94
UNIVERSIDADE ESTADUAL DE SANTA CRUZ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO Programa de Pós-graduação em Genética e Biologia Molecular FABIANA APARECIDA CAVALCANTE SILVA TcPR-10: Mecanismo de transporte e ação em fungos ILHÉUS BAHIA BRASIL Fevereiro 2013 FABIANA APARECIDA CAVALCANTE SILVA

TcPR-10: Mecanismo de transporte e ação em fungos

  • Upload
    doxuyen

  • View
    220

  • Download
    1

Embed Size (px)

Citation preview

Page 1: TcPR-10: Mecanismo de transporte e ação em fungos

UNIVERSIDADE ESTADUAL DE SANTA CRUZ

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

Programa de Pós-graduação em Genética e Biologia Molecular

FABIANA APARECIDA CAVALCANTE SILVA

TcPR-10: Mecanismo de transporte e ação em fungos

ILHÉUS – BAHIA – BRASIL

Fevereiro – 2013

FABIANA APARECIDA CAVALCANTE SILVA

Page 2: TcPR-10: Mecanismo de transporte e ação em fungos

TcPR-10: Mecanismo de transporte e ação em fungos

Tese apresentada à Universidade

Estadual de Santa Cruz, como

parte das exigências para obtenção

do título de Doutor em Genética e

Biologia Molecular

Orientador: Prof. Dr. Abelmon da Silva Gesteira

Co-orientadores: Profa. Dra. Fabienne Micheli

Prof. Dr. Márcio Gilberto Costa

ILHÉUS – BAHIA – BRASIL

Fevereiro – 2013

Page 3: TcPR-10: Mecanismo de transporte e ação em fungos

S586 Silva, Fabiana Aparecida Cavalcante. TcPR-10: mecanismo de transporte e ação em Fungos / Fabiana Aparecida Cavalcante Silva. – Ilhéus, BA: UESC, 2013. xv, 93f. : il. Orientador: Abelmon da Silva Gesteira. Tese (doutorado) – Universidade Estadual de Santa Cruz. Programa de Pós-Graduação em Ge- nética e Biologia Molecular. Inclui referência bibliográfica.

1. Fungos fitopatogênicos – Controle biológico. 2. Saccharomyces cerevisiae. 3. Oxigênio – Trans- porte fisiológico. 4. Proteínas. 5. Vassoura-de-bruxa (Fitopatologia). 6. Plantas – Parasito. I. Título. CDD 632.4

Page 4: TcPR-10: Mecanismo de transporte e ação em fungos

II

FABIANA APARECIDA CAVALCANTE SILVA

TcPR-10: Mecanismo de transporte e ação em fungos

Tese apresentada à Universidade

Estadual de Santa Cruz, como parte das

exigências para obtenção do título de

Doutor em Genética e Biologia Molecular.

Ilhéus, 27 de Fevereiro de 2013

BANCA EXAMINADORA

___________________________ ___________________________

Drª. Cristina Caribé Drª Helena Costa

(DCB/UESC) (DCB/UESC)

___________________________ ___________________________

Drª Jane Lima dos Santos Drª. Juliana Freitas Ástua

(DCB/ UESC) (EMBRAPA)

_____________________________

Dr. Abelmon da Silva Gesteira

(EMBRAPA - Orientador)

Page 5: TcPR-10: Mecanismo de transporte e ação em fungos

II

"Un peu de science éloigne de Dieu, beaucoup de science y ramène."

"Um pouco de ciência nos afasta de Deus. Muito, nos aproxima."

Louis Pasteur, 1957

Page 6: TcPR-10: Mecanismo de transporte e ação em fungos

III

A meus pais, Francisco de Assis da Silva e Maria Aparecida C. Silva, que

nunca mediram esforços para que pudesse ter o que consideraram como o

melhor do conhecimento, inúmeras experiências de vida e ser o que sou hoje,

não posso somente agradecer, mas dedicar-lhes esse novo sonho realizado e

retribuir-lhes sempre o amor que têm por mim.

Aos meus irmãos Fábio, Fabíola, Fabilson e Fabianderson . Agradeço

imensamente pela força e apoio sempre presentes e pela alegria

da convivência.

DEDICO

Page 7: TcPR-10: Mecanismo de transporte e ação em fungos

IV

AGRADECIMENTOS

Á Deus, pela vida, saúde, discernimento, paciência, e por sua presença em

todas as etapas desta caminhada. Pelas experiências, bem sucedidas ou não,

mas sempre fonte de aprendizado. Pela minha família, professores, colegas de

trabalho e todos os amigos;

À Universidade Estadual de Santa Cruz, pela oportunidade de realização deste

curso;

A CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)

pela concessão da bolsa;

Ao professor Dr. Abelmon da Silva Gesteira pela orientação, paciência,

disponibilidade e preciosos ensinamentos. Agradeço a oportunidade de fazer

parte de seu grupo de pesquisa e sempre lembrarei do exemplo de ética,

profissionalismo, dedicação, doação e muito entusiasmo pelo trabalho;

Aos co-orientadores Márcio Gilberto Cardoso Costa e Fabienne Micheli pelo

apoio em todas as etapas de realização do trabalho.

A Dra. Cristina Pungartinik pelo imenso apoio e dedicação às discussões e

sugestões ao trabalho. Mesmo não sendo oficialmente co-orientadora, sua

confiança e amizade foram de grande importância para o bom desenvolvimento

desse trabalho.

Ao Dr. Martin Brendel pela colaboração e ensinamentos na elaboração do

trabalho envolvendo leveduras.

As grandes amigas: Ana Cácia, Camila, Luana Moreira, Sara Menezes,

Luciana Cidade, Ana Camila e Daniela Koop. Agradeço todo o apoio e amizade

em todos os momentos.

Aos amigos Thyago Cardoso, Gileno Lacerda, Sanderson Tarcizo, Ricardo

Porto e Carlos Ivan pela ajuda nos dias e noites de trabalho, conhecimentos

compartilhados, e força nos momentos difíceis.

Aos amigos-companheiros da Turma de Doutorado 2008.1: Jeiza, Cinthia,

Vania, Rogério, Samuel Saito, Ana Carolina Santini, Olivia e Heliana pela

amizade e companheirismo ao longo do curso

Page 8: TcPR-10: Mecanismo de transporte e ação em fungos

V

Aos amigos André Santiago, Juliano Mendes, Juliano Santana, Leila, Alanna. e

Dayane pelos ensinamentos, incentivos e colaborações.

Aos colegas do Laboratório de Biologia Molecular Dayane, Diana Matos,

Edson, Heliana e Leandro pelo companheirismo no laboratório e principalmente

pelos bons momentos que passamos.

Aos colegas do Laboratório de Cultura de Tecidos Vegetais Jamilly, Amanda,

Laís, Cristina Martins, Verônica, Antônio Carlos (Pelé) e Virgínia pela

disponibilidade, ensinamentos e excelente convivência ao longo dos anos.

Aos Dr. Marco Antônio Costa pela ajuda e disponibilização do Laboratório de

Citogenética e os colegas Rodolpho, Adriane Barth e Igor pela ajuda nos

experimentos de microscopia.

Aos colegas dos Laboratórios de Marcadores Moleculares, Imunologia, Biologia

de Fungos e Biotecnologia Microbiana, em especial Ronaldo, Gil, Samuel Saito

e Tatiana Basso.

Aos colegas do Lab. De Proteômica e Genômica, em especial Ana Camila,

Emanuele, Joise, Juliano e Luciana Camilo.

Aos amigos do CEPEC/CEPLAC por serem um refúgio e um apoio sempre que

foi necessário, em especial Kaleandra, Livia, Leila e Rogério.

Aos amigos de Recife por se fazerem presentes, mesmo que a distancia nos

separasse: Denise Bacelar Renata Rodrigues, Vladimir Silveira, Mariana,

Layana, Hi Meet Shiue, Ingrid, Oswaldo, Carolina Felinto. Obrigada por não me

deixarem abater.

A todas as minhas companheiras de republica que aguentaram todos os

momentos de estresse apoiando, mesmo sem entender muito, mas sempre

foram fundamentais: Lisiane, Lilian e Renally.

Aos funcionários da UESC: Dona Gilda e Fabricia.

Meus sinceros agradecimentos. Sem vocês não teria chegado até aqui.

Page 9: TcPR-10: Mecanismo de transporte e ação em fungos

VI

ÍNDICE

Pag.

LISTA DE FIGURAS IX

LISTA DE TABELAS XI

EXTRATO XII

ABSTRACT XIV

I. INTRODUÇÃO. 16

II. REVISÃO BIBLIOGRÁFICA 19

1. Theobroma cacao 19

2. Moniliophthora perniciosa 21

3. Interação planta – patógeno: Estudos moleculares 24

3.1. Patossistema T. cacao x M. perniciosa 26

4. Proteínas relacionadas à Patogênese (PR proteínas) 27

4.1. Proteínas relacionadas à Patogênese da família 10 (PR-10) 29

5. Ferramentas proteômicas na interação planta X patógeno 30

6. Saccharomyces cerevisiae: Transporte ABC, autofagia e formação

de vacúolos 31

III. REFERENCIAS BIBLIOGRÁFICAS 38

IV. CAPÍTULO 1 44

V. CAPÍTULO 2 64

VI. CONCLUSÕES GERAIS 93

Page 10: TcPR-10: Mecanismo de transporte e ação em fungos

VII

LISTA DE FIGURAS

Revisão Bibliográfica

Figura 1. Produção mundial de amêndoas de cacau no ano de 2011 nos

principais países produtores. FAO: 30/01/2013

Figura 2. Ciclo de vida do fungo M. perniciosa.

Figura 3. Resumo esquemático dos processos metabólicos envolvidos no

mecanismo de defesa das plantas ao ataque de patógenos

Figura 4. Representação esquemática das etapas relacionadas as rotas

autofágicas.

Figura 5. Transporte de proteínas para o vacúolo em leveduras

Capítulo 1

Figure 1. Protein profile in 2-DE gel Moniliophthora perniciosa fungus treated

with the antifungal protein TcPR-10 obtained from cacao. Treatments: A-

Control (no TcPR-10); B- 30 min; C- 60 min and D- 120 min after exposure to

TcPR-10. The gels were stained with Coomassie Coloidal Blue G-250 solution.

Line MW: molecular weight marker proteins (kDa). → Excision place gel to

differentially expressed proteins identificated by mass spectrometry.

Figure 2. Representations of the distribution of identified differentially

expressed proteins identified M perniciosa according to their biological process.

Categorizations were based on information provided by the online resource

UniProt classification system.

Capítulo 2

Figure 1. Survival of S. cerevisiae in exponential growth phase exposed to

TcPR-10p (3 µg/mL) for 0, 1, 6 and 24 h: A) BY10000 (); pdr5Δ (X); pdr10Δ

(); pdr12Δ (); pdr15Δ () and yor1Δ (▲); B) BY10000 (), pdr11Δ() and

atg8Δ ();

Figure 2. WT cells and mutant snq2Δ of S. cerevisiae in exponential phase

observed in real time microscope. A) control: WT and snq2Δ kept for 2 and 4 h;

B) cells exposed to TcPR-10p (3 µg/mL): WT for 0, 60 and 90 min and snq2Δ

for 0 , 90 and 120 min. Bar: 10 µm.

Page 11: TcPR-10: Mecanismo de transporte e ação em fungos

VIII

Figure 3. Observation of vacuoles in S. cerevisiae in exponential growth phase

exposed to TcPR-10p (3 µg/mL) 0 and 6 h: A) BY10000, B) snq2Δ, C) BY10000

and D) pdr11Δ. Bar: 50 µm.

Figure 4. Survival of yeast transformed with single-copy plasmid containing

MpATG8 exposed to TcPR-10p (3 µg/mL) for 0, 12, 24 and 48 h. AP01 ( );

AP02 (); AP03 () and AP04 ().

Figure 5. Production of ROS observed in epifluorescence photomicroscopy

after 0 and 48 h exposure to TcPR-10p (3 µg/mL). A) AP01, B) AP02, C) AP03

and D) AP04. Bar: 50 µm.

Figure 6. Hyphae of M. perniciosa observed in real time microscope. A)

Control; B) Hyphae exposed to TcPR-10 (3 µg/mL)

SUPPLEMENTARY MATERIAL

Figures:

Supp 1. Nucleotide and amino acid sequences of Moniliophthora perniciosa

autophagy-related protein 8 precursor (gi|189380199|and gi|189380200).

Asterisk represents open reading frame termination codon.

Supp 2. Molecular cloning of gene MpAtg8 into vector pRS313. E= EcoR I; H=

HIS3; A= ARSH4; R= ampR.

Supp 3. – PCR of colony confirming insertion of the MpATG8 gene, C+

represents the positive control, in which DNA of M. pernicious was used. C+

represents the positive control, in which DNA of M. pernicious was used.

Movies:

Supp. 4 – WT 1h TcPR-10. mov: LOG phase cells of S. cerevisiae WT

observed in real time microscopy after exposure to TcPR-10p (3µg/mL) for 1h

Supp. 5 – MPTcPR-10. mov: M. perniciosa hyphae observed in real time

microscopy after exposure to TcPR-10p (3 µg/mL) for 1h.

Page 12: TcPR-10: Mecanismo de transporte e ação em fungos

IX

LISTA DE TABELAS

Revisão Bibliográfica

Tabela 1. Famílias de proteínas relacionadas à patogênese (PR).

Tabela 2. Descrição de bombas de efluxo de drogas encontradas em S. cerevisiae

Capítulo 1.

Table 1. Distribution of spots between treatments (Control, 30 min, 60 min and 120

min) and between combinations of these treatments.

Capítulo 2

Table 1: Yeast strains and plasmid

Page 13: TcPR-10: Mecanismo de transporte e ação em fungos

X

EXTRATO

SILVA, Fabiana Aparecida Cavalcante Silva, Msc, Universidade Estadual

de Santa Cruz, Ilhéus, Fevereiro de 2013. TcPR-10: Mecanismo de

transporte e ação em fungos. Orientador: Abelmon da Silva Gesteira. Co-

orientador: Márcio Gilberto Costa.

A vassoura-de-bruxa, causada pelo fungo hemibiotrófico Moniliophthora perniciosa (Stahel), é a principal causa do declínio econômico da cultura cacaueira na região Sul da Bahia. Desta forma diversos métodos para o controle ou melhor entendimento desta doença tem sido desenvolvidos através de ferramentas genômicas e proteômicas. A análise funcional de genes que codificam para proteínas PR (Pathogenesis related proteins) são de grande importância principalmente por serem expressas sob condições de patogênese ou pressões ambientais. A partir de uma biblioteca de cDNA da interação entre Theobroma cacao e M. perniciosa, foi identificada a proteína TcPR-10, cujos trabalhos posteriores revelaram forte ação fungicida e de ribonuclease contra M. perniciosa e Saccharomyces cerevisiae. Mutantes de S. cerevisiae para genes de reparação do DNA, transporte de membrana, transporte de metais e defesas antioxidantes foram expostos a TcPR10 indicando um possível transporte ativo desta proteína em células de levedura em fase logarítmica de reprodução (LOG) e sua atividade antifúngica parece estar associada à transportadores de membrana e à ação de permeases. Diante destes resultados prévios houve a necessidade de identificar quais proteínas o fungo causador da vassoura-de-bruxa expressa quando exposto a TcPR-10 e quais mecanismos de ação e transporte TcPR-10 utiliza para penetração na célula fungica. A análise proteômica foi utilizada com o objetivo de identificar proteínas diferencialmente expressas em M. perniciosa em resposta à TcPR-10. As hifas do fungo foram expostas a proteína heteróloga TcPR-10 (3 µg/mL) em quatro tratamentos: controle (sem TcPR-10), 30min, 60min e 120 min após exposição a proteína antifúngica. Os mapas bidimensionais apresentaram 191 proteínas diferencialmente expressas, das quais 55 foram identificadas por espectrometria de massas. As proteínas identificadas foram relacionadas ao metabolismo celular, resposta ao estresse, a ligação de zinco, mecanismo de fosforilação, transporte, autofagia, reparo do DNA e oxidoredutases. Destas 29% se referiam a proteínas de resposta ao estresse e 25% a oxidoredutases (25%) principalmente nos tratamentos controle e 30 min, reduzindo sua expressão aos 120 min, Os estresse oxidativo causado por TcPR-10 explica o aumento da expressão destas duas classes, resposta ao estresse e oxiduredutase, que atuam no processo de reparação de danos. Além desta foram identificadas proteínas de detoxificação (autofagia) e esterol importantes para manutenção da homeostase celular em fungos. Sabendo o efeito que TcPR-10 causa em M. perniciosa é necessário entender qual o mecanismo de transporte para o interior da célula são utlizados e quais efeitos causam. Desta forma foram utilizados mutantes de S. cerevisiae para transportadores de

Page 14: TcPR-10: Mecanismo de transporte e ação em fungos

XI

membrana do tipo ABC (ATP-binding cassete), autofagia e ligados a formação de vacúolo, além da visualização via microscopia em tempo real de células de S. cerevisiae e M. perniciosa tratadas com TcPR-10. O mutante isogênico pdr11Δ apresentou maior resistência a TcPR-10 quando comparado com a linhagem selvagem (WT), de forma contrária, atg8Δ, mutante deficiente em autofagia, apresentou 10 vezes menor sensibilidade. O corante vermelho neutro, ideal para coloração de vacúolos, demonstrou que os mutantes pdr11Δ e snq2Δ foram mais resistentes a TcPR-10 quando comparados a WT devido a uma redução da formação de vacúolos. O mesmo foi observado com a microscopia em tempo real com uma menor formação de vacúolos nos mutantes snq2Δ em relação a WT, e em hifas tratadas de M. perniciosa. O mecanismo autofágico foi testado através da expressão heteróloga de quatro linhagens isogênicas de S. cerevisiae: selvagem contendo uma cópia do gene ATG8 de M. perniciosa (MpATG8), selvagem, atg8Δ (mutante) contendo (MpATG8) e atg8Δ. Com os resultados obtidos podemos sugerir que a proteína TcPR-10 utiliza a via de penetração celular similar à dos esteróis, tal como sugerido pela resistência de mutantes pdr11Δ snq2Δ e que o acúmulo observado nos vacúolos podem ser devido a atividade intracelular de TcPR-10 em leveduras e M. perniciosa, além disso a rota autofágica é essencial para a resistência da linhagem selvagem à TcPR-10 eliminando os danos causados pelo estresse oxidativo. As proteínas de M. perniciosa, responsivas a TcPR-10, identificadas por espectrometria de massas estão incluídas em várias rotas bioquímicas sugerindo prováveis modos de ação de agentes antifúngicos assim como possíveis mecanismos de transporte poderão ser considerados a partir dos resultados obtidos.

Palavras- chave: Proteína relacionada a patogênese 10 (PR-10), Espécies

reativas a oxigenio (ROS), proteínas diferencialmente expressas,

oxidoredutases Transportadores de membrana ABC, Autofagia.

Page 15: TcPR-10: Mecanismo de transporte e ação em fungos

XII

ABSTRACT

SILVA, Fabiana Aparecida Cavalcante Silva, Msc, Universidade Estadual

de Santa Cruz, Ilhéus, February of 2013. TcPR-10: Transport and mode of

action. Advisor: Abelmon da Silva Gesteira. Advisor Committee: Márcio

Gilberto Costa.

The witches' broom, caused by the hemibiotrophic fungus Moniliophthora perniciosa (Stahel) is the main cause of the economic decline of the cocoa crop in Southern Bahia. Thus a search for methods of disease control has been developed through genomic and proteomic studies. Functional analysis of genes encoding PR (Pathogenesis Related) proteins are important primarily when expressed under conditions of environmental stress or pathogenesis. From a cDNA library of the interaction between Theobroma cacao and M. perniciosa we identified TcPR-10, later show to have strong fungicidal and ribonuclease action against M. perniciosa and Saccharomyces cerevisiae. Mutants of S. cerevisiae genes for DNA repair, membrane transport, transport of metals and antioxidant defenses were exposed to TcPR10 indicating a possible active transport of this protein in yeast cells in logarithmic phase of reproduction (LOG) and their antifungal activity seems to be associated with the membrane transport and permeases action. Given these previous results it was necessary to identify which proteins of M. perniciosa were expressed when exposed to TcPR-10 and which mechanisms of action and transport of TcPR-10 are made to penetrate the fungal cell. A proteomic analysis was used in order to identify proteins differentially expressed in M. perniciosa in response to TcPR-10. The hyphae of the fungus were exposed to TcPR-10 heterologous protein (3 mg/mL) in four treatments: Control (no TcPR-10), 30min, 60min and 120min after exposure to antifungal protein. The two-dimensional maps showed 191 differentially expressed proteins 55 of which were identified by mass spectrometry. The proteins were related to cell metabolism, stress response, zinc binding mechanism, phosphorylation, transport, autophagy, DNA repair and oxidoreductases. Of these 29% refered to proteins and stress response 25% were oxidoreductases mainly in control treatments and 30 min, with expression at 120 min. The oxidative stress caused by TcPR-10 explains the increased expression of these two classes, stress response and oxiduredutase, which act in the process of damage repair. In addition detoxification proteins were identified (autophagy) and sterol important for maintenance of cellular homeostasis in fungi. Knowing the effect that causes TcPR-10 in M. perniciosa is necessary to understand the mechanism of transport to the cell interior and effects that causes. Thus we used mutants of S. cerevisiae for type membrane transporters ABC (ATP-binding cassette), and autophagic vacuole formation attached to, and visualization via microscopy in real time cell S. cerevisiae and M. perniciosa treated with TcPR-10. The isogenic mutant was more resistant to pdr11Δ TcPR-10 when compared to the wild type (WT), contrary, atg8Δ, mutant

Page 16: TcPR-10: Mecanismo de transporte e ação em fungos

XIII

deficient in autophagy, showed 10 times lower sensitivity. The neutral red dye, suitable, showed that the mutants were snq2Δ and pdr11Δ, more resistant to TcPR-10 when compared to WT due to a reduction in the formation of vacuoles. The same was observed with microscopy in real time with a lower formation of vacuoles in the mutants compared to WT and snq2Δ, and treated hyphae of M. perniciosa. The autophagic mechanism was tested by heterologous expression of four strains of S. cerevisiae: wild containing one copy of the gene ATG8 of M. perniciosa (MpATG8), WT, atg8Δ (mutant) containing (MpATG8) and atg8Δ. This results may suggest that the protein TcPR-10 uses the route of cell penetration similar to the sterols, as suggested by the resistance of mutants pdr11Δ snq2Δ and the observed accumulation in the vacuoles may be due to intracellular activity of TcPR-10 in yeast and M. perniciosa also the autophagic route is essential for the resistance of the wild strain TcPR-10 eliminating the damage caused by oxidative stress. The proteins of M. perniciosa, responsive TcPR-10, identified by mass spectrometry are included in several biochemical pathways suggest possible modes of action of antifungal agents as well as possible mechanisms of transport.

