Incropera All Slides

  • Upload
    pnlagos

  • View
    251

  • Download
    0

Embed Size (px)

Citation preview

  • 7/24/2019 Incropera All Slides

    1/357

    Mecanismos FMecanismos Fsicos esicos eEquaEquaes de Taxas dees de Taxas de

    Transmisso de CalorTransmisso de Calor

  • 7/24/2019 Incropera All Slides

    2/357

    O que a transferncia/transmisso de calor?

    A transferncia/transmisso de calor o trnsito de energia trmicadevido a uma diferena de temperaturas num meio ou entre meios.

    O que a energia trmica?A energia trmica est associada translao, rotao, vibrao e aosestados electrnicos dos tomos e molculas que constituem a matria.

    Transferncia de Calor e Energia TTransferncia de Calor e Energia Trmicarmica

    A energia trmica representa o efeito cumulativo das actividades microscpicase est relacionada com a temperatura da matria.

  • 7/24/2019 Incropera All Slides

    3/357

    UnidadesSmboloSignificado fsicoQuantidade

    Transporte de energia trmica devido a

    gradientes de temperatura

    Transferncia de

    Calor

    NO confundir ou trocar os significados fsicos de Energia Trmica,

    Temperatura e Transferncia de Calor

    Energia associada ao comportamentomicroscpico da matria

    Energia

    Trmica+ J/kgJouuUou

    Modo indirecto de determinar aquantidade de energia trmicaarmazenada na matria

    Temperatura KC ouT

    Quantidade de energia trmica transferidanum intervalo de tempo t > 0

    Calor Q J

    +

    UEnergia TrmicauEnergia Trmica especfica

    Energia trmica transferida por unidade

    de tempo

    Taxa de

    transferncia decalor

    q W

    Energia trmica transferida por unidadede tempo e por unidade de rea

    Fluxo de calor 'q' 2/mW

  • 7/24/2019 Incropera All Slides

    4/357

    Conduo: Transferncia de calor num slido ou fluido esttico (gs ou lquido) devida aomovimento aleatrio dos seus tomos, molculas e/ou electres constituintes.

    Conveco: Transferncia de calor devida ao efeito combinado do movimentoaleatrio (microscpico) e do movimento macroscpico (adveco)do fluido sobre uma superfcie.

    Radiao: Energia que emitida pela matria devido a mudanas das configuraes

    electrnicas dos seus tomos ou molculas e que transportada por ondaselectromagnticas (ou por fotes).

    A conduo e a conveco exigem a presena de matria e de variaes de temperatura nessemeio material.

    Embora a radiao tenha origem na matria, o seu transporte no exige a presena de um

    meio material. Alis, o transporte radiativo mais eficiente no vcuo.

    Modos de Transferncia de Calor

  • 7/24/2019 Incropera All Slides

    5/357

    AplicaesIdentificaIdentificao de mecanismoso de mecanismos

    Problema 1.73(a): Identificao de mecanismos de transferncia de calor para janelas de vidro simples e duplo

    Conduo atravs do vidro que tem superfcie interior em contacto com ar exterior na janela de vidro duplo, 2c o n dq

    Conveco entre a superfcie interior da janela e o ar interior,1c o n vq

    Fluxo radiativo til trocado entre as paredes do quarto e a superfcie interior da janela,1ra dq

    Conduo atravs do vidro que tem superfcie interior em contacto com ar interior,1c o n dq

    Radiao solar incidente durante o dia: a fraco transmitida pelo vidro duplo menor que a transmitida pelo vidro simples.sq

    Conveco entre a superfcie exterior da janela e o ar exterior,2convq

    Fluxo radiativo til trocado entre a envolvente e a superfcie exterior da janela,2radq

    Conveco no espao entre vidros (janela de vidro duplo),conv sqFluxo radiativo til entre as superfcies dos vidros que limitam o espao entre vidros,rad sq

  • 7/24/2019 Incropera All Slides

    6/357

    2 1x

    T TdTq k k

    dx L

    = =

    1 2x

    T Tq k

    L

    =

    Taxa de transferncia de calor (W): x xq q A=

    Aplicao ao caso de conduo unidimensional, estacionria atravs de umaplaca plana com condutibilidade trmica constante:

    ConduoForma geral (vectorial) da Lei de Fourier:

    Taxas de Transferncia de Calor

    Fluxo de calor (W/m2):

    Fluxo de calor2W/m

    Condutibilidade trmica

    KW/m

    Gradiente de temperatura

    K/mouC/m

  • 7/24/2019 Incropera All Slides

    7/357

    Conveco

    Relao entre conveco e o escoamento sobre uma superfcie e o desenvolvimentodas camadas limite hidrodinmica e trmica:

    Lei do arrefecimento de Newton :

    ( )h sq T T=

    Taxas de Transferncia de Calor

    h[W/m2

    .C] ou [W/m2

    .K]: Coeficiente de transferncia de calor por conveco

  • 7/24/2019 Incropera All Slides

    8/357

    Taxas de Transferncia de Calor

    2500 - 100000Ebulio ou condensao

    50 - 20000Conveco forada - lquidos

    25 - 250Conveco forada - gases50 - 1000Conveco natural - lquidos

    2 - 25Conveco natural - gases

    Gama de valores tpicos do coeficiente deconveco [W m-2 K-1]

    Adveco, difuso, conveco

    Conveco forada, conveco natural

    Calor sensvel e calor latente

    Ebulio e condensao

  • 7/24/2019 Incropera All Slides

    9/357

    Radiao

    Fluxo de energia que sai devido emisso:4

    b sE E T = =

    Energia absorvida devida irradiao: absG G=

    A transferncia de calor por radiao numa interface gs/slido envolve a emisso deradiao a partir da superfcie e pode tambm envolver a absoro da radiao incidenteda envolvente (irradiao, G ), bem como da conveco (se Ts T)

    Taxas de Transferncia de Calor

    Gabs[W/m2]: Radiao incidente absorvida

    (0 1): Absorsividade da superfcie

    G[W/m2]: Irradiao

    E [W/m2]: Poder emissivo da superfcie (0 1): Emissividade da superfcieEb [W/m

    2]: Poder emissivo de um corpo negro (emissor perfeito) = 5,6710-8 [W m-2 K-4] (constante de Stefan-Boltzmann)

  • 7/24/2019 Incropera All Slides

    10/357

    Irradiao: Caso especial de uma superfcie exposta a umaenvolvente de grandes dimenses com temperatura uniforme,

    surT

    4sur sur G G T= =

    Taxas de Transferncia de Calor

    Se = , o fluxo radiativo tila partir da superfcie

    devido s trocas de calor por radiao com a envolvente :

    ( ) 4sur4sSb

    ''rad TTGTEq ==

  • 7/24/2019 Incropera All Slides

    11/357

    Em alternativa,

    Para conveco e radiao combinadas:

    ( ) ( )conv rad s r s sur q q q h T T h T T = + = + (1.10)

    Taxas de Transferncia de Calor

    ))(( 22 surSsurSr TTTTh ++=

    )('' surSrrad TThq =

    KmWhr ./2 Coeficiente de transferncia de calor por radiao

  • 7/24/2019 Incropera All Slides

    12/357

    AplicaesArrefecimento de componente electrArrefecimento de componente electrnicanica

    Problema 1.31: Dissipao de potncia em chips que operam com uma temperatura superficial de 85Cnum quarto cujas paredes e ar esto a 25C para (a) conveco natural e (b) conveco forada.

    Hipteses: (1) Estacionrio,(2) Trocas de radiao entre superfcie pequena e grande

    envolvente,(3) Transferncia de calor desprezvel das faces lateraise da superfcie de trs do chip

    ( ) ( )4 4h s s sur A T T A T T = + elec conv rad P q q= +

    ( )22 -4 2= 0.015m =2.2510 mA L=

    (a) Se for conveco natural,

    ( ) ( )( )

    ( ) ( )

    5 / 4 5/42 5/4 -4 2

    -4 2 -8 2 4 4 4 4

    =4.2W/m K 2.2510 m 60K =0.158W

    0.60 2.2510 m 5.6710 W/m K 358 -298 K =0.065W0.158W+0.065W=0.223W

    conv s

    rad

    elec

    q CA T T

    q

    P

    =

    = =

    (b) Se for conveco forada,

    ( ) ( )( )2 -4 2

    h =250W/m K 2.2510 m 60K =3.375W3.375W+0.065W=3.44W

    conv s

    elec

    q A T T P

    = =

  • 7/24/2019 Incropera All Slides

    13/357

    ConservaConservao de Energiao de Energia

  • 7/24/2019 Incropera All Slides

    14/357

    Formulaes Alternativas

    Base temporal:Num instanteouNum intervalo de tempo

    Tipo de Sistema:Volume de controloSuperfcie de controlo

    Uma ferramenta importante na anlise do fenmeno de transfernciade calor, constituindo geralmente a base para determinar a temperatura

    do sistema em estudo.

    CONSERVAO DE ENERGIA

    (Primeira Lei da Termodinmica)

  • 7/24/2019 Incropera All Slides

    15/357

    Num instante de tempo:Num instante de tempo:

    Notar a representao do sistema atravs de umasuperfcie de controlo (linha a tracejado) nasfronteiras.

    Fenmenos superficiais

    Fenmenos volumtricos

    APLICAO A UM VOLUME DE CONTROLO

    Taxa de transferncia de energia trmica e/ou mecnica atravs da superfcie de controlo,devido transferncia de calor, escoamento de um fluido ou transferncia de trabalho

    Taxa de gerao de energia trmica devido converso de outra forma de energia (e.g.elctrica, nuclear, qumica); converso essa de energia que ocorre no interior do sistema

    Taxa de variao de energia armazenada no sistema

  • 7/24/2019 Incropera All Slides

    16/357

    Num instante de tempo:Num instante de tempo:

    Notar a representao do sistema atravs de uma

    superfcie de controlo (linha a tracejado line) nasfronteiras.

    Conservao de energia

    APLICAO A UM VOLUME DE CONTROLO

    Num intervalo de tempo:

    ( )bEEEE stoutgin 11.1=+ Cada termo tem unidades [J].

    Cada termo tem unidades [J/s] ou [W].

  • 7/24/2019 Incropera All Slides

    17/357

    H um caso especial para o qual no existe massa ou volume contidos na superfcie de controlo

    Conservao de Energia (num instante):

    Aplica-se em condies estacionrias e transientes

    Considere a superfcie de uma parede com transferncia de calor (conduo, conveco e radiao).

    0cond conv rad q q q =

    ( ) ( )4 41 2 2 2 2 0surT T

    k T T T T L

    =h

    Sem massa nem volume, no faz sentido falar em energia armazenada ou em gerao no balano deenergia, mesmo que estes fenmenos ocorram no meio de que a superfcie faz parte.

    O BALANO DE ENERGIA SUPERFICIAL

    0= outin EE &&

  • 7/24/2019 Incropera All Slides

    18/357

    EXEMPLOS DE APLICAO

    Exemplo 1.3: Aplicao resposta trmica de um fio condutor com aquecimento por efeitode Joule (gerao de calor passagem da corrente elctrica).

    0=inE& ( ) ( ) ( )[ ]44 surout TTTThLDE += &

    2IRE electg =& ( )TVctd

    dEst =&

    stgoutin EEEE &&&& =+

  • 7/24/2019 Incropera All Slides

    19/357

    EXEMPLOS DE APLICAO

    Exemplo 1.43: Processamento trmico de uma bolacha de slica num forno de 2 zonas.

