155
MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil. Orientador : Cláudio Fernando Mahler Rio de Janeiro Fevereiro de 2011

MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Embed Size (px)

Citation preview

Page 1: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS

Francesco Lugli

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Civil, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Mestre

em Engenharia Civil.

Orientador : Cláudio Fernando Mahler

Rio de Janeiro

Fevereiro de 2011

Page 2: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS

Francesco Lugli

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA CIVIL.

Examinada por:

________________________________________________

Prof. Cláudio Fernando Mahler, D.Sc.

________________________________________________

Prof. Manoel de Melo Maia Nobre, Ph.D.

________________________________________________

Prof. Otto Corrêa Rotunno Filho, Ph.D.

________________________________________________

Prof. Martinus Theodorus van Genuchten, Ph.D.

RIO DE JANEIRO, RJ - BRASIL

FEVEREIRO DE 2011

Page 3: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Lugli, Francesco

Modelagem Numérica de Processos de

Fitorremediação de Solos/Francesco Lugli – Rio de

Janeiro: UFRJ/COPPE, 2011.

XXII, 133 p.: il.; 29,7 cm.

Orientador: Cláudio Fernando Mahler

Dissertação (mestrado) – UFRJ/ COPPE/ Programa

de Engenharia Civil, 2011.

Referências Bibliográficas: p. 117 - 123.

1. Transporte de contaminantes na região não

saturada. 2. Remediação. I. Mahler, Cláudio Fernando. II.

Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Civil. III. Título.

iii

Page 4: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

A minha família,

A Andreia,

A Duílio Lugli (1916 – 2011)

in memoriam.

iv

Page 5: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

AGRADECIMENTOS

Primeiramente a Deus.

Ao prof. Cláudio Fernando Mahler, pela orientação e pela amizade

demostrada durante tudo o período da minha pesquisa.

Ao prof. Martinus Theodorus van Genuchten, pelo apoio cientifico e por ter

inspirado este meu trabalho.

Ao prof. Otto Corrêa Rotunno Filho, pela ótima bem-vinda ao Programa de

Engenharia Civil e ao constante acompanhamento dos alunos da área de

concentração de Meio Ambiente.

Ao futuro professor Mario G. Nácinovic, pelo apoio diário, pelas

inumeráveis dicas no campo científico e humano.

A Luis Guillerme Erthal Nácinovic e à Maria Clara de Oliveira Marques

pela revisão do português da minha dissertação.

À senhora Rita de Cassia Lisboa da Secretaria Executiva do Programa de

Engenharia Civil, pela simpatia e pela atenção aos problemas de alunos

estrangeiros.

Ao insubstituíveis amigos do “Bandejão”, Carolina, Luiz e Kelvin, pela

alegria e amizade.

Aos meus colegas de turma, pelo apoio nas matérias.

A CAPES pela bolsa.

À Paul Truong (Veticon Consulting Pty. Ltd), aos pesquisadores da

EMBRAPA/Solos de Rio de Janeiro Sílvio Tavares de Lucena, César da

Silva Chagas e à colega de mestrado Shirlei Oliveira pelo fornecimento de

dados de grande importância para minha pesquisa.

v

Page 6: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS

Francesco Lugli

Fevereiro/2011

Orientador: Cláudio Fernando Mahler

Programa: Engenharia Civil

A Fitorremediação é uma técnica que se destaca por seu baixo custo, baixo

impacto ambiental e simplicidade técnica. Por outro lado, em comparação às soluções

tradicionais, é fortemente dependente das características do local onde é aplicada

(clima, solo, hidrogeologia, contaminação), porque o desempenho dos organismos

vegetais, agentes principais desse processo, depende de muitas variáveis relativas à

interação com os contaminantes, com o solo e com a atmosfera.

A presente pesquisa trata da aplicação da modelagem numérica ao sistema

completo planta – solo – atmosfera como ferramenta de análise de processos de fito-

extração e fito-sequestro. Foi conduzida uma calibração de dados experimentais

procedentes de ensaios em vaso, realizados com chrysopogon zizanioides em um solo

contaminado por íons de metais tóxicos: Ni2+, Pb2+, Cd2+, Zn2+ e por meio de uma

sucessiva aplicação do modelo ajustado a um cenário de contaminação no campo,

caraterizado por horizontes de solos e condições climatológicas representativas de um

distrito industrial do município de Rio de Janeiro.

Este estudo demonstrou a possibilidade de ajustar, com uma boa aproximação na

maioria dos casos analisados, a quantidade de metal absorvido pela planta ao variar o

nível de contaminação. Os resultados foram satisfatórios apesar de hipóteses muito

simplificadoras, particularmente em relação à sorção de contaminante no solo e ao

comportamento da planta. A aplicação ao caso de campo evidenciou que a

metodologia proposta pode produzir indicações úteis para avaliar projetos de

fitorremediação em termos de eficiência e tempo requerido.

vi

Page 7: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfilment of the

requirements for the degree of Master of Science (M.Sc.)

NUMERICAL MODELING OF PHYTOREMEDIATION PROCESSES OF SOILS

Francesco Lugli

February/2011

Advisor: Cláudio Fernando Mahler

Department: Civil Engineering

Phytoremediation is a remediation technique that stands out for its low cost,

minimal environmental impact and technical simplicity. Compared to traditional

methods, phytoremediation is strongly dependent on the characteristics of the site

where it is applied (climate, soil, hydro-geology, degree of contamination) because the

effectiveness of vegetation, the main agent of the phytorremediation process, depends

on many variables related to interaction with contaminants, soil, water and air.

This research concerns the use of a numerical model of the plant - soil –

atmosphere environment as a tool for analyzing processes of phyto-extraction and

phyto-sequestration. The model is first calibrated on experimental data from pot

experiments performed with chrysopogon zizanioides in a soil contaminated by toxic

cations: Ni2+, Pb2+, Cd2+, Zn2+. The calibrated model is successively applied to a

contaminated field site, characterized by soil and climatic conditions representative of

an industrial district in the municipality of Rio de Janeiro.

This study demonstrates the possibility to adjust, with a good approximation in

most cases examined, the amount of metal absorbed by the vegetation for different

levels of contamination. These results are achieved despite very simplifying

assumptions, particularly about contaminant sorption in the soil and plant system. The

field application demonstrates the usefulness of models to obtain important

informations of a specific project of phytoremediation, in terms of efficiency and time

required for remediation.

vii

Page 8: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Índice

1. INTRODUÇÃO ............................................................................... 1

1.1. Relevância do tema............................ ....................................................1

1.1.1. Solos e águas subterrâneas .....................................................................................1

1.1.2. Fitorremediação.........................................................................................................2

1.1.3. Modelagem numérica na fitorremediação..................................................................3

1.2. Objetivo do estudo............................ .....................................................4

1.3. Organização do trabalho....................... ................................................5

2. REVISÃO DA L ITERATURA ............................................................... 6

2.1. Metais tóxicos nos solos e águas subterrâneas. ................................6

2.1.1. Valores orientadores de qualidade do solo e gerenciamento ambiental de áreas

contaminadas na legislação brasileira.................................................................................8

2.1.2. Destino dos metais tóxicos nos solos......................................................................10

2.1.3. Compartimentação dos metais nas fases do solo...................................................11

2.1.4. Interações da fase líquida com outros compartimentos do solo.............................12

2.1.5. Sorção......................................................................................................................14

2.1.5.1 Sorção não específica.....................................................................................................15

2.1.5.2 Sorção específica............................................................................................................15

2.1.5.3 Sorção competitiva nos solos.........................................................................................16

2.1.6. Modelos de sorção...................................................................................................17

2.1.6.1 Isotermas de sorção........................................................................................................17

2.1.6.2 Modelos de transporte de não equilíbrio ........................................................................18

2.2. Fluxo de água e transporte de contaminantes no solo....................19

2.2.1. Propriedades hidráulicas do solo e fluxo de água em solos com diferentes graus de

saturação............................................................................................................................19

2.2.1.1 Condições de contorno...................................................................................................19

2.2.2. Fenômenos de transporte........................................................................................21

2.2.2.1 Condições de contorno...................................................................................................22

2.3. Plantas em ambientes contaminados por elemento s traço.............22

2.3.1. Bases de fisiologia vegetal.......................................................................................22

viii

Page 9: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.3.2. Fluxo de água no sistema solo-planta....................................................................23

2.3.2.1 Fórmula geral de Penman-Monteith................................................................................25

2.3.2.2 Metodologia FAO Penman-Monteith...............................................................................27

2.3.2.3 Fórmula de Hargreaves..................................................................................................27

2.3.2.4 Determinação da repartição entre evaporação e transpiração.......................................27

2.3.2.5 Modelagem da absorção de água pelas raízes..............................................................29

2.3.3. Absorção de solutos pelas plantas..........................................................................32

2.3.3.1 Absorção ativa e passiva pelas raízes ...........................................................................32

2.3.3.2 Essencialidade, deficiência e excesso............................................................................33

2.3.3.3 Toxicidade e tolerância ..................................................................................................33

2.3.3.4 Avaliação da toxicidade em caso de presença de mais elementos traço.......................35

2.3.3.5 Plantas hiper-acumuladoras...........................................................................................35

2.3.3.6 Efeitos de Ni2+, Cd2+, Pb2+ e Zn2+ sobre os vegetais.................................................36

2.3.3.7 Modelagem da absorção de solutos pelas raízes ..........................................................37

2.4. Fitorremediação............................... ....................................................37

2.4.1. Controle hidráulico...................................................................................................38

2.4.2. Fito-extração e fito-sequestro..................................................................................38

2.4.3. Tecnologias usadas na fitorremediação .................................................................39

2.4.3.1 Coberturas vegetais fito-estabilizantes...........................................................................39

2.4.3.2 Coberturas vegetais fito-remediadoras...........................................................................39

2.4.3.3 Controvérsias na aplicação de quelantes.......................................................................39

2.4.4. Plantas idôneas a processos de fitorremediação ...................................................40

2.4.5. Projeto de um sistema de fitorremediação..............................................................41

2.4.6. Duração de um processo de fito-extração...............................................................42

2.4.7. Custo de um processo de Fito-extração..................................................................44

3. MÉTODOS E MATERIAIS ............................................................... 45

3.1. Preparação.................................... ........................................................47

3.1.1. Estrutura da modelagem .........................................................................................47

3.1.2. Dados experimentais ...............................................................................................47

3.1.2.1 Elaboração dos resultados dos ensaios.........................................................................47

3.1.3. Escolha do código computacional............................................................................48

3.1.3.1 HYDRUS-1D...................................................................................................................48

3.1.3.2 Principais hipóteses da modelagem ..............................................................................49

3.1.3.3 Domínio de cálculo..........................................................................................................50

3.2. Calibração.................................... .........................................................50

3.2.1. Fluxo de água e propriedades hidráulicas do solo..................................................50

ix

Page 10: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3.2.1.1 Determinação do modelo hidráulico e seus parâmetros.................................................50

3.2.1.2 Condições de contorno...................................................................................................52

3.2.1.3 Condição inicial...............................................................................................................52

3.2.1.4 Absorção de água pelas raízes em HYDRUS................................................................53

3.2.2. Transportes de contaminantes.................................................................................53

3.2.2.1 Condições iniciais e de contorno....................................................................................53

3.2.2.2 Determinação dos parâmetros das isotermas de absorção............................................54

3.2.3. Absorção de solutos pelas raízes............................................................................55

4. CALIBRAÇÃO DOS PARÂMETROS PARA MODELAGEM DE ENSAIO EM VASOS 59

4.1. Analise dos dados experimentais............... ........................................59

4.1.1. Comportamento das plantas em presença de contaminantes................................60

4.1.1.1 Efeito sobre o desenvolvimento de biomassa ................................................................60

4.1.1.2 Concentração dos contaminantes no tecido da planta...................................................60

4.1.1.3 Valores totais de contaminantes absorvidos ..................................................................62

4.2. Calibração do fluxo de água .................. ............................................65

4.2.1. Propriedades dos solo..............................................................................................65

4.2.2. Parâmetros do modelo de estresse hídrico de Feddes ..........................................66

4.2.3. Condições de contorno............................................................................................67

4.2.3.1 Condição no fundo do domínio de cálculo......................................................................67

4.2.3.2 Determinação da evapotranspiração..............................................................................67

4.2.3.3 Determinação da evaporação e da transpiração............................................................67

4.2.3.4 Irrigação..........................................................................................................................69

4.2.3.5 Variações diárias das condições meteorológicas...........................................................71

4.2.4. Influência dos parâmetros hidráulicos sobre o processo de calibração..................71

4.2.4.1 Parâmetros de retenção..................................................................................................72

4.2.4.2 Condutividade hidráulica saturada..................................................................................72

4.2.4.3 Efeito da condição de contorno no fundo do perfil..........................................................73

4.2.5. Considerações finais sobre a calibração do fluxo de água.....................................73

4.3. Parâmetros relativos ao transporte dos contami nantes no solo.....75

4.3.1. Calibração utilizando a isoterma linear....................................................................75

4.3.2. Calibração utilizando a isoterma de Freundlich.......................................................76

4.3.2.1 Determinação das concentrações na fase líquida a partir da concentração total...........76

4.4. Calibração da absorção dos contaminantes pelas raízes ...............78

4.4.1. Modelo de absorção passiva...................................................................................78

4.4.1.1 Calibração mediante concentração limite para absorção...............................................79

4.4.1.2 Calibração mediante alteração do coeficiente de distribuição Kd...................................80

x

Page 11: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.4.1.3 Aplicação do modelo passivo com estresse tóxico ........................................................81

4.4.2. Modelo de absorção passiva em combinação com modelo de absorção não linear

............................................................................................................................................83

4.4.3. Modelo de absorção ativa com cinética de Michaelis-Menten................................84

4.4.3.1 Absorção de níquel.........................................................................................................85

4.4.3.2 Absorção de chumbo......................................................................................................86

4.4.3.3 Absorção de cádmio.......................................................................................................87

4.4.4. Avaliação dos resultados do modelo de absorção passivo e ativo.........................88

4.4.4.1 Comparação entre o modelo ativo e passivo..................................................................89

4.4.4.2 Comportamento dos modelos de absorção de contaminante em caso de estresse

hídrico.........................................................................................................................................89

4.5. Conclusões do capítulo........................ ...............................................91

5. ESTUDO DE CASO COM PARÂMETROS CALIBRADOS .............................. 93

5.1. Organização e parâmetros dos cálculos......... ...................................93

5.1.1. Etapas do estudo.....................................................................................................93

5.1.1.1 Fase de pré-contaminação.............................................................................................94

5.1.1.2 Fase de contaminação....................................................................................................94

5.1.1.3 Fase de remediação.......................................................................................................94

5.1.2. Solo..........................................................................................................................95

5.1.2.1 Classificação pedológica da área...................................................................................95

5.1.2.2 Determinação das propriedade hidráulicas ....................................................................96

5.1.3. Modelo e condições ao contorno.............................................................................97

5.1.4. Dados climatológicos...............................................................................................98

5.1.5. Coeficiente de determinação (Kd) para cada horizonte de solo..............................99

5.1.6. Vegetação..............................................................................................................100

5.1.6.1 Fase de pré-contaminação...........................................................................................100

5.1.6.2 Fase de contaminação..................................................................................................101

5.1.6.3 Fase de remediação.....................................................................................................101

5.2. Análise dos resultados........................ ..............................................102

5.2.1. Fluxo de água.........................................................................................................102

5.2.2. Perfil de contaminação...........................................................................................102

5.2.3. Avaliação do processo de remediação..................................................................105

5.2.3.1 Zinco.............................................................................................................................105

5.2.3.2 Chumbo.........................................................................................................................107

5.2.3.3 Irrigação........................................................................................................................108

5.2.3.4 Distribuição da densidade das raízes...........................................................................108

xi

Page 12: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

5.2.3.5 Cálculos adicionais.......................................................................................................109

5.3. Conclusões do Capítulo........................ ............................................110

6. CONCLUSÕES E SUGESTÕES PARA FUTURAS PESQUISAS ..................... 111

6.1. Conclusões.................................... .....................................................111

6.2. Sugestões para futuras pesquisa............... ......................................112

6.2.1. Ensaios experimentais...........................................................................................112

6.2.1.1 Sorção do metal no solo ..............................................................................................112

6.2.1.2 Evapotranspiração e transpiração................................................................................113

6.2.1.3 Ensaio em condição de estresse hídrico......................................................................113

6.2.1.4 Prolongamento do tempo dos ensaios..........................................................................113

6.2.1.5 Aumento das concentrações dos contaminantes.........................................................114

6.2.1.6 Testes com outras plantas............................................................................................114

6.2.2. Aprimoramento da modelagem..............................................................................114

6.2.2.1 Inclusão de um modelo mais acurado pela planta........................................................114

6.2.2.2 Aplicação de um modelo geoquímico...........................................................................116

6.2.3. Aplicação da metodologia a um cenário real de contaminação............................116

7. REFERÊNCIAS BIBLIOGRÁFICAS ................................................... 117

8. ANEXOS ................................................................................ 124

8.1. Vetiver, Chrysopogon zizanioides L (Roberty).. ..............................124

8.2. Experimentos na casa de vegetação da EMBRAPA S olos de Rio de

Janeiro............................................ ...........................................................126

8.2.1. Dados Climatológicos............................................................................................126

8.2.2. Irrigação..................................................................................................................127

8.2.3. Determinação dos parâmetros relativos ao transporte de contaminantes no solo

..........................................................................................................................................129

8.2.4. Síntese dos parâmetros utilizados na calibração..................................................130

8.3. Estudos de caso............................... ..................................................132

8.3.1. Dados climatológicos.............................................................................................132

xii

Page 13: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Índice de Figuras

Figura 2.1: Interação da fase líquida do solo com outros compartimentos. Elaboração de

KABATA-PENDIAS & PENDIAS (2001).......................................................................................12

Figura 2.2: Impacto do potencial redox sobre e do pH sobre a solubilidade de metais traço em

água. (gráficos com escalas diferentes). Fonte: CHUANG et al. (1996).....................................13

Figura 2.3: Potencial hidráulico no sistema a solo-planta em diferentes condições da umidade

do solo e atmosféricas. Fonte: HILLEL (2007).............................................................................24

Figura 2.4: Representação simplificada da resistência aerodinâmica e de superfície para o fluxo

de vapor d'água. Fonte: ALLEN et al. (1998)...............................................................................26

Figura 2.5: Ciclo da água no continuum planta – solo – atmosfera. Fonte: HILLEL (2007)........28

Figura 2.6: Função de resposta ao estresse hídrico α(h). Fonte: FEDDES et al. (1978)............30

Figura 2.7: Transpiração real compensada Tac em função do índice de estresse ω. Fonte:

JARVIS (1989)..............................................................................................................................31

Figura 2.8: Resposta esquemática das plantas ao variar da concentração do elementos traço:

(a) essencial, (b) não essencial. Fonte: KABATA-PENDIAS (2001)...........................................33

Figura 2.9: Plasticidade comportamental das plantas sob estresse químico: (a) espécies

inteiramente tolerantes, (b) desenvolvimento de tolerância comportamental; (c) espécies não

tolerantes. Fonte: KABATA-PENDIAS (2001)..............................................................................35

Figura 3.1: Fluxograma da modelagem de um fenômeno de transporte de contaminante em

águas subterrâneas. Elaborado de SPITZ et al.(1996)................................................................46

Figura 3.2:Modelagem do sistema solo-planta em presença de contaminantes.........................48

Figura 3.3: Modelos de absorção de água em HYDRUS- (Tp, Ta, Tac – absorção potencial, real

não -compensada, e real compensada; α – função estresse hídrico; ωc – índice crítico de

estresse hídrico). Fonte: ŠIMŮNEK & HOPMANS (2009)...........................................................53

Figura 3.4: Modelos de absorção de solutos em HYDRUS- Rp absorção potencial de solutos;

Pr absorção passiva real de solutos; Ap, Aa, de Aac absorção ativa de solutos respetivamente

potencial, real não compensada, real compensada, αMM função de resposta ao estresse de

solutos (Michaelis–Menten); π índice de estresse de nutrientes. . Fonte: ŠIMŮNEK &

HOPMANS (2009)........................................................................................................................56

Figura 4.1: Biomassa de capim Vetiver a vários níveis de contaminação (Ni2+, Pb2+, Cd2+,

Zn2+). Elaboração de TAVARES (2009)......................................................................................60

xiii

Page 14: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.2: Concentrações dos contaminantes (Ni2+, Pb2+, Cd2+, Zn2+) nos tecidos da planta

(TAVARES, 2009) comparados com o limite de toxicidade (linha vermelha) de KABATA-

PENDIAS & PENDIAS (2001)......................................................................................................61

Figura 4.3: Metais (Ni2+, Zn2+) absorvidos pelo capim Vetiver. Regressão linear. Elaborado por

TAVARES (2009)..........................................................................................................................63

Figura 4.4: Metais (Cd2+, Pb2+) absorvidos pelo capim Vetiver. Elaborado por TAVARES

(2009)............................................................................................................................................64

Figura 4.5: Comparação da curva de retenção modelada com diferentes PTF..........................66

Figura 4.6: Efeito do LAI sobre a transpiração.............................................................................68

Figura 4.7: Efeito do LAI sobre repartição entre evaporação potencial e transpiração potencial

......................................................................................................................................................69

Figura 4.8: Evapotranspiração potencial, irrigação original e modificada, relativa a cultivação do

capim Vetiver na casa de vegetação da EMBRAPA Solos de Rio de Janeiro ...........................70

Figura 4.9: Volume de água armazenada no solo no caso da irrigação modificada...................71

Figura 4.10: Comparação da umidade do solo modelada com diferentes PTF..........................72

Figura 4.11: Velocidade de percolação (a), umidade (b) nos primeiros 10 dias do ensaio no

vaso..............................................................................................................................................74

Figura 4.12: Curvas isotermas de sorção de Freundlich modeladas com os coeficientes

propostos por SOARES, 2004 (Tabela 4.10) para o Latossolo Vermelho (LV, tom claro), para o

Argissolo Vermelho (PV, tom escuro) e no caso de sorção linear (linha fina).............................77

Figura 4.13: Modelo de absorção passiva (isoterma linear) e dados experimentais...................78

Figura 4.14: Calibração com concentração limite........................................................................80

Figura 4.15: Efeitos da alteração do Kd sobre absorção passiva................................................81

Figura 4.16: Calibração do modelo de absorção passiva com estresse tóxico aditivo (EA) no

caso da contaminação com Pb2+................................................................................................82

Figura 4.17: Modelo de absorção passiva (isoterma linear e não linear) e dados experimentais

no caso de contaminação por Pb2+ e Zn2+................................................................................84

Figura 4.18: Modelo de absorção ativa, contaminação com Ni2+, com Km = 0,01466 mg/cm3 e

Ap = 4,327E-4 mg.cm-2.d-1.........................................................................................................86

Figura 4.19: Modelo de absorção ativa, contaminação com Pb2+, com Km = 0,00132 mg/cm3 e

Ap = 4,757E-4 mg.cm-2.d-1.........................................................................................................87

xiv

Page 15: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.20: Modelo de absorção ativa, contaminação com Cd2+, com Km = 9,537E-5 mg/cm3

e Ap = 2,708E-5 mg.cm-2.d-1......................................................................................................88

Figura 4.21: Absorção de Pb2+ = 1600 mg/Kgsolo em função do tempo no modelo passivo e

ativo..............................................................................................................................................89

Figura 4.22: Absorção (=transpiração) potencial e real na simulação de estresse hídrico sobre

dados de casa vegetação.............................................................................................................90

Figura 4.23: Absorção instantânea do Pb2+= 1600 mg/Kgsolo em função do tempo no modelo

passivo e ativo com estresse hídrico...........................................................................................90

Figura 5.1: Pedologia da zona de Santa Cruz (Rio de Janeiro)..................................................95

Figura 5.2: Perfil litológico do Gleissolo Tiomórfico e relativos valores de coeficiente Kd para

Cd2+, Pb2+ e Zn2+......................................................................................................................97

Figura 5.3: Dados de evapotranspiração potencial de referência e precipitação utilizados pelo

estudo de caso.............................................................................................................................99

Figura 5.4: Distribuição da densidade das raízes dos arbusto presentes na área antes da

contaminação.............................................................................................................................100

Figura 5.5: Carga h na rizosfera e em ponto representativos dos horizontes inferiores...........102

Figura 5.6: Repartição da água saindo do perfil de cálculo por diferentes níveis de estresse da

vegetação ao final da fase de contaminação.............................................................................103

Figura 5.7: Pluma de contaminação de Cd2+, Pb2+ e Zn2+ após de 5 anos...........................104

Figura 5.8: Efeito da remediação (Zn2+) apos de 14 anos de aplicação da fitorremediação

(kc=1, LAI =4).............................................................................................................................105

Figura 5.9: Absorção cumulativa de Zn2+ ( kc = 1)...................................................................106

Figura 5.10: Efeito da remediação (Zn2+) por diferentes valores do fator de cultura (apos de 14

anos de aplicação da fitorremediação)......................................................................................106

Figura 5.11: Evolução da contaminação em comparação com o caso da ausência de

remediação (kc=1, LAI =4, t= 14 anos)......................................................................................107

Figura 5.12: Previsão da pluma de contaminação pelo Pb2+ durante a aplicação da

fitorremediação (kc=1, LAI =4)...................................................................................................107

Figura 5.13: Evolução da contaminação (Zn2+) em comparação com o caso com irrigação

(t=14 anos)..................................................................................................................................108

Figura 5.14: Absorção cumulativa de Zn2+ com distribuição de densidade de raiz constante.109

xv

Page 16: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Índice de tabelas

Tabela 2.1: Atividades industrias e produtos que podem produzir contaminação por Ni2+, Pb2+,

Cd2+, Zn2+. Elaboração de ANDRADE et al. (2008)....................................................................7

Tabela 2.2: Lista de valores orientadores (VP e VI) para solos e para águas subterrâneas.

Elaboração de CONAMA (2009)....................................................................................................8

Tabela 2.3: Classes de qualidade dos solos, segundo a concentração de substâncias químicas.

Elaboração de CONAMA (2009)....................................................................................................9

Tabela 2.4: Procedimentos de prevenção e controle da qualidade do solo. Elaboração de

CONAMA (2009).............................................................................................................................9

Tabela 2.5: Impacto de atributos do solo na mobilidade de metais. Elaboração de HAYES &

TRAINA (1998).............................................................................................................................14

Tabela 2.6: Concentração comuns nos tecidos da plantas dos elementos nutrientes essenciais

inorgânicos. Elaboração de REICHARDT & TIMM (2004)...........................................................23

Tabela 2.7: Concentração de metais nos tecidos acima da qual a planta é considerada hiper-

acumuladora. Fonte: GREGER (2004)........................................................................................36

Tabela 2.8: Toxicidade e papel bioquímico de Ni2+, Pb2+, Cd2+, Zn2+ nas plantas. Elaboração

de KABATA-PENDIAS & PENDIAS (2001)..................................................................................36

Tabela 2.9: Mecanismos de fitorremediação. Elaboração de EPA (2003), RTDF (2005), ITRC

(2009)............................................................................................................................................38

Tabela 2.10: Dados necessários pelo desenvolvimento de um processo de fitorremediação.

Fonte:EPA (2003).........................................................................................................................42

Tabela 2.11: Comparação de tempos e custos pela remediação de metais. Fonte: SCHNOOR

(1997)............................................................................................................................................44

Tabela 4.1: Níveis de contaminação aplicados nos ensaios Fonte: TAVARES (2009)...............59

Tabela 4.2: Regressão do valor de metal presente nos tecidos da planta..................................62

Tabela 4.3: Caraterísticas do latossolo vermelho amarelo distrófico argissólico usado na

cultivação de mudas de Vetiver. Fonte:TAVARES (2009)...........................................................65

Tabela 4.4: Parâmetros calculadas mediante diferentes funções de pedotransferência............65

Tabela 4.5: Parâmetros do modelos de estresse hídrico de Feddes adotados pelo Vetiver

(valores da Figura 2.6)..................................................................................................................66

xvi

Page 17: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 4.6: Efeito do LAI sobre as frações de umidade transpirada (ou seja absorbida pelas

raízes), evaporada, e que percola (sai do vaso)..........................................................................69

Tabela 4.7:Efeito de condições meteorologias medias por dia ou instantâneas (calculadas por

HYDRUS) com lei senoidal com base nos valores médios.........................................................71

Tabela 4.8: Fluxos cumulativos nos casos de diferentes valores da condutividade hidráulica

saturada........................................................................................................................................73

Tabela 4.9:Determinação dos valores do coeficiente de distribuição (Kd) para o solo utilizado na

cultivação do Vetiver.Elaboração de SOARES (2004)................................................................75

Tabela 4.10:Parâmetros do modelo de Freundlich (n e Kf) para os metais estudados em dois

tipos de solo. Fonte SOARES (2004)...........................................................................................76

Tabela 4.11:Modelo de absorção passiva com estresse hídrico e osmótico, modelo aditivo (EA)

no caso da contaminação com Pb2+...........................................................................................83

Tabela 4.12: Resultados do cálculo de HYDRUS, contaminação com Ni2+, modelo de absorção

ativa com Km = 0,01466 mg/cm3 e Ap = 4,327E-4 mg cm-2d-1.................................................85

Tabela 4.13:Resultados do cálculo de HYDRUS, contaminação com Pb2+, modelo de absorção

ativa com Km = 0,00132 mg/cm3 e Ap = 4,757E-4 mg cm-2d-1.................................................86

Tabela 4.14:Resultados do cálculo de HYDRUS, contaminação com Cd2+, modelo de absorção

ativa com Km = 9,537E-5 mg/cm3 e Ap = 2,708E-5 mg.cm-2.d-1..............................................87

Tabela 4.15: Coeficiente de determinação para as simulações realizadas.................................88

Tabela 4.16: Chumbo (Pb2+ = 1600 mg/Kgsolo) absorvido pela planta no caso de estresse

hídrico mediante os modelos passivo e ativo...............................................................................90

Tabela 5.1:Horizontes e textura do gleissolo tiomórfico utilizado pelos cálculos do presente

capítulo. Fonte: LUMBRERAS & GOMES (2004)........................................................................96

Tabela 5.2: Densidade dos horizontes assumida pelo Gleissolo Tiomórfico. Fonte: PAULETTO

et al. (2005)...................................................................................................................................96

Tabela 5.3: Parâmetros hidráulicos do modelo hidráulico de Van Genuchten – Mualem (VAN

GENUCHTEN, 1980) pelo Gleissolo Tiomórfico utilizados nos cálculos.....................................97

Tabela 5.4: Coeficiente de determinação (Kd) para os horizontes de solos utilizados no estudo

de caso calculados segundo a regressão proposta por SOARES (2004).................................100

Tabela 5.5: Parâmetros do modelos de estresse hídrico de Feddes adotados pela arbustos

presentes na área antes da contaminação (valores da Figura 2.6)...........................................101

Tabela 5.6: Concentração dos contaminantes no fluxo em entrada no perfil............................103

xvii

Page 18: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 8.1: Valores limite de metais pelo crescimento das plantas, em específico pelo capim

Vetiver. Fonte: TRUONG (2010)................................................................................................125

Tabela 8.2: Dados climatológicos na casa de vegetação de EMBRAPA Solos de Rio de Janeiro

durante o período do cultivo do capim Vetiver. Fonte: comunicação pessoal...........................126

Tabela 8.3: Irrigação na cultura do capim Vetiver na casa de vegetação de EMBRAPA Solos de

Rio de Janeiro. Fonte: comunicação pessoal............................................................................127

Tabela 8.4: Dados irrigação modificados utilizados pela calibração (capítulo 4)......................128

Tabela 8.5: Caraterísticas texturais dos tipos de solos estudados por SOARES (2004)..........129

Tabela 8.6: Caraterísticas químicas dos tipos de solos estudados por SOARES (2004) e do

solo utilizado no ensaio..............................................................................................................129

Tabela 8.7:Sinopse dos parâmetros utilizados na calibração do código computacional

HYDRUS-1D...............................................................................................................................130

Tabela 8.8:Sinopse dos parâmetros utilizados na calibração do código computacional

HYDRUS-1D...............................................................................................................................131

Tabela 8.9: Dados climatológicos do Aeroporto de Santa Cruz – Rio de Janeiro (série 1981-90).

