamiento: “sólo refrigeración”, “refrigeración-calefacción” y “sólo calefacción”

encuentran su aplicación en unidad pluri-compresor.

Separador de líquido

Receptorde líquido

+45°C

Compresor

+40°C

Figura 4.60: Esquema frigorífico de un circuito funcionando en el ciclo de recuperación

Page 179: Guia tecnica ahorro y recuperacion de energia

177

Recuperación de calor

Modos mixtos

Los equipos multiciclo suelen tener varios circuitos frigoríficos que pueden trabajar independientemente en diferentes ciclos al mismo tiempo para producir el resultado final deseado.

En la tabla se pueden ver varias combinaciones de ciclos de funcionamiento para cubrir una cierta demanda de frío y calor en un equipo multiciclo de dos circuitos independientes.

Demanda (%) Selección de ciclos

Frío Calor Circuito 1 Circuito 2

100% 0% F F

75% 0% F (75%) F (75%)

50% 0% F (50%) F (50%)

0% 50% C -

50% 75% R C (50%)

50% 100% R C

25% 25% R (50%) -

50% 50% R (50%) R (50%)

75% 75% R (75%) R (75%)

100% 100% R R

En el gráfico siguiente se muestra el funcionamiento de un equipo multiciclo produciendo un 100% de frío y un 50% de calor.

Demanda de 100% de frío y 50% de calorEl primer circuito trabaja como un chiller con condensación por aire, mientras que el segundo lo hace como una bomba de calor por agua.

Toda la energía frigorífica es utilizada (100%). La energía térmica del segundo circuito (50%) es utilizada, mientras que la del primero es disipada en el condensador de aire. Ambos compresores están en función.

Circuito 1 Circuito 2

Separadorde líquido

Separadorde líquido

Receptorde líquido

Receptorde líquido

Compresor

Condensador

Evaporador

Calor50%

Condensador

Compresor

Frío100%

Potencia frigorífica

Potencia térmica

Potencia absorbida

Figura 4.61: Esquema frigorífico de un equipo multiciclo con varios circuitos independientes

Page 180: Guia tecnica ahorro y recuperacion de energia

178

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ejemplo

Los equipos multiciclo producen un ahorro de energía muy importante cuando la instalación necesita contemporánea-mente frío y calor.

Parte del calor que necesita la instalación se puede cubrir con la energía recuperada del ciclo de frío y por lo tanto de forma gratuita.

En el ejemplo siguiente se detallará el proceso de cálculo del ahorro energético estimado de un sistema convencional a 4 tubos con enfriadora y caldera respecto a un sistema con equipo multiciclo.

Datos de partida

Cargas máximas

Frío 5.700 kW

Bomba de calor 3.500 kW

ACS 455 kW

Rendimientos

A-Sistema multiciclo B-Enfriadora + caldera

EER estacional

kW f/kW eléctricos 4,3 4,3

COP estacional

kW t/kW eléctricos 4,52

Rendimiento térmico del sistema convencional 0,9

Como estimación, se analizan las gráficas de demanda de frio y calor dependiendo del mes y se detectan las zonas de simultaneidad donde la recuperación tendrá oportunidad de producir un ahorro.

Como se puede observar en la figura 4.62, en este ejemplo se producirán momentos de simultaneidad de frio/calor durante todos los meses del año excepto los de verano.

500 kW

1.000 kW

1.500 kW

2.000 kW

2.500 kW

3.000 kW

3.500 kW

4.000 kW

4.500 kW

0 kW

Enero

Febre

ro

Marzo Abril

MayoJu

nioJu

lio

Agosto

Septiembre

Octubre

Noviembre

Diciembre

Carga frío

kWf

Carga calor

kWc

Figura 4.62: Curvas de demanda energética calorífica y frigorífica de una instalación a 4 tubos

Page 181: Guia tecnica ahorro y recuperacion de energia

179

Recuperación de calor

En la tabla se muestran en kWh los consumos mensuales integrados de energía frigorífica y energía calorífica.

En el caso clásico, tendremos que aportar toda la energía calorífica, mientras que en el sistema multiciclo solo tendre-mos que aportar la cantidad de energía calorífica que no sea capaz de cubrir la recuperación.

Por lo tanto, el ahorro energético en la producción de calor es más que considerable:

8.086.882 - 3.281.584 = 4.805.298 kWh

Sistema multiciclo Caldera

Frío Bomba de calor Recuperación ProducciónEnero 299.592 986.814 374.490 1.361.304Febrero 359.510 936.444 449.388 1.385.832Marzo 499.320 569.750 624.150 1.193.900Abril 810.896 - 818.009 818.009Mayo 1.318.205 - 397.354 397.354Junio 1.797.552 - 164.951 164.951Julio 1.997.280 - 95.659 95.659Agosto 1.997.280 - 95.659 95.659Septiembre 1.797.552 - 164.951 164.951Octubre 1.274.265 - 397.354 397.354Noviembre 579.211 93.995 724.014 818.009Diciembre 399.456 694.580 499.320 1.193.900Totales kW*h 13.130.119 3.281.584 4.805.298 8.086.882

Si traducimos los datos energéticos en emisiones a sus emisiones de CO2 correspondientes, se puede observar como hay una drástica reducción de las emisiones anuales del sistema multiciclo respecto al sistema convencional en la pro-ducción de calor.

