32
Notas sobre a Geometria Diferencial (uma exposição com base nos vetores e nos diádicos) Elysio R. F. Ruggeri Preparado em janeiro de 1995.

Notas Sobre a Geometria Diferencial

Embed Size (px)

DESCRIPTION

Notas Sobre a Geometria Diferencial

Citation preview

Page 1: Notas Sobre a Geometria Diferencial

Notas sobre a

Geometria Diferencial

(uma exposição com base nos vetores e nos diádicos)

Elysio R. F. Ruggeri

Preparado em janeiro de 1995.

Page 2: Notas Sobre a Geometria Diferencial

2

RESUMO

Neste artigo, valoriza-se a utilização do Cálculo Poliádico (particularmente o

Cálculo Vetorial e o Cálculo Diádico) como uma ferramenta eficaz para o estudo da

geometria diferencial.

A teoria dos contatos torna-se mais clara, mais simples e até mais concretas.

Calcula-se o limite da razão, para o arco, da distância de pontos eqüidistantes sobre dois

arcos.

Apresentam-se expressões novas para as curvaturas normal e de torção de uma

superfície no seu ponto genérico, na direção do unitário arbitrário u do plano tangente.

Essas expressões são independentes das clássicas "primeira e segunda formas quadráticas

fundamentais" e respectivos "coeficientes de Gauss". São elas:

1R

e 1T

[ ( ) ( ) ],u . m . u m . u . m u

onde R e T são os raios de curvatura e m é o diádico gradiente do unitário da normal à

superfície no ponto. Aqui, o operador é o análogo (curvo) do clássico nabla do espaço

euclideano (plano) bidimensional.

Caracterizam-se os pontos da superfície por métodos poliádicos. Para atender o

interesse do calculista de estruturas em casca, estudam-se situações específicas em que a

superfície é representada analiticamente em forma explícita, o caso das superfícies de

revolução e o caso das rebaixadas (para as quais a curvatura de torção é desprezível e a

métrica é praticamente euclideana).

Page 3: Notas Sobre a Geometria Diferencial

3

Page 4: Notas Sobre a Geometria Diferencial

4

§ 01 -Representações de curvas e superfícies.

Das superfícies em geral.

Em relação a um certo sistema de coordenadas retilíneas X,Y,Z uma superfície (S)

é um conjunto de pontos cujas coordenadas satisfazem a uma equação da forma

F(X,Y,Z)=Constante, (01),

-dita, forma implícita de representação da superfície - e que, por hipótese, admite derivadas

parciais (ao menos até a terceira ordem) finitas e contínuas. Nesse caso, (S) é dita uma

superfície regular.

Quando F é um polinômio em X,Y e Z, a superfície é dita algébrica, e o grau do

polinômio é o grau da superfície. As superfícies do 1º grau são os planos; as do 2º grau as

quádricas; as do 3º as cúbicas etc.

As superfícies que não forem algébricas serão ditas transcendentes.

Às vezes é possível expressar Z como uma função única de X e Y (além de uma

constante), na forma

Z=G(X,Y,const.), (02),

caso em que (02) é dita uma forma explícita de representação de (S). É lógico que (01) é

uma forma mais geral de representação de (S) que (02), já que poderíamos escrever

FZ - G(X,Y,const.)=0.

Uma superfície pode também ser representada analiticamente expressando as

coordenadas dos seus pontos como funções (unívocas e contínuas, por hipótese) de dois

parâmetros; essa representação é denominada paramétrica e é a que mais interessa na

Teoria da Elasticidade. Escrevemos:

X=X(U1,U2,const.), Y=Y(U1,U2,const.), Z=Z(U1,U2,const.), (03).

A cada par de valores dos parâmetros corresponderá um ponto da superfície; e

reciprocamente. Se for possível eliminar os dois parâmetros U1 e U2 entre as equações (03),

obteremos uma equação do tipo (01).

Se, em relação aos vetores de base u u u1 2 3, e associados aos eixos do sistema de

coordenadas, r é o vetor posicional de R, então

r u u u X Y Z 31 2

e a forma vetorial de representação de (S), equivalente a (01), é

F(r)=constante, (011).

A equivalente vetorial de (03) é

Page 5: Notas Sobre a Geometria Diferencial

5

r=r(U1,U2,const.), (031),

e nesse caso (S) será dita, também, a hodógrafa da função vetorial (031).

A cada valor da constante corresponde uma superfície; logo, fazendo-se variar a

constante, obteremos uma família de superfícies.

Exemplo: (superfícies quádricas

Se é um diádico simétrico, a um vetor e A um número, todos independentes do

ponto (isto é, de X, Y e Z), a equação

F( ) Ar r. .r a.r 0, (012),

um caso particular de (011), representa uma família de superfícies quádricas reais ou

imaginárias. Para um valor particular da constante, a equação individua uma determinada

quádrica. Se a=o a quádrica tem centro (a troca de r por -r não altera a sua equação); nesse

caso a sua equação pode ser reduzida à forma

r. .r 1, sendo = A .

Curvas reversas.

Consideremos uma dada superfície (S) de uma família (constante fixada) e

arbitremos na sua equação paramétrica um valor para o parâmetro U (=1 ou 2). Então,

qualquer que seja o parâmetro considerado, (031) é escrita na forma:

r=r(U, constante), (04).

Quando U variar, o ponto R descreverá uma curva que pertence a essa superfície e (04)

será dita a sua equação vetorial paramétrica. Essa curva é a hodógrafa da equação (01) e

sua representação paramétrica cartesiana pode ser obtida diretamente das (03). Como essas

funções são unívocas e contínuas, concluímos que a cada ponto de (S) está associado um e

um único par de curvas de (S). Cotando essas curvas em valores dos respectivos

parâmetros, estabeleceremos sobre (S) uma rede de curvas que funciona como um sistema

do coordenadas curvilíneas para os pontos de (S). Tal como no plano associamos,

imaginariamente, a cada ponto, um par de retas - suas coordenadas retilíneas -, na

superfície associamos a cada ponto um par de curvas - suas coordenadas curvilíneas.

De um modo geral, toda equação do tipo (04) representa uma curva reversa ou

espacial; ela será dita plana se todos os seus pontos pertencerem a um plano.

Teor. 1:

A CNS para que uma curva r=r(U) seja plana é que (rr'r")=0, ou (r'r"r"')=0:

r=r(U) curva plana (rr'r")=0, ou (r'r"r"')=0 (05).

Provemos a primeira parte. Se r=r(U) é uma curva plana e a é um unitário fixo

ortogonal ao seu plano, r.a=0. Por derivação em relação ao parâmetro da curva deduzimos:

r'.a=r".a=0. Então, r, r' e r"são vetores ortogonais a a, isto é, coplanares com produto

Page 6: Notas Sobre a Geometria Diferencial

6

misto nulo. Reciprocamente, se uma curva r=r(U) admite (rr'r")=0 para todo r, r é paralelo

a um plano fixo (teorema clássico), e a curva pertence a esse plano.

Provemos a segunda parte. Se a curva é plana, a primeira parte garante ser

(rr'r")=0; derivando vem: (rr'r"')=0. Logo são coplanares r, r', r" e r"', ou seja

(r'r"r"')=0. Reciprocamente, se (r'r"r"')=0 para todo r, existe um vetor w(U) que é

perpendicular ao plano de r', r"e r"', sendo, pois, r'. w=0=r". w. Por derivação em relação

ao parâmetro vem: r". w + r'. w'=0=r"'. w + r". w'. Logo, r'. w'=0=r". w', isto é, w é

paralelo ao seu vetor derivada (por serem ambos perpendiculares a r' e a r"). Segundo

teorema clássico, w tem direção constante, digamos a do unitário u. Então de r'. w=0=r".

w=r"'. w vem (u.r)'=(u.r')'=(u.r")'=0, ou, integrando, u.r=u.b sendo b vetor constante.

