Presentation Seminar PDMA

Embed Size (px)

Citation preview

  • 8/6/2019 Presentation Seminar PDMA

    1/61

    Isabel Silva Magalhes Integer-valued time series

    Integer-valued time series

    Isabel Silva Magalhes

    Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto

    Unidade de Investigao Matemtica e Aplicaes (UIMA), Universidade de Aveiro

    PDMA-UP - October 2009

    PDMA-UP - October 2009 1 / 30

  • 8/6/2019 Presentation Seminar PDMA

    2/61

    Isabel Silva Magalhes Integer-valued time series

    Outline

    Motivation

    Thinning operation

    INteger-valued AutoRegressive (INAR) processes

    INAR(1) processes INAR(p) processes

    Parameter estimation for INAR(p) processes

    Application to real data

    Recent developments

    Theme proposal

    PDMA-UP - October 2009 2 / 30

  • 8/6/2019 Presentation Seminar PDMA

    3/61

    Isabel Silva Magalhes Integer-valued time series

    Motivation

    Discrete time non-negative integer-valued time series counting series

    Motivation PDMA-UP - October 2009 3 / 30

  • 8/6/2019 Presentation Seminar PDMA

    4/61

    Isabel Silva Magalhes Integer-valued time series

    Motivation

    Discrete time non-negative integer-valued time series counting series

    Examples:

    the daily number of seizures of epileptic patients

    the yearly number of plants in a region

    the daily number of guest nights in a hotel

    the monthly incidence of a disease.

    Motivation PDMA-UP - October 2009 3 / 30

    I b l Sil M lh I l d i i

  • 8/6/2019 Presentation Seminar PDMA

    5/61

    Isabel Silva Magalhes Integer-valued time series

    Motivation

    Discrete time non-negative integer-valued time series counting series

    Examples:

    the daily number of seizures of epileptic patients

    the yearly number of plants in a region

    the daily number of guest nights in a hotel

    the monthly incidence of a disease.

    Usual linear time series models (ARMA processes) are not suitable.

    Motivation PDMA-UP - October 2009 3 / 30

    Isabel Sil a Magalhes Integer al ed time series

  • 8/6/2019 Presentation Seminar PDMA

    6/61

    Isabel Silva Magalhes Integer-valued time series

    Motivation

    Discrete time non-negative integer-valued time series counting series

    Examples:

    the daily number of seizures of epileptic patients

    the yearly number of plants in a region

    the daily number of guest nights in a hotel

    the monthly incidence of a disease.

    Usual linear time series models (ARMA processes) are not suitable.

    Thinning operation

    Multiplication counterpart on the integer-valued context.

    Motivation PDMA-UP - October 2009 3 / 30

    Isabel Silva Magalhes Integer valued time series

  • 8/6/2019 Presentation Seminar PDMA

    7/61

    Isabel Silva Magalhes Integer-valued time series

    Thinning operation

    Binomial thinning operation [Steutel and Van Harn (1979)]

    X : non-negative integer-valued random variable (r.v.), 0

    X=X

    j=1

    Yj

    {Yj} N0 (counting series): sequence of independent and identically distributed(i.i.d.) r.v., independent ofX, P(Yj = 1) = 1P(Yj = 0) =

    X is the number of successes, with probability , in X trials

    Thinning operation PDMA-UP - October 2009 4 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    8/61

    Isabel Silva Magalhes Integer valued time series

    Thinning operation

    Binomial thinning operation [Steutel and Van Harn (1979)]

    X : non-negative integer-valued random variable (r.v.), 0

    X=X

    j=1

    Yj

    {Yj} N0 (counting series): sequence of independent and identically distributed(i.i.d.) r.v., independent ofX, P(Yj = 1) = 1P(Yj = 0) =

    X is the number of successes, with probability , in X trials

    Generalized thinning operation [Gauthier and Latour (1994); Silva and Oliveira (2004, 2005)]

    X=X

    j=1

    Yj

    {Yj}: sequence of i.i.d.r.v., independent ofX, with some discrete distribution such thatE[Yj] = , Var[Yj] =

    2, E[Yj3] = , E[Yj

    4] =

    Thinning operation PDMA-UP - October 2009 4 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    9/61

    Isabel Silva Magalhes Integer valued time series

    INteger-valued AutoRegressive (INAR) processes

    INAR(1) processes [McKenzie (1985, 1988); Al-Osh and Alzaid (1987)]

    Xt = Xt1 + et, t= 1, . . . ,N

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 5 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    10/61

    g g

    INteger-valued AutoRegressive (INAR) processes

    INAR(1) processes [McKenzie (1985, 1988); Al-Osh and Alzaid (1987)]

    Xt = Xt1 + et, t= 1, . . . ,N

    0 <

    1

    {et} N0 : sequence of i.i.d. discrete r.v. (arrival process)

    E[et] = e, Var[et] = e2, E[et

    3] = e, E[et4] = e

    counting series, {Yj}, are independent, and independent of{et}, and such thatE[Yj] = , Var[Yj] =