Frío Calor Total

A-Sistema multiciclo 977,13 232,32 1.209,45

B-Sistema convencional 977,13 393,61 1.499,30

Page 182: Guia tecnica ahorro y recuperacion de energia
Page 183: Guia tecnica ahorro y recuperacion de energia

181

5.1 uta. enfriamiento Gratuito por aire exterior y recuperación de calor

Una vez vistos todos los sistemas de recuperación de energía, podemos encontrar situaciones en las que se combinan varios de ellos.

Esto ocurre en las unidades de tratamiento de aire, en adelante UTAs. En el caso de las UTAs el RITE exige:

IT 1.2.4.5 Recuperación de energía.

IT 1.2.4.5.1 Enfriamiento gratuito por aire exterior.

1 Los subsistemas de climatización del tipo todo aire, de potencia térmica nominal mayor que 70 kW en régimen de refrigeración, dispondrán de un subsis-tema de enfriamiento gratuito por aire exterior.

IT 1.2.4.5.2 Recuperación de calor del aire de extracción.

1 En los sistemas de climatización de los edificios en los que el caudal de aire expulsado al exterior, por medios mecánicos, sea superior a 0,5 m3/s, se re-cuperará la energía del aire expulsado,

2 Sobre el lado del aire de extracción se instalará un aparato de enfriamiento adiabático.

3 Las eficiencias mínimas en calor sensible sobre el aire exterior (%) y las pérdidas de presión máxi-mas (Pa) en función del caudal de aire exterior (m3/s) y de las horas anuales de funcionamiento del sistema deben ser como mínimo las indicadas en la tabla 2.4.5.1

En resumen, podemos tener UTAs:

• Sin recuperador ni humectación cuando el aire ex-pulsado es inferior a 0,5 m3/s.

• Con humectación adiabática y recuperador (más de 0,5 m3/s de aire expulsado).

• Con humectación adiabática y recuperador más enfriamiento gratuito (más de 0,5 m3/s de aire expulsado y potencia térmica nominal mayor de 70 kW en régimen de refrigeración).

Para evaluar los ahorros energéticos conseguidos, se se-guirá la pauta marcada en todos los ejemplos anteriores, para lo cual habrá que tener en cuenta las condiciones del aire exterior dadas, para el lugar del estudio, por la base de datos de Climed 1,3, y determinar cuándo funcio-nará cada uno de los sistemas. Parece claro que:

En régimen de refrigeración.

Si no hay humectación adiabática en el lado del aire de expulsión:

• Cuando la temperatura seca del aire exterior es mayor que la temperatura seca del aire de retorno, funcionará el recuperador, enfriando el aire exte-rior a cuenta del aire de expulsión.

• Cuando la temperatura seca del aire exterior sea inferior a la del aire de retorno, funcionará el enfria-miento gratuito. La cantidad de energía que se podrá ahorrar variará, modificando el caudal de aire exte-rior desde el mínimo caudal de ventilación hasta el caudal total de impulsión (capítulo 2 de esta Guía).

Si hay humectación adiabática en el lado del aire de expulsión:

• Cuando la temperatura seca del aire exterior es mayor que la temperatura seca de salida de la humectación del aire de expulsión, funcionará el recuperador, enfriando el aire exterior a cuenta del aire de expulsión. En este caso, aunque el rendi-

Combinación de sistemas

Page 184: Guia tecnica ahorro y recuperacion de energia

182

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

miento porcentual del recuperador se mantenga, la cantidad de energía recuperada será mayor, al ser mayor la diferencia entre las temperaturas de entrada del aire exterior y del aire de expulsión hu-mectado. Es un enfriamiento adiabático indirecto.

• Cuando la temperatura del aire exterior es inferior a la del aire de expulsión humectado, dejará de funcionar la humectación y el recuperador, para dar paso al enfriamiento gratuito.

En régimen de calefacción.

La humectación estará fuera de uso, y el recuperador aportará energía al flujo de aire exterior a cuenta del calor del aire de expulsión.

El RITE es tajante en IT 1.2.4.5.2 punto 2. Sobre el lado del aire de extracción se instalará un aparato de enfria-miento adiabático.

