58
CENTRO ESTADUAL TECNOLÓGICO PAROBÉ CURSO DE EDIFICAÇÕES MANUAL PRÁTICO DE INSTALAÇÕES HIDRÁULICAS E SANITÁRIAS I Autores: Engenheira. Silvia Steinstrasser Engenheiro Gilson Paim Costa

Poligrafo Instalações Hidráulicas 1

Embed Size (px)

Citation preview

Page 1: Poligrafo Instalações Hidráulicas 1

CENTRO ESTADUAL TECNOLÓGICO PAROBÉ CURSO DE EDIFICAÇÕES

MANUAL PRÁTICO DE INSTALAÇÕES HIDRÁULICAS E SANITÁRIAS I

Autores: Engenheira. Silvia Steinstrasser

Engenheiro Gilson Paim Costa

Page 2: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

2

CENTRO ESTADUAL TECNOLÓGICO PAROBÉ CURSO DE EDIFICAÇÕES

MANUAL PRÁTICO DE INSTALAÇÕES HIDRÁULICAS E SANITÁRIAS I

Autor: Engenheira. Silvia Steinstrasser

Engenheiro Gilson Paim Costa

Page 3: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

3

NORMAS TÉCNICAS NBR 5626-09/98 – Instalação Predial de Água Fria NBR 8160–09/99 – Sistema Prediais de Esgoto Sanitário – Projeto e Execução NBR 611/81 – Sistema Prediais de Esgoto Pluvial NBR 13969-09/97 – Tanques Sépticos – Unidades de Tratamento Complementar e NBR 7198-09/93 - Instalações Prediais de Água Quente. NBR 7229/93 - Disposição Final dos Efluentes Líquidos – Projeto, Construção e Operação Decreto 9369/88 – Código de Instalações Prediais do DMAE LC nº 423/98 – Ramal Predial BIBLIOGRAFIA Instalações Hidráulicas e Sanitárias – Hélio Creder Instalações Hidráulicas Prediais Feitas Para Durar – Usando Tubos de PVC – Manoel Henrique Campos Botelho e Geraldo Andrade Ribeiro Jr. Manual Técnico da Tigre – Vários Autores – Editora PINI TERMINOLOGIA Alimentador Predial ou de Ligação – Canalização de água compreendida entre a rede pública e o hidrômetro, inclusive. ART – Anotação de Responsabilidade Técnica no CREA – Conselho Regional de Engenharia e Arquitetura. Caixa Adicional – Caixa de inspeção, instalada pelo DMAE, destinada a receber a rede predial de esgoto sanitário da edificação. Caixa Coletora – Caixa onde se reúnem os refugos líquidos que exigem elevação mecânica para serem esgotados. Caixa de Gordura – Dispositivo projetado e instalado para separar e reter substâncias indesejáveis às redes de escoamento. Caixa Separadora de Óleo – Dispositivo projetado e instalado para separar e reter substâncias indesejáveis às redes de escoamento. Cavalete – É a parte do ramal predial destinado à instalação do hidrômetro. Coletor Cloacal – Canalização pertencente ao sistema público de esgotos sanitários. Coletor Predial – Trecho de canalização compreendido entre a última inserção de subcoletor, ramal de esgoto ou de descarga e o coletor público. Consumo Diário – É o valor médio de água consumido num período de 24 horas. DEP – Departamento Municipal de Esgotos Pluviais. DM –Declaração Municipal: Informativo das condições urbanísticas de ocupação do solo. Desconector - caixa sifonada ou sifão. Esgoto – Refugo líquido que deve ser conduzido a um destino final. Esgoto Sanitário – Refugo líquido proveniente do uso de água para fins domésticos ou industriais. Esgoto Pluvial – São as águas de chuvas coletadas e conduzidas ao coletor público pluvial. Hidrômetro – Aparelho destinado a medir o volume de água consumido pelo usuário. Instalação Hidrossanitária – Conjunto de canalizações, reservatórios, equipamentos, peças de utilização, aparelho e dispositivos empregados para a distribuição de água ou coleta de esgoto no prédio.

Page 4: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

4

Perda de Carga – Perda de pressão da água pelo atrito e turbulência dentro da tubulação. Quanto mais rugoso o material e quanto mais conexões existirem numa rede, maior é a perda de carga. Ponto de Consumo – É todo o terminal de canalização de água em que há ou poderá haver consumo de água: como bacia sanitária, lavatório, chuveiro de box, bidê, tanque, pia, banheira, máquina de lavar, piscina, aquecedor, torneira de jardim, etc... Pressão – São forças que a água exerce no fundo e nas paredes dos tubos. Quanto maior a altura, maior a pressão. 1 kgf/cm2 = 10 mca. Ramal de Entrada – Canalização compreendida entre o ramal predial e a primeira derivação para a instalação predial ou válvula de flutuador do reservatório (torneira bóia). RE - Ramal de Esgoto: Tubulação que sai de uma caixa sifonada ou de um sifão. Rede de Distribuição – A rede predial de distribuição é o conjunto de tubulações, compreendido pelos barriletes, colunas de distribuição, ramais e sub-ramais, ou de alguns destes elementos. Reservatório – Elemento componente do sistema de abastecimento e destinado a acumular a água e regular a vazão e pressão do mesmo. RV - Ramal de Ventilação: Tubulação que tira o gás de um ramal de esgoto e desta forma deve ser conectado a este e conduzido a um tubo de ventilação. SMOV – Secretaria Municipal de Obras e Viação de Município de Porto Alegre. TQG - Tubo de Queda de Gordura: Tubo vertical que conduz a gordura produzida nas pias da cozinha de um prédio até uma caixa de gordura coletiva. TQS - Tubo de Queda Sanitário: Tubo vertical que conduz o esgoto sanitário, em um prédio, até uma caixa de inspeção. TQP – Tubo de Queda Pluvial: Tubo vertical que conduz as águas de chuvas provenientes de coleta, através de ralos ou calhas, até uma caixa de inspeção. TV - Tubo de Ventilação: Tubulação vertical na qual se conectam todos os ramais de ventilação e opcionalmente o tubo de queda sanitário no ultimo pavimento, quando este tubo não e conduzido até a cobertura ou telhado do prédio e então é ventilado para o exterior. Usuário – Toda pessoa física ou jurídica responsável pela utilização do serviço público de abastecimento de água e de remoção de esgoto sanitário. Vazamento – É o desperdício de água verificado na instalação predial. Vazão – Quantidade de água que passa em determinada seção na unidade de tempo. Quanto maior a vazão, maior será o volume de água na tubulação.

Page 5: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

5

Page 6: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

6

Page 7: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

7

1.0. INTRODUÇÃO O homem vive cercado pelo ar, pela água e pelos alimentos. Ao respirar o ar, ingerir os

alimentos, beber a água e utilizá-la, para inúmeros fins, o homem cria um novo elemento conhecido

como resíduo e constituído pelo esgoto (resíduo líquido) e pelo lixo (resíduo sólido).

A água límpida que é distribuída a uma cidade, ao atravessá-la, passa a agregar agentes

químicos (gorduras, detergentes, produtos químicos de origem doméstica e industrial), agentes

físicos (substâncias que alteram a cor, a temperatura das águas, sólidos finos que aumentam a

turbidez) e agentes biológicos (fungos, vírus, bactérias patogênicas, protozoários, etc...).

Essa água assim desagregada, contendo restos de cozinha, fezes, resíduos sólidos e resíduos

provenientes de atividades industriais é que constituem os esgotos sanitários.

As águas provenientes das chuvas formam os esgotos pluviais.

2.0. TRATAMENTO DA ÁGUA A água que consumimos é responsável pela nossa higiene, limpeza e saúde. A utilização da

água encanada também pode ser utilizada para:

- Irrigação dos campos;

- Barragens (geração de energia);

- Combate à incêndios;

- Matéria prima para indústrias.

A qualidade de vida de uma cidade depende diretamente da água canalizada, ou seja, da água

tratada e distribuída para todos. Em Porto Alegre, o tratamento e distribuição são feitos pelo DMAE

(Departamento Municipal de Água e Esgoto). Na grande Porto Alegre e interior do estado é feita

pela CORSAN (Companhia Riograndense de Saneamento).

Page 8: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

8

A água antes de chegar em nossas casas é captada na superfície (barragens, rios e lagos). Passa

então por uma série de etapas de tratamento com o objetivo de purifica-las para consumo. Existem

quatro fases básicas para tratamento da água:

- Coagulação;

- Decantação;

- Filtração;

- Desinfecção.

Coagulação – Nesta fase é adicionado à água bruta, no tanque, um produto químico chamado

sulfato de alumínio. O sulfato provoca uma atração entre as impurezas em suspensão na água,

formando pequenos flocos. O sistema permanece em movimento para englobar todas as impurezas.

