71
1 Introdução 2 A Função Y = Ax + B ...................................................................................... 3 Equação de 2º Grau ........................................................................................... 6 A Matemática e o Dinheiro ................................................................................ 16 A Trigonometria do Triângulo Retângulo .......................................................... 17 O Coeficiente Angular ...................................................................................... 21 Resolvendo Problemas com Logarítomo ............................................................ 26 Progressão Aritmética ....................................................................................... 36 Somando os Temos de uma Progressão Aritmética ............................................ 41 Progressão geométrica ....................................................................................... 43 Matrizes............................................................................................................ 47 Combinação....................................................................................................... 59 Equação exponencial ......................................................................................... 60 Matemática Comercial e Financeira .................................................................... 63 Bibliografia ........................................................................................................ 69 ÍNDICE

Matem-tica Ensino M-dio.pdf

Embed Size (px)

Citation preview

Page 1: Matem-tica Ensino M-dio.pdf

1

Introdução 2

A Função Y = Ax + B ...................................................................................... 3

Equação de 2º Grau ........................................................................................... 6

A Matemática e o Dinheiro ................................................................................ 16

A Trigonometria do Triângulo Retângulo .......................................................... 17

O Coeficiente Angular ...................................................................................... 21

Resolvendo Problemas com Logarítomo ............................................................ 26

Progressão Aritmética ....................................................................................... 36

Somando os Temos de uma Progressão Aritmética ............................................ 41

Progressão geométrica ....................................................................................... 43

Matrizes............................................................................................................ 47

Combinação....................................................................................................... 59

Equação exponencial ......................................................................................... 60

Matemática Comercial e Financeira .................................................................... 63

Bibliografia ........................................................................................................ 69

ÍNDICE

Page 2: Matem-tica Ensino M-dio.pdf

2

INTRODUÇÃO

Por que estudar matemática? Para que ela serve? Certamente você já se fez essa pergunta. A

matemática está muito mais presente em sua vida, no seu dia-a-dia, do que você pensa. Em todas as atividades

humanas, das mais simples às mais sofisticadas, usa-se matemática.

Todos nós usamos matemática diariamente, mesmo sem perceber. Em uma compra, ao pagar e ao

receber o troco, estamos fazendo matemática. Quando lemos no pacote de macarrão: Cozinhar em 1 litro de

água fervente para cada 100 gramas de massa, estamos lidando com uma informação que contém

matemática.

Muita gente pensa que quem faz contas com rapidez é bom em matemática. É engano! Fazer contas

rapidamente é uma habilidade que se adquire com a prática. Muito mais importante que fazer contas com rapidez

é descobrir quais são as operações que devemos usar para resolver um problema. Portanto, em matemática o

mais importante é o raciocínio.

Esta apostila foi feita para que você se prepare para os exames do provão. E o resultado que

esperamos é a sua aprovação. Mas lembre-se, muito mais que o certificado de conclusão do ensino médio, vai

valer o que você realmente aprendeu. É isto, e não um diploma, que vai lhe ajudar a passar num concurso para

emprego e a resolver muitas outras situações do cotidiano.

Page 3: Matem-tica Ensino M-dio.pdf

3

A FUNÇÃO (Y = AX + B)

Sendo a forma equacionada da função de 1 grau a equação y = ax + b e que o seu gráfico é sempre uma

reta, temos que observar alguns valores que modificam o sentido desta reta é o que iremos descobrir logo a

seguir.

1) Se a = 0, a nossa equação fica com a forma y = b e passaremos a chamá – la de função constante. Seu

gráfico é uma reta horizontal. Veja :

y

b y = b

x

Se a 0, a expressão y = ax + b chama – se função do primeiro grau, Ainda, se a>0 ( a positivo )

ela é uma função crescente ; se a < 0 ( a negativo ) , ela é uma função decrescente, como mostram os

gráficos :

Y y

a > 0 a < 0

x x

FUNÇÕES DO 1º GRAU

Vamos aprender agora um pouco mais sobre a função do 1º grau, que é a única cujo gráfico é uma

reta.

Inicialmente precisamos rever o gráfico da função do 1ºgrau.Como construí–lo ?

Page 4: Matem-tica Ensino M-dio.pdf

4

Y = 1 x + 1

2

Atribuímos a x dois valores quaisquer e calculamos os valores correspondentes de y. Na tabela a

seguir, fizemos x = 0 e x = 4. Os valores de y foram calculados, os pontos marcados no plano cartesiano e o

gráfico construído .

y

x y

0 1 3 -

4 3

1 -

4

Agora, precisamos fazer o contrário. Dados dois pontos de uma função do 1º grau, como proceder

para descobrir uma fórmula que a represente ? Acompanhe o exemplo a seguir.

EXEMPLO

Descobrir a função do 1º grau que contém os pontos (3,9 ) e (5,13) .

Solução: A função do 1º grau tem a forma y = ax + b . Vamos substituir nessa expressão os dois dados.

Substituindo ( 3,9 ) 9 = a . 3 + b

Substituindo (5 , 13 ) 13 = a . 5 + b

Organizando essas equações, temos um sistema :

3a + b = 9

5a + b = 13

Para resolver, vamos trocar os sinais da primeira equação e depois somar :

1) -3a – b = - 9

2) 5a + b = 13

2a = 4 a = 2

Substituindo a = 2 na primeira equação temos

- 3 . 2 + b = -9

b = - 9 + 6

b = 3

Logo a função procurada e y = 2.x + 3

*

*

Page 5: Matem-tica Ensino M-dio.pdf

5

A RAIZ DA FUNÇÃO

A raiz da função y = ax + b é o valor de x que torna y igual a zero. Por isso esse valor de x também e

chamado de zero da função. Vamos calcular, por exemplo a raiz ( ou o zero ) da função y = 2x – 3 Fazendo y

= 0 , temos

2x – 3 = 0

2x = 3

x = 3

2

O valor x = 3 é a raiz ( ou o zero ) função y = 2x – 3 Como você vê no gráfico abaixo, a

2

raiz da função é o ponto onde a reta corta o eixo dos x.

y

y = 2x - 3

3 x

2

- 3 raiz

EXEMPLO

No Brasil, as temperaturas são medidas em graus Celsius. Nos Estados Unidos, elas são medidas em

outra escala : em graus Farenheit. Um técnico está trabalhando com um motor americano e as temperaturas de

funcionamento estão nesta escala, que ele desconhece. Felizmente, existe uma fórmula que permite relacionar a

escala americana com a que usamos aqui:

Y = 5x – 160

9

onde: y é a temperatura em graus Celsius ( ºC )

x é a temperatura em graus Farenheit ( º F )

Como e o gráfico dessa função ?

Solução : Para fazer o gráfico de uma função do 1º grau, necessitamos de dois pontos quaisquer . Vamos

escolher y = 0, que é a temperatura em que a água congela, e y = 100, que é a temperatura em que a água ferve:

y = 0 5x – 160 = 0

9

5x – 160 = 0

5x = 160

x = 160 = 32

5

y = 100 5x – 160 = 100

9

Page 6: Matem-tica Ensino M-dio.pdf

6

5x – 160 = 900

5x = 1.060

1.060 = 212

5

Observe então a tabela e o gráfico

x y y(º C )

32 0 100

212 100

32 212 x (ºF)

veja que o zero ( ou raiz ) de função y = 5x - 160 é x = 32:

Observe que, na escala Farenheit, a água congela a 32ºF e ferve a 212 ºF.

EXERCÍCIO 1

Faça o gráfico da função y = 0,4x + 2

EXERCÍCIO 2

Determine a função do 1ª grau que contém os pontos :

a) ( 1, -3 ) e ( 6, 7 );

b) (1, 3 ) e ( 5, - 1).

EXERCÍCIO 3

Na função da temperatura que mostramos no Exemplo acima, qual é o coeficiente angular ?

EXERCÍCIO 4

O taxímetro determina o preço da corrida em unidades taximétricas ( Uts). Estas são depois convertidas em

reais e a tabela de conversão é diferente em cada cidade. O taxímetro parte de um valor de UTs para casa

quilômetro rodado.

Vicente fez várias corridas de táxi. Verificou que, percorridos 3 Km, o taxímetro marcou 3 UTs; percorridos 8

Km, o taxímetro marcou 5 UTs. Seja x o número de quilômetros percorridos e y o número de UTs marcado,

determine:

a) y em função de x,

b) quantas UTs o taxímetro marca em uma corrida de 20 Km.

EQUAÇÕES DE 2º GRAU

Chama-se equação de 2º grau com uma variável toda equação que pode ser colocada na forma : ax2 +

bx + c = 0 , onde x é variável e a, b e c são coeficientes.

A equação ax2 + bx + c ( a 0 ) , é chamada equação incompleta quando b = 0 ou c = 0 , ou ambos são nulos

.

1) 2x2 – 5x = 0 ( c = 0 )

• •

• •

Page 7: Matem-tica Ensino M-dio.pdf

7

2) x2 – 9 = 0 ( b = 0 )

3) 3x2 = 0 ( b = 0 e c = 0 )

1º Caso : Equações da forma ax2 + bx = 0

Exemplo: Resolver fatorando

X2 – 4x = 0

X (x – 4 ) = 0

X = 0 ou X – 4 = 0

V = {0,4}

Nesse caso, uma das raízes é sempre zero.

2º Caso : Equações da forma ax2 + c = 0

Exemplo :

Resolver as equações:

1) x2 – 81 = 0

x2 = 81

x = ± 81 => x = ± 9 v { - 9 , 9 }

2) 7x2 – 28 =0

7x2 = 28

x2 = 28

7

x2 = 4

x = + √4

x = + 2

x = { -2 , 2 }

3) x2 + 16 = 0

x2 = - 16

x = + √-16 x R

RESOLUÇÃO DE EQUAÇÕES COMPLETAS

A resolução de uma equação completa do 2ºgrau pode ser obtida pela fórmula de Báskara.

= b2 – 4ac discriminante da equação.

Se 0 , podemos escrever : x= -b

2a

Se < 0 , a equação não admite raízes reais.

Exemplo:

Resolver as equações:

1) x2 + 8x +12 = 0

Solução:

Page 8: Matem-tica Ensino M-dio.pdf

8

Temos a = 1 , b = 8 e c= 12

Calculando o valor de :

= b2 – 4ac

= (8)2 – 4 .1 . 12

= 64 – 48

= 16

x = -b ±

2a

x1 = - 8 + 4 = -2

x = - 8 ± 4 = -8 ± 4 2

2 . 1 2

x2 = - 8 – 4 = - 6

2

As raízes da equação são x1 = -2 e x2 = - 6

V = { - 6 , - 2 }

2 ) (x – 1 )2 = x + 5

x2 – 2x + 1 = x + 5

x2 – 2x – x + 1 – 5 = 0

x2 – 3x – 4 = 0

a = 1, b = - 3 c = - 4

= b2 – 4 a c

= ( - 3 ) 2 – 4 . 1 . (-4 )

= 9 + 16

= 25

Substituindo na fórmula :

X = - b ±√

2 a

x = - ( - 3 )± √25 = 3 ±5 x1 = 3 + 5 = 8 = 4

2 1 2 2 2

x2 = 3 – 5 = - 2 = - 1

2 2

V = { - 1 , 4 }

EQUAÇÕES FRACIONÁRIAS

Exemplo :

Resolver a equação:

2 + 2 + 5 = 0 ( x 0 e x 1 )

Page 9: Matem-tica Ensino M-dio.pdf

9

3x x – 1 3

2 ( x – 1 ) + 6x + 5x( x – 1 ) = 0 .

3 x ( x – 1 ) 3 x ( x – 1 ) 3 x ( x – 1 )

2x – 2 + 6x + 5x2 – 5x = 0

5 x2 + 3x – 2 = 0

= ( + 3 )2 – 4 . 5 . ( - 2 )

= 9 + 40

= 49

x = - 3 ± 7 x1 = - 3 + 7 = 4 = 2 .