¿Qué pasará en ciudades como Santander, San Sebas-tián, Bilbao o Pontevedra? ¿Es más interesante hacer uso del enfriamiento gratuito que poner una humectación? Para responder a esta pregunta, veremos cuántas horas funcionará la humectación y cuántas el enfriamiento gra-tuito y cuánta energía se ahorraría en cada caso.

Para determinar si poner o no una humectación adiabá-tica, haremos uso de los datos de Climed 1,3.

Las cuatro ciudades citadas, y alguna más, de similares características climáticas, están encuadradas dentro de

la zona climática C1, (zonas climáticas definidas por el Código Técnico de la Edificación; C1 severidad climática en verano moderada), por lo que tomaremos para el cál-culo los datos de dicha zona climática.

Vamos a ver qué energía se recuperará en cada caso, tomando una UTA que toma de aire exterior 3.600 m3/h y que expulsa el mismo caudal. En condiciones de re-frigeración (meses de mayo, junio, julio, agosto y septiembre), en un horario de funcionamiento de 8 a 18 horas, ambas inclusive, (11 horas diarias).

Condiciones de retorno:

Verano: temperatura de bulbo seco 24 °C/humedad relativa 52,5 %

Invierno: temperatura de bulbo seco 22 °C/humedad relativa 45 %

Eficiencia de la humectación adiabática 80%, con una caída de presión de 110 Pa.

Para un caudal de aire exterior de 1 m3/s (3.600 m3/h) y más de 4.000 horas anuales de funcionamiento (11 x 365 = 4.015), el RITE exige una eficiencia mínima en ca-lor sensible sobre el aire exterior del 47% y admite una caída de presión de 160 Pa.

Con los datos de Climed 1,3, relativos a la zona climática C1, tenemos la siguiente distribución de inter-valos, temperaturas medias y horas, para el período de refrigeración.

Datos CLIMED 1,3 – Zona climática C1 Desde las 8 horas hasta las 18 horas

Refrigeración - Sin humectación adiabática

Intervalo TBS med ( °C) HorasRecuperador calor sensible Enfriamiento gratuito(*)

BSs ( °C) kW kWh kW kWh

9 9,6 2 9,6 0,0 0 17,8 36

10 10,8 5 10,8 0,0 0 16,2 81

11 11,5 10 11,5 0,0 0 15,2 152

12 12,5 24 12,5 0,0 0 14,0 336

13 13,5 34 13,5 0,0 0 12,7 432

14 14,4 49 14,4 0,0 0 11,6 567

15 15,5 71 15,5 0,0 0 10,2 728

16 16,5 87 16,5 0,0 0 9,0 782

17 17,5 102 17,5 0,0 0 7,8 793

18 18,4 131 18,4 0,0 0 6,6 865

19 19,5 150 19,5 0,0 0 5,4 807

20 20,5 152 20,5 0,0 0 4,2 632

21 21,5 164 21,5 0,0 0 3,0 491

22 22,4 153 22,4 0,0 0 1,9 285

Page 185: Guia tecnica ahorro y recuperacion de energia

183

Combinación de sistemas

Datos CLIMED 1,3 – Zona climática C1 Desde las 8 horas hasta las 18 horas

Refrigeración - Sin humectación adiabática

Intervalo TBS med ( °C) HorasRecuperador calor sensible Enfriamiento gratuito(*)

BSs ( °C) kW kWh kW kWh

23 23,5 133 23,5 0,0 0 0,6 79

24 24,5 129 24,3 0,3 34 0,0 0

25 25,5 108 24,8 0,8 86 0,0 0

26 26,4 89 25,3 1,3 116 0,0 0

27 27,4 52 25,8 1,8 96 0,0 0

28 28,5 21 26,4 2,4 51 0,0 0

29 29,4 9 26,9 2,9 26 0,0 0

30 30,3 8 27,3 3,4 27 0,0 0

TOTAL 1.683 436 7.066

(*) En la energía ahorrada en el enfriamiento gratuito, se ha considerado solamente el caudal de ventilación, pero según las necesidades de refrigeración, el caudal de aire frío exterior puede aumentar hasta el caudal total de impulsión, con lo que la energía ahorrada será mucho mayor.

Si se pone una humectación adiabática en el aire de expulsión, para bajar su temperatura, con una eficiencia del 80%, para las condiciones de retorno dadas, la salida del aire de expulsión de la humectación, para entrar en el recuperador de calor sensible, será de 18,7 °C.