Fonte: http://www.redemet.aer.mil.br ........................................................................................132

Tabela 8.10: Radiação solar na superficie pelo municipio de Rio de Janeiro. Fonte: COLLE &

PEREIRA (1998).........................................................................................................................132

Tabela 8.11: Evaporação potencial de referência na área de Santa Cruz calculada com a

fórmula de Penmann-Monteith...................................................................................................133

xviii

Page 19: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

LISTA DE SÍMBOLOS

a Porosidade x 100

Aa Absorção efetiva ativa de solutos [ML-2T-1]

aa Absorção efetiva local ativa de solutos [ML-3T-1]

aa Absorção potencial local ativa de solutos [ML-3T-1]

Ap Absorção potencial ativa de solutos [ML-2T-1]

b Distribuição normalizada das raízes [L-1]

B Taxa de produção de biomassa [ML-2T-1]

c Concentração em solução [ML-3]

c0 Valor da concentração em solução como condição ao contorno [ML-3]

cp Calor específico do ar [L2T-2K-1]

CT Concentração total [ML-3]

D Coeficiente de dispersão hidrodinâmica [L2T-1]

Ds Coeficiente de de difusão no solo [L2T-1]

Dw Coeficiente de difusão em água [L2T-1]

ea Tensão de vapor saturado à temperatura T [ML-1T-2]

ea-ed Déficit atual de pressão do vapor [ML-1T-2]

ed Pressão real do vapor [ML-1T-2]

Eh Potencial de oxidorredução [mV]

Ep Evaporação potencial [LT-1]

ET Evapotranspiração [LT-1]

ET0 Evapotranspiração potencial de referência [LT-1]

ETc Evapotranspiração potencial [LT-1]

G Fluxo de calor no solo [MT-3]

g Aceleração de gravidade [LT-2]Concentração de fase gasosa [ML-3]

h Carga de pressão [L]

H Carga di pressão [L]

h0 Condição de contorno relativa à carga de pressão [L]

hφ Carga osmótica [L]

hi Condição inicial relativa à carga de pressão [L]

i Gradiente hidráulico [LL-1]

ie Índice de estresse [-]

Ja Fluxo de advecção [ML-2T-1]

K Unidade genérica de temperatura (análise dimensional)

k Parâmetro de extinção de radiação [-]

K Condutividade hidráulica [LT-2]

xix

Page 20: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

kc Fator de cultura [-]

Kd Coeficiente de partição ou distribuição [L3M-1]

Kf Coeficiente da isoterma de absorção de Freundlich [L3M-1]

Km Constante de Michaelis-Menten [ML-3]

Ks Condutividade hidráulica saturada[LT-2]

L Profundidade das raízes [L]

l Parâmetro de conectividade entre poros [-]

L Unidade genérica de comprimento (análise dimensional)

LAI Índice de área foliar [-]

m Parâmetro na função de retenção hídrica [-]

M Unidade genérica de massa (análise dimensional)

Mf Valor objetivo da carga de contaminante no solo [ML-2]

Mi Carga inicial do contaminante no solo [ML-2]

n Exponente da isoterma de absorção de Freundlich [-] Exponente na função de retenção hídrica [-]Porosidade do solo [L3L-3]

P Concentração do contaminante nos tecidos da planta [MM-1]Pressão atmosférica [ML-1T-2]

p Absorção passiva de solutos [ML-3T-1]

Pa Absorção efetiva passiva de solutos [ML-2T-1]

pa Absorção efetiva local passiva de solutos [ML-3T-1]

pH Potencial hidrogeniônico

q Fluxo hidráulico [L·T-1]

q0 Condição de contorno relativa ao fluxo hidráulico [L·T-1]

R Fração das raízes em contato com os contaminantes [-]

R2 Coeficiente de determinação [-]

ra Resistência aerodinâmica da planta [-]

Ra Absorção efetiva total (ativa e passiva) de solutos [ML-2T-1]

ra Absorção efetiva local total (ativa e passiva) de solutos [ML-3T-1]

rc Resistência da superfície da cultura ao fluxo de vapor através osestômatos [-]

Rn Radiação solar líquida na superfície [MT-3]

Rp Absorção potencial total (ativa e passiva) de solutos [ML-2T-1]

Ru Constante universal dos gases [ML2T-2K-1M-1] (= 8,314 kg m2s-2K-1mol-1, Jmol-1K-1)

S Soma dos termos fonte e sumidouro na equação de Richards [ML-3T-1]

s Absorção de água pelas raízes [T-1]Quantidade do soluto sorvida por unidade de massa de solo [MM-1]

SCF Fração de superfície coberta por vegetação [-]

Se Teor de água efetivo [-]

si Quantidade inicial de soluto sorvida por unidade de massa de solo [MM-1]

xx

Page 21: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

sp Absorção potencial de água pelas raízes [T-1]

T Unidade genérica de tempo (análise dimensional)

T Temperatura [K]

t Tempo [T]

Ta Transpiração efetiva [LT-1]

Tp Transpiração potencial [LT-1]

x Coordenada suborizontal na direção do fluxo [L]

α Função de resposta ao estresse na absorção de água pelas raízes [-]Parâmetro na função de retenção hídrica [L-1]

β Constante empírica na isoterma de sorção [-]

∆ Inclinação da curva de pressão de vapor saturado [ML-1T-2K-1]

ε Razão entre os pesos moleculares do vapor d'água e ar seco [-]

η Constante empírica na isoterma de sorção [L3/M]

λ Calor latente de vaporização [L2T-2]Dispersividade longitudinal [L]

θ Teor de umidade volumétrico [L3L-3]

θr Teor de umidade volumétrico residual [L3L-3]

θs Teor de umidade volumétrico a saturação [L3L-3]

τ Coeficiente de tortuosidade [-]

ω Índice de estresse [-]

ωc Índice critico de estresse [-]

γ Constante psicrométrica [ML-1T-2K-1]

ρ Massa específica aparente seca do solo [ML-3]

xxi

Page 22: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

LISTA DE ABREVIATURAS

CETESB Companhia de Tecnologia de Saneamento Ambiental CONAMA Conselho Nacional do Meio AmbienteCTCt Capacidade de troca catiônica total ou a pH 7.0DTPA Ácido Dietilenotriamino Pentacético EDTA Ácido Etileno-diemino-tetra-acético EMBRAPA Empresa Brasileira de Pesquisa Agropecuária EPA Environmental Protection Agency (USA)FAO Food and Agriculture Organization (UN)INMET Institudo Nacional de MeteorologiaSB Soma das basesUSEPA United States Environmental Protection Agency V Saturação por bases

xxii

Page 23: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

1. INTRODUÇÃO

1.1. Relevância do tema

A pesquisa, aqui apresentada, como Dissertação de Mestrado do Programa de

Engenharia Civil na área de Meio Ambiente consiste num estudo de modelos

numéricos aplicados a processos de fitorremediação de solos contaminados por

metais tóxicos.

Nos últimos anos, as tecnologias de remediação através de agentes biológicos

têm recebido maior aceitação em relação às opções convencionais. A biorremediação

e a fitorremediação podem ser usadas conjuntamente, ou, em alguns casos, em

alternativa a métodos de remediação mecânica, química, eletroquímica, entre outros.

Uma vez instalados, esses sistemas funcionam com uma manutenção menor, geram

menos emissões, efluentes tóxicos e resíduos secundários. Não envolvem a remoção

de solo e, geralmente, têm custos inferiores (EPA, 2003).

1.1.1. Solos e águas subterrâneas

O solo, comparado à altura da atmosfera e à espessura de rocha da Terra, ou à

profundidade do oceano, representa uma camada extremamente fina. Apesar disso, é

o compartimento terrestre onde mais se concentra a vida e que tem a maior taxa de

produtividade biológica. Ele atua como uma entidade viva composta, alojando

comunidades de inumeráveis espécies vegetais e animais, microscópicas e

macroscópicas. Poucos centímetros cúbicos de solo podem conter milhões de

microrganismos, que desempenham as funções mais importantes da bioquímica. A

sua porosidade determina uma superfície interna ativa extremamente grande (na

1

Page 24: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

ordem de hectares por centímetro quadrado), que desenvolve o papel de substrato

para processos físico-químicos. Também a vida humana, historicamente, depende do

solo, principalmente pelos alimentos, materiais de construção e fontes energéticas. Na

Bíblia, o nome atribuído ao primeiro ser humano foi Adão, derivado do Adama, palavra

hebraica que significa "solo". A mesma palavra latina Homo deriva de húmus, a

camada do solo riquíssima em matéria orgânica. Porém, hoje em dia, a percepção da

importância do solo para o ser humano ficou física e emocionalmente mais fraca. É

interessante destacar como, na realidade, o aumento da população mundial e o

deterioramento dos recursos provenientes ou relacionados com o solo têm elevado o

nível de criticidade na relação com esse elemento (HILLEL, 2007).

O solo também representa um filtro para os agentes patogênicos e toxinas que

poderiam se acumular no ambiente, tornando-os inofensivos e transformado-os em

nutrientes. Ele faz parte de um sistema que regula o ciclo da água, determinando o

destino de precipitações (fenômenos de infiltração, escoamento ou acumulação no

solo), tendo assim uma importante influência sobre o clima.

O solo é o elo central da cadeia dos domínios interligados que compõem o

ambiente terrestre. Além da atmosfera, ele interage com as camadas subjacentes,

bem como com os corpos de água subterrâneos. As águas subterrâneas, 92% dos

recursos mundiais de água doce disponível (HILLEL, 2007), desempenham um papel

muito importante tanto para uso humano como na agricultura e na indústria, e também

na preservação do equilíbrio natural do meio ambiente. As águas subterrâneas são

vulneráveis a vários tipos de contaminação de origem agrícola, industrial ou

domestica, geralmente trasportados através da zona não saturada ou pelos sistemas

de águas superficiais. O estudo da interações entre solo, atmosfera, águas

subterrâneas e de superfície é necessário para a previsão dos fenômenos de

transporte dos contaminantes e implantação de estratégias de remediação.

1.1.2. Fitorremediação

A fitorremediação é uma técnica para o tratamento de contaminantes em solo,

água e sedimentos mediante o uso de plantas. Tem-se desenvolvido em função da

sua economicidade, compatibilidade ambiental, e pela caraterística de ser aplicada

diretamente in situ.

2

Page 25: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Os métodos tradicionais utilizados para tratar os contaminantes no solo, como as

técnicas ex situ, que preveem a remoção do solo do local, são caros e, às vezes,

impraticáveis, devido ao volume de material contaminado. Entretanto a literatura

mostra que programas de remediação do solo que utilizam vegetação podem fornecer

uma alternativa mais atraente do que tratamentos químicos ou mecânicos (TRUONG,

2000).

A fitorremediação inclui diferentes técnicas: no caso de metais tóxicos ela pode

atuar por via de remoção (fito-extração) do contaminante do solo e consequente

acumulação nos tecidos da planta: algumas espécies, conhecidas como

hiperacumuladoras, têm a possibilidade de tolerar concentrações anormalmente

elevadas. Hiperacumuladoras de Ni e Zn, por exemplo, podem chegar a uma

concentração nos tecidos de 5% desses metais em relação ao peso seco. O material

vegetal rico em metais pode ser facilmente removido do local sem escavações

extensas, sem perda de solo e com custos menores em comparação com as práticas

de remediação tradicionais (BLAYLOCK et al., 1997).

Outra estratégia usada no caso dos metais tóxicos é a fito-estabilização (ou fito-

sequestro) onde a mobilidade e a toxicidade dos contaminantes são reduzidas por

meio da influência físico-química da rizosfera, diminuindo assim o risco ambiental. Em

ambos os mecanismos, as plantas funcionam como “bio-bombas” que usam a energia

solar para extrair a água e os solutos do solo. As plantas também favorecem o

estabelecimento de matéria orgânica via exsudatos radiculares e dos tecidos em

decomposição. A matéria orgânica influi sobre a mobilidade do metal (ROBINSON et

al., 2003).

1.1.3. Modelagem numérica na fitorremediação

Como outras técnicas de remediação, os sistemas de fitorremediação necessitam

de planejamento exclusivo das características locais e dos contaminantes

(MONTEIRO, 2008). Sendo extremamente difícil a realização de ensaios de campo de

longo prazo para otimizar cada sistema, a modelagem é um auxílio essencial para as

técnicas de fitorremediação. Tais modelos podem minimizar os ensaios de campo ou

de laboratório, eventualmente indicando onde a fitorremediação seria inadequada

devido à impossibilidade de reduzir a contaminação abaixo dos limites definidos em

normas em um tempo aceitável, ou pelo excesso de risco. Os modelos validados

podem ser utilizados para obter a aprovação regulamentar de aplicações da

3

Page 26: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

fitorremediação ou como auxilio no gerenciamento de áreas contaminadas

(ROBINSON et al., 2006).

Entre elas computacionais existentes, as mais indicadas pelo estudo de processos

de fitorremediação são os modelos que têm uma abordagem de “sistema completo”

como: Soil, Water, Atmosphere and Plant, SWAP (KROES et al., 2008), HYDRUS, Soil

Plant Atmosphere System Model, SPASMO, Leaching Estimation and Chemistry

Model, LEACHM, (SHARMAH et al., 2005) e Water and Agrochemicals in Soil, Crop

and Vadose Environment, WAVE (VANCLOOSTER et al., 1994). Elas visam calcular o

fluxo de água, mediante a equação de Richards, e o transporte de solutos, mediante a

equação de advecção-dispersão, no continuum planta – solo – atmosfera.

1.2. Objetivo do estudo

Esta pesquisa teve como objetivo principal a aplicação de um modelo de “sistema

completo” (planta – solo – atmosfera) aos processos de fitorremediação para

investigar a sua utilidade como ferramentas de projeto de um ponto de vista da

engenharia. Em particular, este trabalho priorizou estudar, com maior destaque, os

processos de fito-extração / fito-estabilização que acontecem por meio da absorção da

água e dos contaminantes pela raiz.

Mais especificadamente abordou-se:

1 Definição do estado da arte da modelagem aplicada à fitorremediação de solos

contaminados;

2 Calibração do código computacional HYDRUS mediante dados experimentais,

com o objetivo de ajustar a quantidade de metal absorvido pela planta e os

tempos necessários para essa absorção;

3 Mapeamento dos parâmetros que mais influenciam o processo de calibração;

4 Aplicação do código computacional HYDRUS num estudo de caso de

contaminação do solo utilizando os parâmetros calibrados no que concerne ao

processo de absorção de metal pela planta.

Como fonte de dados experimentais relativa aos processos de calibração, foi

escolhida a pesquisa de TAVARES (2009) pelo amplo conjunto de ensaios realizados

4

Page 27: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

com Chrysopogon Zizanioides (Vetiver ou capim Vetiver) no caso de contaminação por

elementos traço (Ni2+, Pb2+, Cd2+, Zn2+) em diferentes concentrações. O capim Vetiver

tem a caraterística de mostrar uma resistência muito elevada à maioria dos

contaminantes inorgânicos e orgânicos (MONTEIRO, 2008).

1.3. Organização do trabalho

O primeiro capítulo apresenta as considerações gerais sobre a relevância do tema

de pesquisa e os objetivos gerais e específicos deste estudo.

O segundo capítulo apresenta os conteúdos da literatura que foram abordados na

pesquisa:

1. transporte de metais tóxicos nos solos;

2. fisiologia básica das plantas e mecanismos de toxicidade;

3. tecnologias de fitorremediação.

Nesse capítulo foi dada particular ênfase à modelagem.

O terceiro capítulo é dedicado aos materiais e métodos: são apresentados o fluxo

lógico, o código computacional e as principais fontes de dados utilizados na pesquisa.

O quarto capítulo exibe os resultados da fase de calibração do modelo HYDRUS-

1D na base dos dados dos ensaios de fitorremediação com capim Vetiver

apresentados em TAVARES (2009).

No capítulo 5, apresenta-se a aplicação da metologia computacional a um cenário

de contaminação no campo, caraterizado por horizontes de solos e condições

climatológicas representativas de um distrito industrial do município de Rio de Janeiro.

Sendo este caso relativo ao capim Vetiver e aos contaminantes analisados no capítulo

4, são utilizados os parâmetros precedentemente ajustados.

O capítulo 6 apresenta as conclusões gerais do trabalho e as sugestões para

futuras pesquisas.

No final da dissertação estão listadas as referências bibliográficas e os anexos

com dados adicionais dos cálculos realizados.

5

Page 28: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2. REVISÃO DA L ITERATURA

2.1. Metais tóxicos nos solos e águas subterrâneas

A maioria dos metais considerados tóxicos estão naturalmente presentes no solo

(fração litogênica) devido a fenômenos de intemperismo. Em sistemas sem influências

antropogênicas as relativas concentrações são mantidas estáveis por processos

bióticos e abióticos integrando os ciclos naturais. Os níveis naturais (background

levels) de metais no solo dependem do tipo de rocha sobre a qual o solo se

desenvolveu e, principalmente, dos constituintes minerais do material de origem.

Alguns desses elementos são essenciais para as plantas, os animais e o homem,

contribuindo ao funcionamento de alguns processos metabólicos. Sódio (Na),

magnésio (Mg), potássio (K), cálcio (Ca), crômio (Cr), manganês (Mn), ferro (Fe),

cobalto (Co), cobre (Cu), zinco (Zn), selênio (Se) e molibdênio (Mo) são elementos

essenciais à fisiologia humana; outros, como mercúrio (Hg), chumbo (Pb), cádmio (Cd)

e arsênio (As), são altamente tóxicos aos seres humanos, mesmo em baixas

concentrações, e são responsáveis por vários problemas de saúde devido à poluição

do meio ambiente (SOARES, 2004).

A atividade biológica de uma substância tóxica depende de sua concentração no

organismo, independente do mecanismo de intoxicação. Por isso, um cátion de metal

tóxico representa um perigo na medida em que entra na cadeia alimentar dos

organismos, dando origem ao fenômeno de magnificação trófica, que ocorre àquelas

substâncias que não são equilibradas nos ciclos metabólicos e, em consequência, são

armazenados nos tecidos, tendo sua concentração extraordinariamente ampliada

(AGUIAR et al., 2002).

6

Page 29: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

A concentração considerada tóxica depende da fisiologia do organismo afetado e

da natureza do elemento. Os metais interagem principalmente com dois mecanismos

biológicos: formação de complexos com os grupos funcionais das enzimas, e a

combinação com as membrana celulares, chegando a bloquear o transporte de

substâncias essenciais (SOARES, 2004).

As principais fontes antropogênicas de contaminação por metais tóxicos no solo

são (Tabela 2.1 referente aos metais estudados nesta pesquisa): atividades de

mineração, fertilizantes, pesticidas, esgotos, resíduos urbanos e industriais (SALT et

al. ,1995 e ANDRADE et al., 2008).

Tabela 2.1: Atividades industrias e produtos que podem produzir contaminação por Ni2+, Pb2+,Cd2+, Zn2+.

Elaboração de ANDRADE et al. (2008)Ni2+ Pb2+ Cd2+ Zn2+

Adubos comerciais

Agrotóxicos / pesticidas

Baterias / acumuladores

Beneficiamento, impregnação e processamento da madeira

Borracha e pneus

Disposição e incineração de resíduos

Fabricação e processamento de papel, papelão e produtos têxteis

Fabricação e processamento do vidrio

Fármacos e cosméticos

Lodo de esgoto

Mineração de carvão e produção de coque

Mineração metais não ferrosos

Munições e explosivos

Plásticos

Processamento óleo mineral

Produção de óleos e gorduras alimentares

Produção ferro e aço

Refinamento e fundições de metais ferrosos e não ferrosos

Tempera e tratamentos de superfície de metais

Tintas, pinturas e vernizes

7

Page 30: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.1.1. Valores orientadores de qualidade do solo e gerenciamento

ambiental de áreas contaminadas na legislação brasi leira

No Brasil, na esfera de União, a resolução n. 420 do CONAMA, 2009 estabelece

que:

• os órgãos competentes de Estados e do Distrito Federal têm que determinar

o Valor de Referência de Qualidade (VRQ), entendido como a concentração

de uma determinada substância no solo (ou na água subterrânea), que

define um solo como limpo (ou a qualidade natural da água subterrânea), e

é determinado com base em interpretação estatística de análises físico-

químicas de amostras de diversos tipos de solos e de águas subterrâneas.

• Considerem-se como Valores de Prevenção (VP) os dados indicados na

Tabela 2.2. Esses valores representam a concentração de uma determinada

substância, acima da qual podem ocorrer alterações prejudiciais à qualidade

do solo e da água subterrânea. Abaixo desses valores, assume-se que o

solo e a água subterrânea sejam capazes de sustentar suas funções

primárias. Os VP foram estabelecidos com base em ensaios de

fitotoxicidade ou em avaliação de risco ecológico;

• Adotam-se como Valores de Investigação (VI) os dados indicados na Tabela

2.2. Os VI são as concentrações de uma determinada substância no solo ou

na água subterrânea acima das quais existem riscos potenciais, diretos ou

indiretos, para a saúde humana, considerado um cenário de exposição

genérico. Para o solo, os VI foram calculados utilizando-se um procedimento

de avaliação de risco à saúde humana em função de cenários de exposição

padronizados para diferentes usos e ocupação do solo.

Tabela 2.2: Lista de valores orientadores (VP e VI) para solos e para águas subterrâneas. Elaboração de CONAMA (2009)

Metal

Solo[mg/Kgsolo seco]

ÁguaSubterrânea [µg/l]

PrevençãoInvestigação

PrevençãoAgrícolaAPMax Residencial Industrial

Cádmio 1,3 3 8 20 5

Chumbo 72 180 300 900 10

Níquel 30 70 100 130 20

Zinco 300 450 1000 2000 1050

8

Page 31: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

A mesma resolução dispõe sobre a implantação de um programa de prevenção e

controle da qualidade dos solos e águas subterrâneas nas áreas de influência direta

de atividades potencialmente contaminadoras. Os VPs não poderão ser ultrapassados,

sendo também, necessária uma classificação do solo segundo a Tabela 2.3.

Tabela 2.3: Classes de qualidade dos solos, segundo a concentração de substâncias químicas.Elaboração de CONAMA (2009)

VRQ VP VI

Classe 1 Classe 2 Classe 3 Classe 4

Sucessivamente à classificação a resolução CONAMA n.420/2009 prevê que

sejam implementados os procedimentos de prevenção e controle da qualidade do solo

indicados na Tabela 2.4.

Tabela 2.4: Procedimentos de prevenção e controle da qualidade do solo . Elaboração de CONAMA (2009)

Classe 1 não requer ações

Classe 2 avaliação do órgão ambiental (possibilidade de ocorrência natural dasubstância ou da existência de fontes de poluição) com indicativos de açõespreventivas de controle

Classe 3 • identificação da fonte potencial de contaminação, • avaliação da ocorrência natural da substância, • controle das fontes de contaminação• monitoramento da qualidade do solo e da água subterrânea

Classe 4 gerenciamento de áreas contaminadas

O gerenciamento de áreas contaminadas baseia-se em uma estratégia constituída

por etapas sequenciais, em que a informação obtida em cada etapa é a base para a

execução da etapa posterior. Essas fases são:

1. Identificação: avaliação preliminar para a determinação das áreas suspeitas

de contaminação; quando houver indícios de contaminação, deve ser

realizada uma investigação confirmatória, às expensas do responsável,

segundo as normas técnicas ou procedimentos vigentes.

2. Diagnóstico: investigação detalhada e avaliação de risco, às expensas do

responsável, seguindo as normas técnicas ou procedimentos vigentes, com

objetivo de subsidiar a etapa de intervenção, após a investigação

confirmatória que tenha identificado substâncias químicas em

concentrações acima do valor de intervenção.

9

Page 32: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3. Intervenção: etapa de execução de ações para a eliminação do perigo ou

sua redução a níveis toleráveis. Os riscos são identificados na etapa de

diagnóstico, bem como o plano de monitoramento da eficácia das ações,

considerando o uso atual e futuro da área, segundo as normas técnicas ou

procedimentos vigentes (CONAMA, 2009).

2.1.2. Destino dos metais tóxicos nos solos

Na problemática geral do transporte dos metais tóxicos no solo, devem ser

considerados vários aspectos relativos à mobilidade e à disponibilidade dessas

espécies químicas. Somente uma pequena parte do metal no solo é sujeita a

fenômenos de mobilização; esta gera mais preocupação do ponto de vista ambiental

porque, além de ter a possibilidade de migrar mais facilmente, eventualmente

contaminando o lençol freático, pode haver a assimilação nas cadeias alimentares.

É por isso que a simples determinação do teor total, como previsto pelo CONAMA,

2009 é um meio impreciso de quantificar o potencial de risco para o ambiente e para a

saúde humana. Esse dado precisa ser complementado com a avaliação da fração do

metal que é móvel e, possivelmente, bio-disponível (SOARES, 2004).

Os metais entram no solo por diferentes caminhos, incluindo a intemperismo, a

disposição aérea e a lixiviação por meio de resíduos, pesticidas e fertilizantes. A

especiação e localização de metais tóxicos nos solos estão relacionadas às

propriedades químicas oriundas dos materiais de origem e das características

atômicas dos cátions. Os solos são constituídos por misturas heterogêneas de

diferentes substâncias orgânicas, minerais, argila, óxidos de Fe, Al e Mn, e outros

componentes sólidos, bem como uma variedade de substâncias solúveis. Por isto, os

mecanismos de ligação para metais em solos são múltiplos e variam com a

composição e as propriedades físicas do substrato. Assim, um metal pode formar

diferentes espécies dependendo das suas ligações com outros compostos do solo.

De um ponto de vista experimental, a determinação das quantidades de metais

associados a diferentes fases do solo têm sido muito controversa. A maioria dos

procedimentos estão baseados na suposição que o metal se encontra nas seguintes

formas (KABATA-PENDIAS & PENDIAS, 2001):

1. solúvel em água (solução do solo);

2. íon trocável;

10

Page 33: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3. ligado com compostos orgânicos;

4. retido por óxidos de Fe e Mn;

5. compostos definidos como carbonatos de metais, fosfatos, sulfetos, entreoutros;

6. estruturalmente ligado em silicatos e aluminados (fração residual).

As matrizes de distribuição das espécies metálicas nos solos variam muito

dependendo da composição. RULE (1999) revisou amplamente a literatura e concluiu

que os elementos são mais acumulados em solos contaminados ou não ficam retidos

na fração residual e nos óxidos de Fe-Mn.

Somente a fração solúvel e a trocável representam as espécies móveis dos

metais nos solos. A mobilização de metais a partir de outras frações, ou a

transformação em espécies imóveis, é geralmente um processo lento, controlado pela

cinética. Entre os metais analisados nesta pesquisa, destaca-se que, na maioria dos

solos, Cd2+, Zn2+, e Ni2+ têm uma biodisponibilidade muito maior daquela do Pb2+.

2.1.3. Compartimentação dos metais nas fases do sol o

Em geral, os elementos traço podem existir como solutos na fase líquida, sorvidos

na matéria orgânica ou na parte mineral do solo e, em porcentagem muito menor, na

fase gasosa. Matematicamente, é possível expressar a concentração total de uma

espécie CT [M/L3] em termos de contribuições de fase como

CT=⋅s⋅ca⋅g (2.1)

onde s é a concentração da fase absorvida [M/M], c é a concentração da fase

dissolvida [M/L3], g a concentração na fase gasosa [M/L3] e a é o conteúdo de gás

volumétrico [L3/L3].

A solução aquosa no solo é composta por água e substâncias dissolvidas (sais

livres ou íons) que formam uma suspensão coloidal. Quantidades consideráveis de

metais estão presentes em forma de complexos, principalmente com ligantes

orgânicos. O conhecimento da composição total da solução do solo é essencial para

prever a absorção de solutos pelas plantas.

11

Page 34: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.1.4. Interações da fase líquida com outros compar timentos do solo

O metal presente na fase líquida interage com a fase sólida do solo (mineral e

matéria orgânica), com a fase gasosa e com as plantas e os microrganismos

presentes no solo. Essas interações são resumidas na Figura 2.1

Figura 2.1: Interação da fase líquida do solo com outros compartimentos.Elaboração de KABATA-PENDIAS & PENDIAS (2001)

A diversidade de espécies iônicas dos elementos metálicos e suas afinidades para

a complexação com ligantes orgânicos e inorgânicos torna possível a dissolução de

cada elemento em uma faixa relativamente ampla de pH e Eh. Cada elemento também

pode precipitar e / ou ser sorvido. Mesmo por causa de uma pequena mudança das

condições nos solos. Os equilíbrios de solubilidade podem mudar significativamente

dentro de poucos centímetros em um dado local (ou volume de solo).

Geralmente, maiores frações de íons moveis ocorrem para valores baixos de pH e

do potencial redox (Figura 2.2). Com o aumento do pH no substrato, a solubilidade da

maioria dos cátions metálicos diminui (KABATA-PENDIAS & PENDIAS, 2001). Muitos

autores confirmam, entre eles CHUANG et al. (1996), a significância do efeito do pH e

do potencial redox sobre vários fatores que controlam a especiação dos metais no solo

como:

• a complexação por ligantes (orgânicos e inorgânicos);

• sorção/dessorção;

• precipitação/dissolução.

12

solução do solo

fase liquida

Plantas

Matéria orgânica

fixação

liberação

precipitaçãosolubilização

sorção

absorção

liberação

form açãodecom posição

sorção

Page 35: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Vários mecanismo de interações de íons são resumidos na Tabela 2.5.

Figura 2.2: Impacto do potencial redox sobre e do pH sobre a solubilidade de metais traço emágua. (gráficos com escalas diferentes)

Fonte: CHUANG et al. (1996)

13

Page 36: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 2.5: Impacto de atributos do solo na mobilidade de metais.Elaboração de HAYES & TRAINA (1998)

Atributo do solo Fenômeno Impacto namobilidade

Ligantes inorgânicosdissolvidos

Aumento da solubilidade dos metais Aumento

Ligantes orgânicosdissolvidos

Aumento da solubilidade dos metais Aumento

Baixo pH

Redução na adsorção de cátions em óxidos de Fe, Al,e Mn

Aumento

Aumento na adsorção de ânions em óxidos de Fe, Al,e Mn

Diminuição

Precipitação crescente de oxiânions Diminuição

Alto pH

Precipitação crescente de cátions como carbonatos ehidróxidos do metal

Diminuição

Aumento na adsorção de cátions em óxidos de Fe, Ale Mn

Diminuição

Complexação crescente de alguns cátions porligantes dissolvidos

Aumento

Aumento na adsorção de cátions por materialhumificado sólido

Diminuição

Redução na adsorção de ânions Aumento

Alto conteúdo de argila Aumento na troca catiônica (em qualquer valor de pH) Diminuição

Alto conteúdo de húmus Aumento da complexação para a maioria dos cátions Diminuição

Presença de óxidos oude revestimentos de Fe,Al, ou Mn

Aumento na adsorção de cátions com o aumento depH

Diminuição

Aumento na adsorção de ânions com o decréscimode pH

Aumento

Redox

Aumento da solubilidade de óxidos e hidróxidos demetais divalentes quando comparados com ostrivalentes (menor estado de oxidação)

Aumento

Diminuição na complexação em solução para osmenores estados de oxidação

Aumento

Redução na adsorção para os menores estados deoxidação

Aumento

2.1.5. Sorção

O termo “sorção” indica, em geral, um conjunto de mecanismos que envolve a

transferência de solutos (íon ou molécula) da fase líquida para a superfície das

partículas sólidas e vice-versa. Esse fenômeno não implica necessariamente a

formação de novas substâncias (YOUNG et al., 1996 e KABATA-PENDIAS &

PENDIAS, 2001). Esses processos são governados pelas propriedades da superfície

14

Page 37: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

das partículas sólidas do solo (orgânicas ou inorgânicas) e pelas propriedades

químicas e físico-químicas do contaminante e seus constituintes (cátions, ânions e

moléculas não iônicas).

Os componentes do solo envolvidos na sorção de elementos traços são:

1. argilas;

2. óxidos (hidratado, amorfo), principalmente de ferro e manganês; em escala

menor, alumínio e silício;

3. matéria orgânica e biota;

4. carbonatos, fosfatos, sulfetos.

A sorção de metais pode ser descrita em termos de dois mecanismos

moleculares: sorção não específica e sorção específica (KABATA-PENDIAS &

PENDIAS, 2001 e GOMES et al., 2001)

2.1.5.1 Sorção não específica

Sendo que a maioria dos metais se encontra na solução do solo sob a forma de

cátions, na sorção não específica (adsorção), esses íons são atraídos

eletrostaticamente pelas cargas negativas presentes na superfície dos coloides do

solo. Essas cargas devem ser equivalentes às cargas positivas de acordo com o

princípio da eletro-neutralidade. Trata-se de um mecanismo que acontece por troca

iônica e constitui uma ligação fraca e pouco estável onde os elétrons não são

compartilhados, e a água de hidratação permanece. As reações são rápidas e

reversíveis. Além disso, a interação pode envolver a adsorção do íon na sua forma

hidratada, o que diminui a energia de ligação entre a superfície do solo e o elemento

(SPOSITO, 1989).

2.1.5.2 Sorção específica

A sorção específica (absorção) é um fenômeno que envolve ligações covalentes

ou iônicas entre metais e ligantes da superfície dos coloides. São interações de

elevada afinidade que podem explicar o aumento da sorção além da capacidade de

troca de cátions, CTC (YOUNG et al., 1996).

Nesse mecanismo, os íons formam ligações covalentes com os grupos O2- e OH-

na fase sólida. Além da ligação covalente (onde ocorre o compartilhamento de elétrons

15

Page 38: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

dos elementos envolvidos), na sorção específica, é presente a ligação covalente-

coordenada, onde o compartilhamento ocorre somente por meio de uma das espécies

iônicas envolvidas. A absorção específica é de ocorrência comum entre os metais

tóxicos, principalmente Cu, Zn, Co, Cd, e isto se deve ao pequeno raio iônico e a

grande quantidade de cargas elétricas no núcleo atômico, caraterística dos íons

metálicos dos grupos IB e IIB. Os principais constituintes do solo responsáveis pela

sorção específica de metais são os óxidos. Entre os diversos óxidos que se encontram

nos solos tropicais (SiO2, TiO2, Al2O3, Fe2O3 e hidróxidos) os mais recorrentes são

aqueles de ferro e manganês. Também os hidróxidos de alumínio têm um papel

relevante nos processos de sorção. Em alguns solos, sua importância pode ser até

maior que a dos óxidos de ferro (KABATA-PENDIAS & PENDIAS, 2001).

2.1.5.3 Sorção competitiva nos solos

Quando diferentes cátions de metais estão presentes ao mesmo tempo no solo,

gera-se um fenômeno competitivo em relação aos “sítios de sorção”, inclusive por

aqueles já ocupados por outros íons. A sorção de um dado íon não depende apenas

de sua concentração na solução, mas também das concentrações de outros íons e da

relação que existe entre os íons da solução e os íons em fase sólida. A afinidade do

solo por alguns íons provoca uma retenção seletiva, fenômeno que se torna de grande

importância na determinação da mobilidade e da disponibilidade das espécies

presentes no solo.

Devido a vários fatores, incluindo as condições do solo (concentração do metal,

pH em solução, eletrólito suporte, força iônica, entre outras), diferentes sequências de

afinidade podem surgir, sendo praticamente impossível estabelecer uma sequência

universal.

GOMES et al. (2001), elaboraram sequências de sorção de metais pesados nas

principais classes de solos brasileiros e destacaram duas de mais comum ocorrência

Cr3+ > Pb2+ > Cu2+ > Cd2+ > Zn2+ > Ni2+ e Pb2+ > Cr3+ > Cu2+ > Cd2+ > Ni2+ > Zn2+. Em

geral, Cr3+, Pb2+ e Cu2+ são os cátions metálicos retidos com maior força, sendo Cd2+,

Ni2+ e Zn2+ os menos influenciados pela competição.