Decantação – À medida que esses flocos vão ficando mais pesados, tendem a se depositar no fundo,

tornando então a água mais clara e com melhor aspecto.

Filtração – A seguir a água passa por um filtro que retém os flocos que não decantaram, bem como

parte das bactérias e demais impurezas em suspensão na água.

Desinfecção - Finalmente é feita a desinfecção com cloro, que elimina as bactérias que não ficaram

retidas nos filtros. É feita a adição de cal hidratada, para equilibrar o ph da água, pois o cloro é

ácido. Além disso, é feita a adição de sal de flúor à água, para fazer a prevenção da cárie dentária.

A figura 2.1 faz referência ao sistema básico de tratamento da água potável na ETA (Estação de

Tratamento de Água).

A Figura 2.2 apresenta o esquema de abastecimento da água tratada em uma cidade.

A água tratada sai da ETA e através de bombeamento é recalcada para os reservatórios públicos

sendo distribuída através das redes canalizadas para a cidade, assim, cada usuário terá a sua ligação

predial.

Page 9: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

9

Page 10: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

10

3.0. SISTEMAS DE DISTRIBUIÇÃO DE ÁGUA

3.1. REDE DE DISTRIBUIÇÃO A partir das ligações prediais a água é distribuída para o consumo das economias. A distribuição é feita a partir da rede pública de água, a 90°, através de uma conexão denominada ferrule. Este trecho denomina-se Ramal de Entrada, e vai até o cavalete com hidrômetro, ambos de propriedade do DMAE. A partir do hidrômetro a rede passa a denominar-se Ramal de Alimentação, que é de propriedade e responsabilidade do usuário. Na Figura 3.1 podemos ver o esquema dos ramais de entrada e de alimentação. O sistema de distribuição pode ser Direto, Indireto ou Misto. 3.1.1. DIRETO – Os pontos de consumo são alimentados pela pressão da rede pública (sem reservatório), conforme mostra a Figura 3.2. Vantagens do Sistema Direto: Menor perigo de contaminação da água de abastecimento interno; O custo da instalação é bem menor. Desvantagens do Sistema Direto: Há maior probabilidade de ficar sem água devido a cortes no abastecimento urbano; Não podem ser instaladas válvulas fluxíveis do tipo Hydra. 3.1.2. INDIRETO – A alimentação da rede de distribuição é feita através de reservatório superior. O reservatório superior pode ser alimentado por gravidade ou por bombeamento. Para prédios acima de quatro pavimentos, instalar reservatório inferior e superior com bombeamento. As Figuras 3.3 e 3.4 mostram o sistema de distribuição indireto com reservatório alimentado por gravidade para uma casa e em um prédio. A Figura 3.5 mostra a distribuição indireta com alimentação do reservatório através de bombeamento. Vantagens do Sistema Indireto: Há sempre reserva de água; A pressão de água é constante e reduzida nos encanamentos. Desvantagens do Sistema Indireto: Maior custo das instalações; Maior probabilidade de contaminação da água acumulada. 3.1.3. MISTO – Alguns pontos de consumo são alimentados diretamente pela rede pública e outros a partir do reservatório superior, conforme mostra a Figura 3.6. 3.2 . PRESSÃO HIDRÁULICA A pressão hidráulica = peso de água sobre um ponto. É medido em Kgf/cm2 ou em mca (metros de coluna d’água). A pressão hidráulica é medida através de um equipamento denominado Manômetro. 1 Kgf/cm2 = 10 mca

Page 11: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

11

Page 12: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

12

Page 13: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

13

4.0. ESTUDO DE INSTALAÇÕES DE ESGOTO SANITÁRIO 4.1. INTRODUÇÃO As redes de esgoto sanitário foram sendo aprimoradas pela humanidade, com o intuito de afastar das proximidades do meio onde vive, o tão indesejável efluente que geram durante suas atividades diárias. As redes de esgoto sanitário são compostas de: Ramal de descarga ou ramal secundário: é a tubulação que recebe diretamente os efluentes dos aparelhos sanitários (lavatórios, ralos de chuveiro, bidês, pias, tanques...) levando-os até a caixa sifonada ou caixa de gordura. Ramal de esgoto ou ramal primário: É a tubulação que recebe os efluentes do vaso sanitário, pias de despejo ou caixas sifonadas, unindo-se ao subcoletor. Os ramais provenientes dos mictórios devem ser ligados diretamente ao ramal primário, devendo ser ventilados. Subcoletor: Tubulação que recebe efluentes de um ou mais tubos de queda ou ramais de esgoto. Devem ter diâmetros e declividades mínimas constantes, conforme mostra a Tabela 4.1. Tabela 4.1 - Diâmetros e Declividades dos Subcoletores

Canalizações Declividade 75 mm 3,0%

100 mm 2,0% 150 mm 0,7%

Coletor predial: Trecho de tubulação compreendido entre a última inserção de subcoletor, ramal de esgoto ou de descarga e o coletor público ou sistema particular. A rede de esgoto sanitário deverá chegar ao passeio, com no máximo, um metro de profundidade, sendo que o DMAE só executará a ligação Ana rede, se esta condição for obedecida. Tubo de queda: É a tubulação vertical que recebe efluentes de subcoletores, ramais de esgoto e ramais de descarga. Tubo de ventilação: É o tubo destinado a possibilitar o escoamento do ar da atmosfera para o interior da instalação de esgotos e expurgar os gases que se formam nas redes, com a finalidade de protegê-la contra possíveis rupturas dos fechos hídricos dos desconectores (caixas sifonadas, vasos sanitários, mictórios). Os tubos de ventilação devem ultrapassar 30cm o telhado. O trecho de um tubo ventilador que interliga o desconector ou o ramal de descarga a uma coluna de ventilação chama-se Ramal de Ventilação.

Page 14: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

14

Desconectores ou sifões: São dispositivos que contém uma camada líquida chamada de fecho hídrico, destinada a vedar a passagem dos gases contidos nos esgotos. Ex: caixa sifonada, vaso sanitário. É necessário 5cm para a altura dos fechos hídricos dos desconectores. Ralos: São caixas dotadas de grelha na parte superior, destinadas a receber as águas de chuveiros, lavagem de pisos e terraços. Caixas sifonadas: É a peça da instalação de esgotos que recebe as águas servidas de lavatórios, banheiras, box, tanques e pias, ao mesmo tempo em que impede o retorno dos gases contidos nos esgotos para os ambientes internos dos compartimentos. Caixas de inspeção: São caixas destinadas a permitir a inspeção, limpeza e desobstrução das tubulações. Devem ser de alvenaria, com dimensões internas mínimas de 60x60cm, com profundidade máxima de 1,00m. 4.2. PROJETO DE ESGOTO PREDIAL Na elaboração do projeto de instalações de esgotos sanitários prediais, o projetista deve estar bem ciente da localização dos diversos aparelhos sanitários pela planta de arquitetura e dos itinerários a serem seguidos pelas tubulações, que devem ser o mais curtos e retilíneos possíveis. A elaboração do projeto de instalações de esgoto predial deve seguir algumas regras básicas: Para os Banheiros Inicialmente projetar a ligação do vaso a uma caixa ou a um TQS. Decidir a localização da CSG, que não deverá ficar em local de circulação, nem muito próxima das paredes, pois elimina as possibilidades de ligações. Também é bom não colocar sob as peças, pois um dos objetivos da caixa é manter a inspeção. Decidir a localização do RS do box do chuveiro, que não deve ser colocado no local onde o indivíduo pisa para tomar o banho. Ligar todas as peças na CSG (lavatório, bidê, banheira e ralo do chuveiro). Obedecer às entradas da CSG, e a formação dos ângulos de 45°, para evitar que na obra os tubos sejam aquecidos. O projeto deve retratar exatamente o que será feito na obra, utilizando-se as conexões com os ângulos corretos, conforme são vendidos no mercado. Interligar a CSG na tubulação que sai do vaso sanitário. Esta ligação deve ser a 45°, jamais a 90° ou no contra-fluxo. Projetar o ramal de ventilação (sempre entre a caixa e o tubo do vaso), que pode ser em qualquer ângulo, pois na prática este ramal corre sobre as demais tubulações. Interligar ao tubo de ventilação. O tubo de ventilação não deve ser projetado atrás do espelho do lavatório e nem nos cantos das peças, onde é feita a amarração das alvenarias. O ideal é passar os TQS e TVs em shafts, pois são tubos 100 e 75mm (=10cm e 7,5cm), que às vezes podem enfraquecer uma parede de alvenaria. Após segue-se o dimensionamento, que é feito através das Tabelas que seguem. Ver exemplos de projetos de esgoto predial de banheiros nas Figuras 4.1, 4.2, 4.3, 4.4, 4.5 e 4.6.