Tendremos los siguientes ahorros de energía

Datos CLIMED 1,3 – Zona climática C1 Desde las 8 horas hasta las 18 horas

Refrigeración - Con humectación adiabática

Intervalo TBS med ( °C) HorasRecuperador calor sensible Enfriamiento gratuito (*)

BSs ( °C) kW kWh kW kWh

9 9,6 2 9,6 0,0 0 17,8 36

10 10,8 5 10,8 0,0 0 16,2 81

11 11,5 10 11,5 0,0 0 15,2 152

12 12,5 24 12,5 0,0 0 14,0 336

13 13,5 34 13,5 0,0 0 12,7 432

14 14,4 49 14,4 0,0 0 11,6 567

15 15,5 71 15,5 0,0 0 10,2 728

16 16,5 87 16,5 0,0 0 9,0 782

17 17,5 102 17,5 0,0 0 7,8 793

18 18,4 131 18,4 0,0 0 5,6 737

19 19,5 150 19,1 0,4 62 0,0 0

20 20,5 152 19,7 1,0 148 0,0 0

21 21,5 164 20,2 1,5 248 0,0 0

22 22,4 153 20,7 2,0 310 0,0 0

23 23,5 133 21,2 2,6 348 0,0 0

24 24,5 129 21,8 3,1 406 0,0 0

25 25,5 108 22,3 3,7 396 0,0 0

26 26,4 89 22,8 4,2 371 0,0 0

27 27,4 52 23,3 4,7 244 0,0 0

28 28,5 21 23,9 5,3 111 0,0 0

29 29,4 9 24,4 5,7 52 0,0 0

30 30,3 8 24,8 6,2 49 0,0 0

TOTAL 1.683 2.745 4.644

(continuación)

Page 186: Guia tecnica ahorro y recuperacion de energia

184

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

En régimen de calefacción

Datos CLIMED 1,3 – Zona climática C1 Desde las 8 horas hasta las 18 horas

Calefacción

IntervaloTBS med

(°C)Horas

Recuperador calor sensible Calent gratuito

BSs ( °C) kW kWh kW kWh

1 1,7 2 1,7 12,1 24 0,0 0

2 2,6 4 2,6 11,5 46 0,0 0

3 3,5 12 3,5 11,0 132 0,0 0

4 4,6 30 4,6 10,3 309 0,0 0

5 5,5 38 5,5 9,7 370 0,0 0

6 6,5 73 6,5 9,1 665 0,0 0

7 7,5 79 7,5 8,5 670 0,0 0

8 8,5 127 8,5 7,9 998 0,0 0

9 9,5 138 9,5 7,2 999 0,0 0

10 10,5 181 10,5 6,7 1205 0,0 0

11 11,5 194 11,5 6,1 1176 0,0 0

12 12,4 237 12,4 5,5 1298 0,0 0

13 13,5 230 13,5 4,9 1122 0,0 0

14 14,4 211 14,4 4,3 907 0,0 0

15 15,4 195 15,4 3,7 727 0,0 0

16 16,4 156 16,4 3,1 490 0,0 0

17 17,4 136 17,4 2,6 351 0,0 0

18 18,4 85 18,4 2,0 170 0,0 0

19 19,4 64 19,4 1,5 93 0,0 0

20 20,4 52 20,4 0,9 45 0,0 0

21 21,4 25 21,4 0,3 9 0,0 0

22 22,5 20 22,5 0,0 0 0,5 11

23 23,3 14 23,3 0,0 0 1,6 22

24 24,4 16 24,4 0,0 0 2,8 45

25 25,4 9 25,4 0,0 0 3,9 36

26 26,4 4 26,4 0,0 0 5,1 20

TOTAL 2.332 11.806 134

Cálculo de los consumos de energía.

Consumo en el ventilador, W = V(m3/s) ∆P(Pa) / (ηvent ηmotor )

ηvent ,podemos considerar 0,75 para un ventilador de reacción

ηmotor, podemos suponer que está alrededor de 0,85 (Eff2)

Consumo en la bomba. Podemos suponer que para caudales de aire hasta 50.000 m3/h es suficiente una bomba de 0,25 kW y para caudales hasta 100.000 m3/h, de 0,55 kW.

En régimen de refrigeración sin humectación.

Aire exterior en recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 416 horas

Aire expulsión en recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 416 horas

La energía térmica adicional que tendrá que aportar la batería de frío, debido a que el aire entra en ella a más temperatura que en el caso de haber enfriamien-to adiabático, será de 2.300 kWh. Con una enfriadora con EER = 2,5 equivaldría a un consumo eléctrico de 920 kWh.

0,251 x 416 + 0,251 x 416 + 920 = 1.129 kWh

Page 187: Guia tecnica ahorro y recuperacion de energia

185

Combinación de sistemas

En régimen de calefacción sin humectación.

Aire exterior en recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 2.269 horas

Aire expulsión en recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 2.269 horas

0,251 x 2.269 + 0,251 x 2.269 = 1.139 kWh

En régimen de refrigeración con humectación.

