92
1 Página1 T T E E C C N N O O L L O O G G I I A A D D E E E E S S T T A A M M P P A A G G E E M M Professor: Eng. Msc. Ivar Benazzi Jr. Estagiário: Leandro Henrique Aio DM 0206007-01 Revisão Julho 2007 FACULDADE DE TECNOLOGIA DE SOROCABA

TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

Embed Size (px)

Citation preview

Page 1: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

1

Pági

na1

TTEECCNNOOLLOOGGIIAA DDEE EESSTTAAMMPPAAGGEEMM

Professor: Eng. Msc. Ivar Benazzi Jr. Estagiário: Leandro Henrique Aio

DM 0206007-01

Revisão Julho 2007

FACULDADE DE TECNOLOGIA DE SOROCABA

Page 2: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

2

TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO

1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação pág 06 1.3- Generalidades dos Metais pág 07

1.3.1- Operações no Trabalho dos Metais em Chapas pág 08 1.3.2- Os Metais em Chapas pág 08 1.3.3- Fabricação dos Metais Laminados pág 08 1.3.4- Características dos Metais em Chapas pág 10 1.3.5- Características das Chapas pág 10 1.3.6- Verificações das Chapas pág 10

2- OPERAÇÕES DE CORTE pág 12 2.1- Corte com tesoura guilhotina pág 12

2.1.1- Força de corte em tesoura guilhotina pág 13 2.1.2- Fases do corte em tesoura guilhotina pág 13 2.1.3- Tesoura guilhotina com facas paralelas pág 15 2.1.4- Tesoura guilhotina com facas inclinadas pág 16 2.1.5- Condição máxima de inclinação das facas pág 17 2.1.6- Geometria de corte das facas pág 19 2.1.7- Folga entre as facas da guilhotina pág 19

2.2- Puncionamento pág 19 2.2.1- Força de corte no puncionamento pág 20 2.2.2- Folga entre punção e matriz pág 20 2.2.3- Dimensionamento das peças pág 22 2.2.4- Utilização racional do material pág 22

2.2.4.1- Estampo com disposição normal pág 24 2.2.4.2- Estampo com disposição normal pág 25

2.2.4.3- Estampo com disposição e inversão de corte pág 26 2.2.4.4- Estampo de peças circulares pág 27 2.2.5- Determinação do posicionamento da espiga pág 30

2.2.5.1- Método analítico pág 30 2.2.5.2- Método do baricentro do perímetro pág 31

2.2.5.3- Espiga de Fixação pág 34 2.2.6- Construção e execução dos estampos de corte pág 36

2.2.6.1- Simples de corte pág 36 2.2.6.2- Aberto com guia para o punção pág 36 2.2.6.3- Fechado com guia p/ o punção e p/ a chapa pág 36 2.2.6.4- Aberto com colunas de guias pág 37 2.2.6.5- Aberto com sujeitador guiado por colunas pág 37 2.2.6.6- Aberto com sujeitador e porta-punção guiado por colunas pág 38 2.2.6.7- Progressivo pág 38

2.2.7- Estampos progressivos de corte pág 39 2.2.8- Elementos construtivos dos estampos de corte pág 41

2.2.8.1- Limitadores de avanço pág 41 2.2.8.2- Placas de choque pág 45

2.2.8.3- Punções pág 46 2.2.8.4- Porta-punção pág 48 2.2.8.5- Régua de Guia da Fita pág 49

Page 3: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

3

2.2.8.6- Apoio da tira pág 50 2.2.8.7- Placa Guia pág 51 2.2.8.8- Molas pág 51

2.2.9- Matrizes pág 53 2.2.9.1- Características geométricas pág 54 2.2.9.2- Cálculo da vida útil e espessura do talão pág 54 2.2.9.3- Cálculo da espessura da matriz pág 54 2.2.9.4- Cálculo da espessura da parede entre furos pág 55