Assim, (r-b).u=0 e o vetor r-b pertence ao plano de r', r"e r"', Por isso, (r-b)^r'.r"=0, ou

seja (rr'r")=(br'r"). Pela demonstração da primeira parte (rr'r")=0, o que implica ser b

vetor coplanar com r' e r". Então u.r=0 e r pertence também a esse plano.

Os sistemas de coordenadas curvilíneas de uma superfície em geral são curvas

reversas.

Superfícies cilíndricas e cônicas.

Se (04) é proveniente de (03) e, eventualmente, ( )rr r o , a curva é plana e (01)

pode ser reduzida a uma forma implícita em que falte, digamos, a letra Z. Nesse caso a

superfície terá por equação

F(X,Y)=constante, (06).

Se X0,Y0 é um par de números que satisfaz (05), todos os pontos do espaço de coordenadas

(X0,Y0,Z) também a satisfarão. Então, todos os pontos da reta paralela ao eixo dos Z e que

passe por X0,Y0 do plano X,Y pertencem à superfície (05). Esta superfície é uma superfície

cilíndrica, de geratriz paralela ao eixo Z e sua interseção com o plano X,Y é a curva de

equação (05).

Seja (C) uma curva reversa qualquer cujo ponto genérico, R, é definido pelo vetor

r(U). Seja a) uma reta que se desloque sempre paralelamente a um vetor de direção fixa, de

unitário k , mas sempre apoiada em (C). Então, se q é o vetor posicional do ponto genérico

Q de a), isto e, do ponto genérico da superfície cilíndrica correspondente (Fig. 01),

krq ˆV)U(V)U,( ,

onde V é um parâmetro variável em todo o campo real.

Page 7: Notas Sobre a Geometria Diferencial

7

Se adotarmos a direção de k para eixo dos Z, e se projetarmos (C) sobre um plano

perpendicular a k , então esta mesma superfície cilíndrica será representada cartesianamente

por uma equação do tipo (05).

Se (04) é uma reta, r tem direção constante (Fig. 02) e, portanto, na equação (01)

faltará também uma segunda letra, digamos Y se adotarmos a direção constante como eixo

do X. A equação da superfície é, então,

F(X)=constante, (06).

Se X=X1, X=X2, ... são valores de X que satisfazem (06), então essa equação representa os

planos X=X1, X=X2, ... paralelos ao plano YZ porque ela é satisfeita para esses valores de

X e valores arbitrários de Y e Z.

Se a curva reversa (C) anteriormente considerada como diretriz da superfície

cilíndrica fosse uma reta qualquer, a), a sua projeção ortogonal sobre um plano ) ortogonal

à direção fixa k seria também uma reta, b). Adotando-se como origem de um sistema um

ponto qualquer do plano ) e como eixos cartesianos: uma reta qualquer paralela a k como

eixo Z, uma reta paralela a b) como eixo Y e uma perpendicular a b) como eixo X, a

equação do plano definido por a) e k seria X = constante. Então o vetor posicional de um

ponto qualquer desse plano seria

piq ˆX)VU,( .......... etc

Vê-se, assim, que em geral os sistemas de coordenadas curvilíneas de uma

superfície são compostos por curvas reversas, exceto no caso das superfícies regradas (as

cilíndricas e as cônicas).

Superfície cônica

Exemplo:(caso das quádricas) ...... etc

Page 8: Notas Sobre a Geometria Diferencial

8

§ 02 - Parametrização da equação de uma curva pelo comprimento do

arco.

Comprimento de arco.

Chama-se comprimento de arco elementar de uma curva ao número real

rr.ddds2 . Como dUd dUd rr , tem-se: ds dU) (d dU2 2 ( )r 2 . O comprimento de

um arco de curva compreendido entre os valores U0 e U do parâmetro é obtido efetuando-

se a soma de infinitos arcos elementares em que se pode subdividir esse arco. Como r=r(U)

é função contínua, existe o limite

dU dU

d

dU

d limds lims

r.

r, sendo dU

dU

d

dU

ds

U

U0

r.

r.

A equação paramétrica de uma curva pode ser estabelecida com uma infinidade de

parâmetros. O parâmetro com o qual se ganha em simplicidade é o comprimento de arco da

curva; e para que isso se verifique, é CNS que

ddU

ddU

ou, pondo ddU

r

.r

rr

r .r 1 1, , , (01).

Nesse caso deduzimos, por derivações sucessivas:

r .r r .r r r .r r .r0 32, , IV ,

r .r r .r r r .r r .r r .r r .rV IV VI V IV VII 4 3 5 102, , ,

r .r r .r r .r rVII VI V IV6 15 102, etc (011),

as derivadas enésimas de (01) podendo ser escritas na forma

(( )) r r r .r r .r r .r r .r r .r r .r(n)

n0 (n 1)

n1 (n)

n2 (n )

n3 (n ) IV

nn 1 (n)

nn (n 1)C C C C ... C C1 2

onde a operação simbólica (( ))(n) indica que se deva desenvolver as potências

enésimas de r r pela fórmula clássica do binômio de Newton como se r fosse um

número, e substituir as potências formadas, ( )ri , por derivadas (i+1)-ésimas, isto é, por

)1i(i)(

rr , inclusive para i = 0.

Uma primeira conseqüencia imediata da primeira das (011) está em que a derivada

primeira do posicional do ponto genérico de uma curva em relação ao arco é um vetor

unitário que é perpendicular ao vetor derivada segunda.

Tangente a uma curva.

Vamos caracterizar geometricamente o vetor derivada primeira, r'. Sejam P e Q

pontos de uma curva de equação vetorial parametrizada pelo comprimento de arco, s,

Page 9: Notas Sobre a Geometria Diferencial

9

correspondentes aos valores s e s+, sendo o comprimento do arco PQ. O vetor r(s), cuja

origem é arbitrária, pode ser representado pela fórmula de Taylor:

... )s(3!1)s(

2!1)s(

1!1)s()+s( 32 rrrrr , (02),

donde,

... )s(3!1)s(

2!1)s(

1!1)s()+s( 2

rrr

rr, (021).

Considerando (01) e as (011), deduzimos de (021):

42IV3222 )89(

5!31

4!2

4!21]

)s()+s([

r.rrr.rr

rr

5IVV )154(!6

1 .rr.rr ... )445165(

!71 62IVVVI r.rr.rr , (03).

Por (03) vemos que quando Q tende para P (ou 0) a razão do quadrado do vetor-corda

r r( )s (s) para o quadrado do arco =ds tende para a unidade positiva.

Independentemente do sinal de , o vetor [r r( )s (s) ]/ aponta sempre no sentido do

crescimento do arco. Representando por )s(t̂ o unitário da tangente no ponto P de

parâmetro s, podemos escrever, então:

)s()s(ˆds

)s()ds+s(lim

PQ

rtrr

, (04).

Em resumo:

Quando a equação de uma curva está parametrizada no comprimento do arco

medido a partir de um de seus pontos, o vetor r'(s), determinado por (04) no

ponto corrente P de parâmetro s, é o vetor unitário da tangente à curva em P,

t̂ , e aponta no sentido do crescimento do arco.

Se x é o posicional do ponto corrente X da tangente a uma curva (C) de equação

r=r(s) num ponto P(s), a equação vetorial dessa tangente é

dsdD)s((s)D)s( rrtrx , (05),

onde D é a distância de P a X. As distâncias sobre a tangente são positivas se o vetor de

origem P e extremidade X tem o mesmo sentido que t( )s .

§ 03 - Contato.

Intuitivamente, dizer que duas figuras (não superponíveis) têm um certo número N

de "pontos consecutivos" em comum eqüivale a dizer que elas admitem "um contato de

ordem N". Vamos matematizar, ou melhor, vamos tornar preciso esse conceito do ponto de

vista matemático.