10 10 10 5

x2 = - 3 – 7 = - 10 = - 1

10 10

V = { - 1 , 2 }

5

EXERCÍCIOS:

1 ) 5x2 – 3x = 0 Resp.: {0, 3 }

5

2) x2 – x = 0 Resp.: { 0 , 1 }

3) – 4x2 – 12x = 0 Resp.: { - 3 ,0 }

4) (x + 5 )2 = 25 Resp.: {0, - 10}

5) x(x – 3 )2 = 25 Resp.: {0, 5 }

6) x2 – 49 =0 Resp.: { -7, 7 }

7) 16 = 9x2 Resp.: {- 4 , 4 } 3 3

8) 5x2 – 15 Resp.: {√ 3 , -√ 3 }

9) x2 + 8x + 12 = 0 Resp.: {1, 3 }

4

10) ( x + 4 ) . ( x – 1 ) = 5x + 20 Resp.: V = { - 4 , 6 }

11) x + 1 = 7 Resp.: { 6 }

x – 5

Page 10: Matem-tica Ensino M-dio.pdf

10

12) 4x2 – 4x + 2 = 0 Resp.: ø

13) x2 – 2x + 1 = 0 Resp.: {1}

14) x – 1 = x Resp.: {2}

x 4

15) x - 2 = x – 5 Resp.: {3 }

x + 1 x – 1 x2 – 1

16) x2 - x = 5 – x + 4 Resp.: {- 11 , 2 } 2 3 6

17) x2 - 1 = 3x + 1 Resp.: { 5, - 1 }

3 2 2

18) x + 10 = 4x – 2 Resp.: {- 4 , 4 }

2 x – 2

DISCUSSÃO DAS RAÍZES

Se > 0 , a equação tem duas raízes reais e diferentes.

Se = 0 , a equação tem duas raízes reais e iguais

Se < 0, a equação não tem raízes ( reais )

Através do ( discriminante ) podemos discutir a existência das raízes.

Exemplo :

Determine o valor de K na equação 2x2 – 3x + 4K = 0, para que as raízes.

a) sejam reais e diferentes.

b) sejam reais e iguais .

c) não sejam reais.

Cálculo do discriminante;

= b2 – 4ac

= (-3)2 – 4 .2.4K

= 9 – 32K

a) raízes são reais e diferentes : > 0

9 – 32K >0

-32K > -9

32K < 9

k < 9 .

32

b) raízes são reais e iguais : = 0

9 – 32K = 0

- 32K = -9

32K = 9

k = 9 .

Page 11: Matem-tica Ensino M-dio.pdf

11

32

c) raízes não são reais: < 0

9 – 32K < 0

-32K < -9

32K > 9

K > 9 .

32

Propriedade das Raízes (Relações de Girard )

Existem, entre as raízes x1 e x2 e os coeficientes a , b, c, importantes relações conhecidas como

relações de Girard.

Soma da Raízes

x1 + x2 = - b ou s = - b .

a a

Produto das Raízes

x1 . x2 = c ou p = c .

a a

Exemplos:

1) Calcular a soma e o produto das raízes das equações :

a) x2 + 7x + 12 = 0

S = x1 + x2 = - b . P = x1 . x2 = c .

a a

S = x1 + x2 = -7 P = x1 . x2 = 12

b) x2 - 2ax + a2 < 0

S = x1 + x2 = - b = + 2a

a

c) P = x1 . x2 = c = a2

2) Determinar o valor de K na equação 4x2 – ( K – 2 ) x + 3 para que a soma das raízes seja ¾.

Temos : x1 + x2 = - b = k – 2

a 4

k - 2 = 3 .

4

k - 2 = 3 .

4 4

Page 12: Matem-tica Ensino M-dio.pdf

12

k – 2 = 3

k = 5

Composição de uma Equação

Podemos compor uma equação do 2º grau a partir das relações de soma e de produto de suas raízes .

Como x1 + x2 = - b e x1 . x2 = c, temos :

a

x2 – ( x1 + x2 ) x + x1 . x2 = 0 ou

S P

X2 – Sx + p = 0 em que S é a soma e P é o produto das raízes.

Exemplo:

Compor a equação do 2º grau cujas raízes são 2 e 5 :

x1 + x2 = 2 + 5 = 7

x1 . x2 = 2 . 5 = 10

Substituindo a soma e o produto das raízes em x2 - Sx + P = 0 , obteremos :

x2 – 7x + 10 = 0

a) y2 + 3y – 4 = 0 Resp.: S = -3 e P = -4

b) x2 + 9x – 20 = 0 Resp.: S = -9 e P = -20

c) 2x2 + 5x + 2 = 0 Resp.: S = - 5 e P = 1

2

d) x2 - 7x + 10 = 0 Resp.: S = 7 e P = 10

Antes de construir o gráfico da função y = ax2 + b + c . é possível saber como será a sua concavidade .

Basta observar o sinal do coeficiente a:

Se a > 0 ( a positivo ), a concavidade estará voltada para cima:

a > 0 concavidade voltada para cima

Se a < 0 ( a negativo ) , a concavidade estará voltada para baixo

Page 13: Matem-tica Ensino M-dio.pdf

13

a < 0 concavidade voltada para baixo

AS RAÍZES

As raízes de uma função são os pontos onde seu gráfico corta o eixo dos x na função do 2º grau y =

ax2 + b + c , se y = 0 obtemos a equação ax2 + bx + c =0. Podemos, então , ter três casos:

A equação tem duas raízes diferentes. A parábola, então, corta o eixo dos x em dois pontos distintos.

x1 x2

Fig A : a função tem duas raízes: x1 e x2

A equação tem apenas uma raiz. A parábola é, então, tangente ao eixo dos x.

Fig B: a função tem uma única raiz:

A equação não tem raiz . A parábola, então, não corta o eixo dos x.

x

Fig C: a função não tem raízes

EXEMPLO

Tomemos como exemplo a função:

Y = x2 – 6x + 8

Para construir seu gráfico assinalando poucos pontos, devemos inicialmente verificar se a função possui

raízes. Vamos então resolver a equação x2 – 6x + 8 = 0 usando a fórmula que aprendemos:

Page 14: Matem-tica Ensino M-dio.pdf

14

X = - ( - 6 ) ± √ ( - 6 )2 - 4 . 1 . 8

2 . 1

x = 6 ± √ 36 – 32 = 6 ± √ 4 = 6 ± 2

2 2 2

As raízes da nossa função são, portanto :

x1 = 6 - 2 = 4 = 2 x1 = 2

2 2

x2 = 6 + 2 = 8 = 4 x2 = 4

2 2

Descobrimos que o gráfico da nossa função corta o eixo dos x nos pontos x1 = 2 e x2 = a e sabemos

também que a parábola terá concavidade voltada para cima porque a = 1 (positivo). Basta, então, para construir

a tabela, atribuir a x outros valores próximos aos que já temos. É muito importante atribuir a x o valor x1 + x2 ,

porque ele fica bem no meio das raízes e vai determinar o ponto mais baixo da parábola : 2

X Y

1 3

x1= 2 0

(x1+x2)/2 = 3 -1

O VÉRTICE

No gráfico que acabamos de construir, ponto V = ( 3, -1 ) é o vértice da parábola. Ele é o ponto mais

baixo da parábola quando a > 0.

Vértice (a > 0)

No gráfico da função y = - x2 + 6x, que voce viu no início dêste assunto, o ponto ( 3 ,9) é também o

vértice da parábola, que fica no ponto mais alto do gráfico, porque a < 0 .

1 2 3 4 5

- 1

x2 = 4 0

5 3

3

-1

2 3 4

Page 15: Matem-tica Ensino M-dio.pdf

15

Vértice ( a < 0 )

Para a construção do gráfico de uma função do 2º grau, o vértice é seu ponto mais importante. É

possível encontra-lo de forma bastante simples. Chamando de xv a abscissa do vértice da parábola y = ax2 + bx

+ c, temos :

Xv = - b .

2a

Além disso, se a função possui raízes x1 e x2 podemos encontrar a abscissa do vértice determinando o

seu ponto médio, ou seja :

Xv = x1 + x2

2

A IMAGEM

Como você já sabe, a imagem de uma função é o conjunto dos valores de y que correspondem aos

valores de x no domínio. Recorde essa noção observando o gráfico :

y2

Gráfico da função

y1

imagem y1≤ y ≤ y2

Para determinar a imagem de uma função do 2º grau (cujo domínio é o conjunto de todos os números

reais ), precisamos conhecer seu vértice. Se a > 0, então o vértice é o ponto mais baixo de seu gráfico, e neste

caso, a imagem da função fica assim:

Observando o gráfico anterior e chamando de yv a ordenada do vértice da parábola, a imagem será o

conjunto de todos os valores de y tais que y > = yv. Se a< 0, ocorre o contrário: a concavidade estará voltada

para baixo e a imagem será o conjunto dos números reais tais que y < = yv .

imagem

gráfico da função

y

3

9

0

Page 16: Matem-tica Ensino M-dio.pdf

16

EXEMPLO

Consideremos a função y = x2 – 4x + 5 .

Sabendo que ela tem concavidade votada para cima, pois a= 1 .

Para fazer um esboço de seu gráfico, determinamos seu vértice. Primeiro, precisamos encontrar sua abscissa :

Xv = - b = - ( - 4 ) = 2

2 a 2 . 1

Substituímos então esse valor de x na função para encontrar a ordenada do vértice :

Yv = 22 – 4 . 2 + 5 = 1

Portanto, o vértice é o ponto ( 2 , 1 ) e, como a concavidade está voltada para cima, o gráfico tem este aspecto:

A imagem da função é então o conjunto dos valores de y tais que y 1.

EXERCÍCIO 1

Faça o gráfico da função y = x2

Sugestão : Organize uma tabela atribuindo a x os valores - 2 , -1 , 0 , 1 e 2

EXERCÍCIO 2

Observe o exemplo e faça um pequeno esboço do gráfico das funções calculando o vértice da

parábola e verificando sua concavidade.

Exemplo: Y = x2 – 6x + 7

xv = - b = - ( -6 ) = 3

Vértice 2 a 2 . 1

yv = = 32 – 6 . 3 + 7 = 9 – 18 + 7 = - 2

A MATEMÁTICA E O DINHEIRO

yv x

imagem vértice

1

2 x

{

Page 17: Matem-tica Ensino M-dio.pdf

17

Muita Gente pensa que a Matemática, em relação ao dinheiro, só serve para fazer troco e para calcular

o total a pagar no caixa. Não é bem assim. Sem a matemática, não conseguiríamos entender nossos

contracheques, calcular nossos aumentos de salário, perceber os produtos que aumentaram demasiadamente de

preço etc...

Nesta aula, vamos conhecer as porcentagens, os juros compostos e diversas outra coisas que fazem

parte do nosso dia-a-dia , como aumentos de descontos, Aconselhamos que você confira os cálculos desta aula

usando uma calculadora, a qual também deverá ser usada para a resolução dos exercícios.

PORCENTAGEM

Vamos começar com um exemplo.

Se o preço de um artigo era de R$ 4,00 e passou a ser de R$ 5,00, o aumento de preço foi de R$

1,00 sobre um preço de R$ 4,00, e a fração que representa o aumento do preço, chamada de taca de aumento,

é ¼ . comumente preferimos representar essas frações em centésimos, que são chamados de porcentos e

representados por % . Como ¼ = 0,25 ou seja , 25 centésimos, a taxa de aumento do preço foi de 25%.

Vejamos mais alguns exemplos.

EXEMPLO 1

O preço de um artigo era de R$ 36,00 e sofreu uma diminuição de 15% . Para quanto passou ?

Solução : Como 15% = 0,15, a diminuição de preço foi de 0,15 . 36 = 5,40 = R$ 30,60

EXEMPLO 2

Uma loja oferece um desconto de 20% nos preços, para pagamento à vista . Quanto custa, à vista, um

artigo cujo preço é de R$ 45,00 ?