    2, E[Yj3] = , E[Yj

    4] =

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 5 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    11/61

    INteger-valued AutoRegressive (INAR) processes

    Poisson INAR(1) process with binomial thinning operation

    Xt = Xt1 + et

    {et}

    Poisson distributed and

    {Yj}

    Bernoulli distributed

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 6 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    12/61

    INteger-valued AutoRegressive (INAR) processes

    Poisson INAR(1) process with binomial thinning operation

    Xt = Xt1 + et

    {et}

    Poisson distributed and

    {Yj}

    Bernoulli distributed

    Xt1 : survivors of the elements of the process at time t1, each withprobability of survival

    et : elements which enter in the system in the interval ]t

    1, t]

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 6 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    13/61

    INteger-valued AutoRegressive (INAR) processes

    Poisson INAR(1) process with binomial thinning operation

    Xt = Xt1 + et

    {et}

    Poisson distributed and

    {Yj}

    Bernoulli distributed

    Xt1 : survivors of the elements of the process at time t1, each withprobability of survival

    et : elements which enter in the system in the interval ]t

    1, t]

    X1 Po

    1

    {et} Po()

    ={Xt} Po

    1

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 6 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    14/61

    INteger-valued AutoRegressive (INAR) processes

    Likelihood function of the Poisson INAR(1) process

    p(Xt|Xt1) : convolution of binomial distribution and Poisson distributionp(Xt|Xt1) = exp()

    Mt

    i=0

    (Xt)i

    ((Xt) i)!

    Xt1i

    i(1)(Xt1)i,Mt = min{Xt1,Xt}

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 7 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    15/61

    INteger-valued AutoRegressive (INAR) processes

    Likelihood function of the Poisson INAR(1) process

    p(Xt|Xt1) : convolution of binomial distribution and Poisson distributionp(Xt|Xt1) = exp()

    Mt

    i=0

    (Xt)i

    ((Xt) i)!

    Xt1i

    i(1)(Xt1)i,Mt = min{Xt1,Xt}

    X = {X0,X1, . . . ,XN}L(X,,) =

    [/(1)]X0X0!

    exp

    1

    N

    t=1

    p(Xt|Xt1)

    L(X,,|X0)

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 7 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    16/61

    INteger-valued AutoRegressive (INAR) processes

    Likelihood function of the Poisson INAR(1) process

    p(Xt|Xt1) : convolution of binomial distribution and Poisson distributionp(Xt|Xt1) = exp()

    Mt

    i=0

    (Xt)i

    ((Xt) i)!

    Xt1i

    i(1)(Xt1)i,Mt = min{Xt1,Xt}

    X = {X0,X1, . . . ,XN}L(X,,) =

    [/(1)]X0X0!

    exp

    1

    N

    t=1

    p(Xt|Xt1)

    L(X,,|X0)Poisson distribution mean = variance problem in practical applications

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 7 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    17/61

    INteger-valued AutoRegressive (INAR) processes

    Likelihood function of the Poisson INAR(1) process

    p(Xt|Xt1) : convolution of binomial distribution and Poisson distributionp(Xt|Xt1) = exp()

    Mt

    i=0

    (Xt)i

    ((Xt) i)!

    Xt1i

    i(1)(Xt1)i,Mt = min{Xt1,Xt}

    X = {X0,X1, . . . ,XN}L(X,,) =

    [/(1)]X0X0!

    exp

    1

    N

    t=1

    p(Xt|Xt1)

    L(X,,|X0)Poisson distribution mean = variance problem in practical applicationsOverdispersion: variance > mean binomial, negative binomial, geometric or

    generalized Poisson

    Underdispersion: variance < mean generalized PoissonINteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 7 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    18/61

    INteger-valued AutoRegressive (INAR) processes

    INAR(p) processes [Du and Li (1991); Latour (1998)]

    Xt = 1 Xt1 + +p Xtp + et, t= 1, . . . ,N,

    i 0, i = 1, . . . ,p1, and p > 0, such that pi=1i < 1,{et} N0 : sequence of i.i.d. discrete r.v. (arrival process)

    E[et] = e, Var[et] = e2, E[et

    3] = e, E[et4] = e,

    all counting series, {Yj,i}, of the thinning operationsi Xti =Xtij=0 Yj,i, i = 1, . . . ,p,

    are mutually independent, and independent of{et}, and such thatE[Yj,i] = i, Var[Yj,i] = i

    2, E[Yj,i3] = i, E[Yj,i

    4] = i.

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 8 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    19/61

    INteger-valued AutoRegressive (INAR) processes

    INAR(p) processes [Du and Li (1991); Latour (1998)]

    Xt = 1 Xt1 + +p Xtp + et, t= 1, . . . ,N,

    i 0, i = 1, . . . ,p1, and p > 0, such that pi=1i < 1,{et} N0 : sequence of i.i.d. discrete r.v. (arrival process)

    E[et] = e, Var[et] = e2, E[et

    3] = e, E[et4] = e,

    all counting series, {Yj,i}, of the thinning operationsi Xti =Xtij=0 Yj,i, i = 1, . . . ,p,

    are mutually independent, and independent of{et}, and such thatE[Yj,i] = i, Var[Yj,i] = i

    2, E[Yj,i3] = i, E[Yj,i

    4] = i.