Key words: Pathogenesis related protein family 10 (PR-10), reactive oxygen

species (ROS), differentially expressed proteins, oxidureductases ATP-binding

cassette (ABC) family, Autophagy

Page 17: TcPR-10: Mecanismo de transporte e ação em fungos

14

I. INTRODUÇÃO

O cacau (Theobroma cacao) é uma das culturas mais importantes do

mundo, com uma produção de mais de 4 milhões de toneladas no ano de 2011

(FAOSTAT, 2013), sendo cultivado em aproximadamente 50 países (KNIGHT,

2000). Na região Sul da Bahia o cultivo do cacau, além do caráter econômico,

tem uma responsabilidade ecológica visto que esta cultura está associada à

preservação da mata atlântica nativa em virtude do modelo de cultivo, feito sob

a mata primária em um sistema denominado cabruca (SAMBUICHI et al.,

2012). Além da sua principal aplicação como base para fabricação de

chocolate, o cacau é matéria prima de subprodutos aplicados na indústria de

cosméticos, bebidas, geleias, sorvetes, sucos, dentre outros (ALMEIDA-

VALLE, 2007).

A introdução do fungo hemibiotrófico Moniliophthora (= Crinipellis)

perniciosa (AIME e PHILLIPS-MORA, 2005), causador da vassoura de bruxa,

tem causado sérios prejuízos socioeconômicos ao nível mundial e,

regionalmente, foi causa do êxodo rural que acarretou na favelização dos

grandes centros urbanos do estado da Bahia. Diante do declínio da lavoura

cacaueira frente à vassoura-de-bruxa, o entendimento dos mecanismos

envolvidos no patossistema T. cacau x M. perniciosa é de grande importância

na tentativa de alcançar um controle efetivo da doença. Desta forma vários

estudos genômicos, proteômicos e funcionais vêm sendo desenvolvidos.

O projeto Genoma do fungo Moniliophthora perniciosa

(http://www.lge.ibi.unicamp.br/vassoura/) envolveu várias instituições públicas

brasileiras (EMBRAPA Cenargen, Ceplac, UESC, Unicamp, UEFS, UFBA) no

ano 2000. Em seguida, no ano de 2004, foi dado inicio ao Projeto Proteoma do

fungo (Rede Nacional de Proteômica), visando caracterizar bioquimicamente o

fungo e a planta. Gesteira et al. (2007) através de bibliotecas de cDNA da

interação entre o fungo e cultivares resistentes e suscetíveis de cacau,

identificaram sequências relacionadas a diversos aspectos da interação, como

inibidores de proteases, inibidores de tripsina (Its), cistatinas, proteínas

relacionadas a patogênese (TcPR-10) e indutores de necrose (NEP).

Page 18: TcPR-10: Mecanismo de transporte e ação em fungos

15

As proteínas relacionadas à patogênese (Proteínas PR) são expressas

em mono e dicotiledôneas sob condições de patogênese ou pressões

ambientais e, em alguns casos, possuem um papel no desenvolvimento geral

da planta. As proteínas PR são classificadas em 17 famílias de acordo com a

massa molecular, ponto isoelétrico, localização e atividade biológica (LIU e

EKRAMODDOULLAH, 2006; VAN LOON, REP e PIETERSE, 2006). As

proteínas da família 10 (PR-10) apresentam três sítios comuns de fosforilação

sugerindo uma função como RNase geral ou como RNase específica contra

RNA exógeno (GRAHAM et al., 2003; PARK et al., 2004; KIM et al., 2008).

Trabalhos recentes identificaram atividade DNAse das proteínas PR10 em

arroz (KIM et al., 2011) e uva (HE et al., 2012) sugerindo uma ação de

nuclease no processo de morte celular programada.

A proteína TcPR-10 foi caracterizada por Pungartnik et al. (2009a) e

Menezes et al. (2012) que observaram atividade de ribonuclease e antifúngica

da proteína heteróloga contra M. perniciosa e Saccharomyces cerevisiae.

TcPR-10 foi colocada em contato com mutantes de S. cerevisiae para genes de

reparação do DNA, transporte de membrana, transporte de metais e defesas.

Os resultados indicaram que a atividade antifúngica da proteína podem estar

associados a transportadores de membrana e à ação de permeases e que

TcPR-10 parece utilizar um transporte ativo em células de levedura em fase

logarítmica de reprodução (LOG).

O fungo M. perniciosa tem sido fonte de estudos que buscam

caracterizar aspectos fisiológicos como o processo de germinação dos esporos

(MARES, 2012), regulação de quitinase (LOPES et al., 2008) e análise do

secretoma durante o processo de infecção e colonização do hospedeiro

(ALVIM et al., 2009), dentre outros. O uso da analise proteômica para

identificação de proteínas diferencialmente expressas tem sido amplamente

utilizada para compreensão dos mecanismos utilizados pelo patógeno na

interação com o hospedeiro ou em resposta a drogas. Ebanks et al. (2006)

compararam perfis protéicos em leveduras e hifas de Candida albicans

buscando identificar proteínas da parede celular e associadas à parede,

utilizando as técnicas de MudPit e géis bidimensionais. Este trabalho resultou

Page 19: TcPR-10: Mecanismo de transporte e ação em fungos

16

na identificação de 29 proteínas das quais 17 foram identificadas apenas em

hifas, quatro em levedura, e oito foram identificados na levedura e hifas. As

proteínas expressas pelo fungo causador da vassoura-de-bruxa na presença

de antifúngicos ainda são pouco conhecidas, principalmente utilizando

ferramentas proteômicas. Este trabalho apresenta o primeiro mapa protéico de

M. perniciosa quando exposto a uma proteína antifúngica isolada do cacau

(TcPR-10) e busca compreender as respostas bioquímicas relevantes no

mecanismo de patogenicidade deste fungo.

Considerando o mecanismo de resposta de M. perniciosa quando

exposta à TcPR-10, outro importante aspecto da ação desta proteína

antifúngica que necessita ser melhor elucidado é seu mecanismo de

penetração no fungo, in vivo, e as consequências decorrentes desta

penetração. Neste contexto a utilização de mutantes de S. cerevisiae para

transportadores de membrana do tipo ABC, formação de vacúolo e autofagia

são ferramentas úteis para a resolução destes questionamentos.

Estudos funcional e bioquímico de genes de interesse permitem inferir

possíveis vias metabólicas envolvidas na interação entre patógeno e seu

hospedeiro, bem como desenvolver estratégias mais eficientes de controle de

fitopatógenos. Desta forma este trabalho teve como objetivo avaliar o

mecanismo de transporte e aspectos de ação da proteína TcPR-10 em S.

cerevisiae e M. perniciosa utilizando análises in vitro e ferramentas

proteômicas.

Page 20: TcPR-10: Mecanismo de transporte e ação em fungos

17

II. REVISÃO BIBLIOGRÁFICA

1. Theobroma cacao

O cacaueiro (Theobroma cacao L.) é uma planta pertencente à família

Malvaceae, arbórea, eudicotiledônea, típica de clima tropical úmido que vegeta

no sub-bosque e compreende plantas preferencialmente alógamas (SILVA et

al., 2001). É cultivado e reproduzido por sementes podendo apresentar altura

entre 5 e 10 m, havendo registros de indivíduos com 50 a 75 m (ALVERSON et

al., 1999), Os representantes desta espécie são diploides (2n= 2x= 20), com

genoma considerado pequeno (411 – 494 Mb) (FIGUEIRA, JANICK e

GOLDSBROUGH, 1992; LANAUD, HAMON e DUPERRAY, 1992; ARGOUT et

al., 2011),

A espécie T. cacao possui como centro de origem, provavelmente, as

nascentes do rio Amazonas e Orinoco e atualmente está distribuído nas

florestas tropicais da América Central, América do Sul, Ásia e África

(CHEESMAN, 1944; COE, COE e HUXTABLE, 1996; MARITA et al., 2001). O

cacaueiro pode ser subdividido morfogeograficamente em: i. Crioulo (T.cacao

ssp. cacao) oriundos da América Central e México; ii. Forasteiro (T. cacao ssp.

sphaeorocarpum) oriundo da América do Sul; e iii. Trinitario, uma espécie

híbrida do cruzamento entre os dois tipos anteriormente citados (MOTAMAYOR

et al., 2002).

O cacau é uma commodity internacionalmente reconhecida

principalmente por ser a matéria prima na produção do chocolate, um produto

amplamente consumido devido ao seu valor energético e nutritivo

(MOTAMAYOR et al., 2008). Além disso, possui outros importantes mercados

como: manteiga de cacau, utilizada na indústria farmacêutica e cosmética, e a

polpa: utilizada para fabricação de sorvetes, sucos, licores, geleias, vinho,

vinagre, inclusive no mercado internacional (ALMEIDA e VALLE, 2007).

Atualmente o Brasil é o sexto produtor mundial de cacau tendo

produzido 4,32 milhões de toneladas de amêndoas em 2011 (Figura 1). Apesar

do histórico de exportação alcançado pela indústria cacaueira brasileira,

atualmente a produção é utilizada para utilização local. Este declínio se deu a

Page 21: TcPR-10: Mecanismo de transporte e ação em fungos

18

partir de 1987 quando o setor cacaueiro sofreu grave crise causada pelo baixo

preço atribuído ao produto, o monocultivo, a introdução da doença vassoura de

bruxa na região sul da Bahia, além da baixa competitividade do setor, que

exige custos relativamente altos e a exploração de áreas de cultivo antigas e

pouco produtivas, submetidas a um manejo inadequado (SOUZA, DIAS e

DIAS, 2001; MEINHARDT et al., 2008).

Figura 1. Produção mundial de amêndoas de cacau no ano de 2011 nos principais

países produtores. FAO: 30/01/2013

Page 22: TcPR-10: Mecanismo de transporte e ação em fungos

19

Dentre as causas que acarretam a queda na produtividade do cacau

destaca-se o ataque de patógenos que se estabelecem em função das

condições climáticas da área na qual a planta esta inserida. Os principais

patógenos do cacaueiro são diversas espécies de Phytophthora, além de

Moniliophthora roreri e Moniliophthora perniciosa (ALLEGRE et al., 2012). No

Brasil o fungo M. perniciosa, causador da doença vassoura-de-bruxa, destaca-

se como principalmente patógeno da cultura do cacau.

2. Moniliophthora perniciosa:

O fungo Moniliophthora perniciosa (Stahel), causador da doença do

cacaueiro vassoura-de-bruxa, pertence à classe dos Basidiomycetes, ordem

Agaricales, família Marasmiaceae (AIME e PHILLIPS-MORA, 2005). A

propagação deste fungo ocorre com a liberação de esporos, os basidiósporos,

a partir de basidiocarpos. Os basidiósporos são capazes de infectar qualquer

tecido meristemático e são considerados os únicos propágulos infectivos

descritos para este patógeno. O processo infectivo pode ocorrer também

através da abertura dos estômatos pelos tubos germinativos dos basidiósporos

e pelas inflorescências não enrijecidas (EVANS, 1980; FRIAS, PURDY e

SCHMIDT, 1991).

O fungo apresenta ciclo de vida hemibiotrófico, desta forma o

desencadeamento da doença apresenta duas fases distintas: a biotrófica e a

necrotrófica ou saprofítica. Na fase biotrófica, quando a densidade do micélio é

baixa se apresentando na forma monocariótica intercelular, inicia-se o processo

de hipertrofia e hiperplasia dos tecidos, perda de dominância apical e

proliferação de meristemas axilares, resultando na formação de um ramo

anormal, conhecido como vassoura verde. A infecção nas flores resulta na

formação de pequenos frutos partenocárpicos ou vassoura de almofada. A fase

necrotrófica ou saprofítica tem início entre 1 a 2 meses do desenvolvimento da

doença, quando o fungo assume sua forma dicariótica intracelular, causando

necrose e morte dos tecidos infectados, formando ramos denominados

vassoura seca (EVANS, 1980; PENMAN et al., 2000; MEINHARDT et al.,

2008). As principais fontes de produção de basidiocarpos são as vassouras

Page 23: TcPR-10: Mecanismo de transporte e ação em fungos

20

descobertas e caídas dentro do cacaueiro, vassouras ou almofadas florais e

frutos doentes e vassouras necróticas vegetativas na copa do cacaueiro

(PURDY e SCHMIDT, 1996; COSTA et al., 1997). O ciclo da doença se

completa com a formação do basidiocarpo seguida da formação dos esporos

em qualquer tecido necrótico infectado (SCARPARI et al., 2005) (Figura 2).

A vassoura-de-bruxa foi introduzida na região sul da Bahia em 1989,

causando prejuízos econômicos e socioambientais. Pires et al. (1999)

relataram uma queda de 15% para 4,3% na produção de cacau entre os

períodos de 1989 e 1998. Este declínio acentuado desde então deve-se

principalmente a elevada susceptibilidade de algumas variedades de cacaueiro

e a grande severidade do patógeno associados ao clima favorável da região

resultando em fatores adequados à disseminação da doença (LUZ et al., 1997).

Diante das perdas causadas pela vassoura-de-bruxa diversas ações no

âmbito econômico e científico foram iniciadas buscando estabelecer um

controle efetivo da doença. Estudos têm sido desenvolvidos com o intuito de

melhor compreender a mecanismo de ação de M. perniciosa e assim permitir o

desenvolvimento de ferramentas de controle da vassoura-de-bruxa. Destacam-

se os trabalhos desenvolvidos pela UESC (Universidade Estadual de Santa

Cruz), CEPLAC (Comissão Executiva do Plano da Lavoura do Cacaueiro) e

CEPEC (Centro de Pesquisas do Cacau) que atuam em diversas áreas de

pesquisas voltadas ao controle da doença; além do projeto Renobruxa – Rede

do Renorbio – Vassoura-de-Bruxa cujo objetivo é dar suporte tecnológico para

revitalização da cacauicultura baiana e nacional a partir do controle do fungo

(FILHO, 2010).

Page 24: TcPR-10: Mecanismo de transporte e ação em fungos

21

Figura 2. Ciclo de vida do fungo M. perniciosa. Figura 1: Ciclo de

vida de M. perniciosa; A) o basidiocarpo é a estrutura reprodutiva

que contém os basidiósporos , B) os basidiósporos podem penetrar

no tecido de forma direta ou pela abertura dos estômatos, C) após a

penetração fungica o micélio monocariótico é intercelular, D) a

presença do pat ógeno gera hiperplasia nos órgãos infectados

ocasionando a denominada “vassoura verde”, E) sobre condições

apropriadas o micélio passa a ser dicariótico e se localiza

intracelularmente, F) a destruição celular gera a necrose e

consequente morte do tecido infectado, caracterizando a “vassoura

seca”, G) o micélio presente se diferencia na estrutura reprodutiva

(basidiocarpo) que contém novas unidades infectivas (basidiósporos)

iniciando o ciclo. O fundo cinza representa as etapas da fase

biotrófica, em azul fase saprofítica. Adaptado de Ceita (2007)

(Adaptada de Ceita et al., 2007).

Page 25: TcPR-10: Mecanismo de transporte e ação em fungos

22

3. Interação planta – patógeno: Estudos moleculares

As plantas são continuamente expostas a estresses bióticos e abióticos

ao longo do seu ciclo de vida desenvolvendo mecanismos de resposta a tais

eventos. Dentre os agentes causadores de estresse biótico encontram-se os

microrganismos que, para serem patogênicos, devem ser capazes de invadir a

planta penetrando diretamente através da superfície de folhas e raízes ou

entrando através de aberturas como estômatos ou ferimentos. A doença

provocada por esta invasão causa desequilíbrio nas plantas como o desvio de

nutrientes e metabólitos secundários, produção de toxinas nocivas às plantas

e, muitas vezes, a morte (CHISHOLM et al., 2006; CHIVASA et al., 2006).

A interação existente entre plantas e micro-organismos é de grande

interesse econômico uma vez que pode levar a grandes perdas na

produtividade da cultura, desta forma o entendimento dos mecanismos

bioquímicos de defesa são de grande importância do ponto de vista

agronômico.

O reconhecimento de um patógeno pela planta desencadeia várias

reações bioquímicas de defesa que levam à produção de Espécies Ativas de

Oxigênio’ (EAO’s) ou Reactive Oxygen Intermediates (ROI) ou ainda Reactive

Oxygen Species (ROS) (TORRES, JONES e DANGL, 2006). Em seguida

ocorre a resposta hipersensitiva (RH) com morte celular programada (MCP), e

resposta sistêmica adquirida (RSA ou SAR- Systemic acquired resistance)

(GOZZO, 2003) (Figura 3).

A resposta hipersensitiva ou de hipersensibilidade inclui o mecanismo de

morte celular programada localizada nas células situadas ao redor do ponto de

infecção (MUR et al., 2008). Estudos recentes indicam que HR está

diretamente associada uma resposta rápida e robusta que induz a produção de

compostos secundários antimicrobianos, ativação transcricional de uma série

de genes que codificam para enzimas líticas (quitinases, glucanases e

proteases) e proteínas antimicrobianas (defensinas) (GASSMANN e

BHATTACHARJEE, 2012; MYSORE, 2013).

Page 26: TcPR-10: Mecanismo de transporte e ação em fungos

23

Os compostos de sinalização como ROS podem agir diretamente como

toxinas para o patógeno ou desencadear uma resposta sistêmica adquirida

(SCHEEL, 1998). A RSA é não específica e induz alterações bioquímicas e

fisiológicas em plantas, tais como fortalecimento físico da parede celular

através de lignificação, suberificação, e deposição de calose; e produzindo

compostos fenólicos (BOWLES, 1990). Outras respostas envolvem a produção

e acúmulo de fitoalexinas, que são principalmente produzidas por células

saudáveis localizadas adjacentes às células danificadas e necróticas; e

proteínas relacionadas à patogênese (PR) que se acumulam localmente nos

tecidos infectados, e também em tecidos não infectados em locais distantes do

ponto de infecção inicial (RYALS et al., 1996; DURRANT e DONG, 2004).

Figura 3. Resumo esquemático dos processos metabólicos envolvidos no mecanismo de

defesa das plantas ao ataque de patógenos (Adaptado de TORRES, JONES e DANGL,

2006).

Page 27: TcPR-10: Mecanismo de transporte e ação em fungos

24

3.1. Patossistema T. cacao x M. perniciosa

Diversos estudos envolvendo o patossistema M. perniciosa X T. cacao

buscam esclarecer processos bioquímicos e metabólicos que ocorrem durante

a infecção da planta, visando controlar a doença e, consequentemente, reduzir

os prejuízos constantes que a cultura do cacaueiro vem sofrendo ao longo dos

anos.

Ceita et al. (2007) realizaram amplo estudo e observaram diferenças nos

níveis de cristais de oxalato de cálcio entre genótipos susceptíveis e resistentes

a vassoura-de-bruxa que poderiam estar envolvidos com o desenvolvimento da

doença. Dias et al., (2011) analisaram duas variedades de cacau, susceptível e

resistente a H2O2, e o conteúdo de Ácido Oxálico livre e Ácido ascórbico como

o principal precursor de Ácido Oxálico e demonstraram que a quantidade de

cristais de Oxalato de Cálcio e os níveis de H2O2 apresentaram padrões

temporais e genótipo-dependente distintos. Scarpari et al (2005) observaram

alterações bioquímicas associadas com a infecção sugerindo a ação de

mecanismos inespecíficos para tentar eliminar o fungo, como o aumento de

alcalóides, compostos fenólicos e taninos, que são utilizados pela planta.

Gesteira et al., (2007) construíram duas bibliotecas de cDNA, sendo

cada uma delas a partir de cultivares de cacau resistente e susceptível a M.

perniciosa, respectivamente, na busca por um melhor entendimento dos

processos envolvidos nesta interação planta-patógeno, o que possibilitou a

identificação de genes do patógeno e do hospedeiro. Desta forma foi isolado o

gene relacionado à patogenicidade TcPR-10 (Pathogenesis-related protein 10

de Theobroma cacao) (GESTEIRA et al., 2007). Pungartnik et al, (2009a)

relataram o primeiro caso da atividade de ribonuclease e antifúngica da

proteína heteróloga TcPR-10 (TcPR-10p) contra M. perniciosa e

Saccharomyces cerevisiae. Este trabalho demonstrou a forte ação de

ribonuclease contra RNA de M. perniciosa, sendo esta atividade caracterizada

como uma resposta dose e tempo dependente, e os ensaios in vitro de

atividade antifúngica mostraram que a proteína heteróloga TcPR-10 inibe o

crescimento de M. perniciosa. Mutantes de S. cerevisiae para genes de

reparação do DNA, transporte de membrana, transporte de metais e defesas

Page 28: TcPR-10: Mecanismo de transporte e ação em fungos

25

antioxidantes foram expostos a TcPR-10p. Os resultados sugerem um

transporte ativo desta proteína em células de levedura em fase logaritmica de

reprodução e que a atividade antifúngica pode estar associada à

transportadores de membrana e à ação de permeases.

4. Proteínas relacionadas à patogênese (Proteínas PR)

As proteínas PR foram relatadas pela primeira vez em plantas de tabaco

infectadas com vírus do mosaico do tabaco (VAN LOON e VAN KAMMEN,

1970). Posteriormente, estas proteínas foram encontradas em várias plantas.

Proteínas PR, dependendo dos seus pontos isoelétricos, podem ser ácidas

ou básicas, porém com funções semelhantes. Proteínas PR ácidas estão

localizadas nos espaços intercelulares, enquanto que as básicas estão

predominantemente localizadas no vacúolo. Além disso, caracterizam-se pelo

baixo peso molecular (150-163 kDa) e resistência à protease (LEGRAND et al.,

1987; NIKI et al., 1998; VAN LOON e VAN STRIEN, 1999).

Atualmente as proteínas PR são classificadas em 17 famílias de acordo

com a massa molecular, ponto isoelétrico, localização e atividade biológica

(Tabela 1)(LIU e EKRAMODDOULLAH, 2006; VAN LOON, REP e PIETERSE,

2006). Estas famílias incluem inibidores de proteinase (PR6), quitinases (PR3,

4), peroxidases (PR9), proteínas de transferência de lipídios (PR14),

endoprotinases (PR7) e defensinas (PR12) (LIU e EKRAMODDOULLAH,

2006).

Page 29: TcPR-10: Mecanismo de transporte e ação em fungos

26

Tabela 1. Famílias de proteínas relacionadas à patogênese (PR).

Famílias Membros Propriedade Referência

PR-1 PR-1a Tabaco Antifúngico MITSUHARA et al. (2008)

PR-2 PR-2 Tabaco β- 1,3 – glucanase BALASUBRAMANIAN et al.