Page 10: Notas Sobre a Geometria Diferencial

10

Sejam duas curvas quaisquer (R) e (V), planas ou reversas, com um ponto de

contato, um ponto ordinário, P. Tomemos esse ponto como origem de medida dos arcos

sobre cada uma delas. Dois pontos, um de cada curva, serão ditos eqüidistantes do contato

quando os arcos que os separam desse contato têm o mesmo comprimento, digamos (Fig.

03).

Definição:

Diremos que duas curvas (R) e (V) têm um contato de ordem N num ponto P

comum a ambas se a razão d/k da distância retilínea d=QD de dois pontos Q e

D dessas curvas, eqüidistantes de P do arco , tende para um limite finito se k =

N + 1 e para zero se k = N, quando tende para 0:

Contato de (R) e (V) de ordem N

0

00

lim d

n finito,

lim d

N 1

N

, (01).

Como a origem dos posicionais é arbitrária, podemos tomá-la provisoriamente no

ponto P. Nesse caso, se r é o posicional de Q de (R) e v o de D de (V), escrevemos

d2 2 ( )r v , ou

( ) ( ) ( )d

2 2 2 2 r v r

.v

, (02).

Os quadrados de r e v são dados por ((03), §02) onde se faça r=r e r=v. A terceira parcela

do segundo membro de (02) pode ser deduzida de ((021), §02) para r(s)=o, com derivadas

calculadas na origem. Tem-se:

r.v r .v r .v r .v r .v r .v r .v 12!

13!

12!2!

] 2( ) [ ( ) 2

[ ( )14!

12!3!

]IV IV 3r .v r .v r .v r .v

[ ( ) ( )15!

12!4!

13!3!

]V V IV IV 5r .v r .v r .v r .v r .v + ...

Então, quaisquer que sejam as curvas (R) e (V), (d/)2 é um polinômio em que, ordenado

pelas potências de expoentes crescentes de , apresenta as seguintes parcelas:

Page 11: Notas Sobre a Geometria Diferencial

11

2 1 ( ) r .v ,

( )r .v r .v ,

24

2 2

!( )r v ,

13

3

!( ) ( )r v . r v ,

106!

3 2 2 4[ ( ) ( ) ( ) ]r v . r v r vIV IV ,

26!

3 5 5[ ( ) ( ) ( ) ( )]r v . r v r v . r vV V IV IV ... etc. (031).

Conforme (01), vemos que para N=0 (k=1), é

01 2

02 1 0lim

d e lim d[ ( ) ( ) ]r . r , (032).

Se representarmos por o ângulo das tangentes às curvas em P (Fig. 03),

escreveremos:

02lim

d sen

2 , (033).

Concluímos:

Teor. 1:

Duas curvas reversas com um ponto comum:

1) - têm um contato de ordem zero;

2) - têm a distância retilínea, d, entre seus pontos eqüidistantes do ponto de

contato como um infinitésimo de mesma ordem que o arco , valendo o duplo

desse arco multiplicado pelo seno da metade do ângulo das tangentes.

Esse resultado de certa forma podia até ser esperado porque, no limite, estaríamos

calculando o "lado não igual" de um triângulo isósceles tal que os lados iguais (a )

formassem um ângulo .

Curvas com uma tangente comum.

Se as curvas (R) e (V) admitirem uma tangente comum no ponto P (logo, θ=0), isto

é, se em P, r v , então 1 v.r (ou, ainda vtr ˆ ) e

, ,0 v.rv.rv.rr.vv.r

r .v r .v r .v v .v v

v .r r .v

IV IV

IV ... etc.

2 3

3

2 ,

,

Agora, então, (d/2)2 é um novo polinômio em que escrevemos na forma,

Page 12: Notas Sobre a Geometria Diferencial

12

( )!( )

d2

2 224

v r

13!

( ) ( )r v . r v

106!

3 2 2 2[ ( ) ( ) ( ) ]r v . r v r vIV IV

26!

3 5 3[ ( ) ( ) ( ) ( )]r v . r v r v . r vV V IV IV ... (04).

De (04) e (033) deduzimos, respectivamente:

0d

lim e || 6

3d lim

020

rv , (041).

Reciprocamente, se duas curvas com um ponto comum admitem nesse ponto um

contato de ordem um, tem-se, de (04):

|| 6

3d lim

20

rv

. e

0

2 1 0lim d

( )r .v .

Da segunda das condições acima resulta r'. v'=1, ou seja, esses unitários (r' e v') devem ser

iguais. Concluímos:

Teor. 2:

A CNS para que duas curvas com um ponto comum tenham um contato de

ordem um nesse ponto é que admitam as mesmas derivadas primeiras nesse

ponto,

ou, o que é o mesmo,

A CNS para que duas curvas tenham, num ponto comum, um ponto consecutivo

também comum, é que elas tenham o mesmo vetor tangente nesse ponto.

A distância retilínea, d, entre os pontos eqüidistantes do ponto comum a duas

curvas com um contato de ordem um é infinitésimo de segunda ordem em relação ao arco

e pode ser calculada por (041).

Se uma das curvas em referência é a (reta) tangente à outra, concluímos que

Teor. 3:

Toda tangente a uma curva tem com ela um contato de primeira ordem no ponto

de contato,

ou, o que é o mesmo,

Corol. 1:

Todo curva tem em comum com a sua tangente o ponto consecutivo ao ponto de

contato.

Page 13: Notas Sobre a Geometria Diferencial

13

§ 04 - As curvaturas das curvas reversas.

Se PQˆˆˆ ttt é a variação de t̂ entre P e seu consecutivo Q (Fig. 04), então |

t̂ | é igual ao ângulo - medido em radianos, e denominado ângulo de contingência das

tangentes - de que girou a tangente entre os pontos de abcissas curvilíneas s e s+. Em P, o

plano definido por Pt̂ e sua tangente consecutiva Qt̂ é denominado "plano osculador" da

curva nas vizinhanças de P.

Como, em P, a tangente Pt̂ contem o ponto consecutivo Q (Corol. 1, Teor. 3, §03)

e em Q, Qt̂ contem o ponto consecutivo Q', concluímos:

Teor. 1:

O plano osculador de um ponto de uma curva tem com ela um contato de

segunda ordem nesse ponto.

O vetor | t̂ |, variação da tangente entre o ponto P de uma curva (C) e o seu

consecutivo, pertence ao plano osculador de P e permite avaliar quanto essa curva se

"flete", ou se "flexiona", no plano osculador, nas vizinhanças de P.

Denomina-se "vetor curvatura de flexão" de (C) em P, e o representaremos por c,

o limite da variação t̂ de t por unidade de comprimento de arco de curva, s=, quando

este tende para zero. No limite esse quociente (que existe sempre se r(s) é contínua) é a

derivada de t em relação ao arco s, e escrevemos:

s d

ˆ d

s

ˆ lim

0s

ttc

;

ou, ainda, lembrando que ds/dˆ rrt :

),s(s d

d

s d

ˆ d2

2

rrt

c (01).

O módulo de c denomina-se, simplesmente, curvatura de flexão da curva (C) em P, e tem

a dimensão do inverso de um comprimento; por isso mesmo o inverso do módulo de c é

denominado raio de curvatura de flexão da curva no ponto, e o representamos por R. Se

representarmos por n̂ o unitário de c, escreveremos a primeira fórmula da Frenet-Serret,

Page 14: Notas Sobre a Geometria Diferencial

14

ds

ˆd

R

ˆ tnc , (011).

De (01) e (011) resultam:

0, s d

ˆ dˆ

R

1||

t.nc rn Rˆ e

R

1|| r (012).

Por ser 1ˆˆ t.t é 0ˆdˆ t.t , isto é, c - um vetor do plano osculador que aponta no sentido da

concavidade da curva - é perpendicular a t̂ .

A direção de n (ou de c) é conhecida como normal principal de (C) em P, razão

pela qual dá-se também a |c| a denominação de curvatura normal.