    Sabe-se que a bolacha de slica est posicionada no forno com as superfciesinferior e superior expostas, respectivamente, zona quente e zona fria.

    Determinar(a) Taxa inicial de aquecimento da bolacha a partir de Twi = 300K,(b) Temperatura em regime estacionrio.

    A conveco relevante?

    ESQUEMAHipteses:

    a) Temperatura da bolacha uniforme

    b) Temperaturas uniformes das regies quente e friac) Trocas radiativas entre corpo pequeno e

    envolvente grande

    d) Perdas da bolacha para o suporte desprezveis

  • 7/24/2019 Incropera All Slides

    20/357

    EXEMPLOS DE APLICAO

    Exemplo 1.43: Processamento trmico de uma bolacha de slica num forno de 2 zonas (cont)

    ANLISE: No balano de energia bolacha de slica deve contabilizar-se a conveco com o gs ambiente pelassuperfcies inferior (l) e superior (u), as trocas de radiao com as zonas quente e fria e a acumulao de energia.

    , , , , w

    rad h rad c cv u cv ld T

    q q q q cd dt

    + =

    Em termos de fluxo (por unidade de rea)

    ( ) ( ) ( ) ( )4 4 4 4,, ww sur c w u w l wsur hd T

    T T T T h T T h T T cd dt

    + =

    (a) Como condio inicial temos Tw =Twi = 300K

    ( )w id T / dt 104 K / s=

    3

    ( ) ( )8 2 4 4 4 8 2 4 4 4 440.65 5.67 10 W / m K 1500 300 K 0.65 5.67 10 W / m K 330 300 K +

    ( ) ( )2 28W / m K 300 700 K 4 W / m K 300 700 K = ( )w i0.00078 m d T / dt2700kg/m875J/kgK

    stoutin EEE &&& =

  • 7/24/2019 Incropera All Slides

    21/357

    EXEMPLOS DE APLICAO

    Exemplo 1.43: Processamento trmico de uma bolacha de slica num forno de 2 zonas (cont)

    Em regime estacionrio o armazenamento de energia nulo. O balano de energia efectuado com a temperaturada bolacha em regime estacionrio, Tw,ss

    ( ) ( )4 4 4 4 4 4w,ss w,ss0.65 1500 T K 0.65 330 T K + ( ) ( )2 2w,ss w,ss8W / m K T 700 K 4 W / m K T 700 K 0 =

    w,ssT 1251 K=

    Para determinar a importncia relativa da conveco, resolver o balano de energia sem conveco. Obtm-se

    (dTw/dt)i = 101 K/s e Tw,ss = 1262 K. Logo, a radiao controla a taxa de aquecimento inicial e o regimeestacionrio.

  • 7/24/2019 Incropera All Slides

    22/357

    FourierFouriers Laws Law

    and theand theHeat EquationHeat Equation

  • 7/24/2019 Incropera All Slides

    23/357

    A rate equation that allows determination of the conduction heat fluxfrom knowledge of the temperature distribution in a medium.

    Fouriers Law

    Its most general (vector) form for multidimensional conduction is:

    Implications:

    Heat transfer is in the direction of decreasing temperature

    (basis for minus sign).

    Direction of heat transfer is perpendicular to lines of constant

    temperature (isotherms).

    Heat flux vector may be resolved into orthogonal components.

    Fouriers Law serves to define the thermal conductivity of the

    medium

    Tkq =r

    xT

    qk xx

    =

  • 7/24/2019 Incropera All Slides

    24/357

    Cartesian Coordinates: ( ), ,T x y z

    T T Tq k i k j k k

    x y z

    =

    xq yq zq

    zq

    T T Tq k i k j k k

    r r z

    =

    rq q

    Cylindrical Coordinates: ( ), ,T r z

    qsinT T Tq k i k j k k r r r

    =

    rq q

    Spherical Coordinates: ( ), ,T r

  • 7/24/2019 Incropera All Slides

    25/357

    In angular coordinates , the temperature gradient is stillbased on temperature change over a length scale and hence hasunits of C/m and not C/deg.

    ( )or ,

    Heat rate for one-dimensional, radial conduction in a cylinder or sphere:

    Cylinder2r r r r q A q rLq = =

    or,

    2r r r r q A q rq = =

    Sphere2

    4r r r r q A q r q = =

  • 7/24/2019 Incropera All Slides

    26/357

    The Heat Equation A differential equation whose solution provides the temperature distribution in astationary medium.

    Based on applying conservation of energy to a differential control volumethrough which energy transfer is exclusively by conduction.

    Cartesian Coordinates:

    Net transfer of thermal energy into the

    control volume (inflow-outflow)

    Thermal energy

    generation

    Change in thermal

    energy storage

    p

    T T T T k k k q c

    x x y y z z t

    + + + =

  • 7/24/2019 Incropera All Slides

    27/357

    Spherical Coordinates:

    Cylindrical Coordinates:

    2

    1 1p

    T T T T kr k k q c

    r r r z z t r

    + + + =

    22 2 2 2

    1 1 1sin

    sin sin p

    T T T T kr k k q c

    r r tr r r

    + + + =

  • 7/24/2019 Incropera All Slides

    28/357

    One-Dimensional Conduction in a Planar Medium with Constant Propertiesand No Generation

    2

    2

    1T T

    tx

    =

    thermal diffu osivit f the medy iump

    k

    c

  • 7/24/2019 Incropera All Slides

    29/357

    Boundary and Initial Conditions For transient conduction, heat equation is first order in time, requiringspecification of an initial temperature distribution: ( ) ( )0, ,0tT x t T x= =

    Since heat equation is second order in space, two boundary conditionsmust be specified. Some common cases:

    Constant Surface Temperature:

    ( )0, sT t T=

    Constant Heat Flux:

    0|x sT

    k qx

    =

    =

    Applied Flux Insulated Surface

    0| 0xT

    x =

    =

    Convection

    ( )0| 0,xT

    k h T T t =

    =

  • 7/24/2019 Incropera All Slides

    30/357

    Thermophysical PropertiesThermal Conductivity: A measure of a materials ability to transfer thermalenergy by conduction.

    Thermal Diffusivity: A measure of a materials ability to respond to changesin its thermal environment.

    Property Tables:Solids: Tables A.1 A.3Gases: Table A.4Liquids: Tables A.5 A.7

  • 7/24/2019 Incropera All Slides

    31/357

    Methodology of a Conduction Analysis Solve appropriate form of heat equation to obtain the temperature

    distribution.

    Knowing the temperature distribution, apply Fouriers Law to obtain theheat flux at any time, location and direction of interest.

    Applications:

    Chapter 3: One-Dimensional, Steady-State ConductionChapter 4: Two-Dimensional, Steady-State ConductionChapter 5: Transient Conduction

  • 7/24/2019 Incropera All Slides

    32/357

    Problem 2.46 Thermal response of a plane wall to convection heat transfer.

    KNOWN: Plane wall, initially at a uniform temperature, is suddenly exposed to convective heating.

    FIND: (a) Differential equation and initial and boundary conditions which may be used to find thetemperature distribution, T(x,t); (b) Sketch T(x,t) for the following conditions: initial (t 0), steady-state (t ), and two intermediate times; (c) Sketch heat fluxes as a function of time at the twosurfaces; (d) Expression for total energy transferred to wall per unit volume (J/m3).

    SCHEMATIC:

  • 7/24/2019 Incropera All Slides

    33/357

    ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internalheat generation.

    ANALYSIS: (a) For one-dimensional conduction with constant properties, the heat equation has theform,

    2

    2

    T 1 T

    tx

    =

    ( ) i

    0

    L

    Initial, t 0: T x,0 T uniform temperature

    Boundaries: x=0 T/ x) 0 adiabatic surface

    x=L k T/ x) = h T

    =

    =

    ( )L,t T surface convection

    and theconditions are:

    (b) The temperature distributions are shown on the sketch.

    Note that the gradient at x = 0 is always zero, since this boundary is adiabatic. Note also that thegradient at x = L decreases with time.

  • 7/24/2019 Incropera All Slides

    34/357

    Dividing both sides by AsL, the energy transferred per unit volume is

    c) The heat flux, as a function of time, is shown on the sketch for the surfaces x = 0 and

    x = L.

    ( )txqx ,

    ( )( )in s 0E hA T T L,t dt

    =

    d) The total energy transferred to the wall may be expressed asd) The total energy transferred to the wall may be expressed as

    in conv s0E q A dt =

    ( ) 3in0

    E hT T L,t dt J/m

    V L

    =

    Problem: NonProblem: Non--uniform Generation dueuniform Generation dueto Radiation Absorptionto Radiation Absorption

  • 7/24/2019 Incropera All Slides

    35/357

    Problem 2.28 Surface heat fluxes, heat generation and total rate of radiationabsorption in an irradiated semi-transparent material with a

    prescribed temperature distribution.

    KNOWN: Temperature distribution in a semi-transparent medium subjected to radiative flux

    to Radiation Absorptionto Radiation Absorption

    SCHEMATIC:

    FIND: (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation rate( )q x ,& and (c) Expression for absorbed radiation per unit surface area.

    Problem : NonProblem : Non--uniformuniformGeneration (Cont.)Generation (Cont.)

  • 7/24/2019 Incropera All Slides

    36/357

    Generation (Cont.)( )

    ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3)Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal

    volumetric heat generation term ( )q x .&

    ANALYSIS: (a) Knowing the temperature distribution, the surface heat fluxes are found using

    Fouriers law,

    ( ) -axx 2dT A

    q k k - a e Bdx

    ka

    = = +

    Front Surface, x=0: ( )xA A

    q 0 k + 1 B kBka a

    = + = +

  • 7/24/2019 Incropera All Slides

    37/357

    Generation (Cont.)Generation (Cont.)

    Alternatively, evaluate gE& by integration over the volume of the medium,

    ( ) ( )LL L -ax -ax -aL

    g 0 0 0

    A AE q x dx= Ae dx=- e 1 e .

    a a = =

    & &

    On a unit area basis

    ( ) ( ) ( )-aLg in out x x AE E E q 0 q L 1 e .a

    = + = + = + & & &

  • 7/24/2019 Incropera All Slides

    38/357

    OneOne--Dimensional, SteadyDimensional, Steady--StateStateConduction withoutConduction without

    Thermal Energy GenerationThermal Energy Generation

  • 7/24/2019 Incropera All Slides

    39/357

    Specify appropriate form of theSpecify appropriate form of the heat equation.heat equation.

    Solve for theSolve for the temperature distributiontemperature distribution..

    ApplyApply FourierFouriers Laws Law to determine theto determine the heat flux.heat flux.

    Simplest Case:Simplest Case: OneOne--Dimensional, SteadyDimensional, Steady--StateState Conduction withConduction with NoNo Thermal EnergyThermal Energy GenerationGeneration

    Alternative conduction analysisAlternative conduction analysis

    Common Geometries:Common Geometries:

    TheThe Plane Wall:Plane Wall: Described in rectangular (Described in rectangular (xx) coordinate. Area) coordinate. Area

    perpendicular to direction of heat transfer is constant (inperpendicular to direction of heat transfer is constant (independent ofdependent ofxx).).

    TheThe Tube WallTube Wall: Radial conduction through tube wall.: Radial conduction through tube wall.