(2012)

PR-3 P, Q Tabaco Quitinase tipo I, II, IV, V, VI, VII EBRAHIM e SINGH (2011)

PR-4 R Tabaco Quitinase tipo I, II, atividade

ribonuclease

e antifúngica

LU et al. (2012)

PR-5 S Tabaco Thaumatin-like 9 (Antifúngico)

Osmotina

Atividade antifúngica

LOUIS e ROY (2010)

PR-6 Inibidor I de Tomate Inibidor de proteinase LALUK e MENGISTE

(2011)

PR-7 P69 Tomate Endoproteinase TIAN et al. (2004)

PR-8 Quitinase de pepino Quitinase tipo III e atividade

lisozima

SELITRENNIKOFF (2001)

PR-9 “Lignin forming

peroxidase” Tabaco

Peroxidase VAN LOON; VAN STRIEN

(1999)

PR-10 “PR1” de salsa Atividade Ribonuclease,

antifúngica e Dnase

FERNANDES et al. (2013)

PR-11 Quitinase de tabaco

tipo V

Quitinase tipo I VAN LOON; REP;

PIETERSE (2006)

PR-12 Rs-AFP3 Rabanete Defensina AHMED, PARK E JUNG et

al. (2012)

PR-13 Quitinase de tabaco

tipo V

Tionina CHANDRASHEKHARA et

al. (2010)

PR-14 LTp4 cevada LTP (Lipid-transfer protein) EGGER et al. (2010)

PR-15 OxOa cevada

(germin)

Oxalato oxidase SUDISHA et al. (2012)

PR-16 OxOLP cevada Oxalato oxidase-like SUDISHA et al. (2012)

PR-17 PRp27 de tabaco Peptidase CHRISTENSEN et al.

(2002)

Page 30: TcPR-10: Mecanismo de transporte e ação em fungos

27

4.1. Proteínas relacionadas a patogênese da família 10 –PR10

Dentre as proteínas PR destacamos a família 10 cujo mecanismo de

ação, apesar dos diversos estudos realizados, ainda necessita ser

aprofundado. Sabe-se que as proteínas PR-10 são expressas em mono e

dicotiledôneas quando infectados por fungos, oomicetos, vírus, bactérias,

nematóides ou pelo ataque de insetos. São também induzidas em resposta a

indutores de defesa como ácido salicílico (SA), ácido jasmônico (JA) e etileno

(ET). Além disso alguns representantes dessa família são constitutivamente

expressos indicando um papel no desenvolvimento geral da planta (VAN

LOON, REP e PIETERSE, 2006; DOORNBOS et al., 2011).

Proteínas PR-10 são codificadas por famílias multigênicas o que explica

seu caráter multifuncional. Esta característica tem sido recentemente atribuída

a um processo chamado promiscuidade protéica em que os genes adquirem

mutações e funções diferentes ao longo do processo evolutivo (TOKURIKI e

TAWFIK, 2009; FRANCO, 2011). Atualmente já foram descritos mais de 100

representantes dentro da família PR-10 em 70 espécies mono e dicotiledôneas

(WEN et al., 1997; COLDITZ, NIEHAUS e KRAJINSKI, 2007).

Genes PR-10 geralmente consistem de dois éxons interrompidos por um

íntron conservado de 76-359 bps e ORF variando entre 465-480 bps

(HANDSCHUH et al., 2007; LEBEL et al., 2010b). Todos os membros desta

família possuem um motivo rico em glicina altamente conservado denominado

de “p loop motif” (GXGGXGXXK; 47–55 aminoácidos) que está diretamente

relacionado com atividade ribonuclease (CHADHA e DAS, 2006; LYTLE et al.,

2009). Essas proteínas PR-10 apresentam sítios de fosforilação que são

característicos de quinases dependente de cAMP (BANTIGNIES et al., 2000).

A atividade RNAse de PR-10 foi primeiramente observada em cultura de

células de calos de Panax ginseng com uma identidade de 60-70% com duas

proteínas relacionadas a patogênese intracelulares (IPR- Intracellular

pathogenesis related) (MOISEYEV et al., 1994). A presença de 3 sítios comuns

de fosforilação nas proteínas PR10s indicam atividade de RNase geral ou

talvez como RNase específica contra RNA exógeno (GRAHAM et al., 2003;

PARK et al., 2004; KIM et al., 2008).

Page 31: TcPR-10: Mecanismo de transporte e ação em fungos

28

Trabalhos recentes identificaram atividade DNAse das proteínas PR10

em arroz (KIM et al., 2011) e uva (HE et al., 2012) sugerindo uma ação de

nuclease no processo de morte celular programada.

Além das descritas acima, as proteínas PR-10 proteínas possuem outras

funções conhecidas, que não se aplicam a todos os membros do grupo, como

atuação na biossíntese de metabolitos secundários, atividade antimicrobiana,

ligação a membranas como fitohormônios e ligantes hidrofóbicos, estoque,

transporte, dentre outros (FERNANDES et al.,2013).

5. Ferramentas proteômicas na interação planta X patógeno

A análise proteômica envolve a avaliação em larga escala de proteínas

incluindo suas interações, localizações, funções e possíveis modificações. O

desenvolvimento das técnicas de espectrometria de massas possibilitou a

identificação e caracterização de proteínas e seu constante aperfeiçoamento

permite uma maior qualidade dos resultados obtidos principalmente quanto a

resolução, sensibilidade e rendimento (COIRAS et al., 2008).

A utilização da técnica de gel bidimensional (2DE), com inúmeras

proteínas diferencialmente expressas sendo identificadas, tem sido feita com

sucesso em estudos envolvendo a resposta de fungos a drogas. Apesar do

desenvolvimento de técnicas de maior rendimento, diversos estudos baseados

em géis bidimensionais continuam bastante responsivos.

Diversos estudos têm sido realizados buscando identificar proteínas

diferencialmente expressas em micro-organismos relacionadas a etapas do

desenvolvimento, resposta a drogas, proteínas de parede celular, dentre

outras. Groot et al. (2004) analisaram proteínas ligadas a parede celular de

Candida albicans e, utilizando espectrometria de massas, identificaram 14 que

foram divididas em cinco catergorias funcionais: 5 enzimas relacionadas a

carboidratos, 2 proteinas de adesão, 2 semelhantes a superóxido dismutase

que parecem estar envolvida na neutralização de reposta de defesa do

hospedeiro; e as 5 restantes com função desconhecida. Singh et al. (2012)

avaliando a resposta de defesa de Aspergillus fumigatus quando tratado com

Page 32: TcPR-10: Mecanismo de transporte e ação em fungos

29

coumarina, um potente antifúngico, identificaram 143 proteínas

diferencialmente expressas, sendo 13 super-expressas e 96 reprimidas. As

proteínas encontradas estavam envolvidas no controle da divisão celular,

ubiquitinação, ATP sintase vacuolar do tipo A, dentre outras.

Mares (2012) avaliou as proteínas expressas em M. perniciosa durante a

germinação dos esporos nos períodos de 0, 2 e 4 horas através de 2D-PAGE

combinada à Espectrometria de Massa (ms/ms), e observou 514, 434 e 508

spots, respectivamente, nos períodos aval iados. Foram identif icadas

168 proteínas das quais, no período de 4h, foram relacionadas ao metabolismo

energético essencial ao processo de diferenciação hifal. Nos períodos de 2 e 4

horas foram expressas principalmente proteínas associadas a síntese proteica

(MARES, 2012). Lopes et al., (2008) caracterizaram rotas metabólicas

exclusivas do fungo no momento da interação como a rota da quitina. Alvim et

al. (2009) analisaram proteínas secretadas relacionadas com a morfologia da

hifa.

A identificação de proteínas do fungo expressas em resposta a drogas,

como TcPR-10, podem fornecer informações importantes sobre o papel que

desempenham no processo de resposta de defesa do fungo.

6. Saccharomyces cerevisiae: Transporte ABC, formação de vacúolos

e autofagia

Saccharomyces cerevisiae foi o primeiro organismo eucariótico

completamente sequenciado, anotado, e disponibilizado ao público.

(GOFFEAU et al., 1997). Além de sua importância industrial, S. cerevisiae

serve como um organismo modelo para a compreensão da função de células

eucarióticas. Seus genes, distribuídos em 16 cromossomos, apresentam

grande homologia com genes eucariotos sendo, inclusive, capazes de

complementar sua função (BOTSTEIN, CHERVITZ e CHERRY, 1997;

FRIEDBERG, 2006). Dentre os genes de S. cerevisiae destacamos aqueles de

Page 33: TcPR-10: Mecanismo de transporte e ação em fungos

30

interesse nesse esudo: transporte do tipo ABC, autofagia e formação de

vacúolos.

Transportadores de membrana do tipo ABC

O transportadores do tipo ABC são uma superfamília de proteínas que

inclui membros importadores e exportadores. Estas proteínas convertem a

energia obtida pela hidrólise de ATP em um movimento trans-bicamada

levando ao transporte de substratos para dentro do citoplasma (Importação) ou

para fora (Exportação). Os importadores foram encontrados apenas em

procariotos, até o momento, enquanto as proteínas exportadoras são

expressas em todos os reinos (GOTTESMAN e AMBUDKAR, 2001).

Transportadores ABC estão envolvidos em vários processos celulares

como manutenção da homeostase osmótica, processos anti-envelhecimento,

divisão celular, resistência a drogas, patogênese e esporulação, tráfico de

colesterol e lipídeos dentre outros (GEORGE e JONES, 2012). Além destes

existem os transportadores envolvidos com o efluxo de substâncias nocivas a

célula realizando um processo de detoxificação celular através de diferentes

proteínas cuja superexpressão indica a resistência a drogas. Pohl et al. (2012)

analisaram uma população de carrapatos Rhipicephalus (Boophilus) microplus

(Jaguar) resistente a quatro classes de acaricidas. Foi identificado um

mecanismo de desintoxicação baseado em transportadores ABC sugerindo que

estas proteínas atuam na proteção contra vários tipos de acaricidas e

apresentam um importante papel para o desenvolvimento de futuros fármacos.

A levedura S. cerevisiae contém mais de 30 genes do tipo ABC

(DECOTTIGNIES e GOFFEAU, 1997; BAUER; WOLFGER; KUCHLER, 1999)

dentre os quais destacam-se os genes da subfamília PDR (Resistência

Pleiotrópica a Drogas) que codificam para uma complexa rede de reguladores

de transcrição que controlam a expressão de algumas bombas de efluxo de

drogas (WOLFGER; MAMNUN; KUCHLER, 2001). A deleção de

transportadores de membrana nas linhagens mutantes de S. cerevisiae é uma

importante ferramenta para identificação de vias de eliminação de substancias

como, por exemplo, compostos antifúngicos e antibióticos.

Page 34: TcPR-10: Mecanismo de transporte e ação em fungos

31

Tabela 2. Descrição de bombas de efluxo de drogas da família ABC encontradas em

Saccharomyces cerevisiae (Adaptado de PAUMI et al., 2009)

Transportador ORF Localização Descrição

PDR5 YOR153w Membrana plasmática

Transporte múltiplo de drogas

envolvidas na resistência a

compostos xenobióticos;

transporte de cálcio e esteróis

PDR15 YDR406w Membrana plasmática

Transporte de múltiplas drogas

envolvido na resposta geral ao

estresse para detoxificação

celular

PDR10 YOR328w Membrana plasmática

Transporte de múltiplas drogas

envolvido na rede de resistência

de drogas pleiotrópicas

SNQ2 YDR011w Membrana plasmática Transporte de múltiplas drogas

envolvido na resistência a ROS

PDR18 YNR070w Membrana plasmática

Provável transporte que implica

na resistência de drogas

pleiotrópicas

PDR12 YPL058c Membrana plasmática

Transporte de múltiplas drogas

envolvido na resistência a ácidos

organicos.

PDR11 YIL013c Membrana plasmática

Transporte de múltiplas drogas

envolvido na rede de resistência

a drogas e absorção de esteróis

AUS1 YOR011w Membrana plasmática Envolvido com a absorção de

esteróis

YOL075c YOL075c Membrana plasmática Desconhecido

ADP1 YCR011c Membrana plasmática Desconhecido

Page 35: TcPR-10: Mecanismo de transporte e ação em fungos

32

Autofagia

A autofagia (ATG) refere-se a um sistema intracelular de degradação

celular que envolve a entrega de compostos celulares para o

lisossomo/vacúolo. As subunidades geradas após degradação são então

reaproveitadas pela célula, estabelecendo assim uma via de retroalimentação

que permite a manutenção da homeostase (YORIMITSU et al., 2007; WANG;

KLIONSKY, 2011).

Foram identificados três tipos de autofagia: Mediada por chaperonas,

microautofagia e macroautofagia, que diferem entre si quanto a suas funções

fisiológicas e o modo de entrega. Na autofagia mediada por chaperonas,

proteínas malformadas são marcadas por chaperonas, como hsp70, e enviadas

diretamente para o lisossomo; A microautofagia consiste na degradação de

componentes celulares que são diretamente encaminhados ao lisossomo e

então internalizados por invaginação ou protrusão da membrana do lisossomo.

Finalmente, a macroautofagia é caracterizada pelo isolamento do material a ser

degradado em uma estrutura dupla membrana denominada autofagossomo,

também chamado vacúolo autofágico, que se fusiona ao lisossomo, formando o

autolisossomo (Figura 4) (BAEHRECKE, 2005).

O processo autofágico engloba a atuação de 36 proteínas descritas até

o momento, que interagem nas diferentes etapas da rota autofágica. Estudos

de fracionamento celular demonstraram que ATG8 é a principal proteína do

processo de autofagia por estar envolvida no transporte de lipídeos até a

membrana em expansão e estar ligada ao processo de fechamento da

membrana. Mutantes para o gene .ATG8 são incapazes de gerar autofagia

(KIRISAKO et al., 1999). Desta forma a utilização da proteína ATG8 é uma

alternativa para o estudo da dinâmica de membrana durante autofagia.

Pereira (2012) utilizou S. cerevisiae para caracterização da proteína Atg8 para

observar a resistência em diferentes concentrações de tunicamicina (0, 0,2, 0,4

e 0,8 ug / mL) e ditiotreitol (0, 2, 4 e 6 mM / mL) em duas fontes de carbono

(glucose e glicerol), e determinar o perfil de crescimento dos isolados quando

cultivados em glucose e glicerol, a produção da espécies reativas a oxigênio

(ROS) e formação do autofagossomo. Foram testadas quatro linhagens

isogênicas de S. cerevisiae: (A) selvagem (Atg8), (B) selvagem contendo uma

Page 36: TcPR-10: Mecanismo de transporte e ação em fungos

33

cópia do gene ATG8 de M. perniciosa, (C) mutante atg8Δ (gene Atg8 de S.

cerevisiae ausente) contendo uma cópia do gene de ATG8 de M. perniciosa e

(D) atg8Δ mutante. Os resultados obtidos apresentaram diferença fenotípica

entre DXA, DxB e CXD, bem como similaridade de C entre A e B, indicando

uma expressão heteróloga possível da proteína MpAtg8 (Proteína Atg8 de M.

perniciosa).

Figura 4. Representação esquemática das etapas relacionadas as rotas

autofágicas. Macroautofagia (01) Início da formação da membrana de

isolamento (IM). (02) IM totalmente formada originando o autofagossomo que

contém os compostos a serem degradados, (03) formação do autofagolisossomo

através da fusão entre o autofagossomo e o lisossomo, (04) digestão dos

componentes citoplasmáticos via hidrolases lisossomais, (5) Autofagia mediado

por chaperones, (6) microautofagia. (Adaptado de He e Klionsky, 2009).

Page 37: TcPR-10: Mecanismo de transporte e ação em fungos

34

Os genes envolvidos no processo de autofagia estão presentes em

micro-organismos, plantas e animais, e alguns genes autofágicos (ATGs)

conhecidos são bastante conservados nestes grupos. Estes genes atuam na

regulação das vias autofágicas dentre os quais destaca-se o ATG8 (KIEL,

2010).

Poucos estudos têm sido realizados visando observar autofagia em

fungos filamentosos, como M. perniciosa. Pungartnik et al., (2009)

demonstraram que ocorre uma indução transitória do gene MpATG8 em

resposta a estresse oxidativo, assim como foi observado uma variação da

indução de acordo a fonte de carbono utilizada para crescimento, sendo que,

durante as diferentes fases do ciclo de M. perniciosa houve uma expressão

continua da proteína Atg8.

Em S. cerevisiae a proteína Atg8 apresenta 117 aminoácidos que atuam

no início da formação e expansão da IM. Para que ocorra a expansão da PAS

e consequentemente formação da IM e do autofagossomo, lipídeos devem ser

incorporados a estrutura em formação. Para essa adição ser realizada, faz-se

necessário o transporte dos lipídeos até o local de fixação, e este transporte é

efetuado via Atg8p (KIRISAKO et al., 1999; 2000; XIE et al., 2008). Sendo que

o tamanho do autofagossomo formado será proporcional a quantidade de

Atg8p (XIE et al., 2008). Além de estar envolvido no transporte de lipídeos até a

membrana em expansão, estudos de fracionamento celular também

demonstraram que Atg8p é a principal proteína do processo de fechamento da

membrana (KIRISAKO et al., 2000). Em conjunto, estas características tornam

Atg8p uma ferramenta chave para analisar a dinâmica da membrana durante o

processo autofágico.

Sistema vacuolar

O vacúolo é um compartimento acídico importante para células fúngicas

por estar diretamente envolvida com a fisiologia desses organismos. Entre as

muitas funções desta organela estão a manutenção do pH e osmorregulação, a

degradação de proteínas, esporulação, reciclagem de proteínas

armazenamento de aminoácidos, transporte de íons, dentre outros. O vacúolo

Page 38: TcPR-10: Mecanismo de transporte e ação em fungos

35

atua na hidrólise como no lisossomo de mamíferos, e na homeostase,

armazenamento e osmoregulação semelhante ao que ocorre nas plantas

(KLIONSKY, HERMAN e EMR, 1990; TETER e KLIONSKY, 2000).

A biogênese do vacúolo envolve diferentes vias incluindo (i) a triagem

das proteínas vacuolares à distância do local de entrega (ii) a endocitose de

material a partir da membrana plasmática, (iii) segmentação do citoplasma

evitando estágios iniciais da via secretora, e (iv) a herança de material de

vacuolar por células filhas durante a divisão celular (Figura 5).

Defeitos nos vacúolos causados pela exposição a drogas levam a

acidificação e incapacidade desta organela em executar suas funções como

por exemplo incapacitando o organismo de responder ao stress osmótico e

incapacidade de degradar e reciclar componentes celulares danificados

podendo, desta forma, causar sensibilidade aumentada a drogas

(MARKOVICH et al., 2004).

Figura 5. Transporte de proteínas para o vacúolo em leveduras. 1. (a)

Complexo de Golgi através de um compartimento pré-vacuolar (PVC) e

(b) através de um percurso alternativo; 2. endocitose de proteínas da

superfície celular; 3. via biossintética vacuolar; 4. autofagia; 5. Fusão

celular (BRYAN e STEVENS, 1998)

Page 39: TcPR-10: Mecanismo de transporte e ação em fungos

36

III. REFERENCIAS BIBLIOGRAFICAS

AHMED, N. U., et al. Identification and characterization of stress resistance related genes of Brassicarapa.

Biotechnology letters, p.1-9. 2012.

AIME, M. C.; PHILLIPS-MORA, W. The causal agents of witches' broom and frosty pod rot of cacao

(chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia, v.97, n.5, Sep-Oct, p.1012-22.

2005.

ALLEGRE, M. et al. Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism

and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA

research, v.19, n.1, p.23-35. 2012.

ALMEIDA, A. A. F.; VALLE, R. R. Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology,

v.19, n.4, p.425-448. 2007.

ALVERSON, W. S. et al. Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot, v.86,

n.10, p.1474-86. 1999.

ALVIM, F. et al. Carbon source-induced changes in the physiology of the cacao pathogen Moniliophthora

perniciosa (Basidiomycetes) affect mycelial morphology and secretion of necrosis-inducing proteins. Genetics

and Molecular Research, v.8, n.3, p.1035-1050. 2009.

ARGOUT, X. et al. The genome of Theobroma cacao. Nat Genet, v.43, n.2, Feb, p.101-8. 2011.

BAEHRECKE, E. H. Autophagy: dual roles in life and death? Nature Reviews Molecular Cell Biology, v.6,

n.6, p.505-510. 2005.

BALASUBRAMANIAN, V. et al. Plant β-1, 3-glucanases: their biological functions and transgenic expression

against phytopathogenic fungi. Biotechnology Letters, p.1-8. 2012.

BANTIGNIES, B. et al. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin

roots. Plant molecular biology, v.42, n.6, p.871-881. 2000.

BAUER, B. E.; WOLFGER, H.; KUCHLER, K. Inventory and function of yeast ABC proteins: about sex,

stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta, v.1461, n.2, Dec 6, p.217-36. 1999.

BLACKMAN, L. M. et al. Identification of a mastigoneme protein from Phytophthora nicotianae. Protist,

v.162, n.1, Jan, p.100-14. 2011.

BOTSTEIN, D.; CHERVITZ, S. A.; CHERRY, M. Yeast as a model organism. Science, v.277, n.5330, p.1259-

1260. 1997.

BOWLES, D. J. Defense-related proteins in higher plants. Annual Review ofBiochemistry, v.59, n.1, p.873-

907. 1990.

CEITA, G. D. O. et al. Involvement of calcium oxalate degradation during programmed cell death in

Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Science,

v.173, n.2, p.106-117. 2007.

CHADHA, P.; DAS, R. H. A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of

antifungal activity. Planta, v.225, n.1, p.213-22. 2006.

CHANDRASHEKHARA et al. Thionins (PR protein-13) mediate pearl millet downy mildew disease

resistance. Archives of Phytopathology and Plant Protection, v.43, n.14, p.1356-1366. 2010.

CHEESMAN, E. Notes on the nomenclature, classification and possible relationships of cacao populations:

IPC Science and Technology Press. 1944

Page 40: TcPR-10: Mecanismo de transporte e ação em fungos

37

CHISHOLM, S. T. et al. Host-microbe interactions: shaping the evolution of the plant immune response. Cell,

v.124, n.4, p.803-814. 2006.

CHIVASA, S. et al. Proteomic analysis of differentially expressed proteins in fungal elicitor-treated

Arabidopsis cell cultures. Journal of experimental botany, v.57, n.7, p.1553-1562. 2006.

CHRISTENSEN, A. B. et al. The molecular characterization of two barley proteins establishes the novel PR‐17

family of pathogenesis‐related proteins. Molecular plant pathology, v.3, n.3, p.135-144. 2002.

COE, S. D.; COE, M. D.; HUXTABLE, R. J. The true history of chocolate: Thames and Hudson London. 1996

COIRAS, M. et al. Application of proteomics technology for analyzing the interactions between host cells and

intracellular infectious agents. Proteomics, v.8, n.4, p.852-873. 2008.

COLDITZ, F.; NIEHAUS, K.; KRAJINSKI, F. Silencing of PR-10-like proteins in Medicago truncatula results

in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the

oomycete Aphanomyces euteiches. Planta, v.226, n.1, p.57-71. 2007.

COSTA, J. et al. Production of basidiomata of Crinipellis perniciosa on different inoculum sources in the

Amazon region, Brazil. Fitopatologia Brasileira, v.22. 1997.

DECOTTIGNIES, A.; GOFFEAU, A. Complete inventory of the yeast ABC proteins. Nat Genet, v.15, n.2,

p.137-45. 1997.

DIAS, C. V. et al. Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus

Moniliophthora perniciosa. Plant Physiology and Biochemistry, v.49, n.8, p.917-922. 2011.