Se x é o posicional do ponto corrente do plano osculador do ponto P de r(s), a sua

equação é, então,

0)( rr.rx , (02),

uma vez que qualquer que seja x, os vetores x-r, r'e r" devem ser coplanares. O plano

osculador está sempre determinado, exceto nos pontos em que r'=o, r"=o, ou r"=A(s)r' (r"

é paralelo a r'). Nos dois primeiros casos a curva é uma reta e para os pontos da reta o plano

osculador é indeterminado. No segundo caso - r"=A(s)r' - r' é paralelo ao seu vetor

derivada; logo, r' tem direção fixa (teorema clássico). Nesse ponto, então, (rr'r")=0, isto é,

a curva é localmente plana, o que tem sentido porque nesse ponto, conforme Teor. 1, três

de seus pontos (P e seus dois consecutivos) pertencem ao plano osculador. Se A não varia

com s (r' é paralelo ao seu vetor derivada em todo ponto) a curva é uma reta porque r' é fixo

em todo ponto.

Se a curva r(s) é plana, (02) é uma identidade (porque o plano osculador é o

próprio plano da curva) e r"=A(s)r' significa que, no ponto, a curva é localmente retilínea

porque o contato é de ordem dois: de um lado e outro desse ponto - denominado ponto de

inflexão - r" deve trocar de sinal, anulando-se, portanto, no ponto. Se A é uma constante,

r(s) é uma reta.

A circunferência do plano osculador de um ponto P de uma curva, de raio igual a R

e centro no ponto de posicional

nrx ˆ R(s)(s) , (021),

isto é, ponto situado sobre a normal principal, no interior da concavidade da curva,

denomina-se circunferência de curvatura dessa curva (Fig. 06); o centro dessa

circunferência denomina-se centro de curvatura da curva no ponto P. É evidente que a

circunferência de curvatura e a curva têm tangente comum em P.

Page 15: Notas Sobre a Geometria Diferencial

15

Curvas com tangente e vetor curvatura comuns.

Se duas curvas têm uma tangente comum, a distância retilínea, d, entre seus pontos

eqüidistantes do ponto de contato - um infinitésimo de segunda ordem em relação a esse

arco - pode ser assim expressa em relação a :

|ˆR

R

1|

6

3|= |

6

3d (V)

(V)(R)

(R)2

nnrv

,

expressão em que R(R) e R(V) são os raios de curvatura das curvas (R) e (V) em P. Deve ser

observado que os unitários das normais principais das curvas são vetores distintos em geral

(Fig. 05, a)).

Se duas curvas, alem de terem uma tangente comum num ponto, têm também vetor

curvatura de flexão paralelos, terão, evidentemente, o mesmo plano osculador. Se as

curvaturas são as mesmas, os unitários das respectivas normais principais poderão ter o

mesmo sentido (Fig. 05,c)), ou sentidos opostos (Fig. 05,b)), casos em que,

respectivamente, r v e r v .

Para o primeiro caso - mesmo unitário de tangente (logo, um contato de ordem

um), e mesmo vetor curvatura - deduzimos de ((04), §03):

( )!

[ ( ) ( ) ( ) ]

( ) ( ) ( )

d ...=

=1

36 ...

3

IV IV

IV IV

2 2

2

10

62

1

72

r v r v . r v

r v r v . r v

de onde vem,

0

1

6lim

d

3| |v r e

02 0lim

d (03).

Page 16: Notas Sobre a Geometria Diferencial

16

Nesse caso, então, as curvas têm também um contato de ordem dois no ponto.

Reciprocamente, se duas curvas apresentam um contato de ordem um e ordem dois

num ponto, deduzimos de ((04), §03):

0

16

lim d

3 | |v r e

0

2 03

6lim

d| |r v .

Como essa curvas têm também o mesmo plano osculador, têm a mesma normal principal e

seus vetores curvatura são paralelos. Da segunda das condições acima ( | | r v 0)

deduzimos, afinal, que seus vetores r" e v" devem ser iguais necessariamente. Concluímos:

Teor. 5:

A CNS para que duas curvas tenham um contato de ordem dois num ponto é que

tenham as mesmas derivadas primeira e segunda nesse ponto,

ou, o que é o mesmo

A CNS para que duas curvas tenham num ponto tres pontos consecutivos em

comum é que elas tenham o mesmo vetor tangente e o mesmo vetor curvatura de

flexão nesse ponto.

Nesse caso, a distância retilínea, d, entre seus pontos eqüidistantes do ponto de

contato é um infinitésimo de terceira ordem em relação ao e pode ser calculada por (03).

Corol. 1:

Toda curva tem com suas circunferências de curvatura um contato de ordem

dois.

Teor. 6:

Duas curvas que têm num ponto o mesmo unitário de tangente mas vetores

curvatura de flexão opostos, têm contato de ordem um nesse ponto.

Pois fazendo v r em (04),§ 03 escrevemos,

( )!

d2

2 22

4 r

2

3r . r v( ) ...,

donde

0

3

6

3

6lim

d

R2| |v e

00lim

d, (031).

A distância retilínea, d, entre seus pontos eqüidistantes do ponto de contato (Fig. 05, b)) é

um infinitésimo de segunda ordem em relação a e pode ser calculada por (031).

Triedro de Frenet-Serret.

Como 0ˆˆ t.n , temos: n.tt.n ˆ dˆˆ dˆ . Logo:

Page 17: Notas Sobre a Geometria Diferencial

17

s d

ˆ dˆ||

n.tc , (04),

isto é, em P, o unitário da tangente e o incremento da normal principal formam um ângulo

obtuso. Como 0ˆ d ˆ n.n , o incremento n̂ d , por ser perpendicular a n̂ , é um vetor do

plano ortogonal a n̂ ; tal plano denomina-se retificante. O plano conduzido por P

ortogonalmente ao retificante e ao osculador denomina-se normal e sua interseção com o

retificante, binormal. Tomaremos como unitário da binormal o vetor b̂ definido por

ntb ˆˆˆ , (05).

Então, os unitários bnt ˆ e ˆ,ˆ definem uma base ortonormada em P; o triedro que lhes

corresponde é denominado triedro de Frenet-Serret.

Por ser dr paralelo a t e n̂ perpendicular a t̂ , resulta que, para as curvas reversas,

os vetores rnn d e ˆd ,ˆ nunca são coplanares; e reciprocamente:

r(s) curva reversa P r(s) 0)d ˆd ˆ( rnn .

Isso traduz importante propriedade geométrica das curvas reversas:

As normais principais de pontos consecutivos de uma curva reversa nunca se

interceptam.

Reciprocamente,

se as normais principais em pontos consecutivos de uma curva não se

interceptam, essa curva é reversa.

Curvatura de torção.

Consideremos, agora, quatro pontos consecutivos, P, P', Q e Q' de uma mesma

curva. O plano osculador de P (que contem P, P' e Q) não é o mesmo de P' (que contem P',

Q e Q'). Ocorre, pois, uma variação de posição desses planos osculadores consecutivos.

Dizemos que, em P, ocorre uma torção, ou um "empenamento" de (C). A variação do

ângulo desses planos permite avaliar o quanto a curva se "torce" ou se "empena" entre

pontos consecutivos. Essa avaliação pode ser facilmente calculada pela correspondente

variação do ângulo dos unitários das normais aos planos osculadores respectivos, já que o

ângulo desses unitários é igual ao ângulo daqueles planos. Se a variação de b̂ é b̂ , então

| b̂ | é aproximadamente igual ao ângulo (medido em radianos) das normais aos planos

osculadores de P e de P'; esse ângulo é denominado ângulo de contingência das

binormais. O limite do quociente da variação da binormal, b̂ , pelo comprimento do arco

entre P e P', s, terá por módulo a variação correspondente do ângulo dos planos

osculadores para o comprimento do arco; tal vetor, que representaremos por , denomina-se

"vetor curvatura de torção" da curva em P. O módulo de denomina-se "curvatura de

torção" da curva em P, e tem a dimensão do inverso de um comprimento. Por isso mesmo o

inverso do módulo de é denominado raio de curvatura de torção da curva no ponto, e o

representamos por T. Então:

,s d

ˆ d

s

ˆ lim

0s

bb

(05).