Aire exterior en recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 1.168 horas

Aire expulsión

En recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 1.168 horas

En humectación, kW = 1 x 110 / (0,75 x 0,85 x 1.000) = 0,173 kW. En una UTA con la composición que hay en los ejemplos del final, el aire de expulsión siempre atraviesa la humectación, por tanto:

durante 1.683 horas en el régimen de refrigeración durante 2.332 horas en el régimen de calefacción

En la bomba de la humectación, 0,250 kW durante 1.168 horas

0,251 x 1.168 + 0,251 x 1.168 + 0,173 x 1.683 + 0,250 x 1.168 = 1.169 kWh

En régimen de calefacción con humectación.

Aire exterior en recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 2.269 horas

Aire expulsión en recuperador, kW = 1 x 160 / (0,75 x 0,85 x 1.000) = 0,251 kW, durante 2.269 horas

0,251 x 2.269 + 0,251 x 2.269 + 0.173 x 2.332 = 1.542 kWh

Para traducirlos a kg CO2 se utilizan los valores utilizados en toda la guía:

Conversión de kWh eléctricos a kg CO2 multiplicar por 0,649 Conversión de kWh térmicos a kg CO2 multiplicar por 0,3827

Tabla resumenZONA CLIMáTICA C1

Régimen de refrigeración

Sin humectación Con humectación

Horas kWh Horas kWh

Horas recuperador 416 436 1.168 2.745

Horas enfriamiento gratuito 1.267 7.066 515 4.644

Total 1.683 7.502 1.683 7389

Consumo -1.129 -1.169

Régimen de calefacción

Horas kWh Horas kWh

Horas recuperador 2.269 11.806 2.269 11.806

Horas enfriamiento gratuito (*) 63 134 63 134

Total 2.332 11.940 2.332 11.940

Consumo -1.139 -1.542

Page 188: Guia tecnica ahorro y recuperacion de energia

186

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Ahorro en emisiones de CO2

Sin humectación Con humectación

kWh térmicos ahorro 19.442 kWh 19.329 kWh

Equivalentes a 7.440 kg CO2 7.397 kg de CO2

kWh eléctricos consumo 2.269 kWh 2.711 kWh

Equivalentes a 1.472 kg CO21.759 kg de CO2

Ahorro en CO2 anual 5.968 kg 5.638 kg

Parece claro que en las localidades con zona climática C1, no es interesante poner la humectación. Además de ahorrar menos energía que el enfriamiento gratuito, está el coste de la sección y lo delicado de su mantenimiento, así como el consumo de agua.

Si repetimos los cálculos en una instalación idéntica, con las mismas condiciones de aire de retorno, pero en una lo-calidad con un clima de severidad media y seco, como por ejemplo Madrid, (zona climática D3), veremos lo que puede aportar la humectación.

Representaremos solamente el cuadro resumen

ZONA CLIMáTICA D3

Régimen de refrigeración

Sin humectación Con humectación

Horas kWh Horas kWh

Horas recuperador 894 1.888 1.416 5.071

Horas enfriamiento gratuito (*) 789 3.620 267 2.016

Total 1.683 5.508 1.683 7.087

Consumo -1.723 -1.356

Régimen de calefacción

Horas kWh Horas kWh

Horas recuperador 2.302 13.287 2.302 13.287

Horas enfriamiento gratuito (*) 30 55 30 55

Total 2.332 13.342 11.940 13.342

Consumo -1.156 -1.559

Ahorro en emisiones de CO2

Sin humectación Con humectación

kWh térmicos ahorro 18.850 kWh 20.429 kWh

Equivalentes a 7.214 kg CO2 7.818 kg de CO2

kWh eléctricos consumo 2.879 kWh 2.915 kWh

Equivalentes a 1.868 kg CO21.892 kg de CO2

Ahorro en CO2 anual 5.342 kg 5.926 kg

Los kWh térmicos ahorrados con el recuperador con enfriamiento adiabático superan en un 8,4% a los recuperados sin humectación; sin embargo, a efectos de reducción de las emisiones de CO2, la solución con humectación es más favorable.

El RITE nos exigiría reducir las emisiones de CO2 en al menos 5.926 kg anuales.

(*) En la energía ahorrada en el enfriamiento gratuito, se ha considerado solamente el caudal de ventilación, pero según las necesidades de refrigeración, el caudal de aire frío exterior puede aumentar hasta el caudal total de impulsión, con lo que la energía ahorrada será mucho mayor.

(continuación)

Page 189: Guia tecnica ahorro y recuperacion de energia

187

Combinación de sistemas

Ejemplos de UTAs con recuperador y humectación el aire de expulsión

F6

F6

F6

F8

F6

F6

F6

F8

Configuración con recuperador de calor sensible y compuertas para enfriamiento gratuito.

Configuración con humectación para el aire de expulsión, recuperador de calor sensible

y compuertas para enfriamiento gratuito.

Figura 5.1: Ejemplo de configuraciones

Conclusiones:

Antes de definir una UTA, considerando las exigencias del RITE sobre recuperación y ahorro de energía, habrá que tener en cuenta las condiciones climáticas del lugar de ubicación de la unidad.