16

Page 39: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.1.6. Modelos de sorção

A sorção é uma reação cinética que se baseia em regras de equilíbrio

termodinâmico. Ao equilíbrio, a sorção pelo solo pode ser descrita pelas isotermas de

sorção, expressas pela equação de Langmuir ou de Freundlich.

2.1.6.1 Isotermas de sorção

As isotermas de sorção fornecem informações importantes sobre a retenção de

metais em solos, permitindo avaliar a capacidade de retenção e a força com a qual o

adsorvido está preso ao solo (MORERA et al., 2001). Os parâmetros que as

descrevem são também fundamentais para os modelos de transporte de elementos

químicos (ŠIMŮNEK et al., 2009b). Cada isoterma, baseando-se em hipóteses

diferentes, leva a modelos que, nem sempre, representam um bom ajuste ao

comportamento real.

Inicialmente utilizada para descrever a adsorção de gases por superfícies sólidas,

a equação de Langmuir é aplicada em estudos da sorção de solutos nos solos na

seguinte forma:

s= c1c

(2.2)

onde s é a quantidade sorvida [M/M]; c é a concentração do metal na solução ao

equilíbrio [M/L3]; η representa a afinidade do sorvato pela superfície [L3/M]; β é a

máxima sorção do sorvato (correlação com o número de sítios reativos). Essa

concepção pressupõe que exista um limite máximo na capacidade de sorção do solo

ao aumentar a concentração de soluto.

A isoterma de Freundlich é um modelo empírico baseado na seguinte equação:

s = Kf cn (2.3)

em que s [M/M] é a quantidade de soluto retida pelo solo; c é a concentração do soluto

na solução; Kf é o coeficiente de Freundlich, correlato com a capacidade do solo de

reter um soluto, e n é um parâmetro adimensional que representa a variação da

intensidade de sorção com o aumento da concentração de equilíbrio.

Na versão linear da isoterma de Freundlich (n = 1) o coeficiente Kf é geralmente

chamado coeficiente de distribuição Kd [L/kg] e representa a razão entre soluto sorvido

17

Page 40: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

e soluto em solução. O comportamento linear é muito mais frequente para

contaminantes orgânicos, mas se verifica para inorgânicos também a baixas

concentrações. Para concentrações maiores, a isoterma desvia da linearidade.

O parâmetro Kd é relevante porque pode ser facilmente medido. Tem uma

formulação matemática simples e fornece uma avaliação das propriedades de sorção

que permite fazer comparações entre diferentes solos e elementos, tornando-o de

grande importância em modelos de previsão de risco ambiental (SOARES, 2004).

Baixos valores de Kd indicam que a maior parte do metal presente no sistema

permanece em solução e, portanto, é disponível para o transporte, para ser absorvido

por seres vivos ou para interagir com outros compartimentos do solo. Por outro lado,

altos valores de Kd refletem uma grande afinidade aos componentes sólidos do solo e

do elemento.

2.1.6.2 Modelos de transporte de não equilíbrio

O transporte de metais no solo é geralmente influenciado pela cinética dos

fenômenos de sorção. Utilizar um modelo de sorção de equilíbrio leva a não

considerar o tempo necessário para que este processo aconteça. Com essa

simplificação, o modelo de transporte pode levar a previsões não validas.

VAN GENUCHTEN (1989) propõe alguns modelos de transporte de não-equilibrio,

entre eles o modelo “two-sites” que supõe a existência de dois tipo de sítios de sorção:

no primeiro tipo, a sorção é instantânea; no segundo, a sorção é dependente do

tempo. O modelo “two-sites” foi usado com sucesso para descrever o transporte de

vários solutos através da fase sólida composta por diferentes componentes, tais como

os minerais, matéria orgânica e óxidos diversos. Outro modelo de não-equilíbrio de

interesse é o “two-regions”, no qual a sorção vem a ser limitada pela taxa na qual os

solutos são transportados por difusão até os sítios de sorção. Esta conceptualização

levou a modelos de não-equilíbrio físico que pressupõem a existência de duas regiões:

móvel (onde tem fluxo) e estagnante (onde a solução é imóvel). Por isso, a distribuição

de velocidade da água nos poros seria bimodal: o transporte convectivo-dispersivo se

limita a apenas uma fração dos poros cheios de líquido, enquanto os restante dos

poros aloja água parada (poros sem saída, água intra-agregada). Nos modelos deste

tipo, a troca de soluto entre as duas fases líquidas é frequentemente considerada

como um processo de primeira ordem.

18

Page 41: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.2. Fluxo de água e transporte de contaminantes no solo

2.2.1. Propriedades hidráulicas do solo e fluxo de água em solos com

diferentes graus de saturação

As propriedades hidráulicas do solo que caracterizam a retenção de água e a

permeabilidade podem ser descritas pelo modelo analítico de VAN GENUCHTEN

(1980), como segue:

Seh=h−r

s−r

=1

1∣h∣nm

K =K s Sel [1−1−Se

1/mm]2

(2.4)

(2.5)

onde Se é o teor de água efetivo; Ks é condutividade hidráulica saturada; θr e θs

denotam respetivamente o conteúdo de água residual e saturada, α, l, n, e m (=1−1/n)

são parâmetros empíricos. Eles podem ser determinados experimentalmente ou

estimados indiretamente utilizando modelos semi-empíricos denominados funções de

pedo-transferência.

O fluxo de água num meio poroso não saturado pode ser descrito pela equação

de Richards:

∂∂ t

= ∂∂ x [K h

∂h∂ x

−K h]−s(2.6)

onde x [L] é a profundidade; K [L T-1] é condutividade hidráulica e S é a absorção

das raízes [T-1].

Entre as formulações alternativas relativamente ao fluxo de água, GERKE & VAN

GENUCHTEN (1993) introduziram um modelo com “dupla permeabilidade” que

considera duas distribuições de poros que agem simultaneamente com diferentes

permeabilidades (macroporos, ou fraturas, com maior permeabilidade e microporos

com menor permeabilidade).

2.2.1.1 Condições de contorno

A solução da equação (2.6) requer o conhecimento da distribuição da carga

hidráulica inicial no domínio de fluxo:

hx , t =hi x para t=t0 (2.7)

19

Page 42: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

onde hi [L] é uma função predeterminada de x e t0 o instante inicial.

Alem da condição (2.7) deve ser especificada uma das seguintes condições de

contorno independentes do sistema (x=0, x=L respectivamente o fundo e o topo do

perfil), relativa à:

• carga hidráulica (tipo Dirichlet);

hx ,t =h0 t para x=0 ou x=L (2.8)

• fluxo (tipo Neumann);

−K ∂h∂ x

−1=q0x ,t para x=0 ou x=L (2.9)

• gradiente;

∂h∂ x

=0 para x=L (2.10)

onde h0 [L] e q0 [LT-1] são os valores respectivamente de carga hidráulica e do fluxo no

contorno.

Além das condições dadas pelas (2.8), (2.9) e (2.10), podem se considerar duas

condições de contorno dependentes do sistema. Uma delas envolve a interface entre o

solo e a atmosfera. O fluxo potencial do fluido através desta interface é controlado

exclusivamente por condições externas. No entanto, o fluxo real depende também das

condições de umidade do solo na superfície. Tal condição de contorno não pode ser

definida a priori, e é relativa ao fluxo ou à carga hidráulica (e vice-versa). A solução

numérica da equação (2.6) é obtida através da limitação do valor absoluto do fluxo de

superfície por duas seguintes condições:

∣−K∂h∂ x

−K∣E para x=L (2.11)

e

hAhhSpara x=L (2.12)

onde E é a taxa potencial máxima de infiltração ou evaporação, em determinadas

condições atmosféricas [LT-1], e hA e hS são, respectivamente, a carga hidráulica

20

Page 43: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

mínima e máxima na superfície do solo permitido [L]. O valor da hA é determinado a

partir das condições de equilíbrio entre a água do solo e vapor d'água atmosférico,

enquanto que hS é geralmente definido como igual a zero. Se caso positivo, hS

representa uma pequena camada de água (poça), que podem se formar em cima da

superfície do solo durante as chuvas fortes antes do início do escoamento.

Uma outra possível condição de contorno dependente do sistema é a superfície

de escoamento na parte inferior do perfil por meio do qual a água pode deixar a parte

saturada do domínio de fluxo. Este tipo de condição prevê que o fluxo seja nulo,

enquanto a carga hidráulica local é (x=0) é negativa (ou abaixo de um valor prefixado).

No entanto, ao alcançar da saturação é imposta uma carga nula.

2.2.2. Fenômenos de transporte

No estudo de fenômenos de transporte, a atenção é focada na fase líquida. O

fluxo de soluto acontece principalmente por efeito da advecção, ou seja, pelo fluxo da

solução. Os solutos deslocam-se, também, em relação ao fluxo de solvente por causa

da difusão molecular e da dispersão hidrodinâmica.

A equação de governo pelo transporte é a equação de advecção-dispersão

∂c s∂ t

= ∂∂ x D

∂c∂ x

−qc−(2.13)

onde c é concentração da solução [ML-3], s é a concentração na fase adsorvida [MM-1],

θ é o teor de água [L3L-3], ρ é a densidade do solo [ML-3], D é a coeficiente de

dispersão na fase liquida [L2T-1]; q é o fluxo volumétrico [LT-1] definido pela lei de

Darcy-Buckingham q = -K(dH/dx) [L·T-1] onde H é a carga total [L] (soma carga

hidráulica e da carga gravitacional) ; φ representa a contribuição das reações químicas

[ML-3T-1].

O coeficiente de dispersão na fase liquida D é dado pela equação elaborada por

BEAR (1972)

D=∣q∣ Dw (2.14)

onde Dw é o coeficiente de difusão molecular em água livre [L2T-1]; τ é um fator de

tortuosidade na fase líquida [-]; |q| é o valor absoluto da densidade do fluxo volumétrico

[LT-1], e λ é a dispersividade longitudinal [L].

21

Page 44: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.2.2.1 Condições de contorno

A solução da (2.13) requer o conhecimento das concentrações iniciais na região

interessada pelo fluxo:

cx ,0=ci x

sx,0=si x(2.15)

onde ci [ML-3] e si [-] são funções predefinidas de x. A condição inicial para si deve ser

especificada somente em condições de sorção ao não equilíbrio.

Podem ser aplicados dois tipos de condições de contorno (condições do tipo

Dirichlet e Cauchy) aos limites superior ou inferior do perfil. As condições de contorno

primeiro tipo (Dirichlet) definem as concentrações:

cx ,t =c0x ,t para x=0 ou x=L (2.16)

enquanto condições de contorno do tipo terceiro (Cauchy) definem os fluxos de

solutos:

− D∂ c∂ x

qc=q0c0 para x=0 ou x=L (2.17)

em que q0 representa o fluxo de fluido em entrada e c0 a concentração desse fluxo [ML-

3]. Em alguns casos, por exemplo quando o contorno é impermeável (q0 = 0) ou

quando o fluxo de água é direcionado para fora da região, a (2.17) se reduz a uma

condição de segundo tipo (Neumann):

D∂ c∂ x

=0 para x=0 ou x=L (2.18)

2.3. Plantas em ambientes contaminados por elemento s traço

2.3.1. Bases de fisiologia vegetal

Todas as plantas precisam de um conjunto de nutrientes essenciais inorgânicos

(N, P, K, Ca, Mg, S, Fe, Cl, Zn, Mn, Cu, B e Mo) absorvidos pelo sistema radicular da

fase dissolvida na solução aquosa do solo (Tabela 2.6). Estes elementos são exigidos

pela planta para o crescimento, desenvolvimento, reprodução e são adquiridas

passivamente no fluxo de absorção pelas raízes, ou ativamente através de proteínas

22

Page 45: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

de transporte associados à membrana da raiz. Uma vez dentro do sistema radicular,

os nutrientes dissolvidos podem ser transportados pelo interior da planta através do

sistema vascular (xilema).

Tabela 2.6: Concentração comuns nos tecidos da plantas dos elementos nutrientes essenciaisinorgânicos

Elaboração de REICHARDT & TIMM (2004)

ElementoNutriente Simbolo Concentração

nos tecidos (ppm)Composto

comum

Biomassaorgânica

Carbono C 450000 CO2

Oxigênio O 450000 CO2, H2O

Hidrogênio H 60000 H2O

Macronutrientesinorgânicos

Nitrogênio N 15000 NO32-, NH4

+

Potássio K 10000 K+

Cálcio Ca 5000 Ca2+

Fosforo P 2000 H2PO4-, HPO4

2-

Magnésio Mg 2000 Mg2+

Enxofre S 1000 SO42-

Micronutrientesinorgânicos

Ferro Fe 100 Fe2+, Fe-quelato

Cloro Cl 100 Cl-

Manganês Mn 50 Mn2+

Além desses nutrientes essenciais, outros elementos inorgânicos não essenciais,

como vários contaminantes comuns (Pb, Cd, As, entre outros) podem ser absorvidos

também. Novamente, esse processo de absorção pode ser passivo no fluxo de

transpiração ou ativo, substituindo um nutriente essencial na proteína de transporte.

2.3.2. Fluxo de água no sistema solo-planta

Para estimar o fluxo de água no sistema solo-planta deve-se avaliar os gradientes

de potencial hidráulico relativos aos diferentes segmentos do sistema.

A diferença do potencial hidráulico entre a rizosfera e a atmosfera pode chegar a

dezenas de MPa e, em um clima árido, até pode ultrapassar os 100 MPa. Esse valor

total é particionado em várias quedas ao longo de toda a trajetória do fluxo como

representado na Figura 2.3.

23

Page 46: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 2.3: Potencial hidráulico no sistema a solo-planta em diferentes condições da umidadedo solo e atmosféricasFonte: HILLEL (2007)

O taxa de extração de água pelas raízes é muito próxima ao fluxo de transpiração,

que é proporcional à diferença de potencial hidráulico entre a umidade do solo e a

umidade atmosférica. As plantas podem, dentro de certos limites, regular esse fluxo

intervindo sobre a abertura dos estômatos (trecho DE na fig. 2.3.). A

evapotranspiração (ET) é o termo que contabiliza a evaporação combinada com a

transpiração de água em sistemas vegetais. Outro conceito de extrema importância é

a evapotranspiração potencial (ETc), que representa o fluxo de ET em determinadas

condições meteorológicas (temperatura, umidade atmosférica, precipitação, radiação

solar) por uma determinada cultura livre de doenças, bem adubada e em condições

ótimas de irrigação. Cada fator que afasta a cultura da condição padrão, alterando o

fluxo de evapotranspiração, gera uma situação de estresse. Os principais tipo de

estresse são hídrico (umidade do solo escassa ou em excesso) e osmótico (solução

do solo com salinidade não adequada).

Para determinação do fluxo de evapotranspiração, são possíveis diferentes

metodologias (ALLEN et al., 1998):

1. medição direta mediante lisímetro;

2. cálculo;

24

Page 47: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

a) a partir de dados climatológicos e parâmetros relativos à cultura

utilizando a equação de Penman-Monteith ou de Hargreaves.

b) a partir dos dados de evapotranspiração de referência ET0 (medida ou

calculada) e fator de cultura (kc).

Nesse estudo, abordar-se-á somente a metodologia proposta no item 2.

Uma critica a essa abordagem vem de HOPMANS et al. (2002) que destacam

que, dessa forma, a interação planta - atmosfera pode ser muito simplificada, porque

se supõe que a taxa de transpiração potencial seja determinada a priori através de

medidas independentes.

2.3.2.1 Fórmula geral de Penman-Monteith

A fórmula mais acurada pela determinação da evapotranspiração é aquela de

Penman-Monteith (ALLEN et al., 1989), introduzida por Penman no caso da

evaporação de um corpo de água livre, como combinação do balanço de energia com

a transferência de massa, depois adaptada às superfícies cultivadas através da

introdução de fatores de resistência.

ET=ETradETaero=1 [ Rn−G

1r c/ r a

cpea−ed/r a

1r c/r a ](2.19)

onde ET é a taxa de evapotranspiração [mm dia-1]; ETrad é o termo radiante [mm dia-1];

ETaero é o termo aerodinâmico [mm dia-1]; λ é o calor latente de vaporização [MJ kg-1];

Rn é a radiação líquida na superfície [MJ m-2dia-1]; G é o fluxo de calor no solo [MJ m-

2dia-1]; ρ é a densidade atmosférica [kg m-3]; cp é o calor específico do ar (1,005 kJ kg-1

oC-1); (ea-ed) é o déficit atual de pressão do vapor [kPa]; ea é a tensão de vapor

saturado à temperatura T [kPa], ed é a pressão real do vapor [kPa], rc é a resistência

da superfície da cultura ao fluxo de vapor através dos estômatos; ra é a resistência

aerodinâmica (atrito do fluxo de ar que flui sobre a superfície vegetal, Figura 2.4) [s m-

1]; ∆ é a inclinação da curva de pressão de vapor saturado [kPa °C -1] e γ a constante

psicrométrica [kPa °C -1]. Esse últimos parâmetros são definidos como segue:

r c=r l

LAIativo

(2.20)

25

Page 48: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

r a=

lnzm−d

zomlnzh−d

zoh

k2uz

(2.21)

=4098ea

T273,32(2.22)

=cp P

⋅10−3=0,00163

P

(2.23)

onde LAIativo é índice de área foliar (vide item 2.3.2.4 ) relativo as folhas iluminadas

pelo sol; rl é a resistência estomática bruta da folha bem iluminada [s m-1]; T é a média

da temperatura do ar [oC]; P é a pressão atmosférica [kPa]; ε é a razão entre os pesos

moleculares do vapor de água e de ar seco (ou seja, 0,622); zm a altura das medições

do vento [m]; zh é a altura das medições de umidade do ar [m]; d plano zero de

deslocamento da altura [m]; zom rugosidade relativa à transferência da quantidade de

movimento [m]; zoh rugosidade relativa à transferência de calor e de vapor [m]; k

constante de von Karman, 0,41 [-] e uz da velocidade do vento à altura z [m s-1].

Figura 2.4: Representação simplificada da resistência aerodinâmica e de superfície para o fluxode vapor d'água

Fonte: ALLEN et al. (1998)

26

Page 49: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.3.2.2 Metodologia FAO Penman-Monteith

Em 1990, a Organização das Nações Unidas para Agricultura e Alimentação (FAO,

sigla de Food and Agriculture Organization) padronizou a metodologia para calcular a

necessidade hídrica das culturas. Foi introduzido o conceito de evapotranspiração de

referência. Com base na equação (2.19) foi definida a cultura de referência como uma

cultura hipotética (parecida com a grama), com uma altura de 0,12 m, uma resistência

de superfície de 70 m s-1 e um albedo de 0,23. Substituindo esses valores, a equação

(2.19) se apresenta na forma:

ET0=

0,408Rn−G900

T273u2ea−ed

10,34u2

(2.24)

O valor de ET0 representa um padrão para medir a evapotranspiração de outras

culturas. Uma vez determinada a evapotranspiração da cultura estudada (ETc), é

introduzido o coeficiente da cultura:

kc = ETc / ET0 (2.25)

onde a ET0 pode ser calculada. As caraterísticas da cultura e a resistência

aerodinâmica são contabilizados no kc (ALLEN et al., 1998).

2.3.2.3 Fórmula de Hargreaves

A evapotranspiração potencial ETp, também pode ser estimada usando a fórmula

mais simples de Hargreaves :

ETp = 0,0023 Ra (Tm+17,8) √TR (2.26)

onde Ra é a radiação solar no topo da atmosfera nas mesmas unidades de ETp [L T-1];

Tm é a temperatura média diária, calculada como uma média das temperaturas

máxima e mínima do ar [oC]; TR é a diferença entre a média mensal das temperatura

máximas e a média mensal das temperatura minimas [oC]

2.3.2.4 Determinação da repartição entre evaporação e transpiração

O índice de área foliar (Leaf Area Index, LAI), definido como a razão

(adimensional) entre a superfície foliar superior e a área do solo, onde cresce a

27

Page 50: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

vegetação, varia de 0 (ausência de vegetação) até 6 (floresta densa) e é um

parâmetro utilizado para determinar a repartição entre evaporação e transpiração

(Figura 2.5).

Figura 2.5: Ciclo da água no continuum planta – solo – atmosferaFonte: HILLEL (2007)

T p=ETp 1−e−k⋅LAI =ET pSCF

Ep=ETpe−k⋅LAI=ETp1−SCF

(2.27)

onde k [-] é o parâmetro de extinção de radiação (com entre 0,45 e 0,75) e SCF [-] a

fração de superfície coberta por vegetação. Ele pode ser medido experimentalmente

ou calculado através da equação proposta por ALLEN et al. (2003) no caso da grama

cortada por uma altura hc entre 0,05 e 0,15 m:

LAI = 24 hc (2.28)

Outra possibilidade de cálculo de LAI é mediante

LAI = - [ ln ( 1 – SCF ) ]/ ai (2.29)

onde ai é a constante de extinção da planta (valores 0,45 – 0,61, ZHOU et al., 2003).

28

Vapor de água

Solo

Planta

Lençol freatico

LAItranspiraçãoevaporação

Absorção pelas raizes

inf iltração

Precipitação / irrigação

Page 51: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.3.2.5 Modelagem da absorção de água pelas raízes

A absorção de água pelas raízes é um efeito da demanda transpiratória da planta.

DOUSSAN et al. (2006) evidenciam como sendo os resultados de uma complexa

interação entre a planta e o solo, que envolve processos de transporte em escalas

espaciais e temporais diferentes. Em pequenas escalas, as taxas de absorção são

determinadas pelas propriedades hidráulicas locais do solo e da raiz, mas, na escala

da planta, os processos locais são integrados com todo o sistema radicular. No

entanto, devido à complexidade inerente do sistema radicular (estrutural e funcional),

as raízes das plantas são geralmente modeladas por descritores sintéticos e

excessivamente simplificados que podem ser válidos somente em uma determinada

escala espacial.

Existem duas principais abordagens à modelagem da absorção de água pelas

raízes. A primeira abordagem, conhecida como microscópica, simula um fluxo

convergente radial para cada raiz considerada individualmente. A segunda abordagem

é macroscópica e considera o sistema radicular na sua totalidade como um extrator

difuso.

VAN LIER et al. (2006) propõem um modelo combinado macro-microscópico

evidenciando que os modelos macroscópicos, apesar de ser mais facilmente

aplicáveis à situações específicas, não consideram os processos físicos que permitem

capturar a redução do teor de água no solo e, consequentemente, o aumento da

resistência hidráulica na proximidade das raízes.

FEDDES et al. (1978) formulam um modelo macroscópico, onde o integral da

absorção potencial de água sp [T-1] na rizosfera Ω corresponde à transpiração potencial

Tp [LT-1] que, num caso unidimensional, pode ser escrito como:

∫LR

spx , tdx=T pt (2.30)

onde LR é a profundidade [L] do solo associado ao processo de transpiração. A

absorção potencial de água sp [T-1] pode ser formulada de acordo com VOGEL (1987)

como:

sp(x, t) = b(x, t) Tp(t) (2.31)

onde b (x, t) é a distribuição radicular normalizada [L-1] sendo uma função do espaço e

do tempo (no caso do crescimento das raízes) que representa a densidade das raízes.

Dessa função existem diferentes formulações: uma função linear (FEDDES et al.,

29

Page 52: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

1978), exponencial (RAATS, 2007), ou genérica (VRUGT et al., 2001a e 2001b). A

função b(x, t) deve ser normalizada em função a variável espacial para verificar a

condição imposta pela (2.30).

A absorção real pode ser determinada considerando o estresse hídrico e osmótico

na formulação modificada por VAN GENUCHTEN (1987):

s(h, hφ, x, t) = α (h, hφ, x, t) sp(t) (2.32)

onde α (h, hφ) é a função de resposta ao estresse que é adimensional e depende da

carga hidráulica h (Figura 2.6) e da carga osmótica hφ (0 ≤ α ≤ 1). Esta função α reduz

a absorção de água pela raiz, em caso de estresse hídrico e osmótico. No caso de

ausência de estresse, a absorção real coincide com a potencial e a função α é

constantemente igual a 1.

A transpiração real Ta [LT-1] é obtida mediante integração da (2.32) ao longo da

rizosfera LR

Ta t =∫LR

sh ,h , x ,tdx=T p t ∫LR

h ,h , x , tb x , tdx (2.33)

Na formulação de FEDDES et al. (1978) da Figura 2.6, a absorção de água é

considerada igual a zero perto da saturação (ou seja, para umidades maiores de um

"ponto de anaerobiose" definido como h1). Para h < h4 (ponto de murcha) a absorção

de água também é zero. A absorção de água é considerada ideal entre as cargas h2 e

h3, enquanto para cargas entre h3 e h4 (ou h1 e h2), diminui (ou aumenta) linearmente

com h. Para plantas freatofilas, que são capazes de extrair água do lençol freático, os

valores de h1 e h2 se consideram nulos.

Figura 2.6: Função de resposta ao estresse hídrico α(h)Fonte: FEDDES et al. (1978)

30

0

0,2

0,4

0,6

0,8

1

α

h4 h3h2 h1

Page 53: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Outras formulações dessa função foram propostas por MAAS (1990) e VAN

GENUCHTEN (1987).

Efeitos combinados da carga hidráulica e osmótica podem ser considerados

mediante um modelo aditivo ou multiplicativo (VAN GENUCHTEN, 1987; CARDON &

LETEY, 1992; FEDDES e RAATS, 2004).

HOMAEE et al. (2002) analisaram seis funções de redução diferentes numa

abordagem macroscópica, parte delas aditivas e outras multiplicativas. Particularmente

interessante, de acordo com os dados experimentais, foi a combinação da função de

redução linear no estresse salino, segundo MAAS e HOFFMAN (1977), e a função

linear do estresse hídrico segundo FEDDES et al. (1978).

HOMMAE et al. (2008) mostram como as plantas adotam estratégias de alteração

da absorção de água em condição de estresse. A atividade da raiz se torna mais

importante nas regiões da rizosfera menos estressadas, compensado totalmente ou,

em parte, a diferença que haveria entre a absorção potencial e real. É possível

modelar esse comportamento das plantas definindo ω, índice de estresse

adimensional na absorção de água (JARVIS, 1989 e 1994) como

ω (t) = Ta(t) / Tp(t) (2.34)

JARVIS (1989) introduziu o índice de estresse hídrico ωc, o chamado fator de

adaptabilidade da raiz, que representa o valor limite acima do qual a absorção de água

pela raiz, em condição de estresse localizado, é plenamente compensada pelo

aumento de absorção em outras regiões da raiz não estressadas. Abaixo desse valor

ocorre uma redução na absorção, embora menor do que no caso sem compensação

(Figura 2.7).

Figura 2.7: Transpiração real compensada Tac em função do índice de estresse ωFonte: JARVIS (1989)

31

Page 54: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.3.3. Absorção de solutos pelas plantas

Em geral, as plantas absorvem espécies químicas que são dissolvidas na solução

do solo em forma iônica, quelada* ou complexada. Em geral, esse processo é

condicionado pelas caraterísticas do solo, principalmente: pH, Eh, umidade, teor de

argila, teor de matéria orgânica, capacidade de troca catiônica, nutrientes e presença

de outros elementos traço. A quantidade de água que infiltra e a temperatura também

afetam a absorção.

Existem afinidades específicas de algumas plantas por alguns elementos. A

habilidade da planta de absorver elementos químicos é, geralmente, avaliada com o

fator de transferência (FT), definido como a razão entre a concentração do elemento

nos tecidos das plantas e a concentração do elemento no solo (ANDRADE et al.,

2008).

2.3.3.1 Absorção ativa e passiva pelas raízes

A absorção de elementos pelas raízes pode ser tanto passiva como ativa

(metabólica). A absorção passiva descreve a passagem espontânea de íons da

solução do solo até a planta através do fluxo de absorção. A absorção ativa ocorre

contra um gradiente químico e, por isso, é um processo que requer energia

metabólica. A concentração de íons na solução é considerado um dos fatores que

mais influencia a absorção pelas plantas no caso de absorção ativa. Acima de um

certo valor limite da concentração dos solutos, as propriedades biológicas e estruturais

das células das raízes são alteradas, favorecendo a absorção passiva. No entanto, a

transferência de elementos químicos entre o solo e os vegetais não necessariamente

passam pela fase líquida (KABATA-PENDIAS & PENDIAS, 2001).

Em relação aos elementos traço na literatura existem divergências sobre qual

método seria predominante para cada elemento: Pb e Ni seriam preferencialmente

absorvidos passivamente, enquanto o Cu, Mo e Zn ativamente (KABATA-PENDIAS &

PENDIAS, 2001).

Raízes e micro-organismos associados produzem compostos orgânicos que

contribuem para a mobilização dos metais que se encontram sorvidos no solo. Os

*Quelato é um composto químico formado por um íon metálico ligado por várias ligações covalentes a uma

estrutura heterocíclica de compostos orgânicos como aminoácidos, peptídeos ou polissacarídeos. Um exemplo de

agente quelante è o ácido etilenodiamino tetra-acético, EDTA (do inglês Ethylenediamine tetraacetic acid) que age

formando complexos muito estáveis com diversos íons metálicos.

32

Page 55: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

compartimentos mais acessíveis para as plantas são os minerais de argila, enquanto

as espécies fixadas por óxidos são menos prontamente disponíveis. Os exsudados

das raízes podem agir, entre outros fatores, sobre o pH que é um parâmetro

extremamente significativo sobre a disponibilidade dos metais.

OTTE et al. (1987) registraram casos em que as raízes funcionam como

“barreiras” na absorção de alguns elementos traço.

Figura 2.8: Resposta esquemática das plantas ao variar da concentração do elementos traço:(a) essencial, (b) não essencial.

Fonte: KABATA-PENDIAS (2001)

2.3.3.2 Essencialidade, deficiência e excesso

Os elementos reconhecidos como essenciais pelas plantas têm papeis

bioquímicos específicos (respiração, fotossíntese, fixação e assimilação dos principais

nutrientes) e não podem ser substituídos por outros. Assim, a escassez desses

elementos pode prejudicar ou inibir completamente o desenvolvimento da planta

(deficiência, Figura 2.8a). Ao mesmo tempo, a planta não é sensível à falta de

elementos considerados não essenciais (Figura 2.8b).

2.3.3.3 Toxicidade e tolerância

Todos os elementos, em altas concentrações, provocam efeitos tóxicos para as

plantas (excesso, Figura 2.8a+b): o valor em que esse efeito começa a aparecer,

33

Page 56: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

depende da espécie da planta, das caraterísticas do solo e da ligação química do

metal.

FOY et al. (1978), entre outros, classificaram os principais efeitos do excesso de

metais tóxicos:

1. alterações da permeabilidade da membrana celular: Ag, Au, Br, Cd, Cu, F,

Hg, I, Pb, UO2 ;

2. reações de grupos tióis com cátions: Ag, Hg, Pb;

3. competição com metabólitos essenciais: As, Sb, Se, Te, W, F;

4. afinidade para reagir com os grupos fosfatos e grupos ativos de ADP ou

ATP: Al, Be, Sc, Y, Zr, e todos os outros metais pesados;

5. substituição de íons essenciais (cátions): Cs, Li, Rb, Se, Sr;

6. saturação local que embarreira grupos essenciais, tais como fosfato e

arsenato-nitrato, fluorato, borato, bromato, selenato, telurato e tungstato;

7. danos ao aparelho envolvido na fotossíntese e várias alterações

metabólicas.

A resposta das plantas aos contaminantes pode variar no tempo, gerando uma

reação ao estresse químico (Figura 2.9). KABATA-PENDIAS & PENDIAS (2001)

chamam esse comportamento de tolerância: ele é composto por uma série de

estratégias utilizadas pela planta para aumentar a sobrevivência como:

1. absorção seletiva de íons;

2. diminuição da permeabilidade das paredes celulares ou outras diferenças na

estrutura e função das membranas;

3. imobilização de íons em diferentes órgãos (síntese de compostos imobilizantes

como de minerais, e / ou fixação por ligantes carregados);

4. alteração no metabolismo (aumento dos metabólitos antagônicos, redução de

via metabólica por meio de um site inibido;

5. substituição de um metal com função fisiológica por um metal tóxico nas

enzimas;

6. liberação de íons da planta por lixiviação de folhagem, queda de folhas,

lançamento pelas raízes;

7. liberação de compostos orgânicos voláteis de metal (por exemplo, Hg, Pb e

Sn).

34

Page 57: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 2.9: Plasticidade comportamental das plantas sob estresse químico: (a) espéciesinteiramente tolerantes, (b) desenvolvimento de tolerância comportamental; (c) espécies não

tolerantes.Fonte: KABATA-PENDIAS (2001)

2.3.3.4 Avaliação da toxicidade em caso de presença de mais elementos traço

No caso de presença combinada de vários elementos tóxicos, em contrações não

despreciáveis, a avaliação da toxicidade é ainda mais complicada devido às interações

entre metais que podem gerar comportamentos sinérgicos ou antagônicos. SAVOZZI

et al. (1997) introduziram o conceito de “metal equivalente (Mn)” que permite uma

primeira estimativa do nível de toxicidade, relacionando as concertações dos metais

presentes com aquela do elemento menos tóxico reconhecido como o manganês

segundo a seguinte equação:

Mnequivalente = Mn2+ + 1.95 Pb2+ + 2.1 Ni2+ + 2.5 Zn2+ + 6.7 Cd2+ + 6.7 Cu2+ (2.35)

2.3.3.5 Plantas hiper-acumuladoras

Existem, na natureza, espécies vegetais que têm a capacidade de acumular

quantidades extraordinárias de metais em comparação com outras plantas e com a

concentração registrada no solo. Essas espécies podem ser definidas "hiper-

acumuladoras" se a concentração, na massa seca, supera um determinado valor,

como indicado por GREGER (2004), segundo a Tabela 2.7.

