12
AVALIAÇÃO DA MACROTEXTURA MÉDIA DE SUPERFÍCIES DE PAVIMENTOS: COMPARAÇÃO ENTRE AS TÉCNICAS COM DRENÔMETRO E COM MANCHA DE AREIA Tiago Vieira Diego Campos Redondo André Kazuo Kuchiishi Sérgio Copetti Callai Liedi Légi Bariani Bernucci Universidade de São Paulo Escola Politécnica RESUMO A textura média é uma medida comumente utilizada na engenharia de pavimentação para caracterizar superfícies de pavimentos. Este trabalho explora dois métodos utilizados para caracterizar a textura média de pavimentos: a mancha de areia e a drenabilidade. Ambos os métodos possuem limitações intrínsecas que devem ser conhecidas para uma correta aplicação e interpretação dos resultados. Os princípios de funcionamento de cada método são expostos, bem como é apresentada uma metodologia para correlacionar a medida de drenabilidade com a textura média das superfícies. Esta metodologia pode ser aplicada a diferentes drenômetros de forma a se obter uma informação adequada da textura média mesmo em casos onde o ensaio de mancha de areia não seja viável. São apresentadas vantagens em se utilizar o drenômetro, como por exemplo, a estimativa do gradiente de velocidade, bem como limitações relacionadas ao uso da textura média para caracterizar superfícies de pavimentos. ABSTRACT The mean texture depth is a commonly used method to evaluate surfaces in pavement engineering. This paper explores two methods used to evaluate the mean texture depth on pavement surfaces: the sand patch and the outflow method. A good understanding on the intrinsic limitations of both methods is crucial for a correct usage and interpretation. The working principles of both methods are discussed and a simple methodology is used to correlate the outflow measurements to the mean texture depth. This methodology may be applied to different outflow meters in order to correctly evaluate the mean texture depth, even when the sand patch method is not applicable. The beneficial aspects of using the outflow method are presented, including the estimate of the speed gradient, as well as some limitations related to characterize a pavement surface by its mean texture depth. 1. INTRODUÇÃO A superfície do pavimento é o meio pelo qual os veículos interagem com a estrutura rodoviária. Desta forma, características da superfície estão diretamente ligadas ao desempenho do pavimento, seja afetando a segurança viária, o consumo de combustível, desgaste de pneus, e até mesmo a geração de ruído. A aderência no contato pneu-pavimento está diretamente ligada à textura presente na superfície do pavimento. Estudos anteriores já demonstraram relações estatisticamente significativas entre a textura dos pavimentos e índices de acidentes. Pulugurtha et al. (2011) utilizaram modelos lineares generalizados (MLG) para relacionar a macrotextura dos pavimentos com taxas de acidentes, acidentes com vitimas e danos materiais, a partir de dados dos Estados Unidos. Na Austrália, Cairney e Bennett (2008), encontraram uma relação exponencial entre taxas de acidentes e a macrotextura dos pavimentos. No Brasil, Marcandali et al. (2011) analisaram a substituição de um concreto asfáltico por uma superfície com microrrevestimento, que reduziu significativamente os índices de acidentes na rodovia Fernão Dias (BR-381). Foram comparadas as macrotexturas de ambos, resultando que o microrrevestimento tem uma macrotextura média mais elevada do que o concreto asfáltico anterior, desta forma, também comprovando a relação entre acidentes e a textura dos pavimentos. Estudos similares também foram realizados na França (GOTHIÉ, 2001) e no

Medida da Macrotextura Media: Comparacao Drenometro e ... · Desta forma, trata-se de ensaios de contato, diferente de métodos como o laser ou a fotometria, que fornecem informações

Embed Size (px)