Solução : O desconto é de 0,20 . 45 = 9 . O preço para pagamento à vista é R$ 45,00 – R$ 9,00 = R$ 36,00.

AUMENTOS E DESCONTOS SUCESSIVOS

Imagine que um produto sofra um aumento de 30% em um mês e um de 20% no mês seguinte, Qual

será a taxa de aumento total que sofrerá o preço do produto nesses dois meses ?

Essa é uma pergunta interessante, porque a maioria das pessoas pensam, erroneamente, que a taxa de

aumento total foi de 30% + 20% = 50% . Se o preço do produto era de 100 (sempre podemos tomar o preço

do produto) , o primeiro aumento to de 30% de 100, isto é, de 0,30 .100 = 30 o que elevou o preço do

produto para 100 + 30 = 130, isto é , de 0,20 . 130 = 26, o que elevou o preço do produto para 130 + 26 =

156. O aumento total foi de 156 – 100 = 56 sobre o preço de 100. A taxa total de aumento foi de

56 = 0,56 = 56%

100

Vejamos mais alguns exemplos:

Page 18: Matem-tica Ensino M-dio.pdf

18

Exemplo 3

O preço de um artigo sofreu dois descontos sucessivos, de 30% e de 20% . Qual foi a taxa total de

desconto ?

Solução: Se preço do artigo era 100, o primeiro desconto foi de 0,30 . 100 = 30, o que baixou o preço para

100 – 30 = 70 ; o segundo desconto foi de 0,20 . 70 = 14 o que mudou o preço para 70 – 14 = 56. A redução

total do preço foi de 100 – 56 = 44 sobre um preço de 100. A taxa total de desconto foi de .

44 = 0,44 = 44%

100

A TRIGONOMETRIA DO TRIÂNGULO RETÂNGULO

Neste capítulo vamos estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer

triângulo que possua um ângulo reto e que , para este tipo de triângulo, há várias propriedades importantes.

Dois de seus lados são perpendiculares entre si e são , portanto, alturas do triângulo, que facilita o

cálculo de sua área:

A = cateto . cateto

2

Teorema de Pitágoras : ( hipotenusa ) 2 = ( cateto ) 2 + ( cateto ) 2

Como a soma dos ângulos de qualquer triângulo é 180º, num triângulo retângulo um dos ângulos é reto

(90 º) e os outros dois são sempre agudos e complementares (soma = 90º ) .

vamos descobrir como podemos estabelecer relações entre ângulos de um triângulo (ângulos agudos) e

seus lados. “ será que existem tais ralações ?” É essa nossa primeira preocupação. A seguir, caso existam,

serão respondidas perguntas naturais como : “ valem sempre ?” ; “como enuncia-las ?” etc.

CONSTRUINDO TRIÂNGULOS RETÂNGULOS SEMELHANTES

Dado um ângulo agudo qualquer, é possível desenhar um triângulo retângulo ?

X

Page 19: Matem-tica Ensino M-dio.pdf

19

Sim. Podemos desenhar, na verdade , uma infinidade de triângulos retângulos.

Vamos anotar algumas observações sobre esses triângulos retângulos:

Para todos eles, um dos ângulos mede x.

O outro ângulo agudo mede 90º - x, pois é o complemento de x .

O terceiro ângulo, como não poderia deixar de ser, é reto.

Então todos eles possuem os mesmos ângulos.

Lembrando a aula anterior, podemos concluir que : todos estes Triângulos retângulos são semelhantes

Se são semelhantes , então seus lados são proporcionais .

Podemos então afirmar que, ficando um ângulo agudo, todos os triângulos retângulos, construídos com

esse ângulo serão semelhantes e, portanto, terão lados proporcionais. Observe que acabamos de descobrir que

há uma relação entre ângulos agudos e lados de um triângulo retângulo .

Precisamos agora verificar como podemos enunciar esse relação mais claramente, usando linguagem

matemática.

bc = ah

Podemos compreender essa propriedade lembrando como se calcula a área de um triângulo. No caso

do triângulo retângulo da figura acima, ela é igual a bc e também igual a ab . Portanto, é claro que bc = ah .

2 2

RELACIONANDO LADOS E ÂNGULOS

Você já sabe que, em todo triângulo retângulo. Os lados são chamados hipotenusa (o maior lado ) e

catetos ( lados perpendiculares ) . Precisamos, em função dos ângulo, diferenciar a nomenclatura dos catetos.

Veja a figura abaixo.

O cateto que fica “ em frente” ao ângulo agudo que estamos utilizando chama-se cateto oposto, e o

cateto que está sobre um dos lados desse ângulo chama-se cateto adjacente.

x

a

c

b

h

hipotenusa

Cateto oposto

Cateto adjacente

Page 20: Matem-tica Ensino M-dio.pdf

20

Observe que, se o ângulo do problema for o outro ângulo agudo do triângulo, a nomenclatura oposto e

adjacente troca de posição (veja a figura ao lado), pois depende do ângulo utilizado.

Vamos então reescrever as proporções obtidas na figura 1 usando essa nomenclatura . Em relação ao ângulo x ,

temos :

Relações Trigonométricas

As relações que acabamos de generalizar são chamadas relações trigonométricas e recebem nomes

especiais.

A primeira é chamada seno do ângulo x e escreve-se :

Sen x = cateto oposto .

Hipotenusa

A segunda é chamada cosseno do ângulo x e escreve-se :

Cos x = cateto adjacente .

y hipotenusa

Cateto adjacente

Cateto oposto

Page 21: Matem-tica Ensino M-dio.pdf

21

Hipotenusa

A última denomina-se tangente do ângulo x e escreve-se:

tg x = cateto oposto

cateto adjacente

EXEMPLO 1

Você já conhece o triângulo pitagórico. Vamos obter as relações trigonométricas para um de seus ângulo

agudos.

Observe agora que, para qualquer outro triângulo semelhante a este, obtemos o mesmo resultado.

EXEMPLO 2

Uma escada está apoiada em um muro de 2m de altura, formando um ângulo de 45º Forma-se,

portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada ?

Sen x= 3/5 . 0,6

Page 22: Matem-tica Ensino M-dio.pdf

22

Representando a vista lateral geometricamente, podemos construir o triângulo retângulo a seguir.

Usando o co-seno do ângulo de 45º que a escada forma com o muro , descobrimos o valor de x , que

será o comprimento da escada.

O COEFICIENTE ÂNGULAR

Neste assunto iremos estudar a equação da reta que é ax + by + c =0, chamada equação geral da reta,

e aprendemos a construí-la quando são dados dois de seus pontos. Seja P = ( 5 , 4 ) o ponto dado. Vamos

começar fazendo um desenho da reta x + 2y – 9 = 0 . Para isso, precisamos conhecer dois de seus pontos.

Como as coordenadas de P são x = 5 e y = 4, vamos aproveitar esses valores para determinar os pontos de reta

que possuem essa abcissa e essa ordenada. Substituindo esses valores, um de cada vez, na equação da reta,

temos:

X = 5 5 + 2y – 9 = 0 2y = 4 y = 2

Y = 4 x + 2 . 4 – 9 = 0 x = 9 - 8 x = 1

Conseguimos então, dois pontos da reta: A = ( 5 , 2 ) e B = ( 1, 4 )

O desenho fica assim :

B

y

d

P

A

5 1

4

2

x

Page 23: Matem-tica Ensino M-dio.pdf

23

No triângulo retângulo PAB da figura acima, conhecemos os comprimentos dos catetos: AP = 2 e BP =

4 . Para calcular a hipotenusa, aplicamos o Teorema de Pitágoras :

AB2 = 22 + 42 = 4 + 16 = 20

AB = √20 = √ 4 . 5 = 2 √ 5

Representando por d a distância do ponto à reta temos, pela relação que mostramos anteriormente:

2 . 4 = 2√ 5 . d d = 4 = 4 . √5 = 4 √5 = 1,79

√5 √5 √5 5

Finalmente, vamos apresentar uma fórmula que faz o mesmo cálculo que acabamos de realizar. O ponto dado

será representado por P = ( Xn ,Yn ) e a reta por ax + by + c = 0.

P = ( x0 , y0 )

d

ax + by + c = 0

d = ax0 + by0 + c

√a2 + b2

Observe o cálculo da distância do ponto P = (5 ,4 ) a reta x + 2y – 9 = 0 , agora usando a fórmula :

d = | 5 + 2 . 4 – 9 | = | 5 + 8 – 9 | = 4 = 4 √ 5

√12 + 22 √5 √5 5

O resultado, como era de se esperar, é o mesmo, e essa fórmula, que não é indispensável, mostra-se bastante

prática.

Observe a figura a seguir :

Os triângulos ABC e APQ são semelhantes. Como seus lados são proporcionais, podemos escrever :

AB = AP ou BC = PQ ou BC = PQ

AC AQ AC AQ AB AP

E se aumentarmos o ângulo x ou diminuirmos P, essas proporções se alteram .Teríamos agora:

Reta x + 2y . 9 = 0

A B P

Q

C

X

A B P

Q

F

E

C

x

Page 24: Matem-tica Ensino M-dio.pdf

24

AB = AP ou BE = PF ou BE = PE

AE AF AE AF AB AP

Essas proporções – que se alteram conforme o ângulo varia - confirmam nossa suspeita de que há uma

relação entre lados e ângulos agudos de um triângulo retângulo tais relações recebem nomes especiais como

veremos ainda nesta aula.

Repare inicialmente que essa equação pode ser escrita de outra forma deixando a letra Y isolada do lado

esquerdo da equação. Quando fazemos isso obtemos uma expressão chamada equação reduzida da reta, que

nada mais é do que a nossa conhecida função do 1º grua . Observe o exemplo a seguir.

EXEMPLO 1

Escrever a equação 2x – 3y + 3 = 0 na forma reduzida.

Solução:

Vamos trabalhar a equação dada para deixar a letra Y sozinha do lado esquerdo:

2x – 3y + 3 = 0

-3y = - 2x – 3

3y = 2x + 3

y = 2x + 3 .

3 3

y = 2x + 1

3

Aí esta . Essa é a equação reduzida da reta. Ela tem a forma y = mx + p , onde, no nosso exemplo, m =

2/3 e p = 1

Observe o significado desses números m e p diretamente na equação que serviu de exemplo . Repare que.

Y = 2x + 1

3

se x = 0 então y = 1

se x = 3 então y = 3

Page 25: Matem-tica Ensino M-dio.pdf

25

com esses dois pontos, podemos fazer o gráfico da reta.

Veja que a reta corta o eixo dos y no ponto y = 1 e que a tangente do ângulo que ela faz com a direção

horizontal é 2/1 (cateto oposto sobre cateto adjacente)

De forma geral, na equação y = mx = p, o número p, chamado coeficiente linear, e o ponto onde a

reta corta o eixo dos y.

O número m, chamado do coeficiente angular é a tangente do ângulo que a reta forma com a direção

horizontal.

Se o coeficiente angular for positivo, a reta representará uma função crescente. Se for negativo,

representará uma função decrescente.

GRÁFICOS DE y = mx + p

Observe, nos exemplos seguintes, que podemos determinar a equação reduzida da reta quando

conhecemos os coeficientes angular e linear.

M = 4 . (coeficiente angular)

3

Page 26: Matem-tica Ensino M-dio.pdf

26

p = -2 ( coeficiente linear )

Equação reduzida da reta :

Y = 4x - 2

3

m = - 2 . ( coeficiente angular )

5

p = 7 (coeficiente linear)

Equação reduzida da reta

Y = - 2x + 7

5

Devemos enfatizar que o coeficiente angular representa o valor que a função cresce 9 (ou decresce )

quando x aumenta uma unidade. No gráfico a seguir, representamos a função y = mx + p . Nele, você pode

notar que, quando x assume valores inteiros, os valores de y formam uma progressão aritmética de razão m.

Quando x aumenta uma unidade, y aumenta m unidade .