DOORNBOS, R. F. et al. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere

bacterial community of Arabidopsis thaliana. Molecular Plant-Microbe Interactions, v.24, n.4, p.395-407.

2011.

DURRANT, W.; DONG, X. Systemic acquired resistance. Annu. Rev. Phytopathol., v.42, p.185-209. 2004.

EBANKS, R. O. et al. Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated

proteins. Proteomics, v.6, n.7, p.2147-2156. 2006.

EBRAHIM, S.; SINGH, K. Pathogenesis related (PR) proteins in plant defense mechanism. Science against

microbial pathogens: communicating current research and technological advances. Extremadura: Formatex

Research Center, v.1, p.1043-1054. 2011.

EGGER, M. et al. The role of lipid transfer proteins in allergic diseases. Current allergy and asthma reports,

v.10, n.5, p.326-335. 2010.

EVANS, H. Pleomorphism in Crinipellis perniciosa, causal agent of witches' broom disease of cocoa.

Transactions of the British Mycological Society, v.74, n.3, p.515-523. 1980.

FERNANDES, H. et al. Structural and functional aspects of PR‐10 proteins. FEBS Journal. 2013.

FIGUEIRA, A.; JANICK, J.; GOLDSBROUGH, P. Genome size and DNA polymorphism in Theobroma

cacao. Journal of the American Society for Horticultural Science, v.117, n.4, p.673-677. 1992.

FILHO, D. F. et al. Broken hyphae of the basidiomycete Crinipellis perniciosa allow quantitative assay of

toxicity. Curr Microbiol, v.52, n.5, p.407-12. 2006.

FILHO, A. C. V. Ceplac dá início a projeto de pesquisa para o controle da vassoura de bruxa com a

participação da UESC, Unicamp, USP e Cenargen/Embrapa. REVISTA DIFUSÃO AGROPECUÁRIAPÁG.

22. Disponível em:http://www.ceplac.gov.br/paginas/revistadifusao/REVISTA_DIFUSAO_Vol_3.pd f.

acessado em: 03 de outubro de 2012

FRANCO, O. L. Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett, v.585, n.7, p.995-

1000. 2011.

Page 41: TcPR-10: Mecanismo de transporte e ação em fungos

38

FRIANT, S. et al. Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. The EMBO

journal, v.20, n.23, p.6783-6792. 2001.

FRIAS, G.; PURDY, L.; SCHMIDT, R. Infection biology of Crinipellis perniciosa on vegetative flushes of

cacao. Plant disease, v.75, n.6, p.552-556. 1991.

FRIEDBERG, I. Automated protein function prediction—the genomic challenge. Briefings in bioinformatics,

v.7, n.3, p.225-242. 2006.

GASSMANN, W.; BHATTACHARJEE, S. Effector-Triggered Immunity Signaling: From Gene-for-Gene

Pathways to Protein-Protein Interaction Networks. Molecular Plant-Microbe Interactions, v.25, n.7, p.862-868.

2012.

GEORGE, A. M.; JONES, P. M. Perspectives on the structure-function of ABC transporters: The switch and

constant contact models. Progress in Biophysics and Molecular Biology, v.109, n.3, p. 95-107. 2012.

GEORGE, A. M.; JONES, P. M. Perspectives on the structure-function of ABC transporters: the Switch and

Constant Contact models. Prog Biophys Mol Biol, v.109, n.3, p.95-107. 2012.

GESTEIRA, A. S. et al. Comparative analysis of expressed genes from cacao meristems infected by

Moniliophthora perniciosa. Ann Bot, v.100, n.1, p.129-40. 2007.

GOFFEAU, A. et al. The yeast genome directory. Nature, v.387, n.6632, p.5-6. 1997.

GOTTESMAN, M. M.; AMBUDKAR, S. V. Overview: ABC transporters and human disease. Journal of

bioenergetics and biomembranes, v.33, n.6, p.453-458. 2001.

GOZZO, F. Systemic acquired resistance in crop protection: from nature to a chemical approach. Journal of

Agricultural and Food Chemistry, v.51, n.16, p.4487-4503. 2003.

GRAHAM, M. et al. Induced expression of pathogenesis-related protein genes in soybean by wounding and the

Phytophthora sojae cell wall glucan elicitor. Physiological and molecular plant pathology, v.63, n.3, p.141-149.

2003.

GROOT, P. W. J. et al. Proteomic analysis of Candida albicans cell walls reveals covalently bound

carbohydrate-active enzymes and adhesins. Eukaryotic Cell, v.3, n.4, p.955-965. 2004.

HANDSCHUH, L. et al. Structural and functional characteristics of two novel members of pathogensis-related

multigene family of class 10 from yellow lupine+. Acta Biochim Pol, v.54, n.4, p.783-96. 2007.

HARA, M. R. et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following

Siah1 binding. Nat Cell Biol, v.7, n.7, p.665-74. 2005.

HE, M. et al. Subcellular localization and functional analyses of a PR10 protein gene from Vitis

pseudoreticulata in response to Plasmopara viticola infection. Protoplasma, v. 250, n.1, p.129-140. 2012.

KIM, S. G. et al. The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death

in plants. Mol Cells, v.31, n.1, p.25-31. 2011.

KIM, S. T. et al. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and

exhibits ribonuclease activity. Plant cell reports, v.27, n.3, p.593-603. 2008.

KIRISAKO, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. The Journal of

cell biology, v.147, n.2, p.435-446. 1999.

KLIONSKY, D. J.; HERMAN, P. K.; EMR, S. D. The fungal vacuole: composition, function, and biogenesis.

Microbiol Rev, v.54, n.3, p.266-92. 1990.

KNIGHT, C. Cocoa review: supply and demand trends. American Cocoa Research Institute. 2000.

Page 42: TcPR-10: Mecanismo de transporte e ação em fungos

39

LALUK, K.; MENGISTE, T. The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR

functions in resistance to necrotrophic fungi and insect herbivory. The Plant Journal, v.68, n.3, p.480-494.

2011.

LANAUD, C.; HAMON, P.; DUPERRAY, C. Estimation of nuclear DNA content of Theobroma cacao L. by

flow cytometry.. Café, cacao, thé, v.36, n.1, p.3-8. 1992.

LEBEL, S. et al. Characterisation of the Vitis vinifera PR10 multigene family. BMC plant biology, v.10, n.1,

p.184. 2010a.

______. Characterisation of the Vitis vinifera PR10 multigene family. BMC Plant Biol, v.10, p.184. 2010b.

LEE, I. et al. Genetic dissection of the biotic stress response using a genome-scale gene network for rice.

Proceedings of the National Academy of Sciences, v.108, n.45, p.18548-18553. 2011.

LEGRAND, M. et al. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related

proteins are chitinases. Proceedings of the National Academy of Sciences, v.84, n.19, p.6750-6754. 1987.

LIU, J. J.; EKRAMODDOULLAH, A. K. M. The family 10 of plant pathogenesis-related proteins: Their

structure, regulation, and function in response to biotic and abiotic stresses. Physiological and molecular plant

pathology, v.68, n.1, p.3-13. 2006.

LOPES, M. A. et al. Use of response surface methodology to examine chitinase regulation in the basidiomycete

Moniliophthora perniciosa. Mycological research, v.112, n.3, p.399-406. 2008.

LOUIS, B.; ROY, P. Engineered pathogenesis related and antimicrobial proteins weaponry against Phytopthora

infestans in potato plant: A review. Biotechnology and Molecular Biology Reviews, v.5, n.4, p.61-66. 2010.

LU, H. C. et al. Cloning and expression of Pathogenesis-related protein 4 from jelly Fig (Ficus awkeotsang

Makino) achenes associated with ribonuclease, chitinase and antifungal activities. Plant Physiology and

Biochemistry. 2012.

LYTLE, B. L. et al. Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip

folds. Proteins, v.76, n.1, p.237-43. 2009.

MARES, J.H. Análise proteômica de basidiósporos do fungo Moniliophthora perniciosa durante a

germinação. Universidade Estadual de Santa Cruz. Programa de pós-graduação em Biotecnologia de Micro-

organismos. Dissertação de mestrado. 2012.

MARITA, J. et al. Analysis of Genetic Diversity in with Emphasis on Witches' Broom Disease Resistance.

Crop Science, v.41, n.4, p.1305-1316. 2001.

MARKOVIC-HOUSLEY, Z. et al. Crystal structure of a hypoallergenic isoform of the major birch pollen

allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol, v.325, n.1, p.123-33.

2003.

MARKOVICH, S. et al. Genomic approach to identification of mutations affecting caspofungin susceptibility

in Saccharomyces cerevisiae. Antimicrobial agents and chemotherapy, v.48, n.10, p.3871-3876. 2004.

MEINHARDT, L. W. et al. Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao:

what's new from this old foe? Mol Plant Pathol, v.9, n.5, p.577-88. 2008.

MENEZES, S. P. et al. Evaluation of the allergenicity potential of TcPR-10 protein from Theobroma cacao.

PLoS One, v.7, n.6, p.e37969. 2012.

MITSUHARA, I. et al. Characteristic expression of twelve rice PR1 family genes in response to pathogen

infection, wounding, and defense-related signal compounds (121/180). Molecular Genetics and Genomics,

v.279, n.4, p.415-427. 2008.

Page 43: TcPR-10: Mecanismo de transporte e ação em fungos

40

MOISEYEV, G. P. et al. High sequence similarity between a ribonuclease from ginseng calluses and fungus-

elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta,

v.193, n.3, p.470-472. 1994.

MOTAMAYOR, J. et al. Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity,

v.89, n.5, p.380-386. 2002.

MOTAMAYOR, J. C. et al. Geographic and genetic population differentiation of the Amazonian chocolate tree

(Theobroma cacao L). PLoS One, v.3, n.10, p.3311. 2008.

MUR, L. A. J. et al. The hypersensitive response; the centenary is upon us but how much do we know? Journal

of experimental Botany, v.59, n.3, p.501-520. 2008.

MYSORE, K. S. Nonhost Resistance Against Bacterial Pathogens. Annual Review of Phytopathology, v.51,

n.1. 2013.

NIKI, T. et al. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related

(PR) protein genes in wounded mature tobacco leaves. Plant and Cell Physiology, v.39, n.5, p.500-507. 1998.

PARK, C. J. et al. Pathogenesis‐related protein 10 isolated from hot pepper functions as a ribonuclease in an

antiviral pathway. The Plant Journal, v.37, n.2, p.186-198. 2004.

PENMAN, D. et al. Chitin as a measure of biomass of Crinipellis perniciosa, causal agent of witches' broom

disease of Theobroma cacao. Mycological Research, v.104, n.6, p.671-675. 2000.

PEREIRA, A.C.F. Ccaracterização do processo autofágico do fitopatógeno do cacaueiro m. Perniciosa e

comparação com o mecanismo de sobrevivência em levedura S. cerevisiae. Universidade Estadual de Santa

Cruz. Programa de pós-graduação em Biotecnologia de Micro-organismos. Dissertação de mestrado. 2012.

PIRES, J. et al. Cocoa breeding for witches’ broom resistance at CEPEC, Bahia, Brazil. International

Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement, Salvador, Brazil, 1999.

91-101 p.

POZUELO-RUBIO, M. 14-3-3 Proteins are Regulators of Autophagy. Cells, v.1, n.4, p.754-773. 2012.

PUNGARTNIK, C. et al. High-affinity copper transport and Snq2 export permease of saccharomyces

cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao. Molecular plant-microbe interactions, v.22,

n.1, p.39-51. 2009.

PURDY, L. H.; SCHMIDT, R. A. STATUS OF CACAO WITCHES' BROOM: biology, epidemiology, and

management. Annu Rev Phytopathol, v.34, p.573-94. 1996.

RYALS, J. A. et al. Systemic acquired resistance. The plant cell, v.8, n.10, p.1809. 1996.

SAMBUICHI, R. H. R. et al. Cabruca agroforests in southern Bahia, Brazil: tree component, management

practices and tree species conservation. Biodiversity and Conservation, p.1-23. 2012.

SCARPARI, L. et al. Biochemical changes during the development of witches' broom: the most important

disease of cocoa in Brazil caused by Crinipellis perniciosa. Journal of Experimental Botany, v.56, n.413, p.865-

877. 2005.

SCHEEL, D. Resistance response physiology and signal transduction. Current opinion in plant biology, v.1,

n.4, p.305-310. 1998.

SELITRENNIKOFF, C. P. Antifungal proteins. Applied and environmental microbiology, v.67, n.7, p.2883-

2894. 2001.

SILVA, C. et al. Diversidade no gênero Theobroma. Melhoramento genético do cacaueiro. 2001.

SINGH, S. et al. Proteomic Characterization of Aspergillus fumigatus Treated with an Antifungal Coumarin for

Identification of Novel Target Molecules of Key Pathways. J Proteome Res, May 14. 2012.

Page 44: TcPR-10: Mecanismo de transporte e ação em fungos

41

SOUZA, C.; DIAS, L.; DIAS, L. Melhoramento ambiental e sócio-economia. Melhoramento genético do

cacaueiro. Viçosa, FUNAPE, UFG, p.1-47. 2001.

SUDISHA, J. et al. Pathogenesis Related Proteins in Plant Defense Response. Plant Defence: Biological

Control, p.379-403. 2012.

TETER, S. A.; KLIONSKY, D. J. Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole

targeting, and role of the vacuole in degradation. Seminars in cell & developmental biology: Elsevier, 2000.

173-179 p.

TIAN, M. et al. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the

tomato pathogenesis-related protease P69B. Journal of Biological Chemistry, v.279, n.25, p.26370-26377.

2004.

TOKURIKI, N.; TAWFIK, D. S. Stability effects of mutations and protein evolvability. Curr Opin Struct Biol,

v.19, n.5, Oct, p.596-604. 2009.

TORRES, M. A.; JONES, J. D. G.; DANGL, J. L. Reactive oxygen species signaling in response to pathogens.

Plant physiology, v.141, n.2, p.373-378. 2006.

VAN LOON, L.; REP, M.; PIETERSE, C. Significance of inducible defense-related proteins in infected plants.

Annu. Rev. Phytopathol., v.44, p.135-162. 2006.

VAN LOON, L.; VAN KAMMEN, A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from<

i> Nicotiana tabacum</i> var.‘Samsun’and ‘Samsun NN’: II. Changes in protein constitution after infection

with tobacco mosaic virus. Virology, v.40, n.2, p.199-211. 1970.

VAN LOON, L.; VAN STRIEN, E. The families of pathogenesis-related proteins, their activities, and

comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, v.55, p.85-97. 1999.

WANG, K.; KLIONSKY, D. J. Mitochondria removal by autophagy. Autophagy, v.7, n.3, p.297-300. 2011.

WEN, J. et al. The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in

flowering plants. Mol Phylogenet Evol, v.8, n.3, Dec, p.317-33. 1997.

WOLFGER, H.; MAMNUN, Y. M.; KUCHLER, K. Fungal ABC proteins: pleiotropic drug resistance, stress

response and cellular detoxification. Research in Microbiology, v.152, n.3, p.375-389. 2001.

YORIMITSU, T. et al. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in

Saccharomyces cerevisiae. Molecular Biology of the Cell, v.18, n.10, p.4180-4189. 2007.

ZHANG, Y. et al. The role of autophagy in mitochondria maintenance: characterization of mitochondrial

functions in autophagy-deficient S. cerevisiae strains. Autophagy, v.3, n.4, p.337-46. 2007.

Page 45: TcPR-10: Mecanismo de transporte e ação em fungos

42

IV. Capítulo 1

Identification of differentially expressed proteins in the pathogen Moniliophthora

perniciosa after contact with the antifungal protein TcPR-10

SILVA, F.A.C.1; PIROVANI, C.P.

1, MENEZES, S.

1; PUNGARTNIK, C.

2; SANTIAGO,

A.S. 3; MICHELI, F.

4; GESTEIRA, A.S

5.

1 Laboratório de Biologia Molecular,

2 Laboratório de Biologia de Fungos, Centro de

Biotecnologia e Genética. Universidade Estadual de Santa Cruz. Rod. Ilhéus Itabuna, km

16, Salobrinho, Ilhéus, Bahia, Brasil CEP 45662-900

3 Departamento de Bioquímica, Universidade Federal de São Paulo- Escola Paulista de

Medicina. Rua Sena Madureira, 1500, 5º andar, CEP 04021-001, São Paulo, Brasil

4 CIRAD, UMR AGAP, F-34398 Montpellier, France

5 Embrapa Mandioca e Fruticultura, Departamento de Biologia Molecular, Rua Embrapa,

s/nº, CEP44380-000; Cruz das Almas, Bahia, Brasil

Submtido ao periódico Molecular Biology Reports (Fator de Impacto: 2.92)

Corresponding author: Abelmon da Silva Gesteira. Embrapa Mandioca e

Fruticultura, Rua Embrapa, s/nº, 44380-000, telefone/fax; Cruz das Almas, Bahia,

Brasil. E-mail: [email protected].

Page 46: TcPR-10: Mecanismo de transporte e ação em fungos

43

ABSTRACT

The TcPR-10 protein, which is related to the pathogenesis of family 10, was discovered

from a library of interactions between Theobroma cacao and Moniliophthora perniciosa.

TcPR-10 has been shown to have antifungal and ribonuclease activities in vitro. This study

aimed to identify differentially expressed proteins in Moniliophthora perniciosa in

response to the antifungal activity of TcPR-10 through proteomic analysis. The fungal

hyphae were subjected to four treatments: a control treatment (without TcPR-10) and 30

min, 60 min or 120 min treatments with TcPR-10 protein. Two-dimensional maps

identified 191 differentially expressed proteins, of which 55 were identified by mass

spectrometry. The identified proteins in all four treatments were divided into the following

classes: cell metabolism, stress response, zinc binding, phosphorylation mechanism,

transport, autophagy, DNA repair, and oxidoreductases. The predominant class was stress

response proteins (29%), such as 14-3-3 and heat shock proteins (HSP), which had the

highest expression levels in the control treatment and are known to trigger defense

mechanisms against drugs, such as TcPR-10. Oxidoreductases (25%) were overexpressed

in the control and 30 min treatments but exhibited reduced expression at 120 min. These

proteins are involved in the repair of damage caused by oxidative stress from contact with

TcPR-10. Given the antifungal activity of TcPR-10, several identified proteins were related

to detoxification or autophagy or were involved in mechanisms for maintaining fungal

homeostasis, such as in ergosterol biosynthesis. The results show that the sensitivity of the

fungus M. perniciosa to TcPR-10 involves several biochemical routes that clarify possible

modes of action for these antifungal proteins.

Keywords

Pathogenesis-10-related protein, differentially expressed proteins; stress response proteins;

oxidoreductases

Page 47: TcPR-10: Mecanismo de transporte e ação em fungos

44

INTRODUCTION

Moniliophthora perniciosa (Basiomicota, Agaricales, Marasmiaceae) is the causal

agent of the disease in the cacao tree (Theobroma cacao L.) called “witches' broom”

(AIME; PHILLIPS-MORA, 2005). This disease is considered the most important cause of

economic loss in South America and the Caribbean, causing great damage to cocoa

plantations and affecting the production of this commodity (KILARU; HASENSTEIN,

2005; SCARPARI et al., 2005).

The life cycle of M. perniciosa is hemibiotrophic and is divided into two phases:

the biotrophic (parasitic) phase, which is characterized by monokaryotic hyphae,

hyperplasia and hypertrophy of plant tissue, loss of apical dominance, axillary shoot

proliferation, and abnormal stems (green broom); and the necrotrophic (saprophytic) phase,

which is characterized by dikaryotic hyphae containing clamp connections and necrosis

and death of infected tissues distant from the primary infection (broom dry). Basidiocarp

production and spore formation in the infected necrotic tissue mycelium occur on the

surface of plant tissue or, more often, inside the plant in direct contact with the plasma of

the host (AIME; PHILLIPS-MORA, 2005; SCARPARI et al., 2005; MEINHARDT, L.W.

et al., 2008).

The great damage caused by witches' broom has motivated several genomic and

proteomic studies aiming to better understand the physiology of this pathogen and its

mechanism of attack on cocoa. Gesteira (GESTEIRA et al., 2007) constructed two cDNA

libraries, each from cocoa cultivars that are resistant and susceptible to M. perniciosa, and

identified the gene related to pathogenicity, TcPR10 (Pathogenesis-related protein 10 of

Theobroma cacao). TcPR-10 is a member of a family of acidic proteins, PR-10, that are

found in some gymnosperms and angiosperms and that are responsive to intracellular

defense processes (ISLAM, M. A. et al., 2009; LEBEL et al., 2010a; XIE, Y.R. et al.,

2010). Members of the PR10 family have a highly conserved, rich glycine motif called the

"p loop motif" (GXGGXGXXK; 47-55 amino acids) that is involved in ribonuclease

activity (CHADHA; DAS, 2006; LYTLE et al., 2009). Another feature of the PR10 family

is the presence of phosphorylation sites that are characteristic of cAMP dependent kinases

(BANTIGNIES et al., 2000). The presence of three common phosphorylation sites in PR-

10 proteins suggests a general role with RNase or an RNase specific effect against

exogenous RNA (GRAHAM et al., 2003; PARK et al., 2004; KIM et al., 2008). Recent

Page 48: TcPR-10: Mecanismo de transporte e ação em fungos

45

work identified DNAse activity in PR-10 proteins in rice (KIM, S. G. et al., 2011) and

grapes (HE et al., 2012), suggesting an action of nuclease in programmed cell death.

Pungartnik (PUNGARTNIK; DA SILVA; et al., 2009a)conducted the first report of

the ribonuclease and antifungal activity of the heterologous protein TcPR-10 against M.

perniciosa and Saccharomyces cerevisiae. This work demonstrated a strong, ribonuclease

action of TcPR-10 against the RNA of M. perniciosa, characterized as a concentration- and

time-dependent response, and the in vitro antifungal activity showed that TcPR-10

inhibited the growth of M. perniciosa.

Several studies have investigated the defense mechanisms triggered by plants in

response to pathogen attacks and analyzed the mechanism by which these pathogens

establish themselves in the host tissue. Research has also examined the survival

mechanisms that pathogenic fungi develop in response to either antimicrobial substances

produced by plants or anthropogenic origins, such as pesticides. The use of proteomic tools

to assess the effects of antifungal agents against a fungus has had great applicability for

providing a comprehensive examination of the changes that occur in the pathogen. Gautam

(GAUTAM et al., 2007) and Cagas (CAGAS et al., 2011) investigated the proteomics of

Aspergillus fumigatus in response to stress generated by coumarin, a known antifungal

drug, and the possible mechanism of action by which the compound produced lethal effects

on the fungus. Hoehamer (HOEHAMER et al., 2010) and Bruneau (BRUNEAU et al.,

2003) observed changes in the proteome of Candida albicans after treatment with azole

antifungals, poliene, echinocandin and two triazoles: fluconazole and itraconazole. In this

study, we investigated the mechanism of the antifungal activity TcPR-10 in M. perniciosa

through proteomic analysis.