Citation preview

AVALIAÇÃO DA MACROTEXTURA MÉDIA DE SUPERFÍCIES DE

PAVIMENTOS: COMPARAÇÃO ENTRE AS TÉCNICAS COM DRENÔMETRO E

COM MANCHA DE AREIA

Tiago Vieira

Diego Campos Redondo

André Kazuo Kuchiishi

Sérgio Copetti Callai

Liedi Légi Bariani Bernucci Universidade de São Paulo

Escola Politécnica

RESUMO

A textura média é uma medida comumente utilizada na engenharia de pavimentação para caracterizar superfícies

de pavimentos. Este trabalho explora dois métodos utilizados para caracterizar a textura média de pavimentos: a

mancha de areia e a drenabilidade. Ambos os métodos possuem limitações intrínsecas que devem ser conhecidas

para uma correta aplicação e interpretação dos resultados. Os princípios de funcionamento de cada método são

expostos, bem como é apresentada uma metodologia para correlacionar a medida de drenabilidade com a textura

média das superfícies. Esta metodologia pode ser aplicada a diferentes drenômetros de forma a se obter uma

informação adequada da textura média mesmo em casos onde o ensaio de mancha de areia não seja viável. São

apresentadas vantagens em se utilizar o drenômetro, como por exemplo, a estimativa do gradiente de velocidade,

bem como limitações relacionadas ao uso da textura média para caracterizar superfícies de pavimentos.

ABSTRACT

The mean texture depth is a commonly used method to evaluate surfaces in pavement engineering. This paper

explores two methods used to evaluate the mean texture depth on pavement surfaces: the sand patch and the

outflow method. A good understanding on the intrinsic limitations of both methods is crucial for a correct usage

and interpretation. The working principles of both methods are discussed and a simple methodology is used to

correlate the outflow measurements to the mean texture depth. This methodology may be applied to different

outflow meters in order to correctly evaluate the mean texture depth, even when the sand patch method is not

applicable. The beneficial aspects of using the outflow method are presented, including the estimate of the speed

gradient, as well as some limitations related to characterize a pavement surface by its mean texture depth.

1. INTRODUÇÃO

A superfície do pavimento é o meio pelo qual os veículos interagem com a estrutura

rodoviária. Desta forma, características da superfície estão diretamente ligadas ao

desempenho do pavimento, seja afetando a segurança viária, o consumo de combustível,

desgaste de pneus, e até mesmo a geração de ruído.

A aderência no contato pneu-pavimento está diretamente ligada à textura presente na

superfície do pavimento. Estudos anteriores já demonstraram relações estatisticamente

significativas entre a textura dos pavimentos e índices de acidentes. Pulugurtha et al. (2011)

utilizaram modelos lineares generalizados (MLG) para relacionar a macrotextura dos

pavimentos com taxas de acidentes, acidentes com vitimas e danos materiais, a partir de dados

dos Estados Unidos. Na Austrália, Cairney e Bennett (2008), encontraram uma relação

exponencial entre taxas de acidentes e a macrotextura dos pavimentos. No Brasil, Marcandali

et al. (2011) analisaram a substituição de um concreto asfáltico por uma superfície com

microrrevestimento, que reduziu significativamente os índices de acidentes na rodovia Fernão

Dias (BR-381). Foram comparadas as macrotexturas de ambos, resultando que o

microrrevestimento tem uma macrotextura média mais elevada do que o concreto asfáltico

anterior, desta forma, também comprovando a relação entre acidentes e a textura dos

pavimentos. Estudos similares também foram realizados na França (GOTHIÉ, 2001) e no

Reino Unido (ROE et al., 1991).

O desgaste de pneus, além de ser uma variável de desempenho do pavimento, está ligado a

uma questão ambiental. A demanda mundial por pneus prevista para 2015 é de 3,3 bilhões de

unidades (FREEDONIA GROUP, 2012). Adiciona-se a esta elevada demanda o fato de que a

borracha utilizada nos pneus não se degrada por si só (FANG, ZHAN, WANG, 2001), e a

relação entre o desgaste de pneus e sustentabilidade torna-se evidente. É importante ressaltar a

distinção entre degradação, relacionada ao retorno do material ao meio ambiente, e

deterioração, que ocorre na borracha pelo simples contato com o ozônio presente na atmosfera

e está ligado com a perda de propriedades viscoelásticas do material. Uma abordagem

tribológica confirma a relação entre o desgaste de pneus e a textura dos pavimentos. A

presença de picos excessivamente angulosos na textura causa desgaste abrasivo na banda de

rodagem dos pneus, comprometendo seu desempenho prematuramente (MOORE, 1975). Em

um estudo procurando relacionar a textura dos pavimentos com o desgaste de pneus, Lowne

(1970) determinou que texturas excessivamente angulosas podem triplicar a taxa de desgaste

de pneus. É importante mencionar que seu estudo é anterior as definições de macro e

microtexturas propostas por Wambold (1995), não sendo possível assim, relacionar estes

resultados diretamente com as classes de texturas mencionadas.