Page 15: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

15

Para Cozinhas: Se forem em residências, localizar a CG fora da cozinha. Posicionar de modo que o esgoto da pia entre sem muitos percursos. Ligar o esgoto da máquina de lavar louças. Encaminhar o ramal de esgoto para uma caixa de inspeção. O ramal de ventilação deverá ser posicionado logo após a CG e deverá ser interligado ao tubo de ventilação. Para prédios, os ramais de descarga das pias e máquina de lavar louças se unem e são conduzidos ao TQG. A caixa de gordura individual passa a não existir e uma caixa de gordura coletiva é construída junto ao pé de coluna do TQG, no térreo. O ramal de ventilação é ligado ao ramal de descarga e interligado ao tubo de ventilação. Ver exemplos de projetos de esgoto predial de cozinhas nas Figuras 4.7, 4.8, 4.9, 4.10 e 4.11. Para Lavanderias: Se for em residências, localizar a CS dentro da lavanderia, em local protegido da circulação. Não projetar sob o tanque ou máquina de lavar roupas. Ligar o esgoto da máquina de lavar roupas e o tanque na CS. Encaminhar o ramal de esgoto para uma caixa de inspeção. O ramal de ventilação deverá ser posicionado logo após a CS e deverá ser interligado ao tubo de ventilação. Para prédios, os ramais de descarga dos tanques e máquina de lavar louças são conduzidos a uma CS, como nas residências, porém devem ser interligados a um TQS. O ramal de ventilação é ligado ao ramal de descarga e interligado ao tubo de ventilação. Ver exemplos de projetos de esgoto predial de lavanderias nas Figuras 4.12, 4.13, 4.14 e 4.15. 4.3. DIMENSIONAMENTO DOS ESGOTOS. Para dimensionamento de esgoto predial de sanitários e cozinhas, seguir as regras práticas indicadas abaixo: DEFINIÇÃO IMPORTANTE: UHC = Unidade Hunter de Contribuição é o número estatístico desenvolvido por um pesquisador denominado Hunter, o qual atribuiu valores em uma escala de 0,5 até 6 para indicar a maior ou menor quantidade de esgoto que circula no interior de um tubo. Os limites tratam do bebedouro (0,5 UHC) que praticamente não produz nenhum esgoto, passando pelo vaso sanitário (6UHC) que tem maior contribuição. Este número é utilizado para dimensionamento de tubulações de esgoto sanitário. a) Atribuir os valores das Unidades Hunter e diâmetros dos ramais de descarga, para cada aparelho, conforme a Tabela 4.2.

Page 16: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

16

TABELA 4.2 – Unidades Hunter de Contribuição dos Aparelhos Sanitários e Diâmetro Nominal Mínimo dos Ramais de Descarga – NBR 8160-09/99

Aparelho sanitário

Número de Unidades Hunter de

Contribuição

Diâmetro Nominal mínimo do ramal de

descarga DN

Bacia Sanitária 6 100 Banheira de residência 2 40 Bebedouro 0,5 40 Bidê 1 40 Chuveiro De residência 2 40

Coletivo 4 40 Lavatório De residência 1 40

De uso geral 2 40 Mictório Válvula de descarga 6 75

Caixa de descarga 5 50 Descarga automática 2 40 De calha 2 50

Pia de Cozinha Industrial Preparação 3 50 Lavagem de Panelas 4 50

Pia de cozinha residencial 3 50 Tanque de lavar roupas 3 40 Máquina de lavar louças 2 50 Máquina de lavar roupas 3 50

b) Dimensionar os ramais de esgoto, que são tubulações que saem dos sifões. Pode-se seguir o

dimensionamento prático, indicado na Tabela 4.3;

TABELA 4.3 – Tabela para Dimensionamento Prático dos Ramais de Esgoto Sanitários sem banheira 50mm Sanitários com banheira 75mm Cozinha 75mm Lavanderia 75mm

c) Dimensionamento dos ramais de ventilação: Ramal de ventilação é a tubulação ligada ao ramal

de esgoto. Faz-se o somatório de unidades Hunter incluindo o vaso sanitário. Os ramais de

ventilação têm dimensionamento pratico indicado na Tabela 4.4.

Page 17: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

17

TABELA 4.4 – Dimensionamento Prático de Ramais de Ventilação Grupos Aparelhos Sem Vasos Sanitários Grupos Aparelhos Com Vasos Sanitários

Número de Unidades Hunter de Contribuição

Diâmetro Nominal do Ramal de Ventilação

DN

Númro de Unidades Hunter de Contribuição

Diâmetro Nominal do Ramal de Ventilação

DN até 18 50 até 17 50

19 a 36 75 18 a 60 75 d) É preciso verificar se a distancia entre o sifão e o ramal de ventilação está nos limites

estabelecidos na Tabela 4.5:

TABELA 4.5 – Distancia Máxima de um Desconector ao Tubo Ventilador – Tabela Prática

Diâmetro Nominal do Ramal de Descarga DN

Distancia máxima m

50 1,20 75 1,80 100 2,40

e) O dimensionamento dos Tubos de Queda Sanitários TQS e TQG é calculado somando-se as

Hunter de todos os pavimentos, e entrando na Tabela 4.6:

TABELA 4.6 – Dimensionamento Prático dos Tubos de Queda

Diâmetro Nominal do Tubo

Número Máximo de Unidades Hunter de Contribuição Prédio de até 3 pavimentos Prédio com mais de 3 pavimentos

TQS TQG TQS TQG 75 30 30 70 70 100 240 240 500 500 150 960 960 1 900 1 900 200 2 200 2 200 3 600 3 600 250 3 800 3 800 5 600 5 600 300 6 000 6 000 8 400 8 400

f) O tubo de ventilação - tubulação vertical na qual se conectam todos os ramais de ventilação e

opcionalmente o tubo de queda do vaso sanitário no último pavimento, quando este não segue até a

cobertura e é ventilado para o exterior, pode ser dimensionado de forma prática através da Tabela

4.7 ou pela Tabela 4.8, extraída da NBR 8160/99:

Page 18: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

18

4.7 – Tabela para Dimensionamento Prático dos Tubos de Ventilação Diâmetro TQS ou TQG Diâmetro TV BANHEIROS Casas térreas com ou sem banheira Sem TQS 50mm Prédio ou casa ate 3 pavimentos 100mm 50mm Prédio ou casa entre 4 e 15 pavimentos 100mm 75mm Prédio com mais de 15 pavimentos 100mm 100mm Prédio até 3 pavimentos 150mm 75mm Prédio entre 4 e 10 pavimentos 150mm 100mm Prédio com mais de 10 pavimentos 150mm 150mm COZINHAS Casas térreas Sem TQG 50mm Prédio ou casa com até 3 pavimentos 75mm 50mm Prédio entre 4 e 10 pavimentos 75mm 50mm Prédio com mais de 10 pavimentos 75mm 75mm Prédio até 3 pavimentos 100mm 50mm Prédio entre 4 e 15 pavimentos 100mm 75mm Prédio com mais de 15 pavimentos 100mm 100mm Prédio até 3 pavimentos 150mm 75mm Prédio entre 4 e 10 pavimentos 150mm 100mm Prédio com mais de 10 pavimentos 150mm 150mm LAVANDERIAS Casas térreas Sem TQS 50mm Prédio ou casa com até 3 pavimentos 75mm 50mm Prédio entre 4 e 10 pavimentos 75mm 50mm Prédio com mais de 10 pavimentos 75mm 75mm Prédio ou casa até 3 pavimentos 100mm 50mm Prédio entre 4 e 15 pavimentos 100mm 75mm Prédio com mais de 15 pavimentos 100mm 100mm Prédio até 3 pavimentos 150mm 75mm Prédio entre 4 e 10 pavimentos 150mm 100mm Prédio com mais de 10 pavimentos 150mm 150mm

Page 19: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

19

TABELA 4.8 – Dimensionamento de Colunas e Barriletes de Ventilação – NBR 8160-09/99 Diâmetro nominal do tubo de queda ou do ramal de esgoto DN

Número de unidades Hunter de contribuição

Diâmetro nominal mínimo do tubo de ventilação

40 50 75 100 150 200 250 300 Comprimento permitido em metros

40 8 46 - - - - - - - 40 10 30 - - - - - - - 50 12 23 61 - - - - - - 50 20 15 46 - - - - - - 75 10 13 46 317 - - - - - 75 21 10 33 247 - - - - - 75 53 8 29 207 - - - - - 75 102 8 26 189 - - - - -

100 43 - 11 76 299 - - - - 100 140 - 8 61 229 - - - - 100 320 - 7 52 195 - - - - 100 530 - 6 46 177 - - - - 150 500 - - 10 40 305 - - - 150 1 100 - - 8 31 238 - - - 150 2 000 - - 7 26 201 - - - 150 2 900 - - 6 23 183 - - - 200 1 800 - - - 10 73 286 - - 200 3 400 - - - 7 67 219 - - 200 5 600 - - - 6 49 186 - - 200 7 600 - - - 5 43 171 - - 250 4 000 - - - - 24 94 293 - 250 7 200 - - - - 18 78 225 - 250 11 000 - - - - 16 60 192 - 250 15 000 - - - - 14 55 174 - 300 17 300 - - - - 9 37 116 287 300 13 000 - - - - 7 29 90 219 300 20 000 - - - - 6 24 76 186 300 26 000 - - - - 5 22 70 152

g) Os coletores e subcoletores são dimensionados escolhendo-se uma declividade para a rede, em

função da rede pública, na qual será feita a ligação. Na Tabela 4.9, cada declividade suporta um

número máximo de Unidades Hunter, que corresponde ao diâmetro do tubo que deverá ser

projetado.