2.2.9.5- Materiais para punções e matrizes pág 56

3- OPERAÇÕES DE DEFORMAÇÃO pág 57 3.1- Dobra pág 57

3.1.1- Cálculo da força de dobramento pág 57 3.1.2- Raio mínimo de dobra pág 58 3.1.3- Cálculo do comprimento desenvolvido pág 59 3.1.4- Dobras de perfil em “U” pág 61

3.1.4.1- Força de dobramento s/ planificação de fundo pág 62 3.1.4.2- Força de dobramento c/ planificação de fundo pág 62 3.1.4.3- Força de dobramento c/ utilização de pisadores pág 62 3.1.5- Estampos de enrolar pág 63 3.2- Repuxo pág 64

3.2.1- Cálculo do diâmetro do blanque pág 64 3.2.1.1- Método das igualdades entre as áreas pág 64 3.2.1.2- Método do baricentro do perímetro pág 65

3.2.2- Repuxo em vários estágios pág 66

4- FERRAMENTAS pág 73 4.1- Classificações das ferramentas pág 73 4.2- Elementos Normalizados pág 74

5- EQUIPAMENTOS pág 76 5.1 – Prensas pág 76

5.1.1 - Características das Prensas pág 76 5.1.2 - Escolha da Prensa Conveniente pág 77 5.1.3 - Dispositivos de Proteção pág 77

5.2 - Corte a Laser pág 78 5.3 – Corte a Plasma pág 79

5.3.1 - Relação entre Processos (Oxi-Corte, Plasma, Laser) pág 80 5.4 - Corte a Jato de água pág 81 5.5 – Puncionadeira: Corte e Repuxo pág 81

5.5.1 – Esquema de Repuxo e Estampo Progressivo pág 82 5.6 – Dobradeira pág 82 5.7 - Automações em Prensas pág 83

5.7.1 - Desbobinador para Fitas pág 83 5.7.2 - Endireitadores para Fitas pág 84

6 - SIMBOLOGIA DE ESTAMPAGEM pág 867 - ROTEIRO DE ESTAMPAGEM pág 878 - COMPONENTES FUNDAMENTAIS DE UM ESTAMPO pág 889 - REPRESENTAÇÃO DE ESTAMPO DE CORTE EXPLODIDO pág 9110 - BIBLIOGRAFIA pág 92

Page 4: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

4

1- INTRODUÇÃO

Estampagem é o conjunto de operações com as quais sem produzir cavaco submetemos uma chapa plana a uma ou mais transformações com a finalidade de obtermos peças com geometrias próprias. A estampagem é uma deformação plástica do metal. Os estampos são compostos de elementos comuns a todo e quaisquer tipos de ferramentas (base, inferior, cabeçote ou base superior, espiga, colunas de guia, placa de choque, placa guia, parafusos e pinos de fixação, e outros) e por elementos específicos e responsáveis pelo formato da peça a produzir (matriz e punções). Veja figura abaixo a nomenclatura:

Page 5: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

5

Outra definição dá-se por processos de conformação mecânica, realizado geralmente a frio, que compreende um conjunto de operações, por intermédio das quais uma chapa plana é submetida a transformações por corte ou deformação, de modo a adquirir uma nova forma geométrica.

1.1 - Operações de corte

• Corte • Entalhe • Puncionamento • Recorte • Transpasse

Corte – Quando há separação total do material.

Entalhe – Quando há corte sem separação total.

Puncionamento – É a obtenção de figuras geométricas por meio de punção e matriz de modo impactivo.

Page 6: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

6

Recorte – É a operação de corte realizada pela segunda vez.

Transpasse – É a operação de corte associada à operação de deformação (enrijecimento em chapas muito finas).

Exemplos: fuselagem de aviões, painéis de automóveis, brinquedos, eletrodomésticos, etc.

1.2 - Operações de deformação

• Dobramento • Repuxo • Extrusão • Cunhagem

Page 7: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

7

Dobramento - É a mudança de direção da orientação do material.

Repuxo - Obtenção de peças ocas a partir de chapas ou placas planas devido à penetração do material

na matriz forçada pelo punção (Ex. lataria de automóvel, copo de filtro de óleo, etc).

