33
QUÍMICA NUCLEAR Prof: Élcio R. Barr Maio 2007 Aluno: Felipe Marou Engenharia de Controle e Automação

QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

Embed Size (px)

Citation preview

Page 1: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA NUCLEAR

Prof: Élcio R. Barrak

Maio 2007

Aluno: Felipe Maroun

Engenharia de Controle e Automação

Page 2: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

SUMÁRIO

• Introdução• Radioatividade• Equações Nucleares• Decaimento Radioativo• Decaimento Alfa• Decaimento Beta• Decaimento Gama• Padrões de Estabilidade Nuclear• Transmutações Nucleares• Velocidades de Decaimento Radioativo• Detecção de Radioatividade• Variações de Energia nas Reações Nucleares• Fissão Nuclear• Fusão Nuclear• Bibliografia

Page 3: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

A química nuclear é o estudo das reações

nucleares e respectivas utilizações na

química.

A química nuclear afeta nossa vida de várias maneiras. Os

elementos radioativos são muito utilizados em medicina, na

determinação de mecanismos de reações químicas, na

investigação do movimento de átomos em sistemas

biológicos e na datação de importantes artefatos históricos.

Já as reações nucleares são usadas tanto para gerar

eletricidade como para criar armas de destruição em massa.

INTRODUÇÃO

Page 4: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

RADIOATIVIDADE

Page 5: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

RADIOATIVIDADE

A radioatividade ocorre porque as forças de ligação do núcleo são insuficientes para manter suas partículas perfeitamente ligadas.

Todos os átomos de determinado elemento têm o mesmo número de prótons; esse número é o NÚMERO ATÔMICO do elemento. Entretanto, os átomos de certo elemento podem ter diferentes números de nêutrons, de forma que possam ter diferentes NÚMEROS DE MASSA; o número de massa é o número total de núcleons no núcleo. Os átomos com o mesmo número atômico, mas com diferentes números de massa, são conhecidos como ISÓTOPOS.

Ex:

Ue UU, 23892

23592

23492

Page 6: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

EQUAÇÕES NUCLEARES

A emissão de radiação é uma das maneiras pela qual um núcleo instável é transformado em um núcleo mais estável com menos energia. A radiação emitida transporta o excesso de energia.

Os números de massa e os números atômicos devem ser balanceados em todas as equações nucleares.

Ex:He Th U 4

2234

9023892

Page 7: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

É a desintegração de um núcleo através da emissão de energia em forma de partículas ou radiação.

Se o núcleo de um determinado átomo for instável, ele tende a se transformar em outro mais estável.

Os três tipos mais comuns de decaimento radioativo são radiação alfa (), beta () e gama ().

DECAIMENTO RADIOATIVO

Page 8: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

DECAIMENTO ALFA

• Ao perder 2 prótons, o radionuclídeo X se transforma no radionuclídeo Y com número atômico igual a (Y = X – 2).

• A partícula alfa é a menos penetrante dos três tipos de radiação, podendo ser bloqueada por uma folha de papel, porque perde muita energia ao arrancar elétrons na sua passagem.

A radiação alfa consiste em um feixe de núcleos de hélio-4 conhecidos como partículas alfa, que representamos como: 4

242 ou He

Page 9: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

DECAIMENTO BETA

• As partículas beta são elétrons emitidos pelo núcleo de um átomo instável. Em núcleos instáveis betaemissores, um nêutron pode se decompor em um próton, um elétron e um antineutrino.

• Assim, ao emitir uma partícula beta, o núcleo tem a diminuição de um nêutron e o aumento de um próton, permanecendo assim o número de massa constante.

• Ao ganhar 1 próton o radionuclídeo X se transforma no radionuclídeo Y com número atômico igual a (Y = X + 1).

As partículas beta são representadas nas equações nucleares pelo símbolo:β0

1

Page 10: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

DECAIMENTO GAMA

• Formado por ondas eletromagnéticas que são emitidas por núcleos instáveis em seguida à emissão de uma partícula alfa ou beta, se os nuclídeos descendentes estiverem excitados.

• A massa e o número atômico se preservam.

• Pode acontecer de, mesmo com a emissão alfa ou beta, o núcleo resultante não eliminar toda a energia de que precisaria para se estabilizar. A emissão de uma onda eletromagnética (radiação gama) ajuda um núcleo instável a se estabilizar.A radiação gama é representadas

nas equações nucleares pelo

símbolo .

Page 11: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

PADRÕES DE ESTABILIDADE NUCLEAR

A estabilidade de um núcleo, em particular,

depende de uma variedade de fatores, e nenhuma

regra simples permite dizer se um núcleo é

radioativo e como ele deve decair. Entretanto,

existem várias observações empíricas que ajudam

na determinação da estabilidade de um núcleo.