Page 20: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

20

TABELA 4.9 – Dimensionamento de Subcoletores e Coletor Predial – NBR 8160-09/99

Diâmetro Nominal do Tubo DN

Número Máximo de Unidades Hunter de Contribuição em Função das Declividades Mínimas

% 0,5 1 2 4

100 - 180 216 250 150 - 700 840 1 000 200 1 400 1 600 1 920 2 300 250 2 500 2 900 3 500 4 200 300 3 900 4 600 5 600 6 700 400 7 000 8 300 10 000 12 000

Page 21: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

21

Page 22: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

22

Page 23: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

23

Page 24: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

24

Page 25: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

25

Page 26: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

26

Page 27: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

27

Page 28: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

28

Page 29: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

29

5.0. MATERIAIS UTILIZADOS NAS INSTALAÇÕES DE ÁGUA QUENTE E FRIA Existem no mercado inúmeros materiais para execução d instalações de água fria e quente. Para água fria, o material mais utilizado é o PVC, que devido à facilidade de manuseio e instalação e por ser um material leve, tem ainda um custo relativamente acessível frente aos concorrentes como cobre e ferro galvanizado. Estes últimos são mais utilizados para execução de instalações de água quente. 5.1. ÁGUA FRIA O material mais usado nas instalações de água fria é PVC (Cloreto de Polivinila). O PVC é uma resina plástica obtida de um processo petroquímico, que recebe pigmentos que identificam as linhas de tubulações existentes no mercado (branco, preto, marrom, bege, etc...). Existem vários tipos de tubos de PVC, indicados para diversas pressões de serviço. Os tubos são divididos em grupos, que levam o nome de Classe. Existem três classes de tubos de PVC. Para saber a pressão de serviço de cada classe, divide-se o número da classe por 2: Classe 12 ( 2) = 6 Kgf/cm2 = 60mca Classe 15 ( 2) = 7,5 Kgf/cm2 = 75mca Classe 20 ( 2) = 10 Kgf/cm2 = 100mca Existem dois tipos de tubulações de PVC distintas: a soldável e a roscável. A linha soldável é a mais usada, pois são tubulações leves soldadas a frio, com baixo custo. São vendidas barras de 6m com ponta e bolsa. A linha soldável é vendida comercialmente pelo diâmetro externo. A Tabela 5.1 faz a conversão de milímetros e polegadas, relacionando-se assim os diversos tipos de materiais. Tabela 5.1 – Correspondência dos Diâmetros Diâmetro Interno (mm) 13 19 25 32 38 50 63 75 100 Diâmetro Interno ( “ ) 1/2" 3/4" 1” 1 1/4" 1 1/2" 2” 2 1/2" 3” 4” Diâmetro Externo PVC 20 25 32 40 50 60 75 85 110 Cobre 15 22 28 35 42 54 66 79 104 PP 20 25 32 40 50 63 75 90 - PEX 16 20 25 32 40 50 63 75 90 CPVC 15 22 28 35 42 54 73 89 114 5.2. ÁGUA QUENTE Para instalações de água quente temos o cobre, que é o material mais tradicional, de longa vida, porém de custo elevado, de difícil execução, necessitando ainda, de materiais para fazer o

Page 30: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

30

isolamento, pois perde muito calor para as alvenarias, por se metálico e condutor. A soldagem dos tubos e conexões é feita com cordão de solda aquecido por chama de maçarico. Existem três classes de tubulações de cobre, que variam de acordo com sua espessura. O CPVC é um material plástico, que possui as mesmas características do PVC quanto a custos, manuseio e facilidade de instalação. Como é pouco condutor não necessita de isolamento térmico. O CPVC é o PVC acrescido de mais cloro, que aumenta a resistência dos tubos para possibilitar a condução de líquidos sob pressão e altas temperaturas. Os tubos de CPVC são dimensionados para trabalharem com as seguintes pressões de serviço: 6 Kgf/cm2 ou 60mca conduzindo água a 80°C. 24 Kgf/cm2 ou 240mca conduzindo água a 20°C. Estão entrando no mercado outros materiais como PEX, PP e outros, que podem ser usados tanto para água fria como quente. São materiais leves, não necessitam isolamento, tem relativa facilidade de execução, com custo que supera o CPVC, aproximando-se ao custo do cobre. A Tabela 5.2 apresenta um comparativo entre os tipos de materiais mais comuns, existentes no mercado. Tabela 5.2 – Comparativo entre materiais.

Tipo Temperatura Limite Isolamento Solda Pressão Kgf/cm2

PEX 90° Não * Mecânica 8 PP 80° Não * Termo-fusão 9 CPVC 80° Não * Química Fria 6 COBRE 150° Sim Maçarico à Gás 14 ( * ) Opcional 5.3. REGISTROS Registro de Pressão: Também conhecido como “Válvula de Globo” , utilizado nas canalizações que abastecem os chuveiros, em mictórios e onde é necessário uma perfeita vedação. Apresenta grande perda de carga devido ao seu sistema de vedação interno, que obriga a água a desviar no seu interior, causando perda de pressão na rede. Sua vedação é absolutamente estanque, pois apresenta um anel de borracha de vedação que evita o contato entre os metais em seu interior. É de custo mais elevado, e não deve ser usado nas colunas de água fria por ocasionar elevadas perdas de carga. Registro Gaveta: Apresenta perda de carga desprezível, pois seu miolo fecha como se fosse uma “gaveta”, recolhendo-se completamente, liberando a passagem da água. Tem baixo custo e deve ser usado nas colunas e barriletes. Registro de esfera: Apresenta o mesmo princípio do registro de pressão. Por não possuir acabamento é muito utilizado na indústria, quando há a necessidade de uma vedação perfeita.

Page 31: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

31

6.0. SISTEMAS DE AQUECIMENTO DE ÁGUA 6.1. GENERALIDADES Atualmente não se pode conceber um prédio sem água quente. Prédios residenciais, hotéis, hospitais, indústrias, laboratórios, etc.. exigem água quente, seja por necessidade ou por conforto. A temperatura da água deve a ser fornecida depende do uso a que se destina. Por norma a temperatura para banhos é de 40°C. A Norma Técnica que rege as Instalações de Água Quente é a NBR 7198. 6.2. CRITÉRIOS PARA ESCOLHA DOS AQUECEDORES 6.2.1. Critérios Técnicos: Volume de acumulação Temperatura da água Tempo de aquecimento Consumo de combustível 6.2.2. Critérios Econômicos Custo de aquisição Custo da instalação Custo de manutenção Vida útil Custo do combustível/energia 6.2.3. Material dos Encanamentos Os encanamentos podem ser feitos com cobre recozido e conexões em bronze ou latão. Existem no mercado novas linhas de produtos importados e nacionais que suportam pressão aliada à temperatura. Os tubos e conexões de PVC não devem ser empregados para água quente, pois possuem elevado coeficiente de dilatação linear e amolecem a temperatura de 100°C. A 60°C sua pressão de serviço é de apenas 2Kg/cm2. O tubo de ferro maleável galvanizado, embora seja empregado, apresenta pouca resistência à corrosão. 6.2.4. Isolamento dos Encanamentos Os encanamentos devem ser isolados com material de baixa condutibilidade térmica, a fim de não dissipar o calor antes de a água atingir os sub-ramais. Existem vários tipos no mercado, desde a tradicional lã de vidro até componentes do tipo espuma e mangueiras isolantes. Quando a tubulação for instalada em locais úmidos, pode-se