A FÓRMULA DO COEFICIENTE ANGULAR

Veremos, agora, como determinar o coeficiente angular de uma reta a partir de dois quaisquer de seus

pontos. Na figura a seguir, mostramos uma reta passando pelos pontos (x1, y1 ) e ( x2 , Y 2 ). O triângulo

retângulo formado tem o cateto vertical igual a y2 – y 1 e o cateto horizontal igual a x2 – x1 . Dividindo o cateto

vertical pelo horizontal, obtemos a fórmula do coeficiente angular.

Page 27: Matem-tica Ensino M-dio.pdf

27

Tga = m = y2-y1

x2 – x1

RESOLVENDO PROBLEMAS COM LOGARITMOS

Vamos lembrar que quando escrevemos, por exemplo, log2=0,301, significa que 100,301 = 2 .

Usamos aqui sempre a base 10 e, por isso, os nossos logaritmos são chamados decimais. Existem

também logaritmos em outras bases. Por exemplo, a igualdade 25=32 significa que o logaritmo de 32 na base 2 é

igual a 5. como a teoria básica dos logaritmos é a mesma em qualquer base, continuaremos nosso estudo

tratando apenas do logaritmos decimais . São eles que aparecem nas tábuas dos livros didáticos e nas

calculadoras cientificas.

EXEMPLO 1

Um juiz determinou o pagamento de uma indenização até certa data. Determinou também que, caso o

pagamento não fosse feito, seria cobrada uma multa de R$2,00 que dobraria a cada dia de atraso. Em quantos

dias de atraso essa multa seria superior a 1 milhão de reais ?

Solução : A multa determinada pelo juiz pode parecer pequena , se o atraso no pagamento for de pouco dias.

Mas ela cresce com uma rapidez muito grande.

Chamando de x o número de dias de atraso no pagamento, o valor da dívida será 2x . Veja;

1 dia de atraso x = 1 multa = 21 = 2

2 dias de atraso x = 2 multa = 22 = 4

3 dias de atraso x = 3 multa = 23 = 8 e assim por diante.

Como vemos, as multas crescem em progressão geométrica, Devemos calcular em que dia essa multa

atinge 1 milhão de reais, ou seja, devemos resolver a equação:

2x = 1.000.000

Page 28: Matem-tica Ensino M-dio.pdf

28

para resolver essa equação é preciso aplicar o logaritmo nos dois lados:

log2x = log 1.000.000

log 2x = log 106

Agora vamos aplicar a propriedade do logaritmo da potência:

X . log 2 = 6 . log 10

Como log 10 = 1 e sabendo que log 2 = 0,301, temos :

X . 0,301 = 6

X = 6 = 19,93

0,301

Assim, concluímos que no 20º dias de atraso a multa terá passado de 1 milhão de reais.

Veja outro exemplo que necessita do cálculo pela tábua de logaritmos.

EXEMPLO 2

Se log x= 1,6395, determine x.

Solução:

Vamos recordar, inicialmente, que o logaritmo se constitui de duas partes: a característica e a

mantissa . A característica é o número que está antes da virgular e a mantissa é o número que aparece depois

da vírgula. A tábua de logaritmos apresentada na aula passada nos dá apenas as mantissas , mas a característica

nos dá a seguinte informação :

Números Característica

Entre 1 e 9 0

Entre 1 e 9 1

Entre 1000 e 999 2

Entre 1000 e 999 3

Como log x = 1,6395 tem característica 1 . Então, sabemos que o número x está entre 10 e 99 . Assim,

procuramos a mantissa 6395 na tábua.

TÁBUA DE LOGARÍTMOS

Page 29: Matem-tica Ensino M-dio.pdf

29

0 1 2 3 4 5 6 7 8 9

40

41

42

43

44

6021

6128

6232

6335

6435

6021

6128

6243

6345

6444

6042

6149

6253

6355

6454

6053

6163

6263

6365

6464

6064

6170

6274

6345

6474

6075

6180

6284

6385

6484

6085

6291

6294

6395

6193

6096

6201

6304

6405

6503

6107

6212

6314

6415

6513

6117

6222

6325

6425

6522

Uma vez encontrada a mantissa, vamos que na coluna da esquerda está o número 43 e na linha de cima

o número 6. Juntando esse números, formamos o número 436, faltando apenas colocar a vírgula no lugar certo.

Como o nosso número está entre 10 e 9+9 , então x = 43,6.

EXEMPLO 3

Um construtor deseja fazer um reservatório de água para conter 5000 litros e que tenha a forma de um

cubo. Quanto deve medir o lado desse cubo?

Solução:

Um cubo é uma caixa que tem comprimento, largura e altura iguais.

O volume de uma caixa é o produto de suas dimensões: comprimento x largura x altura. Logo, se o

lado do cubo mede a, seu volume será a . a . a = a3. Por outro lado, sabemos que 1m3 é igual a 1000 litros .

Portanto, se essa caixa deve conter 5000 litros, seu volume será 5m3. Devemos então resolver a equação:

a3 = 5

O valor de a será a medida em metros do lado desse cubo. Aplicando logaritmo dos dois lados e, em

seguida, a propriedade da potência temos :

Log a3 = log 5

3 . log a = log 5

Na tábua de logaritmos encontramos log 5 = 0,699. Logo:

3 . log a = 0,699

3 . log a = 0,699 . => log a = 0,233

3

Page 30: Matem-tica Ensino M-dio.pdf

30

Como agora sabemos que o logaritmo de a é igual a 0,233, vamos procurar na tábua de logaritmos a

mantissa 233.

Encontrando a mantissa 2330, verificamos que à esquerda existe o número 17 e acima o número 1.

Juntando esses algarismos formamos o número 171. Falta apenas colocar a virgula no lugar correto. Repare que

calculamos log a = 0,233. Esse número possui característica 0, ou seja , o valor de a está entre 1 e 9 . Portanto ,

o valor do lado do cubo é 1,71 m.

Dessa forma, o construtor saberá que construindo um reservatório de água com a forma de um cubo

de 1,71 m de lado, ele terá a capacidade de conter 5000 litros de água.

LOGARITMOS

Considere um número a ( positivo e diferente de 1 ) , e um número b na base a ao expoente x que se

deve dar à base a de tal modo que a potência obtida seja igual a b :

b = ax log a b = x

forma exponencial forma logarítmica

onde:

b é o logaritmando

a é a base

x é o logaritmo

Exemplos:

* log10 100 = 2 , pois 102 = 100

* log 327 = 3 , pois 33 = 27

* log31= 0 , pois 30 = 1

Observação : Não existe, por exemplo, log2( -4 ) . Lembre-se de que a equação 2x = - 4 não tem solução para

X E R.

Conseqüência da definição:

Loga1 = 0

Logaa = 1

Log aam = m

Log ba = log ca b = c

Page 31: Matem-tica Ensino M-dio.pdf

31

Aplicação:

1. Calcular log41, log55,log5125

a) log41 = 0

b) log55 = 1

c) log5125 = log553 = 3

2. Sabendo que loga12 = log ax + 3 , calcule x :

Usando a propriedade de logaritmos, teremos:

X + 3 = 12

X = 12 – 3

X = 9

3. Determine o logaritmo de √ 8 na base 2 :

Solução:

Log2 √ 8 = log2 √ 23 = log 223/2 = 3/2

4. Resolva a equação log23x – 2 = 3

Solução :

log23x – 2 = 3 3x – 2 = 23 3x – 2 = 8 3x = 10 x = 10/3

5. Calcule loga9 = 2

Solução :

Loga9=2

a2 = 9

a= ± 3

note que a = -3 também é solução de a2 = 9 , mas como a base tem que ser sempre positiva, só serve o valor a

= 3 como resposta .

6 . Para que valores de x exista , o logaritmando deve ser sempre positivo. Neste caso o logaritmando é 3x + 2 .

Logo ;

3x + 2 > 0

Page 32: Matem-tica Ensino M-dio.pdf

32

3x > - 2

x > - 2/3

PROPRIEDADES DOS LOGARITMOS

* 1ª Propriedade:

Consideremos por exemplo, log24.8

Log24 = 2

Sabemos que :

Log28 = 3

Teremos, então :

Log24.8 = log24 + log28 = 2 + 3 = 5

Podemos concluir que :

Logab.c = logab + logac

Observe os seguintes exercícios aplicado a propriedade:

1 . Se a soma dos logaritmos de dois números , na base 2 , é 5, determine o produto desses números.

Solução:

Sejam x e y esses números temos então :

Log2x + log2y = 5

Log 2x.y = log 2x + log 2 y

Logo : log 2x . y = 5

x . y = 25

x . y = 32

O produto dos números é 32.

2. Resolva a equação:

log2( x + 2 ) 9+ log2 ( x – 2 ) = 5

C.E. x + 2 > 0 x - 2 > 0

Solução :

log2 ( x + 2 ).( x – 2 ) = 25

x2 – 4 = 32

x 2 = 36

Page 33: Matem-tica Ensino M-dio.pdf

33

x ± 6

verificando : para x = 6 para x= - 6

x + 2 > 0 6 + 2 > 0 ( v ) - 6 + 2 > 0 ( f )

x – 2 > 0 6 – 2 > 0 ( v ) - 6 – 2 > 0 ( f ) => s = { 6 }

*2ª Propriedade :

Consideremos

log2 2/16

log22 = 1

sabemos que log216 = 4 teremos, então : log2 2/16 = log22 – log216 = 1 – 4 ( 4 ) = -3

podemos concluir que : loga b/c = log b – log c

Exemplos:

1. sendo log ab = 2 e logac = 3, determine loga b/c

solução :

logab/c = log ab - logac = 2 – 3 = -1

loga b/c = - 1

2. Resolva a equação : log2x2 + 1 – log2 x = 1 .

Solução :

Page 34: Matem-tica Ensino M-dio.pdf

34

3ª Propriedade :

Consideramos o seguinte exemplo :

MUDANÇA DE BASE :

Page 35: Matem-tica Ensino M-dio.pdf

35

Efetuamos a mudança de um logaritmo de base a para um logaritmo de base c, através da fórmula :

Logab = logcb .

log ca

EXEMPLO :

1)mudar para base 2 os logaritmos :

EXERCÍCIO

1.) Calcule, aplicando a definição de logaritmo :

Page 36: Matem-tica Ensino M-dio.pdf

36

2.) Dê o valor de:

3.) Resolva as equações :

4.) Sendo logba = 4 e logbc = 1 , encontre o valor de :

5.) Determine o conjunto solução das equações :

6.) Sendo log2 = 0,3 , log3 = 0,4 e log5 = 0,7 , calcule :

SUCESSÃO OU SEQÜÊNCIA

SUCESSÃO NUMÉRICA

Sucessão ou seqüência é todo conjunto em que consideramos os elementos dispostos em certa ordem.

Uma seqüência numérica pode ser finita ou infinita.

EXEMPLO:

Page 37: Matem-tica Ensino M-dio.pdf

37

(1 , 3 , 5 , 7 , 9 ) ú uma seqüência finita.

(-2, 4, 6 , ... ) é uma seqüência infinita

PROGRESSÕES ARITMÉTICAS

Quando escrevemos qualquer quantidade de números, um após o outro, temos o que chamamos de

seqüência. As seqüências são , freqüentemente, resultado da observação de um determinado fato ou fenômeno.

Imagine, por exemplo, que uma pessoa da cidade de Magé ( Rio de Janeiro ) tenha anotado as temperaturas

máximas em cada dia do mês de abril de 1995. O resultado pode ser visto na seguinte tabela :

DIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

TEMPERATURA

MÁXIMA ( ºC )

31 32 32 29 31 34 33 34 26 25 28 27 30 29 ...

Na linha de cima, temos a seqüência dos dias e, na de baixo, a seqüência das temperaturas. Nessa

seqüência, dizemos que o primeiro termo é 31, o segundo termo é 32, o sexto termo é 34.

É conveniente representar cada termo de uma seqüência pela letra a , seguida de um índice que indica a

sua ordem.