    TheThe Spherical Shell:Spherical Shell: Radial conduction through shell wall.Radial conduction through shell wall.

    Methodology of a Conduction Analysis

    The Plane Wall

  • 7/24/2019 Incropera All Slides

    40/357

    Consider a plane wall between two fluids of different temperaturConsider a plane wall between two fluids of different temperature:e:

    The Plane Wall

    Implications:

    0d dT

    kdx dx

    =

    Heat Equation:

    ( )Heat flux is independent of .xq x

    ( )Heat rate is independent of .xq x Boundary Conditions: ( ) ( ),1 ,20 ,s sT T T L T = =

    Temperature Distribution for Constant :

    ( ) ( ),1 ,2 ,1s s sT x T T T L= +

    k

    H t Fl d H t R tHeat Flux and Heat Rate:

  • 7/24/2019 Incropera All Slides

    41/357

    Heat Flux and Heat Rate:Heat Flux and Heat Rate:

    ( ),1 ,2x s sdT k

    q k T T

    dx L

    = =

    ( ),1 ,2x s sdT kA

    q kA T T dx L

    = =

    Thermal Resistances and Thermal Circuits:tT

    Rq

    =

    Conduction in a plane wall: ,t cond

    LR

    kA=

    Convection: ,1

    t convRhA

    =

    Thermal circuit for plane wall with adjoining fluids:

    1 2

    1 1tot

    LR

    h A kA h A= + +

    ,1 ,2

    x tot

    T Tq

    R

    =

  • 7/24/2019 Incropera All Slides

    42/357

    Thermal Resistance forThermal Resistance for Unit Surface Area:Unit Surface Area:

    ,t cond

    L

    R k = ,

    1t convR h =

    Units: W/KtR 2m K/WtR

    Radiation Resistance:

    ,

    1t rad

    rR h A= ,

    1t rad

    rR h =

    ( )( )2 2r s sur s sur h T T T T = + + Contact Resistance:

    , A B

    tcx

    T TR

    q

    =

    = t ct c

    c

    RR

    ,

    ,

    Values depend on: Materials A and B, surface finishes, interstitial conditions, and

    contact pressure (Tables 3.1 and 3.2)

    Composite WallComposite Wall withwith Negligible Contact Resistance:Negligible Contact Resistance:

  • 7/24/2019 Incropera All Slides

    43/357

    Composite WallC p a withw Negligible Contact Resistance:g g C a a

    ,1 ,4x

    tot

    T Tq

    R

    =

    1 4

    1 1 1C tot A BtotA B C

    L RL LRA h k k k h A

    = + + + + =

    Overall Heat Transfer Coefficient (U) :

    A modified form of Newtons Law of Cooling to encompass multiple resistancesto heat transfer.

    x overallq UA T =

    1totR

    UA=

  • 7/24/2019 Incropera All Slides

    44/357

    SeriesSeries Parallel Composite Wall:Parallel Composite Wall:

    Note departure from one-dimensional conditions for .F Gk k

    Circuits based on assumption of isothermal surfaces normal tox direction oradiabatic surfaces parallel tox direction provide approximations for .xq

  • 7/24/2019 Incropera All Slides

    45/357

    ALTERNATIVE CONDUCTION ANALYSIS:

    STEADY STATE

    NO HEAT GENERATION

    NO HEAT LOSS FROM THE SIDES

    A(x) and k(T)

    dxxx qq +=IS TEMPERATURE DISTRIBUTION ONE-DIMENSIONAL?IS IT REASONABLE TO ASSUME ONE-DIMENSIONALTEMPERATURE DISTRIBUTION INx?

    FROM THE FOURIERS LAW: dxdTTkxAqx )()(=

    =T

    T

    x

    x dTTk

    xA

    dxq

    00

    )(

    )(

    Tube WallTube Wall The Tube Wall

  • 7/24/2019 Incropera All Slides

    46/357

    Heat Equation:Heat Equation:

    e ube Wa

    1

    0

    d dT

    krr dr dr

    =

    Is the foregoing conclusion consistent with the energy conservation requirement?

    How does vary with ?rq r

    What does the form of the heat equation tell us about the variation of with

    in the wall?rq

    r

    Temperature Distribution for Constant :k

    ( )( )

    ,1 ,2,2

    1 2 2

    ln

    ln /

    s ss

    T T rT r T

    r r r

    = +

  • 7/24/2019 Incropera All Slides

    47/357

    Heat FluxHeat Flux andand Heat Rate:Heat Rate:

    ( )( )

    ( )( )

    ( )( )

    ,1 ,22 1

    ,1 ,22 1

    ,1 ,22 1

    ln /

    22

    ln /

    22ln /

    r s s

    r r s s

    r r s s

    dT kq k T T dr r r r

    kq rq T T

    r r

    Lkq rLq T T

    r r

    =

    = =

    = =

    = (3.27)

    Conduction Resistance:( )

    ( )

    2 1,

    2 1,

    ln /

    Units K/W2ln /

    Units m K/W2

    t cond

    t cond

    r r

    R Lk

    r rR

    k

    =

    =

    Why is it inappropriate to base the thermal resistance on a unit surfacearea?

    Composite Wall withComposite Wall with

  • 7/24/2019 Incropera All Slides

    48/357

    Composite Wall withComposite Wall withNegligible ContactNegligible Contact

    ResistanceResistance

    ( ),1 ,4 ,1 ,4rtot

    T Tq UA T T

    R

    = =

    1

    Note that

    is a constant independent of radius.totUA R =

    But, U itself is tied to specification of an interface.

    ( ) 1i i tot U A R =

    Spherical Shell

  • 7/24/2019 Incropera All Slides

    49/357

    Heat EquationHeat Equation

    p

    22

    10

    d dTr

    dr dr r

    =

    What does the form of the heat equation tell us about the variation ofwith ? Is this result consistent with conservation of energy?rq r

    How does vary with ?rq r

    Temperature Distribution for Constant :k

    ( ) ( ) ( )

    ( )1/

    ,1 ,1 ,21 2

    1

    1 /s s s

    r rT r T T T

    r r

    =

    Heat flux Heat RateHeat flux Heat Rate andand Thermal Resistance:Thermal Resistance:

  • 7/24/2019 Incropera All Slides

    50/357

    Heat flux, Heat RateHeat flux, Heat Rate andand Thermal Resistance:Thermal Resistance:

    ( ) ( ) ( ),1 ,22 1 21/ 1/ r s s

    dT kq k T T dr r r r= =

    ( ) ( )( )2 ,1 ,2

    1 2

    44

    1/ 1/ r r s sk

    q r q T T r r

    = =

    Composite Shell:overall

    r overalltot

    Tq UA T

    R

    = =

    1 ConstanttotUA R =

    ( ) 1 Depends oni i tot iU A R A=

    ( ) ( )1 2, 1/ 1/ 4t condr rR

    k=

    r

  • 7/24/2019 Incropera All Slides

    51/357

    Critical radius (cylindrical geometry)Critical radius (cylindrical geometry)Isolamento

    r1 r

    T ,h,1 1

    T ,h

    r2

    h1Lr12

    1

    T

    T,1

    hLr2

    1

    Lk

    rr 22

    /ln( )

    Lk1

    r2

    2

    /ln( )r1

    (a)

    (b)

    ( )

    hLrLk

    rr

    hLr

    TTq revestsemr

    21

    12

    11

    1,.,

    2

    1

    2

    ln

    2

    1++

    =

    ( ) ( )

    hLrLk

    rr

    Lk

    rr

    hLr

    TTq revestcomr

    2

    1

    2

    ln

    2

    ln

    2

    1 2

    1

    12

    11

    1,.,

    +++

    =

    2

    1

    2

    11

    2

    1

    rhLrLkrd

    Rd tot

    =

    h

    krcrit=0=

    rd

    Rd tot 02

    2

    11

    2

    1322

    2

    >

    +

    =

    == hkrhkr

    tot

    rhLrLkrd

    Rd

    Problem 3 23: Assessment of thermal barrier coating (TBC) for protection

  • 7/24/2019 Incropera All Slides

    52/357

    Problem 3.23: Assessment of thermal barrier coating (TBC) for protectionof turbine blades. Determine maximum blade temperature

    with and without TBC.

    Schematic:

    ASSUMPTIONS: (1) One-dimensional, steady-state conduction in a composite plane wall, (2) Constantproperties, (3) Negligible radiation

    ANALYSIS F i h l h l i i h h TBC i

  • 7/24/2019 Incropera All Slides

    53/357

    ANALYSIS: For a unit area, the total thermal resistance with the TBC is

    ( ) ( )1 1tot,w o t,c iZr InR h L k R L k h = + + + +

    ( )3 4 4 4 3 2 3 2tot,wR 10 3.85 10 10 2 10 2 10 m K W 3.69 10 m K W = + + + + =

    With a heat flux of

    ,o ,i 5 2w 3 2tot,w

    T T 1300Kq 3.52 10 W m

    R 3.69 10 m K W

    = = =

    the inner and outer surface temperatures of the Inconel are

    ( )s,i(w) ,i w iT T q h = + ( )5 2 2400 K 3.52 10 W m 500 W m K 1104 K= + =

    ( ) ( )3 4 2 5 2400 K 2 10 2 10 m K W 3.52 10 W m 1174 K = + + =( ) ( )s,o(w) ,i i wInT T 1 h L k q = + +

    i h h C

  • 7/24/2019 Incropera All Slides

    54/357

    Without the TBC,

    ( )1 1 3 2

    tot, wo o iInR h L k h 3.20 10 m K W

    = + + =

    ( )wo ,o ,i tot,woq T T R = = 4.06105W/m2( )wo ,o ,i tot,woq T T R = = 4.06105W/m2

    The inner and outer surface temperatures of the Inconel are then

    ( )s,i(wo) ,i wo iT T q h 1212 K = + =

    ( ) ( )[ ]s,o(wo) ,i i woInT T 1 h L k q 1293 K = + + =

    Use of the TBC facilitates operation of the Inconel below Tmax= 1250 K.

    COMMENTS: Since the durability of the TBC decreases with increasingtemperature, which increases with increasing thickness, limits to its thickness areassociated with reliability considerations.

    Problem 3.62: Suitability of a composite spherical shell for storing

  • 7/24/2019 Incropera All Slides

    55/357

    y p p gradioactive wastes in oceanic waters.

    SCHEMATIC:

    ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions,(3) Constant properties at 300K, (4) Negligible contact resistance.

    PROPERTIES: Table A-1, Lead: k = 35.3 W/mK, MP = 601K; St.St.: 15.1

    W/mK.

    ANALYSIS: From the thermal circuit, it follows that

    311

    tot

    T T 4q= q r

    R 3 =

    &

    The thermal resistances are:

  • 7/24/2019 Incropera All Slides

    56/357

    ( )Pb1 1

    R 1/ 4 35.3 W/m K 0.00150 K/W

    0.25m 0.30m

    = =

    ( )St.St.1 1

    R 1/ 4 15.1 W/m K 0.000567 K/W0.30m 0.31m

    = =

    ( )2 2 2convR 1/ 4 0.31 m 500 W/m K 0.00166 K/W = =

    totR 0.00372 K/W.=

    The heat rate is then

    ( )( )35 3q=5 10 W/m 4 / 3 0.25m 32,725 W =

    and the inner surface temperature is

    ( )1 totT T R q=283K+0.00372K/W 32,725 W= + 405 K < MP = 601K.=

    Hence, from the thermal standpoint, the proposal is adequate.