Page 32: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

32

protegê-la com uma película de alumínio adesiva. A Figura 6.1 mostra alguns detalhes executivos do isolamento das tubulações. 6.2.5. Dilatação dos Encanamentos Deve-se levar em conta a dilatação dos encanamentos sob o efeito do calor nas instalações de água quente, permitindo que a dilatação se dê livremente e sem obstáculos a fim de evitar que ocorram tensões internas no tubo e empuxos consideráveis. Para atender ao efeito da dilatação nas tubulações pode-se usar um dos recursos seguintes: As instalações de água quente devem poder dilatar sem romper o isolamento térmico. Deve-se evitar embutir as linhas alimentadoras principais na alvenaria. Sempre que possível, devem ser instaladas em nichos ou shaft de tubulações. 6.3. MODALIDADES DE INSTALAÇÃO DE AQUECIMENTO DE ÁGUA 6.3.1. Instalação Individual Aquecedor de Passagem; Aquecedor por Acumulação. 6.3.2. Instalação Coletiva Centrais de aquecimento conhecidas como Storage ou caldeiras. 6.4. INSTALAÇÃO INDIVIDUAL 6.4.1. AQUECEDOR DE PASSAGEM A GÁS Características:

- Prático, fácil de instalar; - Econômico; - Não pode ser instalado no interior de sanitários; - Atende poucos pontos de consumo; - Modelos de qualidade duvidosa podem apagar a chama de gás, deixando este escapar para o

ambiente. - São aparelhos que precisam de pressões de 5 a 10mca para garantir seu funcionamento,

necessitando muitas vezes de pressurizador ou ligação direta da rede pública para garantir um bom funcionamento.

Vantagem - Precisa de poucos metros de canalização para abastecer. É um sistema econômico, pois só é acionado no momento em que for usado.

Page 33: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

33

Desvantagem - Problema de ventilação. O aparelho deve ser dotado de chaminé para expulsão dos gases provenientes da queima. Este aparelho consome em pouco tempo o oxigênio do ar. Não pode ser colocado dentro do banheiro. Na peça onde for colocado, deverá haver ventilação cruzada. O aparelho deve ser colocado próximo a uma janela, e na porta, 10cm acima do rodapé, deverá ser instalada uma abertura venezianada. Aquece no máximo, dois pontos ao mesmo tempo. Quando acionado, demora alguns minutos para chegar água quente, causando desperdício de água. 6.4.2. AQUECEDOR DE PASSAGEM ELÉTRICO Existem no mercado alguns tipos de aquecedores elétricos que aquecem individualmente alguns pontos como chuveiros, lavatórios, banheiras e pias de cozinha. Os modelos mais conhecidos são da CARDAL. Características:

- Pode ser instalado no interior de sanitários; - Atende apenas um ponto de consumo de cada vez; - Apresenta alto consumo de energia elétrica; - Necessitam de coluna de água de diâmetro 50mm, pois o bom funcionamento está

diretamente ligado à pressão da rede de alimentação;

Vantagem – Pode ser instalado dentro do banheiro ou em qualquer compartimento, pois não apresenta queima de gases. Desvantagem – Consumo de energia elevado. Necessita de instalação trifásica, e bom aterramento. Necessita de altura de coluna d’água para um bom desempenho do aparelho. 6.5. AQUECEDOR POR ACUMULAÇÃO À GÁS Vantagens - Aquece várias peças da casa. Pode ser usado em pontos simultaneamente. Quando utilizado o sistema de retorno, permite que a água saia quente, no momento em que for acionada a torneira. Desvantagens - É necessário que fique ligado o dia todo, aquecendo a água no tambor, mesmo quando não está em uso. A capacidade do reservatório é calculada em função da população do prédio. Descrição do Aparelho Tambor interno – Reservatório que armazena um determinado volume de água que será aquecido pelo calor liberado pela combustão do gás que alimenta o queimador colocado na parte inferior do

Page 34: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

34

tambor interno, até atingir uma temperatura previamente regulada pôr meio do controle automático. Isolação – Revestido com poliuretano expandido, material de baixo coeficiente de condutividade térmica, reduzindo sensivelmente as perdas de calor; Acabamento: Tambor externo em chapa de aço, laminada a frio, desengraxada e protegida com primeira demão de tinta anticorrosiva. Acabamento final em esmalte sintético branco e cinza grafite, polimerizado em estufa; Controle automático de temperatura – Elemento de extrema sensibilidade, controla a temperatura de funcionamento do aparelho. Caindo a temperatura o controle é acionado automaticamente acendendo o queimador até que seja atingida a temperatura programada; Piloto Termopar – O queimador é aceso pela chama do piloto quando a temperatura da água fica abaixo da programada no controle automático;

O termopar tem a função de fechar a passagem total do gás caso o piloto se apague, pelo bloqueio do orifício da passagem de gás pôr resfriamento. Este sistema proporciona total segurança ao aquecedor, eliminando o risco de vazamento de gás; Válvula de Segurança de Pressão – Dispositivo de segurança destinado a aliviar a pressão interna do reservatório quando a mesma ultrapassa um valor pré-determinado. A válvula de segurança deverá ser canalizada juntamente com o dreno para um box ou outro local de fácil visualização. Não canalizar a válvula de segurança para ralos ou locais onde não se perceba sua abertura. Respiro - Nos casos de instalação de baixa pressão utiliza-se o Respiro em substituição à válvula de segurança. É instalado na saída de água quente em seu ponto mais elevado a fim de eliminar a formação de bolhas de ar na tubulação de água quente e como dispositivo de segurança para aliviar a pressão interna do aquecedor. Deve-se ultrapassar a tubulação de respiro em 80cm acima do nível máximo do reservatório. Ventilação - É obrigatória a instalação de aquecedores a gás em ambientes com ventilação permanente mínima e o uso de chaminé de exaustão.

Quando instalados em ambientes fechados (Área de Serviço ou similares), o ambiente deve possuir volume mínimo de 9m3 para aquecedores até 150 litros e 12 m3 de 175 a 250 litros. Pressão dinâmica mínima - Não deve ser inferior a 5 kPa (0,5 m.c.a); Pressão estática máxima: Nas peças de utilização e nos aquecedores não deve ser superior a 400 kPa (40 m.c.a). Deve-se prever dispositivos redutores de pressão caso ultrapasse este valor.

Devem ser previstos registros de fechamento no início de cada coluna de distribuição e em cada ramal, no trecho compreendido entre a respectiva derivação e o primeiro sub-ramal. A entrada de água fria é conectada à luva da direita, olhando o aparelho de frente. A saída de água quente é conectada à luva da esquerda olhando o aparelho de frente. A alimentação de água fria para o aquecedor deve estar sempre em cota superior ao aquecedor e deve alimentar somente o mesmo, não devendo derivar de rede que tenha válvula de descarga de vasos sanitários.

Prever dispositivos de escoamento como ralos, canaletas, ou outro dispositivo que permita o escoamento da água proveniente de eventual vazamento. O ralo deve estar a uma distancia mínima de 1,50m do aquecedor.

Page 35: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

35

Algumas recomendações importantes para manter o bom funcionamento de seu aquecedor de água:

- Armazená-lo em lugar seco e protegido de substâncias agressivas, tais como: cal, ácidos,

tintas, cimento, etc... - Utilizar carrinho, ou quando na falta do mesmo, movimentá-lo pelo menos com duas

pessoas; - Recomenda-se instalá-lo sobre uma base de no mínimo 5cm, para evitar contato com a água

na lavagem de pisos; - Evitar batidas ao transportar o aquecedor ou instalá-lo em ambientes de pequeno espaço, o

que dificulta o manuseio aumentando o risco de amassar a capa externa; - Os aquecedores devem ser alimentados pelo reservatório superior de água fria ou pôr

dispositivo hidropneumático, nunca diretamente da rede pública; - Antes de usar o aparelho pela primeira vez, verifique se as ligações hidráulicas e de gás

estão de acordo com as especificações; - Nunca acender o queimador sem antes verificar se o aquecedor está cheio d’água. - Certificar-se da colocação da válvula de segurança (no caso de instalações de alta pressão)

ou respiro (no caso de instalações de baixa pressão), condições fundamentais para a segurança do aparelho;

- A tubulação de alimentação de água fria e a de distribuição de água quente do aquecedor, devem ser de material resistente à temperatura máxima admissível da água quente. Não utilizar tubulações em PVC. Não instalar o aquecedor na mesma coluna que alimenta as válvulas de descarga. Ao optar pôr CPVC, recomenda-se a colocação da válvula da segurança de temperatura (termo-válvula) na instalação hidráulica, conforme orientações técnicas do fabricante do CPVC;

- É proibido o uso de válvula de retenção conforme item 5.1.3 NBR 7198/93 no ramal de alimentação de água fria do aquecedor na ausência do respiro (baixa pressão);

- Para evitar o acúmulo de sedimentos no aquecedor e manter sua eficiência, escoar a água uma vez pôr mês em cerca de 20 litros pelo dreno de limpeza;

- Para obtenção de pressão mínima nos pontos de consumo, o fundo do reservatório, deverá estar a pelo menos 1 metro acima da tubulação de água quente que corre pela laje/forro;

- Para instalação em residências térreas (baixa pressão), recomenda-se que o diâmetro da tubulação de água fria que alimenta o aquecedor seja superior ao diâmetro de entrada do aquecedor;

- Ao conectar a torneira do dreno ao aquecedor, não esquecer de fazer a vedação com teflon. NOTA: Antes de encher o aquecedor, abra primeiro todas as torneiras de água quente, inclusive a do chuveiro, em seguida, abra o registro de entrada de água fria do aquecedor. A medida que começar a sair água pelas torneiras, fechá-las lentamente. Esta operação visa tirar o ar das tubulações.