35

Page 58: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 2.7: Concentração de metais nos tecidos acima da qual a planta é considerada hiper-acumuladora

Fonte: GREGER (2004)Elemento Concentração limite

na massa seca (ppm)

Cd 100

Co, Cu, Ni, Pb 1000

Mn, Zn 10000

Tabela 2.8: Toxicidade e papel bioquímico de Ni2+, Pb2+, Cd2+, Zn2+ nas plantas. Elaboração de KABATA-PENDIAS & PENDIAS (2001)

Cd2+ Ni2+ Pb2+ Zn2+

Importâncianometabolismo

Não essencial Não essencial,mas tem caso decorrelação com ocrescimento

Não essencial Relacionado aometabolismo decarboidratos, proteínasfósforo, auxinas, RNAe formação deribossomos.Possível contribuiçãona resistência ao climaseco-quente e asdoenças bacterianas efúngicas

Modelo deabsorção

Passivo e ativoinfluenciado pelaconcentração no soloe o pH

PrincipalmentePassivo influenciado pelaconcentração no soloe na solução e pelo pH

Passivo De difícil determinação

Mecanismotoxicidade

Distúrbio da atividadeenzimáticainibição da formaçãode antocianinas epigmentos de clorofila

Inibição dafotossíntese e datranspiração (retardono metabolismo,absorção de nutrientese no crescimento dasraízes)clorose

influência afotossíntese, mitose eabsorção de água

específico para cadaespécie

Limite defito-toxicidade

5 ÷ 30 ppm (DW) 10 ÷ 100 ppm (DW) 100 ÷ 300 ppm (DW) 100 ÷ 500 ppm (DW)

2.3.3.6 Efeitos de Ni 2+ , Cd 2+ , Pb 2+ e Zn 2+ sobre os vegetais

Um resumo das caraterísticas metabólicas e de toxicidade dos metais analisados

na presente pesquisa é apresentada na Tabela 2.8. Valores de concentrações limites

são evidenciados na Figura 4.2.

36

Page 59: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.3.3.7 Modelagem da absorção de solutos pelas raízes

A absorção de solutos pelas raízes pode ser modelada através valores sintéticos

calculados com base na decomposição nos termos passivo e ativo.

A absorção passiva p [ML-3T-1] de um soluto é calculada multiplicando a absorção

de água (compensada ou não) s [T-1], pela concentração do soluto em solução, c [ML-3]

p(h, hφ,x, t) = s(h, hφ, x, t) c(x, t) (2.36)

O modelo de absorção ativa, segundo ŠIMŮNEK & HOPMANS (2009), inclui

todos os outros possíveis mecanismos de absorção e aqueles processos que

precisam de energia contra gradientes eletroquímicos.

Uma abordagem alternativa à modelagem é apresentada no item 6.2.2.1 .

2.4. Fitorremediação

A fitorremediação é uma técnica que utiliza vegetação, aquática ou terrestre,

eventualmente associada com micro-organismos, para conter, remover ou degradar

substâncias químicas tóxicas em solos, sedimentos, águas subterrâneas e águas

superficiais, diretamente in situ. Pode ser usada como uma alternativa de remediação

stand-alone ou como parte de uma tecnologia integrada.

Atualmente, a fitorremediação é usada no tratamento de muitas classes de

contaminantes, incluindo hidrocarbonetos, pesticidas, explosivos, metais pesados e

radionuclídeos, bem como compostos orgânicos voláteis (MCCUTCHEON et al.,

2003).

Na Tabela 2.9, são descritos os principais mecanismos de fitorremediação.

São sucessivamente analisados os mecanismos de maior relevância pela

presente pesquisa.

37

Page 60: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 2.9: Mecanismos de fitorremediaçãoElaboração de EPA (2003), RTDF (2005), ITRC (2009)

Mecanismo Descrição Objetivo

Controle hidráulico interceptação, e transpiração de grandesquantidades de águas subterrâneas esuperficiais (geralmente com arvores)

Contenção mediantecontrole do fluxo deágua

Fito-sequestro é a combinação de diversos mecanismos queestabilizam os contaminantes na rizosfera

Contenção

Rizo-degradação

degradação dos contaminantes na rizosfera porexsudatos da planta, enzimas, ou bactérias, quepodem estimular a biodegradação natural doscontaminantes

Remediaçãomediante destruição

Fito-extraçãohabilidade da planta de absorver oscontaminantes nos tecidos através do fluxo detranspiração

Remediaçãomediante remoçãoda planta

Fito-degradação

A habilidade das plantas para absorver edegradar contaminantes através do fluxo detranspiração mediante a atividade enzimáticainterna e oxidação / redução fotossintética

Remediaçãomediante destruição

Fito-volatilizaçãoabsorção (pelas raízes) e sucessivo transporte evolatilização dos contaminantes voláteis naatmosfera;

Remediaçãomediante remoçãoatravés da planta

2.4.1. Controle hidráulico

As plantas afetam significativamente a hidrologia local. A infiltração e a percolação

podem ser limitadas pela interceptação da cobertura vegetal na superfície e pela

evapotranspiração através do sistema radicular. A taxa de recarga do aquífero

depende não somente da profundidade de enraizamento das espécies, mas das

características do solo. Também a migração horizontal das águas subterrâneas pode

ser contida ou controlada utilizando espécies oportunas (USEPA 2000): uma classe de

árvores que tem sido amplamente estudada nas fito-tecnologias é das freatófitas

(como as salicaceae, choupos e salgueiros) que podem sobreviver em condições de

saturação temporária (ITRC, 2009).

2.4.2. Fito-extração e fito-sequestro

A fito-extração refere-se à capacidade das plantas de absorver contaminantes

pelas raízes e transferi-los para a parte aérea. Uma vez que o contaminante é

absorvido, a planta pode armazená-lo nas células das raízes (fito-estabilização), incluí-

lo na biomassa vegetal através de lignificação ou sequestrá-lo nos vacúolos celulares

dos tecidos das folhas. Alternativamente, o contaminante pode ser metabolizado por

38

Page 61: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

mecanismos de fito-degradação e / ou volatilizado na saída do fluxo de transpiração

da planta.

2.4.3. Tecnologias usadas na fitorremediação

As fito-tecnologias são aplicadas para conter ou remediar a contaminação no solo

e nos sedimentos, nas águas subterrâneas e superficiais.

2.4.3.1 Coberturas vegetais fito-estabilizantes

As coberturas vegetais podem ser usadas com o objetivo de estabilizar os

contaminantes presentes na subsuperfície, impedindo sua lixiviação através do fluxo

que infiltra. Esta é uma abordagem comum para aterros de resíduos, mas também

pode ser aplicada para minimizar a recarga de aquíferos contaminados ou com risco

de contaminação.

Essas coberturas são compostas de solo e de plantas que maximizam a

evapotranspiração. Para impedir que quantidades consistentes de água entrem em

contato com a área contaminada, é necessário maximizar a retenção hídrica e

minimizar a condutividade hidráulica da camada superficial do solo. A vegetação da

cobertura deve ser composta por uma mistura de plantas e árvores com a capacidade

de transpirar a água armazenada e favorecer a interceptação (ANDRADE, 2005). A

cobertura deveria também favorecer o escoamento superficial (ITRC, 2009).

2.4.3.2 Coberturas vegetais fito-remediadoras

Além da função estabilizante, as coberturas vegetais, se compostas por plantas

densamente enraizada, podem ter uma função fito-remediadora. A abrangência

dessas coberturas alcança uma profundidade média de 60 centímetros; para

profundidades maiores, é necessário utilizar arvores. Os mecanismos envolvidos na

remediação são fito-sequestro, fito-degradação, fito-volatilização e, no caso da coleita,

fito-extração (FLATHMAN et al., 1998).

2.4.3.3 Controvérsias na aplicação de quelantes

Para aumentar a eficiência da fito-extração, especialmente no caso de

contaminação por metais pouco móveis no solo, como o chumbo, podem ser utilizados

39

Page 62: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

agentes quelantes como o ácido etileno-diamino-tetra-acético EDTA (SCHNOOR,

1997 e TAVARES, 2009), com o objetivo de aumentar a porcentagem de metal em

solução (provocando uma diminuição do Kd).

A adição de agentes quelantes pode aumentar os riscos de contaminação da

água subterrânea ou aumentar a toxicidade do contaminante devido à formação de

grupos metal-quelato. ROBINSON et al. (2006) evidenciam as seguintes problemáticas

relativas ao uso de quelantes:

• a uma maior concentração do metal na solução, nem sempre corresponde

uma maior absorção pela planta: registram-se casos de impossibilidade de

ingresso do grupo metal-quelato na endoderme da raiz, como no caso do

Cu, registrado por BOLAN et al., (2003)

• a absorção de metais em presença de quelatos favorece uma absorção

por via do apoplasto e, ao mesmo tempo, inibe aquela por via do

simplasto; essa última via é utilizada pela absorção de nutrientes

fundamentais, em forma que efeito resultante pode ser um aumento da

absorção dos metais tóxicos e uma simultânea diminuição da absorção de

alguns nutrientes, como foi observado por TANDY et al. (2006) no caso do

Pb a dano de Cu e Zn;

• solubilização de metais altamente fitotóxicos como Al e Mn;

• para alcançar a solubilidade adequada, os quelantes são normalmente

adicionados em forma de sais de sódio: esse elemento pode provocar a

dispersão de minerais de argila, provocando em aumento do fluxo

preferencial, além de problemas de salinização do solo.

2.4.4. Plantas idôneas a processos de fitorremediaç ão

As espécies vegetais idôneas para projetos de fitorremediação devem preencher

os seguintes requisitos:

1. alto nível de tolerância a concentrações elevadas dos metais específicos;

2. adaptabilidade ao solo e ao clima;

3. capacidade de absorção elevada de metais pesados.

40

Page 63: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Relativamente ao item 3, podem ser usadas plantas não necessariamente híper-

acumuladoras; geralmente, essas devolvem baixos valores da biomassa e têm um

sistema radicular limitado. O relevante, aos fins da calibração, é a capacidade de

extrair ou imobilizar o contaminante; esse valor é calculado mediante o produto da

concentração nos tecidos e da biomassa.

Assim, são favorecidas, nessa escolha, plantas com melhor adaptabilidade que

tenham um alto desempenho também em solos contaminados. A tolerância e as

características do sistema radical devem ser consideradas na seleção das plantas

para a fitorremediação. A morfologia das raízes é uma característica determinante na

absorção de contaminante em condições de solo infértil e de estresse hídrico,

osmótico e químico (TRUONG, 2000 e 2010).

2.4.5. Projeto de um sistema de fitorremediação

De acordo com EPA (2003), na Tabela 2.10, é apresentada uma lista de

informações relevantes para um projeto que envolve fitorremediação.

Entre os parâmetros mais importantes no projeto de um processo de

fitorremediação, podem ser citados os seguintes:

1. densidade de plantio;

2. dimensões do lote e orientação;

3. drenagem;

4. possibilidade de inserção de outros componentes de remediação (poços,

bombas, wetland, barreiras reativas, geomembranas... );

5. duração da intervenção;

6. manutenção (irrigação, fertilizantes, quelantes, amenizantes, renovação do

plantio).

41

Page 64: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 2.10: Dados necessários pelo desenvolvimento de um processo de fitorremediaçãoFonte:EPA (2003)

Área Informação

Botânica

taxa de crescimento e produtividade da planta

evapotranspiração potencial

caraterísticas das raízes (principalmente distribuição e profundidade)

tolerância aos contaminantes

capacidade de acumulação

produção de exsudados que ajudem a degradação

população bacteriana na rizosfera (crescimento, tolerância e capacidade dedegradação dos contaminantes);

Demanda de elementos essencias pela planta

Clima

precipitações,

vento

radiação solar

Hidrogeologia

direção do fluxo das águas subterrâneas,

gradiente hidráulico,

conectividade das zonas de porte de água,

identificação das vias de fluxo primário das águas subterrâneas,

mecanismo principal de fluxo das águas subterrâneas (intergranular oucaracterísticas de porosidade secundária)

geometria do aquífero (profundidade, espessura, pontos de recarga,interações com outros aquíferos, flutuações sazonais de nível)

velocidade e vazão da águas subterrânea,

tipologia e distribuição dos horizontes de solo

caraterísticas físicas do solo (composição, granulometria, coeficiente dedistribuição)

Contaminante

distribuição no solo ou nos aquíferos

mecanismos de sorção e precipitação/dissolução no solo

tendencia a decaimento ou degradação espontânea

2.4.6. Duração de um processo de fito-extração

A duração de um processo de fito-extração depende da taxa de extração do

contaminante e do nível de contaminação do solo. ROBINSON et al. (2006)

propuseram a estimativa do tempo necessário para descontaminar o solo mediante a :

t=M i−M f

PM BM

(2.37)

42

Page 65: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

onde t é o tempo [anos], Mi é a carga inicial do metal no solo [g/ha], Mf é o valor

objetivo da carga de metal no solo [g/ha] (geralmente correspondente aos limites

fixados pela legislação), P é a concentração do metal da cultura [g/t], e B é a produção

de biomassa [t / ha / ano].

A equação (2.37) não incorpora a heterogeneidade espacial e temporal. Por isso

fornece um valor indicativo útil para especificar quais contextos não podem ser

convenientemente tratados através da fito-extração. Além da heterogeneidade, outros

fatores que podem levar a subestimar o tempo de remediação são:

1. a possível falta de contato entre solo contaminado e raízes no campo;

2. devido ao mesmo processo de remoção, a quantidade de metal que está

disponível para absorção pelas plantas diminui levando a uma ulterior

redução da absorção do metal;

3. as áreas de contaminação por metais com altas concertações de

contaminante (hot-spots), podem inibir o crescimento das plantas, tornando

ineficaz a fito-extração nessas zonas.

Reescrevendo a equação (2.37) para incorporar heterogeneidade, temos:

t=M i x , ymax−M f

PEBE

(2.38)

onde x, y é a posição espacial (latitude, longitude) Mi(x,y)max é a carga máxima inicial de

metal [g/ha]; P e B, nesta formulação, são ambos função da exposição da raiz ao metal

bio-disponível E [g/ha] definida como:

E=∫0

z

∫0

t

Rt ' , zctM t ' , zdt ' dz(2.39)

onde z é a profundidade [m], R é a fração de raízes [-] que está em contato com o

metal bio-disponível [g / t]; ct é a concentração total [g / t] que é uma função de M. A

equação (2.39) requer uma solução numérica, porque é não-linear. Os tempos

calculados pela fórmula (2.38) são maiores do que aquele calculados através da (2.37)

em função da existência da carga máxima do metal Mi(x)max (maior da carga média) e

da redução da exposição ao contaminante das raízes (ROBINSON et al., 2006).

43

Page 66: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

2.4.7. Custo de um processo de Fito-extração

A literatura sobre os custos da fito-extração, principalmente em língua inglesa, não

é muito recente e permite somente ter uma ideia indicativa relativamente aos custos

deste processo. SCHNOOR (1997) evidenciou como a fito-extração tenha um custo

varias vezes menor do que as técnicas tradicionais, porem ela seja mais lenta (Tabela

2.11). CORNISH et al. (1997) indicaram como os custos da fito-extração de uma área

de 5000 m2 onde se registrou uma contaminação do solo a causa de um vazamento

de Cd, Zn e 137Cs ate uma profundidade de 50 cm, foram a terceira parte dos custos da

técnica da lavagem do solo. SALT et al. (1995) num solo de textura franco-arenosa

(contaminado ate uma profundidade de 50 cm) determinaram que os custos da fito-

extração foram aproximativamente a quinta parte dos custos da técnica de escavação

e disposição em aterro.

LINACRE et al. (2005) propuseram uma metodologia de cálculo econômico que

considera também a rentabilidade do terreno ocupado pelo processo de remediação.

O maior tempo necessário pela fitorremediação pode levar a perdas de renta

associadas aos investimentos que poderiam ser atuados na área.

Tabela 2.11: Comparação de tempos e custos pela remediação de metaisFonte: SCHNOOR (1997)

Tipo de Tratamento Custo[$/m 3]

Tempo [meses]

Fatores adicionas / despesa Problemas desegurança

Fixação in situ 90 - 200 6 – 9 Transportes / escavaçãomonitoramento a longo prazo

Lixiviação

Escavação edisposição ematerro

100 -400 6 – 9 monitoramento a longo prazo Lixiviação

Extração do solo,lixiviação

250 - 500 8 – 12 Mínimo de 5000 m3

Reciclagem químicaDisposição finaldos resíduos

Fito-extração 14 - 40 18 – 60 Tempo / ocupação do solo Disposição finaldos resíduos

44

Page 67: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3. MÉTODOS E MATERIAIS

A presente pesquisa foi focada na modelagem de processos de fito-sequestro e

de fito-extração de elementos traço.

Os objetivos específicos deste trabalho foram a determinação do:

1. transporte dos contaminantes no solo;

2. estado de estresse da vegetação (hídrico e tóxico);

3. sequestro / extração dos metais pela planta.

Os itens 2 e 3 são intimamente relacionados, porque o estresse inibe o

metabolismo da planta, inclusive o processo de extração de água e contaminante.

A modelagem abordou integralmente o continuum solo – planta – atmosfera; por

isso, foi necessário calibrar os submodelos relativos ao fluxo de água, ao transporte do

contaminante e à absorção de água e solutos pela planta. Foi realizada uma validação

separada de cada submodelo para não correr o risco de compensação de erros.

A metodologia foi articulada em três fases (Figura 3.1): preparação, calibração e

aplicação (SPITZ et al., 1996; FERREIRA, 2010).

45

Page 68: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)
Page 69: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3.1. Preparação

Essa fase consistiu, principalmente, na escolha do código computacional, na

coleta e na preparação dos dados, na determinação dos modelos e das principais

hipóteses.

3.1.1. Estrutura da modelagem

O objetivo final da modelagem foi determinar a quantidade de metal extraída do

solo pela planta. Esse valor depende de uma complexa rede de fenômenos

interligados que foram simplificados segundo o fluxograma na Figura 3.2. O

contaminante no solo é sujeito a transporte (advecção, dispersão, difusão), que é

influenciado, principalmente, pela sorção na fase sólida e pelo fluxo de água. Por sua

vez, o fluxo no solo é determinado pelas caraterística texturais do solo e pelo clima. A

umidade no solo, conjuntamente com a situação climatológica, determina a

transpiração, que foi assumida igual à absorção de água pelas raízes. Ao mesmo

tempo, a presença da planta influencia também o fluxo hídrico no solo. A absorção

passiva de solutos pela vegetação se dá pela absorção de água, enquanto a ativa

depende da concentração do soluto.

3.1.2. Dados experimentais

Como fonte principal de dados, foi utilizada a pesquisa de TAVARES (2009) que

estudou a extração de metais (Cd2+, Pb2+, Ni2+, Zn2+) por capim Vetiver (Chrysopogon

zizanioides L Roberty, vide item 8.1. ) cultivado em vaso na casa de vegetação da

EMBRAPA Solo (Rio de Janeiro) durante 60 dias. Este trabalho se destaca pela

quantidade e boa sistematização dos ensaios.

3.1.2.1 Elaboração dos resultados dos ensaios

Entre os resultados apresentados por TAVARES (2009) têm sido de particular

relevância, pela presente pesquisa:

• a biomassa seca por compartimento da planta (parte aérea e raiz);

• a concentração de cada metal ensaiado por compartimento da planta.

As principais elaborações sobre esses dados foram:

47

Page 70: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

• estudo de modelos de regressão sobre a resposta do sistema solo-planta aos

níveis de contaminação analisados;

• determinação da massa de contaminante absorvida por vaso, obtida como

soma dos produtos da biomassa pela concentração na massa seca por

compartimento (parte aérea e raiz).

Figura 3.2:Modelagem do sistema solo-planta em presença de contaminantes

3.1.3. Escolha do código computacional

3.1.3.1 HYDRUS-1D

Foi escolhido o código computacional HYDRUS-1D (ŠIMŮNEK et al., 2008) pelo

seguintes motivos:

48

Fração

biodisponivel

contaminação

percolado

Transpiraçãopotencial

Transpiraçãopotencial

Transporte do contaminante

no solo

Transporte do contaminante

no solo

Fração extraída

ou imobilizada

Condições climatológicas

Absorção ativa de contaminantes

Absorção ativa de contaminantes

- Absorção de água- Absorção passiva de contaminantes

- Absorção de água- Absorção passiva de contaminantes

Fluxo hídrico no solo

Fluxo hídrico no solo

0 100 200 300

0

10

20

30

metal biodisponiv el

Met

al e

xtra

ido

0

0,4

0,8

sucção

α

Page 71: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

• versatilidade e presença de vários modelos hidráulicos e de transporte

(possibilidade de incluir diferentes camadas do solo com inclinação,

evaporação do solo, transpiração das plantas, e transporte de solutos);

• código aberto e escrito em FORTRAN para a versão 1D;

• literatura extensa relativas a um amplo leque de aplicações como absorção

de água (SCHLEGEL et al., 2004; DE SILVA et al., 2008; JAVAUX et al.,

2008; SOMMER et al., 2003), e transporte de contaminantes no solo (entre

outros, PERSICANI, 1995; SEUNTJENS, 2002).

O modelo HYDRUS usa o método dos elementos finitos lineares de tipo Galerkin

para a discretização espacial e o método de diferenças finitas para a discretização

temporal da equação de Richards (fluxos variavelmente saturados). Para o transporte

de solutos, HYDRUS se baseia na resolução da equação de advecção-dispersão

mediante elementos finitos.

A versão 1D também incorpora o modulo UNSATCHEM que pode simular o

transporte de dióxido de carbono, a química dos íons principais, a troca de cátions, a

dissolução-precipitação (instantânea e cinética). Além disso, o HYDRUS-1D foi

integrado com PHREEQC formando o pacote HP1 que tem maiores potencialidades

na área da geoquímica como a possibilidade de simular: complexação aquosa,

reações redox, troca iônica (Galnes-Thomas), modelo de complexação de superfície

(difuso de camada dupla e não eletrostático), precipitação / dissolução, cinética

química, reações biológicas.

3.1.3.2 Principais hipóteses da modelagem

Destaca-se que todos os resultados produzidos pelo HYDRUS-1D, relativos a

massa de contaminante, são referidos à unidade de superfície do solo. Como a

presente pesquisa foi realizada na escala da planta, surgiu o problema de qual área

fosse representativa por uma planta. Então foi escolhida a área do vaso.

Nas simulações não foi considerado:

• crescimento / redução da biomassa da planta por falta de micronutrientes

ou efeito tóxico;

• compartimentação do metal absorvido entre parte aérea e raízes;

• competição entre metais na sorção no solo e na absorção pelas raízes;

• efeito da temperatura sobre o fluxo.

49

Page 72: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3.1.3.3 Domínio de cálculo

Devido à simplicidade e a simetria geométrica do domínio do cálculo (vaso),

optou-se por uma modelagem monodimensional.

O vaso tem um diâmetro médio de 15,9 cm e uma altura de 10 cm. Foi escolhido

utilizar 50 elementos que foi considerado um nível de discretização adequado para um

domínio desse tamanho. Se considerou um único tipo de solo com uma distribuição de

raízes constante ao longo de todo o perfil.

3.2. Calibração

Na fase de calibração, foram escolhidos os submodelos e relativos parâmetros:

fluxo de água, transporte de contaminante e absorção pelas raízes.

3.2.1. Fluxo de água e propriedades hidráulicas do solo

O objetivo da fase de calibração do fluxo foi a reprodução, da melhor forma

possível, das condições experimentais nos vasos (TAVARES, 2009) caraterizadas por:

• umidade média entre 70% e 100% da capacidade de campo do solo,

• ausência de percolação;

em função de dados de:

• irrigação;

• valores diários de temperatura, umidade do ar, radiação solar e vento na

casa de vegetação;

conseguida através da:

• escolha e ajuste do modelo hidráulico;

• determinação das condições de contorno e iniciais.

3.2.1.1 Determinação do modelo hidráulico e seus parâmetros

Os dados considerados para determinação das propriedade hidráulicas do solo

foram a classificação textural e a densidade aparente. Foi utilizado o modelo hidráulico

50

Page 73: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Van Genuchten – Mualem (VAN GENUCHTEN, 1980) com parâmetros estimados

mediante funções de pedotransferência.

ROSETTA é um código computacional que implementa funções de pedotransferência

para estimar propriedades hidráulicas do solo a partir de dados como classe textural e

densidade. ROSETTA pode ser usado para estimar as seguintes propriedades:

• parâmetros de retenção de água de acordo com VAN GENUCHTEN (1980);

• Condutividade hidráulica saturada;

• Condutividade hidráulica insaturada parâmetros de acordo com o modelo de

Van Genuchten – Mualem (VAN GENUCHTEN, 1980);

ROSETTA oferece cinco funções de pedotransferência que permitem a previsão

das propriedades hidráulicas dependendo dos dados de entrada:

• classe textural;

• percentagens de areia, silte e argila;

• percentagens de areia, silte, argila e densidade;

• percentagens de areia, silte, argila e um ponto de retenção de água a 33

kPa;

• percentagens de areia, silte, argila, dois pontos de retenção de água a 33

e 1500 kPa.

O primeiro modelo é baseado em uma Tabela que fornece a média de parâmetros

hidráulicos para cada classe de solo da USDA. Os outros quatro modelos são

baseados em análises de redes neurais e fornecem previsões mais precisas quanto

mais variáveis de entrada são usados (SCHAAP et al., 1999).

Do outro lado, TOMASELLA et al. (1998) e TOMASELLA et al. (2003) elaboram

funções de pedotransferência (PTF) específicas para os solos tropicais (caraterizados

por elevados teores de matéria orgânica, óxidos de Ferro e Alumínio). Essas funções,

implementadas no código computacional calcPTF (disponível em

http://www.ars.usda.gov/ba/anri/emfsl/calcptf) fornecem os parâmetros de modelo Van

Genuchten – Mualem em função da distribuição granulométrica e do teor de matéria

orgânica.

51

Page 74: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3.2.1.2 Condições de contorno

No topo do perfil, foi colocada uma condição variável no tempo correspondente

aos fluxos de evaporação e de irrigação. O efeito da transpiração estende-se a toda a

rizosfera. A evaporação e a transpiração foram calculadas com base na

evapotranspiração potencial do Vetiver (ETc) que pode ser calculada com as

metodologias abaixo descritas.

Cálculo direto da ET c de Penmann-Monteith

A evapotranspiração potencial ETc é determinada através da fórmula (2.19). O

código computacional HYDRUS pode fazer esse cálculo recebendo como dados de

entrada: a radiação solar efetiva, a temperatura máxima e mínima e os valores médios

de vento e umidade. Além desses dados, é necessária a altura da planta, o índice de

área foliar (LAI) e a fração de superfície coberta por vegetação (SCF).

Cálculo da ET c pela evapotranspiração de referência ET0 e do fator de cultura kc

A evapotranspiração de referência ET0 é determinada através da equação (2.24) e

sucessivamente pode ser calculada a ETc através da (2.25) em função do coeficiente

kc.

Nenhuma das condições ao contorno geralmente usadas se adapta ao fundo do

vaso. Os vasos são furados permitindo a percolação da água, que é coletada no prato

do vaso. Assim que parte da água coletada é sujeita a evaporação e parte é

reabsorvida no vaso. As duas condições que melhor representam esta situação são a

superfície de escoamento e fluxo zero. Na primeira, a água que percola do vaso (ao

atingir a saturação) é perdida. Na segunda, a água que percolaria é acumulada no

fundo do vaso que terá condições de umidade maior do que no caso precedente.

No capítulo sucessivo será realizada uma analise de sensibilidade para evidenciar

os efeitos das duas condições citadas sobre o fluxo de água. A expetativa é que,

devido às condições experimentais que visam minimizar a percolação, as diferenças

sejam minimas.

3.2.1.3 Condição inicial

Como condição inicial foi considerada uma umidade do solo correspondente a

85% da capacidade de campo do solo, valor médio nos ensaios.

52

Page 75: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

3.2.1.4 Absorção de água pelas raízes em HYDRUS

Em HYDRUS a absorção de água é calculada mediante uma abordagem

macroscópica, finalizada à determinação do termo s na equação de Richards (2.6).

Este termo é calculado com a equação (2.32) mediante a multiplicação com a função

de resposta ao estresse α, que reduz a absorção de água em função do estresse

devido às condições de umidade e de salinidade. Como evidenciado na Figura 3.3 é

implementado o mecanismo da compensação, regulado pelo valor crítico do índice de

estresse hídrico ωc ou fator de adaptabilidade das raízes.

Neste estudo foram utilizados funções de estresse de Feddes com parâmetros da

literatura. Na fase de calibração não foi necessário aplicar o mecanismo de

compensação porque as plantas não foram sujeita à estresse.

Figura 3.3: Modelos de absorção de água em HYDRUS- (Tp, Ta, Tac – absorção potencial, realnão -compensada, e real compensada; α – função estresse hídrico; ωc – índice crítico de

estresse hídrico). Fonte: ŠIMŮNEK & HOPMANS (2009)

3.2.2. Transportes de contaminantes

Para descrever o transporte de solutos, HYDRUS utiliza a equação de advecção-

dispersão (2.13), cujos parâmetros podem ser determinados através do conhecimento

das isotermas de absorção do soluto no solo. Nesta pesquisa, a equação teve uma

forma de resolução de equilíbrio, ou seja, não foram considerados efeitos da cinética

do ponto de vista físico e químico.

3.2.2.1 Condições iniciais e de contorno

Como condição inicial relativa ao transporte de contaminante, foi considerada uma

distribuição uniforme no vaso de acordo com os valores dos ensaios.

53

Absorção potencial de água pelas raízes (Tp)

α=1

sem estresse (Ta = Tp) com estresse (Ta < Tp)

ωc=1

não compensado (Ta < Tp) compensado (Ta < Tac = Tp)

sim

sim

não

não

Page 76: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

A condição de contorno no topo do perfil foi do terceiro tipo (Cauchy) sendo

relativa ao fluxo de solutos. Esse foi considerado nulo porque se supõe que a irrigação

não carregue contaminante. No fundo, a condição pode ser de gradiente de

concertação zero ou, devido à ausência de fluxo de percolação, fluxo zero.

3.2.2.2 Determinação dos parâmetros das isotermas de absorção

Os coeficientes das isotermas de absorção (vide item 2.1.6.1 ) podem ser

determinados experimentalmente em condição de equilíbrio com ensaios de tipo batch

que não foram conduzidos no caso estudado. Por isso foi necessário utilizar dados da

literatura.

USEPA (2010) revisa um número considerável de ensaios efetuando um estudo

de regressão; SOARES (2004) estuda a sorção de elementos traço em trinta tipos de

solos típicos do estado de São Paulo, também apresentando uma regressão sobre os

resultados apresentados. Dessas duas pesquisas, emerge, em coerência com o

escrito no item 2.1.5. (e na Tabela 2.5), que os fenômenos de sorção no solo são

fortemente influenciados pelas seguintes características:

• pH;

• capacidade de troca catiônica;

• teor de carbono orgânico;

• óxidos de Fe e Mn;

• teor de argila.

Os dados relativos ao solo utilizado nos ensaios não foram suficientes pela

determinação das isotermas através da regressão proposta por SOARES (2004). Além

disso, o solo foi submetido a uma calagem que modificou o pH de 4,9 à 6,4

(TAVARES, 2009) levando sua caraterísticas para fora do campo de validade da

análise de regressão.

Por isso, foi adotada a seguinte metodologia aproximada pelo cálculo do Kd :

1. entre os latossolo analisados por SOARES (2004) foi escolhido um solo A,

definido como o mais próximo do ponto de vista da textura segundo a

minimização desta função:

o j=∑i=1

3

pi⋅ f i , j−f i, e(3.1)

54

Page 77: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

onde oj é a função objetivo a ser minimizada pelo solo j; i=1,2,3 é o índice

relativo às frações de argila, silte, areia; fi,j é o teor de fração i pelo solo j ( e =

solo do ensaio) e pi é o peso relativo da fração i .

No caso apresentado foram escolhidos os seguentes valores dos pesos p1=

0,6; p2 =0,4; p3=0; considerando-se a maior importância da fração de argila e

que os ti são linearmente dependente; portanto é suficiente considerar somente

dois deles;

2. escolha do solo B, entre todos os solos apresentados por SOARES (2004), que

minimiza-se a função:

o j ´=∑i=1

3

pi ´⋅vi , j−vi ,e(3.2)

onde o´j é a função objetivo a ser minimizada pelo solo j; vi,j é o valor da

propriedade pelo solo j ( e = solo do ensaio), i=1,2,3 indica a propriedade,

respectivamente pH, capacidade de troca catiônica [mmolc/kg] e teor de carbono

orgânico [g/kg], com p1= 1,0; p2 =0,05; p3 = 0,04, valores determinados com

base no estudo de SOARES (2004).

3. Escolha dos parâmetros para o solo A e o solo B no estudo de SOARES (2004)

e cálculo da média entre os valores de A e B.

3.2.3. Absorção de solutos pelas raízes

Em HYDRUS, é possível escolher entre o modelo de absorção de solutos pelas

raízes passivo, ativo ou uma combinação dos dois. Com referência ao item 2.3.3.7 , o

modelo passivo assume que a absorção de solutos seja proporcional ao produto do

fluxo de água absorvida pelas raízes e da concentração do soluto dissolvido na água.

É possível introduzir na equação (2.36) o valor máximo da concentração cmax [ML-3]

que representa o limite pela absorção passiva sendo:

pa(x, t) = s(x, t) min [c(x, t), cmax] (3.3)

Num domínio unidimensional vale

ra(x, t) = pa(x, t) + aa(x, t) (3.4)

onde ra, pa e aa são as taxas de absorção de solutos reais respectivamente total,

passiva e ativa [ML-3T-1]

55

Page 78: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Em termos de valores integrais (no domínio da rizosfera), considerando Ra, Pa e Aa

os valores reais da absorção de solutos respectivamente total, passiva e ativa [ML-2T-

1], é valida a equação:

Ra(t) = Pa(t) + Aa(t) (3.5)

Todos os solutos dissolvidos em água são absorvidos em forma passiva pelas

raízes quando cmax é maior que a concentração em solução c. Analogamente nenhum

solutos é absorvido em forma passiva quando cmax é igual a zero; neste caso, a

absorção, se presente, é completamente ativa (Figura 3.4). Por isso, cmax é o

parâmetro que controla a proporção relativa entre absorção passiva e absorção total.