Assim, na seqüência das temperaturas, temos:

a1 = 31

a2 = 32

a6 = 34

a9 = 26 etc

Quando desejamos falar sobre um termo qualquer de uma seqüência, escrevemos an. Assim, no

exemplo que acabamos de dar, an representa a temperatura máxima registrada no dia n.

Para que você entenda bem o significado desta última frase, e de outras do mesmo tipo, substitua n por

números naturais: 1 , 2 , 3 etc . Fazendo isso, você obtém as seguintes frases :

a1 representa a temperatura máxima registrada no dia 1 :

a2 representa a temperatura máxima registrada no dia 2 ; e assim por diante.

Você pode usar as seqüências para registrar diversas observações, como a produção de uma fábrica em

cada mês, o número de telefonemas que você dá por dia, a taxa de inflação mensal, etc.

Nesta aula e nas próximas, vamos estudar certas seqüências muito especiais. Por sua regularidade,

conhecendo alguns termos, podemos calcular qualquer outro. A primeira delas chama-se progressão

aritmética.

Page 38: Matem-tica Ensino M-dio.pdf

38

Uma progressão aritmética é uma seqüência na qual, dado um primeiro termo, obtemos todos os

outros acrescentado sempre a mesma quantidade. Por exemplo, vamos partir do número 7 e acrescentar 3,

diversas vezes :

7 10 13 16 19 22

+3 +3 +3 +3 +3

O valor que acrescentamos a cada termo para obter o seguinte chama-se razão ( R) portanto, nesse

exemplo, temos:

a1 = 7 e R = 3

Veja agora outros exemplos de progressões aritméticas e sua classificação :

3,7,11,15,19,23...

temos R = 4.

É uma progressão crescente.

9,7,5,3,1,-1,-3,-5,...

temos R = -2

é uma progressão decrescente.

4,4,4,4,4,4,4,...

temos R = 0 .

é uma progressão estacionária.

Dada uma progressão aritmética, como calculamos sua razão ? Pense ! Não é difícil. Como a razão é a

quantidade que acrescentamos a cada termo para obter o seguinte, podemos dizer que :

“A razão de uma progressão aritmética é a diferença entre qualquer termo e o anterior.”

Assim, retomando os três últimos exemplos, temos

Na 1º progressão : R = 7 – 3 = 7

R = 11 – 7 = 4

R = 15 – 11 = 4 etc.

Na 2º progressão : R = 7 – 9 = - 2

R = 5 – 7 = - 2 etc.

Na 3º progressão : R = 4 - 4 = 0

Passamos então a generalizar o que vimos nos exemplos. Considere a seguinte progressão aritmética (

de agora em diante representada por PA ) de razão R :

a1 a2 a3 a4 a5 a6 an

Page 39: Matem-tica Ensino M-dio.pdf

39

+R +R +R +R +R +R +R

Suponha que você conheça o primeiro termo ( a1 ), e a razão ( R ) . Como faremos para calcular

qualquer outro termo ? Observe as igualdades.

a2 = a1 + r

a3 = a1 + 2r

a4 = a1 + 3r

a5 = a1 + 4r

Vemos então que, para calcular um termo qualquer ( an ) é preciso somar ao 1º termo . n – 1 vezes a razão. Ou

seja :

Fórmula do Termo Geral

an = a1 + ( n – 1 ) r

Para entender bem o que estamos fazendo, imagine que você está no 1º degrau de uma escada e

deseja chegar ao 10º Quantos degraus deve subir ? É claro que são 9. Se você está no 1º degrau e deseja

chegar ao 25º quantos deve subir ? Deve subir 24, lógico. Então, para chegar ao degrau número n. devemos

subir n – 1 degraus.

Observe a aplicação dessa fórmula nos exemplos seguintes:

Exemplo

Qual é o trigésimo ( 30º ) termo da progressão aritmética : 10,17,24,31,38,...?

Solução. A razão da progressão é R = 17 – 10 = 7 e o primeiro termo é a1 = 10 . Desejamos calcular o

trigésimo termo, ou seja a30. A partir da fórmula do termo geral :

an = a1 – ( n – 1 ) r

Substituindo a letra n por 30, obtemos :

Daí, a30 = a1 + ( 30 – 1 )r

a30 = 10 + 29 . 7

a30 = 213

Portanto, o trigésimo termo da progressão dada é 213.

EXEMPLO

Page 40: Matem-tica Ensino M-dio.pdf

40

Um aluno escreveu todos o número ímpares desde 17 até 63. Quantos números ele escreveu ?

Solução. A progressão desse exemplo é a seguinte:

17,19,21,23,...63.

O primeiro termo é 17. o último termo pe 63 e a razão e 2. Escrevemos então:

a1 = 17

an =63

r = 2

Substituindo esse valores na fórmula do termo geral calcularmos n que é o número de termos da progressão :

an = a1 + (n – 1) r

63 = 17 + (n – 1) 2

46 . 17 = 2n - 2

46 = 2n - 2

48 = 2n

n = 24

A progressão tem, portanto, 24 termos

EXEMPLO

Em janeiro de certo ano, João estava ganhando R$ 70,00 por mês. Seu patrão prometeu aumentar seu

salário em R$ 4,00 todos os meses. Quanto João estará ganhando em dezembro do ano seguinte ?

Solução: se o salário de João aumenta R$ 4,00 todos os meses, então a seqüência dos salários é uma

progressão aritmética de razão 4.

Vamos organizá-la assim:

Usando a fórmula do termo geral, temos :

a24 = a1 + 23r

a24 = 70 + 23 . 4

a24 = 70 + 92

a24 = 162

Portanto, com esses pequenos aumentos mensais , João estará ganhando, em dezembro do ano seguinte, R$

162,00.

Page 41: Matem-tica Ensino M-dio.pdf

41

ALGUMAS PROPRIEDADES DA PROGRESSÃO ARITMÉTICA

O GRÁFICO

Podemos visualizar os termos de uma progressão aritmética por meio de um gráfico com este:

Os valores dos termos são representados pelas barras verticais que formam o desenho de uma escada

. Nessa escada, a altura de cada degrau é a razão da progressão aritmética.

UMA OUTRA FÓRMULA

Se você está no 6º degrau de uma escada e deseja chegar ao 10º, quantos degraus deve subir ? A

resposta é simples : 4 degraus . Podemos escrever isso em linguagem matemática.a10 = a6 + 4r

De modo geral , se estamos no degrau de número n e desejamos chegar ao degrau de número m,

devemos subir m – n degraus. A nossa nova fórmula, que relaciona dois termos quaisquer, é então a seguinte:

am = na + ( m – n ) r

EXEMPLO

Todos os anos, uma fábrica aumenta a produção, em uma quantidade constante. No 5º ano de

funcionamento, ela produziu 1.460 e no 8º ano, 1940. Quantas peças ela produziu no primeiro ano de

funcionamento? Devemos calcular a1 ou seja, a produção inicial. Tememos então nossa última fórmula:

am = na + (m- n ) r

e façamos m = 8 e n = 5. ela fica assim:

a8 = a5 + ( 8 – 5 ) r

substituindo os valores conhecidos, temos :

1.940 = 1.460 + 3r

1.940 – 1.460 = 3r

r = 160

Sabemos agora que a razão é 160, ou seja, a produção da fábrica aumenta em 160 peças a cada ano.

Para calcular o primeiro termo da progressão . façamos m = 5 e n = 1 na fórmula que estamos usando. Ela fica

assim:

a5 = a1 + (5 – 1 ) r ou

a5 = a1 + 4r

Page 42: Matem-tica Ensino M-dio.pdf

42

como os valores de a5 e R são conhecidos, podemos fazer às substituições

1.460 = a1 + 4 . 160

1.460 = a1 + 640

1.460 – 640 = a1

a1 = 820

concluímos então que, no primeiro ano de funcionamento, essa fábrica produziu 820 peças.

Para terminar, repare que temos duas fórmulas, muito parecidas, para relacionar dois termos de uma

progressão aritmética e sua razão. A segundo é mais geral. Ela é capaz de calcular qualquer termo de uma PA se

você conhece a razão e, também, um outro termo qualquer.

SOMANDO OS TERMOS DE UMA PROGRESSÃO ARITMÉTICA

No assunto anterior, mostramos como calcular qualquer termo de uma progressão aritmética se

conhecemos um de seus termos e a razão. Nesta aula, vamos aprender a somar rapidamente qualquer

quantidade de termos de uma PA. Deduziremos a fórmula da soma dos termos de uma progressão aritmética

usando a mesma idéia que um menino de 10 anos teve no ano de 1787. Esse menino, que se tornou um dos

maiores matemáticos de todos os tempos, chamava-se Carl Friedrich Gauss, e uma pequena parte de sua

história é a que relatamos a seguir.

O menino Gauss era alemão e vivia na cidade de Brunswick, onde, aos 10 anos, freqüentava a escola

local. Certo dia, para manter a classe ocupada, o professor mandou que os alunos somassem todos os números

de 1 a 100. Mas para sua enorme surpresa, o pequeno Gauss anunciou a resposta quase imediatamente : “Dá

5.050”,

Vamos mostrar como ele calculou “ de cabeça” a soma :

1 + 2 + 3 + ... + 100

primeiro vamos representar por S essa soma.

Depois, escrevemos a mesma soma na ordem inversa e, em seguida , somamos as duas, termos a termo.

S = 1 + 2 + 3 + .... + 98 + 99 + 100

S = 100 + 99 + 98 + .... + 3 + 2 + 1

2S=101 + 101 + 101 + ....+101 + 101 + 101

assim, duas vezes S é igual à soma de 100 parcelas, todas iguais a 101 . logo:

2S = 100 . 101

2S = 10.100

S = 5.050

Page 43: Matem-tica Ensino M-dio.pdf

43

Não há dúvida de que esse episódio da vida do menino Gauss nos mostra uma idéia brilhante . Vamos

aproveita-la para deduzir a fórmula da soma dos termos de qualquer progressão aritmética.

Como vimos na aula passada, podemos imaginar os termos de uma progressão aritmética como os

degraus de uma escada . Veja uma de sete degraus , por exemplo.

Agora, como faremos para calcular a soma das alturas de todos os degraus ?

Podemos usar a idéia do menino Gauss. Vamos considerar duas escadas iguais e encaixar uma na outra, como

mostra o desenho a seguir

Observando o desenho, vemos que a1 + a7 é igual a a2 + a8 que é igual a a3 + a9 e assim por diante.

Temos então:

S = a1 + a2 + a3 + a4 + a5 + a6 + a7

S = a7 + a6 + a5 + a4 + a3 + a2 + a1

Somando as duas igualdades, obtemos , do lado esquerdo, 2S e, do lado direito, 7 vezes a1 + a ... Logo :

2S = (a1 + a7 ) . 7

S = (a1 . a 7 ) 7

2

Page 44: Matem-tica Ensino M-dio.pdf

44

O raciocino utilizado para obter a soma dos 7 temos da progressão que nos serviu de exemplo pode

ser aplicado a qualquer outra. Portanto, se uma progressão tiver n termos, a soma de todos eles será :

Sn = ( a1 + an ) . n

2

Nesta fórmula , é bom lembrar que : a1 é o primeiro termo,

an = é o último termo,

n = é o número de termos.

EXEMPLO

Calcule a soma dos 30 primeiros números impares.

Solução : Os números ímpares são :

1 , 3 ,5 , 7, 9 , 11 , ...