    COMMENTS: In fabrication, attention should be given to maintaining a good

    thermal contact. A protective outer coating should be applied to prevent long

    term corrosion of the stainless steel.

  • 7/24/2019 Incropera All Slides

    57/357

    OneOne--Dimensional, SteadyDimensional, Steady--StateStateConduction withConduction with

    Thermal Energy GenerationThermal Energy Generation

    Implications of Energy Generation

  • 7/24/2019 Incropera All Slides

    58/357

    p gy

    Involves a local (volumetric) source of thermal energy due to conversionfrom another form of energy in a conducting medium.

    The source may be uniformly distributed, as in the conversion fromelectrical to thermal energy (Ohmic heating):

    or it may be non-uniformly distributed, as in the absorption of radiationpassing through a semi-transparent medium.

    Generation affects the temperature distribution in the medium and causesthe heat rate to vary with location, thereby precluding inclusion ofthe medium in a thermal circuit.

    For a plane wall,

    V

    RI

    V

    Eq

    g2

    ==&

    &

    ( )xq exp&

    The Plane Wall

  • 7/24/2019 Incropera All Slides

    59/357

    Consider one-dimensional, steady-state conductionin a plane wall ofconstant k, uniform generation,and asymmetric surface conditions:

    Heat Equation:

    Is the heat flux independent of x?q

    General Solution:

    What is the form of the temperature distribution for

    0?q=

    > 0?q

    < 0?q

    How does the temperature distribution change with increasing ?q

    2

    20 0

    d dT d T qk q

    dx dx dx k

    + = + =

    (3.39)2

    20 0

    d dT d T qk q

    dx dx dx k

    + = + =

    (3.39)

    ( ) 2 1 2/ 2T x q k x C x C = + +

    Symmetric Surface Conditions or One Surface Insulated:

  • 7/24/2019 Incropera All Slides

    60/357

    What is the temperature gradientat the centerline or the insulatedsurface?

    Why does the magnitude of the temperaturegradient increase with increasing x?

    Temperature Distribution:

    Overall energy balance on the wall

    How do we determine the heat rate atx = L?

    How do we determine ?sT

    ( )2 2

    21

    2 s

    q L xT x T

    k L

    = +

    (3.42)( )2 2

    21

    2 s

    q L xT x T

    k L

    = +

    (3.42)

    0out gE E + =

    ( ) 0s s s

    s

    hA T T q A L

    q LT T

    h

    + =

    = +

    (3.46)

    ( ) 0s s s

    s

    hA T T q A L

    q LT T

    h

    + =

    = +

    (3.46)

    Radial SystemsCylindrical (Tube) Wall Spherical Wall (Shell)

  • 7/24/2019 Incropera All Slides

    61/357

    Cylindrical (Tube) Wall Spherical Wall (Shell)

    Solid Cylinder (Circular Rod) Solid Sphere

    Heat Equations:

    Cylindrical

    10

    d dTkr q

    r dr dr

    + =

    Spherical

    2

    2

    10

    d dTkr q

    r dr dr

    + =

    Heat Equations:

    Cylindrical

    10

    d dTkr q

    r dr dr

    + =

    Spherical

    2

    2

    10

    d dTkr q

    r dr dr

    + =

    Solution for Uniform Generation in a Solid Sphere of Constant kwith Convection Cooling:

  • 7/24/2019 Incropera All Slides

    62/357

    Temperature Distribution Surface Temperature

    Overall energy balance:

    Or from a surface energy balance:

    with Convection Cooling:

    A summary of temperature distributions is provided in Appendix Cfor plane, cylindrical and spherical walls, as well as for solidcylinders and spheres. Note how boundary conditions are specifiedand how they are used to obtain surface temperatures.

    3

    2

    13

    dT q r kr C

    dr= +

    2

    1

    26

    Cq rT Ck r

    = +

    0 10 0rdT

    Cdr

    = = =|

    ( )

    2

    26

    o

    o s s

    q r

    T r T C T k= = +

    ( )2 2

    21

    6

    o

    s

    o

    q r rT r T

    k r

    = +

    0out gE E + =

    3o

    s q rT Th

    = +

    0in out E E =

    ( )cond o convq r q =3

    o

    s

    q rT T

    h

    = +

    Problem 3.91 Thermal conditions in a gas-cooled nuclear reactor

    with a tubular thorium fuel rod and a concentric

    Problem 3.91 Thermal conditions in a gas-cooled nuclear reactor

    with a tubular thorium fuel rod and a concentric

  • 7/24/2019 Incropera All Slides

    63/357

    with a tubular thorium fuel rod and a concentric

    graphite sheath: (a) Assessment of thermal integrity

    for a generation rate of . (b) Evaluation of

    temperature distributions in the thorium and graphite

    for generation rates in the range .

    8 310 W/mq=

    8 810 5x10q

    with a tubular thorium fuel rod and a concentric

    graphite sheath: (a) Assessment of thermal integrity

    for a generation rate of . (b) Evaluation of

    temperature distributions in the thorium and graphite

    for generation rates in the range .

    8 310 W/mq=

    8 810 5x10q

    Schematic:Schematic:

    Assumptions: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constantproperties, (4) Negligible contact resistance, (5) Negligible radiation, (6) Adiabatic surface at r1.

    Properties: Table A.1, Thorium: 2000 ; Table A.2, Graphite: 2300 .mp mpT K T K Properties: Table A.1, Thorium: 2000 ; Table A.2, Graphite: 2300 .mp mpT K T K

    Analysis: (a) The outer surface temperature of the fuel, T2, may be determined from the rate equation

  • 7/24/2019 Incropera All Slides

    64/357

    2

    tot

    T TqR

    =

    where( )3 2

    3

    1n / 10.0185 m K/W

    2 2tot

    g

    r rR

    k r h = + =

    The heat rate may be determined by applying an energy balance to a control surface about the fuelelement,

    out gE E=

    or, per unit length,out gE E =

    Since the interior surface of the element is essentially adiabatic, it follows that

    Hence,

    With zero heat flux at the inner surface of the fuel element, Eq. C.14 yields

    ( )2 22 1 17,907 W/mq q r r = =

    ( )2 17,907 W/m 0.0185 m K/W 600 931totT q R T K K = + = + =

    2

    2 2 2

    2 1 1

    1 2 2

    2 1

    1 1n 931 25 18 938 2.65): 0mL L =

    Fin Heat Rate:

    ( )0| ff c x A sd

    q kA h x dA

    dx

    == =

    Condio de Distribuio de temperaturas Taxa de transmisso de

  • 7/24/2019 Incropera All Slides

    77/357

    CasoCondio de

    fronteira emx=LDistribuio de temperaturas

    / bTaxa de transmisso de

    calor

    (i) ( )Lhxd

    dk

    Lx

    =

    =

    ( )[ ] ( )[ ]

    ( ) ( )Lmkm

    hLm

    xLmkm

    hxLm

    sinhcosh

    sinhcosh

    +

    +

    ( ) ( )

    ( ) ( )Lmkm

    hLm

    Lmkm

    hLm

    M

    sinhcosh

    coshsinh

    +

    +

    (ii) 0=

    =Lxxd

    d ( )[ ]( )Lm

    xLm

    cosh

    cosh ( )LmMtanh

    (iii) ( ) LL = ( ) ( ) ( )[ ]

    ( )Lm

    xLmxmbL

    sinh

    sinhsinh + ( )( )Lm

    LmM bL

    sinh

    /cosh

    (iv) ( ) 0=L xme M

    cAkPhm =2 bc AkPhM=

    Fin Performance Parameters Fin Efficiency:

  • 7/24/2019 Incropera All Slides

    78/357

    ,max

    f ff

    f f b

    q qq hA

    =

    How is the efficiency affected by the thermal conductivity of the fin?

    Expressions for are provided in Table 3.5 for common geometries.f

    ( )1/ 2222 / 2fA w L t = +

    ( )/ 2pA t L=

    ( )

    ( )1

    0

    21

    2fI mL

    mL I mL =

    Fin Effectiveness:

    Consider a triangular fin:

    ,

    f

    f c b b

    q

    hA

    Fin Resistance:

    with , and / f ch k A P

    ,

    1bt f

    f f f

    Rq hA

    =

    Correction of fin length to account for heat loss from the tip

  • 7/24/2019 Incropera All Slides

    79/357

    extremidadeisolada

    Transmisso de calorna extremidade

    ( ) ( ) ( )LLLPhLAhq cctipf =,

    P

    ALL cc +=

    Fin of rectangular cross section with t

  • 7/24/2019 Incropera All Slides

    80/357

    0.0 1.0 2.0 3.0 4.0 5.0 0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.8 2

    4

    31.6

    1.4

    ri

    L

    ro

    t

    1i

    o

    r

    rf

    0.0 1.0 2.0 3.0 4.0 5.0

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    (a)

    (b)

    (c)

    (d)

    (e)

    f

    t

    x

    y (x)

    Fin Arrays Representative arrays of

  • 7/24/2019 Incropera All Slides

    81/357

    (a) rectangular and(b) annular fins.

    Total surface area:t f bA NA A= +

    Number of fins Area of exposed base (prime surface)

    Total heat rate:

    ,

    bt f f b b b o t b

    t o

    q N hA hA hAR

    = + =

    Overall surface efficiency and resistance:

    ,

    1bt o

    t o t

    R

    q hA

    = =

    ( )1 1fo ft

    NA

    A =

    Equivalent Thermal Circuit :

  • 7/24/2019 Incropera All Slides

    82/357

    Effect of Surface Contact Resistance:

    ( )( ),

    bt t bo c

    t o c

    q hAR

    = =

    ( )1

    1 1f fo c

    t

    NA

    A C

    =

    ( )1 , ,1 /f f t c c bC hA R A = +

    ( )( )

    ,

    1t o c

    to c

    RhA

    =

    Problem 3.116: Assessment of cooling scheme for gas turbine blade.Determination of whether blade temperatures are lessthan the maximum allowable value (1050 C) for

  • 7/24/2019 Incropera All Slides

    83/357

    prescribed operating conditions and evaluation of bladecooling rate.

    Schematic:

    Assumptions: (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3)

    Adiabatic blade tip, (4) Negligible radiation.

    Analysis: Conditions in the blade are determined by Case B of Table 3.4.

    (a) With the maximum temperature existing at x=L, Eq. 3.75 yields

    ( )

    b

    T L T 1

    T T cosh mL

    =

    ( ) ( )1/ 21/ 2 2 4 2

    cm hP/kA 250W/m K 0.11m/20W/m K 6 10 m= = = 47.87 m-1( ) ( )

    1/ 21/ 2 2 4 2cm hP/kA 250W/m K 0.11m/20W/m K 6 10 m

    = = = 47.87 m-1

    mL = 47.87 m-10.05 m = 2.39

  • 7/24/2019 Incropera All Slides

    84/357

    Problem 3.132: Determination of maximum allowable power for a 20mm

    x 20mm electronic chip whose temperature is not to exceed

    when the chip is attached to an air-cooled heat sink

    cq

    85 C,cT = o

    Problem 3.132: Determination of maximum allowable power for a 20mm

    x 20mm electronic chip whose temperature is not to exceed

    when the chip is attached to an air-cooled heat sink

    cq

    85 C,cT = o

  • 7/24/2019 Incropera All Slides

    85/357

    with N=11 fins of prescribed dimensions.with N=11 fins of prescribed dimensions.