En primera aproximación podemos considerar que, en lugares con baja severidad climática en verano (zona climática C1), es probable que la aportación al ahorro energético del enfriamiento adiabático sea menor que la del enfriamiento gratuito.

De la misma forma, dada la existencia de recuperadores de energía con unas eficiencias muy superiores a las que exige el RITE, será posible reducir las emisiones de CO2 muy por encima de los mínimos que pide el RITE mediante el conjunto humectación-recuperador, con el empleo de un recuperador de eficiencia suficientemente más alta.

Lo más recomendable será hacer una simulación, para cada caso en particular, con los datos de CLIMAD 1.3 para la ubica-ción concreta, y las horas reales de funcionamiento, para ver qué composición de climatizador permite un mayor ahorro de energía y de emisiones de CO2.

5.2 caudal de refriGerante variable

5.2.1 Sistema de expansión directa condensado por agua

Descripción

Se trata de un tipo de sistemas que utilizan lazos hidráulicos energéticos (LHE), también llamados bucles de agua, para la condensación y evaporación de las diferentes unidades de caudal de refrigerante variable.

Las características básicas y las ventajas en recuperación de los lazos hidráulicos energéticos y de los sistemas de cau-dal de refrigerante variable se han descrito los capítulos 4.3.1 Sistemas de caudal de refrigerante variable y 4.3.2. Bucle de agua, respectivamente.

Estos sistemas aúnan las ventajas energéticas de recuperación en los bucles de agua, permitiendo la transferencia energética entre las diferentes unidades exteriores conectadas al mismo, con las ventajas de recuperación energética entre las diferen-tes unidades interiores (posibilitado gracias al uso de unidades de caudal de refrigerante variable con recuperación de calor).

Si adicionalmente se emplea algún tipo de recuperación de calor en el aire de ventilación de los diferentes locales, ten-dremos un sistema mixto que dispondrá de una triple recuperación de calor. Este tipo de recuperación de calor en el aire de ventilación podría llegar a ser cualquiera de las descritas en el capítulo 4.1.

Page 190: Guia tecnica ahorro y recuperacion de energia

188

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Calefacción

Torre de refrigeración

Tanque de expansión

Unidad de fuente de calor

Circuitode agua

Circuito refrigerante

Unidades interiores

Unidades interiores

Bomba

Bomba

Fuente de calor auxiliar

GL

Calor irradiadodel agua

Calor tomadodel agua

Calefacción

Refrigeración

Refrigeración

Unidades interiores

Controlador BC

Unidad de fuente de calor

Intercambiador de calor

Tanque de almacenamiento térmico

Recu

pera

dor A

ire V

entil

ació

n

Diagrama de sistema

Recuperación de calor doble

Recuperación de calor

Recuperación de calor

Recuperación de calor

Recuperación de calor

Recuperación de calor

Figura 5.2: Combinación de bucle de agua y unidades de caudal de refrigerante variable

Esquema de instalación.

Tal y como ya se ha explicado en el apartado 4.3.2 “Bucle de agua”, el circuito de agua presenta varias posibilidades de implementación: torre/caldera, geotermia, agua de pozo, etc.

La opción más económica se basa en la incorporación de una torre de enfriamiento y caldera en el bucle de agua, si bien las opciones son múltiples.

Page 191: Guia tecnica ahorro y recuperacion de energia

189

Combinación de sistemas

Unidad interior

Unidad exterior

Unidad interior Unidad interior Unidad interior

Unidad exterior

Unidad exterior

Unidad exterior

Válvula de prevención de flujo inverso

Válvula de 3 vías

Válvula de 3 vías

Torre de enfriamiento Tanque de calefacción

Filtro

Unión flexible

Tubería de refrigerante

Válvula Unión

Filtro con forma de Y

Drenaje

Bomba

Ejemplo de sistema de circuito de agua

Figura 5.3: Esquema en el que se reflejan cuatro sistemas de expansión directa (caudal de refrigerante variable) cuyas unidades exteriores están conectadas a un circuito de agua con torre y caldera

Criterios de diseño

Los criterios de diseño se deberán basar en cada uno de los sistemas independientemente, si bien se deberán tener en cuenta ciertas características básicas con el fin de optimizar las opciones de recuperación disponibles.

Estos sistemas combinados trabajan muy eficientemente en épocas intermedias, donde existe una recuperación en el anillo, y no será necesario actuar enfriando o ca-lentando esa agua. Los únicos consumos existentes en la instalación serán los de las unidades de caudal de re-frigerante variable y los bombeos de circulación de agua.

En el caso de épocas extremas de verano, las necesida-des de refrigerar el agua del anillo se pueden satisfacer eficientemente a través de torres, que al actuar por procesos de enfriamiento adiabático son una solución relativamente eficiente.