Eles formam uma progressão aritmética de razão 2. Para calcular o trigésimo ( 30º ) termo dessa

progressão, precisamos usar a fórmula an = a1 + ( n – 1 ) r que aprendemos na aula passada. Substituindo

então n por 30. obtemos :

a30 = a1 + ( 30 – 1 ) r

a30 = 1 + 29 . 2

a30 = 59

vamos usar a fórmula da soma dos termos de uma progressão aritmética fazendo também n = 30

S = ( a1 + a30 ) 30

2

Substituindo os valores do primeiro e do último termo, temos:

S = ( 1 + 59 ) . 30 = 60 . 30 = 900

2 2

concluímos então que a soma dos 30 primeiros números ímpares é :1 + 3 + 5 + 7 + 9 + 11 + .... + 59 = 900

PROGRESSÕES GEOMÉTRICAS

Neste assunto, vamos abordar outra importante seqüência: a progressão geométrica. É possível que

você já tenha ouvido alguém preocupado com o número de habitantes do nosso planeta dizer a seguinte frase:

“A produção de alimentos cresce em progressão aritmética enquanto a população mundial cresce em progressão

geométrica”.

Page 45: Matem-tica Ensino M-dio.pdf

45

O que essa frase significa ?

A primeira parte da frase diz que o aumento da produção de alimentos é constante, ou seja, a cada ano

aumenta do mesmo valor. A segunda parte da frase fala de uma seqüência cujo crescimento é cada vez mais

rápido.

Para que você tenha uma primeira idéia do que vamos estudar, mostramos, no desenho seguinte, alguns

termos de uma progressão aritmética e de uma progressão geométrica, situados sobre uma régua. Observe o

crescimento, cada vez mais rápido , da progressão geométrica.

Progressão geométrica (ou simplesmente PG ) é uma seqüência de números não nulos em que cada um

deles, multiplicado por um número fixo. Fornece o próximo elemento da seqüência. Esse número fixo chama-se

razão, e os elementos da seqüência são os termos da progressão geométrica.

Por exemplo, vamos obter os termos de uma progressão geométrica de razão 2, partindo do número 3

.

3 6 12 24 48 96 192 384 768 1.536...

x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 ...

Observe como o crescimento é rápido.

Os termos da progressão geométrica são representados, como em qualquer seqüência, por a1, a2 , a3 ,

......, an e a razão será representada pela letra q . Assim, no exemplo anterior , temos a1 = 3 , a2 = 6, a3 = 12

etc. e q = 2 .

Se cada termo da PG multiplicado pela razão dá o termo seguinte, então podemos afirmar que :

A razão da PG é igual a qualquer termo dividido pelo anterior.

No nosso estudo, vamos considerar apenas progressões geométricas de termos positivos. São as que

têm interesse prático e ocorrem em diversos fenômenos naturais.

Observe três exemplos que mostram a classificação das progressões geométricas:

a1 = 2 , q = 5

PG : 2, 10 ,50 ,250, 1.250, ...

É uma progressão crescente.

a1 = 8 , q =1/2

PG : 8, 4 , 2 , 1 , ½ , ¼ ...

Page 46: Matem-tica Ensino M-dio.pdf

46

É uma progressão decrescente .

a1 = 3, q = 1

PG : 3, 3 , 3 , 3 , 3 , 3, ....

É uma progressão estacionária.

Pelo que vimos acima, concluímos que, se a razão for maior que 1, a progressão geométrica é

crescente e, se a razão for um numero entre 0 e 1 , a progressão é decrescente .

Vamos agora obter uma fórmula para determinar qualquer termo de uma PG a partir do primeiro termo

e da razão. Observe então uma progressão geométrica qualquer:

a1 a2 a3 a4 a5...... an

xq xq xq xq xq ....

A partir da definição de PG, temos que a2 = a1 . q

O terceiro termo é a3 = a2 . q = a1 . q = a1 . q . q = a1 . q2. O quarto termo é a4 = a3 . q = a1 . q

2 . q

= a1 . q3 e assim por diante.

a2 = a1 . q a4 = a1 . q3

a3 = a1 . q2 a5 = a1 . q4

Para obter então o termo de ordem n, devemos multiplicar o primeiro termo pela razão n – 1 vezes, ou

seja:

Fórmula do termo geral

an = a1 . qn-1

EXEMPLO

Determinar o 12º termo da PG 7, 14 , 28 ....

Como a razão da PG é igual a qualquer termo dividido pelo anterior, temos que:

q = 14 = 2

7

para calcular o 12º termo dessa progressão, substituímos n por 12 na fórmula do termo geral . Temos

então:

a12 = a1 . q11

Substituindo os valores do primeiro termo e da razão, encontramos:

a12 = 7 . 211

a12 = 7 . 2.048 = 14.336

Page 47: Matem-tica Ensino M-dio.pdf

47

EXEMPLO

Existem bactéria que se reproduzem de forma extremamente rápida. Um exemplo é a bactéria que

causa a sífilis (chamada treponema pallidum): cada uma delas se transforma em 8 iguais no período de 1 hora.

Se uma bactéria desse tipo começa a se reproduzir, quantas ela serão 12 horas depois, supondo que nenhuma

delas tenha morrido?

Solução: A população de bactéria forma uma progressão geométrica:

Momento inicial a1 = 1

1 hora depois a2 = 8

2 horas depois a3 = 34

Vemos então que, 12 horas depois, devemos calcular o 13º termo da progressão geométrica com a1 =

1 e q = 8 . Aplicando novamente a fórmula do termo geral, com n=13, temos:

a13 = a1 . q12

substituindo os valores do primeiro termo e da razão, encontramos :

a13 = 1. 812

Esse resultado dá o incrível número 68.719.476.736, ou seja, mais de 68 bilhões de bactérias !

Resolva a equação com que o primeiro membro representa a soma dos termos e uma PG infinita : 80x

+ 40x + 20x + .... = 320 .

Solução : a1 = 80x

q = 40x = 1 .

80x 2

S = a1 .

1 - q

320 = 80x 160 = 8x x = 2 S{2 }

1/2

1. Encontre o termo geral da P.G.(1.5,...)

Resp.: an =5

2. Determine o número de termos da P.G. (1,2,....,256).

Resp.: 9

3. Numa P.G. de razão 4, os termos extremos são 3 e 768. Calcule o número de termos .

Page 48: Matem-tica Ensino M-dio.pdf

48

Resp.: n = 5

4.Interpole três meios geométricos entre 4 e 324.

Resp.: (4,12,36,106,324)

5. Interpole quatro meios geométricos entre 1/18 e 432.

Resp.: (1/18, 1/3 , 2, 12, 72, 432 )

6. Calcule a soma dos cinco primeiros termos da P.G.

(√3, √3, √3,....)

Resp.: 5√3

7. Calcule a soma dos dez primeiros termos da P.G. (1,3,9,27...)

Resp.: S10 = 29524

8. Calcule a soma dos termos da P.G. (2,1,1/2 ,1/4,...)

Resp.: S = 4

9. Resolva as equações :

a) x + x + x + ... = 81 S = {54 }

3 9

b) x2 - x2 + x2 - x2 .... = 6 S = {-3, 3 }

2 4 8

MATRIZES

Matrizes são tabelas de números dispostos em linhas e colunas.

MATRIZ DO TIPO ( m x n ):

Denominamos matriz do tipo ( m x n) à matriz que tem m linhas e n colunas.

Exemplo: -1 2

3 4

0 3 3 x 2

a matriz é do tipo 3x2, pois tem 3 linhas e 2 colunas.

As matrizes podem ser representadas das seguintes formas:

Através de parênteses ( ).

( )

Page 49: Matem-tica Ensino M-dio.pdf

49

Através de colchetes [ ] .

Através de barras duplas || ||.

Para dar nome às matrizes usamos letra maiúsculas. Os elementos de uma matriz são representados por

letras minúsculas, acompanhada por índices, i e j , que indicam a linha e a coluna, respectivamente, onde se

encontra o elemento da matriz:

a i j coluna

linha

EXEMPLO:

Á matriz -1 0 3 vamos associar a matriz

2 1 4

A = a11 a12 a13

a21 a22 a23

então : a11 = -1, a12 = 0 , a13 = 3, a21 = 2 , a22 = 1 e a23 = 4

Uma matriz pode ser genericamente representada :

lei de formação: A = (aij ) m x n

Exemplos : escreva a matriz A = (aij ) 3x2 tal que aij = 2i – j.

Solução: a matriz 3 x 2 é do tipo

a11 a12

a21 a22

a31 a32

para obtermos o valor de cada elemento da matriz, basta substituir os valores de i e j na lei de

formação aij = 2 i – j.

Desta forma, teremos :

)

( ) (

) (

Page 50: Matem-tica Ensino M-dio.pdf

50

a11 = 2 . 1 – 1= 1 a21 = 2 . 2 – 1 = 3 a31 = 2 . 3 – 1 = 5

a12 = 2 . 1 – 2 = 0 a22 = 2 . 2 – 2 = 2 a32 = 2 . 3 – 2 = 4

portanto, 1 0

A= 3 2

5 4

MATRIZ LINHA :

É a matriz que possui apenas uma linha.

EXEMPLO:

A = ( 3 -1 2 ) é a matriz linha ( 1 x 3 )

MATRIZ COLUNA:

E a matriz que possui apenas uma coluna.

Exemplos:

A = 3 é a matriz coluna ( 2 x 1 )

-2

MATRIZ QUADRADA :

É a matriz que tem o mesmo número de linhas e colunas, isto é , m = n.

a) 2 4

-1 3 2x2 matriz quadrada de ordem 2

b) 1 3 0

2 1 5

4 3 2 3x3 matriz quadra de ordem 3

DIAGONAL PRINCIPAL

) (

) (

) ( ) (

Page 51: Matem-tica Ensino M-dio.pdf

51

DIAGONAL SECUNDÁRIA

Diagonal principal: formada pelos elementos ( a11, a22, a23 ) com i = j

Diagonal secundária: formada pelos elementos ( a13,a22,a31).

É toda matriz cujos elementos da diagonal principal são iguais à unidade, Será indicada por In, onde n

é a ordem da matriz.

EXEMPLO:

1 0 0

In = 0 1 0

0 0 1

1 – Sabendo que a matriz C abaixo é nula, determine os valores de a e b .

C = 2a + 4 0

0 3-y

Solução: para matriz C dada seja nula, devemos ter:

2a + 4 = 0 -4 a = -2

3 – y = 0 - y = -3 y = 3

duas matrizes A e B de mesma ordem, são iguais se seus elementos correspondentes forem iguais .

EXEMPLOS:

1) sejam as matrizes

2 3 - 4 3x 3 -y

A= 3 1 5 e B = 3 + 3z 1 5

Determine x, y e z para que A = B.

Solução:

3x = 2 x = 2/3

) (

) (

) ( ) (

Page 52: Matem-tica Ensino M-dio.pdf

52

-y = - 4 y = 4

3 + 3z = 3 3z = 0 z = 0

2) Dadas as matrizes A = 2 x -y e B= 2 2 , determine x e y para A = B

3 6 3 x+y

Solução :

x – y = 2

x + y = 6

2x = 8

x = 4

Substituindo x = 4 em x – y = 2, obtemos y = 2. Portanto x = 4 e y = 2.

SOMA

Considerando duas matrizes A e B, do mesmo tipo, denominamos matriz soma de A e B à matriz C =

A + B, do mesmo tipo que A e B, de tal forma que cada um de seus elementos seja igual à soma dos elementos

correspondentes nas matrizes A e B.

EXEMPLO:

Se A = -2 4 e B = 3 -1

3 2 5 -3

A + B = -2 + 3 4 – 1

3+5 2 – 3 , portanto , A + B= 1 3

8 -1

SUBTRAÇÃO:

Matriz Oposta: dada a matriz A, denomina-se matriz oposta de A a matriz –A, cujo elemento da linha i e da

coluna j é o oposto do elemento que está na linha i e na coluna j da matriz A.

EXEMPLO:

4 -3 2 -4 3 -2

Se A = 0 1 -5 , então sua oposta é –A= 0 -1 5

) ( ) (

) (

) (

) ( ) (

) ( ) (

Page 53: Matem-tica Ensino M-dio.pdf

53

3 -1 2 3 1 -2

considerando duas matrizes A e B, do mesmo tipo, subtrai-se a matriz B da matriz A que equivale à

soma da matriz A com a matriz oposta a B , isto é: A – B = A + ( - B ).