Page 18: Notas Sobre a Geometria Diferencial

18

Como t̂d é paralelo a n̂ , e conseqüentemente perpendicular a b̂ , 0ˆ dˆ t.b . Logo, por ser

;0ˆ dˆ+ˆ dˆ é ,0ˆˆ b.tt.bt.b isto é, 0ˆˆ d t.b . Então, o incremento de b̂ é perpendicular a t̂ .

Como o incremento de b̂ também é perpendicular a b̂ , ele é paralelo a n̂ . Em resumo:

No ponto corrente de toda curva reversa, a curvatura de torção é a medida da

variação da direção da sua binormal, e o vetor curvatura de torção é sempre

paralelo à normal principal.

Se convencionarmos que às curvaturas de torção positivas correspondem rotações

de b̂ (no plano normal) no sentido anti-horário quando vistas da face positiva do plano

normal (da qual aponta t̂ ), n̂ e terão direções opostas. Então escreveremos a segunda

fórmula de Frenet-Serret

s d

ˆ d

T

ˆ bn , (051),

de onde também deduzimos:

ds

ˆdˆ ˆds

ˆd

T

1)ˆ(||

n.bn.

bn. , (06),

porque sendo 0ˆdˆ+ˆdˆ é 0ˆˆ b.nn.bn.b . Pode-se, ainda, escrever, em vista de (03):

ds

ˆdˆ||

n.nt , (061).

Por esta equação, e pela impossibilidade de interseção das normais principais em pontos

consecutivos, resulta:

A CNS para que uma curva seja reversa é que seja não nula a sua curvatura de

torção em todos os seus pontos.

Nota: Contrariamente às tangentes e às binormais, de cuja interseção dos suportes em pontos consecutivos nos valemos para definir os ângulos de contingêcias (das tangente e das normais), e, portanto as curvaturas, os suportes das normais principais nunca se cruzam.

§ 05 - Sistema de coordenadas curvilíneas recíprocas de uma superfície.

A continuidade de ((01), §01) permite-nos concluir que os vetores

rr

U ( 12, ), (01),

calculados em cada ponto de (S), existem sempre, finitos e não nulos. Tais vetores são

tangentes às respectivas coordenadas curvilíneas do ponto, não sendo unitários em geral,

Page 19: Notas Sobre a Geometria Diferencial

19

exceto se os parâmetros U são os comprimentos de arco dessas coordenadas. O ponto

comum às duas curvas de (S) e seus consecutivos (um sobre cada curva ou sua tangente)

definem um plano que é o plano tangente a (S) no ponto. Tais vetores r serão sempre não

paralelos e constituirão uma base sobre o plano tangente, nas vizinhanças do ponto.

Ora, se existe em todo ponto R de (S) uma base definida por vetores r tangentes

às respectivas coordenadas curvilíneas de R, existem também os vetores r, recíprocos dos

r ,no plano tangente, tais que

r .r

( , 12, ), (02),

os sendo os deltas de Kronecker. Então, existem outras coordenadas curvilíneas para R -

que denominaremos coordenadas curvilíneas recíprocas ou duais das U - representadas

por curvas de (S) às quais os vetores r são tangentes. Como r2 é perpendicular a r1, e r

1 a

r2, essas coordenadas curvilíneas são trajetórias ortogonais das primeiras; vamos

representa-las por U1 e U2. Assim, às coordenadas curvilíneas U1 e U

2 - também

denominadas coordenadas curvilíneas contravariantes de R - correspondem os vetores de

base covariantes r1 e r2; às U1 e U2 - denominadas coordenadas curvilíneas covariantes

de R - correspondem os vetores de base contravariantes r1 e r

2. Existem, pois, funções

U 0|U

U| com),U,U(UU 21

(Jacobiano não nulo), (03),

mediantes as quais se pode passar de um sistema para o outro.

Escreveremos, então, em geral:

)3,2,1(i )U,(UR)U,U(R i21ii

21i uur , (04),

para representar o ponto genérico de (S), qualquer uma das duas formas de representação

tendo igual status para o estudo da superfície.

A derivada direcional de n .

Ora,

d d S d d S

d S d d S

( ) (

),n

nt . t

n

ou melhor,

d d ,n r. n (06),

sendo d d S r t o deslocamento arbitrário de P sobre a curva, e

d d S

,n t

n (07),

um diádico linear, evidentemente não simétrico, cujo plano é o plano tangente. Vamos

denomina-lo diádico tangente da curva no ponto considerado (por analogia com o diádico

tg de uma sup onde?). Assim:

A variação da normal principal no ponto genérico de uma curva reversa é o

transformado do deslocamento arbitrário desse ponto sobre a curva mediante o

diádico tangente correspondente usado como pós-fator.

Podemos também escrever:

Page 20: Notas Sobre a Geometria Diferencial

20

n.tn

ˆ ˆS d

ˆ d , (08),

e entender d d Sn - tal como no caso das sup - como a derivada direcional de n na

direção da tangente à curva em R.

Por (06,§04) concluímos que b e d n formam um ângulo agudo; seja ele . Por

(04,§04) concluímos que t e d n formam um ângulo obtuso. Mas, sendo d n perpendicular

a n (porque n.n n. n 1 0 e d ), d n é paralelo ao plano tangente.

Em resumo:

d n é um vetor paralelo ao plano tangente, forma o ângulo agudo com b e o

ângulo (obtuso) + 2 com t .

Conforme (05) podemos enunciar:

As curvaturas de flexão e de torção relativas a um ponto qualquer de uma curva

reversa são as projeções ortogonais da derivada direcional do unitário da sua

normal principal sobre os suportes da sua tangente e da sua binormal,

respectivamente.

Podemos, então, escrever o diádico tangente na forma cartesiana

+| | | | n c t t t b , (071).

É evidente, por (071), que se uma curva é plana - caso em que ||=0 - o diádico

tangente é unilinear em todos os seus pontos. Reciprocamente, seja (C) uma curva,

por hipótese reversa, mas cujo diádico tangente seja unilinear em todo ponto, então, por

(071), é ||=0.

Resulta, então, demonstrado o seguinte

Teor.:

A CNS para que uma curva seja plana é que seja unilinear o diádico tangente de

todos os seus pontos.

Levando (08) a (051), encontramos:

]ˆ)ˆ(ˆ[ˆ|| tn.t.n , (09),

ou, ainda, recorrendo ao vetor de n:

n.nn.n ˆrot ˆ)ˆ(ˆ|| V , (10).

Page 21: Notas Sobre a Geometria Diferencial

21

Considerando (07) e (08) e recorrendo ao escalar de n obtemos, ainda, duas

outras formas alternativas de representação da curvatura de flexão em R:

t.n.tc ˆ)ˆ(ˆ|| nn ˆ div)ˆ( E , (11).

As expressões (10) e (11) são de capital importância porque expressam as

curvaturas da curva em função dos invariantes do diádico tangente.

Raios e centros de curvatura, evolutas

Os inversos das curvaturas de flexão e de torção, por terem a dimensão de um

comprimento, denominam-se raio de curvatura de flexão e raio de curvatura de torção

de (C) em P; serão representados por rn e rt. Os pontos distantes de P, no mesmo sentido e

no sentido contrário de n , de comprimentos iguais, respectivamente, aos raios de curvatura

de flexão e de torção, denominam-se centros de curvatura de flexão e de torção de (C)

em P.

Como a cada P de (C) corresponde um e um único par de centros de curvatura

(dispostos de um lado e outro de P ao longo da normal principal), os lugares geométricos

desses pontos relativos a todos os pontos de (C) serão duas curvas, em geral reversas;

denominam-se evolutas de flexão e de torção da curva (C).