    Schematic:

    Assumptions: (1) Steady-state, (2) One-dimensional heat transfer, (3) Isothermal chip, (4)Negligible heat transfer from top surface of chip, (5) Negligible temperature rise for air flow,(6) Uniform convection coefficient associated with air flow through channels and over outersurface of heat sink, (7) Negligible radiation.

  • 7/24/2019 Incropera All Slides

    86/357

  • 7/24/2019 Incropera All Slides

    87/357

    Comments: The heat sink significantly increases the allowable heat dissipation. If it

    were not used and heat was simply transferred by convection from the surface of the chip withfrom Part (a) would be replaced by2100 W/m , 2.05 K/Wtoth K R= =

    21/hW 25 K/W, yielding 2.60 W.cnv cR q= = =

  • 7/24/2019 Incropera All Slides

    88/357

    Transient Conduction:Transient Conduction:The Lumped CapacitanceThe Lumped Capacitance

    MethodMethod

    Transient Conduction A heat transfer process for which the temperature varies with time, as well

  • 7/24/2019 Incropera All Slides

    89/357

    as location within a solid.

    It is initiated whenever a system experiences a change in operating conditionsand proceeds until a new steady state (thermal equilibrium) is achieved.

    It can be induced by changes in: surface convection conditions ( ),,h T

    Solution Techniques The Lumped Capacitance Method Exact Solutions The Finite-Difference Method (not to be studied)

    surface radiation conditions ( ),,r sur

    h T

    a surface temperature or heat flux, and/or

    internal energy generation.

    The Lumped Capacitance Method

    B d h i f i ll if di ib i

  • 7/24/2019 Incropera All Slides

    90/357

    Based on the assumption of a spatially uniform temperature distributionthroughout the transient process.

    Why is the assumption never fully realized in practice?

    General Lumped CapacitanceAnalysis:

    Consider a general case,which includes convection,radiation and/or an appliedheat flux at specifiedsurfaces

    as well as internal energygeneration

    ( ), , ,, , ,s c s r s hA A A

    )t(T)t,r(T r

    First Law:

    st EEETdCVEd &&&

  • 7/24/2019 Incropera All Slides

    91/357

    Assuming energy outflow due to convection and radiation and withinflow due to an applied heat flux ,sq

    Is this expression applicable in situations for which convection and/orradiation provide for energy inflow?

    May h and hrbe assumed to be constant throughout the transient process?

    How must such an equation be solved?

    gsurr,sr,sc,sh,s

    ''

    h,s E)TT(Ah)TT(hAAqtd

    TdCV &+=

    goutinst EEE

    tdTdCV

    dtEd +==

    Special Cases (Exact Solutions, )( )0 iT T

    N li ibl R di ti ( )/T T b a

  • 7/24/2019 Incropera All Slides

    92/357

    Negligible Radiation ( ), / :T T b a

    The non-homogeneous differential equation is transformed into ahomogeneous equation of the form:

    da

    dt

    =

    Integrating from t=0 to anytand rearranging,

    ( ) ( )/

    exp 1 expi i

    T T b aat at

    T T T T

    = +

    To what does the foregoing equation reduce as steady state is approached?

    How else may the steady-state solution be obtained?

    CV

    Aha

    cs

    ,=

    CV

    EAqb

    ghs

    &+= ,

    ''

    Negligible Radiation and Source Terms , 0, 0 :gr sh h E q >> = =

    ( ),s cdT

    c hA T T dt

    =

    td

  • 7/24/2019 Incropera All Slides

    93/357

    , is c

    t

    o

    c d

    hAdt

    =

    ,s c

    i i

    hAT Texp t

    T T c

    = =

    t

    t

    =

    exp

    The thermal time constant is defined as

    ( )

    ,

    1t

    s c

    c

    hA

    ThermalResistance, Rt

    Lumped ThermalCapacitance, Ct

    The change in thermal energy storage due to the transient process ist

    outst

    o

    E Q E dt =

    ,

    t

    s c

    o

    hA dt = ( ) 1 expit

    tc

    =

    (5.8)

    Negligible Convection and Source Terms , 0, 0 :gr sh h E q >> = =

  • 7/24/2019 Incropera All Slides

    94/357

    Assuming radiation exchange with large surroundings,

    ( )4 4,s r sur dT

    c A T T dt

    =

    ,

    4 4i

    s r T

    surTo

    tA

    c

    dT

    T Tdt

    =

    3,

    1n 1n4

    sur sur i

    s r sur sur sur i

    T T T T ct

    A T T T T T

    + + =

    Result necessitates implicit evaluation of T(t).

    1 12 tan tan i

    sur sur

    TT

    T T

    +

    The Biot Number and Validity ofThe Lumped Capacitance Method

    The Biot Number: The first of many dimensionless parameters to be

  • 7/24/2019 Incropera All Slides

    95/357

    The Biot Number: The first of many dimensionless parameters to beconsidered.

    Definition:chLBi

    k

    convection or radiation coefficienth

    thermal conductivity of t so e dh lik

    of the solid ( / or coordinate

    associated with maximum spa

    char

    tial temperature differe

    acteristic lengt

    e

    h

    nc )

    c sL A

    Physical Interpretation:

    Criterion for Applicability of Lumped Capacitance Method:

    1Bi

  • 7/24/2019 Incropera All Slides

    96/357

  • 7/24/2019 Incropera All Slides

    97/357

    Problem 5.15: Heating of coated furnace wall during start-up.

  • 7/24/2019 Incropera All Slides

    98/357

    KNOWN: Thickness and properties of furnace wall. Thermal resistance of ceramic coatingon surface of wall exposed to furnace gases. Initialwall temperature.

    FIND: (a) Time required for surface of wall to reach a prescribed temperature, (b)Corresponding value of coating surface temperature.

    ASSUMPTIONS: (1) Constant properties, (2) Negligible coating thermal capacitance, (3)Negligible radiation.

    PROPERTIES: Carbon steel: = 7850 kg/m3, c = 430 J/kgK, k = 60 W/mK.

    ANALYSIS: Heat transfer to the wall is determined by the total resistance to heat transferfrom the gas to the surface of the steel, and not simply by the convection resistance.

    Hence, with ( )11

    1 2 2 2tot f 2

    1 1U R R 10 m K/W 20 W/m K.

    h 25 W/m K

    = = + = + =

    2UL 20 W/m K 0.01 mBi 0 0033 1

  • 7/24/2019 Incropera All Slides

    99/357

    Bi 0.0033 1k 60 W/m K

    = = =

  • 7/24/2019 Incropera All Slides

    100/357

    Transient Conduction:Transient Conduction:

    Spatial Effects and the Role ofSpatial Effects and the Role ofAnalytical SolutionsAnalytical Solutions

    Solution to the Heat Equation for a Plane Wall withSymmetrical Convection Conditions

    If the lumped capacitance approximation can not be made, consideration must

    be given to spatial, as well as temporal, variations in temperature during the

  • 7/24/2019 Incropera All Slides

    101/357

    g p , p , p gtransient process.

    For a plane wall with symmetrical convectionconditions and constant properties, the heat

    equation and initial/boundary conditions are:2

    2

    1T T

    x t

    =

    ( ),0 iT x T=

    0

    0x

    T

    x =

    =

    ( ),

    x L

    Tk h T L t T

    x

    =

    =

    Existence of seven independent variables:

    ( ), , , , , ,iT T x t T T k h=

    How may the functional dependence be simplified?

  • 7/24/2019 Incropera All Slides

    102/357

    The One-Term Approximation :( )0.2Fo>

    Variation of midplane temperature (x*= 0) with time :( )Fo

    ( )( )

    ( )* 21 1expo

    oT T C FoT T

  • 7/24/2019 Incropera All Slides

    103/357

    ( )( )1 1po

    iT T

    1 1Table 5.1 and as a function ofC Bi

    ( )Fo

    Variation of temperature with location (x*

    ) and time :( )* * *1coso =

    Change in thermal energy storage with time:

    stE Q =

    1 *

    1

    sin1o oQ Q

    =

    ( )o iQ c T T =

    Can the foregoing results be used for a plane wall that is well insulated on oneside and convectively heated or cooled on the other?

    Can the foregoing results be used if an isothermal condition isinstantaneously imposed on both surfaces of a plane wall or on one surface ofa wall whose other surface is well insulated?

    ( )s iT T

    1 008980 299101 007460 244031 004950 172340 031.005990.244461.004980.199501.003310.140950.02

    1.003000.173031.002500.141241.001660.099830.01

    c11c11c11

    EsferaCilindro longoPlaca plana

    Bi

  • 7/24/2019 Incropera All Slides

    104/357

    -------------------------------------------------

    1.130301.111181.103810.897831.064190.624440.45

    1.116351.052791.093140.851581.058040.593240.40

    1.102260.989661.082260.801401.051660.559220.351.088020.920791.071160.746461.045050.521790.30

    1.073650.844731.059840.685591.038190.480090.25

    1.059150.759311.048300.616971.031090.432840.20

    1.044530.660861.036550.537611.023720.377880.151.029800.542281.024580.441681.016090.311050.10

    1.026840.514971.022160.419541.014540.295570.09

    1.023870.486001.019730.396031.012970.279130.08

    1.020900.455061.017290.370921.011380.261530.071.017930.421731.014850.343831.009790.242530.06

    1.014950.385371.012400.314261.008190.221760.05

    1.011970.345031.009930.281431.006570.198680.04

    1.008980.299101.007460.244031.004950.172340.03

    Graphical Representation of the One-Term ApproximationThe Heisler Charts Plane wall

    Midplane Temperature:

  • 7/24/2019 Incropera All Slides

    105/357

  • 7/24/2019 Incropera All Slides

    106/357

    Radial Systems

    Long Rods Heated or Cooled by Convection.

  • 7/24/2019 Incropera All Slides

    107/357

    2

    /

    /o

    o

    Bi hr k

    Fo t r

    =

    =

    ( ) ( )( ) ( )

    =

    =

    ==

    1

    2 Foexp*,,

    n

    nnonii

    *rJc

    TT

    TtrTtr

    ( )( ) ( )nno

    n

    nn

    JJ

    J

    c

    21

    212

    +=

    (5.184a)

    onn r =

    Long rod:

    orrr =*

    Radial Systems

    Long rod one term approximation (Fo > 0.2):

  • 7/24/2019 Incropera All Slides

    108/357

    (5.184a)

    ( ) *o

    o

    J

    Q

    Q

    1

    1121 =

    Change in thermal energy storage with time:

    stE Q =

    ( )o iQ c T T =

    (Fo > 0.2)

    ( ) ( ) ( )*exp* 12111 rJForJcTT

    TT o

    *oo

    i

    * =

    =

    ( )FocTT

    TT

    i

    o*o

    211 exp=

    =

    Graphical Representation of the One-Term ApproximationThe Heisler Charts Infinite cylinder

    Centerline Temperature:

  • 7/24/2019 Incropera All Slides

    109/357

    Temperature Distribution:

  • 7/24/2019 Incropera All Slides

    110/357

    Change in Thermal Energy Storage:

  • 7/24/2019 Incropera All Slides

    111/357

    Spherical Systems

    Sphere one term approximation (Fo > 0.2):

  • 7/24/2019 Incropera All Slides

    112/357

    (5.184a)

    Change in thermal energy storage with time:

    stE Q =

    ( )o iQ c T T =

    (Fo > 0.2)

    ( )FocTT

    TT

    i

    o*o

    211 exp=

    =

    ( ) ( ) ( )*

    *sinFoexp

    *

    *sin

    1

    121

    1

    11

    r

    r

    r

    rc

    TT

    TT *o

    i

    * =

    =

    ( )11131

    cossin3

    1

    Q

    Q *

    o

    o

    =

    Graphical Representation of the One-Term ApproximationThe Heisler Charts Sphere

    Center Temperature:

  • 7/24/2019 Incropera All Slides

    113/357

    Temperature Distribution:

  • 7/24/2019 Incropera All Slides

    114/357

    Change in Thermal Energy Storage:

  • 7/24/2019 Incropera All Slides

    115/357

    ( )

    ( )1

    2 22 /

    , exp 4o

    i

    q t x

    T x t T k t

    q x x

    =

    Case 2: Uniform Heat Flux( )s oq q =

  • 7/24/2019 Incropera All Slides

    116/357

    erfc2

    oq x x

    k t

    (5.59)

    ( )

    0

    0,

    x

    Tk h T T t

    x

    =

    =

    ( )

    2

    2

    ,

    2

    2

    i

    i

    T x t T xerfc

    T T t

    hx h t x h t exp erfck k kt

    =

    + + (5.60)

    Case 3: Convection Heat Transfer ( ),h T

  • 7/24/2019 Incropera All Slides

    117/357

    Multidimensional Effects Solutions for multidimensional transient conduction can often be expressed

    as a product of related one-dimensional solutions for a plane wall, P(x,t),

    an infinite cylinder, C(r,t), and/or a semi-infinite solid, S(x,t). See Equations(5.64) to (5.66) and Fig. 5.11.