EXEMPLO:

Dada a matriz A = -1 4 e B= 5 2 , determine A – B .

3 -2 -1 4

Solução :

- 1 4 + -5 -2 = -6 2

3 -2 1 -4 4 -6 -B

considerando um número real K e uma matriz A (m x n ), multiplicar o número K pela matriz A significa

multiplicar todos os elementos da matriz A pelo número K.

EXEMPLO :

Considere a matriz A = - 2 4 e o número real K = 3

1 -3

solução:

3A =3. -2 4 -6 12

1 -3 3 -9

A operação de multiplicação é efetuada multiplicando-se linha por coluna, isto é,cada elemento de uma

linha é multiplicado pelo elemento correspondente de uma coluna e, em seguida, os produtos são adicionados.

Na multiplicação de duas matrizes A e B, o número de colunas de A deve ser igual ao número de linhas

de B; o produto AB terá o mesmo número de linhas de A e o mesmo número de colunas de B.

A m x n . Bn x p = A . Bm x p.

EXEMPLO:

Dadas as matrizes A= 2 -1 e B = -1 3 0

0 3 1 2 -1

determine AxB.

Solução:

) ( ) (

) ( ) ( ) (

)

) ( ) (

) ( ) (

(

Page 54: Matem-tica Ensino M-dio.pdf

54

Seja A uma matriz quadrada de ordem n, Se existir uma matriz B tal que A . B = B . A = I , dizemos

que a matriz B é a matriz inversa de A, e indicamos por A-1.

EXEMPLO:

Determinar a inversa da matriz A= 3 4

1 0

Solução :

seja A –1 = I2

sabemos que A-1 = a b

c d

3 4 a b = 1 0 3a + 4c 3b + 4d = 1 0

1 0 c d 0 1 a b 0 1

pela igualdade de matrizes, teremos os sistemas:

3a + 4c = 1 3b + 4d = 0

a = 0 b = 1

3 . 0 + 4c = 1 4c = 1 c = 1/4

3 . 1 + 4d = 0 4d = 3 d = - 3 /4

Portanto : A –1= 0 1

1/4 -3/4

1. Dada a matriz A = 1 2 , determinar a oposta de A

-1 -4

2. classificar as matrizes dadas quanto ao tipo e à ordem:

a) A = 1 3 b) -2 1

0 0 0 3

4 -1

c) ( 2 4 5 ) d) A= 2

) (

) (

( (

(

( ( ) )

)

) )

( )

( (

(

) )

)

Page 55: Matem-tica Ensino M-dio.pdf

55

3

-1

3. sendo A = 1 0 2 e B= 3 0 1 , calcule:

-4 1 3 4 2 -1

a) A + B b) A - B c) B - A

4. Dadas as matrizes A= 1 2 e b= 4 -1 , determinar :

0 3 0 2

a) 1/3 b) –3B c)2A - 3B d)2At + 3Bt

5. Dada a matriz A= -2 5 , calcule o produto A . At

4 -1

6. Efetue os produtos :

a) 5 1 . 4 2 3 d) 1 3 . 4

2 -3 1 1 1 2 4 3

3 5

b) 1 2 . 5 4 e) 1 3 . 1 0 5

3 4 2 3 4 2 2 6 3

6 -1

c ) ( 1 5 8 ) . 0

1

3

Seja A matriz quadrada de segunda ordem A = a11 a12

a21 a22

Denomina-se determinante associado à matriz A o número obtido pela diferença entre os produtos dos

elementos da diagonal principal e da diagonal secundária..

Representa-se em determinante de segunda ordem por: det

) ) ( (

) (

) ( ) (

) ( )

) ) ) ) (

( (

(

( ( (

) )

) ( ( )

Page 56: Matem-tica Ensino M-dio.pdf

56

A = a11 a12 = a11 . a22 - a21 . a12

a21 a22

EXEMPLOS:

1) Dê o valor do determinante -2 1

3 4

Solução :

-2 1 = ( -2 ) . 4 – 3 1 = - 8 - 3 = - 11

3 4

2) x - 2 -1 = 0

4 3

Solução :

X – 2 1 = 0

4 3

3 ( x – 2 ) – 4 ( - 1 ) = 0

3x – 6 + 4 = 0

3x - 6 + 4 = 0

3x = 2

x = 2 / 3

S + 2/3

Regra de Sarrus:

Seja a matriz A = a11 a12 a13

a21 a22 a23

a31 a32 a33

anota-se a matriz dada e repete-se, à direita , a primeira e a segunda colunas, conforme o esquema abaixo:

a11 a12 a13 a11 a12

| |

| |

| |

| |

| |

| |

Page 57: Matem-tica Ensino M-dio.pdf

57

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

- - - + + +

multiplicando os elementos segundo cada diagonal e associando aos produtos o sinal indicado, teremos :

det A= a11 . a22 . a33 + a12 . a23 . a31 + a13 . a21 . a32 - a13 . a22 . a31 - a11 . a23 . a32 - a12

. a21 . a33

EXEMPLO :

Calcular o determinante da matriz A , sendo

A = 1 - 1 0

2 3 1

-2 0 4

Solução

A = 1 - 1 0 1 -1

2 3 1 2 3

-2 0 4 -2 0

MENOR COMPLEMENTAR:

Chama-se menor complementar Dij relativo a um elemento aij da matriz A o determinante associado

à matriz quadrada de segunda ordem, obtida em A, e que se obtém eliminando, em A, a linha e a coluna em que

se encontra o elemento considerado.

EXEMPLO:

Seja a matriz A = a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 – a12 – a13 D11 = a22 a23 eliminando a 1ª linha a 1º coluna

a21 a23 a23 a32 a33 eliminando a 2ª linha a 3ª coluna

a31 a32 a33 D23 = a11 a12

a21 a32

COFATOR

| |

| |

| | | |

Page 58: Matem-tica Ensino M-dio.pdf

58

Chama-se cofator de aij o número real que se obtém multiplicando ( - 1 ) ij pelo menor complementar de aij

Aij = ( - 1 ) i + j . Dij em que Aij é cofator

Da matriz anterior temos :

1ª linha 1ª coluna

A11 = ( - 1 ) i + j . D11 = a22 a23

a32 a33

A23 = ( - 1 ) 2 + 3 . D 23 = a11 a12

a31 a32

Dada a matriz A = - 1 0 2

3 -1 1 , calcule :

4 -2 1

a) A11 b)A32

Solução :

a) A = -1 0 2

3 -1 1

4 -2 1

a) Aij = ( - 1 ) i + j . Dij

A11 = ( - 1 ) 1 + 1 . D 11

A11 = 1 . -1 1

-2 1

A11 = 1

Seja matriz quadrada de ordem n indicada a seguir:

b) A = -1 0 2

3 -1 1

4 -2 1

Page 59: Matem-tica Ensino M-dio.pdf

59

A32 = ( - 1 ) 3 + 2 . - 1 2

3 1

Seja matriz quadrada de ordem n indicada a seguir

a11 a12 ... an

a21 a22 ... a2n

a31 a32 ... a3n

am1 am2 amn

o determinante desta matriz é dado por :

det = a11A11 + a12A12 + a13A13 + ... ainAin

EXEMPLO :

Calcular o determinante da matriz A, sendo :

A= 2 -1 3

0 4 5

6 -2 1

Solução:

Para se aplicar esse método escolhe-se uma linha ou uma coluna.

Pelos elementos da primeira linha:

Det A= a11.A11 + a12 . a13 . A13 .

Det A = 2 (14 ) + ( - 1 ) . (+30 ) = 3 . ( - 24 )

Det A = 28 - 30 - 72

Det A = - 74

1 . Calcule o valor de :

Page 60: Matem-tica Ensino M-dio.pdf

60

2. Resolva as equações:

3. Calcule o valor dos determinantes:

4. Sendo a= -1 1 -1 e B = 3 0 1 , calcule 3a + 2b .

-2 3 -3 -1 6 2

2 0 4 -2 1 4

5. Resolva as seguintes equações em R :

6. Dada a matriz A = -3 2 , calcule cofatores A12 e A 22 .

4 0

7. Calcule os cofatores A21, A23,A31 e A33 da matriz

0 -2 1

A= 3 2 4

-1 6 -3

8. Calcule os seguintes determinantes, aplicando o teorema de Laplace:

1 2 3 0 1 -2

a) 4 5 6 b) 3 -2 1

7 8 9 0 1 0

Page 61: Matem-tica Ensino M-dio.pdf

61

AS COMBINAÇÕES

UMA FÓRMULA PARA O CÁLCULO DAS COMBINAÇÕES

Vamos supor que temos n objetos disponíveis para escolha e que, destes , vamos escolher p objetos (

p < n ). O número de maneiras de se fazer essa escolha chama-se combinação e representa-se por Cpn .

Portanto, o número de combinações de n elementos p a p é calculado por :

Cpn = n ! .

(n – p )!p!

Em nosso exemplo, temos n = 5 e p = 3 . Aplicando a fórmula , obtemos :

C35 = 5! = 5! = 5 . 4 . 3! = 5! . 4 = 10

(5 – 3 )!3! 2! 3! 2! 3! 2

Vamos resolver mais alguns problemas nos próximos exemplos. Leia com atenção o enunciado,

interprete-o e tente resolver cada exemplo sozinho.

Assim você poderá verificar se realmente compreende o problema e sua solução.

EXEMPLO

Em um hospital há apenas 5 leitos disponíveis na emergência. Dez acidentados de um ônibus chegam e

é preciso escolher 5 para ocupar os leitos. Os outros ficariam em macas, no corredor do hospital. De quantas

formas poderíamos escolher 5 pessoas que ficariam nos leitos ?

Solução:

Na realidade, os responsáveis pela emergência estudariam cada caso e escolheriam os mais graves,

mas imagine que todos tenham a mesma gravidade.

Neste caso, há duas coisa a observar : 10 pessoas, 5 serão escolhidas e a ordem em que a escolha é

feita não importa. Trata-se, então , de uma combinação onde:

N = 10 ( números de “ objetos” disponíveis )

P = 5 ( número de “objetos” a serem escolhidos )

Usando a fórmula , temos :

C510 = 10! = 10! = 10 . 9 . 8 . 7 . 6 . 5! = 10 . 9 . 8 . 7 . 6 = 3 . 2 . 7 . 6 = 252

(10 – 5 )! 5! 5! 5! 5! 5! 5 4 3 2 1

Logo, há 252 formas de escolher as 5 pessoas que irão ocupar os 5 leitos.

Exemplo

Page 62: Matem-tica Ensino M-dio.pdf

62

Uma pequena empresa quer formar um time de futebol e 15 funcionários se inscreveram, dizendo que

aceitam jogar em qualquer posição. De quantas formas é possível escolhe os 11 jogadores do time ?

Solução:

De 15 operários , 11 serão escolhidos e a ordem de escolha não importa, pois queremos escolher

apenas os jogadores sem determinar as posições campo .

Temos, então, as características de uma combinação de 15 pessoas (n = 15) para formar grupos de

11 (p = 11).

Usando a fórmula:

C1115 = 15 = 15 . 14 . 13 . 12 . 11! = 15 . 14 . 13 . 12 = 15 . 7 . 13 = 1365

(15 –11 )! 11! 4 ! 11! 4 . 3 . 2 . 1

Assim , os jogadores podem ser escolhidos de 1365 formas diferentes.

EQUAÇÕES EXPONENCIAIS

Resolver uma equação é encontrar os valores da incógnita que tornam a equação verdadeira. No caso

da equação exponencial, para resolvê-la, procuraremos obter sempre uma igualdade de duas potências de

mesma base, pois sabemos que, se duas potências de mesma base são iguais, então, seus expoentes também são

iguais. Por exemplo, para resolver a equação 3x = 243, podemos decompor o número 243, em fatores primos e

escrevê-lo em forma de potência, assim:

3x=35

logo, x = 5

A solução da equação é x = 5 .