Page 49: TcPR-10: Mecanismo de transporte e ação em fungos

46

MATERIAL AND METHODS

1. Obtaining the TcPR-10 protein

The cocoa gene TcPR-10 was isolated from the cDNA library interaction T. cacao x

M. perniciosa. The gene was cloned into the expression vector pET28a, and TcPR-10

recombinant protein was expressed in Escherichia coli BL21 (DE) (PUNGARTNIK; DA

SILVA; et al., 2009a; MENEZES, S.P. et al., 2012). The recombinant protein TcPR-10

was concentrated to a stock solution of 30 mg / ml.

2. M. perniciosa growth conditions

The M. perniciosa fungus (strain 553) was grown in 2% agar medium CPD

(Crinipelis Peptone Dextrose). For each replicate of the experiment, five 1 cm diameter

circles were cut out and added to a test tube containing 5 mL of 2% medium CPD and 1 g

of "glass beads" for mechanical breakdown in a hyphal vortex for 1 min. The solution of

broken hyphae was then transferred to an Erlenmeyer flask containing 20 ml of 2% CPD

that was constantly stirred at 100 rpm at 25 ° C for 7 days. After this period, we disturbed

the hyphae formation using a 5 mL pipette. Hyphae supernatants were transferred to new

Erlenmeyer flasks containing 20 ml of 2% CPD medium and kept under constant stirring at

100 rpm at 25 ° C for 7 more days.

3. Exposure of the fungus M. perniciosa to TcPR-10

Recombinant protein TcPR-10 was added to each flask containing hyphae of the

fungus M. perniciosa in 20 ml of 2% CPD medium to reach a final protein concentration of

3 μg/mL. The fungal hyphae were collected either without contact with the protein TcPR-

10 or after 30 min, 1 h and 2 h of exposure to the antifungal protein, rinsed with ultra-pure

water, autoclaved, dried, frozen with liquid N2 and stored in a freezer at -80 ° C.

4. Protein extraction and quantification

Proteins were extracted following the methods in Pirovani (PIROVANI et al.,

2008). Protein extracts were subjected to a second cleaning method based on Meyer

(MEYER et al., 1988), aiming for the purification of total protein. The proteins were then

Page 50: TcPR-10: Mecanismo de transporte e ação em fungos

47

quantified using the 2D Quant Kit (GE Healthcare) according to the manufacturer's

instructions and using BSA as the standard.

5. 2D gel electrophoresis

Isoelectric focusing (IEF) was performed with 350 mg of protein in a final volume

of 250 µl of rehydration solution (7 M urea, 2 M thiourea, 1% CHAPS, 100 mM DTT,

0.5% IPG buffer (pH 3-10) containing a pinch of bromophenol blue. Samples were applied

to 13 cm IPG "strips" with linear pH gradients from 3 to 10 (Amersham Biosciences,

Immobiline Dry-Strip ™) and subjected to isoelectric focusing with a unit III

EthanIPGphor with the following steps: 1:00 h at 500 V, 1:04 h at 1000 V, 2:30 h at 8000

V, and 0:22 h at 8000 V. The current was limited to 50 μA for each strip, and the

temperature was kept at 20 º C for all steps. The strips were treated with 7 ml of

equilibration buffer (6 M urea, 2% SDS, 30% glycerol, 50 mM Tris-HCl, pH 8.8)

containing 1% DTT (Dithiothreitol) for 15 min with slow agitation, and they were then

transferred to equilibration buffer containing 2.5% iodoacetamide under slow stirring for

another 15 min. Finally, the strips were washed with 1X running buffer (25 mM Tris, 192

mM glycine, 0.1% (w / v) SDS, pH 8.3) for 15 min.

The second dimension was performed with 12.5% polyacrylamide gels at 80 V/200

mA using the Hoefer SE 600 vertical Ruby (GE Healthcare) electrophoresis system. The

gels were fixed in solution containing 40% ethanol and 10% acetic acid for 1 h and then

transferred to 0.1% coomassie brilliant blue G-250.

6. Image analysis and spot detection

Gels were prepared in triplicate and compared two by two. The images of the gels

were acquired using an ImageScanner II (GE Healthcare) scanner and analyzed with the

Image Master 2D Platinum v. 7.0 (GE Healthcare) software to assess the relative change in

area and intensity of spots corresponding to proteins expressed in different treatments.

7. Preparation of spots for MS/MS

The differentially expressed spots were excised from the gel, cut into pieces and

placed in microcentrifuge tubes. The gel fragments were then destained in 200 µL of

Page 51: TcPR-10: Mecanismo de transporte e ação em fungos

48

NH4HCO3 containing 50% acetonitrile, the supernatant was discarded, the gel fragments

were dehydrated in 100 mL of acetonitrile 100 % for 5 min and then vacuum dried at 5301

Concentrator (Eppendorf) for 10 min. In all, 4 µL of Gold trypsin (Promega) was added to

the gel fragments at a final concentration of 25 ng / µL and kept at 4 ° C for 10 min to

absorb residual solution in the gel fragments. NH4HCO3 was later added to cover the

pieces, and the mixture was left at 37 ° C for 16 hours for the trypsin reaction to complete.

The supernatant was collected and transferred to a new tube. The gel fragments

were washed twice with 50 µL of 50% acetonitrile containing 0.1% formic acid and stirred

by vortexing for 15 min in each wash. The volumes obtained were then combined and

concentrated under vacuum to reach a volume of 20 µL.

RESULTS AND DISCUSSION

In the present study, we used mass spectroscopy to elucidate the adaptive responses

of M. perniciosa to the antifungal agent TcPR-10. We identified proteins that changed their

abundances after exposure to this agent. Our work expands on our previous study, which

demonstrated that TcPR-10 exhibited ribonucleic and antifungal activities against M.

perniciosa and S. cerevisiae (PUNGARTNIK; DA SILVA; et al., 2009a; MENEZES, S.P.

et al., 2012).

The analysis of 2-DE gels was performed using the Image Master 2D Platinum

software version 7.0. We utilized four treatments: a control treatment (without TcPR-10)

and 30 min, 60 min and 120 min treatments with TcPr10. The two-dimensional maps

displayed a profile of proteins with molecular weights between 3 and 201 kDa and pH

values between 3 and 10. We observed that the control gel contained 69% of spots with pH

values between 3 and 7 and 31% with pH values between 7 and 10; the 30 min treatment

gel contained 61% of spots with pH values between 3 and 7 and 39% with pH values

between 7 and 10; the 60 min treatment gel contained 62% of spots with pH values

between 3 and 7 and 38% with pH values between 7 and 10; and the 120 min treatment gel

contained 50% of spots with pH values between 3 and 7 and 50% with pH values between

7 and 10 (Figure 1). The differentially expressed proteins were identified from the

following pairwise combinations of these treatments: control x 30 min; control x 60 min;

control x 120 min; 30 min x 60 min; 30 min x 60 min and 60 min x 120 min. The number

Page 52: TcPR-10: Mecanismo de transporte e ação em fungos

49

of protein spots from each treatment, the number of differentially expressed proteins in

each combination and exclusive proteins are listed in Table 1.

The Image Master software identified a total of 191 differentially expressed

proteins between all treatments. There were changes in the expression patterns of proteins,

both under- and overexpressed, and changes in the relative molecular weights and

isoelectric points of proteins. The mass spectrometry analysis identified 55 differentially

expressed proteins. All proteins were differentially expressed in at least three pairwise

comparisons and had an oscillatory expression pattern after 0 h (Control), 30 min, 60 min

and 120 min of exposure to TcPR-10 (Table 2; Figures 1).

In the initial periods of 0 h and 30 min of exposure to TcPR-10, there was an

overexpression of oxidoreductases (Proteins 18, 82, 108, 109, 111, 112, 120, 121, 132 and

148). Oxidoreductases are involved in antioxidant defense, maintenance of intracellular

redox balance and repair of damage caused by oxidative stress. These enzymes have

different mechanisms of action, e.g., oxidases function by electron transfer, hydrogenases

and dehydrogenases function by transfer of hydrogen atoms, oxygenases function by

transfer of oxygen atoms and hydroperoxidases function by degradation of hydrogen

peroxide. Mur (MUR et al., 2004) observed that PR-10 gene expression was influenced by

the presence of reactive oxygen species (ROS) and observed overexpression of AoPR-10-

GUS in transgenic Arabidopsis thaliana when the plants were exposed to salicylic acid, an

important inducer of ROS, or in the presence of virulent bacteria. We note that

oxidoreductases were expressed by fungi to withstand the oxidative damage caused by

TcPR-10, reducing the expression of TcPR-10 at 120 min. These results indicate that a

ROS have a potential negative influence on TcPR-10 expression.

Reactive oxygen species, which are highly potent oxidants, are produced as

products during normal metabolic processes or by an unfavorable environment. Within the

cell, ROS react with macromolecules, including lipids, carbohydrates, DNA and proteins,

to trigger molecular damage, such as DNA mutations, lipid peroxidation, and protein

oxidations, eventually leading to cell death and progressive aging of the organism

(BLACKMAN et al., 2011; HELLER; TUDZYNSKI, 2011). Eukaryotic cells contain

mechanisms to respond to and protect from stress conditions, including neutralization of

the stress, pausing of the cell cycle, alterations in translation, and repair of damage to

apoptotic or necrotic pathways (THOMPSON et al., 2008). The stress caused in cell fungi

Page 53: TcPR-10: Mecanismo de transporte e ação em fungos

50

by drugs, such as TcPR-10, triggers some defense mechanisms against oxidative stress, of

which antioxidants are relevant endpoints.

Malate dehydrogenase (spot 82, 109) is an oxidoreductase that catalyzes the

interconversion of oxaloacetate to malate and participates in the metabolic processing of

carbohydrates, in cellular aging and in the tricarboxylic acid cycle (NICHOLLS and

GOWARD, 1994). Glyceraldehyde-3-phosphate dehydrogenase (spot 18, 102, 108, 111,

112, 121) is a key glycolytic enzyme that exists primarily in the cytoplasm (HARA et al.,

2005), but when in the nucleus, it plays a role in gene transcription, DNA replication, DNA

repair, and nuclear RNA export (ZHENG; ROEDER; LUO, 2003; HARA et al., 2005).

The enzyme 6-phosphogluconate dehydrogenase, decarboxylating 1 (6PGDH) (spot 132)

catalyzes the rate-limiting, NADPH-producing step in the pentose phosphate pathway.

6PGDH has an important role in the acquisition of tolerance against oxidative stress

(IZAWA et al., 1998). Catalase (spot 148) is an antioxidant system located in peroxisomes,

cytosol and spores, that has been implicated in overcoming the host defense response in

several phytopathogens (PERAZA; HANSBERG, 2002; BLACKMAN et al., 2011).

We identified two proteins related to the process of autophagy 30 min and 60 min

after treatment with TcPR-10, GTP-binding nuclear protein and autophagy-related protein.

Autophagy is the process by which intracellular lysosomal degradation compounds are sent

for cellular degradation in the lysosome and vacuoles, and subunits generated after

degradation are then reused by the cell, thereby establishing a feedback path that allows for

the maintenance of homeostasis (YORIMITSU et al., 2007). Reactive oxygen species are

stress-inducing signaling molecules during autophagy (SCHERZ-SHOUVAL et al., 2007),

and therefore, the action of the protein TcPR-10 on M. perniciosa may be related to the

expression of the GTP-binding nuclear protein and autophagy-related protein in all of the

analyzed time periods in an attempt to detoxify the cell. According Pozuelo-Rubio

(POZUELO-RUBIO, 2012), autophagy is modulated by 14-3-3 proteins that showed

highest expression in the control treatment (0 h) and a decreased expression over time.

Conversely, markers for autophagy had their highest expression at 60 min.

Two proteins involved in the repair of DNA sequence, Ubiquitin-conjugating

enzyme and the Nucleoside diphosphate kinase Ndk1, were also identified. The Ubiquitin-

conjugating enzyme exhibited higher expression at 60 and 120 min, whereas Ndk1 showed

greater activity at 30 min. Kim (KIM, S. G. et al., 2011) and He (HE et al., 2012)

demonstrated that PR-10 has DNAase activity that triggers the expression of protein repair

Page 54: TcPR-10: Mecanismo de transporte e ação em fungos

51

enzymes. Ndk1 repairs the DNA sequence by replenishing lost nucleotides (CHOPRA et

al., 2003), whereas proteins regulating ubiquitination in the repair of double-stranded DNA

are caused by toxic substances (WU et al., 2003; MOUDRY et al., 2012), such as TcPR-

10.

Most proteins identified were classified as stress responsive (spots 8, 20, 24, 28, 33,

45, 46, 48, 85, 87, 102, 105, 153, 162, 170 and 184). Among these proteins, 14-3-3

proteins showed the highest expression level in the control treatment (0 h), as 14-3-3

proteins have conserved regulatory activities in eukaryotic cells, such as kinases,

phosphatases and transmembrane receptors. Moreover, 14-3-3 proteins are notable for

playing important roles in cell death through apoptosis, cell cycle control and stress

response (FU; SUBRAMANIAN; MASTERS, 2000). Heat shock proteins (HSP) (spot 24,

45, 48, 85, 87, 153 and 170) are molecular chaperones that are found in all organisms and

are natural defensive mechanisms in response to various types of stress, e.g., oxidative

stress caused by drugs or environmental changes (BURNIE et al., 2006; WANDINGER;

RICHTER; BUCHNER, 2008).

Among the proteins expressed by the fungus in response to TcPR-10-induced stress

were proteins involved in maintenance of fungal wall integrity against oxidative damage

caused by the antifungal protein. The alpha-1 subunit of the 26S proteasome is an ATP-

dependent protease that prevents the accumulation of degraded proteins (YANG et al.,

2004; VIERSTRA, 2009) and therefore provides greater resistance to oxidative stress.

However, it is possible that the observed decrease in its expression over time correlated

with an increase in the amount of oxidized proteins.

The protein Acetyl-CoA acetyltransferase (spot 22) is involved in ergosterol

biosynthesis in fungi. Ergosterol regulates cell membrane fluidity and permeability and is

essential for cell survival (PARKS et al., 1999). Upregulation of ergosterol at 0 and 30 min

denotes a mechanism to preserve fungal membrane integrity and maintain the function of

membrane-bound proteins to avoid an inhibition of fungal growth (RUGE; KORTING;

BORELLI, 2005). Bet v 1, a homolog to the PR-10 protein, has binding sites for fatty

acids, flavonoids, cytokinins, emodin and sterols, suggesting that this protein has a role in

the storage and transport of biologically important molecules with activity in various

tissues and environmental conditions (KUNDU; ROY, 2010).

The proteins in the largest class that responded to TcPR-10 exposure were involved

in several mechanisms (Figure 2). Our functional analysis showed that the majority of

Page 55: TcPR-10: Mecanismo de transporte e ação em fungos

52

differentially expressed proteins identified by mass spectrometry were involved in stress

response (29%) and cell metabolism (22%), indicating a fungal response to maintain

homeostasis and presenting possible mechanisms of action of TcPR-10 upon and after

contact.

Several PR-10 proteins with antifungal activities have been described in the

literature: SsPR-10 (LIU et al., 2005), CsPR-10 (GÓMEZ‐GÓMEZ; RUBIO‐MORAGA;

AHRAZEM, 2010); CaPR-10 (PARK et al., 2004), maize PR-10 proteins (CHEN et al.,

2006; XIE, Y.R. et al., 2010) and JcPR-10a (AGARWAL et al., 2012). Pungartnik

(PUNGARTNIK; DA SILVA; et al., 2009a) used mutants of S. cerevisiae genes for DNA

repair, membrane transport, metal transport and antioxidant defense to demonstrate

ribonucleic and antifungal activities of TcPR-10 against M. perniciosa and Saccharomyces

cerevisiae. This study showed that TcPR-10 actions involving synthesis, modification or

degradation might confer multiple biological functions to individual genes. Proteins were

related with biosynthesis, carbohydrate metabolism, assembly, folding, translational

regulation or amino acid biosynthesis transport. These modifications and their impacts on

virulence, intracellular signal cascades and other biological processes are areas for further

investigation.

In summary, this study describes the first proteomic analysis of the phytopathogenic

fungus M. perniciosa in response to the TcPR-10 protein of cocoa. The identification of a

number of differentially expressed proteins after TcPR-10 contact provides a new

information to unravel the molecular basis of the pathogenesis of these fungi in the

presence of antifungal molecules. The findings in this study of expression of proteins

involved in DNA repair, expression of a protein involved in zinc binding, high expression

of proteins involved in ROS response, and in particular, expression of stress response

proteins together demonstrate the great potential for TcPR10 to be used as an antifungal

agent against M. perniciosa. Further research is required to analyze the behavior of

differentially expressed proteins at other time periods and to identify new proteins involved

in TcPR-10 response.

Page 56: TcPR-10: Mecanismo de transporte e ação em fungos

53

ACKNOWLEDGMENTS

This research supported by Conselho Nacional de Desenvolvimento Científico e

Tecnológico (CNPq, Brazil), Fundação de Amparo à Pesquisa da Bahia (FAPESB, Brazil).

F. A.C. Silva was supported by CAPES. Dr. Samuel Saito, Msc. Julian Santana and Leila

Lopes for their help in the identification of proteins by mass spectrometry.

FIGURE LEGENDS

Figure 1. Protein profile in 2-DE gel Moniliophthora perniciosa fungus treated with the

antifungal protein TcPR-10 obtained from cacao. Treatments: A- Control (no TcPR-10); B-

30 min; C- 60 min and D- 120 min after exposure to TcPR-10. The gels were stained with

Coomassie Coloidal Blue G-250 solution. Line MW: molecular weight marker proteins

(kDa). → Excision place gel to differentially expressed proteins identificated by mass

spectrometry.

Figure 2. Representations of the distribution of identified differentially expressed proteins

identified M perniciosa according to their biological process. Categorizations were based

on information provided by the online resource UniProt classification system.

Page 57: TcPR-10: Mecanismo de transporte e ação em fungos

54

Table 1. Distribution of spots between treatments (Control, 30 min, 60 min and 120 min) and between

combinations of these treatments.

Total number of

spots

Differentially expressed

spots Exclusives spots

Control 244 23

30 min 309 58

60 min 298 16

120 min 380 80

Control X 30 min 160

Control X 60 min 118

Control X 120 min 183

30 min X 60 min 173

30 min X 120 min 110

60 min X 120 min 178

Page 58: TcPR-10: Mecanismo de transporte e ação em fungos

55

Table 2. Differentially expressed proteins identified by mass spectrometry (NANO/ESI/Q-TOF).

Match

ID Gel MW PI Access Protein Biologic Process

Control X

30 Control X 60 Control X 120 30 X 60 30 X 120 60 X 120

1 B 45 5.4 P17967 Protein disulfide-isomerase 1 cell redox homeostasis 123.172 0.770709 -0.629766 0.78483 -0.588082 -123.172

3 A 26 7.8 P79071 60S ribosomal protein L6 cytoplasmic translation -0.349022 0.612684 0.600063 -0.612684 -0.193018 -0.191066

8 B 23 8.5 P43773 ATP-dependent protease ATPase

subunit HslU (Heat shock) Stress response -0.74422 114.433 0.849442 -0.881711 -114.433 0.910075

9 A 24 7.8 P40303 Proteasome component PRE6

proteasomal ubiquitin-dependent protein

catabolic process; regulation of mitotic cell

cycle

-0.681787 -0.681787 - - -0.316403 -0.316403

10 B 25 8.1 C6A011 UPF0107 protein TSIB_1943 Phosphorylation -0.38004 -0.441773 0.757425 -0.757425 -0.501307 -0.71635

12 A 16 5.8 P07280 40S ribosomal protein Ribosome biogenesis -0.391769 0.87409 0.704391 -0.770834 -0.906923 0.906923

13 C 15 5.2 O74983 Ubiquitin-conjugating enzyme Postreplication repair -0.793504 0.982094 125.934 -125.934 -0.232689 0.706866

18 B 28 6.8 P00359 Glyceraldehyde-3-phosphate

dehydrogenase Oxidoreductase 178.397 0.770195 -0.703513 0.940579 -0.685514 -178.397

19 A 31 6.6 P36010 Nucleoside diphosphate kinase Response to DNA damage stimulus -0.721473 0.803665 -0.832114 0.983847 -0.983847 -0.619165

20 A 32 6.2 P15019 Transaldolase pentose-phosphate shunt (Stress response) -0.539107 0.812164 108.524 -108.524 -0.800265 0.971417

22 A 3

4 6.8 P41338 Acetyl-CoA acetyltransferase Ergosterol biosynthetic process -0.392888 462.225 -0.388934 -0.598483 -462.225 0.983996

24 A 35 4.2 P02829 Heat shock protein 82 Stress response 0.7276 -0.957569 0.828066 -0.585089 0.957569 -0.767368

26 B 35 5.7 P64201 Aspartyl/glutamyl-tRNA(Asn/Gln)

amidotransferase subunit B Protein biosynthesis 0.795523 0.928544 0.908495 -0.886851 -0.9056 -0.928544

28 B 38 6.4 Q9RA63 Chaperone protein ClpB Stress response -0.871045 -0.513589 0.871045 -0.624079 -0.231558 0.591141

32 C 42 5.5 Q10055 ATP-dependent RNA helicase fal1 rRNA processing 0.618478 0.96849 -0.720532 -0.655698 -0.731089 -0.96849

33 C 38 6.4 P32318 Thiazole synthase Suicide enzyme; Stress response and in

DNA damage tolerance. 102.195 0.830277 -0.801889 0.994818 -0.749269 -102.195

34 B 44 5.7 P00830 ATP synthase subunit beta Transport 132.282 0.761055 -0.580592 0.92712 -0.716573 -132.282

36 C 45 6.1 P10507 Mitochondrial-processing peptidase

subunit beta Phosphoprotein 0.951766 0.832967 -0.656623 0.962016 -0.808762 -0.962016

40 A 52 5.6 P16140 V-type proton ATPase subunit B Phosphoprotein -0.584401 0.873055 0.853564 -0.873055 -0.830431 0.839563

44 B 62 4.4 Q52454 Cobalamin synthase zinc ion binding 109.902 -0.546875 0.594864 -0.35976 0.624824 -109.902

45 B 68 5.0 Q01877 Heat shock protein HSS1 Stress response 171.898 0.809091 -0.70584 0.987857 -0.771718 -171.898

Page 59: TcPR-10: Mecanismo de transporte e ação em fungos

56

46 B 75 4.7 P16474 78 kDa glucose-regulated protein

homolog Stress response 112.712 0.671421 0.63484 0.830117 0.792162 -112.712

48 C 84 4.9 P54651 Heat shock cognate 90 kDa protein Stress response -0.577448 0.999935 -0.597114 0.852592 -0.999935 0.663631

50 A 54 9.1 P07251 ATP synthase subunit alpha,

mitochondrial ATP catabolic process -0.803737 243.439 -0.835913 0.749876 -243.439 -0.728872