    INAR(p) has the same second-order structure as an AR(p) process

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 8 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    20/61

    INteger-valued AutoRegressive (INAR) processes

    Autocovariance function [Gauthier and Latour (1994)]

    R(0) = Vp +pi=1iR(i),R(k) =

    pi=1iR(i k), k Z\{0},

    Spectral density function [Silva and Oliveira (2004, 2005)]

    f() = 12

    Vp1pk=1keik2 , ,One-step-ahead prediction error [Silva (2005)]

    Vp = e2 +Xpi=1i2.

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 9 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    21/61

    INteger-valued AutoRegressive (INAR) processes

    Autocovariance function [Gauthier and Latour (1994)]

    R(0) = Vp +pi=1iR(i),R(k) =

    pi=1iR(i k), k Z\{0},

    Spectral density function [Silva and Oliveira (2004, 2005)]

    f() = 12

    Vp1pk=1keik2 , ,One-step-ahead prediction error [Silva (2005)]

    Vp = e2 +Xpi=1i2.

    One-sided general linear representation [Silva (2005)]

    Xt =

    u=0ut

    u,

    {t

    }white noise process

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 9 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    22/61

    INteger-valued AutoRegressive (INAR) processes

    Third-order characterization (in terms of moments)[Silva and Oliveira (2004, 2005) and Silva (2005)]

    X(0, 0) = pi=1

    pj=1

    pk=1ijkX(ij, i k) + 3pi=1pj=1ji2X(ij)

    +3X(2e +e

    2)pi=1i + 3e

    pi=1

    pj=1ijX(ij)

    +3Xep

    i=1i

    2 +Xp

    i=1(i

    3ii2

    3

    i

    ) + e

    X(0, k) = pi=1iX(0, k i) +eX(0), k> 0

    X(k, k) = pi=1

    pj=1ij X(k

    i, k

    j) +

    pi=1i

    2X(k

    i) + 2eX(k)

    X(e2e2), k> 0

    X(k, m) = pi=1iX(k, m i) +eX(k), m > k> 0

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 10 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    23/61

    INteger-valued AutoRegressive (INAR) processes

    Third-order characterization (in terms of cumulants)[Silva and Oliveira (2004, 2005) and Silva (2005)]

    CX(0, 0) = pi=1

    pj=1

    pk=1ijkX(ij, i k) + 3pi=1pj=1ji2X(ij) + e

    +3(eX)pi=1pj=1ijX(ij) + 3X(eX)pi=1i2 + 23X6eX2pi=1i3e(e2 +2e ) +Xpi=1 (i3ii23i )

    CX(0, k) = pi=1iCX(0, k i), k> 0

    CX(k, k) = pi=1

    pj=1ijCX(k i, kj) +pi=1i2CX(k i), k> 0

    CX(k, m) = pi=1iCX(k, m i), m > k> 0

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 11 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    24/61

    INteger-valued AutoRegressive (INAR) processes

    Third-order characterization (in terms of cumulants)[Silva and Oliveira (2004, 2005) and Silva (2005)]

    CX(0, 0) = pi=1

    pj=1

    pk=1ijkX(ij, i k) + 3pi=1pj=1ji2X(ij) + e

    +3(eX)pi=1pj=1ijX(ij) + 3X(eX)pi=1i2 + 23X6eX2pi=1i3e(e2 +2e ) +Xpi=1 (i3ii23i )

    CX(0, k) = pi=1iCX(0, k i), k> 0

    CX(k, k) = pi=1

    pj=1ijCX(k i, kj) +pi=1i2CX(k i), k> 0

    CX(k, m) = pi=1iCX(k, m i), m > k> 0

    INAR processes have a non-linear structure

    1st and 2nd order moments and cumulants are not sufficient to describe dependence structure

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 11 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    25/61

    INteger-valued AutoRegressive (INAR) processes

    Some extensions of INAR processes and relations with other models

    Switching INAR(1) process [Franke and Seligmann (1993)]

    Inclusion of explanatory variables [Brnns (1995)]

    Panel data [Brnns (1994, 1995)]

    INteger-valued Moving Average (INMA) model [Al-Osh and Alzaid (1988); Mckenzie (1988);

    Brnns and Hall (2001)]

    INteger-valued AutoRegressive-Moving Average (INARMA) model [Mckenzie (1985, 1986);

    Al-Osh and Alzaid (1991)]

    Multivariate INAR(p) process [Franke and Subba Rao (1995); Latour (1997)]

    INAR(p) of Alzaid and Al-Osh (1990) ARMA(p,p1)Poisson INAR(1) process is a M/M/ queueing system observed at regularly spaced interval of

    times [Steutel et al. (1983); Mckenzie (1988)]