O ruído gerado no contato pneu-pavimento também é o resultado direto da interação com a

textura da superfície. Dentre os nove mecanismos de geração de ruído e os sete de

amplificação de ruído presentes no contato pneu-pavimento (SANDBERG, 1997), observa-se

que, não só estes mecanismos são relacionados com a textura dos pavimentos, como também

são intimamente ligados com os fenômenos de aderência. Como exemplo, é possível

mencionar os mecanismos de stick-slip e stick-snap que estão relacionados à adesão

dispersiva (ISRAELACHVILI, 1991). Os efeitos nocivos de elevados níveis de ruído na

interação pneu-pavimento podem ser observados no estudo elaborado pela Agência de

Proteção Ambiental Dinamarquesa (EPA, 2003, apud FEHRL, 2006), demonstrou-se que um

acréscimo de 1 dB nos níveis de ruído rodoviário resulta em uma desvalorização de

aproximadamente 1% dos imóveis próximos a esta rodovia.

Neste contexto, observam-se esforços internacionais para melhor entender e controlar a

interação pneu-pavimento. Pode-se citar, o programa SILVIA (Silenda Via - Sustainable Road

Surfaces for Traffic Noise Control), que buscou melhor compreender os mecanismos de

geração e amplificação de ruído, bem como examinar as opções de pavimentos que geram

menos ruído (FEHRL, 2006). Outro exemplo de esforço internacional para um melhor

entendimento e controle da interação pneu-pavimento encontra-se no selo europeu para pneus.

Segundo a regulação proposta, que vigora a partir de novembro de 2012, todos os pneus

comercializados na União Europeia deverão possuir um selo indicando características de

desempenho com relação à aderência, geração de ruído e consumo de combustível (THE

COMMISISSION OF THE EUROPEAN COMMUNITIES, 2009). Desta forma, cabe

também à engenharia de transportes concentrar esforços com o intuito de melhor compreender

a interação pneu-pavimento.

Este trabalho explora dois ensaios tradicionalmente utilizados na caracterização de superfícies

de pavimentos: (i) mancha de areia e (ii) drenabilidade. Ambos os ensaios são analisados de

forma critica, expondo suas limitações e evidenciando a necessidade de uma melhor

caracterização das superfícies de pavimentos.

2. MEDIDAS DE TEXTURA MÉDIA

Seguindo a classificação proposta por Wambold (1995), a textura na superfície de um

pavimento pode ser considerada como uma série de senóides com diferentes amplitudes e

comprimentos de onda. As características de cada categoria de textura, em função da

amplitude e comprimento de onda da senóide equivalente, são apresentadas na Tabela 1. A

Figura 1 apresenta as diversas categorias de textura, incluindo referências para as dimensões

de cada categoria.

Tabela 1: Categorias de textura e características da senóide equivalente

Categoria de Textura Comprimento de

onda mínimo (mm)

Comprimento de onda

máximo (mm)

Amplitude

mínima (mm)

Amplitude

máxima(mm)

Irregularidade 500 mm

Megatextura 50 mm 500 mm 0.1 mm 50 mm

Macrotextura 0.5 mm 50 mm 0.1 mm 20 mm

Microtextura 0.5 mm 0.2 mm

Figura 1: Categorias das texturas de pavimentos (Adaptado de SANDBERG, 1997)

A caracterização de uma superfície é de extrema importância, embora não seja uma tarefa

simples, dado que a textura apresenta irregularidades nas varias escalas, como é apresentado

na Figura 1. Embora a forma mais realista para se avaliar os aspectos funcionais de uma

superfície seja simular a funcionalidade em um ensaio específico, como o ensaio de roda

travada para simular uma frenagem, esta forma geralmente não é eficiente devido à grande

quantidade de variáveis presentes na interação entre superfícies. Desta forma, segundo

Whitehouse (2002), é mais eficiente medir características diretamente da superfície. Segundo

estudos de Saleh et al. (2010), as características das superfícies de pavimentos são bons

indicadores do desempenho de pavimentos com relação a resistência à derrapagem, drenagem

e geração de ruído.