Figura 3.4: Modelos de absorção de solutos em HYDRUS- Rp absorção potencial de solutos; Pr

absorção passiva real de solutos; Ap, Aa, de Aac absorção ativa de solutos respetivamentepotencial, real não compensada, real compensada, αMM função de resposta ao estresse de

solutos (Michaelis–Menten); π índice de estresse de nutrientes. Fonte: ŠIMŮNEK & HOPMANS (2009)

Usando esta formulação, a absorção de solutos pode variar entre um soluto e um

outro (essencial ou não-essencial). Por exemplo, a absorção passiva de sódio pode

ser excluída pela definição de cmax igual a zero. A absorção passiva de cálcio pode ser

limitada pela definição de um valor finito cmax. A absorção de P e N pode ser

considerada integralmente passiva, através da definição de um valor de cmax muito

elevado. O parâmetro cmax não tem necessariamente um significado fisiológico

(ŠIMŮNEK & HOPMANS, 2009).

56

Absorção potencial de solutos pelas raízes (Rp)

cmax

passivo (Pa = Rp)

αΜΜ=1

sem estresse (Aa = Ap) com estresse (Aa < Ap)

cmax < c

sim não

ativo (Ap = Rp)Passivo + ativo (Pa + Ap = Rp)

πc=1sim não

não compensado (Aa < Ap) compensado (Aa < Aac ≤ Ap)

cmax = 0(0;c)

Page 79: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

A absorção passiva real, Pa [ML-2 T-1], é calculada através da integração da taxa de

absorção de nutrientes, pa,na rizosfera:

Pa t =∫LR

pa x ,tdx=∫LR

sx , tmin[cx , t ,cmax]dx =

=T p t

max[t ,c]∫LR

h ,h , x , tbx ,tmin[cx , t , cmax]dx(3.6)

Considerando Rp, a absorção potencial total de solutos [ML-2T-1], a taxa potencial

de absorção ativa de solutos Ap [ML-2T-1], é calculada a partir de:

Ap(t) = max [Rp(t) − Pa(t), 0] (3.7)

A Ap tem uma formulação coerente com a definição da transpiração potencial e,

como ela, pode ser afetada pelo estresse. Com a equação (3.7), ŠIMŮNEK &

HOPMANS (2009) assumem que o modelo de absorção ativa seja utilizado apenas se

o termo passivo não satisfaz plenamente a absorção potencial total Rp. No entanto, a

absorção passiva pode ser reduzida ou completamente desativada ( cmax = 0),

permitindo assim que a absorção potencial ativa (Ap) seja igual à absorção potencial

total de solutos (Rp). Como consequência da definição de Ap, os valores potenciais

locais de absorção ativa ap [ML-3T-1], são obtidos através da distribuição da absorção

potencial ativa (Ap) na rizosfera, usando a função de distribuição da raiz b (x,t)

introduzida anteriormente no caso da absorção de água na equação (2.31):

ap(x, t) = b(x, t) Ap(t) (3.8)

A cinética de Michaelis–Menten (JUNGK, 1991) permite de calcular os valores

reais da absorção local de solutos de solutos, aa [ML-3T-1], incluindo a dependência da

concentração dos solutos:

aa x , t=cx , t−cmin

K mcx , t−cmin

ap x , t=cx ,t −cmin

K mcx , t−cmin

bx , tApt (3.9)

Na equação (3.9), desenvolvida para reações catalizadas por enzimas, a

quantidade de soluto absorvida cresce ao aumentar da concentração c (x,t) até atingir

um patamar, definido por ap. Km é a constante de Michaelis-Menten [ML-3] que

representa a concentração necessária para que a (3.9) leve a um valor igual a metade

57

Page 80: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

da taxa máxima: este valor depende da dupla planta contaminante. O parametro cmin é

a concentração mínima na solução, necessária para que a absorção ativa tenha efeito

[ML-3].

Finalmente, a absorção real ativa Aa [ML-2T-1] é calculada através da integração da

absorção ativa real local aa na rizosfera, em analogia com o caso da absorção não

compensada de água na equação (2.33):

Aa t =∫LR

aa x , tdx=Apt ∫LR

cx , t−cmin

K mc x , t−cmin

bx ,tdx(3.10)

58

Page 81: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4. CALIBRAÇÃO DOS

PARÂMETROS PARA

MODELAGEM DE ENSAIO

EM VASOS

Apresentam-se, neste capítulo, os resultados da fase de calibração relativa aos

dados dos experimentos na casa da vegetação da EMBRAPA Solos de Rio de Janeiro

entre o 25/11/2008 e o 26/1/2009. Neste estudo os valores de referência são as

quantidades de metal acumulado na biomassa seca ao variar o nível de contaminação.

4.1. Analise dos dados experimentais

TAVARES (2009) analisou o poder fitoremediador do Vetiver na presença de

quatro íons metálicos (Ni2+, Pb2+, Cd2+ e Zn2+) em quatro níveis de concentração (Tabela

4.1) de acordo com a tabela de valores orientadores para solo e água subterrânea da

CETESB (2001), de modo que os níveis fossem equidistantes, visando uma melhor

análise estatística dos resultados e estivessem próximos aos valores de intervenção

agrícola, residencial e industrial, além da inclusão do dobro dos valores de intervenção

industrial.

Tabela 4.1: Níveis de contaminação aplicados nos ensaiosFonte: TAVARES (2009)

Íon Sal Dose 0[mg/kgsolo]

Dose 1[mg/kgsolo]

Dose 2[mg/kgsolo]

Dose 3[mg/kgsolo]

Dose 4[mg/kgsolo]

Ni2+ NiSO4.7H2O 0 35 70 140 280

Pb2+ Pb(NO3)2 0 200 400 800 1600

Cd2+ CdCl2.2½H2O 0 5 10 20 40

Zn2+ ZnSO4.7H2O 0 500 1000 2000 4000

59

Page 82: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Os resultados dos ensaios de TAVARES (2009) foram reorganizados para

identificar o comportamento da sistema planta-solo em relação aos contaminantes.

4.1.1. Comportamento das plantas em presença de con taminantes

4.1.1.1 Efeito sobre o desenvolvimento de biomassa

O exame da biomassa das plantas nos vários níveis de contaminação (Figura 4.1)

evidencia, em geral, uma pequena influência do contaminante em termos de

desenvolvimento da planta nas concentrações estudadas. Somente no caso do zinco

pode-se observar uma diminuição da biomassa: isso indica um efeito de toxicidade

desse elemento sobre o Vetiver. Cabe destacar que as concentrações aplicadas no

caso do zinco foram as maiores entre os quatro elementos e correspondem a mais do

que o dobro do chumbo.

4.1.1.2 Concentração dos contaminantes no tecido da planta

TAVARES (2009) reporta as concentrações de contaminante na massa seca das

plantas submetidas aos diferentes níveis de contaminação (Tabela 4.1), distinguindo

entre raiz e parte aérea. Analisando a Figura 4.2 nota-se a diferente repartição de

contaminante entre raiz e parte aérea, mostrando, geralmente, valores maiores na raiz

(com a exceção do Zn2+) como indicado por TRUONG (2000), DANH et al. (2009) e

SMEAL et al. (2003) no caso do Vetiver. Cabe destacar como o zinco, íon mais móvel

no solo, resultou ser o mais móvel também na planta: ele se concentrou mais na parte

aérea do que nas raízes.

60

Page 83: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.1: Biomassa de capim Vetiver a vários níveis de contaminação (Ni2+, Pb2+, Cd2+, Zn2+).Elaboração de TAVARES (2009)

Esses valores são comparados com o limite de toxicidade determinado por

KABATA-PENDIAS & PENDIAS (2001) considerando vários estudos sobre diferentes

plantas. As concentrações do Zn2+ se situam muito acima dos valores limites e do valor

específico para a Vetiver de 880 mg/Kg determinado por TRUONG (2010): por isso,

tais valores devem ser considerados com a devida cautela.

61

0 50 100 150 200 250 300

0

2

4

6

8

10

12

14

16

parte aérea [g]

raiz [g]Ni no solo [mg/kg]

ma

téri

a s

eca

[g]

0 500 1000 1500 2000

0

2

4

6

8

10

12

14

16

Pb no solo [mg/kg]

0 5 10 15 20 25 30 35 40 45

0

2

4

6

8

10

12

14

16

Cd [mg/kg]

mat

éri

a s

eca

[g]

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

12

14

16

Zn [mg/kg]

Page 84: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.2: Concentrações dos contaminantes (Ni2+, Pb2+, Cd2+, Zn2+) nos tecidos da planta(TAVARES, 2009) comparados com o limite de toxicidade (linha vermelha) de KABATA-

PENDIAS & PENDIAS (2001)

4.1.1.3 Valores totais de contaminantes absorvidos

Para melhor intendimento do sistema solo-planta (ensaio em vaso), é útil uma

análise de regressão das massas de contaminantes extraídas pela planta em função

do nível de contaminação.

Os coeficientes de determinação R2 da regressão foram, na maioria dos casos

(Figuras 4.3 e 4.4), maiores de 0,85 com emprego de funções de regressão lineares,

logarítmicas e potencia xy com 0<y<1.

O comportamento linear (Figura 4.3), como no caso do Ni2+, nas concentrações

estudadas, demonstra uma absorção de contaminante sem efeito de toxicidade: a

planta absorbe uma quantidade de soluto proporcional ao nível de contaminação e á

fração bio-disponível.

62

parte aérea Raiz

0

20

40

60

80

100

120

140

Ni

conc

entr

ação

em

mas

sa s

eca

[mg/

Kg]

parte aérea Raiz

0

50

100

150

200

250

300

350

400

450

500

Pb

parte aérea Raiz

0

10

20

30

40

50

Cd

conc

entr

ação

em

mas

sa s

eca

[mg/

Kg]

parte aérea Raiz

0

2000

4000

6000

8000

10000

12000

14000

16000

Zn

Page 85: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

O zinco manifestou uma regressão linear. Para cádmio e chumbo (figuras 4.4) a

absorção mostra uma saturação que causa um desvio, mais o menos acentuado,

dependendo do caso, da regressão linear, exceto para o chumbo na parte da raiz. As

regressões são resumidas na Tabela 4.2.

Figura 4.3: Metais (Ni2+, Zn2+) absorvidos pelo capim Vetiver. Regressão linear. Elaborado por TAVARES (2009)

63

0 50 100 150 200 250 300

0

200

400

600

800

1000

1200f(x) = 3,47x + 171,77R² = 0,96

f(x) = 1,51x + 136,75R² = 0,87

f(x) = 1,96x + 35,02R² = 0,99

parte aérea [mg]

Regressão linear de parte aérea [mg]

raiz [mg]

Regressão linear de raiz [mg]

soma [mg]

Regressão linear de soma [mg]

Ni no solo [mg/kg]

abs

orv

ido

pe

la p

lan

ta [g

E-6

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

20

40

60

80

100

120

140

160f(x) = 0,04x - 12,56R² = 0,95

f(x) = 0,01x + 0,12R² = 1

f(x) = 0,03x - 12,69R² = 0,93

Zn no solo [mg/kg]

abs

orv

ido

pel

a p

lan

ta [g

E-6

]

Page 86: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.4: Metais (Cd2+, Pb2+) absorvidos pelo capim Vetiver.Elaborado por TAVARES (2009)

Tabela 4.2: Regressão do valor de metal presente nos tecidos da plantaCd2+ Ni2+ Pb2+ Zn2+

regressão Ln (x) x x 0,67 x

R2 0,99 0,96 0,98 0,95

64

0 200 400 600 800 1000 1200 1400 1600 1800

0

500

1000

1500

2000

2500

3000

3500f(x) = 22,43 x^0,67R² = 0,98

f(x) = 0,7 x 1,06R² = 0,97

f(x) = 80,36 x^0,38R² = 0,85

Pb no solo [mg/kg]

abs

orb

ido

pe

la p

lant

a [g

E-6

]

0 5 10 15 20 25 30 35 40 45

0

50

100

150

200

250

300

f(x) = 67,32 ln(x) + 19,72R² = 1

f(x) = 59,73 ln(x) - 4,91R² = 0,98

f(x) = 7,58 ln(x) + 24,63R² = 0,63

parte aérea [mg]

Regressão logarítmica de parte aérea [mg]

raiz [mg]

Regressão logarítmica de raiz [mg]

soma [mg]

Regressão logarítmica de soma [mg]

Cd no solo [mg/kg]

abs

orv

ido

pe

la p

lan

ta [g

E-6

]

Page 87: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.2. Calibração do fluxo de água

4.2.1. Propriedades dos solo

Com a finalidade de determinar os parâmetros do modelo relativo às propriedades

do solo, foram evidenciadas (Tabela 4.3) as variáveis de interesse como indicadas por

TAVARES (2009) relativas ao latossolo vermelho amarelo distrófico argissólico

utilizado nos ensaios; de acordo com a classificação USDA, esse solo corresponde a

uma classe textural argilosa.

Tabela 4.3: Caraterísticas do latossolo vermelho amarelo distrófico argissólico usado nacultivação de mudas de Vetiver.

Fonte:TAVARES (2009)atributo valor

Densidade aparente [g/cm3] 1,46

Argila 66%

Silte 7%

Areia 27%

A determinação dos parâmetros de modelo hidráulico Van Genuchten – Mualem

(VAN GENUCHTEN, 1980) pode ser feita através do código computacional ROSETTA

fornecendo como dados de entrada, a distribuição granulométrica (argila, silte, areia) e

a densidade aparente ou através de calcPTF (com PTF desenvolvidas por

TOMASELLA et al., 2003) em função da textura e do teor de matéria orgânica (Tabela

4.4).

Tabela 4.4: Parâmetros calculados mediante diferentes funções de pedotransferênciapropriedade ROSETTA TOMASELLA et al. (2003)

θr 0,100 0,255

θs 0,455 0,509

α [cm-1] 0,0224 0,0188

n 1,20 1,33

Ks [cm/dia] 11,32 -

65

Page 88: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

ROSETTA TOMASELLA et al. (2003)

Figura 4.5: Comparação da curva de retenção modelada com diferentes PTF

Na Figura 4.5, são comparadas as curvas de retenção com parâmetros

produzidos pelas dois códigos computacionais. Nota-se um comportamento parecido

das curvas, sendo que os parâmetros produzidos por calcPTF (TOMASELLA et al.,

2003) descrevem um solo com uma maior quantidade de umidade retida.

Entre os valores fornecidos por ROSETTA e calcPTF, (TOMASELLA et al., 2003)

foram preferidos aqueles calculados pelo segundo, porque são específicos aos solos

brasileiros; somente o valor da condutividade hidráulica saturada Ks foi determinada

pelo modulo ROSETTA.

4.2.2. Parâmetros do modelo de estresse hídrico de Feddes

Os parâmetros do modelo de Feddes (FEDDES et al., 1978) de estresse hídrico foram

extraídos do arquivo de WESSELING (1991) relativos ao trigo, planta pertencente as

gramíneas, a mesma família do Vetiver (Tabela 4.5).

Tabela 4.5: Parâmetros do modelos de estresse hídrico de Feddes adotados pelo Vetiver(valores da Figura 2.6)

Parâmetro Valor [cm]

h1 0

h2 -500

h3 -900

h4 -16000

66

0.2

0.3

0.4

0.5

0.6

0.1 1 10 100 1000 1000010000

|h| [cm]

0.2

0.3

0.4

0.5

0.6

0.1 1 10 100 1000 1000010000

|h| [cm]

Page 89: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.2.3. Condições de contorno

4.2.3.1 Condição no fundo do domínio de cálculo

A condição de contorno no fundo, utilizada como referência, é de superfície de

escoamento sendo que, a diferença da fluxo zero, permite registrar mais claramente

(em forma de percolado) a água em que sairia no vaso em condições experimentais.

4.2.3.2 Determinação da evapotranspiração

Os dados meteorológicos disponibilizados são relativos a somente trinta dias. O

ensaio na casa da vegetação é de sessenta dias. Por isso, os dados foram repetidos

para se ter a cobertura do período inteiro.

A falta de estudos confiáveis sobre o parâmetro kc pelo capim Vetiver condicionou

a escolha da metodologia pela determinação da evapotranspiração potencial ETc que

foi calculada diretamente com a equação (2.24), no item 3.2.1.2 .

4.2.3.3 Determinação da evaporação e da transpiração

Para efetuar a repartição do valor total da evapotranspiração em evaporação e

transpiração, é necessário o uso das equações (2.27).

Por conseguinte, foi preciso determinar o índice de área foliar (LAI). A equação

(2.28) resultou ser fora do seu campo de validade porque as plantas atingiram uma

altura aproximada de 35 a 45 cm (devido às diferenças morfológicas de cada planta).

No entanto, é interessante observar que, em gramíneas (como o Vetiver), existe uma

correlação linear entre a altura da planta e o LAI, conforme estudo por

KARUNARATNE et al. (2003) sobre Phragmites australis (valor máximo 4,9 por um

altura de 2,25 m).

A outra possibilidade de cálculo através da equação (2.29) tem a desvantagem de

requerer outros dois parâmetros difíceis de achar na literatura sobre o Vetiver.

Destaca-se como o SCF seja um valor que bem se adapta ao estudo na escala de

campo podendo ser determinado por sensoriamento remoto. SHARMA et al. (2003),

no estudo de uma mistura de vegetação com várias gramíneas, que inclui também o

Vetiver, obtiveram valores máximos de 5,10. Num estudo em campo específico sobre

o Vetiver, SMEAL et al. (2003) obtiveram um valor de LAI de 14 para uma altura de 1,7

67

Page 90: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

m. Esse ultimo valor foi considerado como não adequado para a presente pesquisa,

que foi feita em vaso.

No estudo numérico (vide valores de entrada no item 8.2.4. ), foi interpolado o

valor de LAI baseado em SMEAL et al. (2003) considerando uma altura de 40 cm . O

valor correspondente foi de 3,11. Para analisar a sensibilidade a esse parâmetro,

foram realizados, também, cálculos com valores de 2, 5 e 6 para determinar seus

efeitos sobre a repartição das frações de umidade transpirada (ou seja absorbida

pelas raízes), evaporada, e percolada. A Figura 4.6 mostra a relação entre LAI e

transpiração total durante o período do experimento. Com o aumento do LAI, houve

uma taxa de crescimento sempre menor da fração transpirada até chegar a um

patamar aproximado de12 cm de transpiração.

Figura 4.6: Efeito do LAI sobre a transpiração

A Figura 4.7 mostra claramente o efeito do LAI sobre a repartição entre

evaporação potencial e transpiração potencial (para LAI=3,11 é Ep ~ 20%, para LAI = 5

é Ep < 10%). O LAI é parâmetro representativo da cobertura foliar, e, a coberturas

foliares maiores, correspondem maiores taxas relativas de transpiração. As equações

(2.27) evidenciam que o k [-], parâmetro de extinção de radiação, também tem o

mesmo efeito sobre a repartição entre transpiração e evaporação. Porém o significado

físico dele é outro, sendo função do ângulo do sol, da distribuição das plantas e do

arranjo de folhas (entre 0,45-0,75). No caso apresentado, foi escolhido o valor de

referência de 0,463.

68

0 1 2 3 4 5 6 7

0

2

4

6

8

10

12

14

LAI [-]

tran

sp

iraçã

o to

tal [

cm]

Page 91: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)
Page 92: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

pelas condições climatológicas estudadas. Foi escolhido um turno de rega de dois dias

para estabilizar as condições do umidade do solo. No ensaio, o intervalo foi mais

irregular com uma média de turno de rega de três dias. Os valores de irrigação na

simulação foram determinados com base da umidade do solo, e tiveram 5 níveis

padronizados 2,5 – 3,75 – 5 – 6,25 mm/d (Tabela 8.4).

A irrigação modificada provocou uma limitada oscilação (± 6%) da umidade média

(Figura 4.9) do solo e uma percolação não significativa (média de 0,001 cm/dia). O

volume total da irrigação foi levemente modificado, passando de 2,999 dm3 a 2,854

dm3. Cabe destacar que a absorção total potencial coincidiu com a real. Isso significa

que a planta nunca se encontrou em situação de estresse.

Figura 4.8: Evapotranspiração potencial, irrigação original e modificada, relativa a cultivação docapim Vetiver na casa de vegetação da EMBRAPA Solos de Rio de Janeiro

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

0

1

2

3

4

5

6

7

8

9

10

0

0,5

1

1,5

2

2,5

3

3,5

4

Irr_modif

Irr_origin

ETdia

Irrig

açã

o [m

m]

Eva

potr

ans

pir

açã

o [m

m/d

]

Page 93: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.9: Volume de água armazenada no solo no caso da irrigação modificada

4.2.3.5 Variações diárias das condições meteorológicas

O código computacional HYDRUS tem a possibilidade de gerar variações

senoidais ao longo do dia para dados meteorológicos como temperatura, vento,

umidade e radiação solar com o objetivo de simular o ciclo diário. Foi realizada uma

simulação com essa opção que foi comparada com o caso com valores constantes

diários; foi feita uma comparação em termos de fluxos de água na qual não foram

registradas variações relevantes (Tabela 4.7). A mesma opção pode, também, ser

aplicada à precipitação. No caso estudado, a opção tradicional foi a mais indicada

devido a irrigação ser artificial .

Tabela 4.7:Efeito de condições meteorológicas medias por dia ou instantâneas (calculadas porHYDRUS) com lei senoidal com base nos valores médios

4.2.4. Influência dos parâmetros hidráulicos sobre o processo de

calibração

Das propriedades hidráulicas depende o fluxo no perfil, elemento responsável pela

advecção nos fenômenos de transporte de solutos. Por isso, elas têm um peso

relevante no processo de calibração.

71

media diaria 10,980 0,060 3,410valor instantaneo 10,858 0,127 3,371

1,11% -0,61% 0,36%

Absorção de água [cm]

percolação [cm]

evaporação [cm]

variação relativa à absorção de água pelas raizes

3.15

3.20

3.25

3.30

3.35

3.40

3.45

3.50

3.55

0 10 20 30 40 50 60

Time [days]

água

no

perfi

l [cm

]

dia

Page 94: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Frente ao fato de que os parâmetros do modelo hidráulico não foram

determinados mediante ensaios, mas estimados com funções de pedo-transferência,

foram conduzidas análises de sensibilidade para avaliar em que medida eles

influenciam os fluxos hídricos, valores fundamentais nessa fase da calibração.

4.2.4.1 Parâmetros de retenção

Cálculos comparativos, com as mesmas condições iniciais e de contorno,

mostraram que a quantidade cumulativa de água extraída pelas raízes e a evaporação

não mudaram ao substituir a curva de retenção modelada pelo calcPTF com aquela

modelada pelo ROSETTA (vide item 4.2.1. ). No entanto, da Figura 4.10 nota-se que

os dois modelos levaram a diferentes condições de umidade do solo. Devido às

diferentes curvas de retenção, o modelo de TOMASELLA et al. (2003) produziu

valores de umidade no solo maiores do modelo de ROSETTA. Alem disso, no primeiro

caso, o solo mostrou um comportamento mais uniforme ao longo do vaso. No segundo

caso, as variações de umidade no fundo do vaso foram muito limitadas.

ROSETTA TOMASELLA et al. (2003)

Figura 4.10: Comparação da umidade do solo modelada com diferentes PTF

4.2.4.2 Condutividade hidráulica saturada

Analogamente aos parâmetros de retenção, foi realizada uma análise de

sensibilidade relativo à condutividade hidráulica saturada. Foram escolhidos valores de

Ks de 1 e de 100 cm/dia e comparados com o valor base de 11,32 cm/dia.

72

0.3

0.33

0.36

0.39

0.42

0.45

0 2 4 6 8 10

dias

0.3

0.33

0.36

0.39

0.42

0.45

0 2 4 6 8 10

dias

topo

raízes

f undo

Page 95: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

A Tabela 4.8 apresenta os resultados cumulativos dos fluxos. É evidente como

grandes diferenças em termos de condutividade hidráulica levaram a variações muito

limitadas de água absorvida pelas raízes em função da percolação.

Tabela 4.8: Fluxos cumulativos nos casos de diferentes valores da condutividade hidráulicasaturada

Esse resultado foi devido às particulares condições hídricas do vaso.

4.2.4.3 Efeito da condição de contorno no fundo do perfil

Como analisado no paragrafo 3.2.1.2 , é também admissível no fundo do vaso a

condição de contorno de fluxo zero. Foi testada esta condição que não alterou o valor

cumulativo do fluxo de absorção pelas raízes e de evaporação.

4.2.5. Considerações finais sobre a calibração do f luxo de água

Os cálculos mostraram que os valores que descrevem a condição hidráulica do

solo apresentam uma variação cíclica relacionada à periodicidade de irrigação.

Na Figura 4.11 foram analisados a umidade e o fluxo de água nos dias 3, 5, 6 e 8

do ensaio, considerados como representativos de diferentes condições físicas do solo;

nos dias 3 e 5, a umidade do solo foi alta e a condição de fluxo foi de percolação ao

longo do perfil. O gradiente de velocidade do perfil levou a valores pontuais nulos no

fundo, por causa da absorção das raízes que reduz progressivamente o fluxo de água.

Isto aconteceu em todas as condições de umidade no período de análise.

Nos sexto e oitavo dia, a umidade foi baixa e as velocidades foram muito

menores; a parte superior do perfil que apresentou um fluxo ascendente movido pelos

altos valores da sucção na superfície.

73

1,00 10,666 0,000 3,41011,32 10,980 0,139 3,410100,00 10,972 0,371 3,411

Ks [cm/dia]Absorção de

água [cm]percolação

[cm]evaporação

[cm]

Page 96: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

a)

b)

Figura 4.11: Velocidade de percolação (a), umidade (b) nos primeiros 10 dias do ensaio novaso.

74

-10

-8

-6

-4

-2

0

0.30 0.32 0.34 0.36 0.38 0.40 0.42

Theta [-]

T0

T3

T5

T6

T8

-10

-8

-6

-4

-2

0

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

v [cm/days]

T0

T3

T5

T6

T8

θ

v [cm/dia]

prof

undi

dade

[cm

]pr

ofun

dida

de [

cm]

Page 97: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.3. Parâmetros relativos ao transporte dos contami nantes no

solo

O objetivo do estudo, neste capítulo, foi calibrar o modelo de transporte de

contaminante.

4.3.1. Calibração utilizando a isoterma linear

No modelo linear, o coeficiente de distribuição (Kd) é o parâmetro que sintetiza o

complexo comportamento de uma substância no solo sendo a razão entre metal

sorvido e metal na solução. Essa relação representa uma complexa rede de

fenômenos físicos e químicos; por isso o Kd é fortemente influenciado por diferentes

fatores, primordialmente o pH do solo e a concentração.

Os valores de Kd, utilizados nos cálculos, são deduzidos de SOARES (2004)

segundo a metologia apresentada no item 3.2.2.2 . Do ponto de vista textural (Tabela

8.5) minimizando a equação (3.1), foi identificado o Latossolo Vermelho (LV-2)

coletado em Piracicaba (SP). Do ponto de vista químico (equação 3.2, com

propriedade na Tabela 8.6) foi identificado o Argissolo Vermelho (PV-1) coletado na

região de Marília (SP).

De acordo com o estudo de SOARES (2004), os valores do coeficiente de

distribuição (Kd) para esses dois tipos de solos resultaram ser relativamente próximos

frente às variações desse parâmetro específico para os metais. Os valores adotados

foram uma média aritmética relativa aos dois solos escolhidos.

Tabela 4.9:Determinação dos valores do coeficiente de distribuição (Kd) para o solo utilizado nacultivação do Vetiver.

Elaboração de SOARES (2004)Contaminante

Solo Kd para o Ni 2+

[cm3/g]Kd para o Pb 2+

[cm3/g]Kd para o Cd 2+

[cm3/g]Kd para o Zn 2+

[cm3/g]

Latossolo Vermelho (LV-2) 101 1495 140 66

Argissolo Vermelho (PV-1) 35 733 39 35

Latossolo Vermelho (ensaio) 68 1114 89,5 50,5

75

Page 98: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.3.2. Calibração utilizando a isoterma de Freundli ch

Para determinar a isoterma de Freundlich foi necessário determinar os relativos

parâmetros Kf [cm3/g] e n [-]. Esses valores são apresentados na Tabela 4.10 para os

solos escolhidos na simulação proposta.

Tabela 4.10:Parâmetros do modelo de Freundlich (n e Kf) para os metais estudados em doistipos de solo

Fonte SOARES (2004)Contaminante

Solo Ni2+ Pb2+ Cd2+ Zn2+

K f n K f n K f n K f n

Latossolo Vermelho (LV-2) 351 0,75 2524 0,84 378 0,69 2506 0,36

Argissolo Vermelho (PV-1) 90 0,87 1394 0,86 274 0,58 74 0,9

4.3.2.1 Determinação das concentrações na fase líquida a partir da concentração

total

TAVARES (2009) forneceu o nível de contaminação em termos de concentração

total de contaminante relativa a massa do solo; desse valor, deduziu-se a

concentração total volumétrica, cT.

No caso de absorção não-linear, o código computacional HYDRUS requer a

inserção dos dados da concentração da fase líquida c, como condição inicial. Para

determinar esse valor, utiliza-se a equação (2.1). Aplicando o modelo de absorção de

Freundlich, no instante inicial obtém-se:

cT0−0⋅c0−⋅K f⋅c0n=0 (4.1)

A equação (4.1) é não-linear e foi resolvida para variável c0, que representa a

concentração inicial na fase líquida. Os resultados são apresentados em forma gráfica

na Figura 4.12. As curvas isotermas não-lineares foram comparadas com as curvas

lineares determinadas no item 4.3.1. Excluindo o zinco, os dados relativos ao

Latossolo Vermelho foram aqueles que se aproximaram mais à isoterma linear.

76

Page 99: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.12: Curvas isotermas de sorção de Freundlich modeladas com os coeficientespropostos por SOARES, 2004 (Tabela 4.10) para o Latossolo Vermelho (LV, tom claro), para o

Argissolo Vermelho (PV, tom escuro) e no caso de sorção linear (linha fina).

77

0 50000 100000 150000 200000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

linear-média

LV

PV

Zn em solução [gE-6/dm^3]

Zn

na

fas

e s

ólid

a [m

g/d

m^3

]

0 500 1000 1500 2000 2500

0

20

40

60

80

100

120

140

160

linear-média

LV

PV

Ni em solução [gE-6/dm^3]

Ni n

a fa

se s

ólid

a [m

g/d

m^3

]

0 50 100 150 200 250 300

0

5

10

15

20

25

linear-média

LV

PV

Cd em solução [gE-6/dm^3]

Cd

na

fas

e s

ólid

a [m

g/d

m^3

]

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

900

linear-média

LV

PV

Pb em solução [gE-6/dm^3]

Pb

na

fas

e s

ólid

a [m

g/d

m^3

]

Page 100: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.4. Calibração da absorção dos contaminantes pelas raízes

4.4.1. Modelo de absorção passiva

Foi realizada uma comparação dos valores experimentais com os resultados dos

cálculos com o HYDRUS utilizando o modelo de absorção passivo. Com a hipótese de

sorção linear na fase sólida do solo, a quantidade de metal absorvida pelas raízes é

proporcional à quantidade total de contaminante no solo e ao fluxo de transpiração.

Esta abordagem é válida desde que o metal, em suas várias formas químicas, não

iniba os processos metabólicos de plantas.

Como é possível inferir de Tabela 2.8 (p. 36), entre os metais examinados,

somente o Pb2+ é absorvido pelas plantas de forma completamente passiva; nos

outros casos se observa uma validade simultânea dos dois modelos.

a) b)

c) d)

Figura 4.13: Modelo de absorção passiva (isoterma linear) e dados experimentais

78

R2=0,8526

R2=0,7435

0 50 100 150 200 250 300

0

2

4

6

8

10

Hydrus

casa vegetação

Ni total [mg/kg]

Ni a

ds

orv

ido

[mg

]

0 500 1000 1500 2000

0

0,5

1

1,5

2

2,5

3

3,5

Pb total [mg/Kg]

Pb

ab

sor

vido

[mg

]

0 5 10 15 20 25 30 35 40 45

0

0,2

0,4

0,6

0,8

1

1,2

Cd total [mg/kg]

Cd

ab

so

rvid

o [m

g]

0 1000 2000 3000 4000 5000

0

50

100

150

200

Zn total [mg/kg]

Zn

ab

sorv

ido

[mg

]

Page 101: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Os resultados numéricos (Figura 4.13) apresentaram uma boa concordância com

os dados experimentais para Pb2+ e Zn2+ (R2 igual respectivamente a 0,8526 e a

0,7435). No entanto, os resultados numéricos para Ni2+ e Cd2+ superestimaram (até

oito vezes) o valor observado de metal absorvido pela planta no experimento.

A absorção de chumbo no ensaio foi maior do que o valor calculado pelo

HYDRUS para concentrações baixas. Entretanto, para concentrações maiores, os

resultados se aproximaram aos valores experimentais.

A absorção passiva no caso do zinco apresentou um substancial acordo com o

comportamento linear. Ao contrário do chumbo, o zinco em concentrações baixas foi

absorvido com uma taxa menor do que a linear. Para concentrações maiores, a taxa

de absorção aumentou. Esse comportamento pode ser explicado como uma saturação

de absorção do metal na fase sólida, que, ao ser ultrapassada pelo crescente nível de

contaminação, provocou um aumento mais do que proporcional do metal em solução

(absorção não-linear).