    INAR(p) is a Multitype Branching processes with immigration, BGWI(p) [Dion et al. (1995)]

    INteger-valued AutoRegressive (INAR) processes PDMA-UP - October 2009 12 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    26/61

    Parameter estimation for INAR(p) processes

    Time domain

    Method of Moments Second-order: Yule-Walker estimation (YW)

    Third-order: Estimation using the Cumulant Third-Order Recursion equation

    (TOR),

    Least Squares (LS) estimation Second-order: Conditional Least Squares (CLS)

    Third-order: LS estimation based on high-order statistics (LS_HOS),

    Frequency domain

    Whittle estimation (WHT),

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 13 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    27/61

    Parameter estimation for INAR(p) processes

    Time domain

    Method of Moments Second-order: Yule-Walker estimation (YW)

    Third-order: Estimation using the Cumulant Third-Order Recursion equation

    (TOR),

    Least Squares (LS) estimation Second-order: Conditional Least Squares (CLS)

    Third-order: LS estimation based on high-order statistics (LS_HOS),

    Frequency domain

    Whittle estimation (WHT),

    YW, CLS, WHT, TOR, LS_HOS: do not assume the Poisson distribution for the

    arrival process

    more adaptive and flexible methods

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 13 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    28/61

    Parameter estimation for INAR(p) processes

    Theorem (Asymptotic distribution of the Yule-Walker estimators of an INAR(p) process [Silva and Silva (2006)])

    Let {Xt} be an INAR(p) process and the Yule-Walker estimator of

    [Al-Osh and Alzaid

    (1987); Du and Li (1991)], that is

    Rp

    1= rp

    R(0) R(1) R(p1)R(1) R(0) R(p2)

    .

    ..

    .

    .... .

    .

    ..R(p1) R(p2) R(0)

    1

    2.

    ..

    p

    =

    R(1)

    R(2).

    ..R(p)

    .

    Then

    N1/2 () is AN(0p, Vyw),where 0n is a vector ofn zeros and Vyw = D

    TRrD, for Rr given by

    Rr(i,j) = Cov(VRr(i), VRr(j)) and DT =

    R(1)Ip R(p)Ip

    (Rp11)T

    Rp11

    Ip2 0p2p

    +

    0pp2 Rp1

    1

    , with In the nn identity matrix,

    0nm

    the n

    m matrix of zeros and

    the Kronecker.

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 14 / 30

    Isabel Silva Magalhes Integer-valued time series

  • 8/6/2019 Presentation Seminar PDMA

    29/61

    Parameter estimation for INAR(p) processes

    Theorem (Cumulant Third-Order Recursion (TOR) equation of INAR(p) processes [Silva (2005)])

    Let {Xt} be a stationary INAR(p) process. Then the third-order cumulants ofXt canbe written in a single cumulant Third-Order Recursion (TOR) equation by

    CX(k,m)pi=1iCX(i k, im) = (k)p

    i=1i

    2CX(im),

    where 0 k m, m = 0, and (a) is the Kronecker delta function.

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 15 / 30

    Isabel Silva Magalhes Integer-valued time series

    ( )

  • 8/6/2019 Presentation Seminar PDMA

    30/61

    Parameter estimation for INAR(p) processes

    Theorem (Cumulant Third-Order Recursion (TOR) equation of INAR(p) processes [Silva (2005)])

    Let {Xt} be a stationary INAR(p) process. Then the third-order cumulants ofXt canbe written in a single cumulant Third-Order Recursion (TOR) equation by

    CX(k,m)pi=1iCX(i k, im) = (k)p

    i=1i

    2CX(im),

    where 0 k m, m = 0, and (a) is the Kronecker delta function.

    CX(k,k) = CX(0, k)

    C3,X=

    CX(0, 0) CX(1, 1) CX(p1,p1)CX(0, 1) CX(0, 0) CX(p2,p2)

    .

    .

    ....

    . . ....

    CX(0,p1) CX(0,p2) CX(0, 0)

    1

    2...

    p

    =

    CX(0, 1)

    CX(0, 2)

    .

    .

    .

    CX(0,p)

    = c3,X

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 15 / 30

    Isabel Silva Magalhes Integer-valued time series

    P i i f INAR( )

  • 8/6/2019 Presentation Seminar PDMA

    31/61

    Parameter estimation for INAR(p) processes

    Estimation using the Cumulant TOR equation

    {X1, . . . ,XN=B M} = {X(1)1 , . . . ,X(1)M ,X(2)1 , . . . ,X(2)M , . . . ,X(B)1 , . . . ,X(B)M },

    C(i)

    X (k, k) =1

    M

    Mkj=1

    (X(i)

    j X(i))(X(i)j+kX(i)

    )2, k= 0, . . . ,p1,

    C

    (i)

    X (0, k) =

    1

    M

    Mkj=1 (X

    (i)

    j X(i)

    )

    2

    (X

    (i)

    j+kX(i)

    ), k= 1, . . . ,p,

    CX(k, k) =1

    B

    B

    i=1C

    (i)X (k, k), k= 0, . . . ,p1,

    CX(0, k) =1

    B

    B

    i=1C

    (i)X (0, k), k= 1, . . . ,p,

    Solve C3,X= c3,X.