Os ensaios mais utilizados na engenharia de pavimentação para avaliar as superfícies de

pavimentos são a Mancha de Areia e o Drenabilidade, que tem como função avaliar a textura

média da superfície. Embora não forneçam informações detalhadas sobre a forma das

asperezas, são ensaios de baixo custo e rápida execução, fornecendo uma informação inicial

sobre a superfície dos pavimentos.

É importante ressaltar que ambos os ensaios dependem do contato físico com a superfície para

fazer as medições. No caso da mancha de areia este contato se dá entre as esferas de vidro e as

asperezas do pavimento, enquanto no caso do drenômetro, o contato se dá com a água e o

pavimento. Desta forma, trata-se de ensaios de contato, diferente de métodos como o laser ou

a fotometria, que fornecem informações sobre a textura de forma indireta (VIEIRA, 2013). A

caracterização da textura de forma indireta, embora forneça uma informação mais detalhada,

já que não tem limitações geradas por contato físico, ainda não são amplamente utilizadas na

engenharia de pavimentação.

2.1. Mancha de Areia

A mancha de areia é o método volumétrico mais difundido para a avaliação da macrotextura

do revestimento (ASTM, 1996) e o precursor do ensaio foi proposto por Trafford J. W.

Leland (1968). O ensaio de mancha de areia é utilizado para medir a profundidade média da

macrotextura (MTD - Mean Texture Depth).

O método consiste em espalhar na superfície do revestimento que se quer avaliar, um volume

conhecido (2500 mm²) de microesferas de vidro de dimensões padronizadas, em movimentos

circulares com auxilio de um disco de borracha. Após o espalhamento, que resulta em um

círculo de cobrindo uma dada área sobre o pavimento, medem-se quatro diâmetros,

posicionados a 0°, 45°, 90°, 135°.

Figura 2: Diâmetros traçados em corpo de prova para determinação do MTD, escala utilizada para a medição da

mancha a partir de fotometria.

Calcula-se, então, o diâmetro médio do círculo formado pela área coberta por areia. A altura

média da mancha de areia é obtida pela equação (1). Para o cálculo da mancha de areia,

utiliza-se a média dos quatro diâmetros, marcados na Figura 2, assim como proposto pela

norma ASTM (1996).

(1)

em que V: volume de areia [2500 mm²];

Dm: diâmetro médio da mancha de areia [mm]; e

Hm: altura média da mancha de areia [mm].

Uma alternativa mais precisa para analisar a área da mancha de areia é calcular a área por

meio de fotometria através de um programa de processamento de imagens. A Figura 3 mostra

uma imagem para o cálculo da mancha de areia pelo processamento de imagens.

Figura 3: Mancha de areia feita em uma das provas, com régua para processar a imagem

O método da mancha de areia é de rápida execução, baixo custo e emprega equipamentos

simples. No momento do ensaio, o pavimento deve estar perfeitamente limpo e seco, e deve-

se ter cuidado em locais com vento. Contudo, trata-se de um método lento, que exige

fechamento ou interdição da rodovia ou pista, e que depende em parte do operador.

2.2. Drenômetro

O drenômetro é um equipamento utilizado para analisar a macrotextura do revestimento

(ASTM, 2005) a partir do tempo de drenagem de um volume de água pré-definido. Foi

desenvolvido em 1966 por Desmond F. Moore.

Para a realização do experimento, o cilindro é posicionado sobre a superfície do pavimento, e

fixado por um peso metálico. A região de contato, cilindro-pavimento, é selada por um anel

de borracha, o interior do cilindro preenchido com água e a abertura inferior do cilindro

vedada por uma tampa. Assim que esta tampa é solta, a drenagem de água se inicia. Com o

uso de um cronômetro, marca-se o tempo gasto para que o volume conhecido de água escoe

pela superfície. São feitas quatro medidas de tempo por corpo de prova, sendo que o tempo

médio para escoar o volume pré-definido de água é o valor resultante da drenabilidade da

superfície, OFT (Outflow Time). As normas utilizadas neste trabalho encontram-se listadas na

seção 3.