  • 7/24/2019 Incropera All Slides

    118/357

    Consider superposition of solutions for two-dimensional conduction in ashort cylinder:

    ( )( ) ( )

    ( ) ( )

    , ,, ,

    ,

    i

    Plane Infinitei iWall Cylinder

    T r x t T

    P x t x C r t T T

    T x t T T r,t T x

    T T T T

    =

    =

  • 7/24/2019 Incropera All Slides

    119/357

    ( )

    ( )

    ( ) ( )

    ( )( )

    ( ) ( )( )

    ( )

    bi

    o

    oa

    i

    o

    o

    bi

    ai

    bai

    TTTtT

    TtTTy,tT

    TTTtT

    TtTTx,tT

    TT

    Ty,tT

    TT

    Tx,tT

    TT

    Tx,y,tT

    2espessuradeinfinitaplaca

    2espessuradeinfinitaplaca

    2espessuradeinfinitaplaca

    2espessuradeinfinitaplaca

    22rrectangulasecodebarra

    =

    =

    bespessuradeplanaplacao

    aespessuradeplanaplacao

    bespessuradeplanaplacao

    aespessuradeplanaplacao

    barrectangulaodebarrao

    QQ

    QQ

    Q

    Q

    Q

    Q

    Q

    Q

    22

    2222sec

    +

    =

  • 7/24/2019 Incropera All Slides

    120/357

    ( ) ( )

    =

    TT

    TtxTtxS

    i

    ,, ( )

    ( )

    =

    TT

    TtxTtxP

    i

    ,, ( )

    ( )

    =

    TT

    TtrTtrC

    i

    ,,

  • 7/24/2019 Incropera All Slides

    121/357

    Problem 5.66: Charging a thermal energy storage system consisting ofa packed bed of Pyrex spheres.

  • 7/24/2019 Incropera All Slides

    122/357

    KNOWN: Diameter, density, specific heat and thermal conductivity of Pyrexspheres in packed bed thermal energy storage system. Convection coefficient andinlet gas temperature.

    FIND: Time required for sphere to acquire 90% of maximum possible thermalenergy and the corresponding center and surface temperatures.

    SCHEMATIC:

    ASSUMPTIONS: (1) One-dimensional radial conduction in sphere, (2)Negligible heat transfer to or from a sphere by radiation or conduction due tocontact with adjoining spheres, (3) Constant properties.

    ANALYSIS:With Bi h(ro/3)/k = 75 W/m2K (0.0125m)/1.4 W/mK = 0.67,the lumped capacitance method is inappropriate and the approximate (one-term)solution for one-dimensional transient conduction in a sphere is used to obtain thedesired results

  • 7/24/2019 Incropera All Slides

    123/357

    desired results.

    To obtain the required time, the specified charging requirement

    ( )/ 0.9oQ Q = must first be used to obtain the dimensionless center temperature,*.o

    From Eq. (5.52),

    ( ) ( )

    3

    1oo1 1 1

    Q1Q3 sin cos

    =

    With Bi hro/k = 2.01, 1 2.03 and C11.48 from Table 5.1. Hence,

    ( )( )

    3

    o 0.1 2.03 0.837 0.1555.3863 0.896 2.03 0.443 = = =

    From Eq. (5.50c), the corresponding time is2o o

    211

    rt ln

    C

    =

    ( )3 7 2k / c 1.4 W / m K / 2225 kg / m 835J / kg K 7.54 10 m / s, = = =

    ( ) ( )2

    0.0375m ln 0.155/1.48t 1 020s

  • 7/24/2019 Incropera All Slides

    124/357

    ( )27 2

    t 1,020s7.54 10 m /s 2.03

    = =

    From the definition of *,o the center temperature is

    ( )o g,i i g,iT T 0.155 T T 300 C 42.7 C 257.3 C= + = =

    The surface temperature at the time of interest may be obtained from Eq. (5.50b)

    with r 1,

    =

    ( ) ( )o 1

    s g,i i g,i1

    sin 0.155 0.896T T T T 300 C 275 C 280.9 C

    2.03

    = + = =

    Is use of the one-term approximation appropriate?

  • 7/24/2019 Incropera All Slides

    125/357

  • 7/24/2019 Incropera All Slides

    126/357

    Both requirements are met.

    Is the assumption of a semi-infinite solid for a plane wall of finite thicknessappropriate under the foregoing conditions?

  • 7/24/2019 Incropera All Slides

    127/357

    COMMENTS: The foregoing analysis may or may not be conservative, since

    heat transfer at the irradiated surface due to convection and net radiationexchange with the environment has been neglected. If the emissivity of thesurface and the temperature of the surroundings are assumed to be = 1 and Tsur= 298K, radiation exchange at Ts= 309.5C would be

    ( )4 4 2

    rad s surq T T 6,080 W / m K, = = which is significant (~ 60% of the prescribed radiation). However, under actualconditions, the wall would likely be exposed to combustion gases and adjoiningwalls at elevated temperatures.

    5.89

    Um cilindro de cobre, com 100 mm de comprimento e 50 mm de dimetroencontra-se inicialmente temperatura uniforme de 20C.

    As duas bases so aquecidas muito rapidamente, a partir de um determinado

    instante, ficando temperatura de 500 C, enquanto a superfcie lateral docilindro aquecida por uma corrente de gs a 500 C e com um coeficiente deconveco de 100 W/m2K.

  • 7/24/2019 Incropera All Slides

    128/357

    /

    a) Determinar a temperatura do centro do cilindro ao fim de 8 segundos.

    b) Atendendo aos parmetros adimensionais que determinam a distribuio detemperaturas nos problemas de difuso transiente do calor, possvel admitirhipteses simplificativas na anlise deste problema?

    Apresente uma explicao resumida.

    Propriedades do cobre

    CILINDRO CURTO: 2DPROPRIEDADES CONSTANTES h CONSTANTE

    PARA O CILINDRO INFINITO C(r,t):

  • 7/24/2019 Incropera All Slides

    129/357

    PARA O PLACA PLANA INFINITA P(x,t):

    PARA O CILINDRO CURTO:

    PARMETROS ADIMENSIONAIS QUE CONTROLAM A CONDUO TRANSIENTE:Fourier e Biot.

  • 7/24/2019 Incropera All Slides

    130/357

    NO CASO DO CILINDRO Bi < 0,1 DESPREZAM-SE GRADIENTESRADIAIS

    5.90

    Considerando que a carne fica cozida quando atinge uma temperatura de 80C,calcule o tempo necessrio para assar uma pea de carne com 2,25 kg.

    Admitir que a pea de carne um cilindro com dimetro igual ao comprimento eque as suas propriedades so equivalentes s de gua lquida.Considere que a carne se encontra inicialmente temperatura de 6C e que atemperatura do forno 175C e o coeficiente de conveco de 15 W/m2K

  • 7/24/2019 Incropera All Slides

    131/357

    temperatura do forno 175C e o coeficiente de conveco de 15 W/m2K.

    Propriedades da gua:

    CLCULO DAS DIMENSES DO CILINDRO:

  • 7/24/2019 Incropera All Slides

    132/357

    CLCULO DA TEMPERATURA NO CENTRO DO CILINDRO:

    SOLUO TENTATIVA-ERRO:

  • 7/24/2019 Incropera All Slides

    133/357

    I t d ti t C tiIntroduction to Convection:

  • 7/24/2019 Incropera All Slides

    134/357

    Introduction to Convection:Introduction to Convection:

    Flow and Thermal ConsiderationsFlow and Thermal Considerations

    Boundary Layers: Physical Features Velocity Boundary Layer

    A consequence of viscous effectsassociated with relative motionbetween a fluid and a surface.

  • 7/24/2019 Incropera All Slides

    135/357

    A region of the flow characterized by

    shear stresses and velocity gradients. A region between the surface

    and the free stream whosethickness increases in

    the flow direction.

    ( )0.99

    u y

    u

    =

    Why does increase in the flow direction?

    Manifested by a surface shearstress that provides a drag

    force, .

    s

    DF

    0s y

    u

    y =

    =

    s

    D s s

    A

    F dA=

    How does vary in the flowdirection? Why?

    s

    2

    2

    1

    =u

    C sf

    Thermal Boundary Layer

    A consequence of heat transfer

    between the surface and fluid.

    A region of the flow characterizedby temperature gradients and heat

  • 7/24/2019 Incropera All Slides

    136/357

    by temperature gradients and heatfluxes.

    A region between the surface andthe free stream whose thicknessincreases in the flow direction.

    t

    Why does increase in theflow direction?

    t

    Manifested by a surface heatflux and a convection heattransfer coefficient h .

    sq

    ( )0.99st

    s

    T T y

    T T

    =

    0s f y

    T

    q k y =

    =

    0/f y

    s

    k T yh

    T T

    =

    If is constant, how do andh vary in the flow direction?

    ( )sT T sq

  • 7/24/2019 Incropera All Slides

    137/357

  • 7/24/2019 Incropera All Slides

    138/357

    Governing equationsGoverning equations

    ( ) ( ) qpupTkhuh jj ++

    +

    +

    =

    +

    & Entalpia especfica

    peh +=

  • 7/24/2019 Incropera All Slides

    139/357

    ( ) ( ) qx

    utx

    kx

    hux

    ht j

    jjj

    jj

    ++

    +

    +

    =

    +

    p p

    ( ) ( ) qx

    pu

    t

    pT

    x

    Tk

    xTu

    xcT

    tc

    jj

    jjj

    jpp ++

    +

    +

    =

    +

    & Temperatura

    Coeficiente de expanso trmica:pT

    =

    1

    Gs perfeito: = 1/T

    Fluido incompressvel:= 0

    ( ) dpTdTcdh p

    1

    1 +=

    The Boundary Layer Equations

  • 7/24/2019 Incropera All Slides

    140/357

    Consider concurrent velocity and thermal boundary layer development for steady,two-dimensional, incompressible flow with constant fluid properties andnegligible body forces.