52 A 58 8.5 Q6FM63 Autophagy-related protein 18 Autophagy -0.924253 18.815 -0.951401 0.973092 -18.815 -0.51398

62 C 21 6.9 Q9AML4 GTP-binding nuclear protein Autophagy -0.419916 - -0.419916 -0.308695 - -0.308695

82 A 31 7.6 P61889 Malate dehydrogenase Oxidoreductase 15.995 0.436343 -0.390386 -0.18428 -0.187161 -15.995

85 A 72 6.7 Q01877 Heat shock protein HSS1 Stress response -0.571641 0.982635 -0.982635 0.568348 -0.691616 -0.71818

87 A 100 6.0 O74225 Heat shock protein Hsp88 Stress response -0.741642 - -0.741642 -0.522303 - -0.522303

92 A 17 5.3 P23301 Eukaryotic translation initiation factor

5A-1 Protein biosynthesis 153.074 0.760242 -0.519375 0.639513 -0.583366 -153.074

94 A 20 5.6 P36010 Nucleoside diphosphate kinase Ndk1 Repair of UV radiation- and etoposide-

induced DNA damage - -0.328555 -0.435905 - -0.435905

102 A 24 5.9 O74770 Probable phosphoketolase Stress response -111.257 - -111.257 -0.877396 - -0.877396

105 B 23 6.9 O42766 14-3-3 protein homolog Stress response 133.195 0.863126 -0.845349 0.935099 -0.580608 -133.195

108 C 30 7.1 P00359 Glyceraldehyde-3-phosphate

dehydrogenase Oxidoreductase -0.307501 - -0.307501 -0.567239 - -0.567239

109 C 30 8.0 P17505 Malate dehydrogenase, mitochondrial Oxidoreductase -0.754071 0.801155 -0.89945 0.991879 -0.991879 -0.808336

110 A 32 5,4 P38272 SWI5-dependent HO expression

protein 3 Transport -0.272577 - -0.272577 -0.574921 - -0.574921

111 C 32 7.2 P00359 Glyceraldehyde-3-phosphate

dehydrogenase Oxidoreductase 0.849117 0.928823 -100.518 100.518 -0.625291 -0.866885

112 C 32 6.5 P00359 Glyceraldehyde-3-phosphate

dehydrogenase Oxidoreductase 0.606736 166.442 -0.615852 0.994095 -166.442 -0.64479

117 A 36 7.0 P49089 Asparagine synthetase [glutamine-

hydrolyzing] 1 Phosphoprotein -0.543259 - -0.543259 -0.79558 - -0.79558

120 B 37 8.3 P00359 Glyceraldehyde-3-phosphate

dehydrogenase Oxidoreductase 0.993355 0.915481 -0.795396 0.783463 -0.198078 -0.993355

121 B 38 6.8 P00359 Glyceraldehyde-3-phosphate

dehydrogenase Oxidoreductase -0.742154 0.895575 -0.878184 0.976975 -0.976975 -0.660193

128 B 41 6.5 P39954 Adenosylhomocysteinase Phosphoprotein 0.607278 0.524697 -0.583788 0.909108 -0.766858 -0.909108

129 A 42 7.2 P00560 Phosphoglycerate kinase Phosphoprotein -0.7911 193.703 -0.842342 0.710606 -193.703 -0.715645

130 A 42 6.9 P19358 S-adenosylmethionine synthase 2 One-carbon metabolism 0.827082 136.415 -0.794706 0.905275 -136.415 -0.849288

132 A 45 8.1 P38720 6-phosphogluconate dehydrogenase,

decarboxylating 1 Oxidoreductase -0.348645 - -0.348645 -0.579874 - -0.579874

Page 60: TcPR-10: Mecanismo de transporte e ação em fungos

57

146 A 58 7.7 P39522 Dihydroxy-acid dehydratase,

mitochondrial Amino-acid biosynthesis -0.110582 - -0.110582 -0.464429 - -0.464429

147 B 58 6.7 P40530 Pyruvate kinase Carbohydrate metabolism 0.763106 101.327 -0.61609 0.908803 -101.327 -0.760471

148 C 58 7.9 I2DFD6 Catalase Oxidoreductase -0.382351 - -0.382351 -0.588187 - -0.588187

153 C 64 6.5 P17820 Chaperone protein DnaK Stress response 0.680602 117.191 -0.414151 0.981432 -117.191 -0.730904

162 A 90 7.7 P82610

5-

methyltetrahydropteroyltriglutamate--

homocysteine methyltransferase

Stress response -0.553217 - -0.553217 -0.358378 - -0.358378

170 A 124 4.8 P55737 Heat shock protein 90-2 Stress response -0.311785 0.484568 -0.411449 0.499916 -0.499916 -0.418004

171 A 125 5.1 P25694 Cell division control protein 48 Cell cycle; Autophagy -0.247938 0.549927 -0.285886 -0.369707 -0.549927 -0.525438

179 A 32 5.9 P40825 Alanine--tRNA ligase, mitochondrial Protein biosynthesis - -0.327165 -0.327165 -0.420323 -0.420323 -

184 B 48 6.4 P32318 Thiazole synthase Stress response - -0.789057 -0.789057 -0.381988 -0.381988 -

189 A 97 6.9 Q8MML5 Paxillin-B Zinc ion binding - -0.584424 -0.584424 -0.615015 -0.615015 -

Page 61: TcPR-10: Mecanismo de transporte e ação em fungos

58

FIGURE 1

Page 62: TcPR-10: Mecanismo de transporte e ação em fungos

59

FIGURE 2

22%

11%

5%

29% 4%

20%

4%

5%

Cell metabolism Phosphorilation mecanism DNA repair

Stress response Transport Oxidureductase

Zinc biding Autophagy

Page 63: TcPR-10: Mecanismo de transporte e ação em fungos

60

REFERENCES

1. Aime MC, Phillips-Mora W (2005) The causal agents of witches' broom and frosty pod rot of cacao (chocolate,

Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97 (5):1012-1022

2. Kilaru A, Hasenstein KH (2005) Development and Pathogenicity of the Fungus Crinipellis perniciosa on Interaction

with Cacao Leaves. Phytopathology 95 (1):101-107. doi:10.1094/PHYTO-95-0101

3. Scarpari L, Meinhardt L, Mazzafera P, Pomella A, Schiavinato M, Cascardo J, Pereira G (2005) Biochemical

changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis

perniciosa. Journal of Experimental Botany 56 (413):865-877

4. Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, PEREIRA GAG (2008) Moniliophthora

perniciosa, the causal agent of witches’ broom disease of cacao: what's new from this old foe? Molecular plant

pathology 9 (5):577-588

5. Gesteira AS, Micheli F, Carels N, Da Silva AC, Gramacho KP, Schuster I, Macedo JN, Pereira GA, Cascardo JC

(2007) Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Annals

of botany 100 (1):129-140. doi:10.1093/aob/mcm092

6. Islam MA, Sturrock RN, Holmes TA, Ekramoddoullah AK (2009) Ultrastructural studies of Phellinus sulphurascens

infection of Douglas-fir roots and immunolocalization of host pathogenesis-related proteins. Mycological research 113

(Pt 6-7):700-712. doi:10.1016/j.mycres.2009.02.006

7. Lebel S, Schellenbaum P, Walter B, Maillot P (2010) Characterisation of the Vitis vinifera PR10 multigene family.

BMC plant biology 10 (1):184

8. Xie YR, Chen ZY, Brown RL, Bhatnagar D (2010) Expression and functional characterization of two pathogenesis-

related protein 10 genes from< i> Zea mays</i>. Journal of plant physiology 167 (2):121-130

9. Chadha P, Das RH (2006) A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal

activity. Planta 225 (1):213-222. doi:10.1007/s00425-006-0344-7

10. Lytle BL, Song J, de la Cruz NB, Peterson FC, Johnson KA, Bingman CA, Phillips GN, Jr., Volkman BF (2009)

Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds. Proteins 76 (1):237-243.

doi:10.1002/prot.22396

11. Bantignies B, Séguin J, Muzac I, Dédaldéchamp F, Gulick P, Ibrahim R (2000) Direct evidence for ribonucleolytic

activity of a PR-10-like protein from white lupin roots. Plant molecular biology 42 (6):871-881

12. Graham M, Weidner J, Wheeler K, Pelow M, Graham T (2003) Induced expression of pathogenesis-related protein

genes in soybean by wounding and the< i> Phytophthora sojae</i> cell wall glucan elicitor. Physiological and

molecular plant pathology 63 (3):141-149

13. Kim ST, Yu S, Kang YH, Kim SG, Kim JY, Kim SH, Kang KY (2008) The rice pathogen-related protein 10

(JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant cell reports 27 (3):593-

603

14. Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis‐related protein 10 isolated from hot

pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal 37 (2):186-198

15. Kim SG, Kim ST, Wang Y, Yu S, Choi IS, Kim YC, Kim WT, Agrawal GK, Rakwal R, Kang KY (2011) The

RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants. Molecules and

cells 31 (1):25-31. doi:10.1007/s10059-011-0004-z

16. He M, Xu Y, Cao J, Zhu Z, Jiao Y, Wang Y, Guan X, Yang Y, Xu W, Fu Z (2012) Subcellular localization and

functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection.

Protoplasma. doi:10.1007/s00709-012-0384-8

17. Pungartnik C, da Silva AC, de Melo SA, Gramacho KP, de Mattos Cascardo JC, Brendel M, Micheli F, da Silva

Gesteira A (2009) High-affinity copper transport and Snq2 export permease of saccharomyces cerevisiae modulate

cytotoxicity of PR-10 from Theobroma cacao. Molecular plant-microbe interactions 22 (1):39-51

18. Gautam P, Sundaram C, Madan T, Gade W, Shah A, Sirdeshmukh R, Sarma P (2007) Identification of novel

allergens of Aspergillus fumigatus using immunoproteomics approach. Clinical & Experimental Allergy 37 (8):1239-

1249

19. Cagas SE, Jain MR, Li H, Perlin DS (2011) Profiling the Aspergillus fumigatus proteome in response to

caspofungin. Antimicrobial agents and chemotherapy 55 (1):146-154. doi:10.1128/AAC.00884-10

20. Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD (2010) Changes in the proteome of Candida albicans in

response to azole, polyene, and echinocandin antifungal agents. Antimicrobial agents and chemotherapy 54 (5):1655-

1664. doi:10.1128/AAC.00756-09

21. Bruneau JM, Maillet I, Tagat E, Legrand R, Supatto F, Fudali C, Caer JPL, Labas V, Lecaque D, Hodgson J (2003)

Drug induced proteome changes in Candida albicans: comparison of the effect of β (1, 3) glucan synthase inhibitors

and two triazoles, fluconazole and itraconazole. Proteomics 3 (3):325-336

22. Menezes SP, dos Santos JL, Cardoso THS, Pirovani CP, Micheli F, Noronha FSM, Alves AC, Faria AMC, da

Silva Gesteira A (2012) Evaluation of the Allergenicity Potential of TcPR-10 Protein from Theobroma cacao. PloS one

7 (6):e37969

23. Pirovani CP, Carvalho HA, Machado RC, Gomes DS, Alvim FC, Pomella AW, Gramacho KP, Cascardo JC,

Pereira GA, Micheli F (2008) Protein extraction for proteome analysis from cacao leaves and meristems, organs

Page 64: TcPR-10: Mecanismo de transporte e ação em fungos

61

infected by Moniliophthora perniciosa, the causal agent of the witches' broom disease. Electrophoresis 29 (11):2391-

2401. doi:10.1002/elps.200700743

24. Meyer Y, Grosset J, Chartier Y, Cleyet-Marel JC (1988) Preparation by two-dimensional electrophoresis of

proteins for antibody production: antibodies against proteins whose synthesis is reduced by auxin in tobacco mesophyll

protoplasts. Electrophoresis 9 (11):704-712. doi:10.1002/elps.1150091105

25. Mur LAJ, Sturgess FJ, Farrell GG, Draper J (2004) The AoPR10 promoter and certain endogenous PR10 genes

respond to oxidative signals in Arabidopsis. Molecular plant pathology 5 (5):435-451

26. Blackman LM, Arikawa M, Yamada S, Suzaki T, Hardham AR (2011) Identification of a mastigoneme protein

from Phytophthora nicotianae. Protist 162 (1):100-114. doi:10.1016/j.protis.2010.01.005

27. Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and

disease. Annual review of phytopathology 49:369-390. doi:10.1146/annurev-phyto-072910-095355

28. Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in

eukaryotes. Rna 14 (10):2095-2103

29. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester

LD, Ferris CD, Hayward SD, Snyder SH, Sawa A (2005) S-nitrosylated GAPDH initiates apoptotic cell death by

nuclear translocation following Siah1 binding. Nature cell biology 7 (7):665-674. doi:10.1038/ncb1268

30. Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator

complex that contains GAPDH as a key component. Cell 114 (2):255-266

31. Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A (1998) Importance of glucose-6-phosphate dehydrogenase

in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. The Biochemical journal 330 ( Pt 2):811-

817

32. Peraza L, Hansberg W (2002) Neurospora crassa catalases, singlet oxygen and cell differentiation. Biological

chemistry 383 (3-4):569-575. doi:10.1515/BC.2002.058

33. Yorimitsu T, Zaman S, Broach JR, Klionsky DJ (2007) Protein kinase A and Sch9 cooperatively regulate induction

of autophagy in Saccharomyces cerevisiae. Molecular biology of the cell 18 (10):4180-4189

34. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for

autophagy and specifically regulate the activity of Atg4. The EMBO journal 26 (7):1749-1760

35. Pozuelo-Rubio M (2012) 14-3-3 Proteins are Regulators of Autophagy. Cells 1 (4):754-773

36. Chopra P, Singh A, Koul A, Ramachandran S, Drlica K, Tyagi AK, Singh Y (2003) Cytotoxic activity of

nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. European journal of biochemistry / FEBS

270 (4):625-634

37. Moudry P, Lukas C, Macurek L, Hanzlikova H, Hodny Z, Lukas J, Bartek J (2012) Ubiquitin activating enzyme

UBA1 is required for cellular response to DNA damage. Cell Cycle 11 (8):0-9

38. Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Wolberger CP, Pickart

CM (2003) A conserved catalytic residue in the ubiquitin-conjugating enzyme family. The EMBO journal 22

(19):5241-5250

39. Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annual review of

pharmacology and toxicology 40:617-647. doi:10.1146/annurev.pharmtox.40.1.617

40. Burnie JP, Carter TL, Hodgetts SJ, Matthews RC (2006) Fungal heat-shock proteins in human disease. FEMS

microbiology reviews 30 (1):53-88. doi:10.1111/j.1574-6976.2005.00001.x

41. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. Journal of Biological Chemistry

283 (27):18473-18477

42. Vierstra RD (2009) The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews

Molecular Cell Biology 10 (6):385-397

43. Yang P, Fu H, Walker J, Papa CM, Smalle J, Ju YM, Vierstra RD (2004) Purification of the Arabidopsis 26 S

proteasome biochemical and molecular analyses revealed the presence of multiple isoforms. Journal of Biological

Chemistry 279 (8):6401-6413

44. Parks LW, Crowley JH, Leak FW, Smith SJ, Tomeo ME (1999) Use of sterol mutants as probes for sterol

functions in the yeast, Saccharomyces cerevisiae. Critical reviews in biochemistry and molecular biology 34 (6):399-

404

45. Ruge E, Korting H, Borelli C (2005) Current state of three-dimensional characterisation of antifungal targets and

its use for molecular modelling in drug design. International journal of antimicrobial agents 26 (6):427-441

46. Kundu S, Roy D (2010) Structural study of biologically significant ligands with major birch pollen allergen Betv1

by docking and molecular dynamics simulation. Bioinformation 4 (7):326-330

47. Liu JJ, Ekramoddoullah AK, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10

promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221 (2):159-169.

doi:10.1007/s00425-004-1428-x

48. Gómez‐Gómez L, Rubio‐Moraga A, Ahrazem O (2010) Molecular cloning and characterisation of a

pathogenesis‐related protein CsPR10 from Crocus sativus. Plant biology 13 (2):297-303

49. Chen ZY, Brown RL, Rajasekaran K, Damann KE, Cleveland TE (2006) Identification of a Maize Kernel

Pathogenesis-Related Protein and Evidence for Its Involvement in Resistance to Aspergillus flavus Infection and

Aflatoxin Production. Phytopathology 96 (1):87-95. doi:10.1094/PHYTO-96-0087

50. Agarwal P, Bhatt V, Singh R, Das M, Sopory SK, Chikara J (2012) Pathogenesis-Related Gene, JcPR-10a from

Jatropha curcas Exhibit RNase and Antifungal Activity. Molecular biotechnology. doi:10.1007/s12033-012-9579-7

Page 65: TcPR-10: Mecanismo de transporte e ação em fungos

62

V. Capítulo 2

Mitigation of oxidative stress induced by TcPR-10 protein in fungi involves

vacuole formation and autophagy

SILVA, F.A.C.1; PUNGARTNIK, C2; PEREIRA, A. C. F2; CARDOSO, T.H.S.3;

MICHELI, F.4; MARQUES, E.C.S1; VERDEIL, J-L. 4; BRENDEL, M2; GESTEIRA,

A.S5.

1 Laboratório de Biologia Molecular, Centro de Biotecnologia e Genética. Universidade Estadual de

Santa Cruz. Rod. Ilhéus Itabuna, km 16, Salobrinho, CEP 45662-900, Ilhéus, Bahia, Brasil.

2 Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética. Universidade Estadual de

Santa Cruz. Rod. Ilhéus Itabuna, km 16, Salobrinho, CEP 45662-900, Ilhéus, Bahia, Brasil.

3 CIRAD, UMR AGAP, F-34398 Montpellier, France .

4 Embrapa Mandioca e Fruticultura, Departamento de Biologia Molecular, Rua Embrapa, s/nº,

CEP44380-000; Cruz das Almas, Bahia, Brazil..

* both authors contributed equally to the manuscript

Running title: PR-10p induces oxi-stress and autophagy in fungi

Submetido ao periódico Plos One (Fator de impacto= 4.03)

Corresponding author: Abelmon da Silva Gesteira. Embrapa Mandioca e

Fruticultura, Rua Embrapa, s/nº, 44380-000, Cruz das Almas, Bahia, Brazil. E-

mail: [email protected]

Page 66: TcPR-10: Mecanismo de transporte e ação em fungos

63

ABSTRACT

The pathogenesis-related protein PR-10 of Theobroma cacao has antifungal action

and ribonuclease activity in vitro. However, the mechanism of transport into the

intracellular medium and its effects within the fungal cell need to be elucidated. We

report the transport of TcPR-10p via the ATP-binding cassette (ABC) transporter

Pdr11p and the involvement of the autophagic process as well as vacuole formation

using Saccharomyces cerevisiae and Moniliophthora perniciosa. Whereas ABC-

transporter mutants yor1Δ, pdr5Δ, pdr10Δ, pdr12Δ and pdr15Δ of S. cerevisiae had

wild-type-like sensitivity to TcPR-10p, isogenic mutant pdr11Δ showed higher-than-

WT resistance. Contrarily, autophagy-deficient mutant atg8Δ showed three-fold

higher sensitivity to TcPR-10p. Resistant mutants pdr11Δ and snq2Δ had

significantly lower vacuole formation than the WT after TcPR-10p exposure. Real

time microscopy was used to observe vacuole formation after exposure to TcPR-10p

in WT and snq2Δ and in M. perniciosa hyphae. Putative M. perniciosa autophagy

gene MpATG8 was introduced into yeast mutant atg8Δ and tested for heterologous

expression via phenotypic complementation of TcPR-10p sensitivity. Formation of

oxygen radicals (ROS) after exposure to TcPR-10p was observed using fluorescence

microscopy with dihydroethidium-stained cells. WT and mutant atg8Δ transformed

with a single-copy vector containing MpATG8 gene showed similar resistance to

TcPR-10p and similar formation of ROS, while mutant atg8Δ was sensitive and

exhibited increased ROS accumulation. This suggests that the protein codified by

MpATG8 is functionally expressed in S. cerevisiae and protects against TcPR-10p

whereas mutant atg8Δ accumulates ROS under the same conditions. Our results

suggest (1) that TcPR-10 protein uses a cell penetration route similar to that of

sterols as suggested by the resistance of mutants pdr11Δ and snq2Δ; (2) that

vacuole accumulation can be taken as indication of intracellular TcPR-10p activity in

both yeast and M. perniciosa and (3) that a functional autophagic mechanism is

essential for the WT-resistance of yeast to TcPR-10p-induced oxidative damage.

Page 67: TcPR-10: Mecanismo de transporte e ação em fungos

64

AUTHOR SUMMARY

Moniliophthora perniciosa is a basidiomycete fungus that causes Witches’ broom disease of Theobroma cacao, responsible for heavy economic damage in several countries. A previous study showed that the antifungal protein TcPR-10p, isolated from cocoa, has in vitro and in vivo ribonuclease activity and inactivates survival of M. perniciosa and Saccharomyces cerevisiae. Here we report that the transport of TcPR-10p into the yeast cell is via the sterol route (transporter Pdr11p a member of the ATP-binding cassette) and that absence of Pdr11p induces TcPR-10p resistance in the yeast S. cerevisiae. We show that the increased susceptibility to TcPR-10p in S. cerevisiae and M. perniciosa is coupled with vacuole formation. The absence of the autophagic mechanism in the yeast atg8 mutant leads to a three-fold higher TcPR-10p sensitivity via increased formation of reactive oxygen species (ROS) in S. cerevisiae. The expression of a single copy of M. perniciosa MpATG8 restores low ROS levels and near WT survival. We can conclude that increased TcPR-10p exposure leads to increased intracellular oxidative stress. To our knowledge this is the first work to relate that antifungal activity of PR-10 is associated with induction of oxidative stress most probably contributing to cell death.

Page 68: TcPR-10: Mecanismo de transporte e ação em fungos

65

INTRODUCTION

Plants are subject to several types of biotic and abiotic stresses. Thus, they

have developed adaptive attack perception and defense manifestation mechanisms

that allow their survival at different stress levels [1-4]. Once stress is perceived at the

molecular level, plants unchain a complex cascade of events that subsequently

activate many defence responses, such as production of pathogenesis-related

proteins (PR). PR proteins play an important role in induction of resistance to

pathogens, and in some cases also of a constitutive resistance [5].

PR proteins are classified into 17 families according to their sequence and

biological activity [6,7]. Amongst them, the PR-10 family is highlighted as a group of

small acidic proteins found in mono- and dicotyledones that is in charge of the

intracellular defence process [8-10]. PR-10 family members have a highly conserved

glycine-rich motif called “p loop motif” (GXGGXGXXK; 47-55 amino acids) directly

related to their ribonuclease activity [11,12]. These PR-10p contain phosphorylation

sites characteristic of cAMP-dependent kinases [13]. The presence of 3 conserved

phosphorylation sites in PR-10p suggests a function as general RNase or possibly as

specific RNase against exogenous RNA [5,14,15]. Recently a DNAse activity of PR-

10p in rice [16] and grape was related [17] suggesting that PR-10 has a nuclease

activity and may be involved in the process of programmed cell death.

Witches’ broom disease of Theobroma cacao is caused by the hemibiotrophic

fungus Moniliophthora (formally Crinipellis) perniciosa. This phytopathogen

basidiomycete is responsible for heavy losses in Brazilian cacao production causing

serious socio-economic impact [18]. In order to better understand the processes

involved in this plant-pathogen interaction, Gesteira et al. [19] constructed two cDNA

libraries from cocoa cultivars resistant and susceptible to M. perniciosa and isolated

the gene coding for TcPR-10p (PR protein 10 of T. cacao). While Pungartnik et al.