Page 36: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

36

6.6. AQUECEDOR POR ACUMULAÇÃO ELÉTRICO Características:

- Pode ser instalado no interior de sanitários, ou em qualquer local, até mesmo sob o telhado; - Atende vários pontos de consumo; - Apresenta alto consumo de energia elétrica; - Também trabalha precisando de boa pressão na rede de água para garantir seu

funcionamento. - É ideal para ser instalado em locais públicos onde é vedada a utilização de aparelhos a gás.

São muito utilizados nas lanchonetes de shopping, órgãos públicos, feiras e eventos em geral.

- As vantagens e desvantagens seguem as mesmas características do aquecedor elétrico de passagem.

6.7. INSTALAÇÃO COLETIVA – GERADORA DE ÁGUA QUENTE É um sistema de aquecimento de água composto de um ou mais tanques de acumulação de água horizontais ou verticais, com capacidade de 300 a 10.000 litros. Esta instalação permite a alimentação de todo o prédio simultaneamente. Neste sistema as redes estão interligadas nos pavimentos e a água está sempre circulando, o que ocasiona a otimização do sistema. A qualquer momento, qualquer ponto que for acionado, terá água quente disponível. O tamanho e capacidade da geradora são calculados em função da população do prédio. Necessitam área específica no pavimento térreo devido suas grandes dimensões. Os catálogos dão as dimensões necessárias para as peças, em função do tamanho das máquinas. O local de instalação deve ser exclusivo, garantindo espaço suficiente para a manutenção preventiva e corretiva. A porta de acesso, bem como o caminho a percorrer, devem ter espaço com folga para a passagem do equipamento. Já no interior, a sala deve ter no mínimo 80cm livres em toda a volta do equipamento, lembrando que muitas vezes espaços maiores são indispensáveis, como por exemplo, para remoção de um queimador de gás. Outras considerações são quanto a uma boa iluminação, circuito especial e exclusivo com maior amperagem, caixas de comando protegidas, instaladas pelo lado externo da peça. É necessário ainda, extintor de incêndio adequado. As geradoras possuem capa externa tratada para resistir a corrosão. Internamente o depósito de água é em aço inoxidável, isolado termicamente. O aparelho recebe o calor através de queimadores, podendo ser alimentadas a gás, lenha, diesel, ou combinações. Para o perfeito funcionamento são necessários a instalação de dispositivos de segurança, termostato, termômetro, válvula de segurança e uma cuidadosa manutenção.

Page 37: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

37

Com o aquecimento da água, há a tendência de formação de bolhas de ar com muita intensidade. Assim, é importante evitar sifões nas redes, bem como executar a tubulação com aclives e declives, que conduzam o ar a um ponto com respiro. É necessário executar pelo menos um respiro. Em outros pontos onde não for possível, deverá ser prevista a instalação de válvulas desaeradoras. Para um bom funcionamento das instalações, a alimentação da geradora deverá ser com coluna específica para esta finalidade (AGAQ). A coluna de distribuição (ABAQ), bem como as CAQs deverão suportar a temperatura de 100°C, logo é aconselhável a utilização de tubos de cobre, isolados termicamente; A água sobe por termossifão até 3 ou 4 pavimentos. A partir disso é aconselhável prever uma bomba de recirculação. Esta bomba é apenas para vencer a inércia. Não se calcula como bomba de recalque é uma bomba com baixa potência. A geradora é provida de chaminé devido à queima. É preciso prever no projeto arquitetônico o destino para a chaminé. A Figura 6.2 mostra um esquema básico de instalação do sistema Central Coletivo. Vantagens:

- Atende grandes volumes de água; - Não tem instalações de equipamentos no interior dos apartamentos.

Desvantagens: - Sistema relativamente caro, pois necessita de aporte inicial de dinheiro para sua instalação;

- Necessita manutenção e controle permanente; - É necessário instalar registros de medição nos apartamentos para diferenciar e cobrar

consumos.

Page 38: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

38

Page 39: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

39

6.8. AQUECIMENTO SOLAR O princípio de funcionamento do sistema de aquecimento solar é bastante simples. Ele é composto por dois elementos básicos: o coletor solar, que aquece a água, e o reservatório térmico (bolier), que armazena a água aquecida. A água circula entre o reservatório térmico e os coletores solares através de tubos de cobre. As placas de cobre com superfície preta dos coletores solares captam o calor do sol e o transferem para a água que circula no interior da serpentina os coletores. Aquecida a água retorna ao reservatório térmico e ali fica armazenada até que seja consumida. É fundamental que a tubulação por onde circula a água seja de cobre em função das severas condições de temperatura e necessidade de trocas térmicas rápidas. A alimentação do sistema é feita por um reservatório de água fria. Os sistemas possuem ainda uma forma auxiliar de aquecimento, que entra em ação quando a insolação não for suficiente para aquecer a água ou o consumo de água quente for superior ao inicialmente projetado. Normalmente o sistema de aquecimento complementar é composto de uma resistência elétrica blindada e de um termostato. Sua operação é automática, mas, nos casos de sistemas residenciais é recomendado que o sistema auxiliar seja também controlado através dos disjuntores, acionando o complemento de aquecimento quando houver necessidade, ou ainda por meio de um Controlador Digital de Temperatura, que faz uma operação automática mais precisa frente às necessidades do usuário e economia de energia. A circulação da água pelos coletores solares pode se dar de duas maneiras: naturalmente, pelo efeito termossifão, ou forçada, com o uso de uma motobomba. O termossifão é a opção mais utilizada nos casos de instalações residenciais de pequeno porte. Já a circulação por motobomba é a mais empregada em sistemas de médio e grande porte. O sistema por termossifão faz com que a circulação da água se processe em razão da diferença de peso (densidade) entre a água fria e a água quente. A água fria “empurra” a água quente, realizando a movimentação. A forma mais comum de sistemas termossifão é chamada de “instalação em desnível”. Para que o termossifão obtenha um funcionamento perfeito, os componentes do aquecedor solar e a caixa de água fria de abastecimento deverão considerar algumas condições. O reservatório térmico deverá ficar abaixo da caixa d’água. O desnível poderá variar de zero até o limite de pressão admissível no reservatório térmico (usualmente de 2 a 5 metros). Os coletores solares deverão ficar a pelo menos 30cm abaixo do fundo do reservatório térmico. E a distancia máxima entre os componentes não deverá ultrapassar 5metros. Os coletores devem ser orientados para o Norte, recomendando-se que o anglo de inclinação seja igual à latitude mais 10°. Para Porto Alegre as placas devem ser instaladas a 30°, assim garante-se um melhor desempenho no inverno. O rendimento de um coletor solar varia em função da temperatura do ar, velocidade do vento, intensidade da radiação solar, temperatura da água no coletor. O rendimento médio varia entre 30 e 50%. A Figura 6.3 mostra o esquema básico de instalação do sistema de aquecimento solar. A Figura 6.4 mostra o sistema ideal em desnível para aquecimento solar.

Page 40: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

40

Page 41: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

41

Características:

- Necessita muita área de coletores solares para grandes volumes de água quente; - Ecologicamente correto; - Necessita apoio elétrico na ausência de sol;

Projeto e Dimensionamento: Para dimensionar é necessário calcular o volume de consumo diário de água quente. No caso de aquecedores solares, o volume dos reservatórios térmicos (boiler) deve ser igual ao consumo diário. É preciso calcular também, a área necessária para os coletores em função do volume de água a ser aquecida. O projeto deve analisar o local da instalação (cidade), características do equipamento e condições de instalação na obra. A Tabela 6.5 aplica-se ao calculo do consumo médio de água quente para sistemas de pequeno porte, em edificações residenciais, com bom nível de conforto, sem desperdícios. Tabela 6.1 – Consumo Médio de Água Quente em Residências.