Sabendo que o ensaio de drenabilidade tem o objetivo de analisar a superfície do pavimento, é

importante ressaltar que o escoamento de água ocorra apenas por entre as irregularidades da

superfície. Porém, durante os ensaios, considerou-se que o volume de água do cilindro

também poderia escoar por entre os vazios internos do corpo de prova, se infiltrando no

mesmo. Com o intuito de verificar o grau de influência dessa infiltração, os mesmos ensaios

foram realizados novamente, porém com o revestimento completamente saturado. Para

garantir sua saturação, o corpo de prova foi mantido submerso por aproximadamente 10

minutos, antes de iniciar os ensaios de drenabilidade. Com os resultados obtidos, foi possível

observar que a saturação é um fator pouco determinante para os dados experimentais

coletados, apresentados na seção 5, embora possa ser importante no caso de pavimentos com

maior porosidade. A Figura 4 mostra o drenômetro na condição saturada (a), e não saturada

(b). Nota-se, a partir da Figura 4 que no caso saturado ocorre somente o fluxo Q1, relacionado

com a macrotextura, enquanto no caso não saturado, ocorre também o fluxo Q2, que está

relacionado com a permeabilidade do pavimento, e não sua drenabilidade. Desta forma o

fluxo Q2 é indesejado e pode ser suprimido com a saturação do pavimento.

Figura 4: Representação do fluxo no drenômetro para as condições de não saturado e saturado (corte no plano

de simetria)

Após estudo, Moore (1975) foi capaz de correlacionar MTD com o tempo de drenagem, OFT,

na equação (2).

(2)

em que Kofm: constante;

: viscosidade absoluta [N.s/m²];

t: tempo de drenagem [s];

N’: número de asperezas por unidade de área [1/m²]; e

P: perímetro médio dos canais da macrotextura [m].

3. DRENÔMETRO DO LTP

O drenômetro utilizado nos ensaios foi desenvolvido no próprio LTP (Laboratório de

Q1 Q1 Q2 Borracha

Água

Tampa

Água

Tampa

Borracha

Drenômetro Drenômetro

(a) (b)

Tecnologia de Pavimentação da Escola Politécnica da USP) pelo Dr. Edson de Moura que se

baseou no drenômetro da ISETH (Institut für Strassen, Eisenbahn und Felsbau des

Eidgenössischen Technischen Hochschule Zürich), que por sua vez, foi baseado no trabalho

de Moore (1966). A Tabela 2 exemplifica algumas diferenças de dimensão e especificações

entre os drenômetros LTP e ASTM.

Tabela 2: Características do drenômetro do LTP e da ASTM

Observa-se que o drenômetro do LTP se diferencia das especificações da norma (ASTM,

2005). Logo, a equação 3, proposta pela ASTM é inválida para a análise dos dados.

(3)

Como a equação 3 não é valida torna-se necessário utilizar ferramentas estatísticas de modo a

determinar uma nova equação para correlacionar MTD e OFT, assim como é feito na seção 4.

Vale ressaltar que o procedimento operacional adotado foi adaptado a partir da norma

britânica de drenabilidade (BSI, 2002). O drenômetro do LTP tem peso total de 5,727 kg, dos

quais, 5,154 kg são relativos ao peso de fixação, além de uma tampa de borracha. O

drenômetro é apresentado na Figura 5 (a) a partir de uma foto, e em (b) com uma

representação contendo suas dimensões.

Figura 5: Drenômetro do LTP, peso e tampa (a) . Representação com as dimensões em milímetros (b)

Drenômetro LTP ASTM Diâmetro do orifício (mm)

Volume de água conhecido (ml) 58

724 ≥ 60

≥650 e ≤700

(a) (b)

4. DADOS DE MANCHA DE AREIA E DRENABILIDADE

Para os ensaios de drenabilidade e mancha de areia foram utilizadas sete amostras circulares

com 250 mm de diâmetro. Tais amostras foram extraídas com o uso de uma serra circular da

Rodovia dos Bandeirantes (SP-348). Vale evidenciar que do total de amostras, cinco são de

microrrevestimento e duas, SE e SF, são de GAP-graded com asfalto borracha. Não se

observou diferença significativa entre as amostras de microrrevestimento e de GAP-graded na

análise aqui apresentada, embora há diferenças entre o desempenho destes dois tipos de

revestimentos (VIEIRA, 2013).