Níquel e cádmio, mostraram comportamentos diferentes dos demais. A

quantidade do Ni2+ absorvida nos ensaios (Figura 4.3) foi proporcional ao nível de

contaminação (coeficiente de determinação da regressão linear é de 0,96),

determinando uma reta cujo coeficiente angular difere muito daquele dos resultados

numéricos. O cádmio, por sua vez, foi inicialmente absorvido pela planta com

comportamento linear, de acordo com os cálculos, para depois se afastar da

linearidade e tender a um patamar.

Em ambos os casos detectou-se um mecanismo de absorção seletiva de níquel e

cádmio (KABATA-PENDIAS & PENDIAS, 2001). No caso do Ni2+, atuou

proporcionalmente à concentração; para o Cd2+, apareceu em concentrações altas. Os

dois comportamentos foram ajustados mediante o modelo ativo com a cinética de

Michaelis-Menten, excluindo o uso do modelo passivo.

4.4.1.1 Calibração mediante concentração limite para absorção

A absorção de Cd2+ tende a um patamar como pode ser notado da Figura 4.13 c).

Analisando os dados experimentais, foi possível afirmar que os últimos três pontos

podem ser bem representados por um valor de 0,22 mg, que corresponde a um fluxo

de contaminante de 1,8467E-5 mg·cm-2·dia-1. No modelo passivo, este fluxo verifica-se

79

Page 102: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

com uma concentração média de 1,009 mg·cm-3 de Cd2+. O presente valor foi utilizado

como limite máximo pela absorção do metal pelas raízes num novo cálculo. Obteve-se

R2 = 0,8942 e o comportamento mostrado na Figura 4.14.

Figura 4.14: Calibração com concentração limite

4.4.1.2 Calibração mediante alteração do coeficiente de distribuição K d

Considerando que os Kd não foram medidos diretamente do solo utilizado nesse

estudo, esses valores podem ser não corretos. Por isso, podem ser admitidas

pequenas variações desse valor para se ter um melhor ajuste das quantidades de

metal absorbido pela planta.

Os valores de Zn2+ absorvidos pelo Vetiver, ao variar do nível de contaminação,

mostraram uma correlação linear (Figura 4.3). De uma análise qualitativa da Figura

4.13, resulta que a reta que representa os valores simulados tem um coeficiente

angular maior do que a reta de regressão. Através de uma série de simulações com

HYDRUS foi ajustado o valor de Kd com o objetivo de maximizar o R2. Foi determinado

Kd = 60 cm3/g, valor que entra no intervalo proposto por SOARES (2004) pare esse

tipo de solo. Os resultados são apresentados na Figura 4.15. O coeficiente de

determinação foi R2 = 0,9205 (por Kd = 50,5 cm3/g era R2 = 0,7423).

80

0 5 10 15 20 25 30 35 40 45

0

0,05

0,1

0,15

0,2

0,25

0,3

Hydrus

casa vegetação

Cd total [mg/Kg]

Cd

ad

sor

vid

o [m

g]

Page 103: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.15: Efeitos da alteração do Kd sobre absorção passiva

O mesmo processo poderia ser aplicado à contaminação por Ni2+ (comportamento

linear) mas, nesse caso, a diferença entre os valores experimentais e do modelo foi

muito alta, levando a valores de Kd sensivelmente diferentes daqueles de referência.

4.4.1.3 Aplicação do modelo passivo com estresse tóxico

As figuras 4.4 mostram como Cd2+ e Pb2+ foram extraídos pelo Vetiver com

regressões não lineares. Para modelar esse comportamento, foi elaborada uma

extrapolação do conceito de estresse osmótico. Considerando válida a hipótese de

absorção passiva a única possibilidade de redução de absorção de contaminante

(relativamente ao modelo linear) é que a planta gere uma diminuição da captação de

água. É uma situação parecida ao estresse salino (FEDDES e RAATS, 2004). Por isso

foi introduzido o conceito de carga tóxica hπt definida como a carga osmótica

equivalente que causa uma redução do fluxo de água por efeito da toxicidade. Esse

modelo reproduziu o comportamento da absorção do metal, em função do nível de

contaminação, que geralmente ao inicio é linear, tendo um sucessivo afastamento da

linearidade (com uma absorção de metal menor da linear). De uma avaliação

qualitativa da Figura 4.13, o chumbo apresentou um comportamento desse tipo e, ao

mesmo tempo, uma boa aproximação com os valores simulados.

O primeiro passo para essa calibração foi a alteração do valor do Kd (como foi feito

no item 4.4.1.2 ) para se aproximar aos valores correspondentes das primeiras duas

81

0 500 1000 1500 2000 2500 3000 3500 4000

0

20

40

60

80

100

120

140

160

180casa vegetação

hydrus kd=50,5

hydrus kd=60

Zn total [mg/Kg]

Zn

ad

so

rvid

o [m

g]

Page 104: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

doses de contaminante que apresentaram um comportamento linear. Foi determinado

um valor de Kd = 663 cm3/g. Sucessivamente foi calibrado o modelo de estresse aditivo

onde o único parâmetro a ser determinado foi o fator de conversão entre carga

osmótica e concentração do contaminante. O modelo de estresse multiplicativo,

precisando de mais parâmetros, não foi indicado ao caso estudado por carência de

pontos experimentais.

O cálculo da carga osmótica (na formulação aditivo com a carga hidráulica) de

acordo com JURY et al. (2004) e VAN LIER et al. (2006) é determinado através da:

h , i=−Ci onde =RuT

g

(4.2)

onde Ru [J mol–1 K–1] é a constante universal dos gases, T [K] é a temperatura, ρ [kg m-

3] é a densidade da solução do solo e g [m s–2] é a aceleração de gravidade.

No caso estudado, considerando somente o Pb(NO3)2, o valor da hp resultou-se

pouco significativo ao ponto de não influenciar a absorção de água

(µ =414,4 cm4mg–1).

Assim, foi conduzido um ajuste, por estimação, que levou ao valor de µ = 275·104

cm4mg–1; os resultados (vide Tabela 4.11 e Figura 4.16) atingiram um valor de R2 =

0,9841 (no caso, sem calibração, era R2 = 0,8526).

Figura 4.16: Calibração do modelo de absorção passiva com estresse tóxico aditivo (EA) nocaso da contaminação com Pb2+

82

0 200 400 600 800 1000 1200 1400 1600 1800

0

1

2

3

4

5

6

Hydrus kd=1114

casa vegetação

Hydrus kd=663

Hydrus kd=663 EA

Pb total [mg/Kg]

Pb

ad

so

rvid

o [m

g]

Page 105: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Considerando o índice de estresse calculado definido como

ie=T p−Ta

T p

(4.3)

onde Tp e Ta [cm] são as quantidades, respetivamente, potencial e real de água

transpirada pela planta durante o período de cálculo; essas quantidades coincidem

com os respetivos valores de absorção pelas raízes.

Tabela 4.11:Modelo de absorção passiva com estresse hídrico e osmótico, modelo aditivo (EA)no caso da contaminação com Pb2+

Na hipótese de uma correlação direta entre a massa da planta e o volume

transpirado no período de ensaio, a Tabela 4.11 mostra como, especialmente para

valores altos de contaminação, o índice de estresse hídrico apresentou valores não

coerentes com massa seca determinada experimentalmente (Figura 4.1, variações

máximas do 5%). Por causa disso, o modelo de estresse osmótico, apesar de

descrever bem os efeitos sobre a absorção do metal, demostrou não ter bases físicas

para a descrição do fenômeno de absorção do Pb2+.

4.4.2. Modelo de absorção passiva em combinação com modelo de

absorção não linear

O comportamento da concentração na solução em função do nível de

contaminação apresentou-se não linear (Figura 4.12) por causa da saturação

progressiva da fase sólida. O modelo passivo de absorção, que produz resultados

proporcionais à concentração do contaminante em solução, determinou quantidades

de metal absorvido pela planta superiores em comparação ao caso linear. Por esse

motivo, cádmio e níquel foram excluídos dessa análise em função das superestimas

do modelo de sorção linear.

O modelo não-linear no caso do chumbo e do zinco forneceu respostas

controversas em relação ao comportamento experimental. Para o Pb2+, os primeiros

quatro pontos da curva (Figura 4.17) mostraram um bom ajuste, mas o ponto

correspondente à concentração máxima foi mal representado. O caso de zinco

apresentou um afastamento da curva experimental para todos os valores.

83

Pb [mg/Kg_solo] 0 200 400 800 1600casa vegetação [mg] 0 0,769 1,212 2,238 2,953Hydrus EA [mg] 0 0,644 1,224 2,172 3,212Indice estresse [-] 0,00% 1,97% 6,86% 17,36% 38,89%

Page 106: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Os modelos não lineares deveriam descrever com maior exatidão o

comportamento dos metais no solo. Isso não aconteceu na presente pesquisa,

provavelmente devido à escolha dos parâmetros de sorção da literatura. Eles não

resultaram ser representativos pelo solo estudado. Para uma aplicação mais correta

de tal modelo é aconselhável a determinação experimental dos parâmetros relativos.

Figura 4.17: Modelo de absorção passiva (isoterma linear e não linear) e dados experimentaisno caso de contaminação por Pb2+ e Zn2+

4.4.3. Modelo de absorção ativa com cinética de Michaelis-Menten

Na calibração do modelo de Michaelis-Menten, foi adotada a seguinte

metodologia. Primeiramente, considerou-se que o coeficiente cmin, que representa o

deslocamento no eixo x da hipérbole da equação 3.9, é nulo, enquanto o modelo se

considera ativo, a começar da concentração zero:

1. foram escolhidos dois pontos (c1,a1) e (c2,a2) da curva experimental do

metal absorbido em função da concentração na fase líquida c0 [mg/cm3],

determinada como:

c0=cT0

0⋅K d

(4.4)

onde cT0 [mg/cm3] é a concentração inicial total (fase sólida mais fase

líquida) e θ0 [cm3/cm3] a umidade inicial; nesse testes, c0, cT0 e θ0 são

considerados constantes em todo o domínio.

2. Foram calculados os coeficientes Km [mg/cm3] e Ap(t) [mg cm-2 d-1] (que

nesse caso foi considerado constante no tempo) segundo as seguintes

expressões obtidas por manipulação algébrica:

84

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

300

350

400

450

casa vegetação

Kd=50,5

Kf=74 n=0,9

Zn total [mg/Kg]

Zn

ab

so

rvid

o [m

g]

0 500 1000 1500 2000

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

casa vegetação

Kd=1114

Kf=2524 n=0,84

Pb total [mg/Kg]

Pb

abs

orv

ido

[mg]

Page 107: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

K m=c2a1−a2

a2−a1⋅c2/c1

Ap=a1

c1

K m−c1

(4.5)

(4.6)

onde a1 e a2 [mg cm-2d-1] são as taxas de absorção do contaminante relativas às

concetrações c1 e c2

4.4.3.1 Absorção de níquel

Aplicando a metodologia proposta no caso do níquel foram escolhidos os pontos

(1,028E-3; 5,316E-5), correspondente à contaminação de 140 mg/Kgsolo, e (2,056E-3;

9,468E-5), correspondente à contaminação de 280 mg/Kgsolo. Esses pontos são

representativos do comportamento linear, Utilizando as equações (4.5) e (4.6),

obtiveram-se os seguintes valores: Km = 0,01466 mg/cm3 e Ap = 4,327E-4 mg cm-2d-1.

Os resultados do cálculo são apresentados na Tabela 4.12 e na Figura 4.18. O

coeficiente de determinação foi R2 igual a 0,9014.

Tabela 4.12: Resultados do cálculo de HYDRUS, contaminação com Ni2+, modelo de absorçãoativa com Km = 0,01466 mg/cm3 e Ap = 4,327E-4 mg cm-2d-1

Vale a pena destacar como, apesar do forma hiperbólica da função de Michaelis-

Menten, é possível fazer um ajuste de um comportamento próximo ao linear utilizando

valores baixos de km em relação a Ap .

85

Dose 0 Dose 1 Dose 2 Dose 3 Dose 4Ni [mg/Kg_solo] 0 35 70 140 280casa vegetação [mg] 0,0642 0,369 0,486 0,633 1,13HYDRUS [mg/cm 2] 0 0,000919 0,00178 0,00334 0,00596HYDRUS [mg] 0 0,182 0,353 0,663 1,18Erro % 0 50,51% 27,34% -4,68% -4,92%

Page 108: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.18: Modelo de absorção ativa, contaminação com Ni2+, com Km = 0,01466 mg/cm3 e Ap

= 4,327E-4 mg.cm-2.d-1

4.4.3.2 Absorção de chumbo

Aplicando a metodologia proposta no caso da contaminação por chumbo, foram

escolhidos os pontos (1,794E-4; 1,017E-4), correspondentes à contaminação de 400

mg/Kgsolo, e (7,176E-4; 2,478E-4), correspondentes à contaminação de 1600 mg/Kgsolo.

Utilizando as equações (4.5) e (4.6), foram determinados os seguintes valores: Km =

0,00132 mg/cm3 e Ap = 4,757E-4 mg cm-2d-1, que foram utilizados na série de cálculos

apresentada na Tabela 4.13 e na Figura 4.19. A aproximação do modelo numérico

teve um erro pontual máximo inferior ao 8% e o coeficiente de determinação R2 igual a

0,9911.

Tabela 4.13:Resultados do cálculo de HYDRUS, contaminação com Pb2+, modelo de absorçãoativa com Km = 0,00132 mg/cm3 e Ap = 4,757E-4 mg cm-2d-1

86

Dose 0 Dose 1 Dose 2 Dose 3 Dose 4Pb [mg/Kg_solo] 0 200 400 800 1600

casa vegetação 0 0,769 1,21 2,24 2,95HYDRUS [mg/cm 2] 0 0,00359 0,00641 0,0106 0,0156HYDRUS [mg] 0 0,712 1,27 2,10 3,10Erro % 0 7,42% -4,97% 6,34% -4,99%

[µg]

0 50 100 150 200 250 300

0

0,2

0,4

0,6

0,8

1

1,2

1,4

casa vegetação

HYDRUS

Ni total [mg/Kg]

Ni a

do

sorv

ido

[mg]

Page 109: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.19: Modelo de absorção ativa, contaminação com Pb2+, com Km = 0,00132 mg/cm3 e Ap

= 4,757E-4 mg.cm-2.d-1

4.4.3.3 Absorção de cádmio

Aplicando a metodologia proposta no caso do cádmio foram escolhidos os pontos

(5,540E-5; 1,454E-5) correspondente à contaminação de 10 mg/Kgsolo, e (2,216E-4;

2,228E-5) correspondente à contaminação de 40 mg/Kgsolo. Utilizando as equações

(4.5) e (4.6), foram determinados os coeficientes: Km = 9,537E-5 mg/cm3 e Ap = 2,708E-

5 mg cm-2d-1 que foram utilizados na série de cálculos apresentada na Tabela 4.14 e na

Figura 4.20. A aproximação do modelo numérico teve um erro pontual máximo inferior

ao 7% e o coeficiente de determinação R2 igual a 0,9884.

Tabela 4.14:Resultados do cálculo de HYDRUS, contaminação com Cd2+, modelo de absorçãoativa com Km = 9,537E-5 mg/cm3 e Ap = 2,708E-5 mg.cm-2.d-1

87

Dose 0 Dose 1 Dose 2 Dose 3 Dose 4Cd [mg/Kg_solo] 0 5 10 20 40casa vegetação [mg] 0 0,127 0,173 0,226 0,265HYDRUS [mg/cm 2] 0 0,000611 0,000929 0,00120 0,00140HYDRUS [mg] 0 0,121 0,185 0,238 0,279Erro % 0 4,84% -6,50% -5,25% -4,98%

0 200 400 600 800 1000 1200 1400 1600 1800

0

0,5

1

1,5

2

2,5

3

3,5

casa vegetação

HYDRUS

Pb total [mg/Kg]

Pb

ab

sor

bid

o [m

g]

Page 110: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.20: Modelo de absorção ativa, contaminação com Cd2+, com Km = 9,537E-5 mg/cm3 eAp = 2,708E-5 mg.cm-2.d-1

4.4.4. Avaliação dos resultados do modelo de absorç ão passivo e

ativo

Em geral, o modelo ativo levou a coeficientes de determinação maiores do que o

modelo passivo (Tabela 4.15). Como aspecto negativo, ele precisa de uma calibração

específica para cada dupla planta-contaminante. Além disso, a calibração simultânea

com o modelo de sorção pode mascarar escolhas pouco corretas dos parâmetros.

O modelo passivo pode ser ajustado com a introdução da concentração limite, de

um modelo de estresse, ou através da alteração do Kd. Também são admitidas

combinações dessas estratégias de ajuste. Coerentemente com a Tabela 2.8, o

chumbo é o metal, entre aqueles estudados nessa pesquisa, que registrou os

melhores resultados com o modelos passivo.

Tabela 4.15: Coeficiente de determinação para as simulações realizadasCd2+ Ni2+ Pb2+ Zn2+

passivo

R2 = 0,8942 com concentraçãolimite (vide item4.4.1.1 )

-

R2 = 0,8526(vide item 4.4.1. )R2 = 0,9841 com modelo deestresse (videitem4.4.1.3 )

R2 = 0,7423(vide item 4.4.1. )R2 = 0,9205 com ajuste de Kd (videitem4.4.1.2 )

ativo R2= 0,9884(vide item 4.4.3.3 )

R2= 0,9014(vide item 4.4.3.1 )

R2=0,9911(vide item 4.4.3.2 )

-

88

0 5 10 15 20 25 30 35 40 45

0

0,05

0,1

0,15

0,2

0,25

0,3

casa vegetação

HYDRUS

Cd total [mg/kg]

Cd

ad

so

rvid

o [m

g]

Page 111: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.4.4.1 Comparação entre o modelo ativo e passivo

Após a calibração (parágrafos 4.4.3.2 e 4.4.1.2 ), os modelos ativo e passivo

foram comparados no caso da contaminação por Pb2+ = 1600 mg/Kgsolo (R2ativo=0,9911

e R2passivo

= 0,8526). Eles mostraram um comportamento diferente em termos de

absorção dos contaminantes. O modelo passivo acompanhou (Figura 4.21) as

flutuações do fluxo de água absorvida pelas raízes que dependem das condições

climatológicas do dia (evapotranspiração). Ao contrário, no modelo ativo, a absorção

depende somente da concentração do contaminante na rizosfera. A Figura 4.21b

evidencia que esta grandeza é constante, porque nos 60 dias do cálculo o valor da

concentração na solução não muda significativamente.

a) Modelo passivo b) Modelo ativo

Figura 4.21: Absorção de Pb2+ = 1600 mg/Kgsolo em função do tempo no modelo passivo e ativo

4.4.4.2 Comportamento dos modelos de absorção de contaminante em caso de

estresse hídrico

Foi realizado um teste com redução da irrigação (no primeiro mês do experimento)

com o objetivo de verificar a sensibilidade dos dois modelos de absorção à condição

de estresse hídrico. Esta condição levou as planta a ter uma redução da absorção de

água quantificada com ie = 20%. Na Figura 4.22, são plotadas a transpiração potencial

e real. Destaca-se a diferenciação entre os dois fluxos durante a aplicação do

estresse, nos primeiros trinta dias.

89

dia

Ab

sor

ção

de

Pb

[mg

/cm

2/d

ia]

Flu

xo d

e P

b [m

g/cm

2/d

ia]

Abs

oção

de

Pb [m

g/cm

2 /dia

]

dia

0

5e-005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 10 20 30 40 50 60

Time [days]

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0 10 20 30 40 50 60

Time [days]

Abs

oção

de

Pb [m

g/cm

2 /dia

]

Abs

oção

de

Pb [m

g/cm

2 /dia

]

diadia

Page 112: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 4.22: Absorção (=transpiração) potencial e real na simulação de estresse hídrico sobredados de casa vegetação

modelo passivo modelo ativo

Figura 4.23: Absorção instantânea do Pb2+= 1600 mg/Kgsolo em função do tempo no modelopassivo e ativo com estresse hídrico

Tabela 4.16: Chumbo (Pb2+ = 1600 mg/Kgsolo) absorvido pela planta no caso de estresse hídricomediante os modelos passivo e ativo

Ni2+ absorvido Passivo Ativo variação

Sem estresse [mg.cm-2] 0,0158 0,0156 -0,96%

com estresse ie = 20% [mg.cm-2] 0,0130 0,0127 -2,18%

variação 21,64% 18,77%

Da Tabela 4.16 percebe-se como os dois modelos reagiram concordemente ao

estresse hídrico. A redução da absorção de solutos acontece com o mesmo

mecanismo em ambos. Destaca-se, no modelo ativo, uma redução da absorção

levemente menor daquela do modelo passivo.

90

Ab

sor

ção

de

Pb

[mg

/cm

2/d

ia]

dia

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

dia

real

potencial

0

0.0001

0.0002

0.0003

0.0004

0 10 20 30 40 50 60

dias

0

6e-005

0.00012

0.00018

0.00024

0.0003

0 10 20 30 40 50 60

Time [days]

Abs

orçã

o de

Pb

[mg/

cm2 /d

ia]

Abs

oção

de

Pb [m

g/cm

2 /dia

]

dias

Page 113: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

4.5. Conclusões do capítulo

O objetivo deste capítulo foi a calibração do código computacional HYDRUS sobre

experimentos em vaso de extração de elementos traços, mediante o capim Vetiver

(TAVARES, 2009). Os contaminantes (Ni2+, Cd2+, Pb2+, Zn2+) foram analisados

singularmente.

O principal fator limitante dessa fase foi a falta de dados precisos relativos a:

• propriedades hidráulicas do solo;

• absorção da água pela raiz;

• modelos de absorção de contaminante no solo e na planta.

Foi conduzida uma análise da literatura específica com a finalidade de estimar os

dados que não estavam disponíveis.

Os parâmetros do modelo hidráulico do solo foram calculados com funções de

pedotransferência específicas para solos tropicais (TOMASELLA et al., 1998 e

TOMASELLA et al. 2003). Análises de sensibilidade levaram a deduzir que esse dados

não influenciam apreciavelmente os resultados no caso específico do vaso. Por outro

lado, os fluxos determinados numericamente mostraram ser sensíveis às condições

climatológicas e aos parâmetros da vegetação, como o índice de área foliar, LAI.

Como modelo de sorção de contaminantes no solo, foi inicialmente usada uma

isoterma linear com coeficiente Kd determinado de um estudo sobre solos brasileiros

(SOARES, 2004).

Do ponto de vista da absorção dos contaminantes pela planta, foi testado em

primeiro lugar um modelo passivo que, para o Pb2+ e Zn2+, apresentou uma boa

concordância com os dados experimentais (R2 de 0,7435 e 0,8526, respectivamente),

mas superestimou o valor observado para Ni2+ e Cd2+. Calibrações foram realizadas no

primeiros dois casos, conseguindo um melhor ajuste; para o Zn2+, foi modificado o Kd

de 50,5 para 60 cm3/ g, levando o R2 a 0,9205; para Pb2+, foi introduzido um modelo de

estresse de toxicidade (formulação semelhante ao estresse por salinidade),

conseguindo-se um aumento de R2 até 0,9841. Resultados melhores para o Ni2+ e Cd2+

foram conseguidos mediante a aplicação do modelo ativo de absorção (dinâmica de

Michaelis-Menten) e relativa calibração específica. A concordância com os dados

experimentais foi excelente atingindo valores de R2 superiores a 0,98.

91

Page 114: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Sucessivamente, foram repetidos os cálculos relativos ao modelo passivo com

isotermas de sorção não lineares com parâmetros provenientes de SOARES (2004).

Os resultados não foram encorajadores levando a um nível de concordância com os

dados experimentais menor do que o caso precedente. Esse fato, aparentemente

discordante com a teoria, que atribui a essas isotermas uma maior precisão, remarca a

necessidade de ter dados de sorção específicos pelo solos e pelos contaminante

estudados.

As tabelas 8.7 e 8.8 resumem a escolhas dos parâmetros usados na fase de

calibração.

92

Page 115: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

5. ESTUDO DE CASO COM

PARÂMETROS

CALIBRADOS

Neste capítulo, aproveitou-se da precedente fase calibração, para estudar um

caso de contaminação no campo, com o intuito de obter informações indicativas sobre

o destino dos contaminantes no solo, duração do processo de fitorremediação e

influência da irrigação.

A composição do cenário foi fictícia mas, do ponto de vista pedológico e

climatológico, foi baseada no distrito industrial de Santa Cruz do município de Rio de

Janeiro. A contaminação (metais tóxicos) foi causada por resíduos industriais mal

armazenados ao ar livre que foram lixiviados pela chuva.

5.1. Organização e parâmetros dos cálculos

5.1.1. Etapas do estudo

Os cálculos foram organizados em três etapas:

1. determinação das condições hidráulicas no solo não contaminado com a

presença de vegetação arbustiva;

2. fase de contaminação: percolação do contaminante - supôs-se a presença

de uma vegetação com estresse hídrico e raízes pouco profundas;

3. Fase de remediação utilizando o capim Vetiver.

Duas hipóteses foram feitas neste estudo:

93

Page 116: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

1. ausência de caminhos preferenciais pelo transporte dos contaminantes;

2. a planta mantém sua capacidade de extração também na fase vegetativa

adulta.

5.1.1.1 Fase de pré-contaminação

Essa primeira fase, com a duração de 356 dias, teve como objetivo a

determinação das condições hidráulicas do perfil.

5.1.1.2 Fase de contaminação

Supôs-se a presença de containers mal selados que, em presença de chuva,

percolassem metais tóxicos. O ingresso dos contaminantes no perfil foi imposto

através de uma concentração fixa na água que infiltra no perfil.

Foram analisados cenários com diferentes níveis de redução da

evapotranspiração: kc igual a 0,4 e a 0,7 que permitiu avaliar as diferenças entre as

condições hidrogeológicas e seus efeitos sobre o transporte dos contaminantes. O

cálculo foi conduzido por um período de cinco anos.

As concentrações dos metais no fluxo de entrada foram calculadas com o objetivo

de atingir níveis de contaminação na superfície do solo de três vezes os valores de

investigação (VI) para áreas industriais. O código computacional HYDRUS trabalha

com valores de concentração na solução, por isso foi necessário calcular a

correspondente concentração na solução em função do coeficiente de distribuição (Kd)

para cada metal mediante a equação (4.4).

A concentração na solução, fornecida pelos cálculos ao longo do perfil, foi

convertida em concentração no solo mediante a equação (2.1) porque os valores

indicadores da contaminação são expressos nesta grandeza.

5.1.1.3 Fase de remediação

Objetivo principal desta fase é a estimativa do tempo necessário para a

remediação. Equações como a (2.37) e a (2.38) não são facilmente aplicáveis a causa

da variabilidade no tempo e no espaço da carga de contaminante M, que influencia a

produção de biomassa B e a concentração de contaminante no tecidos da planta P.

94

Page 117: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Por isso, a metodologia aqui proposta representa uma valida alternativa ao cálculo do

tempo de remediação.

Neste estudo a remediação se considera completa quando as concentrações dos

contaminantes são inferiores ao VI para área industriais em tudo o perfil do solo. Os

cálculos foram realizados simulando a presença Vetiver com variações da taxa

evapotranspiração. Foi também testado um caso com irrigação. O sistema de irrigação

foi ativado nos dias de precipitação baixa e no caso do solo atingir sucção superiores a

70 cm. A lâmina total aplicada foi determinada de modo que, somada à precipitação, o

resultado fosse correspondente à evapotranspiração potencial. Esse valor foi

calculado a priori e, por isso, não foi otimizado.

Os contaminantes foram analisados separadamente.

5.1.2. Solo

5.1.2.1 Classificação pedológica da área

A área do bairro de Santa Cruz em proximidade da costa e do rio Guandu tem

uma conformação de baixada com presença de zonas de depressão e esporádicos

morrotes. LUMBRERAS & GOMES (2004) evidenciaram a presença predominante de

Gleissolos Tiomórficos, de Organossolos nas depressões e de Argissolos nos morrotes

(Figura 5.1).

Os Gleissolos encontrados nessa região têm uma textura argilosa e apresentam

uma drenagem deficiente com lençol freático a profundidades de 0,7 ; 1,3 m. A

vegetação primaria é tipica de campos tropicais higrófilos de várzea.

Os Organossolos têm uma textura argilosa com um elevado teor de matéria

orgânica (~ 25%); a drenagem é deficiente e o lençol freático se situa a uma

profundidade de 80 cm.

Os Argissolos são amarelos latossólicos eutróficos ou distróficos com textura

média/argilosa. A drenagem é boa.

95

Page 118: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 5.1: Pedologia da zona de Santa Cruz (Rio de Janeiro)

O tipo de solo utilizado nos cálculos deste capítulo foi um Gleissolo Tiomórfico,

cujas caraterísticas são apresentadas na Tabela 5.1.

Tabela 5.1:Horizontes e textura do gleissolo tiomórfico utilizado pelos cálculos do presentecapítulo

Fonte: LUMBRERAS & GOMES (2004)

As densidades dos vários horizontes foram obtidas de PAULETTO et al. (2005) e

mostradas na Tabela 5.2.

Tabela 5.2: Densidade dos horizontes assumida pelo Gleissolo Tiomórfico Fonte: PAULETTO et al. (2005)

horizonte Densidade[g/cm3]

Ap 1,52

Big 1,61

Cgi 1,61

2Abjz 1,65

5.1.2.2 Determinação das propriedade hidráulicas

Os parâmetros do modelo hidráulico de Van Genuchten – Mualem (VAN

GENUCHTEN, 1980) foram estimados para cada horizonte mediante calcPTF

96

Gleissolos GleissolosOrganossolos Argissolos

Page 119: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

(parâmetros de retenção) e ROSETTA pela condutividade hidráulica à saturação como

apresentado na Tabela 5.3 e Figura 5.2 .

Tabela 5.3: Parâmetros hidráulicos do modelo hidráulico de Van Genuchten – Mualem (VANGENUCHTEN, 1980) pelo Gleissolo Tiomórfico utilizados nos cálculos

horizontes θr θs α [cm-1]

n Ks

[cm/dia]

Ap 0,0000 0,6991 0,0061 1,1460 11,80

Big 0,2392 0,5838 0,0077 1,1838 17,38

Cgi 0,2262 0,5911 0,0115 1,1669 17,60

2Abjz 0,0000 0,7054 0,0685 1,1030 23,63

Figura 5.2: Perfil litológico do Gleissolo Tiomórfico e relativos valores de coeficiente Kd paraCd2+, Pb2+ e Zn2+

5.1.3. Modelo e condições ao contorno

O perfil do solo estudado corresponde à zona não saturada com uma

profundidade de 130 cm (supôs-se que o lençol freático fosse fixo). A discretização foi

em 131 nós. A condição no fundo do perfil foi de carga h constantemente igual a zero.

97

10 100 1000 100000

20

40

60

80

100

120

140

CdPbZn

Kd

pro

fun

did

ad

e [c

m]

Big

Cgj

Ap

Page 120: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

No topo do perfil a condição foi expressa em forma de valores diários de precipitação,

evaporação e transpiração potencial.

Como condição inicial foi colocada uma distribuição de carga h linear até o topo

do perfil ( -130 cm). Não é considerado escoamento superficial, ou seja, a água foi

previsto que a água se acumulasse em poças antes de infiltrar.

5.1.4. Dados climatológicos

Do ponto de vista meteorológico foram utilizados dados do aeroporto de Santa

Cruz (Rio de Janeiro), disponíveis no sítio da Rede Meteorológica do Comando da

Aeronáutica (http://www.redemet.aer.mil.br), em forma de médias mensais (série

histórica do ano 1981 até 1990) da temperatura média, máxima, mínima, precipitação,

pressão, umidade e vento (Tabela 8.9) que compensam a falta das normais.

A radiação solar média mensal foi determinada com base em COLLE & PEREIRA

(1998), e os valores são apresentados na Tabela 8.10.

Perseguindo a maior exatidão possível dos cálculos, considerou-se mais correto o

uso de valores diários. Por isso, foram considerados os dados (frequência horária) da

estação de Marambaia (INMET) relativos ao último ano e normalizados mês por mês

com base nos valores da série histórica do Aeroporto de Santa Cruz (Tabela 8.9). Para

que a quantidade de dados não se tornasse excessiva, foi feita uma média ao longo

do dia, deixando que HYDRUS gerasse as variações diárias dos valores.

Os valores assim obtidos, com a exclusão da precipitação, foram utilizados para a

determinação da evapotranspiração de referência mediante a equação (2.24) de

Penman-Monteith em versão FAO (Figura 5.3). Os valores mensais são apresentados

na Tabela 8.10.

98

Page 121: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 5.3: Dados de evapotranspiração potencial de referência e precipitação utilizados peloestudo de caso

5.1.5. Coeficiente de determinação ( Kd) para cada horizonte de solo

O coeficiente de determinação para cada horizonte e para cada metal foi

calculado mediante a regressão proposta por SOARES (2004):

log K d=⋅pHH20⋅targila⋅CTCeb (5.1)

onde α, β, γ e b são os coeficiente da regressão; targila é o teor de argila [g/kg] e CTCe é

a capacidade efetiva de troca de cátions [mmolc/kg] (soma de bases mais cátions de

alumínio).

Os valores resultantes (Tabela 5.4) foram considerados aceitáveis pelos metais

analisados. Somente o níquel apresentou valores maiores de quanto reportado na

revisão do mesmo SOARES (2004).

É importante destacar o aumento do Kd passando do primeiro ao segundo

horizonte e a sucessiva diminuição nas camadas de solo mais profundas. Essa

caraterística evidenciou a existência de um risco ambiental associado a percolação do

contaminante além do segundo horizonte de solo. Superada essa zona, o

contaminante torna-se mais móvel.

99

0

2

4

6

8

10

12 0

5

10

15

20

25

30

35

40

45

50

prec

evap

dias

eva

pot

ran

spir

açã

o p

ote

nci

al [

mm

]

pre

cip

itaçã

o [m

m]

Page 122: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tais valores de Kd sugeriram uma sequência de sorção diferente daquela mais

provável Pb2+ > Cd2+ > Ni2+ > Zn2+ (GOMES et al., 2004) , sendo Ni2+ > Pb2+ > Cd2+ >

Zn2+. Esse resultado indicou, mais uma vez, o baixo nível de atendibilidade dos

resultados da regressão no caso do Ni2+.