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 16 / 30

    Isabel Silva Magalhes Integer-valued time series

    P t ti ti f INAR( )

  • 8/6/2019 Presentation Seminar PDMA

    32/61

    Parameter estimation for INAR(p) processes

    Estimation using the Cumulant TOR equation

    {X1, . . . ,XN=B M} = {X(1)1 , . . . ,X(1)M ,X(2)1 , . . . ,X(2)M , . . . ,X(B)1 , . . . ,X(B)M },

    C(i)

    X (k, k) =1

    M

    Mkj=1

    (X(i)

    j X(i))(X(i)j+kX(i)

    )2, k= 0, . . . ,p1,

    C

    (i)

    X (0, k) =

    1

    M

    Mkj=1 (X

    (i)

    j X(i)

    )

    2

    (X

    (i)

    j+kX(i)

    ), k= 1, . . . ,p,

    CX(k, k) =1

    B

    B

    i=1C

    (i)X (k, k), k= 0, . . . ,p1,

    CX(0, k) =1

    B

    B

    i=1C

    (i)X (0, k), k= 1, . . . ,p,

    Solve C3,X= c3,X.

    Asymptotic distribution: sixth-order moments and cumulants

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 16 / 30

  • 8/6/2019 Presentation Seminar PDMA

    33/61

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR( ) processes

  • 8/6/2019 Presentation Seminar PDMA

    34/61

    Parameter estimation for INAR(p) processes

    LS estimation based on high-order statistics (HOS)

    {x

    1,x

    2, . . . ,x

    n}: realization of a non-negative integer-valued stationary stochastic

    process with third-order moments (0, k), k> 0

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 18 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    35/61

    Parameter estimation for INAR(p) processes

    LS estimation based on high-order statistics (HOS)

    {x

    1,x

    2, . . . ,x

    n}: realization of a non-negative integer-valued stationary stochastic

    process with third-order moments (0, k), k> 0

    Approximating model: INAR(p) with parameters 1, ,p,e,2e andthird-order moments X(0, k), k> 0, which can be represented in the following

    matrix form: 3,X = M3,X+eX(0)1p

    X(0, 1)

    X(0, 2)

    ..

    .

    X(0,p)

    =

    X(0, 0) X(1, 1) . . . X(p1,p1)X(0, 1) X(0, 0) . . . X(p

    2,p

    2)

    ..

    ....

    . . ....

    X(0,p1) X(0,p2) . . . X(0, 0)

    1

    2

    ..

    .

    p

    +eX(0)

    1

    1

    ..

    .

    1

    X(0) =p

    i=1

    iX(i) +eX + Vp, with Vp = e2 +X

    p

    i=1

    i2

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 18 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    36/61

    Parameter estimation for INAR(p) processes

    Defining H = [M3,X X(0)1p] and = [ 1 p e ]T

    3,X = H

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 19 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    37/61

    Parameter estimation for INAR(p) processes

    Defining H = [M3,X X(0)1p] and = [ 1 p e ]T

    3,X = H

    may be estimated by least squares, ie, minimizing the squared error between 3,Xand the third-order moments of the data:

    3 = [ (0, 1) (0,p) ]T

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 19 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    38/61

    Parameter estimation for INAR(p) processes

    Defining H = [M3,X X(0)1p] and = [ 1 p e ]T

    3,X = H

    may be estimated by least squares, ie, minimizing the squared error between 3,Xand the third-order moments of the data:

    3 = [ (0, 1) (0,p) ]T

    Least Squares estimator of using HOS (LS_HOS)

    = min{L()} = min

    {(3H)T(3H)}

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 19 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    39/61

    Parameter estimation for INAR(p) processes

    Defining H = [M3,X X(0)1p] and = [ 1 p e ]T

    3,X = H

    may be estimated by least squares, ie, minimizing the squared error between 3,Xand the third-order moments of the data:

    3 = [ (0, 1) (0,p) ]T

    Least Squares estimator of using HOS (LS_HOS)

    = min{L()} = min

    {(3H)T(3H)}

    In practice: = min{ L()} = min

    {(3 H)T(3 H)}

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 19 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    40/61

    Parameter estimation for INAR(p) processes

    Spectral density function easy to obtain

    {Xt} is an INAR process[Silva (2005)]

    {Xt} is a Non-Gaussian Mixing process: {Xt} is strictly stationary, E[|Xt|k] < , t Z, k N,

    s1=

    . . .

    sk1=

    |CX(s1, . . . , sk1)| < , k 2, (mixing condition)

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 20 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    41/61

    Parameter estimation for INAR(p) processes

    Spectral density function easy to obtain

    {Xt} is an INAR process[Silva (2005)]