[20] showed ribonuclease and antifungal activity of the heterologous expressed

protein TcPR-10p in M. perniciosa and Saccharomyces cerevisiae, Menezes et al.

[21] showed that the allergenic potential of TcPR-10p may be diminished or

abolished with the introduction of specific point mutations without loss of RNase

activity. TcPR-10p antifungal activity depends on its internalization that is energy and

temperature-dependent, suggesting an active importation into the fungal cell; also,

acute exposure of exponentially growing yeast cells revealed that TcPR-10p

Page 69: TcPR-10: Mecanismo de transporte e ação em fungos

66

resistance is enhanced in the Snq2 export permease-lacking mutant [20]. Yeast

Snq2p efflux pump activity is ATP-dependent, it is a multidrug transporter involved in

multidrug resistance and resistance to singlet oxygen species [22,23]. Snq2p is a

member of the ATP-binding cassette (ABC) family of proteins, a large group of

proteins that are conserved from bacteria to humans [24].

ABC transporters couple ATP hydrolysis to vectorial translocation of diverse

substrates across membranes [22], including metabolic products, lipids, sterols, and

drugs. The yeast S. cerevisiae contains several genes encoding ABC transporters

(For review see [22,25-27]), amongst them genes of the pleiotropic drug resistance

(PDR) subfamily that codify for ABC transporters and their regulators [28]. Yeast

mutants lacking PDR genes may be used as tools for the identification of routes of

elimination of many harmful substances, amongst them fungicides and antibiotics

[29,30]. Toxic agents entering the yeast cells induce or activate several fungal

mechanisms aimed at re-establishing cellular homeostasis and recycling damaged

macromolecules and organelles, mainly through the process of autophagy [31,32].

Both in vivo and in vitro ribonuclease activity of recombinant TcPR-10p were

observed on cacao and M. perniciosa RNA [20], which might be associated to the

reduction of fungal survival. In yeast, RNA degradation is tightly regulated and

numerous quality control mechanisms that target aberrant RNAs have been

identified. However, mechanisms that control the specificity of RNA degradation and

how RNA degradation processes interact with translation, RNA transport and other

cellular processes remain to be elucidated [33]. RNase activity may give origin to

aberrant transfer RNA (tRNAs), ribosomal RNA (rRNAs), as well as mRNAs; in yeast

tRNAs are imported into the vacuole or another membrane-bound compartment by

some type of autophagy-related process to be degraded by Rny1 (a vacuolar RNase

of the T(2) family), which relocalizes to the cytosol where it cleaves tRNAs upon

oxidative or stationary phase stress [34]; also, amongst the 3 types of degradation of

aberrant rRNA in yeast, one targets RNA to vacuoles by selective autophagy in

response to oxidative stress or entry into stationary phase. Ribosomes may also be

targeted for degradation in the vacuole by piecemeal micro-autophagy of the

nucleus, where regions of the latter are directled to the vacuole by invagination of the

nuclear envelope into the vacuolar lumen [35].

In this respect, autophagy is a conserved catabolic process that initially

involves the bulk or the selective engulfment of cytosolic components into double-

Page 70: TcPR-10: Mecanismo de transporte e ação em fungos

67

membrane vesicles and sequentially the transport of the sequestered cargo to the

lysosome/vacuole for degradation [36]. Usually triggered in eukaryotic cells to

overcome nutritional limitations or other stress conditions, e.g., reactive oxygen

species (ROS)-induced oxidative stress, autophagy involves the delivery of

cytoplasmic components into the mammalian lysosome or the plant and yeast

vacuole for degradation, thus generating an internal pool of recyclable molecules.

This process allows maintenance of cellular homeostasis [37,38].

Autophagy (or macro-autophagy) is a pathway for membrane transport to the

lysosome/vacuole [39]. Autophagy sequesters superfluous cytosolic components and

organelles into double-membraned autophagosomes, which finally fuse with

lysosomes/vacuoles for degradation of its contents. It occurs constitutively at basal

levels and can be selective in the presence of damaged organelles. During this

process the autophagosome, a double membrane-closed vesicle is formed, which

selectively engulfs degradation targets, such as cytotoxic protein aggregates and

damaged or surplus organelles [40]. The fusion of the outer membrane of

autophagosomes with lysosomal/vacuole membrane permits the degradation of the

engulfed material together with inner membrane. In this process, Atg8p is essential

for autophagosomal membrane formation and also in efficient incorporation of

degradation targets into autophagosomes in selective types of autophagy [41]. Atg8p

homologs have an additional unique feature that reside on the formed

autophagosomes, suggesting their possible involvement in autophagosomal

maturation, i.e., fusion between autophagosomes and endosomes/lysosomes [41]. S.

cerevisiae mutants lacking autophagy are defective in various aspects of

mitochondrial functions, which suggests a critical role of autophagy in mitochondrial

maintenance[42]. A yeast mutant lacking ATG8-encoded protein had lower rates of

oxygen consumption, reduced mitochondrial electron transport chain activities and a

lower mitochondrial membrane potential. In addition, some mutants defect in the

autophagic process generated higher levels of ROS [42]. Yeast mutants defective in

gene ATG8 are incapable of autophagy and vacuolar transport is decreased [43].

In this work, we report that TcPR-10p is transported via the yeast ABC

transporter Pdr11p and that its absence induces TcPR-10p resistance in S.

cerevisiae, that the susceptibility to TcPR-10p in S. cerevisiae and M. perniciosa is

coupled with vacuole formation and that the absence of the autophagic mechanism in

yeast mutant atg8Δ leads to a higher TcPR-10p sensitivity and increased ROS

Page 71: TcPR-10: Mecanismo de transporte e ação em fungos

68

formation, and that a single copy of ATG8 gene homolog from M. perniciosa can

restore WT-resistance and diminish the oxidative stress after TcPR-10p exposure.

Page 72: TcPR-10: Mecanismo de transporte e ação em fungos

69

RESULTS

Pungartnik et al. [20] have shown that S. cerevisiae Snq2p is involved in

TcPR-10p resistance. Therefore, other members of yeast PDR protein

subfamily mutants such as pdr5Δ, pdr10Δ, pdr11Δ, pdr12Δ, pdr15Δ, and yor1Δ

were screened for survival after exposure to TcPR-10p. Amongst these 6 ABC

transporter mutants, five had a WT-like phenotype and one mutant, pdr11Δ,

demonstrated hyper-resistance to TcPR-10p (Fig. 1). This indicates that there

exist at least two ABC transporters, Snq2p and Pdr11p, involved in yeast TcPR-

10p resistance.

Since intracellular TcPR-10p activity may give origin to different aberrant

RNAs, which may be targeted to vacuoles by selective autophagy, S. cerevisiae

LOG phase cells were exposed to TcPR-10p (3 µg/mL) and observed by optical

microscopy during 4 h (Fig. 2, WT and snq2Δ); also, both TcPR-10p resistant

mutants snq2Δ and pdr11Δ were stained with neutral red after 6 h exposure to

TcPR-10p (3 µg/mL) (Fig. 3A to 3D). Formation of vacuole-like structures was

observed in WT cells (Fig. 2B, 60 min), but not in yeast mutant snq2Δ exposed

up to 2 h to TcPR-10p (Fig. 2B). In fact, snq2Δ (Fig. 3B) and pdr11Δ (Fig. 3D)

TcPR-10p-exposed cells presented fewer neutral red-stained vacuoles when

compared to the isogenic WT (Fig. 3A and 3C). WT-like TcPR-10p-sensitive

mutants pdr5Δ, pdr10Δ, pdr12Δ, pdr15Δ, and yor1Δ showed a frequency of

stained vacuoles similar to that of the WT (data not shown).

Since TcPR-10p is a plant response due to successful M. perniciosa

infection, we also checked for formation of vacuole-like structures after TcPR-

10p exposure of the fungal hyphae (Fig. 4). The images obtained by real time

microscopy after TcPR-10p exposure (less than 30 minutes) showed a strong

increase in size and number of intracellular structures resembling vacuoles (Fig.

4B and film in supplementary material 4) as compared to images of non-treated

hyphae (Fig. 4A).

The observed TcPR-10p-induced formation of vacuoles in M. perniciosa

and yeast WT and other mutants with WT-like sensitivity led us to speculate that

we were witnessing induced autophagy, carried out by vacuole-like

autophagosomes [44,45]. If this were the case, the yeast autophagy-deficient

Page 73: TcPR-10: Mecanismo de transporte e ação em fungos

70

mutant atg8Δ should have a higher-than-WT sensitivity to TcPR-10p. Figure 5

clearly shows that it does.

Proteins involved in autophagy are highly conserved and the putative

MpATG8 gene encodes a protein with nearly identical structural features to the

yeast Atg8p (A. Pereira, unpublished). We cloned the M. perniciosa putative

gene MpATG8 and transferred it, contained in a single copy vector (pRS313),

via transformation into the yeast mutant atg8Δ and its isogenic WT. Information

on sequencing, amplification, cloning and expression of the gene is provided in

supplemented material (Supp. 1, 2, 3). Four yeast transformants with isogenic

background were constructed: AP01, (WT [pRS313]) and AP03 (atg8Δ

[pRS313]) harbouring the single-copy vector pRS313 whereas AP02 (WT

[pLBF3]) and AP04 (atg8Δ [pLBF3]) contained the MpATG8 gene-containing

single-copy vector. When these 4 yeast transformants were exposed to TcPR-

10p (3 µg/mL, up to 48 h, Fig. 5) only the non MpATG8-containing strain AP03,

the yeast mutant atg8Δ transformed with the empty vector, exhibited higher

sensitivity, as the non-transformed mutant atg8Δ (data not shown). The two WT

transformants AP01 and AP02 as well as the atg8Δ [pLBF3]) transformant

AP04 displayed WT-like TcPR-10p resistance.

Since RNAse activity of TcPR-10p in M. perniciosa has been shown [20]

and the increase of degraded RNA might generate intracellular oxidative stress

[46], we reasoned that this might be also the case in yeast and that cellular

death might be associated with ROS. As lack of autophagy renders the yeast

cells more TcPR-10p sensitive we therefore measured the oxidative stress

indicating superoxide anion levels by fluorescent labelling with dihydroethidium

(DHE) (Fig. 6). When DHE is introduced to a metabolic active cell that contains

ROS in the form of superoxide radicals it is oxidized to ethidium, which can be

identified by its intercalation into DNA. Thus, oxidative stress can be visualized

by treating yeast cells with DHE [47]. When the four yeast transformants were

challenged with TcPR-10p and then treated with DHE, the initially (0 h) low

incidence of superoxide radicals (ROS) increased after 48 h of TcPR-10p

exposure significantly in transformant AP03, i.e., in the yeast atg8Δ mutant

strain not containing a single copy of MpATG8 (AP03, Fig. 6C). However, a

single copy of the MpATG8 gene (AP04, Fig. 6D) was sufficient to reduce ROS

formation to that seen in WT transformants (AP01 and AP02) (Figs. 6A, B). The

Page 74: TcPR-10: Mecanismo de transporte e ação em fungos

71

same results were obtained challenging with 10-fold diluted TcPR-10p, however

with less intensity of fluorescence (data not shown).

DISCUSSION

1) Absence of ABC transporter Pdr11p leads to TcPR-10p resistance in the

yeast S. cerevisiae

Yeast ABC proteins are divided into subfamilies according to the

sequence similarity within their nucleotide-binding domain (NBD), which couples

nucleotide hydrolysis to substrate transport. Yeast transport mutant snq2Δ,

which is known to have higher-than-WT TcPR-10p resistance [20], belongs to

the ABC PDR5/ABCG transporter family [48]. Proteins of this group have similar

sequences within their NBDs, which tend to have partially overlapping

physiological and biochemical functions; although transporting unrelated

substrates, they are known to be ABC-efflux transmembrane proteins [30]. Of

the six further tested isogenic yeast ABC transport mutants yor1Δ, pdr5Δ,

pdr10Δ, pdr11Δ, pdr12Δ and pdr15Δ only pdr11Δ was found to be hyper-

resistant to TcPR-10p, i.e., had a similar phenotype as mutant snq2Δ [49], while

all other had a WT-like phenotype (Fig. 1).

Yeast gene SNQ2 codifies an efflux pump for multiple structurally

unrelated mutagens and drugs [24]. The absence of the export permease

function of Snq2p apparently hinders the export of a cellular component that,

when present in higher than usual amount, inhibits the cytotoxicity of TcPR-10p

in the respective mutant [20]. Pdr11p, an export permease involved in multiple

drug resistance, also mediates sterol uptake when sterol biosynthesis is

compromised. Sterols are an important class of lipids involved in several

functions, e.g., in signal transduction, vesicle formation, lateral aggregation

between proteins and lipids amongst others [50]. Studies of molecular

modelling, nuclear magnetic resonance and saturation transfer difference of the

structure of a PR-10 homolog, Betv1p, identified the existence of binding sites

for fatty acids, flavonoids, cytokines, emodin and sterols, suggesting that this

protein plays an import role in the storage and transport of biologically important

molecules, with activity in various tissues and conditions [51,52]. Binding of PR-

10p to sterols had already been demonstrated in plants: brassinosteroids,

Page 75: TcPR-10: Mecanismo de transporte e ação em fungos

72

hormones involved in the regulation of vegetal growth bind to Betv1p, allowing

their movement inside the plant [53]. Koisisten et al. [51] demonstrated that

dehydroergosterol can bind inside the hydrophobic cavity of Betv1p using Van

der Waals binding and that the majority of the amino acid residues involved in

this interaction are highly conserved. Indeed, TcPR-10p also shows the same

essential sequences of the Betv1p hydrophobic cavity [20]. Although Pdr5p and

Snq2p, Aus1p and Pdr11p of S. cerevisiae are known to transport steroids [54],

only the absence of Snq2p [20] and Pdr11p conferred hyper-resistance to

TcPR-10p (Fig. 1). That may be explained by the fact that only Pdr11p and

Snq2p and not the other two are regulated by transcription factors Pdr1p [55].

This points to an important role for activation of transcription factors by TcPR-

10p. We may, therefore, suggest that, owing to the same sterol affinity,

membrane bound TcPR-10p is dislocated from the membrane sterol by

membrane inserted Pdr11p; this could be the key element of uptake. A lower

transport of TcPR-10p in mutant pdr11Δ would lead to the observed resistance

phenotype.

Therefore, the observed resistance of the yeast cells to TcPR-10p seems

to be linked to at least two factors: 1) a non-functional membrane transport

mechanism (sterol import by both Pdr11p and Snq2p); and 2) the absence of

efflux pump activity for components deactivating TcPR-10p function.

2) Increased susceptibility to TcPR-10p in S. cerevisiae and M. perniciosa is coupled to vacuole formation

Higher amounts of structures resembling vacuoles (Fig. 2A) were

observed in the WT strain (sensitive to TcPR10p) in light microscopy as

compared to a likewise treated snq2Δ mutant (resistant to TcPR-10p, Fig. 2B).

Therefore, yeast cells under the same conditions were stained with neutral red

and representative photos are shown in Fig. 3 (A to D). Neutral red, a vital dye,

visible under white and bleaching resistant, is accumulated in the vacuolar

lumen [56]. This dye has been efficiently used for visualization of this organelle

in different fungi such as Botrytis cinerea [57], Magnaporthe grisea [58] and

Colletotrichum graminicola [59]; however, its use with M. perniciosa has not

been successful (data not shown). However, in this work M. perniciosa has

shown to be recalcitrant to staining of vacuoles with neutral red.

Page 76: TcPR-10: Mecanismo de transporte e ação em fungos

73

In yeast and basidiomycete fungi vacuoles are compartments involved

with degradation of cellular components, supply of ions and metabolites in order

to maintain cellular homeostasis of ions and pH [60,61]. After exposure to

TcPR-10p, both neutral red stained resistant snq2Δ and pdr11Δ mutants

exhibited only a few small vacuoles, indicating that the resistance to TcPR-10p

may be associated with the reduction of vacuole formation. All other tested

transport mutants had phenotypes similar to the WT (same sensitivity to TcPR-

10p and increased number of vacuole) as shown by neutral red staining (data

not shown).

In yeast, incorporation of sterol molecules into the plasma membrane is

not spontaneous - it needs the presence of Pdr11p and Aus1p [54]. The lack of

Pdr11p leads to TcPR-10p hyper-resistance (Fig. 1B) as well as to a reduced to

number of TcPR-10-induced vacuoles (Fig. 3D). As vacuoles are formed by

membranes and the presence of sterols is essential for the membrane

formation [62,63], the TcPR-10p hyper-resistance in both snq2Δ and pdr11Δ

mutants could be associated with the reduction of sterol capture from the

medium and, therefore, reduction of its availability for the formation of

membranes. The decreased TcPR-10p transport through the membrane,

specifically using the ABC type transport protein Pdr11p, leads to the observed

hyper-resistance phenotype (Fig. 1B), whereas in the WT strain and other

tested mutants of ABC membrane transporters, the active transport of TcPR-

10p leads to the sensitivity phenotype (this work Fig. 1 and Pungartnik et al.

[20].

TcPR-10p treated cells of M. perniciosa hyphae also displayed increased

formation of vacuole-like structures in Real Time Microscopy (Fig. 4),

resembling the features observed in TcPR-10p treated WT-like yeast cells (Fig.

1, 2 and 3). Thus, the observed TcPR-10p sensitivity of this basidiomycete

fungus seems to be associated with rapidly accumulated vacuole-like

structures. This process at the same TcPR-10p concentration was much more

rapid as compared to that in yeast (10 min in the former vs. 60 min in the latter).

The formation of vacuole-like structures in both organisms may be caused by

the induction of autophagy, a process already observed in M. perniciosa where

gene MpATG8 was up-regulated after exposure to DNA damaging 4NQO and

Page 77: TcPR-10: Mecanismo de transporte e ação em fungos

74

H2O2 (generating oxidative stress) when hyphae were grown in glucose and

during events that preceded basidiocarp formation [49].

3) Absence of autophagy in yeast mutant atg8Δ leads to higher TcPR-10p

sensitivity via increased ROS formation.

The autophagic route is well conserved in different fungi [64], therefore,

heterologous expression of the putative gene MpATG8 of M. perniciosa in yeast

S. cerevisiae was successfully accomplished (Fig. 4, Supp mat). MpATG8 was

cloned in a single copy plasmid pRS313 [65] and transformed into WT and

atg8Δ mutant strains of yeast, that were then exposed to TcPR-10p (3 µg/mL).

As expected, the atg8Δ mutant (AP03) was highly sensitive to TcPR-10p (Fig.

5). This may be explained by the non-functionality of the autophagic route, i.e.

low induction of vacuoles [autophagosomes] that led to accumulation of

degraded RNA and/or increased ROS formation, inducing cell death (lower

survival). The transformed atg8Δ mutant containing a single copy of the

MpATG8 gene (AP04) had WT-like response (AP01 and AP02). The restoration

of WT-like resistance phenotype indicates a probable functional expression of

MpAtg8p in yeast mutant atg8Δ.

The increase of degraded RNA might generate intracellular oxidative

stress [46]. Therefore we stained the transformants AP01, 02, 03 and 04 after

treatment with TcPR-10p (3 µg/mL; 0 and 48 h) with DHE and followed ROS

induction by fluorescence microscopy (Fig. 6). The formation of free radicals

could be observed in all tested transformants, but mainly in transformant AP03

(Fig. 6C). ROS act as signalling molecules in several processes, including

autophagy [42] and in high levels are harmful to the cells, leading to

programmed cellular death (PCD) [66]. Our results suggest that increased

exposure to TcPR-10p, leads to increased RNAse activity in the cell that in turn

induces increased intracellular oxidative stress. This can be proven with

transformant AP03 whose non-functional autophagic process allowed the

accumulation of intracellular ROS, in clear contrast to transformant AP04

(mutant atg8Δ containing gene MpATG8) that presented WT-like fluorescence

and, therefore, less oxidative stress. We may thus suggest that the oxidative

Page 78: TcPR-10: Mecanismo de transporte e ação em fungos

75

stressgenerated by increased TcPR-10p exposure can be diminished/lowered

by the restoration of the autophagic route.

Recent results by Cavalcante-Silva (2013) (unpublished data) on

proteomics of M. perniciosa after exposure to TcPR-10p indicate an over

expression of proteins involved in oxidative stress response (e.g. heat shock

protein HSS1, thiazole synthase, chaperone protein Dna K), cellular redox

homeostasis (malate dehydrogenase), protein biosynthesis (eukaryotic

translation initiation factor 5A-1) and autophagy (autophagy –related protein

18).

In summary, our results indicate that a second yeast ABC transporter,

Pdr11p (apart from Snq2p), is involved in the uptake of pathogenesis related

TcPR-10p, and that, once in the cell, this protein induces formation of vacuole-

like structures. Resistance to TcPR-10p in yeast is associated with low vacuole

formation. Increased formation of vacuole-like organelles in both WT yeast and

M. perniciosa after TcPR-10p exposure is associated with sensitivity to this

fungicide. Absence of autophagy in yeast leads to high TcPR-10p sensitivity,

which can be phenotypically complemented by transforming a yeast atg8Δ

mutant with a single copy of the MpATG8 gene. Restoration of WT resistance to

TcPR-10p and to reduced levels of ROS indicate that heterologous functional

expression of MpAtp8p restores autophagy. Our research gives a first indication

that intracellular TcPR-10p induces ROS and vacuoles and suggests that

autophagy plays an important role in survival of cells exposed to this protein.

Acknowledgments. Research supported by grants from CNPq and BNB. We

thank Acassia Leal for access to her cDNA library, Wagner Macena for

technical support constructing the plasmids and Marco Antonio Costa for using

the LEICA microscope. F.A.C. Silva held a CAPES doctoral fellowship

(Programa de Pós-Graduação em Genética e Biologia Molecular) and, A. C. F.

Pereira held a CNPq fellowship (Programa de Pós-Graduação em Biologia e

Biotecnologia de Microrganismos). C.P. held a DESI program fellowship at

CIRAD (La recherche agronomique pour le développement), Montpellier Rio

Imaging, France.

Page 79: TcPR-10: Mecanismo de transporte e ação em fungos

76

MATERIALS AND METHODS

Yeast strains, media, solutions and growth conditions

S. cerevisiae strains used in this work are listed in Table 1. Media,

solutions and buffers were prepared according to Burke et al. [67]. Strains were

routinely grown in rich liquid medium YEL (20 g/L glucose, 20 g/L peptone, 10

g/L yeast extract) under constant aeration in a gyratory shaker (New Brunswick,

G-76) for 2 to 3 days to stationary growth phase (STAT cells, density of

approximately 2 × 108/mL) or in solid medium YPD (YEL + 20 g/L agar) at 28

°C. Exponentially growing cells (LOG cells) were obtained by suspending a

colony in 100 μL saline (0.9% NaCl), which was spread on a YPD plate and

incubated overnight (16 – 18 h at 30 °C). The cells were collected, washed

three times (5 mL saline, 3 min, 5000 rpm) and resuspended to a final

concentration of 1 × 108 cells/mL. A culture was considered in LOG phase when

showing at least 30% of budding cells. To ascertain their respiratory

competence and for elimination of spontaneously accumulated petites, all

strains were pre-grown on solid YPG medium (YPD in which glucose was

replaced by 2% glycerol) before being used for experimentation.