Tabela 5.4: Coeficiente de determinação (Kd) para os horizontes de solos utilizados no estudode caso calculados segundo a regressão proposta por SOARES (2004)

5.1.6. Vegetação

5.1.6.1 Fase de pré-contaminação

Na área do estudo, supôs-se a existência de uma vegetação de tipo arbustivo com

uma profundidade das raízes de 40 cm, tendo uma distribuição da densidade

mostrada na Figura 5.4 e uma função de resposta ao estresse do tipo de Feddes

(FEDDES et al., 1978) com parâmetros do limão (Tabela 5.5) segundo TAYLOR &

ASHCROFT (1972).

Figura 5.4: Distribuição da densidade das raízes dos arbusto presentes na área antes dacontaminação

100

horizonte pH argila[g/kg]

4,1 400 116 497,7 310,5 638,3 17,583,8 740 185 3420 990,8 1096 40,743,4 740 185 2301 559,8 794,3 15,49

2Abjz 3,0 540 150 501,2 141,3 363,1 2,344

K d

CTC e Ni2+ Cd2+ Pb2+ Zn2+

[mmolc/kg] [cm3/g]

ApBigCgi

-40

-30

-20

-10

0

pro

fund

idad

e [c

m]

Page 123: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 5.5: Parâmetros do modelos de estresse hídrico de Feddes adotados pela arbustospresentes na área antes da contaminação (valores da Figura 2.6)

Parâmetro Valor [cm]

h1 -10

h2 -25

h3 -400

h4 -8000

Considerou-se uma evapotranspiração potencial correspondente à

evapotranspiração de referência (kc = 1), e o LAI foi assumido igual a quatro.

5.1.6.2 Fase de contaminação

A vegetação foi submetida artificialmente a uma situação de estresse por causa

da elevada concentração de contaminante. Consideraram-se dois cenários com

diferentes valores do fator de cultura kc iguais a 0,4 e 0,7. Considerou-se um LAI igual

a 2 e excluiu-se a absorção de contaminante pela plantas. Os parâmetros do modelo

de estresse foram os mesmos do caso precedente (Tabela 5.5). A profundidade da

raízes foi considerada de 12 cm com a mesma distribuição utilizada no item

precedente (vide Figura 5.4).

5.1.6.3 Fase de remediação

Na fase de remediação, foi considerada a presença do Vetiver caraterizado pelos

mesmos parâmetros de estresse de Feddes (FEDDES et al., 1978) utilizados na fase

de calibração (Tabela 4.5). Neste cenário, a profundidade máximas das raízes do

Vetiver foi colocada a 80 cm: no momento do plantio das mudas foi assumida uma

profundidade das raízes de 20 cm. Seguiu-se uma fase de crescimento a uma

velocidade fixa e uniforme de 2 mm/dia até atingir o comprimento máximo. O valor de

80 cm subestima (hipótese conservativa) os valores indicados por TRUONG (2010).

A distribuição das raízes foi calculada com a equação (5.2), onde L é o

comprimento atual e LR o comprimento máximo das raízes [L] (HOFFMAN & VAN

GENUCHTEN, 1983).

101

Page 124: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

1,66667LR

L−0,2LRxL

b(x) =2,0833

LR1− x0−x

LR x∈ L−LR; L−0,2LR

0 0xL−LR

(5.2)

5.2. Análise dos resultados

5.2.1. Fluxo de água

A região interessada pela absorção de água apresentou flutuações da sucção.

Pode ser deduzido que a condição de estresse hídrico da vegetação não aconteceu

frequentemente (vide Figura 5.5).

Nos perfis inferiores, registra-se uma substancial estabilidade. Isso demostra uma

boa escolha das condições iniciais relativamente a carga hidráulica.

Figura 5.5: Carga h na rizosfera e em ponto representativos dos horizontes inferiores

5.2.2. Perfil de contaminação

As concentrações no fluxo em entrada são apresentadas na Tabela 5.6. Os

metais analisados foram Cd2+, Pb2+, Zn2+; o Ni2+ foi excluído devido á baixa

atendibilidade dos valores do Kd e, anteriormente, dos resultados do ajuste do metal

absorvido pela planta.

102

-1400

-1200

-1000

-800

-600

-400

-200

0

0 60 120 180 240 300 360

dias

-300

-240

-180

-120

-60

0

0 50 100 150 200 250 300 350 400

dias

z = -100 cm

z = -40 cm

Page 125: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 5.6: Concentração dos contaminantes no fluxo em entrada no perfil

MetalConcentração nofluxo em entrada

[mg/dm3]

Ni2+ 0,000

Cd2+ 0,579

Pb2+ 15,7

Zn2+ 335

Os resultados mostram que estado de saúde da vegetação influenciou bastante o

fluxo de água. A diminuição do fator de cultura de 0,7 para 0,4 provocou um aumento

significativo da percolação (vide Figura 5.6).

Figura 5.6: Repartição da água saindo do perfil de cálculo por diferentes níveis de estresse davegetação ao final da fase de contaminação

As diferentes condições de fluxo influenciaram o transporte dos contaminantes: o

fenômeno foi tanto mais acentuado quanto maior a mobilidade do metal. Na Figura 5.7

destaca-se o caso do zinco (mais móvel dos metais analisados), cuja pluma teve uma

penetração no perfil maior no caso com kc = 0,4 do que com kc =0,7. A espessura do

solo com uma concentração maior do que o VI é de 30 cm no primeiro caso e de 25

cm no segundo. As distribuições de Cd2+ e Pb2+ não apresentaram diferenças entre os

casos com diferentes valores de kc , e foram respectivamente 5 e 3 cm.

As distribuições das concentrações apresentadas na Figura 5.7 foram utilizadas

como condição inicial na fase de remediação. Foi escolhido o cenário com kc= 0,4.

103

Kc=0,4 Kc=0,7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

evaporação

transpiração

percolação

Page 126: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 5.7: Pluma de contaminação de Cd2+, Pb2+ e Zn2+ após de 5 anos

104

0 500 1000 1500 2000 2500 3000

-60

-50

-40

-30

-20

-10

0

Kc=0,4

Kc=0,7

VI

Pb no solo [mg/kg]

pro

fund

idad

e [c

m]

0 10 20 30 40 50 60 70 80

-60

-50

-40

-30

-20

-10

0

Kc=0,4

Kc=0,7

VI

Cd no solo [mg/kg]

pro

fund

ad

e [c

m] Ap

0 2000 4000 6000 8000 10000

-60

-50

-40

-30

-20

-10

0

Kc=0,4

Kc=0,7

VI

Zn no solo [mg/Kg]

pro

fun

did

ad

e [c

m] Ap

Big

Big

Ap

Big

Page 127: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

5.2.3. Avaliação do processo de remediação

5.2.3.1 Zinco

Ao zinco foi aplicado o modelo de absorção passivo que, de acordo com os

resultados mostrados na Tabela 4.15, teve um desempenho aceitável na previsão do

quantidade do metal absorvido pela planta.

Na hipótese de kc = 1 e não aplicação de irrigação, a remediação da área, abaixo

do Valor de Investigação para área industriais, demorou um tempo de 14 anos.

Como destacado por ROBINSON (2003), se assiste a uma diminuição da

eficiência do processo de extração ao avançar do tempo (Figura 5.9). Isso aconteceu

porque:

• diminuiu a concentração na solução e, consequentemente, a concentração

no fluxo de absorção;

• o contaminante percolando se afastou da região de maior eficiência das

raízes.

Figura 5.8: Efeito da remediação (Zn2+) apos de 14 anos de aplicação da fitorremediação (kc=1,LAI =4)

105

Cgi

0 1000 2000 3000 4000 5000 6000 7000

-120

-100

-80

-60

-40

-20

0

t=14 anos

t=6 anos

t = 0

VI

Zn no solo [mg/kg]

pro

fun

did

ade

[cm

]

Ap

Big

Page 128: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Figura 5.9: Absorção cumulativa de Zn2+ ( kc = 1)

Foi conduzido um cálculo na hipótese de um melhor desempenho da cultura em

termos de evapotranspiração potencial, assumindo kc=1,5. Nesse caso se registrou um

aumento da eficácia do processo especialmente na redução da percolação do

contaminante resíduo (Figura 5.10). O tempo de remediação desceu para 12 anos.

Figura 5.10: Efeito da remediação (Zn2+) por diferentes valores do fator de cultura (apos de 14anos de aplicação da fitorremediação)

A Figura 5.11 mostra a comparação da pluma de contaminação entre o cenário

com plantio do Vetiver e o cenário sem remedição (foi somente removida a fonte da

contaminação) depois de um período de 14 anos. A concentração diminuiu nos dois

106

0

20000

40000

60000

80000

100000

120000

140000

0 2000 4000 6000 8000

dias

0 500 1000 1500 2000 2500

-120

-100

-80

-60

-40

-20

0

Kc=1,5 (14anos)

Kc=1,0 (14anos)

Kc=1,5 (12anos)

VIZn no solo [mg/kg]

pro

fun

did

ade

[cm

]

Ap

Big

Cgi

Page 129: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

casos, mas, no cenário sem remediação, ficou acima do VI. O contaminante continuou

a percolar e se aproximou ao lençol freático.

Figura 5.11: Evolução da contaminação em comparação com o caso da ausência deremediação (kc=1, LAI =4, t= 14 anos)

5.2.3.2 Chumbo

Figura 5.12: Previsão da pluma de contaminação pelo Pb2+ durante a aplicação dafitorremediação (kc=1, LAI =4)

107

0 500 1000 1500 2000 2500 3000 3500 4000

-120

-100

-80

-60

-40

-20

0

com Remediação

sem Remediação

VI

Zn no solo [mg/kg]

pro

fun

did

ade

[cm

]

0 500 1000 1500 2000 2500 3000

-60

-50

-40

-30

-20

-10

0

t = 8 anos

t = 6 anos

t = 0

VI

Pb no solo [mg/kg]

pro

fun

did

ade

[cm

]

Ap

Big

Cgi

Ap

Big

Page 130: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Foi analisado também o caso do chumbo, mediante um modelo de absorção ativa

com parâmetros calibrados no item 4.4.1.3 .

A remediação da área abaixo do Valor de Investigação para área industriais

demorou um tempo de 8 anos. Nesse caso a pluma de contaminação se encontrou

numa região onde foi mais favorável a absorção pelas raízes (maior densidade das

raízes).

5.2.3.3 Irrigação

Figura 5.13: Evolução da contaminação (Zn2+) em comparação com o caso com irrigação (t=14anos)

No caso do zinco (Figura 5.13), a irrigação não levou a uma diminuição do tempo

de remediação. Pelo contrário, se observou um aumento da velocidade de percolação

do contaminante com o risco de contaminação do lençol freático. Esse comportamento

é coerente considerando que as plantas não se encontraram frequentemente em

condição de estresse. Nessa condição, a água em excesso (não absorvida) percolou

transportando o contaminante.

5.2.3.4 Distribuição da densidade das raízes

Foi realizado um cálculo na hipótese irrealista de uma distribuição constante da

densidade das raízes. O objetivo foi demostrar que o processo de extração do

108

0 500 1000 1500 2000 2500

-120

-100

-80

-60

-40

-20

0

sem Irrigação

com Irrigação

VI

Zn no solo [mg/kg]

pro

fun

did

ad

e [c

m]

Ap

Big

Cgi

Page 131: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

contaminante é mais eficiente se a distribuição das raízes ao longo do perfil

acompanha a distribuição do contaminante.

Em 20 anos de fitorremediação, a absorção cumulativa do Zinco pelas raízes foi

calculada em 154,6 mg/cm2 com a distribuição variável, e em 120 mg/cm2 com a

distribuição uniforme. Esse resultado pode ser explicado considerando que a primeira

distribuição se adapta melhor a distribuição inicial do contaminante, situação na qual

acontece a maior parte da extração. Sucessivamente, como mostrado na Figura 5.10,

o contaminante tende a sair da zona de maior absorção, causando uma diminuição da

eficiência.

Entretanto na caso da distribuição constante das raízes, apresentou-se uma

menor diminuição de eficiência (Figura 5.14) porque o contaminante permanece numa

região com a mesma densidade de raiz.

Figura 5.14: Absorção cumulativa de Zn2+ com distribuição de densidade de raiz constante

5.2.3.5 Cálculos adicionais

Foram realizados alguns cálculos adicionais cujos resultados ficaram proximos

dos casos já apresentados, entre eles:

• foi considerado o escoamento superficial no topo do perfil (para simular um

sistema de coleta de água);

• foi considerada a compensação do estresse hídrico da planta;

• foi considerada a irrigação no caso da vegetação com kc=1,5.

109

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000

dias

Page 132: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

5.3. Conclusões do Capítulo

Os resultados obtidos nesta última fase, aproveitaram dos parâmetros calibrados

sobre os citados ensaios em vaso (Capítulo 4). Foram desconsiderados eventuais

efeitos de escala, extrapolando os resultados ate ao contexto de campo.

Particularmente delicada é assunção que uma única planta seja representativa da

multidão de indivíduos presente no campo.

Como caraterística geral, observou-se uma forte variabilidade da mobilidade do

metal dependendo das condições especificas do solo, da vegetação e do mesmo

contaminante.

Destaca-se que, nas hipóteses de ausência de caminhos preferenciais no solo e

de persistência do comportamento da planta em presença de contaminantes:

• a presença de plantas com raízes que atingem a zona contaminada

tiveram o duplo efeito de fito-extração e de redução do risco de migração

do contaminante;

• o processo de absorção do contaminante pela planta foi mais eficiente

quando o contaminante se situou próximo à superfície (maior densidade

das raízes);

• a irrigação aumentou a velocidade de percolação do contaminante e, por

isso, teve um efeito contraproducente pelo processo de remediação do

zinco;

• a eficiência da fito-extração diminuiu com o tempo. Entretanto a eficiência

da fito-estabilização (efeito hidráulico) foi constante.

Em síntese, a metodologia proposta forneceu dados importantes para o projeto e

a avaliação de um processo de fitorremediação aplicado em campo.

110

Page 133: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

6. CONCLUSÕES E

SUGESTÕES PARA

FUTURAS PESQUISAS

6.1. Conclusões

O objetivo da presente Dissertação de Mestrado foi a modelagem de processos

de fitorremediação, técnica de tratamento ambiental que envolve fenômenos físicos,

químicos e biológicos. Foi realizada a calibração do modelo HYDRUS com dados

experimentais procedentes de ensaios com o Vetiver (Chrysopogon zizanioides L

Roberty) cultivado em vaso, em presença de contaminação por metais tóxicos (Cd2+,

Ni2+, Pb2+, Zn2+).

Apesar de uma série de hipóteses, tanto na abordagem experimental como na

modelagem, a presente pesquisa mostrou que é possível conseguir um bom ajuste da

quantidade de metal extraído pela planta ao variar o nível da contaminação no solo.

Os coeficientes de determinação R2 foram superiores a 0,98 para o cádmio e para o

chumbo e superiores a 0,90 para níquel e zinco. Esses resultados foram obtidos

escolhendo e calibrando os modelos de absorção de solutos pelas raízes caso a caso.

Foi utilizado um modelo de absorção passiva (com estresse e com concentração

limite) e um modelo ativo (dinâmica de Michaelis–Menten).

A aplicação do modelo passivo é aconselhada para ter uma primeira estimativa da

quantidade de contaminante absorvido pela planta: esse modelo, na sua versão

básica, tem a vantagem de não requerer parâmetros adicionais.

111

Page 134: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

A análise de sensibilidade revelou a importância, ao fim da calibração, das

condições climatológicas, dos parâmetros da vegetação e do modelo de sorção no

solo. Menor relevância tiveram as condições hidráulicas que, por outro lado,

influenciam profundamente os resultados da simulação da situação de campo.

A aplicação da metodologia (Capítulo 5) demostrou que a modelagem pode

fornecer indicações úteis para o projeto e para avaliação dos riscos associados a um

processo de fitorremdiação. Nesta fase, foi analisado, com particular atenção, o tempo

necessário para diminuir o nível de contaminação até o Valor de Investigação (VI) para

áreas industriais e o efeito da irrigação.

6.2. Sugestões para futuras pesquisa

6.2.1. Ensaios experimentais

A presente pesquisa indicou a necessidade de conduzir ensaios específicos

visando enriquecer o conjunto de dados utilizados nas previsões numéricas. È de

grande relevância conhecer o comportamento específico dos contaminantes no tipo de

solo que se pretende simular.

Relativamente à planta, no caso estudado, o capim Vetiver, é necessário

determinar a evapotranspiração potencial, os parâmetros de resposta ao estresse e os

dados biométricos (altura, profundidade das raízes, biomassa e índice de área foliar,

LAI).

6.2.1.1 Sorção do metal no solo

No item 4.3. , foi demostrado que o modelo de sorção influencia a previsão da

absorção de contaminante pela planta. Os ensaios do tipo batch permitem determinar

as isotermas de absorção, curvas que fornecem parâmetros fundamentais para o

estudo dos fenômenos de transporte.

Os ensaios de coluna são ainda mais recomendados porque permitem uma

análise experimental dos fenômenos de transporte do contaminante (advecção e

dispersão/difusão) em condições de não equilíbrio.

Esse estudos devem ser feitos pelos contaminantes de interesse no solo em

estudo.

112

Page 135: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

6.2.1.2 Evapotranspiração e transpiração

A evapotranspiração é um dado fundamental para os modelos de “sistema

completo” como o HYDRUS. As informações sobre essa grandeza, no caso do Vetiver,

são muito escassas. A evapotranspiração pode ser determinada, para um plantio

específico, através de um lisímetro (REICHARDT & TIMM, 2004).

A transpiração pode ser estimada indiretamente da evapotranspiração mediante a

determinação do índice de área foliar (LAI) ou a fração de superfície coberta por

vegetação (SCF).

O lisímetro pode ser usado também em casos de contaminação para coletar

dados sobre o desempenho da planta no caso de estresse químico medindo, se

possível, a concentração do contaminante no percolado.

6.2.1.3 Ensaio em condição de estresse hídrico

Os ensaios na casa de vegetação da EMBRAPA (TAVARES, 2009) foram

conduzidos fornecendo uma irrigação calibrada com base no teor de umidade do solo,

visando mantê-lo em condições de ausência de percolação e estresse hídrico. Ficou

desconhecido o comportamento da planta em presença conjunta de estresse hídrico e

tóxico. Em outras palavras, não estão disponíveis informações sobre a modalidade de

combinação dos dois modelos de estresse. Por isso, poderia se recomendar a

realização de ensaios em condições de escassez de irrigação e presença de

contaminante.

6.2.1.4 Prolongamento do tempo dos ensaios

Para avaliar melhor eventuais efeitos de toxicidade ou resistência (KABATA-

PENDIAS & PENDIAS, 2001), os ensaios em vaso (ou com o lisímetro) poderiam ser

conduzidos por um tempo maior de 60 dias (TAVARES, 2009). Durante esses ensaios,

deveriam ser monitorados periodicamente parâmetros biométricos e estatísticos da

planta como biomassa, altura, quantidade de metal acumulado na planta, incidência de

fenômenos de muxo, pragas, doenças, alterações morfonológicas e cromáticas.

113

Page 136: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

6.2.1.5 Aumento das concentrações dos contaminantes

No estudo de TAVARES (2009), foram testadas concentrações de contaminantes

que não afetam sensivelmente o desenvolvimento da planta em termos de biomassa,

sendo que o Vetiver é uma planta que mostra uma resistência muito maior do que

outras plantas em situações de contaminação (vide item 8.1. ).

Assim, para um maior conhecimento do comportamento da planta, podem ser

investigadas concentrações que levam a efeitos mais severos de toxicidade até chegar

à impossibilidade do crescimento da planta.

6.2.1.6 Testes com outras plantas

Uma vantagem fundamental da modelagem computacional é a possibilidade de

analisar preventivamente cenários diferentes. No caso específico da fitorremediação,

pode ser útil a comparação entre várias plantas de diferentes caraterísticas botânicas,

e diferentes comportamentos em presença de contaminantes. Por isso, é necessária

uma calibração sobre dados experimentais para cada espécie vegetal estudada.

Recomenda-se pois a realização de ensaios com outras plantas.

6.2.2. Aprimoramento da modelagem

6.2.2.1 Inclusão de um modelo mais acurado para a planta

Em HYDRUS, a modelagem da vegetação é muito simplificada porque:

• não esta presente um modelo de crescimento;

• a planta é modelada como um bloco único, não diferenciando entre as

vários compartimentos (folha, tronco, raízes);

Por isso, seria enriquecedor, do ponto de vista da pesquisa, incluir um modulo

incorporado em HYDRUS que, em função da toxicidade e de outros parâmetros

(temperatura, radiação solar, disponibilidade hídrica,…), simule o desenvolvimento do

vegetal, dando a possibilidade de acompanhar variações da demanda hídrica através

da alteração do índice de área foliar, LAI, ou do fator de cultura kc.

114

Page 137: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

São citados alguns sub-modelos de fisiologia vegetal que poderiam ser integrados

na metodologia proposta com o objetivo de levar em conta os efeitos do contaminante

armazenado e do estresse sobre o desenvolvimento da planta.

WÖHLING et al. (2007) propõem um modelo conceptual de crescimento da planta,

que foi integrado ao HYRUS-2D através de MATLAB, onde o LAI é influenciado

somente pela soma das temperatura diárias e pelo estresse hídrico, assumindo que

todos os outros fatores de produção de biomassa sejam otimizados, e a produção de

biomassa depende da razão entre o LAI calculado e o LAI ideal pelo período de

referência.

O modelo SWAP, como descrito em KROES et al. (2008), distingue fatores de

crescimento base (radiação solar, temperatura e CO2) que determinam a produção

potencial, fatores limitantes (água e nutrientes) e fatores redutivos (contaminantes,

pragas, infestantes, entre outros) que rebaixam a produção potencial levando à

produção real. È calculado assim o potencial fotossintético bruto ao qual são

subtraídos os termos de respiração (de manutenção e crescimento). Sucessivamente,

a energia restante é repartida entre raízes, tronco, folhas e órgãos de armazenamento

e convertida em biomassa. Esse processo é gerenciado de modo diferente

dependendo da fase em que a planta se encontra: fase vegetativa, fase reprodutiva,

senescência.

Outro modelo, orientado ao estudo da contaminação, é descrito em OUYANG

(2002) como parte do código computacional CTSPAC. Ele é baseado na

compartimentação da planta em três regiões, folhas, tronco e raízes, similares como

tecido e funções; cada compartimento é posteriormente dividido em xilema e floema. O

fluxo da água através dos compartimentos é determinado por gradientes de potencial

induzidos pelas diferenças da concentração de açúcar. O transporte de solutos no

floema é modelado como fluxo determinado pela pressão de acordo com a hipótese de

Munch. O modelo também inclui o movimento da água entre o xilema e floema nos

vários compartimentos. Cada compartimento atua com um diferente mecanismo de

sorção sobre os contaminantes.

115

Page 138: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

6.2.2.2 Aplicação de um modelo geoquímico

Como sugerido por KABATA-PENDIAS & PENDIAS (2001), a complexidade das

interações dos íons de metais nos solo pode ser modelada mais acuradamente

utilizando um modelo geoquímico. JACQUES et al. (2008) aplicam o modelo HP1 no

estudo do transporte de metais. Em virtude dessa experiência seria possível aproveitar

a integração já existente entre HYDRUS e HP1 para melhor modelar o destino dos

metais tóxicos no solo.

6.2.3. Aplicação da metodologia a um cenário real d e contaminação

O caso estudado no capítulo 5, apesar de ser inspirado num caso real, é fictício.

Por isso, se aconselha a aplicação a um caso real, possivelmente de contaminação

“pesada”, como uma área de mineração.

116

Page 139: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

7. REFERÊNCIAS

B IBLIOGRÁFICAS

AGUIAR, M. R. M. P.; NOVAES, A. C.; GUARINO, A. W. S., 2002, “Remoção demetais pesados de efluentes industriais por aluminossilicatos”, Química Nova , v.25,n.6b, pp.1145-1154

ALLEN R. G., JENSEN M. E., WRIGHT J. L., BURMAN R. D, 1989, “Operationalestimates of evapotranspiration”, Agronomy Journal , v. 81, n.4, pp. 650-662

ALLEN R.G., PEREIRA L.S., RAES D., SMITH M., 1998, “Crop evapotranspiration.Guidelines for computing crop water requirements”, In: FAO Irrigation and DrainagePaper, no. 56, FAO, Rome (Italy). Land and Water Development Div.

ANDRADE J.C.M., TAVARES S.R., MAHLER C.F., 2008, Fitorremediação: O uso deplantas no controle e redução da poluição ambiental , Editora Oficina de Texto, SãoPaulo

ANDRADE, J.C.M., 2005, Fitotransporte de metais em espécies arbóreas e arbustivasem aterro de resíduos sólidos urbanos, Tese de Doutorado – UFRJ/COPPE/Programade Engenharia Civil

BEAR J., 1972, Dynamics of Fluid in Porous Media , Elsevier, New York, NY

BLAYLOCK M., SALT D.E., DUSHENKOV S., ZAKHAROVA O., GUSSMAN C.,KAPULNIK Y., DENSLEY B.D., RASKIN I., 1997, “Enhanced Accumulation of Pb inIndian Mustard by Soil-Applied Chelating Agents”, Environmental Science &Technology , v.31, n.3 (fev), pp.860-865

BOLAN N.S., DURAISAMY V.P., 2003, “Role of inorganic and organic soil amendmentson immobilisation and phytoavailability of heavy metals: a review involving specificcase studies”, Australian Journal of Soil Research v. 41, n.3, pp. 533-555

CARDON, G.E., LETEY, J., 1992, “Plant water uptake terms evaluated for soil waterand solute movement models”, Soil Science Society of America Journal , v.56, n.6,pp. 1876–1880

CARSEL R. F., PARRISH R. S., 1988, “Developing joint probability distributions of soilwater retention characteristics”, Water Resources Research , v.24, n.5, pp. 755–769

CHEN Y., SHEN Z., LI X., 2004, “The use of vetiver grass (Vetiveria zizanioides) in thephytoremediation of soils contaminated with heavy metals”, Applied Geochemistry ,v.19, n.10, pp. 1553-1565

CHUANG M. C., SHU G. Y., LIU J. C., 1996, “Solubility of heavy metals in acontaminated soil: effects of redox potential and pH”, Water Air soil Pollution , n.90,v.3-4, pp. 543 – 556

COLLE S., PEREIRA E.B., 1998, Atlas de Irradiação Solar do Brasil , INMET,Brasilia

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL (CETESB), 2001,Estabelecimento de Valores de Referência de Qualida de e de Intervenção paraSolos e Águas Subterrâneas no Estado de São Paulo , São Paulo, CETESB.

117

Page 140: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA), 2009, Resolução n. 420,de 28 de dezembro de 2009

CORNISH J.E., GOLDBERG W.C., LEVINE R.S., BENEMANN J.R., 1995,“Phytoremediation of Soils Contaminated with Toxic Elements and Radionuclides”, pp.55-63. In: HINCHEE R. E., MEANS J.L., BURRIS D.R. (eds.), Bioremediation ofInorganics, Battelle Press, Columbus, OH

DANH L. T., TRUONG P., MAMMUCARI R., TRAN T., FOSTER N., 2009, “Vetivergrass, Vetiveria zizanioides: A Choice Plant for Phytoremediation of Heavy Metals andOrganic Wastes”, International Journal of Phytoremediation , v.11, n.8, pp. 664-691

DE SILVA M.S., NACHABE M.H., ŠIMŮNEK J., CARNAHAN, R., 2008, “SimulatingRoot Water Uptake From A Heterogeneous Vegetative Cover”, Journal of Irrigationand Drainage Engineering , v. 134, n.2, pp. 167-174

DEESAENG B., PHEUNDA J., ONARSA C., BOONSANER A., 2007, Vetiver potentialfor increasing groundwater recharge, Wildlife and Plant Conservation Department,Phaholyothin Rd., Chatuchak, Bangkok, Thailand

DOUSSAN C., PIERRET A., GARRIGUES E., PAGÈS L., 2006, “Water Uptake ByPlant Roots: II - Modeling Of Water Transfer In The Soil Root-system with ExplicitAccount Of Flow Within The Root System, Comparison with Experiments”, Plant andSoil , v. 283, n. 1-2, pp. 99-117

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA, CentroNacional de Pesquisa de Solos, 1997, Manual de métodos de análise de solo , 2.ed.Rio de Janeiro

FEDDES R.A., KOWALIK, P.J., ZARADNY, H., 1978, Simulation of Field Water Useand Crop Yield , John Wiley & Sons, New York, NY

FEDDES R.A., RAATS P.A.C, 2004, “Parametrizing the soil – water – plant rootsystem” In: FEDDES, R.A., DE ROOIJ, G.H., VAN DAM, J.C. (Eds.), Proceedings ofthe Unsaturated Zone Modelling: Progress, Challenges and Applications, WageningenUR Frontis Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, v. 6, n.4pp. 95–141

FERREIRA M. B., 2010, Estudo Paramétrico do Transporte e Remediação de HPA emSolo com o Programa Modflow, Dissertação de Mestrado – UFRJ/COPPE/Programade Engenharia Civil

FETTER C.W., 1993, Contaminant Hydrogeology , McMillan Publishing Company,Nova Iorque

FLATHMAN, P.E, LANZA G.R., 1998, “Phytoremediation: Current Views on anEmerging Green Technology”, Journal of Soil Contamination , n.7, n.4, pp. 415–432

FOY C.D., CHANEY R.L., WHITE M.C., 1978, “The Physiology of Metal Toxicity inPlants”, Annual Review of Plant Physiology , V.29, p.511 -566

FREEZE R.A., CHERRY J.A., 1979, Groundwater , Prentice-Hall Inc., Nova Jersey

GERKE, H. H., VAN GENUCHTEN M. TH., 1993, “A dual-porosity model for simulatingthe preferential movement of water and solutes in structured porous media”, WaterResources Research , 29, 305-319

GOBRAN G.R., CLEGG S., COURCHESNE F., 1999, “The Rhizosphere and TraceElement Acquisition in Soils”, In ISKANDAR I.K., MAGDI SELIM H. (org.), Fate andTransport of Heavy Metals in the Vadose Zone, CRC Press, Boca Raton, Florida(USA), 344 p.

118

Page 141: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

GOMES P.C., FONTES M.P.F., DA SILVA A.C., MENDONCA E., NETTO A.R., 2001,“Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils”,Soil Science Society of America Journal , v. 65, n. 4, pp. 1115–1121

GREGER, M., 2004, “Metal availability, uptake, transport and accumulation in plants”,In: PRASAD M. N. V. (Org.) Heavy Metal Stress in Plants, Springer, Heidelberg, 2 ed.

HAYES, K.F., TRAINA S.J., 1998, “Metal ion speciation and its significance inecosystem health”, In: HUANG P.M.(ed.) Soil chemistry and ecosystem health, SSSASpecial Pub. 52. SSSA Inc., Madison, WI., pp. 45–84

HILLEL D., 2007, Environmental Soil Physics , Academic Press, San Diego, CA

HOFFMAN G. J., VAN GENUCHTEN M. TH., 1983, “Soil properties and efficient wateruse: Water management for salinity control”. In: TAYLOR H. M., JORDAN W. R.,SINCLAIR T. R. (org.), Limitations and Efficient Water Use in Crop Production, Am.Soc. Of Agron., Madison, WI, pp. 73-85

HOMAEE M., FEDDES R. A., DIRKSEN C., 2002, “A Macroscopic Water ExtractionModel for Non-uniform Transient Salinity and Water Stress”, Soil Science Society ofAmerica Journal , v.66, n.6, pp. 1764–1772

HOPMANS J.W., BRISTOW K.L., 2002, “Current capabilities and future needs of rootwater and nutrient uptake modeling”, Advances in Agronomy , v.77, pp. 104–175

INTERSTATE TECHNOLOGY & REGULATORY COUNCIL (ITRC), 2009,Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised.PHYTO-3. Washington, D.C.: Interstate Technology & Regulatory Council,Phytotechnologies Team, Tech Reg, Disponivel em<www.itrcweb.org/Documents/PHYTO-3.pdf> acesso em:10 Mar 2009

JACQUES D., ŠIMŮNEK J., MALLANTS D., VAN GENUCHTEN M.T., 2008, “Modellingcoupled water flow, solute transport and geochemical reactions affecting heavy metalmigration in a Podzol soil”, Geoderma , v. 145, n.3-4, pp. 449-461

JARVIS N.J., 1989, “A simple empirical model of root water uptake”, Journal ofHydrology , v.107, n. 1-4, pp.57–72.

JARVIS N.J., 1994, The MACRO model (Version 3.1), technical description andsample simulations, Reports and Dissertations 19. Dept. Soil Sci., Swedish Univ. Agric.Sci., Uppsala, Sweden, 51 pp.

JAVAUX M., SCHRÖDERA T., VANDERBORGHTB J., VEREECKENA H., 2008, “Useof a Three-Dimensional Detailed Modeling Approach for Predicting Root WaterUptake”, Vadose Zone Journal , v.7, n. 3, pp. 1079-1088

JUNGK A.O., 1991, “Dynamics of nutrient movement at the soil–root interface”, In:WAISEL Y., ESHEL A., KAFKAFI U. (org.), Plant Roots, The Hidden Half, MarcelDekker, Inc., New York, capítulo 31, pp. 455–481

JURY W.A., R. HORTON, 2004, Soil Physics , 6th Edition, John Wiley and Sons, Inc.,Hoboken, NJ

KABATA-PENDIAS A., PENDIAS H., 2001, Trace Elements in Soils and Plants ,Boca Raton, FL: CRC Press

KARUNARATNE S., ASAEDA T., YUTANI K., 2003, “Growth performance ofPhragmites australis in Japan: influence of geographic gradient”, Environmental andExperimental Botany , v. 50, n.1, pp. 51-66

119

Page 142: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

KROES J.G., VAN DAM J.C., GROENENDIJK P. ,HENDRIKS R.F.A., JACOBS C.M.J. ,2008, SWAP version 3.2. Theory description and user manual, Wageningen, Alterra,Alterra Report1649, 262 pp.