Page 12: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

PADRÕES DE ESTABILIDADE NUCLEAR

• Razão nêutron-próton

Uma vez que cargas semelhantes se repelem, para que um grande número de prótons possa estar localizado dentro do pequeno volume do núcleo, a distâncias pequenas, uma força de atração, existe entre os núcleons, chamada força nuclear forte. Os nêutrons estão intimamente envolvidos nessa força de atração. Quanto mais prótons se apertam no núcleo, mais nêutrons são necessários para manter o núcleo unido. O número de nêutrons necessário para criar um núcleo estável aumenta mais rapidamente que o número de prótons. Portanto, a razão nêutron-próton dos núcleos estáveis aumenta com o aumento do número atômico.

Page 13: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

PADRÕES DE ESTABILIDADE NUCLEAR

• Série de radioatividade

Alguns núcleos, como o urânio-238, não podem ganhar estabilidade por uma única emissão. Em decorrência, ocorre uma série de emissões sucessivas.

Uma série de reações nucleares que começa com um núcleo instável e termina com um núcleo estável é conhecida como série de radioatividade. Três dessas séries ocorrem na natureza.

Page 14: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

PADRÕES DE ESTABILIDADE NUCLEAR

Série de desintegração nuclear para urânio-238

Page 15: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

TRANSMUTAÇÕES NUCLEARES

Um núcleo pode trocar de identidade se ele for atingido por um nêutron ou por outro núcleo. As reações nucleares induzidas dessa forma são conhecidas como transmutações nucleares.

A primeira conversão de um núcleo em outro foi realizada em 1919 por Ernest Rutherford. Ele teve sucesso na conversão de nitrogênio-14 em oxigênio-17, mais um próton, usando partículas alfa de alta velocidade emitidas por rádio. A reação é:

H11

O178

He42

N147

Page 16: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

TRANSMUTAÇÕES NUCLEARES

• Uso de partículas carregadas

As partículas carregadas, como as partículas alfa, devem se mover muito mais rapidamente para superar a repulsão eletrostática entre elas e o núcleo-alvo. Quanto maior a carga nuclear no projétil ou no alvo, mais rápido o projétil deve se mover para realizar uma reação nuclear. Muitos métodos têm sido inventados para acelerar partículas carregadas, usando campos magnéticos e eletrostáticos fortes.

Page 17: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

• Uso de nêutrons

Muitos isótopos sintéticos usados em quantidade na medicina e na pesquisa cientifica são preparados usando nêutrons como projéteis. Como os nêutrons são neutros, eles são repelidos pelo núcleo.

Co n Co

e Co Fe

Fe n Fe

6027

10

5927

01

5927

5826

5926

10

5826

TRANSMUTAÇÕES NUCLEARES

Conseqüentemente, eles não precisam ser acelerados, como as partículas carregadas, para provocar reações nucleares. Os nêutrons necessários são produzidos pelas reações que ocorrem nos reatores nucleares. O cobalto-60, por exemplo, usado no tratamento do câncer, é produzido pela captura de nêutron.

Page 18: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

TRANSMUTAÇÕES NUCLEARES

• Elementos Transurânicos

As transmutações artificiais têm sido usadas para produzir os elementos com número atômico acima de 92. Eles são conhecidos como elementos transurânicos porque aparecem imediatamente após o urânio na tabela periódica. Ex.:

e Np U n U 01

23993

23992

10

23892

Page 19: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VELOCIDADES DE DECAIMENTO RADIOATIVO Muitos radioisótopos decaem basicamente de

maneira completa em questão de segundos ou

menos, de forma que não os encontramos na

natureza. O urânio-238, por outro lado, decai muito

lentamente, por isso, apesar de sua instabilidade,

ainda podemos observá-lo na natureza.

Uma importante característica de um radioisótopo

é sua velocidade de decaimento.

Page 20: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VELOCIDADES DE DECAIMENTO RADIOATIVO • Meia-vida

Nos processos radioativos meia-vida ou período de

semi desintegração de um radioisótopo é o tempo

necessário para desintegrar a metade da massa deste

isótopo, que pode ocorrer em segundos ou em bilhões de

anos, dependendo do grau de instabilidade do

radioisótopo. Ou seja, se tivermos 100 kg de um

material, cuja meia-vida é de 100 anos; depois desses

100 anos, teremos 50 kg deste material. Mais 100 anos e

teremos 25 kg e assim sucessivamente.