Os dados de mancha de areia (MTD), apresentados na Tabela 3 são referentes aos sete tipos

de revestimento asfáltico, juntamente com os valores da área coberta pela areia. São

apresentados apenas os dados obtidos por fotometria, já que estes apresentaram uma

correlação significativamente mais elevada com os dados de drenabilidade, possibilitando a

construção do modelo estatístico da seção 5.

Tabela 3: Dados de Mancha de Areia

Amostra Área (cm²) MTD (mm)

SA 121.0 1.033

SB 173.0 0.723

SC 114.3 1.094

SD 117.5 1.064

SE 152.0 0.822

SF 165.4 0.756

SG 139.0 0.899

Os dados dos ensaios de drenabilidade são apresentados na Tabela 4 fornecem os valores de

tempo de escoamento (OFT) e desvio padrão para os corpos de prova submetidos ou não à

saturação de água. Vale lembrar que as medidas obtidas de OFT correspondem à média de

quatro medidas experimentais no mesmo corpo de prova.

Tabela 4: Drenabilidade

5. ANÁLISE DOS DADOS

Os dados de mancha de areia e drenabilidade, tanto na condição saturada, quanto na condição

não saturada, foram analisados estatisticamente. Avaliou-se a adequação da equação teórica

aos dados em ambos os casos. As retas de regressão, relacionando (1/t)0,25

com a textura

média, são apresentadas na Figura 6. A análise da regressão encontra-se na Tabela 5. Foi

verificada, desta forma, a adequação de um modelo do tipo MTD=a+b*(1/t)0.25

.

Não Saturado Saturado

Amostra t (s) Desvio Padrão (s) t (s) Desvio Padrão (s)

SA 1,6 0,033 1,69 0,042

SB 4,47 0,057 4,32 0,048

SC 1,76 0,049 1,73 0,035

SD 3,78 0,05 3,68 0,022

SE 6,81 0,06 2,36 0,04

SF 8,76 0,048 8,43 0,028

SG 3,77 0,035 3,66 0,027

Figura 6: MTD relacionado com drenabilidade

Tabela 5: Análise da Regressão, casos saturado e não saturado

Não

Saturado

Predictor Coeficiente Desvio padrão p-value

Constante 0,1352 0,2861 65,70%

1/OFT0.25

1,0733 0,3908 4,00%

Saturado Predictor Coeficiente Desvio padrão p-value

Constante 0,1352 0,2694 63,70%

1/OFT0.25

1,069 0,3666 3,30%

A partir dos dados apresentados, com significância de 5%, observa-se que, enquanto o

coeficiente angular da reta é significativo, o intercepto não o é. Assim, analisa-se um segundo

modelo, do tipo MTD=b*(1/t)0.25

, ou seja forçando um intercepto nulo, a=0. A análise da

regressão deste modelo é apresentada na Tabela 6.

Tabela 6: Analise da Regressão, casos saturado e não saturado, intercepto forçado

Não

Saturado

Predictor Coeficiente Desvio padrão p-value

1/OFT0.25

1,2559 0,05076 0,00%

Saturado Predictor Coeficiente Desvio padrão p-value

1/OFT0.25

1,2511 0,04885 0,00%

Verifica-se a partir dos dados na Tabela 6 que a regressão saturada e a não saturada são

significativas, mantendo um nível de significância de 5%. Finalmente, a análise dos resíduos

das regressões com intercepto nulo forçado é apresentada na Figura 7.

0,40,30,20,10,0-0,1-0,2-0,3-0,4

99

95

80

50

20

5

1

Residuals

Pe

rce

nt

Goodness of F it Test

Normal

A D = 0,326

P-V alue = 0,413

Residuals - Unsaturated outflow regression with forced null intercept

Normal - 95% CI

Figura 7: Análise dos resíduos para regressões com intercepto forçado, casos saturado e não saturado

Os resíduos das regressões podem ser considerados normalmente distribuídos com uma

significância de 5%. Desta forma as regressões com intercepto forçado são consideradas

válidas. O intercepto nulo é coerente com a equação teórica do drenômetro, já que, com um

tempo de drenagem muito elevado, 1/t tende a zero, levando o MTD previsto a zero também.