LINACRE N. A., WHITING S. N., ANGLE, J. S., 2005, "Incorporating project uncertaintyin novel environmental biotechnologies: illustrated using phytoremediation," EPTDdiscussion papers 132, International Food Policy Research Institute (IFPRI), Disponivelem <http://www.ifpri.org/sites/default/files/publications/eptdp132.pdf> acesso em: 1 Fev2011

LUMBRERAS J. F., GOMES J. B. V., 2004, Mapeamento Pedológico eInterpretações Úteis ao Planejamento Ambiental do M unicípio do Rio de Janeiro ,Embrapa Solos, Rio de Janeiro

MAAS E.V., 1990, “Crop salt tolerance” In: TANJI, K.K. (Ed.), Agricultural SalinityAssessment and Management, ASCE, Manuals and Reports on Engineering Practice,n. 71, New York

MCCUTCHEON S., SCHNOOR J., 2003, Phytoremediation Transformation andControl of Contaminants , John Wiley & Sons, Inc., Hoboken, New Jersey

MILLINGTON R. J., QUIRK J. M., 1961, “Permeability of porous solids”, Transactionsof the Faraday Society , v. 57, p. 1200-1207,

MONTEIRO M. T. , 2008, Fitorremediação de Rejeito Contaminado Proveniente doCanal do Fundão, na Baía de Guanabara-RJ, Tese de Doutorado –UFRJ/COPPE/Programa de Engenharia Civil

MORERA M. T., ECHEVERRÍA J. C., MAZKIARÁN C., GARRIDO J. J., 2001,“Isotherms and sequential extraction procedures for evaluating sorption and distributionof heavy metals in soils”, Environmental Pollution, v. 113, n.2, p. 135-144

OTTE, M. L., BUIJS, E. P., RIEMER, L., ROZEMA, J., AND BROEKMAN, R. A., 1987,“The iron-plaque on the roots of saltmarsh plants: a barrier to heavy metal uptake?”, In:LINDBERG, S. E., HUTCHINSON, T. C., (eds.), Heavy Metals in the Environment,v.11, CEP Consult., Edinburgh, p.309 - 317

OUYANG Y., 2002, “Phytoremediation: modeling plant uptake and contaminanttransport in the soil–plant atmosphere continuum”, Journal of Hydrology , v. 266, n.1-2, pp. 66–82

PAULETTO E.A., BORGES J.R., SOUSA R. O., PINTO L. F. S., SILVA J.B., LEITZKEV.W., 2005, “Avaliação da densidade e da porosidade de um gleissolo submetido adiferentes sistemas de cultivo e diferentes culturas”, Revista Brasileira deAgrociência , v.11, n. 2, p. 207-210

PERSICANI D., 1996, “Pesticide leaching into field soils: Sensitivity analysis of fourmathematical models”, Ecological Modelling , v. 84, n. 1-3, pp. 265-280

RAATS P. A.C., 2007, “Uptake of Water from Soils by Plant Roots”, Transport inporous media , v.68, n. 1, pp. 5-28

REICHARDT K., TIMM L. C., 2004, Solo, Planta e Atmosfera. Conceitos, Processos eAplicações, Editora Manole, São Paulo

REMEDIATION TECHNOLOGIES DEVELOPMENT FORUM (RTDF), 2005, Evaluationof Phytoremediation for Management of Chlorinated Solvents in Soil and Groundwater,EPA, Phytoremediation of Organics Action Team, Chlorinated Solvents Workgroup,disponivel em <www.rtdf.org/public/phyto/chlor_solv_management.pdf> acesso em: 20Nov 2009

120

Page 143: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

ROBINSON B., SCHULIN R., NOWACK B., ROULIER S., MENON M., CLOTHIER B.,GREEN S., MILLS T., 2006, “Phytoremediation for the management of metal flux incontaminated sites”, Forest Snow and Landscape Research , v.80, n.2, pp. 221–234

ROBINSON B.H., FERNÁNDEZ J.E., MADEJÓN P., MARAÑÓN T., MURILLO J.M.,GREEN S.R., CLOTHIER B.E., 2003, “Phytoextraction: an assessment ofbiogeochemical and economic viability”, Plant and Soil , v. 249, n. 1, pp. 117–125

RULE J.H., 1999, “Trace metal cátion adsorption in soils: selective chemical extractionsand biological availability”, Studies in Surface Science and Catalysis , v. 120, n.2, pp.319-349

SALT D.E., BLAYLOCK M., KUMAR N., DUSHENKOV V., ENSLEY B.D., CHET I.,RASKIN I., 1995, “Phytoremediation: A Novel Strategy for the Removal of Toxic Metalsfrom the Environment Using Plants”, Nature Biotechnology , v.13, pp. 468 - 474

SCHAAP M.G., LEIJ F.J., VAN GENUCHTEN M.TH., 1999, “A bootstrap-neuralnetwork approach to predict soil hydraulic parameters”. In: VAN GENUCHTEN M. TH.et al. (eds.) Proc. Intl. Work-shop, Characterization and Measurements of the HydraulicProperties of Unsaturated Porous Media, University of California, Riverside, pp. 1237–1250

SCHLEGEL P., HUWE B., TEIXEIRA W.G., 2004, “Modelling Species and SpacingEffects on Root Zone Water Dynamics Using Hydrus-2D In an Amazonian AgroforestrySystem”, Agroforestry Systems , v.60, n. 3, pp. 277-289

SCHNOOR J. L., 1997, Phytoremediation, Ground-Water Remediation TechnologiesAnalysis Center Technology Evaluation Report TE-98-01

SEUNTJENS P., 2002, “Field-Scale Cadmium Transport in a Heterogeneous LayeredSoil”, Water, Air and Soil Pollution , v. 140, n. 1-4, pp. 401–423

SHARMA K. D., JOSHI N. L., SINGH H. P., BOHRA D. N., KALLA A. K., JOSHI P. K.,1999, “Study on the performance of contour vegetative barriers in an arid region usingnumerical models”, Agricultural Water Management , v. 41, n. 1, pp. 41 - 56

SHARMAH A.J., CLOSE M.E., PANG L., LEE R., GREEN S.R., 2005, “Field study ofleaching in a Himatangi sand (Manawatu) and a Kiripaka bouldery clay loam(Northland). 2. Simulation using LEACHM, HYDRUS-1D, Gleams and SPASMOmodels”, Australian Journal of Soil Research , v. 43, n. 4, pp. 471–489

ŠIMŮNEK J., DIEDERIK J., TWARAKAVI C., VAN GENUCHTEN M. TH., 2009a,“Selected HYDRUS modules for modelling subsurface flow and contaminant transportas influenced by biological processes at various scales”, Biologia , v. 64, n.3, pp. 465-469

ŠIMŮNEK J., HOPMANS J. W., 2009, “Modelling compensated root water and nutrientuptake”, Ecological Modelling , v.220, n.4, pp. 505-521

ŠIMŮNEK J., ŠEJNA M., SAITO H., SAKAI M., VAN GENUCHTEN M. TH., 2009b, TheHYDRUS-1D código computacional Package for Simulating the Movement of Water,Heat, and Multiple Solutes in Variably Saturated Media, Version 4.08, HYDRUS códigocomputacional Series 3, Department of Environmental Sciences, University ofCalifornia, Riverside, California, USA

ŠIMŮNEK J., VAN GENUCHTEN M. TH., ŠEJNA M., 2008, “Development andapplications of the HYDRUS and STANMOD código computacional packages, andrelated codes”, In: Special Issue Vadose Zone Modelling, Vadose Zone Journal, v. 7,n.2, pp.587-600

121

Page 144: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

SMEAL C., HACKETT M., TRUONG P., 2003, “Vetiver System for IndustrialWastewater Treatment in Queensland, Australia”, In: The Third InternationalConference on Vetiver (ICV-3), Guangzhou, Guangdong, People's Republic of China,disponível em www.vetiver.org/ICV3-Proceedings/AUS_indus_wastewater.pdf acessoem 08/09/2010

SOARES M.R., 2004, Coeficiente de distribuição (Kd) de metais pesados em solos doestado de São Paulo , Tese de Doutorado, Escola Superior de Agricultura “Luiz deQueiroz”, Universidade de São Paulo , Piracicaba, São Paulo, 2004

SOMMER R., FOLSTER H., VIELHAUER K., CARVALHO E. J. M., VLEK P. L. G.,2003, “Deep soil water dynamics and depletion by secondary vegetation in the EasternAmazon”, Soil Science Society of America Journal , v. 67, n.6, pp. 1672-1686

SPITZ K., MORENO J., 1996, A practical guide to groundwater and solutetransport modeling , John Wiley (New York)

SPOSITO, G., 1989, The chemistry of soils , New York: Oxford University Pres,277pp.

TANDY, S., SCHULIN R., NOWACK B., 2006, “Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration”,Environmental Science & Technology , v. 40, n.8, pp. 2753–2758

TAVARES S.R., 2009, Fitorremediação em solo e água de áreas contaminadas pormetais pesados provenientes da disposição de resíduos perigosos, Tese de Doutorado– UFRJ/COPPE/Programa de Engenharia Civil, Rio de Janeiro, 2009

TAYLOR S. A., ASHCROFT G. M., 1972, Physical Edaphology , Freeman and Co.,San Francisco, California

TOMASELLA J., HODNETT M.G., ROSSATO L., 1998, “Pedotransfer Functions for theEstimation of Soil Water Retention in Brazilian Soils”, Soil Science Society ofAmerica Journal, v. 64, n. 1, pp. 327-338

TOMASELLA J., PACHEPSKYB Y., CRESTANAC S., RAWLS W. J., 2003,“Comparison of Two Techniques to Develop Pedotransfer Functions for WaterRetention”, Soil Science Society of America Journal, v. 67, n. 4, pp. 1085-1092

TRUONG P., 2000, “Application of the Vetiver System for Phytoremediation ofMercuryPollution in the Lake and Yolo Counties, Northern California”, POLLUTIONSOLUTIONS Seminar, Clear Lake, 10 May 2000

TRUONG P., FOONG Y., GUTHRIE M., HUNG Y., 2010, “Phytoremediation of HeavyMetal Contaminated Soils and Water Using Vetiver Grass”, In: WANG L.G., TAY J.(Org.), Environmental Bioengineering, Humana Press, Inc., Totowa, NJ, USA, v. 11,capítulo 8, pp. 233-275

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA), 2000, Introduction toPhytoremediation, National Risk Management Research Laboratory, Office ofResearch and Development, U.S. Envirotal Protection Agency, Cincinnati, Ohio,Disponível em: <http://www.epa.gov/tio/download/remed/introphyto.pdf> acesso em: 15Feb 2010

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA), 2003, Phytoremediation ofGroundwater at Air Force Plant 4. Carswell, Texas. Innovative Technology EvaluationReport, National Risk Management Research Laboratory, Office of Research andDevelopment, U.S. Envirotal Protection Agency, Cincinnati, Ohio, disponível em:<www.epa.gov/nrmrl/pubs/540r03506/540R03506.pdf>, acesso em: 20 Jan 2010

122

Page 145: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA), 2010, UnderstandingVariation in Partition Coefficient, Kd, Values, disponivel: em

<http://www.epa.gov/rpdweb00/cleanup/402-r-99-004.html>, acesso em: 6 Ago 2010

VAN GENUCHTEN M. T., LEIJ F.J., YATES S.R., 1991, The RETC code for quantifyingthe hydraulic functions of unsaturated soils, Environmental Protection Agency,EPA/600/2–91/065

VAN GENUCHTEN M. T., WAGENET R. J., 1989, “Two-site/two-region models forpesticide transport and degradation: theoretical development and analytical solutions”,Soil Science Society of America Journal , v. 53, n.5, pp. 1303-1310

VAN GENUCHTEN M.T., 1980, “A closed-form equation for predicting the hydraulicconductivity of unsaturated soils”, Soil Science Society of America Journal , v. 44,n.5, pp. 892–898

VAN GENUCHTEN M.T., 1987, A numerical model for water and solute movement inand below the root zone, Research Report No 121, U.S. Salinity Laboratory, USDA,ARS, Riverside, CA.

VAN LIER Q., METSELAAR K., VAN DAM J., 2006, “Root Water Extraction AndLimiting Soil Hydraulic Conditions Estimated By Numerical Simulation”, Vadose ZoneJournal , v.5, n.4, pp.1264–1277

VANCLOOSTER M., VIAENE P., DIELS J., 1994, WAVE: a mathematical model forsimulating water and agrochemicals in the vadose en vironment: reference anduser's manual (release 2.0) , Katholieke Universiteit Leuven

VOGEL T., 1987, SWMII—Numerical model of two-dimensional flow in a variablysaturated porous medium. Research Rep.No. 87. Dept. of Hydraulics and CatchmentHydrology, 1295 Agricultural Univ, Wageningen, The Netherlands

VRUGT J.A., HOPMANS J.W., ŠIMŮNEK J., 2001a, “Calibration of a two-dimensionalroot water uptake model”, Soil Science Society of America Journal , v.65, n. 4, pp.1027–1037

VRUGT J.A., VAN WIJK M.T., HOPMANS J.W., ŠIMŮNEK, J., 2001b, “One-, two-, andthree-dimensional root water uptake functions for transient modeling”, WaterResources Research , v. 37, n.10, pp. 2457–2470

WESSELING J. G., 1991, Meerjarige simulaties van gronwateronttrekking voorverschillende bodmprofielen, grondwatertrappen en gewassen met het modelSWATRE, Report 152, Winand Staring Centre, Wageningen, the Netherlands,

WÖHLING T., SCHMITZ G.H., 2007, “A physically based coupled model for simulating1D surface–2D subsurface flow and plant water uptake in irrigation furrows: I. Modeldevelopment”, Journal of Irrigation and Drainage Engineering , v. 133, n. 6, pp. 538–547

YOUNG, R. N.; MOHAMED, A. M. O. & WARKENTIN, B. P., 1996, Principles ofcontaminant transport in soils , Elsevier

ZHOU M., SINGELS A., SMIT M., 2003, “Physiological parameters for modellingvarietal differences in sugarcane canopy development in the south east lowveld ofZimbabwe”, In: Proceedings of the South African Sugarcane Technologists'Association, v.77, p.32-40

123

Page 146: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

8. ANEXOS

8.1. Vetiver, Chrysopogon zizanioides L (Roberty)

A Chrysopogon zizanioides, vulgarmente conhecida como capim Vetiver (derivado

do Tamil), é uma erva perene da família Poaceae, nativa da Índia. O capim Vetiver

pode crescer até 1,5 metros de altura em ampla touceiras. As folhas são longas, finas

e bastante rígida. Ao contrário da maioria gramíneas, que formam sistemas radiculares

com desenvolvimento horizontal, as raízes de Vetiver crescem para baixo, atingindo 2-

4 metros de profundidade. Ela, devido às suas características morfológicas e

fisiológicas, tem sido amplamente conhecida por sua eficácia no controle da erosão;

além disso CHEN et al. (2004) e TRUONG (2010) evidenciaram outras importantes

características:

• tolerância a condições adversas: variações climáticas extremas, como

seca prolongada, inundação, submersão e temperaturas extremas de -22oC a 60 oC;

• capacidade de se regenerar muito rapidamente após de ser afetada por

secas, geadas, salinidade ou outras condições adversas;

• ampla tolerância ao pH do solo (3,0 a 10,5);

• a disposição em linhas têm uma elevada resistência ao fluxos de

escoamento e atuam como filtro para sedimentos;

• é estéril e não-invasiva;

• tem alta resistência a pragas, doenças e incêndios;

• é xerófila e hidrofílica: pode portanto ser cultivada por via hidropônica

(tratamento de águas superficiais).

Do ponto de vista da fitorremediação, o capim Vetiver aproveita as vantagens de

um sistema radical extremamente denso e profundo e da sua elevada resistência as

124

Page 147: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

condições adversas. Ele não é considerado como hiper-acumulador em relação a

muitos metais tóxicos (Tabela 8.1), mas apresenta elevadas taxas de produção de

biomassa do sistema radicular e superficial na fase adulta, levando a ter uma maior

eficiência em processos de fitorremediação de espécies hiper-acumuladoras. Também

é marcante o efeito hidráulico que limita a percolação e o escoamento superficial dos

contaminantes. Além disso, em uma área afetada por contaminação, degradação e

compactação, pode desenvolver um papel de pioneira melhorando a qualidade do solo

(TRUONG, 2000 e 2010).

A tendência a concentrar os contaminante nas raízes torna a ação

fitorremediadora do capim Vetiver mais parecida ao fito-sequestro de que a fito-

extração.

Tabela 8.1: Valores limite de metais pelo crescimento das plantas, em específico pelo capimVetiver

Fonte: TRUONG (2010)

Media [ppm] Capim Vetiver [ppm]

metal solo Planta solo Planta

Cd 1,5 30 20 ÷ 60 45 ÷ 48

Pb nd 300 > 1500 > 78

Ni 7 ÷ 10 100 100 347

Zn nd 400 > 750 > 800

125

Page 148: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

8.2. Experimentos na casa de vegetação da EMBRAPA S olos

de Rio de Janeiro

8.2.1. Dados Climatológicos

Tabela 8.2: Dados climatológicos na casa de vegetação de EMBRAPA Solos de Rio de Janeirodurante o período do cultivo do capim Vetiver.

Fonte: comunicação pessoal

126

dia radiação umidade vento dia radiação umidade vento

[MJ/m²/d] [ºC] [ºC] % [km/d] [MJ/m²/d] [ºC] [ºC] % [km/d]

1 11,569 29,118 18,898 83,559 1,805 31 5,289 23,628 16,837 82,237 1,889

2 11,051 28,320 17,760 82,123 2,286 32 11,569 29,118 18,898 83,559 1,805

3 10,332 26,530 19,722 84,913 8,160 33 11,051 28,320 17,760 82,123 2,286

4 10,119 27,151 20,851 85,349 8,581 34 10,332 26,530 19,722 84,913 8,160

5 10,024 27,579 20,358 85,930 9,957 35 10,119 27,151 20,851 85,349 8,581

6 6,238 25,810 22,038 87,480 9,917 36 10,024 27,579 20,358 85,930 9,957

7 8,558 27,615 21,511 87,379 6,217 37 6,238 25,810 22,038 87,480 9,917

8 9,792 27,778 20,588 83,820 10,549 38 8,558 27,615 21,511 87,379 6,217

9 9,982 27,332 19,047 84,644 11,324 39 9,792 27,778 20,588 83,820 10,549

10 10,196 27,435 18,899 83,707 3,250 40 9,982 27,332 19,047 84,644 11,324

11 10,581 27,051 20,000 84,799 6,209 41 10,196 27,435 18,899 83,707 3,250

12 9,976 27,350 19,772 85,460 7,925 42 10,581 27,051 20,000 84,799 6,209

13 4,333 26,636 21,758 88,893 10,336 43 9,976 27,350 19,772 85,460 7,925

14 1,259 24,609 18,998 90,435 10,940 44 4,333 26,636 21,758 88,893 10,336

15 3,398 24,040 17,628 88,902 10,797 45 1,259 24,609 18,998 90,435 10,940

16 5,663 24,798 16,640 86,663 2,286 46 3,398 24,040 17,628 88,902 10,797

17 10,654 23,758 16,104 84,707 8,160 47 5,663 24,798 16,640 86,663 2,286

18 10,915 24,655 15,576 84,410 8,581 48 10,654 23,758 16,104 84,707 8,160

19 8,986 26,023 18,041 84,042 9,957 49 10,915 24,655 15,576 84,410 8,581

20 5,704 26,080 20,670 88,748 9,917 50 8,986 26,023 18,041 84,042 9,957

21 5,336 35,463 19,722 82,988 6,217 51 5,704 26,080 20,670 88,748 9,917

22 7,703 27,566 20,818 85,355 10,549 52 5,336 35,463 19,722 82,988 6,217

23 9,721 26,904 19,228 84,422 11,324 53 7,703 27,566 20,818 85,355 10,549

24 4,642 24,947 19,899 84,748 3,250 54 9,721 26,904 19,228 84,422 11,324

25 6,785 23,710 18,536 85,791 6,209 55 4,642 24,947 19,899 84,748 3,250

26 7,947 24,625 18,486 86,299 7,925 56 6,785 23,710 18,536 85,791 6,209

27 9,217 25,695 17,892 86,646 10,336 57 7,947 24,625 18,486 86,299 7,925

28 7,852 26,237 18,932 87,657 10,940 58 9,217 25,695 17,892 86,646 10,336

29 7,936 25,942 19,261 86,298 10,797 59 7,852 26,237 18,932 87,657 10,940

30 3,799 23,694 19,129 78,378 7,276 60 7,936 25,942 19,261 86,298 10,797

Tmax

Tmin

Tmax

Tmin

Page 149: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

8.2.2. Irrigação

Tabela 8.3: Irrigação na cultura do capim Vetiver na casa de vegetação de EMBRAPA Solos deRio de Janeiro

Fonte: comunicação pessoal

127

dia irrigação dia irrigação [cm/d] [cm/d]

25/11/08 0,906 180 01/01/09 0,000 026/11/08 0,000 0 02/01/09 0,906 18027/11/08 0,906 180 03/01/09 0,000 028/11/08 0,906 180 04/01/09 0,000 029/11/08 0,000 0 05/01/09 0,906 18030/11/08 0,000 0 06/01/09 0,000 001/12/08 0,906 180 07/01/09 0,000 002/12/08 0,000 0 08/01/09 0,000 003/12/08 0,000 0 09/01/09 0,906 18004/12/08 0,504 100 10/01/09 0,000 005/12/08 0,000 0 11/01/09 0,000 006/12/08 0,000 0 12/01/09 0,000 007/12/08 0,000 0 13/01/09 0,000 008/12/08 0,906 180 14/01/09 0,000 009/12/08 0,906 180 15/01/09 0,000 010/12/08 0,504 100 16/01/09 0,000 011/12/08 0,504 100 17/01/09 0,906 18012/12/08 0,906 180 18/01/09 0,000 013/12/08 0,000 0 19/01/09 0,000 014/12/08 0,000 0 20/01/09 0,000 015/12/08 0,000 0 21/01/09 0,000 016/12/08 0,906 180 22/01/09 0,000 017/12/08 0,000 0 23/01/09 0,000 018/12/08 0,000 019/12/08 0,906 18020/12/08 0,000 021/12/08 0,000 022/12/08 0,906 18023/12/08 0,000 024/12/08 0,000 025/12/08 0,000 026/12/08 0,906 18027/12/08 0,000 028/12/08 0,000 029/12/08 0,000 030/12/08 0,000 031/12/08 0,000 0

s om a 2 9 9 9

[cm3] [cm3]

Page 150: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 8.4: Dados irrigação modificados utilizados pela calibração (capítulo 4)

128

dia irrigação dia irrigação [cm/d] [cm/d]

25/11/08 0,500 99 01/01/09 0,000 026/11/08 0,000 0 02/01/09 0,500 9927/11/08 0,750 149 03/01/09 0,000 028/11/08 0,000 0 04/01/09 0,625 12429/11/08 0,500 99 05/01/09 0,000 030/11/08 0,000 0 06/01/09 0,500 9901/12/08 0,500 99 07/01/09 0,000 002/12/08 0,000 0 08/01/09 0,250 5003/12/08 0,625 124 09/01/09 0,000 004/12/08 0,000 0 10/01/09 0,375 7405/12/08 0,625 124 11/01/09 0,000 006/12/08 0,000 0 12/01/09 0,500 9907/12/08 0,250 50 13/01/09 0,000 008/12/08 0,000 0 14/01/09 0,500 9909/12/08 0,250 50 15/01/09 0,000 010/12/08 0,000 0 16/01/09 0,500 9911/12/08 0,500 99 17/01/09 0,000 012/12/08 0,000 0 18/01/09 0,250 5013/12/08 0,500 99 19/01/09 0,000 014/12/08 0,000 0 20/01/09 0,500 9915/12/08 0,500 99 21/01/09 0,000 016/12/08 0,000 0 22/01/09 0,500 9917/12/08 0,375 74 23/01/09 0,000 018/12/08 0,000 019/12/08 0,500 9920/12/08 0,000 021/12/08 0,500 9922/12/08 0,000 023/12/08 0,250 5024/12/08 0,000 025/12/08 0,500 9926/12/08 0,000 027/12/08 0,750 14928/12/08 0,000 029/12/08 0,500 9930/12/08 0,000 031/12/08 0,500 99

s om a 2 8 5 4

[cm3] [cm3]

Page 151: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

8.2.3. Determinação dos parâmetros relativos ao tra nsporte de

contaminantes no solo

Tabela 8.5: Caraterísticas texturais dos tipos de solos estudados por SOARES (2004)

Tabela 8.6: Caraterísticas químicas dos tipos de solos estudados por SOARES (2004) e dosolo utilizado no ensaio

129

Argila [%] Silte [%] Areia [%]LatossolosLVA-1 18,1 4 77,9LVA-2 22,1 2 75,9LVA-3 20,2 6 73,8LV-1 20,1 8,1 71,8LV-2 53 10,2 36,8LVef 68,4 20,7 10,9LVwf 71,6 14,3 14,1LA-1 22,2 4 73,8LA-2 34,2 6 59,7LAwf 47 12,3 40,7ArgissolosPVA-1 6 10 84PVA-2 10 32 58PVA-3 24,7 20,6 54,7PVA-4 20,2 38,4 41,4PVA-5 36,6 44,8 18,6PVA-6 24,6 12,3 63PV-1 10 34,1 55,8PV-2 42,7 42,7 14,6

pHH2O pHKCl P K Ca Mg H+Al SB CTCt V[mg/Kg] [mmolc/Kg] %

LatossolosLVA-1 4,46 3,31 2,0 0,5 1,3 0,7 14,4 2,5 16,9 15LVA-2 4,23 3,21 3,9 0,6 1,8 1,0 26,4 3,5 29,9 12LVA-3 4,31 3,31 2,1 0,6 1,5 0,6 17,9 2,6 20,6 13LV-1 6,40 5,05 3,0 1,5 16,1 9,6 9,7 27,2 36,9 74LV-2 4,55 3,37 5,8 1,8 9,3 6,4 41,8 17,5 59,3 30LVef 7,25 6,69 49,2 5,2 28,8 25,2 3,0 59,2 62,2 95LVwf 4,67 3,74 13,3 2,9 10,1 4,9 40,6 17,8 58,4 30LA-1 4,81 3,94 7,6 1,7 11,8 6,5 24,2 20,0 44,2 45LA-2 4,44 3,54 2,0 1,1 1,7 1,0 19,7 3,8 23,4 16LAwf 4,69 3,72 3,3 1,1 5,0 3,9 37,9 10,0 47,8 21ArgissolosPVA-1 5,27 4,26 1,8 0,3 2,6 0,9 3,2 3,8 7,0 54PVA-2 5,36 4,29 3,3 1,0 4,7 2,1 4,8 7,8 12,6 62PVA-3 5,40 4,65 22,8 2,8 32,7 8,3 15,5 43,8 59,3 74PVA-4 5,10 4,12 3,2 1,0 14,5 5,2 10,6 20,7 31,3 66PVA-5 5,64 5,02 22,5 3,6 50,3 14,0 14,2 67,9 82,1 83PVA-6 6,14 5,45 7,5 3,8 27,1 11,8 13,2 42,7 55,9 76PV-1 5,28 4,10 1,6 1,2 3,4 1,9 6,7 6,4 13,1 49PV-2 5,70 4,77 8,1 1,2 38,1 14,2 18,7 53,4 72,1 74

ensaio 6,4 6,1 1,03 1,37 21,23 3,42 6,85 9,59 16,44 58

Page 152: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

8.2.4. Síntese dos parâmetros utilizados na calibra ção

Tabela 8.7:Sinopse dos parâmetros utilizados na calibração do código computacionalHYDRUS-1D

Área Parâmetro Valor Fonte

Geometria

Tipos de solo 1 TAVARES (2009)

Profundidade profilo 10 cm TAVARES (2009)

Numero de nós 101 Determinado com análisede convergência

Tempo

duração 60 dias TAVARES (2009)

“time step” minimo 1E-5 dias Determinado com análisede convergência

“time step” máximo 5 dias Determinado com análisede convergência

“time step” inicial 0,001 dias Determinado com análisede convergência

Controle dasiterações

ŠIMŮNEK & HOPMANS(2009)

Modelo hidráulico

Tipologia Porosidade única (exceptoitem 4.2.1. )

VAN GENUCHTEN (1980)

Parâmetros de retenção11,32 cm/dia Calc PTF ( et al. 1998),

Tabela 4.4

Condutividade hidráulicasaturada

(vide item 4.2.1. ) PTF (ROSETTA), Tabela4.4

Histerese não Ausência de dados sobrehisterese

Condições aocontorno (fluxo deágua)

Condição inicial (sucção) Estimado de TAVARES(2009)

Condição de contorno(topo do perfil)

Condições Atmosféricascom acumulação máximode 1 cm de água

TAVARES (2009)

Condição de contorno(fundo do perfil)

Superfície de escoamento Ajuste item 4.2.3.1

Transporte decontaminantes

Modelo Equilíbrio Disponibilidade de dados

Ponderação no tempo Crank-Nicholson ŠIMŮNEK & HOPMANS(2009)

Ponderação no espaço Galerkin FE ŠIMŮNEK & HOPMANS(2009)

Controle das iterações(vide item 4.4.2. )

Determinado com análisede convergência

Fator de tortuosidade MILLINGTON & QUIRK(1961)

Densidade do solo TAVARES (2009)

Coeficiente dedispersividade longitudinal

1 cm ŠIMŮNEK & HOPMANS(2009)

Coeficiente de difusãomolecular em água

0 (desprezível em relaçãoá advecção e dispersão)

FETTER (1993)

Kd, Kf, n SOARES (2004)

130

Page 153: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 8.8:Sinopse dos parâmetros utilizados na calibração do código computacionalHYDRUS-1D

Área Parâmetro Valor Fonte

Condições aocontorno(transporte decontaminante)

Condição inicial concentração constanteno perfil

TAVARES (2009)

Condição de contorno(topo do perfil)

Terceiro tipo (fluxo semcontaminante = irrigação)

TAVARES (2009)

Condição de contorno(fundo do perfil)

Gradiente deconcentração nulo

TAVARES (2009)

Absorção pelasraízes

Estresse hídrico Feddes FEDDES et al. (1978)

Parâmetros estresse Trigo WESSELING (1991)

Estresse da salinidade

Aditivo (vide item4.4.1.3 ) VAN GENUCHTEN(1987),FEDDES e RAATS(2004)

Ausente (exceptoitem4.4.1.3 )

Compensação estresse ausente Ausência de dados

Conce tração limite pelaabsorção passiva desolutos

9999 mg/cm3 (vide item4.4.1. )

Modelo totalmentepassivo

0 mg/cm3 (vide item 4.4.3.)

Aplicação do modelo ativo

Parâmetros do modeloativo (com estresse)

Calibração item 4.4.3.

Condiçõesatmosféricas /irrigação

Irrigação Par.8.2.2.

Evapotranspiração fórmula Penmann-Montheith (2.17) no item 4.2.3.2

ALLEN et al. (1998)

Índice de área foliar 3,11 Ajuste item 4.2.3.2

Coeficiente extinção daradiação

0,463 ŠIMŮNEK & HOPMANS(2009)

Altura das plantas 40 cm Comunicação pessoal

Profundidade das raízes 10 cm TAVARES (2009)

Fator de cultura, kc (videitem 4.2.3.2 )

0,92 DEESAENG et al. (2007)

Dados metateológicos Comunicação pessoal

131

Page 154: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

8.3. Estudos de caso

8.3.1. Dados climatológicos

Tabela 8.9: Dados climatológicos do Aeroporto de Santa Cruz – Rio de Janeiro (série 1981-90)Fonte: http://www.redemet.aer.mil.br

Tabela 8.10: Radiação solar na superficie pelo municipio de Rio de JaneiroFonte: COLLE & PEREIRA (1998)

132

mês vel vento Tmedia Tmax Tmin UR pressão atm precipitaçãokm/dia hpa mm/mes

1 0,540 26,7 31,5 23,2 79 1010,8 175,22 0,463 27,1 32,2 23,5 78 1012,0 123,93 0,463 25,9 30,2 22,6 82 1012,1 154,64 0,463 24,7 29,2 21,2 81 1014,4 148,65 0,463 22,7 27,5 19,2 80 1016,0 70,66 0,463 21,1 26,2 17,2 80 1018,2 63,17 0,540 20,5 25,8 16,6 79 1019,6 45,88 0,540 21,3 26,5 17,4 78 1018,4 47,39 0,695 21,4 26,0 18,1 80 1017,1 90,2

10 0,617 22,9 27,1 19,7 80 1014,6 82,511 0,617 24,6 29,1 21,3 79 1012,4 72,812 0,540 25,3 29,6 22,0 79 1011,2 189,6

media 0,540 23,7 28,4 20,1 80 1014,8 1264,2

mês rad solar

1 24,852 25,923 19,804 17,105 13,106 11,707 11,708 17,109 16,20

10 18,9011 20,5012 23,80

media 18,39

MJ/m2/dia

Page 155: MODELAGEM NUMÉRICA DE PROCESSOS DE … · 2011-12-08 · MODELAGEM NUMÉRICA DE PROCESSOS DE FITORREMEDIAÇÃO DE SOLOS Francesco Lugli ... soil, hydro-geology, degree of contamination)

Tabela 8.11: Evaporação potencial de referência na área de Santa Cruz calculada com afórmula de Penmann-Monteith

133

mês mm

1 209,82 198,83 160,94 136,75 102,66 90,77 92,48 130,49 125,4

10 142,311 160,712 202,6

total 1753,3

ET0