Peças Consumo Diário Ducha 40 a 80 litros/pessoa Lavatório 5 a 7 litros/pessoa Cozinha 20 a 30 litros/pessoa Lavanderia 20 a 30 litros/Kg de roupa seca Banheira 100 a 200 litros/uso A Tabela 6.2 faz referência ao pré-dimensionamento do volume de água quente em edificações diversas e que usualmente levam a um maior volume de consumo e a sistemas de grande e médio porte. Tabela 6.2 – Consumo Médio de Água Quente em Edificações Diversas.

Edificações Consumo Diário Edifício Residencial 110 litros/morador Hotel 105 litros/leito Motel 800 litros/apartamento Hospital 100 litros/leito Vestiário Industrial 50 litros/pessoa Lavanderia Industrial 30 litros/Kg de roupa seca Cozinha Industrial 15 litros/refeição Residência Popular 40 litros/pessoa A quantidade de coletores necessários para o aquecimento de 100 litros de água nas condições ideais é de 1 a 1,6m2, variando conforme o fabricante das placas. Após calcular o volume de água necessário e a área das placas, basta entrar nos catálogos de

Page 42: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

42

fabricantes para verificar o tamanho dos reservatórios térmicos e placas solares ofertados pelo mercado. As Tabelas 6.3 e 6.4 fazem referências a capacidade e dimensões dos reservatórios térmicos e placas solares da Soletrol. Tabela 6.3 – Dimensões Aproximadas dos Reservatórios Térmicos - Soletrol

Capacidade (em litros)

Diâmetro – Comprimento (aproximado em cm)

200 60 – 120 300 60 – 130 400 60 – 160 500 60 – 190 600 60 – 230 800 80 – 280

1000 80 – 380 2000 110 – 240 3000 110 – 360 4000 130 – 400 5000 130 - 480

Tabela 6.4 – Dimensões Aproximadas dos Coletores Solares - Soletrol

Largura (aproximada em cm)

Comprimento (aproximado em cm)

74 194 80 200 100 103 100 200

Page 43: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

43

7.0. ESTUDO DAS INSTALAÇÕES DE ÁGUA QUENTE E FRIA - ISOMÉTRICAS 7.1. INTRODUÇÃO O uso da água potável nos prédios constitui condição indispensável para o atendimento das mais

elementares condições de habitabilidade, higiene e conforto.

Há quem procure reduzir o custo da construção de um prédio sacrificando as instalações, seja

com o inadequado emprego de certos materiais, seja com o sub dimensionamento dos

encanamentos, peças e equipamentos. O desconforto, os prejuízos e as questões que decorrem do

descaso para com o projeto, as especificações e a execução das instalações, infelizmente, são

realidades que ninguém ignora, que muitos experimentam pessoalmente. [MACINTYRE, 1986].

As redes de água são compostas de:

Sub-ramal: é o trecho compreendido entre o ponto de espera (ex: torneira) e uma derivação (Tê).

Ramal: é o trecho que abastece os sub-ramais. O ramal termina onde inicia a coluna de distribuição.

CAF, CAQ: São as colunas de distribuição de água quente e fria. CAF (Coluna de Água Fria), CAQ

(Coluna de Água Quente).

Barrilete: São as redes que distribuem água para as colunas.

Recirculador: É a tubulação que retira a água fria do reservatório ou água quente do aquecedor.

Os componentes de uma instalação de água quente e fria podem ser vistos na Figura 7.1.

Por convenção:

- As redes de água quente são indicadas através de linhas tracejadas;

- As redes de água fria são representadas através de linhas cheias;

- A espera de água quente fica à esquerda de quem olha;

- A espera de água fria fica à direita de quem olha;

- Sempre que possível, deve-se levar as canalizações de água quente pela parede, porque as

perdas de calor são menores do que no piso.

A Figura 7.2 mostra o detalhe das ligações de água quente e fria do chuveiro.

Page 44: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

44

Page 45: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

45

Em água quente evita-se sifão invertido, que acumula bolhas de ar na parte superior do sifão.

Caso não possa ser evitado, é necessária a utilização de válvulas desaeradoras ou a instalação de

cachimbo de ventilação.

As alturas ideais para passagem das redes de água quente e fria nas alvenarias são de 70cm e

100 cm. Elas devem distar 30cm uma da outra, para evitar a perda de calor da água quente para a

fria. Não passar redes nas alturas de 33cm, 20cm, 60cm, 110cm, 180cm e 210cm, pois são alturas

de esperas de aparelhos.

A Tabela 7.1 mostra as alturas das esperas, que deverão ser apresentadas no projeto de

instalações de água quente e fria.

Tabela 7.1 – Alturas das Esperas dos Aparelhos BA Banheira 0,60m BD Bidê 0,20m BE Bebedouro 0,50m V Vaso 0,33m CD Caixa de Descarga 1,60m CDA Caixa de Descarga Acoplada 0,20m VD Válvula de Descarga 1,10m F Filtro 1,10m L Lavatório 0,60m CH Chuveiro 2,10m RP Registro de Pressão 1,10m RG Registro de Gaveta 1,80m MLL Máquina Lavar Louça 0,60 - 1,10m MLR Máquina Lavar Roupa 1,10m TQ Tanque 1,10m M Mictório 1,05m P Pia 1,10m

Page 46: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

46

7.2. PROJETO DAS REDES DE ÁGUA QUENTE E FRIA DAS ISOMÉTRICAS

Iniciar o projeto das isométricas desenhando a peça em perspectiva de 30°.

Marcar os eixos das peças.

Subir linhas de chamada finas, que serão apagadas posteriormente;

Marcar a altura de cada peça de acordo com a Tabela 7.1;

Sobre a altura marcada, traçar uma linha paralela a parede;

15cm para cada lado do ponto, marcar as esperas;

Evidenciar as esperas e marcar qual é a água quente e qual é a água fria;

Apagar as linhas de chamada;

Marcar linhas de chamada nos cantos da peça e nos cantos do shaft, pelo lado interno da peça;

Escolher as alturas para passar os ramais de água quente e fria, deixando 30cm entre eles;

Interligar as esperas de água quente no ramal de água quente (subindo ou descendo até os ramais).

Idem para a água fria.

Verificar o término das redes;

Cortar as linhas de redes que se cruzam;

Escolher o local para a descida das CAF e CAQ, colocando os registros de gaveta;

Dimensionar conforme as tabelas.

IMPORTANTE:

- Cuidar para não passar redes nas portas e janelas;

- Não projetar as colunas atrás do lavatório onde será colocado o espelho.

- Não projetar as colunas nas portas e janelas;

As Figuras 7.3 a 7.8 mostram alguns exemplos de isométricas de Banheiros, Cozinhas e áreas de Serviço.

Page 47: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

47

Page 48: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

48

Page 49: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

49

Page 50: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

50

Page 51: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

51

Page 52: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

52

Page 53: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

53

7.3. DIMENSIONAMENTO DAS REDES DE ÁGUA QUENTE E FRIA DAS ISOMÉTRICAS Para utilização das tabelas a seguir, faz-se necessário o entendimento do conceito de peso:

Peso: É um número estatístico, para o qual foi desenvolvida a equação de provável vazão de

utilização de vários pontos de consumo simultâneos.

Q = C √ΣP Onde:

Q = vazão estimada na seção considerada, em litros por segundo;

ΣP = soma dos pesos relativos de todas as peças de utilização, alimentadas pela tubulação

considerada.

C = Coeficiente de descarga = 0,30

Os pesos relativos são estabelecidos empiricamente em função da vazão de projeto conforme

mostra a Tabela 7.2. Cada espera alimentada pela tubulação é formada constituindo o Somatório de

Pesos (ΣP). Usando a equação acima, esse somatório é convertido na demanda simultânea total do

grupo de peças de utilização considerado, tornando-se uma estimativa da vazão a ser usada no

dimensionamento da tubulação. Como é fácil de se imaginar, salvo em instalações cujos horários de

funcionamento sejam rígidos, como quartéis, colégios, etc... Nunca há o caso de se utilizar todas as

peças ao mesmo tempo. Há uma diversificação que representa economia no dimensionamento das

canalizações. Assim, por exemplo, se uma pessoa utiliza um banheiro, poderá haver consumo

d’água na banheira, enquanto utiliza ou o vaso, ou bidê ou lavatório, nunca todos simultaneamente.

Esse método é válido para instalações destinadas ao uso normal da água e dotadas de aparelhos

sanitários e peças de utilização usuais: não se aplica quando o uso é intenso, (como é o caso de

cinemas, escolas, quartéis, estádios e outros), onde torna-se necessário estabelecer, para cada caso

particular, o padrão de uso e os valores máximos de demanda.

O dimensionamento deve ser feito para as canalizações de água fria, na seguinte seqüência:

- Atribuir os pesos a cada espera conforme a Tabela 7.2;

- Identificar os sub-ramais e colocar os diâmetros conforme a Tabela 7.3.