    {Xt} is a Non-Gaussian Mixing process: {Xt} is strictly stationary, E[|Xt|k] < , t Z, k N,

    s1=

    . . .

    sk1=

    |CX(s1, . . . , sk1)| < , k 2, (mixing condition)

    IN(j) =1

    2N

    N

    t=1

    Xteijt

    2

    f(j)2

    22 ,

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 20 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    42/61

    Parameter estimation for INAR(p) processes

    Spectral density function easy to obtain

    {Xt} is an INAR process[Silva (2005)]

    {Xt} is a Non-Gaussian Mixing process: {Xt} is strictly stationary, E[|Xt|k] < , t Z, k N,

    s1=

    . . .

    sk1=

    |CX(s1, . . . , sk1)| < , k 2, (mixing condition)

    IN(j) =1

    2N

    N

    t=1

    Xteijt

    2

    f(j)2

    22 ,

    Whittle estimator [Silva and Oliveira (2004, 2005)]

    = min{L(X)} = min

    [N/2]

    j=1

    log(f(j)) +

    IN(j)

    f(j)

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 20 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    43/61

    (p) p

    Spectral density function easy to obtain

    {Xt} is an INAR process[Silva (2005)]

    {Xt} is a Non-Gaussian Mixing process: {Xt} is strictly stationary, E[|Xt|k] < , t Z, k N,

    s1=

    . . .

    sk1=

    |CX(s1, . . . , sk1)| < , k 2, (mixing condition)

    IN(j) =1

    2N

    N

    t=1

    Xteijt

    2

    f(j)2

    22 ,

    Whittle estimator [Silva and Oliveira (2004, 2005)]

    = min{L(X)} = min

    [N/2]

    j=1

    log(f(j)) +

    IN(j)

    f(j)

    Asymptotic variance: Fourth-order cumulant spectral density function

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 20 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    44/61

    (p) p

    e

    = X1p

    i=1

    i , 2e = VpXp

    i=12

    i,

    where Vp = R(0)pi=1 i R(i) and 2i is an estimator of Var[Yj,i], i = 1, . . . ,p. Forinstance, 2i = i(1 i), for the binomial thinning operation.

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 21 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    45/61

    (p) p

    e

    = X1p

    i=1

    i , 2e = VpXp

    i=12

    i,

    where Vp = R(0)pi=1 i R(i) and 2i is an estimator of Var[Yj,i], i = 1, . . . ,p. Forinstance, 2i = i(1 i), for the binomial thinning operation.

    Simulation results

    Non-admissible estimates constrained estimation (CLS, WHT, LS_HOS)

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 21 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    46/61

    ( )

    e = X1p

    i=1i , 2e = VpX

    p

    i=12

    i,

    where Vp = R(0)pi=1 i R(i) and 2i is an estimator of Var[Yj,i], i = 1, . . . ,p. Forinstance, 2i = i(1 i), for the binomial thinning operation.

    Simulation results

    Non-admissible estimates constrained estimation (CLS, WHT, LS_HOS)Sample bias, variance, mean square error and univariate skewness decrease as

    the sample size increases consistency and symmetry

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 21 / 30

    Isabel Silva Magalhes Integer-valued time series

    Parameter estimation for INAR(p) processes

  • 8/6/2019 Presentation Seminar PDMA

    47/61

    e = X1p

    i=1i , 2e = VpX

    p

    i=12

    i

    ,

    where Vp = R(0)pi=1 i R(i) and 2i is an estimator of Var[Yj,i], i = 1, . . . ,p. Forinstance, 2i = i(1 i), for the binomial thinning operation.

    Simulation results

    Non-admissible estimates constrained estimation (CLS, WHT, LS_HOS)Sample bias, variance, mean square error and univariate skewness decrease as

    the sample size increases consistency and symmetryLS_HOS, WHT and CLS provides good results

    in terms of smaller sample bias, variance and mean square error

    Parameter estimation for INAR(p) processes PDMA-UP - October 2009 21 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    48/61

    Poliomyelitis incidence in the United States

    Monthly number of U.S. cases of

    poliomyelitis, from 1970 to 1983

    [Zeger (1988): Parameter-driven

    model], and sample

    autocorrelation and partialautocorrelation functions

    1970 1972 1974 1976 1978 1980 1982 19840

    2

    4

    6

    8

    10

    12

    14

    year

    monthlycounts

    0 5 10 15 20 25 300.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    k

    (k)

    0 5 10 15 20 25 300.2

    0.1

    0

    0.1

    0.2

    0.3

    k

    (k)

    Application to real data PDMA-UP - October 2009 22 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    49/61

    Poliomyelitis incidence in the United States

    X= 1.33 and S2 = 3.48

    INAR(1) with binomial thinning operation and discrete arrival process

    Xt = Xt1 + et, t= 2, . . . , 168, E[et] = e, Var[et] = e2,

    Application to real data PDMA-UP - October 2009 23 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    50/61

    Poliomyelitis incidence in the United States

    X= 1.33 and S2 = 3.48

    INAR(1) with binomial thinning operation and discrete arrival process

    Xt = Xt1 + et, t= 2, . . . , 168, E[et] = e, Var[et] = e2,

    Method e 2e

    YW 0.2948 0.9403 2.9041

    CLS 0.3063 0.9414 2.8862

    WHT 0.2799 0.9601 2.9279

    LS_HOS 0.2083 0.9277 3.0504

    LS_HOS_C 0.2344 0.7477 3.0040

    TOR_1B 0.1475 1.1367 3.1650

    TOR_2B 0.1431 1.1425 3.1737

    Table: Parameter estimates of the INAR(1) model fitted to the polio data.