Este resultado também apresenta sentido físico, já que uma textura idealmente plana apresenta

um MTD nulo, resultando em um tempo de drenagem infinito, já que não haverá canais pelos

quais a água poderá passar, na macrotextura do pavimento. O tempo de drenagem infinito

leva seu recíproco, 1/t a zero. Desta forma, tanto por uma abordagem física do fenômeno,

quanto por uma abordagem matemática, o modelo estatístico com intercepto forçado é

adequado. A comprovação se deu pelos resultados estatísticos da regressão, já apresentados

nesta seção.

6. CONCLUSÕES

A regressão apresentada é válida dentro do seu intervalo de confiança de 95%, sendo a

extrapolação uma medida inicialmente não recomendável. Vale lembrar que, segundo a norma

ASTM (1996), o ensaio de mancha de areia é válido dentro do intervalo de 0,5 e 1,2 mm de

MTD. É possível utilizar o drenômetro e uma regressão adequada para estimar a textura

média caso a mancha de areia obtida esteja fora dos valores limites aceitáveis para a mesma.

A regressão também é útil como ferramenta de avaliação da macrotextura de revestimentos

asfálticos, quando há alguma impossibilidade de executar a mancha de areia, podendo ainda

ser utilizada de forma complementar à medida de MTD. Como exemplo de condições

inviáveis de experimento, temos os já mencionados ensaios, além dos limites de

aceitabilidade da mancha de areia (ASTM, 1996) ou ensaios em superfícies molhadas, caso no

qual a mancha de areia torna-se impraticável.

Complementar os ensaios de mancha de areia com o drenômetro é possível e recomendável,

uma vez que serve de verificador dos valores da mancha, que, como já exposto, é altamente

dependente do operador. As correlações entre mancha de areia e drenabilidade foram obtidas

utilizando-se a técnica de fotometria para medir a área da mancha de areia, resultando em

dados mais precisos. Ainda deve-se considerar que o ensaio de drenabilidade pode ser

utilizado como indicador da capacidade de drenagem superficial da macrotextura, excluindo

as deficiências intrínsecas da mancha de areia como os erros causados pelo tamanho finito das

esferas de vidro. A partir do trabalho de Moore (1966), é possível, com algumas modificações

no drenômetro do LTP, estimar o gradiente de velocidade do pavimento, definido como a

variação entre o coeficiente de atrito e velocidade. Porém, há de ser levado em consideração

que o modelo estatístico desenvolvido para o drenômetro aqui apresentado não deve ser

utilizado para outros drenômentros, da mesma forma que outros modelos não devem ser

utilizados para este drenômetro. A razão encontra-se na constante do instrumento, Kofm, na

equação (1). A regressão utiliza a relação entre MTD e a raiz quarta do recíproco de OFT,

sendo assim mais precisa do que a relação entre MTD e o recíproco de OFT , similar ao

proposto pela ASTM (2005). A Figura 8 apresenta de forma esquemática, que a relação com o

recíproco do OFT pode ser válida, porém apenas para valores limitados de OFT ou MTD. A

aproximação com a raiz quarta do recíproco do OFT utilizada na regressão deste trabalho, é

compatível com a lei teórica proposta por Moore (1966), sendo assim, mais abrangente.

Finalmente, é válido ressaltar que a textura média não caracteriza a superfície de pavimentos

de forma abrangente, não indicando, por exemplo, se uma textura é positiva ou negativa,

fatores relevantes para a interação pneu-pavimento.

Figura 8: Gráfico esquemático da aproximação do resultado teórico de Moore pela regressão simples da ASTM

REFERÊNCIAS BIBLIOGRÁFICAS

American Society for Testing and Materials (ASTM), E965 Standard Test Method for Measuring Pavement

Macrotexture using a Volumetric Technique. ASTM International. Pennsylvania, Estados Unidos, 1996.

American Society for Testing and Materials (ASTM), E2380: Standard Test Method for Measuring Pavement

Texture Drainage Using an Outflow Meter. ASTM International, Pennsylvania, United States, 2005

British Standards Institution, Road and airfield surface characteristics – Test Methods: Part 3 – Measurement of

Pavement surface horizontal drainability. British Standards Institution. London, United Kingdom, 2002.

Cairney, P.; Bennett, P. (2008) Relationship between road surface characteristic and crashes on Victorian rural

roads. ARRB conference. Adelaide: Australia, 2008.