    ( ),, pc k

    Apply conservation of mass, Newtons 2nd Law of Motion and conservation of energy

    to a differential control volume and invoke the boundary layer approximations.Velocity Boundary Layer:

    Thermal Boundary Layer:

    T T

    y x

    >>

    , ,

    u v

    u u v vy x y x

    >>

    >>

    Conservation of Mass:

    0u v

    x y

    + =

    In the context of flow through a differential control volume, what is the physicalsignificance of the foregoing terms, if each is multiplied by the mass density ofthe fluid?

  • 7/24/2019 Incropera All Slides

    141/357

    Newtons Second Law of Motion:

    2

    2

    x-direction :

    u u dp uu v

    u dx y

    + = +

    What is the physical significance of each term in the foregoing equation?

    Why can we express the pressure gradient as dp/dx instead of / ?p x

    y-direction :

    0py

    =

    What is the physical significance of each term in the foregoing equation?

    Conservation of Energy:

    22

    2p T T T uc u v k x y y y

    + = +

  • 7/24/2019 Incropera All Slides

    142/357

    p y g g g q

    What is the second term on the right-hand side called and under what conditionsmay it be neglected?

    Boundary Layer Similarity As applied to the boundary layers, the principle ofsimilitude is based on

    determining similarity parameters that facilitate application of results obtained

    for a surface experiencing one set of conditions to geometrically similar surfacesexperiencing different conditions. (Recall how introduction of the similarityparametersBi and Fo permitted generalization of results for transient, one-dimensional condition).

  • 7/24/2019 Incropera All Slides

    143/357

    Dependent boundary layer variables of interest are:

    and ors q h

    For a prescribed geometry, the corresponding independent variables are:

    Geometrical: Size (L), Location (x,y)Hydrodynamic: Velocity (V)Fluid Properties:

    Hydrodynamic: ,

    Thermal : ,pc k

    ( )

    ( )

    Hence,

    , , , , ,

    , , , ,s

    u f x y L V

    f x L V

    =

    =

    ( )

    ( )

    and

    , , , , , , ,

    , , , , , ,

    p

    p

    T f x y L V c k

    h f x L V c k

    =

    =

    Key similarity parameters may be inferred by non-dimensionalizing the momentumand energy equations.

  • 7/24/2019 Incropera All Slides

    144/357

    Recast the boundary layer equations by introducing dimensionless forms of the

    independent and dependent variables. * *

    * *

    * s

    s

    x yx y

    L L

    u vu v

    V V

    T TTT T

    Neglecting viscous dissipation, the following normalized forms of the x-momentum

    and energy equations are obtained: * * * 2 ** ** * * *2

    * * 2 ** *

    * * *2

    1

    Re

    1

    Re Pr

    L

    L

    u u dp uu v

    x y dx y

    T T Tu v

    x y y

    + = +

    + =

    Reynolds NumbeRe the

    Pr

    r

    Prandtl Numberthe

    L

    p

    VL VL

    v

    c v

    k

    =

    =

    For a prescribed geometry,

    How may the Reynolds and Prandtl numbers be interpreted physically? 0Pr > nnt

  • 7/24/2019 Incropera All Slides

    145/357

    ( )* * *, ,ReLu f x y=

    *

    *

    *0 0

    s

    y y

    u V u

    y L y

    = =

    = =

    The dimensionless shear stress, or local friction coefficient, is then

    *

    *

    2 *0

    2/ 2 Re

    sf

    L y

    uC

    V y

    =

    =

    ( )*

    **

    *0

    ,ReLy

    uf x

    y=

    =

    ( )*2

    ,ReRef LL

    C f x=

    What is the functional dependence of the average friction coefficient,Cf?

    For a prescribed geometry,

    ( )* * *

    , ,Re ,PrLT f x y=

    ( )

    ( ) *

    * *0

    * *

    /f y f fsk T y k kT T T T

    hT T L T T y L y

    =

    = = = +

  • 7/24/2019 Incropera All Slides

    146/357

    ( ) ** 00s s yyT T L T T y L y ==

    The dimensionless local convection coefficient is then

    ( )*

    **

    *0

    , Re , PrLf y

    hL TNu f x

    k y =

    = =

    local Nusselt numberNu

    What is the functional dependence of the average Nusselt number?

    How does the Nusselt number differ from the Biot number?

  • 7/24/2019 Incropera All Slides

    147/357

    What may be said about transition if ReL < Rex,c? If ReL > Rex,c?

    Effect of transition on boundary layer thickness and local convection coefficient:

  • 7/24/2019 Incropera All Slides

    148/357

    Why does it increase

    significantly with transition to turbulence, despite the increase in the boundary layerthickness?

    Why does transition provide a significant increase in the boundary layer thickness?

    Why does the convection coefficient decay in the laminar region?

    Why does the convection coefficient decay in the turbulent region?

  • 7/24/2019 Incropera All Slides

    149/357

  • 7/24/2019 Incropera All Slides

    150/357

    Problem 6.28: Determination of heat transfer rate for prescribedturbine blade operating conditions from wind tunnel dataobtained for a geometrically similar but smallerblade. The blade surface area may be assumed to be

    directly proportional to its characteristic length .( )sA L

    SCHEMATIC:

  • 7/24/2019 Incropera All Slides

    151/357

    ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Surface area A isdirectly proportional to characteristic length L, (4) Negligible radiation, (5) Blade shapes are

    geometrically similar.

    ANALYSIS: For a prescribed geometry,

    ( )LhL

    Nu f Re , Pr .k

    = =

    The Reynolds numbers for the blades are

    ( ) ( )2 2L,1 1 1 1 1 L,2 2 2 2 2Re V L / 15m / s Re V L / 15m / s . = = = =

    Hence, with constant properties ( )1 2v v= , L,1 L,2Re Re .= Also, 1 2Pr Pr=Therefore,

    2 1Nu Nu=

    ( ) ( )2 2 2 1 1 1h L / k h L / k=

  • 7/24/2019 Incropera All Slides

    152/357

    ( ) ( )2 2 2 1 1 1h L / k h L / k

    ( )1 1 1

    2 12 2 1 s,1

    L L q

    h hL L A T T= =

    The heat rate for the second bladeis then

    ( )

    ( )

    ( )

    s,21 2

    2 2 2 s,2 12 1 s,1

    T TL Aq h A T T q

    L A T T

    = =

    ( )

    ( )( )

    s,22 1

    s,1

    T T 400 35q q 1500 W

    T T 300 35

    = =

    2q 2066 W.=

    COMMENTS: (i) The variation infrom Case 1 to Case 2 would cause ReL,2to differ fromReL,1. However, for air and the prescribed temperatures, this non-constant property effect issmall. (ii) If the Reynolds numbers were not equal ( ),1 2Re Re ,L L knowledge of the specific form of

    ( ),Re PrLf would be needed to determine h2.

    Problem 6.35: Use of a local Nusselt number correlation to estimate thesurface temperature of a chip on a circuit board.

  • 7/24/2019 Incropera All Slides

    153/357

    KNOWN: Expression for the local heat transfer coefficient of air at prescribed velocity andtemperature flowing over electronic elements on a circuit board and heat dissipation rate for a 4 4 mmchip located 120mm from the leading edge.

    FIND: Surface temperature of the chip surface, Ts.

    SCHEMATIC:

    ASSUMPTIONS: (1) Steady-state conditions, (2) Power dissipated within chip is lost by convectionacross the upper surface only, (3) Chip surface is isothermal, (4) The average heat transfer coefficientfor the chip surface is equivalent to the local value at x = L.

    PROPERTIES: Table A-4, Air (Evaluate properties at the average temperatureof air in the boundarylayer. Assuming Ts= 45C, Tave = (45 + 25)/2 = 35C = 308K. Also, p = 1atm):= 16.69

    10-6

    m2/s, k = 26.9 10

    -3W/mK, Pr = 0.703.

  • 7/24/2019 Incropera All Slides

    154/357

    ANALYSIS: From an energy balance on the chip,

    conv gq E 30mW.= =&

    Newtons law of cooling for the upper chip surface can be written as

    s conv chipT T q / h A= + (2)

    where 2chipA .=l

    Assuming that the averageheat transfer coefficient ( )h over the chip surface is equivalent to the local

    coefficient evaluated at x = L, that is, ( )chip xh h L ,the local coefficient can be evaluated by

    applying the prescribed correlation at x = L.0.85

    1/ 3xx

    h x Vx

    Nu 0.04 Prk

    = =

    0.851/ 3

    Lk VL

    h 0.04 PrL

    =

    ( )

    0.851/ 3 2

    L -6 20.0269 W/m K 10 m/s 0.120 m

    h 0.04 0.703 107 W/m K.0.120 m 16.69 10 m / s

    = =

    From Eq. (2), the surface temperature of the chip is

    ( )2-3 2

    sT 25 C 30 10 W/107 W/m K 0.004m 42.5 C.= + =o o

    COMMENTS (1) Th ti t d l f T d t l t th i ti i bl

  • 7/24/2019 Incropera All Slides

    155/357

    COMMENTS: (1) The estimated value of Taveused to evaluate the air properties is reasonable.

    (2) How else could chiph have been evaluated? Is the assumption of Lh h= reasonable?

    External Flow:External Flow:

  • 7/24/2019 Incropera All Slides

    156/357

    The Flat Plate in Parallel FlowThe Flat Plate in Parallel Flow

  • 7/24/2019 Incropera All Slides

    157/357

  • 7/24/2019 Incropera All Slides

    158/357

    Similarity Solution for Laminar,Constant-Property Flow over an Isothermal Plate

    Based on premise that the dimensionless x-velocity component, ,and temperature, , can be represented exclusively interms of a dimensionless similarity parameter

    /u u

    ( ) ( )* /s sT T T T T

    ( )1/ 2

    /y u x

  • 7/24/2019 Incropera All Slides

    159/357

    Similarity permits transformation of the partial differential equations associatedwith the transfer of x-momentum and thermal energy to ordinary differentialequations of the form

    3 2

    3 22 0

    d f d f

    fd d + =

    ( )where / / , u u df d and

    2 * *

    2 Pr 02+ =d T dT fd d

    Similarity Solution for Laminar,Constant-Property Flow over an Isothermal Plate

  • 7/24/2019 Incropera All Slides

    160/357

    Subject to prescribed boundary conditions, numerical solutions to the momentumand energy equations yield the following results for important local boundary layerparameters:

    ( )1/ 2

    - with / 0.99 at 55.0 5

    R

    . ,

    e/

    0

    x

    x

    u

    u

    vx

    u

    = == =

    2

    2- with /su d f

    u u vx

    = =

  • 7/24/2019 Incropera All Slides

    161/357

    2

    0 0

    s

    yy d

    = =2 2

    0and / 0.332,d f d

    = =

    , 1/ 2, 2 0.664Re

    / 2 xs x

    f xC

    u

    =

    ( ) ( )1/ 2* *

    0 0- with / / / / x s s

    yh q T T k T y k u vx dT d

    = =

    = = =

    * 1/ 3

    0and / 0.332 Pr for Pr 0.6,dT d

    = = >

    1/ 3

    r

    and

    Pt

    =

    1/ 2 1/ 30.332 Re Prxx xh x

    Nuk

    = =

    How would you characterize relative laminar velocity and thermal boundary layergrowth for a gas? An oil? A liquid metal?