En el caso de épocas extremas de invierno, las nece-sidades de calentamiento del agua del anillo se deben satisfacer a través de calderas u otros sistemas que podrían representar un sobre-consumo de energía pri-maria. Esto se debe a que existirá el consumo de los sistemas de caudal de refrigerante variable, los de bom-beo de agua y los de combustible de las calderas.

Se deberá valorar que la recuperación energética reali-zada en el anillo sea rentable con respecto a la energía consumida para calentar el anillo, lo que dependerá de la procedencia de la energía utilizada para ello.

Normalmente, y como regla general, el sistema de recu-peración será rentable energéticamente siempre que se cumplan en su mayor parte las siguientes condiciones:

1 Las condiciones de invierno no sean extremas la mayor parte del año.

Page 192: Guia tecnica ahorro y recuperacion de energia

190

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

2 Se disponga de una época de temperaturas inter-medias más o menos amplia.

3 Se disponga de un foco caliente gratuito para calentar el bucle de agua.

En la mayor parte de la península se cumplirán el primer y segundo punto.

El tercer punto se podrá cumplir normalmente cuando:

• Sean edificios con zonas interiores o edificios tec-nológicos, donde siempre existirá una demanda de refrigeración que permite recuperar esa energía para calentar el bucle de agua.

• Se pueda disponer de energía de geotérmica para calentar el bucle de agua, total o parcialmente en combinación con calderas.

• Sea posible y rentable acumular energía calorífica en horas nocturnas para cubrir demandas diurnas.

Se podría tomar en consideración para aplicaciones de grandes potencias y con el fin de ajustar los costes de inversión, optar por diseños que combinen una parte de producción geotérmica con un apoyo de torres de refri-geración y calderas en las épocas punta de demanda.

Es importante tener en cuenta los rangos admisibles para la temperatura de agua de condensación/evapo-ración, normalmente entre 10 y 45 °C. Dependiendo del fabricante existe la posibilidad de trabajar hasta -5 °C, lo que permite la combinación de estos sistemas con fuentes de producción geotérmicas, agua de pozo, acuí-feros, y otras, que aumentan los rendimientos medios estacionales de los equipos conectados al bucle, mejo-rando las eficiencias de los sistemas.

Por otro lado, al producirse el intercambio térmico entre el refrigerante y el agua, la eficiencia y rendimiento del equipo está garantizada en cualquier momento a una temperatura dada, por lo que se simplifica la gestión energética del edifico. También hay que tener en cuen-ta que se elimina la necesidad de desescarches de los equipos bomba de calor, con la correspondiente mejora en confort térmico del usuario.

Estos rangos son lo suficientemente amplios para per-mitir su combinación con otros tipos de unidades de producción en el anillo energético, como pueden ser plantas enfriadoras o unidades moto-condensadoras de pequeño tamaño. Si bien, se deberá procurar que sus rangos de trabajo sean similares o mayores; de ese modo es posible una mejor gestión energética, ya que

la eficiencia de los diferentes equipos dependerá de la temperatura del agua con que evaporan o condensan.

Actualmente existen equipos de caudal de refrigerante variable condensados por agua para salas de proce-so de datos, con unos rendimientos elevados. Al ser equipos de caudal variable, son capaces de modular el sobrecalentamiento del refrigerante evaporado, au-mentado la temperatura de la batería interior y llegando a factores de calor sensible del 100%, por lo que prác-ticamente se anulan las necesidades de humectación de las salas CPD. Al modular su capacidad tampoco se requieren recalentamientos del aire.

Si añadimos estos equipos en un diseño con bucle de agua, se dispondrá de una fuente de calor constante en el bucle y gratuita, ya que es recuperada del proceso de enfriamiento de las salas CPD.

Conclusiones

La combinación de estos tipos de sistemas proporcionará a la instalación una gran capacidad de recuperación ener-gética, con un sistema sencillo de gestión energética.

Para poder obtener un valor representativo de los aho-rros energéticos nos podemos remitir a superponer las conclusiones de otros capítulos donde se trata cada sis-tema individualmente.

En el caso de bucles de agua, un resultado comparati-vo dependerá con mucho de las necesidades térmicas de las diferentes zonas del edifico, si bien como hemos visto, la flexibilidad y posibilidades de uso que ofrece este tipo de bucles posibilitará fácilmente la obtención de recuperaciones energéticas.

En el caso de sistemas de caudal de refrigerante va-riable con recuperación energética, respecto a otro sistema sin recuperación, se concluía en el ejemplo que se establecía un ahorro de un 18,7% aproximadamente en energía primaria y emisiones.

Por lo tanto, la introducción de este tipo de combinación representará una opción de recuperación muy válida.