    Application to real data PDMA-UP - October 2009 23 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    51/61

    Number of plants within the industrial sector

    The number of Swedish

    mechanical paper and

    pulp mills, from 1921 to

    1981 [Brnns (1995)

    and Brnns and

    Hellstrm (2001):

    Explanatory variables]

    1920 1930 1940 1950 1960 1970 19815

    10

    15

    20

    25

    30

    35

    40

    45

    50

    Numberofplants

    Application to real data PDMA-UP - October 2009 24 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    52/61

    Simple INAR(1)

    It is not assumed the Poisson distribution for the arrival process:

    X= 20.40 and S2 = 155.16

    Application to real data PDMA-UP - October 2009 25 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    53/61

    Simple INAR(1)

    It is not assumed the Poisson distribution for the arrival process:

    X= 20.40 and S2 = 155.16

    Method e 2e x

    2x MSE

    CLS 0.9591 0.2017 15.2268 4.9279 192.2764 9.3254LS_HOS 0.9269 1.3635 19.2253 18.6516 145.4513 9.2997

    TOR_1B 0.9631 0.7518 14.7219 20.374 213.5073 8.9224

    Application to real data PDMA-UP - October 2009 25 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    54/61

    Simple INAR(1)

    It is not assumed the Poisson distribution for the arrival process:

    X= 20.40 and S2 = 155.16

    Method e 2e x

    2x MSE

    CLS 0.9591 0.2017 15.2268 4.9279 192.2764 9.3254LS_HOS 0.9269 1.3635 19.2253 18.6516 145.4513 9.2997

    TOR_1B 0.9631 0.7518 14.7219 20.374 213.5073 8.9224

    Mean and variance of the estimated models: x = e

    1 and 2

    x =(1 )(e+ 2e )

    (1 )2(1 + )

    Application to real data PDMA-UP - October 2009 25 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    55/61

    Simple INAR(1)

    It is not assumed the Poisson distribution for the arrival process:

    X= 20.40 and S2 = 155.16

    Method e 2e x

    2x MSE

    CLS 0.9591 0.2017 15.2268 4.9279 192.2764 9.3254LS_HOS 0.9269 1.3635 19.2253 18.6516 145.4513 9.2997

    TOR_1B 0.9631 0.7518 14.7219 20.374 213.5073 8.9224

    Mean and variance of the estimated models: x = e

    1 and 2

    x =(1 )(e+ 2e )

    (1 )2(1 + )

    MSE between the observations and the fitted models based on TOR_1B, LS_HOS and

    CLS estimates

    Application to real data PDMA-UP - October 2009 25 / 30

    Isabel Silva Magalhes Integer-valued time series

    Application to real data

  • 8/6/2019 Presentation Seminar PDMA

    56/61

    The number of plants and

    the fitted values

    considering the LS_HOS

    and CLS estimates

    1920 1930 1940 1950 1960 1970 19815

    10

    15

    20

    25

    30

    35

    40

    45

    50

    Numberofplants

    Real data

    CLS

    LS_HOS

    Application to real data PDMA-UP - October 2009 26 / 30

    Isabel Silva Magalhes Integer-valued time series

    Recent developments

  • 8/6/2019 Presentation Seminar PDMA

    57/61

    Overdispersion new thinning operations and/or different distributions for thearrival processes

    Extreme value theory

    INAR with periodic structureOutliers

    Forecasting

    Heteroskedasticity

    Random-coefficient INAR

    Recent developments PDMA-UP - October 2009 27 / 30

    Isabel Silva Magalhes Integer-valued time series

    Theme proposal

  • 8/6/2019 Presentation Seminar PDMA

    58/61

    Random-coefficient integer-valued autoregressive processes

    Theme proposal PDMA-UP - October 2009 28 / 30

    Isabel Silva Magalhes Integer-valued time series

    Theme proposal

  • 8/6/2019 Presentation Seminar PDMA

    59/61

    Random-coefficient integer-valued autoregressive processes

    Describe the first-order random-coefficient integer-valued autoregressive,

    RCINAR(1), process proposed by Gomes and Canto e Castro (2009) and Zheng et al.

    (2007) and explain the principal differences/similarities between these two processes.

    Gomes, D., Canto e Castro, L., 2009. Generalized integer-valued random coefficient for a first order

    structure autoregressive (RCINAR) process. Journal of Statistical Planning and Inference, vol. 139

    (12), pp. 40884097.