Page 21: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VELOCIDADES DE DECAIMENTO RADIOATIVO

• Meia-vidaNo caso do carbono-14 a meia-vida é de 5.715 anos, ou seja, este é o tempo necessário para uma determinada massa deste isótopo instável decair para a metade da sua massa, transformando-se em nitrogênio-14 pela emissão de uma partícula beta. Esta medida da meia-vida é utilizada para a datação de fósseis.

Os elementos transurânicos (elementos com número atômico acima de 92) apresentam meias-vida de 1 segundo enquanto o urânio-238 apresenta meia-vida de aproximadamente 4.500.000.000 anos que é a idade prevista da Terra.

Page 22: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VELOCIDADES DE DECAIMENTO RADIOATIVO

Gráfico de meia-vida

Page 23: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VELOCIDADES DE DECAIMENTO RADIOATIVO

• Datação

Como a meia-vida de qualquer nuclídeo é

constante, a meia-vida pode servir como um relógio

nuclear para determinar as idades de diferentes

objetos. O carbono-14, por exemplo, tem sido usado

para determinar a idade de materiais orgânicos.

Page 24: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

DETECÇÃO DE RADIOATIVIDADE

Uma variedade de métodos tem sido

desenvolvida para detectar emissões de

substâncias radioativas, tais como:

• Lâminas e filmes fotográficos

• Contador Geiger

Contador Geiger

Page 25: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VARIAÇÕES DE ENERGIA NAS REAÇÕES NUCLEARES

As energias associadas às reações nucleares podem ser consideradas com a ajuda da famosa equação de Einstein que relaciona massa e energia:

E = mc 2

Essa equação afirma que a massa e a energia de um objeto são diretamente proporcionais. Se um sistema perde massa, ele perde energia (exotérmico); se ganha massa, ganha energia (endotérmico). Como a constante de proporcionalidade na equação, c

2, é um número muito grande, mesmo pequenas variações na massa são acompanhadas por grandes variações de energia.

Page 26: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VARIAÇÕES DE ENERGIA NAS REAÇÕES NUCLEARES

As variações de massa e as variações de energia

associadas nas reações nucleares são muito

maiores que as das reações químicas. A variação

de massa acompanhando o decaimento radioativo

de um mol de urânio-238, por exemplo, é 50 mil

vezes maior que a combustão de CH4.

Page 27: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VARIAÇÕES DE ENERGIA NAS REAÇÕES NUCLEARES • Energia de coesão do núcleo

Os cientistas descobriram na década de 30 que as massas dos núcleos são sempre menores que as massas dos núcleons individuais dos quais eles são compostos.

A diferença de massa entre um núcleo e seus núcleons constituintes é chamada perda de massa. A origem da perda de massa é rapidamente entendida se considerarmos que a energia deve ser adicionada ao núcleo para separá-lo em prótons e nêutrons:

n2 p2 He nergiaE 10

11

42

.

Page 28: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

VARIAÇÕES DE ENERGIA NAS REAÇÕES NUCLEARES • Energia de coesão do núcleo

A energia necessária para separar um núcleo em seus

núcleons é chamada energia de coesão. Quanto maior

a energia de coesão, mais estável é o núcleo no sentido

da decomposição.

.

Page 29: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Na fissão nuclear, um átomo de um elemento é dividido, produzindo dois átomos de menores dimensões de elementos diferentes.

A fissão de urânio-235 liberta uma média de 2,5 nêutrons por cada núcleo dividido. Por sua vez, esses nêutrons vão rapidamente causar a fissão de mais átomos, que irão libertar mais nêutrons e assim sucessivamente, iniciando uma auto-sustentada série de fissões nucleares, à qual se dá o nome de reação em cadeia, que resulta na liberação contínua de energia.

FISSÃO NUCLEAR

Page 30: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

FISSÃO NUCLEAR

Page 31: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

FUSÃO NUCLEAR

Na Fusão Nuclear, dois ou mais núcleos atômicos

se juntam e formam um outro núcleo de maior

número atômico. A fusão nuclear requer muita

energia para acontecer, e geralmente liberta muito

mais energia que consome. Quando ocorre com

elementos mais leves que o ferro e o níquel (que

possuem as maiores forças de coesão nuclear de

todos os átomos, sendo portanto mais estáveis) ela

geralmente liberta energia, e com elementos mais

pesados ela consome energia.

Page 32: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

FUSÃO NUCLEAR

Page 33: QUÍMICA NUCLEAR Prof: Élcio R. Barrak Maio 2007 Aluno: Felipe Maroun Engenharia de Controle e Automação

QUÍMICA – ENGENHARIA DE CONTROLE E AUTOMAÇÃO

REFERÊNCIAS BIBLIOGRÁFICAS

• Química: A Ciência Central, 9ª edição. Brown, Lemay e Bursten;

• Wikipédia;

• Química – Pitágoras.