5.2.2 Sistema de caudal de refrigerante variable con generación de agua caliente y agua fría

Descripción

En el capítulo 4.3.1 Sistemas de caudal de refrigerante variable se ha tratado y explicado la recuperación de

Page 193: Guia tecnica ahorro y recuperacion de energia

191

Combinación de sistemas

calor en equipos de caudal de refrigerante variable. En este apartado 5.2.2 se amplían las posibilidades de recuperación de este tipo de sistemas, al combinarlos con unidades de generación de agua caliente y fría.

Estos equipos permiten la conexión de unidades termi-nales especiales refrigerante-agua, en conjunto con las unidades estándar tipo refrigerante-aire utilizadas para acondicionamiento térmico de espacios.

Simultáneamente a la recuperación de calor entre uni-dades terminales de expansión directa, se dispondrá de una recuperación de calor con las unidades de produc-ción de agua y entre éstas.

Las temperaturas de producción de agua son variables y configurables, por lo que su aplicación puede ser muy va-riada, desde alimentación de climatizadores y fan-coils, radiadores de baja temperatura, sistemas de calefacción por suelo radiante, etc., a producción de agua caliente sanitaria.

Para la producción de ACS hasta 70 °C se aprovecha la energía de condensación sobrante de enfriar otras zonas del edificio, para evaporar en otro circuito de refrigerante en cascada, lo que es un proceso de gran rendimiento.

La cantidad de energía recuperada dependerá de las po-sibilidades de generación simultánea de las diferentes necesidades de calor y frío, pero serán viables siempre que existan demandas simultáneas.

Al ser sistemas que producen agua refrigerada, ésta también podrá utilizarse, siempre que exista la necesi-dad de refrigerar equipos especiales.

Esquema de instalación

En la figura 5.4 se presenta el esquema de funciona-miento de una solución que combina un sistema de expansión directa con un sistema refrigerante/agua.

Unidadexterior

Tubería de refrigerante

Intercambiadorrefrigerante/agua

Bomba

Bomba

Intercambiador

Intercambiador

Circuito agua

Depósito

HPLEV

LEV

Comp.

LP

Válvula

Circuito de agua

Suelo radiante,radiadores o Fancoils

Unidadinterior

Unidadinterior

R134a

Figura 5.4: Esquema de funcionamiento

Conclusiones

La combinación de este tipo de sistemas amplía las posibilidades de recuperación energética de los sistemas de caudal de refrigerante variable, debido a que con la misma unidad de producción se facilita la generación de energía simultáneamente para satisfacer todas las necesidades más habituales de un edificio.

Page 194: Guia tecnica ahorro y recuperacion de energia

192

Ahorro y recuperación de energía en instalaciones de climatización

Guía técnica

Para poder obtener un valor representativo de los ahorros energéticos nos podemos remitir a las conclusiones de otros capítulos donde se trata cada sistema individualmente. En el caso de sistemas de caudal de refrigerante variable con recuperación energética, respecto a otro sistema sin recuperación, se concluye en los ejemplos que se establecía un ahorro de un 18,7% aproximadamente en energía primaria y emisiones.

Por lo tanto, la introducción de este tipo de combinación representará una opción de recuperación muy válida.

Page 195: Guia tecnica ahorro y recuperacion de energia
Page 196: Guia tecnica ahorro y recuperacion de energia

Títulos publicados de la serie ”Ahorro y Eficiencia Energética en Climatización”

Guía nº 1:Guía técnica.

Mantenimiento de instalaciones térmicas

Guía nº 2:Guía técnica.

Procedimientos para la determinacióndel rendimiento energético de plantas

enfriadoras de agua y equipos autónomosde tratamiento de aire

Guía nº 3:Guía técnica.

Diseño y cálculo del aislamiento térmicode conducciones, aparatos y equipos.

Incluye CD-ROM con programa AISLAM

Guía nº 4:Guía técnica.

Torres de refrigeración

Guía nº 5:Guía técnica.

Procedimiento de inspección periódicade eficiencia energética para calderas

Guía nº 6:Guía técnica.

Contabilización de consumos

Guía nº 7:Comentarios al Reglamento

de Instalaciones Térmicas en los Edificios.RITE - 2007

Guía nº 8:Guía técnica.

Agua caliente sanitaria central

Guía nº 9:Guía técnica.

Ahorro y recuperación de energíaen instalaciones de climatización

Page 197: Guia tecnica ahorro y recuperacion de energia
Page 198: Guia tecnica ahorro y recuperacion de energia
Page 199: Guia tecnica ahorro y recuperacion de energia
Page 200: Guia tecnica ahorro y recuperacion de energia

c/ Madera, 8 - 28004 Madrid

Tel.: 91 456 49 00. Fax: 91 523 04 14

[email protected]

www.idae.es

P.V.P.: 20 € (IVA incluido)

9 788496 680531

ISBN 978-84-96680-53-1