30
Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Embed Size (px)

Citation preview

Page 1: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Mecânica dos Fluidos

Problemas resolvidos

Esforços de Massa e de Superfície e outras propriedades dos fluidos

Page 2: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Esforços de Massa e de Superfície

Dada uma determinada porção de fluido no espaço submetida a ação da gravidade dois tipos básicos de esforços poderão atuar: os de massamassa e os de superfíciesuperfície

Page 3: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

São aqueles que, tais como os devidos à ação da gravidade, se desenvolvem à distância;

Recebem esta denominação porque a intensidade destes esforços será tão maior quanto maior for a massa contida na porção de fluido;

Os esforços de massa são também chamados de esforços de campo por dependerem de existência de um campo gravitacional para se manifestarem.

Esforços de Massa

Page 4: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Também denominados de esforços de contato;

Compreendem todos os esforços que se desenvolvem através do contato físico entre as partículas fluidas ou entre essas e as superfícies sólidas que limitam a massa fluida em questão

Esforços de Superfície

Page 5: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Esforços de Massa e de Superfície

A força ∆F pode ser desmembrada em suas componentes normal (∆N) e tangencial (∆T)

Peso da porção fluida (esforço de massa)

Page 6: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Esforços de Massa e de Superfície

Page 7: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Pelo menos três características são básicas para definição de um vetor:

Módulo Direção Sentido

Vetor Tensão Normal ou Pressão

Page 8: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

A direção da pressão é a normalnormal à superfície; uma vez definida a superfície fica automaticamente definida a direção da pressão;

O sentido será o de fora para dentrofora para dentro, ou seja, o da compressãocompressão

Não há como tracionar fluidos. Os fluidos não resistem a esforços de tração (embora líquidos muito puros possam resistir a pequenos esforços deste tipo)

Vetor Tensão Normal ou Pressão

Page 9: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Para efeitos práticos, o vetor pressão sempre tem definidas duas de suas características básicas: direção e sentido;

Em quase todas as aplicações a pressão é tratada como uma grandeza escalar.

Vetor Tensão Normal ou Pressão

Page 10: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Unidades de Força e PressãoAs unidades coerentes de pressão obedecem à fórmula:

                                                                     

Page 11: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Unidades de Força e Pressão

A unidade de pressão no sistema S.I. é o newton/m2 (N/m2), que recebe o nome de pascal (Pa);

No sistema CGS (praticamente fora de uso), a unidade de pressão é o dina/cm2 (din/cm2), que recebe o nome de bária (não tem símbolo);

A relação existente entre ambas unidades é:1 Pa = 10 bárias  ou  1 bária = 10-1 Pa

Um pascal é a pressão uniforme que determina Um pascal é a pressão uniforme que determina empuxo de intensidade empuxo de intensidade um newtonum newton em superfície em superfície plana com área igual a plana com área igual a um metroum metro quadradoquadrado”. ”.

Page 12: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Unidades de Força e Pressão

No sistema técnico de unidades, a unidade de pressão é o kgf/m2;

Utiliza-se também o kgf/cm2, que recebe o nome de atmosfera-técnica (at), por ser quase igual a a pressão atmosférica normal;1 at = 1 kgf/cm2 = 104 kgf/m2

1 kgf/m2 = 9,806 65 N/m2 = 9,806 65 Pa

Page 13: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Pressão Atmosférica Normal

É a pressão equivalente à exercida por uma coluna de mercúrio de 760 mm de altura, exatamente a 0°C, sob gravidade normal(gn= 980,665cm/s2 = 9,806 65m/s2)

Page 14: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Recebe o nome de atmosferaatmosfera (atm);

Como a densidade do mercúrio a 0°C é de 13,5955 g/cm3, teremos:

1 atm = 13,5955 g/cm3 x 980,665 cm/s2 x 76 cm =

= 1,01328×106 bárias = 101 328 Pa = 1013,28 mbar

Pressão Atmosférica Normal

Page 15: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Freqüentemente se especificam as pressões dando a altura da coluna de mercúrio que a 0°C exerce a mesma pressão;

Assim, é costume expressar a pressão em milímetros de mercúriomilímetros de mercúrio (mmHg), unidade de pressão que recebe, também, o nome de TorrTorr em homenagem a Torricelli:

1 mmHg = 1 Torr = 13,5955 g/cm3 x 980,665 cm/s2 x 0,1 cm =133,326 Pa

1 cmHg = 10 Torr = 1333 Pa

Pressão Atmosférica Normal

Page 16: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Em muitos problemas de engenharia, interessa-nos apenas conhecer o valor da parcela de pressão, acima da pressão atmosférica;

A essa pressão, que só começa a ser considerada a partir da pressão atmosférica denominamos pressão efetiva

Desse conceito: pressão atmosférica efetiva é nula.nula.

Pressão Efetiva

Page 17: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

A pressão efetiva somada à pressão atmosférica local denomina-se pressão absoluta

A pressão absoluta começa a ser contada a partir do zero absoluto;

A pressão efetiva começa a ser contada a partir da pressão atmosférica

Pressão Absoluta

Page 18: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Pressão Efetiva e Absoluta

Page 19: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Aplicações Práticas

Page 20: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

A aplicação de esforços tangenciais sobre os fluidos faz com que eles escoem;

A velocidade de escoamento de cada fluido, correspondente a dada tensão tangencial que lhe é aplicada, depende de sua viscosidade;viscosidade;

Quanto menor o valor desta grandeza maior será sua velocidade de escoamento para um mesmo valor da tensão tangencial;

Vetor Tensão Tangencial

Page 21: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Vetor Tensão Tangencial

Page 22: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

A massa específica de um gás é função das condições ambientais;

As condições ambientais dizem respeito aos valores de pressão e temperatura reinantes;

A relação entre seus valores pode ser expressa pela equação:

Equação de Estado dos Gases

Page 23: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Equação de Estado dos Gases

Page 24: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Equação de Estado dos Gases

Pode também ser escrita:p x 1/γ = pVs= zRT

O valor de z é inferior à unidade nas situações em que o gás é um vapor superaquecido ou um vapor saturado;

À medida que as condições ambientais se afastam daquelas em que o gás tende mudar seu estado passando a líquido ou a sólido, o valor de z tende a aumentar, aproximando-se da unidade.

Page 25: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Equação de Estado dos Gases

Denominamos de gás perfeito ao gás que atende à expressão:

pVs= RT

A experiência mostra que todos os gases se comportam de acordo com essa equação, desde que suas densidades não sejam muito elevadas.

Ou seja, todos os gases podem ser tratados como gases perfeitos se suas temperaturas não forem muito baixas nem suas pressões muito elevadas (pVs= RT).

Page 26: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Equação de Estado dos Gases

Quando comparamos experimentalmente os valores de R para vários gases, constatamos que é inversamente proporcional ao peso molecular Wm do gás;

Assim sendo, tem-se:r = WmR , onde: r é uma constante de

proporcionalidade, igual para todos os gases

Por outro lado:

W = n.Wm,, onde: W= peso da massa fluida em estudo

n= Número de moles contidos na massa fluida

Page 27: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Equação de Estado dos Gases

Podemos reescrever a lei dos gases perfeitos:

pVs= RT pV = r T

nWm Wm

E obtemos:

pV=nrT

Essa expressão é denominada equação de estado do gás ideal e a constante r é denominada constante universal dos gases

Page 28: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Constante Universal dos Gases

O valor numérico desta constante foi determinado:

Sistema SI............................r = 8,314 N.m.molSistema SI............................r = 8,314 N.m.mol -1-1.K.K-1-1

Sistema MKSistema MKffS......................r = 0,848 Kgf.m.molS......................r = 0,848 Kgf.m.mol -1-1.K.K-1-1

Page 29: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Equação Geral dos Gases Ideais

Da equação de estado gás ideal temos:

pV=nrT pV = nr T

Como r é constante, se a massa do gás for constante ( e portanto o número de moles n for constante) pode-se dizer que:

pV = K, onde K é uma constante T

Page 30: Mecânica dos Fluidos Problemas resolvidos Esforços de Massa e de Superfície e outras propriedades dos fluidos

Equação Geral dos Gases Ideais

Então para situações inicial e final:

piVi = pfVf

Ti Tf