Você verá, agora, vários outros exemplos de resolução de equações exponenciais.

EXEMPLO

Resolver a equação 2x = 2.

Como já sabemos, todo número elevado a 1 (um) é igual a ele mesmo. Então podemos escrever:

2x = 21

logo , x = 1

A solução da equação é x = 1

EXEMPLO

Page 63: Matem-tica Ensino M-dio.pdf

63

Resolver a equação 5 2x = 1

Lembrando que um número diferente de zero, elevado a zero, é igual a um, a equação pode ser escrita

assim:

52x = 5n 2x = 0 x = 0

A solução da equação é x = 0

EXEMPLO

Resolver a equação 33x = 1/9

Uma fração, cujo numerador é 1 (um), pode ser escrita na forma de uma potência de expoente

negativo.

Decompondo o denominador da fração em fatores primos, temos :

33x = 1/32 33x = 3-2

3x = -2 x = - 2/3

A solução da equação é x = - 2 .

3

EXEMPLO

Resolva a equação 10 x-1 = 0,001

O número 0,001 pode ser escrito com uma potência de expoente negativo, logo :

10 x–1 = 10 3 x – 1 = -3 x = -3 + 1 x = -2

A solução da equação é x = - 2

EXEMPLO

Resolver a equação 5 2x + 1 = √5

Vamos escrever a raiz na forma de potência de expoente fracionário, como vimos na aula anterior :

5 2x + 1 = 5 ½ 2x + 1 = ½

2x = ½ -1

2x = 1 – 2 2x = - ½ x = - ¼

2

A solução da equação é x = - ¼

EXEMPLO

Page 64: Matem-tica Ensino M-dio.pdf

64

Resolva a equação 4 3x – 5 = 4 x – 1

Neste exemplo, as potências já estão com as base iguais, portanto, podemos igualar diretamente seus expoentes.

3x – 5 = x – 1

3x – x = -1 + 5

2x = 4

x = 2

A solução da equação é x = 2 .

EXEMPLO

Resolva a equação 16 x + 3 = 2 x + 3

Vamos decompor 16 e escrevê-lo em forma de potência de base 2 . Temos que 16 = 24, logo:

( 24 ) x + 3 = 2 x + 3 ( vamos aplicar a propriedade da potenciação de potência )

24(x + 3 ) = 2 x + 3

2 4x + 12 = 2 x + 3 4x - 12 = x + 3

4x – x = 12 + 3

3x = 15

x = 5

A solução da equação é x = 5 .

Em todos os exemplos apresentados até agora, poderíamos ter conferido a resposta, substituindo a

solução encontrada na equação dada.

EXEMPLO

Resolva e confira a solução da equação ( 1 ) x = 10 x – 3

(100)

Vamos substituir na equação 1/100 por 10 –2

(10 –2) = 10 x – 3

10 – 2x = 10 x – 3 - 2x = x – 3

- 2x – x = -3

- 3x = - 3

x = 1

Vamos agora fazer a verificação. Substituindo x, na equação por 1, temos :

Page 65: Matem-tica Ensino M-dio.pdf

65

1 = 10 1 – 3

100

1 = 10 –2 , que é uma sentença verdadeira.

100

logo, a solução da equação é, de fato, x = 1.

MATEMÁTICA COMERCIAL E FINANCEIRA

GRANDEZAS DIRETAMENTE PROPORCIONAIS

Duas grandezas são diretamente proporcionais quando , aumentado uma dela, a outra aumenta na

mesma ração da primeira.

EXEMPLO:

1 hora percorre 80 km

Um automóvel em 2 horas percorre 160 km

3 horas percorre 240 km

As rações entre os elementos correspondente são iguais.

1 = 2 = 3 .

80 160 240

As grandezas “tempo” e “ distância” são diretamente proporcionais.

GRANDEZAS INVERSAMENTE PROPORCIONAIS

Duas grandezas são inversamente proporcionais quando, aumentando uma delas, a outra diminui na

mesma ração da primeira.

REGRA DE TRÊS SIMPLES

É um processo prático para resolver problemas envolvendo grandezas diretamente proporcionais e

inversamente proporcionais.

RESOLUÇÃO DE PROBLEMAS

Para resolver problemas envolvendo regra de três deve-se proceder da seguinte maneira :

- Indicar duas grandezas diretamente proporcionais com flechas de mesmo sentido.

- Indicar duas grandezas inversamente proporcionais com flechas de sentido contrário.

EXEMPLO

Page 66: Matem-tica Ensino M-dio.pdf

66

1 ) Com 14 litro de tinta, podemos pintar, uma parede de 35m2.Quando litros são necessários para uma

parede de 15m2.

Solução: Litros m2

14 35

x 15

14 = 35 35x = 210 x = 210 x = 6

x 15 35

Resp.: 6 litros

2) com 12 operários podemos construir uma muro em 3 dias. Quantos dias levarão 4 operários para fazer o

mesmo muro ?

solução :

Operários dias

14 3

4 x

4 = 3 . 4x = 12 . 3 4x = 36 x = 9

12 x

Resp.: 9 dias

REGRA DE TRÊS COMPOSTA

É um processo prático que envolve problemas com mais de duas grandezas.

EXEMPLO:

Um ônibus percorre 2232 km em 6 dias, correndo 12 horas por dia.Quantos quilômetros percorrerá

em 10 dias, correndo 14 horas por dia ?

Solução:

Km dias horas

2232 6 12

x 10 14

2232 = 6 . 12 .

x 10 14

Operários e dias são grandezas inversamente

proporcionais. Então, devemos inverter a

grandeza”operário”

Para colocar as setas, compara-se

cada grandeza com aquela que contém

a incógnita “x”

Igual à razão que contém “x” com o

produto das outras razões

Page 67: Matem-tica Ensino M-dio.pdf

67

2232 = 72 .

x 140

72 x = 2232 . 140

x = 312480 Resp.: 4340 km

72

Resolva os problemas, aplicando as regras de três simples e composta.

1) Se oito metros de tecido custam R$ 156,00 qual o preço de 12m de tecidos?

Resp.: R$ 234,00

2) Viajando de automóvel à velocidade de 60 km/h, eu gastaria 4h para fazer certo percurso. Aumentando

a velocidade para 80km/h, em quanto tempo faria esse percurso ?

Resp.: 3h

3 ) Um operário ganha R$ 396,00 por 12 dias de trabalho. Quanto receberá por 25 dias de trabalho?

Resp.: 825,00

4 ) Uma obra é construída em 90 dias por 12 operários. Em quanto tempo essa obra seria construída por

15 operários ?

Resp.: 72 dias .

5 ) Uma torneira despeja num tanque 50 litros de água em 20 minutos. Quantas horas levará para

despejar 600 litros ?

Resp.: 4 horas

6 ) Um ciclista percorre 150 km em 4 dias, pedalando 3 horas por dia. Em quantos dias faria uma viagem de

400 km, pedalando 4 horas por dia ?

Resp.: 8 dias

7 ) Na fabricação de 20 camisas, 8 máquinas gastam 4 horas. Para 4 máquinas produzirem 15 camisas,

quantas horas gastam ?

Resp.: 6 horas

PORCENTAGEM É UMA RAZÃO CENTESIMAL REPRESENTADA PELO SÍMBOLO % (POR CENTO)

EXEMPLO.:

Page 68: Matem-tica Ensino M-dio.pdf

68

a) 8 = 8% ( lê-se “8 por cento” )

100

b) 5 = 5% ( lê-se “5 por cento” )

100

c) 18 = 18% ( lê-se “dezoito por cento”)

100

essa representação ( 8%, 5%, 18%, etc ) chama-se taxa porcentual.

PROBLEMAS DE PORCENTAGEM

São resolvidos através da regra de três simples.

EXEMPLOS:

1 ) Calcular 8% de R$ 700,00

Solução:

Porcentagem valor

100 700

8 x

100 = 700 100 x = 8700

8 x 100 x = 5600 x = 5600 x = 56

100 Resp.: R$ 56,00

MÉTODO PRÁTICO

Solução:

8 . 700 = 8700 = 56 Resp .: R$ 56,00

100 100

2) Numa escola de 900 alunos, 42% são rapazes .Calcule o número de rapazes.

Solução: 42% de 900 = 42 .

100

Resolvendo pelo método prático: 42 . 900 = 378 Res.: 378 rapazes

100

EXERCÍCIOS

1) Calcule as porcentagens.

a) 15 % de R$ 240,00 Resp.: 36,00

Page 69: Matem-tica Ensino M-dio.pdf

69

b) 100 % de R$ 3218,00 Resp.: 3218,00

c) 0,4 % de R$ 50000,00 Resp.: 200,00

d) 1 % de R$ 3000,00 Resp.: 30,00

e) 3,2 % de R$ 6000,00 Resp.: 192,00

2) Comprei uma bicicleta por R$ 500,00. Revendi com um lucro de 15%. Quanto ganhei?

Resp.: 75,00

3) A construção de uma casa ocupará 60% de um terreno de 600m2 .Qual será a área restante ?

Resp.: 240km2

4) Numa classe de 40 alunos, 36 foram aprovados. Qual foi a taxa de porcentagem dos aprovados ?

Resp.: 90%

5) Um corretor de imóveis recebeu R$ 17.000,00 correspondente a 5% de sua comissão. Qual o valor da

venda ?

Resp.: R$ 340.000,00

6 ) Um produto custa, R$ 400,00 e é vendido por R$ 520,00. Qual é a taxa de lucro ?

Resp.: 50%

Obs.: Lucro : 520 – 400 = 120

7 ) Comprei um fogão com um desconto de R$ 60,00 que corresponde à taca de 5% . Qual era o preço do

fogão ?

Resp.: R$ 1.200,00

JUROS SIMPLES

Os juros simples são representados pela letra j .

EXEMPLO:

Quando se deposita numa caderneta de poupança uma certa quantia, por um determinado tempo,

recebe-se uma compensação em dinheiro chamada juros.

Representação:

Capital c (quantia empregada)

Taxa i (porcentagem)

Tempo t (período)

Page 70: Matem-tica Ensino M-dio.pdf

70

Juros j (a renda obtida)

RESOLUÇÃO DE PROBLEMAS

Os problema que envolvem juros podem ser resolvidos por meio de uma regra de três composta.

Fórmula :

j = c . i . t

100

A fórmula é válida quando a taxa e o tempo estiverem numa mesma unidade.

Taxa Tempo

Anual Anos

Mensal Meses

Diária Dias

EXEMPLO:

1) Calcular os juros produzidos por um capital de R$ 6.000,00 empregado à taxa de 5% ao ano, durante 4

meses.

Solução:

j = ?

c = 6.000

i = 5% ao ano

t = 4 meses

j = c . i . t j = 6000 . 5 . 4 j = 1200

100 100

2) Calcule os juros produzidos por R$ 12.000,00 à taxa de 48% ao ano durante 4 meses.

C = 12000 j = c . i . t j = 12000 . 4 . 4 j = 1920

t = 4 meses 100 100

i = 48 % ao ano = 4 % ao mês

( 48 : 12 ) resp.: R$ 1920,00

EXERCÍCIOS:

Page 71: Matem-tica Ensino M-dio.pdf

71

1) Calcule os juros de R$ 18.000,00, durante 3 meses, a uma taxa de 7% ao mês.

Resp.: 3.780,00

2) Por quanto tempo devo aplicar R$ 3.000,00 para que renda R$ 1.400,00 a uma taxa de 12% ao mês ?

Resp.: 4 meses

3) Qual o capital que produziu R$ 18.360,00, durante 17 meses, a uma taxa e 24 % ao ano ?

Resp.: 54.000,00

4 ) Quanto rendeu de juros o capital de R$ 24.000,00 emprestado à taxa de 4% ao mês durante 90 dias ?

Resp.: 2.880,00

5) Por quanto tempo devo aplicar R$ 8.000,00 para que renda R$ 2000,00 à taxa de 5% ao mês ?