Se A é a projeção, sobre a tangente, da extremidade do vetor derivada direcional

da normal, este aplicado em P, o vetor de origem P e extremidade A tem por módulo a

curvatura de flexão e sentido oposto ao unitário da tangente. Seja E o centro de curvatura de

flexão da curva, ponto este, situado sobre o suporte da normal principal. A paralela a AN

conduzida pela extremidade do oposto do unitário da tangente passa por E. Com efeito, por

semelhança de triângulos temos:

PA1

1PE

donde, PE1

PAr .n ,

| |1c

Analogamente, se B é a projeção da extremidade do vetor derivada direcional da

normal sobre a binormal, o vetor de origem P e extremidade B tem por módulo a curvatura

de torção e o mesmo sentido do unitário da binormal. Se T é o centro de curvatura de torção

- ponto este, situado sobre a normal principal (mas no sentido oposto ao do unitário desta)-,

Page 22: Notas Sobre a Geometria Diferencial

22

e se N' é o oposto de N em relação a P, a paralela a BN' conduzida pela extremidade do

unitário da binormal passa por T. Pois, tal como na demonstração anterior, por semelhança

de triângulos escrevemos:

PB1

1PT

donde, PT1

PBr .t ,

| |1

§06 - Curvaturas de curvas contidas em uma superfície.

A interseção de (S) com um plano qualquer, ), que contenha o unitário m da

normal a (S) no seu ponto corrente P é uma curva plana, ( )m , dita seção normal de (S)

em P.

Seja o ângulo do plano de uma seção normal ( )m de (S) pelo ponto genérico P

com o plano de uma seção ( ) de (S) que contenha o unitário t m da seção normal. As

curvas ( ) e ( )m admitem o mesmo plano normal porque admitem o mesmo unitário de

tangente. O plano normal contem, além da normal `superfície, as normais principais de ( )

e ( )m . Os unitários destas normais principais, n nm e , formam o mesmo ângulo -

denominado ângulo normal das curvas - podendo-se, então, escrever:

,n n bm cos + sen (01).

Coforme ((021),§05):

1 1

r

d

d S e

rd d Snm

m

n

,t.

nt.

n

Mas

d

d Scos

d d S

sen d d S

sen + cos d d S

m

( ) .n n b

n b

Considerando que o vetor entre parênteses é b m e que t é perpendicular a b e a b m ,

resulta, multiplicando escalarmente ambos os membros dessa igualdade por t :

r r cosn nm , (02).

Se (C) é uma curva reversa contida em (S) e que admite a mesma tangente que

( )m em P, e se é o ângulo do plano osculador de (C) com o plano de (m), são válidos,

ainda, os mesmos resultados anteriores, mantendo-se, inclusive, a nomenclatura do ângulo

normal das curvas. Isto nos permite concluir o seguinte

Teor.: (Meusnier)

O centro de curvatura relativo a um ponto de uma curva de uma superfície, é a

projeção, sobre o seu plano osculador, do centro de curvatura daquela seção da

superfície que é tangente à curva no ponto.

§07 - Curvaturas extremas de uma superfície.

Num ponto de uma curva sobre uma superfície, as curvaturas (de flexão e de

torção) dessa curva, são ditas, também, as curvaturas da superfície no ponto. Quando tais

curvas têm uma tangente comum, é válida a equação ((02),§06) que mostra, por evidência,

Page 23: Notas Sobre a Geometria Diferencial

23

que as curvaturas de flexão das seções normais são menores que as correspondentes de

todas as outras curvas. Nesse caso, então, pretendo-se determinar os extremados de tais

curvaturas, o caminho mais imediato consiste em estabelecer a expressão geral da curvatura

, na forma ((11),§05), onde m n é o unitário (constante) da normal à superfície e t -

uma incógnita - é o unitário da direção que extrema a curvatura. Assim,

| | ( ) ,c t. m . tm

.t d d S

(01).

Podemos entender, geometricamente, que o unitário t , variável, esteja especificando as

várias interseções de cada plano de um feixe que contem m , e um plano infinitamente

próximo do plano tangente à superfície e do qual se aproxima deslocando-se no sentido de m . Nesse caso, a curva interseção da superfície com o plano vizinho da tangente é a

descrita pela extremidade do vetor d r , sendo

d d d d dS2

m. r r. m. r c | | , (011),

equação esta geometricamente equivalente a (01).

Ora, sendo uniplanar simétrico o diádico tangente, (011) é a equação de uma

cônica. Então, por (01) e (011), vemos que, enquanto a extremidade de t descreve a

circunferência de raio unitário e centro P, no plano tangente, a projeção R da extremidade

da derivada direcional de m sobre t , e a extremidade de d r , descrevem cônicas de

mesmos gêneros e coaxiais (elipses, hipérboles ou pares de retas), também do plano

tangente.

Os auto-valores de m - os extremados da curvatura de flexão no ponto,

denominados curvaturas principais do ponto - são números reais finitos; e seus auto-

versores - as direções principais do ponto -, ortogonais. Supondo distintos os auto-valores

dos diádicos tangentes, designando-os por 1 1R Ri j, e os auto-versores por i j e ,

escrevemos:

,m i i j j1R

+1

R

i j

(02)1,

sendo, ainda,

,i. m i j. m j 1 1R

e Ri j

(021).

Em forma diferencial, a equação (02) assim se escreve:

d d R

d +R

d i

ij

j ,m r. m r r

1 1 (03)2,

onde

d dS d e d dS d i i j jr i r. i i r j r. j j ( ) ( ), (031),

são os vetores deslocamento do ponto nas direções principais.

1Como m existe sempre, finito e não nulo, ao menos um(a) dos(as) raios de curvatura (curvaturas) da superfície é não nulo(a), isto é, ao menos um dos auto-valores é não nulo. 2É evidente que a repetição dos índices i e j, no caso, não implicam somatórias.

Page 24: Notas Sobre a Geometria Diferencial

24

Dos invariantes de m importa considerar, no momento, o seu escalar e o seu

terceiro. Tem-se:

( ) , m mEi j

div R

+R

1 1 (04),

e

( ) , m 31

R Ri j

(05).

O escalar do diádico tangente é a chamada primeira curvatura da superfície; é também, o

duplo da curvatura média (semi-soma das curvaturas principais de flexão) da superfície no

ponto. O terceiro do diádico tangente é a chamada segunda curvatura ou curvatura

gaussiana da superfície no ponto.

Podem-se determinar, com facilidade, o escalar e o terceiro do diádico tangente em

termos da função S(X,Y,Z)=constante, isto é, da equação da superfície em forma implícita.

Podemos escrever ((09),§03) na forma

| . S| S S + Sm mm. .mm .mm2

Sendo (

) ,

( ) ,

S) div S lap S,

( S S

S S

E

E

E

mm. .mm m. .m

.mm m. .m

tem-se, logo:

| ) , S|( lap S SEm m. .m

ou

div lap S

| S|S S S

S|3

|,m

. .

(06).

Agora, tomando o terceiro de ambos os membros de ((09), §03) tem-se, aplicando

propriedades:

( )|

( ) ( ) ( ) .

m mm mm3 3 3 31

S|S2

Sendo 1)ˆˆ()ˆˆ()ˆˆ( ,ˆ ̂+ ̂̂ˆˆ3 ji.jimmjjiimm . Logo:

( )(

| )|,

m 3

S)

S

34 (07).

Fórmulas de Euler. Teorema de Dupin.

Page 25: Notas Sobre a Geometria Diferencial

25

Sejam | | | |c cu v e as curvaturas extremadas de flexão num ponto P de (S),

correspondentes às direções ortogonais definidas pelos unitários u v e do plano tangente;

isto é, | | | |c cu v e são as curvaturas de flexão das seções planas de (S) correspondentes a

u v e . Se e + 2 são os ângulos de u v e com i , então

.u i j v i j cos +sen e sen +cos

Mas, sendo

| | | | ,c u. m.u c v. m. vu v e

resulta, substituindo , u v m e pelos seus valores em função de i j e :

| | , | | ,c cui

2

j

2v

i

2

j

2

Rcos +

1R

sen R

sen +1

Rcos

1 1 (08).