Yeast survival after TcPR-10p exposure

S. cerevisiae was exposed to TcPR-10p in the following manner: yeast

LOG cells (OD660 between 1,2 to 2,4 x107/ mL) were treated in phosphate

buffer (50 mM; pH 7.4) containing 3 μg/mL TcPR-10p, at 25°C and samples

were collected up to 48 h at different exposure times. Samples were

appropriately diluted, plated on YPD agar and assayed for survival after 2 to 3

days of incubation at 28 °C. Graphs were generated by the GraphPad Prism®

program (GraphPad Software Incorporation. San Diego, CA); error bars

represent standard deviations of at least 3 independent experiments. Survival is

presented in a semi-log graph [68] for rapid estimation of dose reduction factor.

When not observable, error bars are minor or equal size of respective symbol.

Page 80: TcPR-10: Mecanismo de transporte e ação em fungos

77

M. perniciosa growth conditions

M. perniciosa strain ALF553 cultures were grown as described by Filho

et al. [69]. Dikaryotic cultures were grown in CPD (2% glucose, 2% peptone) in

liquid media, without agitation, at 25 °C for 5 to 7 days. M. perniciosa was

obtained from the fungal collection of UESC, originally kept at Comissão

Executiva do Plano da Lavoura Cacaueira.

Real time microscopy of TcPR-10p treated yeast and M. perniciosa

S. cerevisiae LOG cells of WT and snq2Δ mutant were placed in an

observation chamber (lifetechnology-Switzerland) and microscopically observed

during up to 4 h of TcPR-10p exposure (3 µg/mL). The same procedure was

used with dikaryotic strain 533 of M. perniciosa. The system of Real Time

Microscopy Richardson-Perkin Elmer [RTM 2.5 680 x 480 pixels, Sony 3CCD]

at CIRAD (La recherche agronomique pour le développement), Montpellier Rio

Imaging, France, was used. Cells were observed under an immersion oil 100 X

objective Fluotar (Numeral aperture 1,3). RTMicroscopy is based on black field

microscopy particularly suitable to observe living cells in a non invasive way

with a high spatial resolution (800 nm). A movie was recorded (Movie S1-

supplementary material) and pictures were extracted.

TcPR-10p induced vacuole formation

S. cerevisiae LOG cells of WT, snq2Δ and pdr11Δ mutants were

exposed to TcPR-10p for 0 and 6 h and then washed 3x with saline solution, re-

suspended in 100 µL of saline and incubated at 28 °C with Neutral Red (0.2

mg/mL) for 30 min in the dark. Vacuole formation was observed under a light

microscope (Olympus CX41) using 40x objectives in bright field.

Cloning of MpATG8

MpATG8 of M. perniciosa cDNA was identified from a previously

constructed mycelial cDNA library in the pDNR-LIB plasmid using DB SMART

Creator cDNA (Clontech) that had been derived from primordia and mature

basidiomata [70]. Molecular genetics methods were according to Ausubel et al.,

Page 81: TcPR-10: Mecanismo de transporte e ação em fungos

78

[71] and yeast methods according to Burke et al. [67]. MpATG8 putative gene

(supplemental material, 1) was amplified and ligated into plasmid pRS313 [65]

generating pLBF13 (supplemental material, 2). Yeast WT and atg8Δ mutant

were transformed with either empty pRS313 or pLBF3 plasmid, generating

transformants AP01 (WT [pRS313]); AP02 (WT [pLBF3]); AP03 (atg8Δ

[pRS313]) and AP04 (atg8Δ [pLBF3]). Yeast transformants were grown in

selective medium SC-His (1.7 g/L nitrogen base without amino acids, 5 g/L

ammonium sulphate, 20 g/L glucose, 0.04 g/L adenine hemisulfate, 0.06 g/L L-

leucine, 0.03 g/L L-lysine, 0.04 g/L L-tryptophan, 0.02 g/L uracil). Transformants

were checked for TcPR-10p resistance as described above.

Fluorescence assay of TcPR-10p induced ROS

LOG phase yeast transformants AP01, AP02, AP03 and AP04 were

treated with 3µg/mL TcPR-10p for 48 h. Stock solution (1 mg/mL) of the

fluorogenic probe dihydroethidium (DHE, SIGMA-ALDRICH®) was prepared by

dissolving it in dimethyl sulfoxide (Sigma, St. Louis, MO, USA). One mL of yeast

cells was stained by addition of 1 μL of stock solution and mixed by inversion,

incubated for 30 min at 28 oC, washed 3 times with saline, and re-suspended in

100 μL of saline. An aliquot was used to check oxidative/reductive stress of the

cells. Cytosolic DHE when oxidized by ROS (singlet oxygen, hydroxyl radicals,

superoxide, hydroperoxides and peroxides) yields ethidium, which intercalates

with a cell´s DNA and fluoresces brightly red (λ=605 nm) [47]. ROS induction

was observed by fluorescence microscopy DMRA2 (Leica®) attached with DHE

filter. Images were captured using 40x objective under bright field as well as

under fluorescent filters using the IM50 software (Leica®). Photos represent 5

samples from at least 3 independent experiments.

Page 82: TcPR-10: Mecanismo de transporte e ação em fungos

79

Figure Legends:

Figure 1. Survival of S. cerevisiae in LOG phase exposed to TcPR-10p (3

µg/mL) for 0, 1, 6 and 24 h: A) WT BY10000 (); pdr5Δ (X); pdr10Δ ();

pdr12Δ (); pdr15Δ (); yor1Δ (▲) and pdr11Δ ()

Figure 2. LOG phase cells of S. cerevisiae WT and snq2Δ mutant observed in

real time microscopy. A) non treated WT and snq2Δ kept for 2 and 4 h; B) cells

exposed to TcPR-10p (3 µg/mL): WT for 0, 60 and 90 min and snq2Δ for 0, 90

and 120 min. Bar: 10 µm.

Figure 3. Observation of vacuoles in LOG phase cells of S. cerevisiae exposed

to TcPR-10p (3 µg/mL) 0 and 6 h: A) WT BY10000, B) snq2Δ, C) WT BY10000

and D) pdr11Δ. Bar: 50 µm.

Figure 4. M. perniciosa hyphae observed in real time microscopy. A) Control;

B) Hyphae exposed to TcPR-10p (3 µg/mL).

Figure 5. Survival of yeast transformants exposed to TcPR-10p (3 µg/mL) for 0,

12, 24 and 48 h. () AP01 (WT [pRS313]) (WT [pLBF3]); () AP03

(atg8Δ [pRS313]) and () AP04 (atg8Δ [pLBF3]).

Figure 6. Production of ROS observed in epifluorescence photomicroscopy

after 0 and 48 h exposure to TcPR-10p (3 µg/mL). A) AP01 (WT [pRS313]), B)

AP02 (WT [pLBF3]), C) (atg8Δ [pRS313]) and D) AP04 (atg8Δ [pLBF3]). Bar:

50 µm.

Page 83: TcPR-10: Mecanismo de transporte e ação em fungos

80

Table 1 - Yeast strains and plasmid

Strains Genotype Source: Gene/protein function

BY (WT) MATα his3∆1 leu2∆0 lys2∆0 ura3∆0

EUROSCARF Wild type for membrane transporters and autophagy

yor1Δ Same as WT, YGR281w deleted

EUROSCARF Plasma membrane transporter involved in the tolerance to organic toxic anions

pdr5Δ Same as WT, YOR153w deleted

EUROSCARF Plasma membrane transporter involved in the resistance to multiple drugs

pdr10Δ Same as WT, YOR328w deleted

EUROSCARF Plasma membrane transporter involved in the resistance to multiple drugs

pdr11Δ Same as WT, YIL013c deleted

EUROSCARF Plasma membrane transporter involved in the absorption of sterol (ABC Transport)

pdr12Δ Same as WT, YPL058c deleted

EUROSCARF Plasma membrane transporter acting as a weak organic acid drawing pump

pdr15Δ Same as WT, YDR406w deleted

EUROSCARF Plasma membrane transporter

snq2Δ Same as WT, YDR011w deleted

EUROSCARF Multiple drugs efflux pump

atg8Δ Same as WT, YBL078C deleted

EUROSCARF

Expansion of the phagophore during autophagosome formation, influence the size of the autophagosome

AP01 (WT [pRS313])

Same as BY, containing pRS313

This work Wild type for membrane transporters and autophagy

AP02 (WT [pLBF3])

Same as AP01, containing putative ATG8 of M. perniciosa

This work -

AP03 (atg8Δ [pR313])

Same as atg8Δ, containing pRS313

This work Null atg8 mutations severely impair formation of autophagosomes

AP04 (atg8Δ [pLBF3])

Same as AP03, containing putative ATG8 of M. perniciosa

This work -

Plasmid name Relevant sequence

identification Source

pRS313 Single copy plasmid, HIS3 prototrophy Sikorsky & Hieter [65] -

pLBF3 Same as pRS3013 containing putative MpATG8

This work -

Page 84: TcPR-10: Mecanismo de transporte e ação em fungos

81

Figure 1

Page 85: TcPR-10: Mecanismo de transporte e ação em fungos

82

Figure 2

TcPR10 (3µg/mL) (minutes)

Page 86: TcPR-10: Mecanismo de transporte e ação em fungos

83

Figure 3

Page 87: TcPR-10: Mecanismo de transporte e ação em fungos

84

Figure 4

Page 88: TcPR-10: Mecanismo de transporte e ação em fungos

85

Figure 5

Page 89: TcPR-10: Mecanismo de transporte e ação em fungos

86

Figure 6

Page 90: TcPR-10: Mecanismo de transporte e ação em fungos

87

REFERENCES 1. Dechorgnat J, Patrit O, Krapp A, Fagard M, Daniel-Vedele F (2012) Characterization of the Nrt2.6

gene in Arabidopsis thaliana: a link with plant response to biotic and abiotic stress. PLoS One 7: e42491.

2. Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, et al. (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant physiology 158: 854-863.

3. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post‐genome

era: past, present and future. The Plant Journal 61: 1041-1052. 4. Lee I, Seo YS, Coltrane D, Hwang S, Oh T, et al. (2011) Genetic dissection of the biotic stress

response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences 108: 18548-18553.

5. Graham M, Weidner J, Wheeler K, Pelow M, Graham T (2003) Induced expression of pathogenesis-related protein genes in soybean by wounding and the< i> Phytophthora sojae</i> cell wall glucan elicitor. Physiological and molecular plant pathology 63: 141-149.

6. Okushima Y, Koizumi N, Kusano T, Sano H (2000) Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol 42: 479-488.

7. Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46: 941-950.

8. Islam M, Sturrock R, Holmes T, Ekramoddoullah A (2009) Ultrastructural studies of< i> Phellinus sulphurascens</i> infection of Douglas-fir roots and immunolocalization of host pathogenesis-related proteins. Mycological research 113: 700-712.

9. Lebel S, Schellenbaum P, Walter B, Maillot P (2010) Characterisation of the Vitis vinifera PR10 multigene family. BMC plant biology 10: 184.

10. Xie YR, Chen ZY, Brown RL, Bhatnagar D (2010) Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. J Plant Physiol 167: 121-130.

11. Chadha P, Das RH (2006) A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity. Planta 225: 213-222.

12. Lytle BL, Song J, de la Cruz NB, Peterson FC, Johnson KA, et al. (2009) Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds. Proteins 76: 237-243.

13. Bantignies B, Séguin J, Muzac I, Dédaldéchamp F, Gulick P, et al. (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant molecular biology 42: 871-881.

14. Kim ST, Yu S, Kang YH, Kim SG, Kim JY, et al. (2008) The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant cell reports 27: 593-603.

15. Park CJ, Kim KJ, Shin R, Park JM, Shin YC, et al. (2004) Pathogenesis‐related protein 10

isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal 37: 186-198.

16. Kim SG, Kim ST, Wang Y, Yu S, Choi IS, et al. (2011) The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants. Molecules and cells 31: 25-31.

17. He M, Xu Y, Cao J, Zhu Z, Jiao Y, et al. (2012) Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma.

18. Aime MC, Phillips-Mora W (2005) The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97: 1012-1022.

19. Gesteira AS, Micheli F, Carels N, Da Silva AC, Gramacho KP, et al. (2007) Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann Bot 100: 129-140.

20. Pungartnik C, da Silva AC, de Melo SA, Gramacho KP, de Mattos Cascardo JC, et al. (2009) High-affinity copper transport and Snq2 export permease of saccharomyces cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao. Molecular plant-microbe interactions 22: 39-51.

21. Menezes SP, dos Santos JL, Cardoso TH, Pirovani CP, Micheli F, et al. (2012) Evaluation of the allergenicity potential of TcPR-10 protein from Theobroma cacao. PLoS One 7: e37969.

22. George AM, Jones PM (2012) Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog Biophys Mol Biol 109: 95-107.

23. Ververidis P, Davrazou F, Diallinas G, Georgakopoulos D, Kanellis A, et al. (2001) A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to

Page 91: TcPR-10: Mecanismo de transporte e ação em fungos

88

cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae. Current genetics 39: 127-136.

24. Servos J, Haase E, Brendel M (1993) Gene SNQ2 of Saccharomyces cerevislae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Molecular and General Genetics MGG 236: 214-218.

25. Bauer BE, Wolfger H, Kuchler K (1999) Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461: 217-236.

26. Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15: 137-145.

27. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10: 218-227.

28. Wolfger H, Mamnun YM, Kuchler K (2001) Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Research in microbiology 152: 375-389.

29. Del Sorbo G, Schoonbeek H-j, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal genetics and biology 30: 1-15.

30. Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, et al. (2001) The pleitropic drug ABC transporters from Saccharomyces cerevisiae. Journal of molecular microbiology and biotechnology 3: 207-214.

31. Kilaru A, Bailey BA, Hasenstein KH (2007) Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol Lett 274: 238-244.

32. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581: 2156-2161.

33. Parker R (2012) RNA Degradation in Saccharomyces cerevisae. Genetics 191: 671-702. 34. MacIntosh GC, Bariola PA, Newbigin E, Green PJ (2001) Characterization of Rny1, the

Saccharomyces cerevisiae member of the T2 RNase family of RNases: unexpected functions for ancient enzymes? Proc Natl Acad Sci U S A 98: 1018-1023.

35. Roberts P, Moshitch-Moshkovitz S, Kvam E, O'Toole E, Winey M, et al. (2003) Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Molecular biology of the cell 14: 129-141.

36. Cebollero E, Reggiori F (2009) Regulation of autophagy in yeast< i> Saccharomyces cerevisiae</i>. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1793: 1413-1421.

37. Wang K, Klionsky DJ (2011) Mitochondria removal by autophagy. Autophagy 7: 297-300. 38. Yorimitsu T, Zaman S, Broach JR, Klionsky DJ (2007) Protein kinase A and Sch9 cooperatively

regulate induction of autophagy in Saccharomyces cerevisiae. Molecular biology of the cell 18: 4180-4189.

39. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10: 458-467.

40. Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, et al. (2012) The Autophagy-related Protein Kinase Atg1 Interacts with the Ubiquitin-like Protein Atg8 via the Atg8 Family Interacting Motif to Facilitate Autophagosome Formation. Journal of Biological Chemistry 287: 28503-28507.

41. Itoh T, Fukuda M (2011) A possible role of Atg8 homologs as a scaffold for signal transduction. Autophagy 7: 1080-1081.

42. Zhang Y, Qi H, Taylor R, Xu W, Liu LF, et al. (2007) The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3: 337-346.

43. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, et al. (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. The Journal of cell biology 147: 435-446.

44. Khan IA, Lu J-P, Liu X-H, Rehman A, Lin F-C (2012) Multifunction of autophagy-related genes in filamentous fungi. Microbiological research.

45. Mizushima N (2007) Autophagy: process and function. Genes & Development 21: 2861-2873. 46. Mroczek S, Kufel J (2008) Apoptotic signals induce specific degradation of ribosomal RNA in

yeast. Nucleic Acids Res 36: 2874-2888. 47. Bradner J, Nevalainen K (2003) Metabolic activity in filamentous fungi can be analysed by flow

cytometry. Journal of microbiological methods 54: 193-201. 48. Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S (2009) ABC transporters in Saccharomyces

cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiology and Molecular Biology Reviews 73: 577-593.

Page 92: TcPR-10: Mecanismo de transporte e ação em fungos

89

49. Pungartnik C, Melo SC, Basso TS, Macena WG, Cascardo JC, et al. (2009) Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa. Fungal Genet Biol 46: 461-472.

50. Jacquier N, Schneiter R (2012) Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem Mol Biol 129: 70-78.

51. Koistinen KM, Soininen P, Venäläinen TA, Häyrinen J, Laatikainen R, et al. (2005) Birch PR-10c interacts with several biologically important ligands. Phytochemistry 66: 2524-2533.

52. Kundu S, Roy D (2010) Structural study of biologically significant ligands with major birch pollen allergen Betv1 by docking and molecular dynamics simulation. Bioinformation 4: 326-330.

53. Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, et al. (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol 325: 123-133.

54. Kohut P, Wustner D, Hronska L, Kuchler K, Hapala I, et al. (2011) The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study. Biochem Biophys Res Commun 404: 233-238.

55. Prasad R, Goffeau A (2012) Yeast ATP-binding cassette transporters conferring multidrug resistance. Annual Review of Microbiology 66.

56. Hickey PC, Swift SR, Roca MG, Read ND (2004) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods in microbiology 34: 63-87.

57. Weber RWS, Wakley GE, Pitt D (1999) Histochemical and ultrastructural characterization of vacuoles and spherosomes as components of the lytic system in hyphae of the fungus Botrytis cinerea. The Histochemical Journal 31: 293-301.

58. Weber RWS, Wakley GE, Thines E, Talbot NJ (2001) The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria ofMagnaporthe grisea. Protoplasma 216: 101-112.

59. Schadeck RJ, Randi MA, de Freitas Buchi D, Leite B (2003) Vacuolar system of ungerminated Colletotrichum graminicola conidia: convergence of autophagic and endocytic pathways. FEMS Microbiol Lett 218: 277-283.

60. Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793: 650-663.

61. Weber RWS (2002) Vacuoles and the fungal lifestyle. Mycologist 16: 10-20. 62. Friant S, Lombardi R, Schmelzle T, Hall MN, Riezman H (2001) Sphingoid base signaling via Pkh

kinases is required for endocytosis in yeast. The EMBO journal 20: 6783-6792. 63. Pichler H, Riezman H (2004) Where sterols are required for endocytosis. Biochim Biophys Acta

1666: 51-61. 64. Pollack JK, Harris SD, Marten MR (2009) Autophagy in filamentous fungi. Fungal Genetics and

Biology 46: 1-8. 65. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for

efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27. 66. Macip S, Igarashi M, Berggren P, Yu J, Lee SW, et al. (2003) Influence of induced reactive

oxygen species in p53-mediated cell fate decisions. Molecular and cellular biology 23: 8576-8585.

67. Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual: CSHL Press.

68. Brendel M, Haynes RH (1973) Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Molecular and General Genetics MGG 125: 197-216.

69. Filho DF, Pungartnik C, Cascardo JC, Brendel M (2006) Broken hyphae of the basidiomycete Crinipellis perniciosa allow quantitative assay of toxicity. Curr Microbiol 52: 407-412.

70. Pires AB, Gramacho KP, Silva DC, Góes-Neto A, Silva MM, et al. (2009) Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC microbiology 9: 158.

71. Ausubel F, Brent R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1989) Current Protocols in Molecular Biology. New York: Wiley 1 and 2.

Page 93: TcPR-10: Mecanismo de transporte e ação em fungos

90

SUPPLEMENTARY MATERIAL Supp. 1. Nucleotide and amino acid sequences of Moniliophthora perniciosa autophagy-related

protein 8 precursor (gi|189380199|and gi|189380200). Asterisk represents open reading frame

termination codon. MpATG8 pututive gene.

1 ATG AGG TCC AAA TTC AAG GAT GAG CAC CCC TTT GAG AAG CGC AAG GCT 48

M R S K F K D E H P F E K R K A

49 GAG GCG GAG CGT ATT CGA CAG AAG TAC CCA GAT CGT ATT CCT GTC ATC 97

E A E R I R Q K Y P D R I P V I

98 TGT GAG AAG GCG GAT AGA ACA GAT ATC CCC ACT ATT GAC AAG AAG AAG 114

C E K A D R T D I P T I D K K K

115 TAT TTG GTG CCC TCT GAT CTC ACT GTG GGC CAA TTC GTC TAT GTC ATT 131

Y L V P S D L T V G Q F V Y V I

132 CGC AAA CGG ATC AAG CTT GCA CCC GAG AAA GCC ATT TTT ATT TTC GTT 148

R K R I K L A P E K A I F I F V

149 GAC GAA GTA CTT CCG CCC ACA GCA GCT CTT ATG AGC GCT ATA TAC GAG 165

D E V L P P T A A L M S A I Y E

166 GAA CAC AAG GAC GAA GAC AAC TTT CTT TAC GTC AGC TAC TCG GGC GAG 182

E H K D E D N F L Y V S Y S G E

183 AAC ACG TTC GGG CAG GAA GGT TGG ATT GAG CTA CCG TCG GAT TCA TGA 199

N T F G Q E G W I E L P S D S *

Supp. 2. Molecular cloning of gene MpATG8 into vector pRS313. E= EcoR I; H= HIS3; A=

ARSH4; R= ampicillin gene

resistance. Generating

plasmid pLBF3.

Supp. 3 – PCR of yeast

transformants to confirm insertion of the

MpATG8 gene using specific primers. C+

amplification of cDNA of M. perniciosa. A =

AP01, B = AP02, D = AP03, C = AP04.

Movie Supp. 4 – WT 1h TcPR-10. mov: LOG phase cells of S. cerevisiae WT observed in real time

microscopy after exposure to TcPR-10p (3µg/mL) for 1h

Supp. 5 – MPTcPR-10. mov: M. perniciosa hyphae observed in real time microscopy after exposure to TcPR-10p (3 µg/mL) for 1h.

E

MpAtg8

E R A H

pRS313

Page 94: TcPR-10: Mecanismo de transporte e ação em fungos

91

VI. CONCLUSÕES GERAIS

A sensibilidade do fungo M. perniciosa à proteína PR10 (TcPR-10)

envolve proteínas de resposta a estresse e oxiduredutase indicando

possíveis formas de ação desta proteína antifúngica

TcPR-10 penetra na célula utilizando uma via similar a rota dos esteróis

conforme sugerido pela resistência dos mutantes pdr11Δ e snq2Δ

TcPR-10 induz formação de vacúolos e a rota autofágica é essencial

nos fungos M. perniciosa e S. cerevisiae

Primeiro relato de que TcPR-10 causa estresse oxidativo (ROS) em

fungos