Callai, S. C. Estudo do Ruído causado pelo tráfego de veículos em rodovias com diferentes tipos de

revestimentos de pavimentos. 2011, 94 p. Tese de Mestrado – Escola Politécnica – Universidade de São

Paulo. São Paulo, Brasil, 2011.

Fang, Y.; Zhan, M.; Wang, Y. (2001) The status of recycling of waste rubber. Materials & Design, 2001.

FEHRL, Silvia – Guidance Manual for the Implementation of low-noise Road Surface. FEHRL, Bruxelas,

Bélgica, 2006.

Freedonia Group, World Tires: Industry Study with forecasts for 2015 & 2020. Study 2860, 2012.

Gothié, M.; PARRY, T.; ROE, P. The relative influence of the parameters affecting road surface friction.

International Colloquium on Vehicle-Tyre Road Interaction. Florencia, Italia, 2001.

Israelachvili, J. N. Intermolecular and Surface forces. Segunda Edição. Academic Press, Londres, Reino Unido,

1991.

Leland, T. J. W.; Yager, T. J. ; Joyner, U. T., Effects of PavementTexture on Wet-Runway Braking Performance.

National Aeronaltics and Space Administration (NASA). Washington D. C., 1968.

Lowne, R. W. (1970) The effect of road surface texture on tyre wear. Wear, n 15, p 57-70. Holanda, 1970.

Moore, D. F. Prediction of Skid Resistance Gradient and Drainage Characteristics for Pavements. Highway

Research Record. Washington, D. C., United States, 1966.

Moore, D. F. Principles and applications of tribology. Pergamon Press, Reino Unido, 1975

Pulugurtha, S. S.; Patel, K.; KUSAM, P. R. (2011) Pavement macrotexture thresholds to enhance safety: a case

study using I-40 data in Durhan County, North Carolina. Anais do Transportation Research Board (TRB),

Washington, D. C., 2011.

Roe, P.; Webster, D.; West, G. The relation between the surface texture of roads and accidents. Transport Road

Research Laboratory, Report 296. Materials and Construction Division. Crowthrone, Reino Unido, 1991.

Saleh, M.; Flintsch, G. W.; Izeppi, E. L.; McGhee, K. K.; Abbott, A. L. (2010) Pavement texture analysis using

infrared stereo vision. Anais do Transportation Research Record (TRR), Washington, D. C., 2010.

Sandberg, U. Influence of road surface texture on traffic characteristics related to environment, economy and

safety: A state-of-the-art study regarding measures and measuring methods. Swedish National Road

Administration. Estocomo: Suécia, 1997.

Silva, A. H. M.; Bernucci, L. L. B.; Suzuki, C. Y.; Chaves, J. M. (2011) Avaliação da redução de acidentes em

pavimentos com microrrevestimento a frio. 7° Congresso Brasileiro de Rodovias e Concessões. Anais do

Congresso Brasileiro de Rodovias e Concessões, Foz do Iguaçu, 2011.

The Commission of the European Communities, Regulation (EC) No 122/2009 of the European Parliament and

of the Concil of 25 November 2009 on the Labeling of Tyres with respect to Fuel Efficiency and other

essential parameters. Official Journal of the European Union, L342/46. Bruxelas, Bélgica, 2009.

Vieira, T. Asphaltic Pavement Surface Analysis and its effects on the tyre-pavement friction and on noise

generation. 2013, Tese de Mestrado – Escola Politécnica – Universidade de São Paulo. São Paulo, Brasil,

2013, em fase de elaboração.

Wambold, J. C.; ANTILE, C. E. J.; Henry, J., Rado, Z. International experiment to compare and harmonize skid

resistance and texture measurements. PIARC report, 1995.

Whitehouse, D. Surfaces and their measurements. Hermes Penton Science. Londres, Reino Unido, 2002.

Tiago Vieira ([email protected])

Diego Campos Redondo ([email protected])

André Kazuo Kuchiishi ([email protected])

Sérgio Copetti Callai ([email protected])

Liedi Légi Bariani Bernucci ([email protected])

Departamento de Engenharia de Transportes, Escola Politécnica da USP.

Av. Prof. Almeida Prado, travessa 2, n 83. São Paulo, SP, Brasil.