Essas fórmulas são conhecidas como fórmulas de Euler; somando-as membro a membro,

tem-se:

| | | ,c cu vi j

+|R

+R

1 1

o que demonstra o seguinte

Teor.:

A soma das curvaturas em direções ortogonais por um ponto de uma superfície,

é igual ao escalar do diádico tangente do ponto,

ou, ainda,

Teor.: (Dupin)

A soma das curvaturas de flexão em duas direções ortogonais por um ponto de

uma superfície é constante e igual à soma das curvaturas principais desse ponto.

Nota: Poderia parecer que o produto das curvaturas nas direções ortogonais fosse também invariante e igual ao produto das curvaturas principais, o que não é verdade, nem tem razão de ser. Tem-se:

| || | ) ] .c cu vi j i jR R

+[2(1R

+1

R sen 2

1 2

Classificação dos pontos de uma superfície.

Supondo, ainda, Ri Rj, ao variar , a extremidade do unitário da tangente

descreve a circunferência de raio um; e o ponto R, a cônica tal, que, conforme a fórmula de

Euler:

Page 26: Notas Sobre a Geometria Diferencial

26

| | ,cui

2

j

2

uRcos +

1R

senR

1 1

ou, ainda, pondo

R cos X e R sen Y,u v

a cônica

XR

+YR R

2

i

2

j u

1

, (09).

Três situações devem ser analisadas quando Ri e Rj são distintos e não nulos:

- Se têm o mesmo sinal, rnu terá o sinal comum a Ri e Rj. A cônica é uma

elipse, e o ponto de diz elíptico. A superfície estará toda de um só lado do plano tangente

nas vizinhanças do ponto; e a superfície se dirá convexa no ponto.

- Se têm sinais diferentes, Ru terá o sinal de um ou do outro; a cônica é

uma hipérbole, e o ponto se dirá hiperbólico. Nas vizinhanças do ponto, a superfície estará

de um lado e outro do plano tangente, e se dirá côncavo-convexa.

Linha assintótica

Na direção em que Ru= a cônica se degenera no par de (retas) assíntotas; a

direção correspondente será dita assintótica da superfície no ponto. Tais assíntotas serão

imaginárias se o ponto for elíptico; e reais se o ponto for hiperbólico.

Se num ponto, uma das curvaturas principais se anula, o diádico tangente - cujo

terceiro é, então, nulo - reduz-se à forma

;m i i1R

i

a cônica degenera-se num par de retas paralelas à direção principal i . O ponto é dito, no

caso, parabólico.

O lugar geométrico dos pontos parabólicos de uma superfície pode ser

determinado imediatamente; basta impor a condição de que esses pontos devam satisfazer a

((01), § 01) e a (07) com ( ) m 3 0, isto é,

S(X,Y, Z) constante e S 3 ( ) 0.

A direção assintótica esta, pois, associada à nulidade da curvatura da superfície

nessa direção, caso em que (01) dá t. md d S 0 ; isto é, a direção assintótica é

perpendicular ao vetor derivada direcional do unitário da normal à superfície no ponto. A

recíproca é evidente. Fica, pois, demonstrado o seguinte

Teor.:

A CNS para que uma direção por um ponto de uma superfície seja uma direção

assintótica é que essa direção seja perpendicular à derivada direcional do

unitário da normal à superfície pelo ponto.

Page 27: Notas Sobre a Geometria Diferencial

27

Se r é o vetor posicional do ponto genérico de uma curva sobre uma superfície, na

direção da qual a curvatura da superfície é nula em todo ponto, então, conforme (011), a

equação diferencial dessa curva é

d dm. r 0.

Uma curva de uma superfície, em cujas direções a curvatura da superfície é nula, é dita uma

linha assintótica dessa superfície.

As conclusões anteriores podem, então, ser resumidas na forma do seguinte

Teor.:

A CNS para que uma curva de uma superfície seja uma linha assintótica dessa

superfície é que as suas tangentes, em todos os seus pontos, sejam

perpendiculares às correspondentes derivadas direcionais do unitário da normal

à superfície.

Se num ponto de uma superfície os auto-valores são iguais, o diádico tangente

pode ser reduzido (de infinitas maneiras) à forma

( ),m i i j j1R

+ i

onde i j e são dois unitários ortogonais arbitrários do plano tangente. A cônica (07) é

degenerada na circunferência de equação

,R

RYX

u

222

e o ponto correspondente é dito umbílico; nas suas vizinhanças a superfície é convexa e as

direções assintóticas são imaginárias.

Como a cônica (09) indica a natureza (elíptica, hiperbólica ou parabólica) dos

pontos da superfície aos quais está ligada, costuma-se denomina-la cônica indicatriz,

embora haja quem a denomine, também, de indicatriz de Dupin.

As indicatrizes de todos os pontos dos elipsóides e dos hiperbolóides de duas

folhas são elipses; essas quádricas são, pois, convexas em todos os seus pontos. Já a

indicatriz de todos os pontos do hiperbolóide de uma folha é uma hipérbole; ele é

totalmente côncavo-convexo. A indicatriz de uma superfície esférica é uma circunferência

(degeneração da elipse); ela é, pois, convexa, e seus pontos, todos umbílicos. A indicatriz

de todos os pontos de um cone ou de um cilindro é um par de retas paralelas; logo, todos os

seus pontos são parabólicos.

Linhas de curvatura

Ora, para qualquer curva reversa de (S), ( )m m r d d 0 em geral, porque a normal

à superfície e a normal principal da curva em geral são distintas. Mas às direções principais

de um ponto correspondem duas curvas reversas tais, que

( ) ( )m m r m m r d d e d di j 0 0, (10),

Page 28: Notas Sobre a Geometria Diferencial

28

o que se comprova facilmente multiplicando escalarmente ambos os membros de (031) por

mm ˆ dˆ . Com efeito, pois, mm ˆ dˆ é um vetor perpendicular ao plano tangente, logo,

perpendicular a i j e a .

Então, em geral, para os pontos de uma curva (C) de (S), as normais à superfície

em pontos vizinhos não se interceptam; mas, para cada ponto da superfície há duas curvas

sobre (S), reversas em geral, em cujos pontos vizinhos as normais a (S) se interceptam. Tais

curvas reversas, ortogonais, cujas tangentes no ponto são as direções principais do ponto ou

os eixos (principais) da cônica indicatriz do ponto, denominam-se linhas de curvatura.

Ora, d e d m r são vetores do plano tangente; e devendo ser coplanares com m ,

são paralelos. Assim, se uma curva reversa de uma superfície é uma linha de curvatura, em

todos os seus pontos o deslocamento na direção dessa curva é sempre paralelo ao

correspondente vetor derivada direcional do unitário da normal a essa superfície. A

equação diferencial de uma linha de curvatura é, então:

orm dˆd , (11).

Reciprocamente, se para todo ponto de uma certa curva de uma superfície subsiste

a equação (11), podemos escrever, lembrando (05) e (02):

dr. m . rjjiir.r d)ˆˆ+ˆˆR

1(d0d

i

Representando por o ângulo de dr com a direção principal do ponto, definida pelo

unitário i , tem-se:

.ˆ cos|d|dˆ ,ˆ sen|d|d

sen|d|.̂d ,cos|d|.̂d

mrrjmrri

rjrrir

Logo:

12

1 10

22| | ( ) , , .d

R+

Rsen 2 isto é , ou

i j

r m o

Então, se subsiste (11), a direção de dr ou é a de i , ou é a de j . Resulta, assim,

demonstrado o seguinte

Teor.:

A CNS para que uma curva de uma superfície seja uma linha de curvatura é que

a tangente a essa curva num ponto qualquer seja paralela à derivada direcional

da normal à superfície nesse ponto.