Page 54: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

54

- Para calculo dos ramais, somar os pesos dos dois sub-ramais mais distantes da Coluna de

Distribuição e entrar na Tabela 7.4.

- Continuar trecho a trecho acumulando os pesos e entrando na Tabela 7.4, até chegar na

Coluna de Distribuição.

- Relacionar as tubulações de água fria com as de água quente, através da equivalência

mostrada na Tabela 7.5. Idem para os registros e válvulas, que são apresentadas no projeto

em polegadas.

7.4. PESOS RELATIVOS E VAZÕES NOS APARELHOS TABELA 7.2 – Pesos relativos nos pontos de utilização e vazões identificados em função do aparelho sanitário e da peça de utilização

Aparelho Sanitário Peça de Utilização Vazão de Projeto (litros/segundo)

Peso Relativo

Bacia Sanitária Caixa Descarga 0,15 0,3 Válvula Descarga 1,70 32

Banheira Misturador (água fria) 0,30 1,0 Bebedouro Registro de Pressão 0,10 0,1 Bidê Misturador (água fria) 0,10 0,1 Chuveiro ou Ducha Misturador (água fria) 0,20 0,4 Chuveiro Elétrico Registro de Pressão 0,10 0,1 Lavadora de Pratos ou Roupas Registro de Pressão 0,30 1,0

Lavatório Torneira ou Misturador (água fria) 0,15 0,3

Mictório cerâmico

Com sifão integrado Válvula de Descarga 0,50 2,8

Sem sifão integrado

Caixa de Descarga, Registro de Pressão ou Válvula de Descarga para Mictório

0,15 0,3

Mictório tipo calha Caixa de Descarga ou Registro de Pressão

0,15 por metro de calha 0,3

Pia Torneira ou Misturador (água fria) 0,25 0,7

Torneira Elétrica 0,10 0,1 Tanque Torneira 0,25 0,7 Torneira de jardim ou lavagem em geral Torneira 0,20 0,4

Page 55: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

55

7.5. DIÂMETROS MÍNIMOS DOS SUB-RAMAIS. TABELA 7.3 – Vazões Unitárias dos Aparelhos Sanitários

Peças de Utilização PVC Soldável DE (mm) Bitola (“)

Aquecedor de Alta Pressão 20 ½” Aquecedor de Baixa Pressão 25 ¾” Bacia Sanitária com Caixa de Descarga 20 ½” Bacia Sanitária com válvula de descarga de bitola 1 1/4” 50 1 ½” Bacia Sanitária com válvula de descarga de bitola 1 1/2” 50 1 ½” Banheira 20 ½” Bebedouro 20 ½” Bidê 20 ½” Chuveiro 20 ½” Filtro de Pressão 20 ½” Lavatório 20 ½” Máquina Lavar Louças 25 ¾” Máquina Lavar Roupas 25 ¾” Mictório de Descarga Contínua por Metro ou Aparelho 20 ½” Pia de Cozinha 20 ½” Tanque de Lavar Roupas 25 ¾” 7.6. DIÂMETROS DOS RAMAIS E COLUNAS. De posse desses dados, é possível fazer um pré-dimensionamento das tubulações pela “capacidade de descarga dos tubos”, de acordo com a Tabela 7.4. Tabela 7.4 - Diâmetros de Ramais de Água Fria

Somatório de Pesos Diâmetro Externo PVC 0,1 a 0,99 20 1,0 a 3,80 25 3,81 a 17,0 32 17,1 a 39,9 40 40 a 140,0 50 140,1 a 390,0 60 390,1 a 1.100,0 75 1.100,1 a 2.800,0 85 2.800,1 a 6.000,0 110

Page 56: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

56

7.7. CORRESPONDÊNCIA DOS DIAMETROS EM RELAÇÃO AO PVC EXTERNO. Tabela 7.5 – Correspondência dos Diâmetros Diâmetro Interno (mm) 13 19 25 32 38 50 63 75 100 Diâmetro Interno ( “ ) 1/2" 3/4" 1” 1 1/4" 1 1/2" 2” 2 1/2" 3” 4” Diâmetro Externo PVC 20 25 32 40 50 60 75 85 110 Cobre 15 22 28 35 42 54 66 79 104 PP 20 25 32 40 50 63 75 90 - PEX 16 20 25 32 40 50 63 75 90 CPVC 15 22 28 35 42 54 73 89 114 7.8. PERDA DE CARGA EM CONEXÕES – PLÁSTICO, COBRE. Para o realizar o calculo com as perdas de carga localizadas, seguir a Tabelas 7.6, para conexões de PVC, cobre e plástico. Tabela 7.6 - Perda de Carga em Conexões – Comprimento Equivalente para Tubo Liso (Tubo de Plástico, Cobre ou Liga de Cobre)

Diâmetro Nominal

(DN)

Tipo de Conexão

Cotovelo 90°

Cotovelo 45° Curva 90° Curva 45°

Tê Passagem

Direta

Tê Passagem Lateral

15 (1/2”) 1,1 0,4 0,4 0,2 0,7 2,3 20 (3/4”) 1,2 0,5 0,5 0,3 0,8 2,4 25 (1”) 1,5 0,7 0,6 0,4 0,9 3,1 32 (1 ¼”) 2,0 1,0 0,7 0,5 1,5 4,6 40 (1 ½”) 3,2 1,0 1,2 0,6 2,2 7,3 50 (2”) 3,4 1,3 1,3 0,7 2,3 7,6 65 (2 ½”) 3,7 1,7 1,4 0,8 2,4 7,8 80 (3”) 3,9 1,8 1,5 0,9 2,5 8,0 100 (4”) 4,3 1,9 1,6 1,0 2,6 8,3 125 4,9 2,4 1,9 1,1 3,3 10,0 150 5,4 2,6 2,1 1,2 3,8 11,1 7.9. PERDA DE CARGA EM CONEXÕES – AÇO CARBONO Para realizar o calculo com as perdas de carga localizadas, seguir a Tabela 7.7 para conexões de ferro e aço.

Page 57: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

57

Tabela 7.7 - Perda de Carga em Conexões – Comprimento Equivalente para Tubos Rugosos (Tubo de Aço Carbono, Galvanizado ou não)

Diâmetro Nominal

(DN)

Tipo de Conexão

Cotovelo 90°

Cotovelo 45° Curva 90° Curva 45°

Tê Passagem

Direta

Tê Passagem Lateral

15 (1/2”) 0,5 0,2 0,3 0,2 0,1 0,7 20 (3/4”) 0,7 0,3 0,5 0,3 0,1 1,0 25 (1”) 0,9 0,4 0,7 0,4 0,2 1,4 32 (1 ¼”) 1,2 0,5 0,8 0,5 0,2 1,7 40 (1 ½”) 1,4 0,6 1,0 0,6 0,2 2,1 50 (2”) 1,9 0,9 1,4 0,8 0,3 2,7 65 (2 ½”) 2,4 1,1 1,7 1,0 0,4 3,4 80 (3”) 2,8 1,3 2,0 1,2 0,5 4,1 100 (4”) 3,8 1,7 2,7 ..... 0,7 5,5 125 4,7 2,2 ..... ..... 0,8 6,9 150 5,6 2,6 4,0 .... 1,0 8,2 7.10. PRESSÕES MÁXIMAS E MÍNIMAS Em condições dinâmicas (com escoamento), a pressão da água nos pontos de utilização deve ser estabelecida de modo a garantir as vazões de projeto indicadas na Tabela 7.2 e o bom funcionamento das peças de utilização e dos aparelhos sanitários. Em qualquer caso a pressão não deve ser inferior a 10kPa (1mca), com exceção do ponto da caixa de descarga, onde a pressão pode ser menor do que este valor, até um mínimo de 5 kPa (0,5mca), e do ponto da válvula de descarga para bacia sanitária onde a pressão não deve ser inferior a 15 kPa (1,5 mca). Em qualquer ponto da rede predial de distribuição, a pressão da água em condições dinâmicas (com escoamento) não deve ser inferior a 5 kPa (0,5 mca). Em condições estáticas (sem escoamento), a pressão da água em qualquer ponto de utilização da rede predial de distribuição não deve ser superior a 400 kPa (40 mca). 7.11. VELOCIDADE MÁXIMA A velocidade máxima da água nas canalizações não deve exceder 4 m/s, pois caso isto aconteça, provoca um ruído desagradável. As pressões máximas e mínimas, assim como as velocidades, são calculadas quando se faz o dimensionamento através de Perdas de Carga.

Page 58: Poligrafo Instalações Hidráulicas 1

Centro Estadual Tecnológico Parobé Curso de Edificações – Instalações Hidráulicas

58