    How do the local shear stress and convection coefficient vary with distance fromthe leading edge?

    Average Boundary Layer Parameters:

    1 x

  • 7/24/2019 Incropera All Slides

    162/357

    , 0

    1 xs x sdxx

    1/ 2, 1.328 Rexf xC

    =

    0

    1 xx xh

    x

    h dx=

    1/ 2 1/ 30.664 Re Prx xNu =

    The effect of variable properties may be considered by evaluating all propertiesat the film temperature.

    2s

    fT TT +=

    Turbulent Flow Local Parameters:

    1/ 5

    ,4 / 5 1/ 3

    0.0592 Re

    0.0296 Re Prf x x

    x x

    C

    Nu

    =

    =Empirical

    Correlations

    How do variations of the local shear stress and convection coefficient withdistance from the leading edge for turbulent flow differ from those for laminar flow?

  • 7/24/2019 Incropera All Slides

    163/357

    ( )4 / 5 1/ 30.037 Re 871 PrL LNu =

    Average Parameters:

    ( )101

    c

    c

    x L

    L am turbxh h dx h dx

    L= +

    Substituting expressions for the local coefficients and assuming

    5

    x ,cRe 5 10 ,= , 1/ 5

    0.074 1742

    Re Ref L L LC =

    ( ), ,1/ 5

    ,

    4 / 5 1/ 3

    For Re 0 or Re Re ,0.074 Re

    0.037 Re Pr

    x c c L x c

    f L L

    L L

    L x

    C

    Nu

    =

    =

    =

    Special Cases: Unheated Starting Length (USL)and/or Uniform Heat Flux

  • 7/24/2019 Incropera All Slides

    164/357

    For both uniform surface temperature (UST) and uniform surface heat flux (USF),the effect of the USL on the local Nusselt number may be represented as follows:

    ( )

    0

    1/ 30

    1 /

    Re Pr

    x

    x ba

    m

    x x

    NuNu

    x

    Nu C

    =

    =

    =

    =4/54/54/54/51/21/21/21/2mm

    0.03080.03080.02960.02960.4530.4530.3320.332CC

    1/91/91/91/91/31/31/31/3bb9/109/109/109/103/43/43/43/4aa

    USFUSFUSTUSTUSFUSFUSTUST

    TurbulentTurbulentLaminarLaminar

    Sketch the variation of hx versus for two conditions:What effect does an USL have on the local convection coefficient?

    ( )x 0 and 0. > =

    UST:

    ( )s x sq h T T =

    ( ) ( )( ) ( ) ( )

    2 / 2 12 1 / 2 2

    0

    lamina

    1 /

    1 for throughout

    = 4 for througho

    r flow

    turbulent w uflo t

    p pp p

    L L

    LNu Nu LL

    p

    p

    ++ +

    = =

    =

    ( )= L s sq h A T T

  • 7/24/2019 Incropera All Slides

    165/357

    1

    laminar/turbulent flownumerical integration f1

    or

    c

    c

    L

    x L

    L am turbx

    h

    h h dx h dxL

    = +

    USF:s

    s

    x

    qT Th

    = + s sq q A=

    Treatment of Non-Constant Property Effects:

    Evaluate properties at the film temperature.

    2s

    f

    T TT

    +=

    Problem 7.21: Preferred orientation (corresponding to lower heat loss) and thecorresponding heat rate for a surface with adjoining smooth androughened sections.

  • 7/24/2019 Incropera All Slides

    166/357

    SCHEMATIC:

    ASSUMPTIONS: (1) Surface B is sufficiently rough to trip the boundary layer when in the upstream position

    (Configuration 2); (2) 55 10,Re for flow over A in Configuration 1.x c

    PROPERTIES: Table A-4, Air (Tf= 333K, 1 atm): = 19.2 10-6

    m2/s, k = 28.7 10

    -3

    W/mK, Pr = 0.7.

    ANALYSIS: Since Configuration (2) results in a turbulent boundary layer over the entiresurface,the lowest heat transfer is associated with Configuration (1).

    Find

    6L -6 2

    u L 20 m/s 1mRe 1.04 10 .

    19.2 10 m / s = = =

    Hence in Configuration (1), transition will occur just before the rough surface (xc= 0.48m).

  • 7/24/2019 Incropera All Slides

    167/357

    ( )L,14 / 56 1/3Nu 0.037 1.04 10 871 0.7 1366

    = =

    For Configuration (1):L,1

    L,1h LNu 6

    k.136= =

    Hence

    ( )3 2L,1h 1366 28.7 10 W/m K /1m 39.2 W/m K= = 1568 W=

    External Flow:External Flow:Flow over Bluff ObjectsFlow over Bluff Objects

  • 7/24/2019 Incropera All Slides

    168/357

    (Cylinders, Sphere)(Cylinders, Sphere)

    The Cylinder in Cross Flow

    Conditions depend on special features of boundary layer development, includingonset at a stagnation point and separation, as well as transition to turbulence.

  • 7/24/2019 Incropera All Slides

    169/357

    Stagnation point: Location ofzero velocity and maximum pressure.( )0u=

    Followed by boundary layer development under a favorable pressure gradientand hence acceleration of the free stream flow .( )/ 0dp dx< ( )/ 0du dx >

    As the rear of the cylinder is approached, the pressure must begin to increase.Hence, there is a minimum in the pressure distribution,p(x), after which boundary

    layer development occurs under the influence of an adverse pressure gradient( )/ 0, / 0 .dp dx du dx> D

    x

    The Local Nusselt Number:

    How does the local Nusselt number vary with for ?What conditions are associated with maxima and minima in the variation?

    What conditionsare associated with maxima and minima in the variation?

    ( )

  • 7/24/2019 Incropera All Slides

    173/357

    The Average Nusselt Number( )/ :DNu hD k

    Churchill and Bernstein Correlation:

    ( )

    4 / 55 / 81/ 2 1/ 3

    1/ 42 / 3

    0.62Re Pr Re0.3 1 282,0001 0.4 / Pr

    D DDNu

    = + + +

    Cylinders of Noncircular Cross Section:

    1/ 3Re PrmD DNu C=, Table 7.3C m

    0.8050.0274104 41050.6180.1934103 41040.4660.68340 41030.3850.9114 40

    0.3300.9890.4 4

    mCReD

    Flow Across Tube Banks

    A common geometry fortwo-fluid heat exchangers.

    Aligned and Staggered Arrays:

  • 7/24/2019 Incropera All Slides

    174/357

    max

    STV VS DT= Aligned:

    Staggered: ( ) ( )if 2maxSTV V S D S DD TS DT

    =

    ( ) ( ) ( )if 2max 2

    STV V S D S DD TS DD

    = or,

    Flow Conditions:

  • 7/24/2019 Incropera All Slides

    175/357

    How do convection coefficients vary from row-to-row in an array?

    How do flow conditions differ between the two configurations?

    Why should an aligned array not be use for ST/SL < 0.7?

    Average Nusselt Number for an Isothermal Array:

    ( )1/ 40.36

    2 ,maxRe Pr Pr/ Prm

    D D sNu C C =

    2

    , Table 7.7Table 7.8

    C m

    C

    All properties are evaluated at except for Prs.( )/ 2i oT T+

    Aproximado por um tubo102 103

    0.400.9010 - 1020.840.0212105 - 2106

    0.630.27103 - 2105 (ST/SL 2)

    0.600.35 (ST/ S

    L)1/5103 - 2105 (S

    T/ S

    L< 2)

    Aproximado por um tuboisolado

    102 103

    Tubosdesfasados

    0.990.980.970.950.920.890.840.760.64Desfasados

    0.990.980.970.950.920.900.860.800.70Alinhados

    161310754321NL

    Fluid Outlet Temperature (To) :

    s o

    s i T T p

    T T DNhexp

    T T VN S c

    =

    T LN N N= x

    What may be said about To as ?N

    Total Heat Rate:

    hA T

  • 7/24/2019 Incropera All Slides

    177/357

    s mq hA T = l

    ( )sA N DL=

    ( ) ( )s i s om

    s i

    s o

    T T T T T

    T TnT T

    =

    l

    l

    Pressure Drop:2

    max

    2L

    Vp N f

    =

    , Figures 7.13 and 7.14f

  • 7/24/2019 Incropera All Slides

    178/357

    The Sphere Flow over a sphere

    Boundary layer development is similar to that for flow over a cylinder,

    involving transition and separation.

    ( ) ( )1/ 41/ 2 2 / 3 0.42 0.4Re 0.06Re Pr / D D D sNu = + +

    Figure 7.8DC

  • 7/24/2019 Incropera All Slides

    179/357

    Problem: 7.78 Measurement of combustion gas temperature with a sphericalthermocouple junction.

    KNOWN: Velocity and temperature of combustion gases. Diameter and emissivity of thermocouple

  • 7/24/2019 Incropera All Slides

    180/357

    KNOWN: Velocity and temperature of combustion gases. Diameter and emissivity of thermocoupleunction. Combustor temperature.

    FIND: (a) Time to achieve 98% of maximum thermocouple temperature rise for negligible radiation, (b)Steady-state thermocouple temperature, (c) Effect of gas velocity and thermocouple emissivity on

    measurement error.

    SCHEMATIC:

    ASSUMPTIONS: (1) Validity of lumped capacitance analysis, (2) Constant properties, (3) Negligibleconduction through lead wires, (4) Radiation exchange between small surface and a large enclosure (parts band c).

    PROPERTIES: Thermocouple: 0.1 1.0, k = 100 W/mK, c = 385 J/kgK, = 8920 kg/m

    3

    ; Gases:k = 0.05 W/mK,= 50 10-6m2/s, Pr = 0.69.

    ANALYSIS: (a) If the lumped capacitance analysis may be used, it follows from Equation 5.5 that

    ( )i

    s

    T TVc D ct ln ln 50

    T ThA 6h

    = =

    .

  • 7/24/2019 Incropera All Slides

    181/357

    Neglecting the viscosity ratio correlation for variable property effects, use of V = 5 m/s with the Whitakercorrelation yields

    ( ) ( )1/ 2 2 / 3 0.4D D DNu hD k 2 0.4 Re 0.06 Re Pr= = + +

    ( ) ( )( )( )1/ 2 2 / 3 0.4 20.05W m Kh 2 0.4 100 0.06 100 0.69 328W m K0.001m = + + =

    Since Bi = ( )oh r 3 k = 5.5 10-4, the lumped capacitance method may be used.

    ( ) ( )3

    20.001m 8920 kg m 385J kg Kt ln 50 6.83s

    6 328W m K= =

    (b) Performing an energy balance on the junction, qconv= qrad.

    Hence, evaluating radiation exchange from Equation 1.7 and with = 0.5,

    ( ) ( )4 4s s chA T T A T T =

    ( ) ( )8 2 4

    44 42

    0.5 5.67 10 W m K1000 T K T 400 K

    328W m K

    =

    T = 936 K

  • 7/24/2019 Incropera All Slides

    182/357

    Parametric calculations to determine the effects of V and yield the following results:

    0 5 10 15 20 25

    Velocity, V(m/s)

    900

    950

    1000

    Temperature,

    T(K)

    Emissivity, epsilon = 0.5

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Emissivity

    890

    910

    930

    950

    970

    990

    Temperature,

    T(K)

    Velocity, V = 5 m/s

    Since the temperature re