Então, sobre a superfície existem dois sistemas (duas famílias) de linhas de curvatura,

ortogonais, cuja equação diferencial é

( )m m r d d 0, (12),

ou cuja equação integral é

um.u.mum

m ˆˆˆˆ0)ˆdS

ˆd( , (13).

Normálias. Superfície dos centros.

Page 29: Notas Sobre a Geometria Diferencial

29

As normais a uma superfície ao longo de cada linha de curvatura de um seu ponto

geram duas superfícies regradas denominadas normálias do ponto. As normálias gozam da

propriedade de serem desenvolvíveis, o que se justifica pelas (08). O ponto de interseção

das normais vizinhas ao longo de cada linha de curvatura de um ponto é um centro de

curvatura da superfície no ponto; logo, num ponto, uma superfície tem dois centros de

curvatura. As distâncias dos centros de curvatura aos pontos correspondentes da superfície

são os raios de curvatura da superfície3. Quando um ponto se desloca sobre uma linha de

curvatura, os centros de curvaturas correspondentes se deslocam sobre uma segunda curva,

em geral reversa. Portanto, a cada ponto da superficie corresponde duas curvas reversas,

lugares geométricos dos centros de curvaturas da superfície. A cada sistema de linhas de

curvatura corresponderá, então, uma superfície. Na verdade, como as linhas de curvatura

existem aos pares para cada ponto, a superfície lugar geométrico dos centros de curvatura

de todos os pontos de (S) é composta de duas folhas, cada folha correspondendo-se com um

sistema de linhas; tal superfície denomina-se superfície dos centros.

§03 - O diádico gradiente do unitário da normal a uma superfície.

Embora existam infinitos sistemas regulares de coordenadas curvilíneas para

representar uma dada superfície, existe sempre, determinado e único, o unitário m da

normal a (S) no seu ponto genérico R. Podemos escrever:

||ˆ

21

21

rr

rrm

, (01).

Por ser, então, m.m 1, resulta4 dm. m 0. Por ser m uma função de U1 e U2

tem-se também m.

m

UdU 0. Os vetores

U

m, além de finitos, pertencem também ao

plano tangente. Logo:

A variação (total ou parcial) do unitário da normal a uma superfície num ponto

é um vetor do seu plano tangente nesse ponto.

Postulando-se uma relação entre as coordenadas curvilíneas (contravariantes, por

exemplo) U1 e U2, seja em forma implícita: H(U , U ) C const.1 2

, ou em forma

paramétrica (em relação aos comprimentos de arco):U U S)1 1 ( e U U S)

2 2 ( - funções

essas, todas contínuas e com derivadas contínuas - fixa-se uma curva, (C), geralmente

reversa sobre a superfície. Seja P o seu ponto genérico fixado para um dado valor do arco, e

portanto, para os valores U1 e U2 determinados das coordenadas curvilíneas. Estas linhas

3Devemos observar novamente que os centros e os raios de curvatura das linhas de curvatura são distintos daqueles da superfície, porque a normal à superfície e as normais principais dessas curvas são retas distintas. Aliás, conforme o teorema de Meusnier, as curvaturas das linhas de curvatura são menores que as curvaturas da superfície. 4 Supomos conhecidas do leitor as propriedades formais de derivadas e diferenciais de vetores,

Page 30: Notas Sobre a Geometria Diferencial

30

coordenadas de P e as U1+dU1 e U2+dU2 (das suas vizinhanças) definem um quadrilátero

curvilíneo elementar arbitrário, PQRS. O arco PR de (C) é, pois, um deslocamento

arbitrário de P sobre (S); podemos representa-lo na forma

d d S r u , (02),

onde dS é a medida algébrica do arco PR e u o unitário da tangente a (C) em P. A normal à

superfície é também a normal a (C) porque ambas são paralelas às variações dos unitários

das tangentes de todas as curvas que passem por P. Por outro lado,

d d U

Ud U (r

rr

, , ),12 (03),

e, conforme ((03),§02),

d d U

Ud U

U ( ,

( )

, , )mm

r .rm

12 .

Agrupando convenientemente, vem:

d d U

U ( , ( ) (

), , )m r . r

m

12 ,

ou melhor, considerando (03):

d d ,m r . m (04),

com

= U

( , , ),m r

m

12 (05).

Então:

Nas vizinhanças de qualquer ponto de uma superfície regular, a variação do

unitário da normal é uma função vetorial linear da variação do ponto.

O diádico m , isto é, o gradiente do unitário da normal à superfície, existe

sempre finito, não nulo, e é evidentemente uniplanar porque os seus antecedentes e os seus

conseqüentes pertencem ao plano tangente.

Definição: ( diádico gradiente)

O diádico m será denominado diádico tangente da superfície no seu ponto

genérico.

Propriedades do diádico tangente

Teor. 1:

O diádico tangente é simétrico:

T ,m m (06).

Pelo teorema de Stokes, o fluxo do rotacional de m através da área do quadrilátero

curvilíneo PQRS é igual à circulação ao longo do contorno PQRS que é fechado.

Desprezando, no cálculo da circulação, os infinitésimos de ordem superior à primeira,

Page 31: Notas Sobre a Geometria Diferencial

31

teremos: ( ) rot d Sm .m 0,isto é, rot ,m o porque rot m não é necessariamente

ortogonal a m . Então, m tem vetor nulo, sendo, pois, simétrico.

Podemos fazer uma segunda demonstração deste teorema que consiste em escrever

S S | | ,m porque S é normal à superfície. Então, posto que no espaço euclideano

tridimensional rot S o, e que, conforme fórmula conhecida do Cálculo Poliádico5:

rot ( S | S |)| ) ( | m +ˆ m | S |rot m o ,

resulta rot ,m o porque S || .m E sendo nulo o vetor do diádico tangente, este

diádico é simétrico.

Em resumo:

Em todo ponto de uma superfície regular, o diádico tangente correspondente é

uniplanar, simétrico, e seu plano é o plano tangente à superfície pelo ponto.

Por isso mesmo:

( ) ,m. m m .m o (07),

e

,)ˆ ()ˆˆ()ˆˆ()ˆ ( m.mmmm.m (08),

expressões nas quais o é o vetor nulo e é o diádico nulo.

Teor. 2:

Tem-se:

|

( ) ( ),m mm . . mm1S |

S (09),

onde é o diádico unidade do espaço euclideano tridimensional.

De S S | | ,m podemos escrever: S ( S . m m ) ; donde, tomando de

ambos os membros, aplicando propriedades do operador sucessivamente, e agrupando

convenientemente6:

S S + ( S

S + ( S) + ( S

[ ( )] )

( ) ) .

.m m .m m

. mm m. m .m m

Transpondo termos, reagrupando, lembrando (08) e considerando, ainda, que

| S | ˆS m.

S ( S | +. mm m. mm ) | ( ).

Finalmente, considerando que

5Genericamente, se F é escalar e v é um vetor, ambos variáveis, ( ) ( .F F) + F v v v Logo,

tomando o vetor de ambos os membros: .rot F+F)()rot(F vvv

6 Além das fórmulas já citadas consideraremos também, que: ( ) ( ) ( )a.b a .b b .a .

Page 32: Notas Sobre a Geometria Diferencial

32

( ) ( ) ) ] ( ), mm . m. mm m m .m m m m. m+ +[(

e lembrando (07), tem-se, logo, (09).

§04 - Derivada direcional do unitário da normal a uma superfície.

Consideremos um deslocamento arbitrário na direção dos S crescentes da curva

reversa (C) contida em (S). Podemos escrever ((04),§03) na forma

d d S

( ) ,m

u. m m .u (01).

Definição: (deriva direcional)

O vetor d d Sm é a variação de m por unidade de comprimento de arco no

ponto, na direção da curva (C); denomina-se vetor derivada direcional de m na

direção de u .

Então:

O vetor derivada direcional do unitário da normal a uma superfície no seu

ponto genérico, na direção de um unitário qualquer do seu plano tangente, é o

vetor desse plano, transformado desse unitário mediante o diádico tangente do

ponto.