    Zheng, H., Basawa, I. V., Datta, S., 2007. First-order random coefficient integer-valued

    autoregressive processes. Journal of Statistical Planning and Inference, vol. 137 (1), pp. 212229.

    Theme proposal PDMA-UP - October 2009 28 / 30

    Isabel Silva Magalhes Integer-valued time series

    References I

  • 8/6/2019 Presentation Seminar PDMA

    60/61

    Al-Osh, M.A. and Alzaid, A.A., 1987.

    First-order integer-valued autoregressive (INAR(1))

    process.

    Journal of Time Series Analysis, vol. 8, pp. 261275.

    Al-Osh, M.A. and Alzaid, A.A., 1988.

    Integer-valued moving average (INMA) process.

    Statistical Papers, vol. 29, pp. 281300.

    Al-Osh, M.A. and Alzaid, A.A., 1991.

    Binomial autoregressive moving average models.

    Communications in Statistics: Stochastic Models, vol. 7,

    pp. 261282.

    Alzaid, A.A. and Al-Osh, M.A., 1990.

    An integer-valued pth-order autoregressive structure

    (INAR(p)) process.

    Journal of Applied Probability, vol. 27, pp. 314324.

    Brnns, K., 1994.

    Estimation and testing in integer-valued AR(1) models.

    Technical Report, Ume University, Sweden, 335.

    Brnns, K., 1995.

    Explanatory variables in the AR(1) count data model.

    Technical Report, Ume University, Sweden, 381.

    Brnns, K. and Hall, A., 2001.

    Estimation in integer-valued moving average models.

    Applied Stochastic Models in Business and Industry, vol.

    17, pp. 277291.

    Dion, J-P. and Gauthier, G. and Latour, A., 1995.

    Branching processes with immigration and integer-valued

    time series.

    Serdica Mathematical Journal, vol. 21, pp. 123136.

    Du, Jin-Guan and Li, Yuan, 1991.The integer-valued autoregressive (INAR(p)) model.

    Journal of Time Series Analysis, vol. 12, pp. 129142.

    Franke, J. and Seligmann, T., 1993.

    Conditional maximum likelihood estimates for INAR(1)

    processes and their application to modelling epileptic

    seizure counts.

    In Developments in Time Series Analysis: in honour of

    Maurice B. Priestley, Chapman & Hall, pp. 310330.

    Franke, J. and Subba Rao, T., 1995.

    Multivariate first order integer valued autoregressions.

    Technical report, Math. Dep., UMIST.

    References PDMA-UP - October 2009 29 / 30

    Isabel Silva Magalhes Integer-valued time series

    References II

  • 8/6/2019 Presentation Seminar PDMA

    61/61

    Gauthier, G. and Latour, A., 1994.

    Convergence forte des estimateurs des paramtres dtun

    processus GENAR(p).

    Annales des Sciences Mathmatiques du Qubec, vol. 18,

    pp. 4971

    Latour, A., 1997.

    The multivariate GINAR(p) process.

    Advances in Applied Probability, vol. 29, pp. 228248.

    Latour, A., 1998.

    Existence and stochastic structure of a non-negative

    integer-valued autoregressive process.

    Journal of Time Series Analysis, vol. 19, pp. 439455.

    McKenzie, E., 1985.

    Some simple models for discrete variate time series.

    Water Resources Bulletin, vol. 21, pp. 645650.

    McKenzie, E., 1986.

    Autoregressive moving-average processes with

    negative-binomial and geometric marginal distributions.Advances in Applied Probability, vol. 18, pp. 679705.

    McKenzie, E., 1988.

    Some ARMA models for dependent sequences of Poisson

    counts.

    Advances in Applied Probability, vol. 20, pp. 822835.

    Silva, M.E. and Oliveira, V.L., 2004.

    Difference equations for the higher-order moments and

    cumulants of the INAR(1) model.

    Journal of Time Series Analysis, vol. 25, pp. 317333.

    Silva, M.E. and Oliveira, V.L., 2005.

    Difference equations for the higher-order moments and

    cumulants of the INAR(p) model.

    Journal of Time Series Analysis, vol. 26, pp. 1736.

    Silva, I. e Silva, M.E., 2006.

    Asymptotic distribution of the Yule-Walker estimator for

    INAR(p) processes.

    Statistics & Probability Letters, vol. 76, pp. 1655-1663.

    Steutel, F.W. and Van Harn, K., 1979.

    Discrete analogues of self-decomposability and stability.

    The Annals of Probability, vol. 7, pp. 893899.

    Steutel, F.W. and Vervaat, W. and Wolfe, S.J., 1983.

    Integer valued branching processes with immigration.Advances in Applied Probability, vol. 15, pp. 713725.

    Zeger, S.L., 1988.

    A regression model for time series of counts.

    Biometrika, vol. 75, pp. 621629.

    References PDMA-UP - October 2009 30 / 30