Extrusão - Deformação do material devido a esforços de compressão (Ex. vasos de pressão, cápsula de bala de revolver, tubo aerossol, extintores).

Utilização de vanguarda – caixilharia, tubos sem costura, tubos de pasta de dente, cápsculas de armamentos, etc.

Cunhagem - Obtenção de figuras em alto ou baixo relevo através de amassamento do material (ex. moedas, medalhas, etc )

1.3 - Generalidades dos Metais

O trabalho dos metais em chapas é o conjunto de operações a que se submete a chapa para transformá-la em um objeto de forma determinada. A extensão deste método de trabalho é devida:

Page 8: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

8

• Capacidade de Produção • Baixo preço de Custo • Intercambiabilidade • Leveza e Solidez das Peças Obtidas

As possibilidades deste sistema de trabalho foram melhoradas e aumentadas devido:

À melhora das qualidades: a) do material a ser trabalhado; b) dos materiais utilizados para fabricar as ferramentas; c) ao estabelecimento de dados e normas técnicas cada vez mais precisas.

Na origem deste método estava baseado na prática adquirida e no empirismo. As ferramentas eram fabricadas nas oficinas sem intervenção de qualquer assistência técnica. Atualmente a maioria das oficinas possui um escritório técnico (engenharia) para estudos de ferramentaria.

Indústrias inteiras nasceram do mencionado processo de trabalho. As aplicações deste método de fabricação de peças encontram-se nos setores mais variados, desde brinquedos até material de transporte entre muitos outros.

1.3.1 - Operações no Trabalho dos Metais em Chapas

As diferentes operações a que é submetido o metal, na matriz, podem ser subdivididas em duas categorias:

1 – Separação da matéria; 2 – Modificação da forma do material.

A primeira categoria abrange todas as operações de corte: cisalhar, puncionar, recortar as sobras, corte parcial, cortar, cortar na forma, repassar.

Na segunda categoria encontram-se: a) Modificação simples da forma: Curvar, Dobrar, Enrolar totalmente, enrolar os extremos,

aplainar, estampar; b) embutir e repuxar

1.3.2 - Os Metais em Chapas

A maioria dos metais pode ser trabalhada sob forma de chapas. Nesta apostila, nos limitaremos á citar os principais metais utilizados:

• Aço; • Cobre; • Alumínio; • Níquel e suas ligas; • Zinco; • Metais Preciosos.

1.3.3 - Fabricação dos Metais Laminados

Os metais laminados se apresentam sob forma de: - Chapas: chapas retangulares de dimensões: 700 x 2000 - 850 x 2000 - 1000 x 2000 etc.

Page 9: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

9

- Tiras: Laminado metálico de 500 mm de largura máxima e espessura máxima de 6 mm. As tiras se apresentam em forma bobina.

O comprimento da tira enrolada varia conforme dimensões. As tiras permitem uma alimentação contínua da prensa.

As chapas e tiras são obtidas por laminação a quente e a frio, a partir de lupas (“blooms”) ou placas. Denomina-se lupa (“bloom”) um semi-produto de secção quadrada, de 115 a 300 mm e comprimento de 400 mm, o peso de um “bloom” é. Aproximadamente, 450 Kg.

Placa é o semi-produto de secção retangular (largura de 200 a 30 mm, espessura de 45 a 70 mm, com um comprimento aproximado de 1m).

A partir da placa, as chapas são obtidas submetendo-se a matéria às seguintes operações:

1ª) Reaquecimento da Placa; 2ª) Desbastamento ou laminação a quente, até uma espessura de 4 a 5 mm; 3ª) Decapagem e enxaguadura das chapas grossas obtidas, colocando-as em pacotes formados por 3 chapas separadas por camadas de carvão de madeira, para evitar a soldagem; 4ª) Reaquecimento dos Pacotes; 5ª) Laminação das chapas grossas e acabamento no trem de laminação (a quente); 6ª) Cisalhamento das chapas e aplainamento a frio; 7ª) Recozimento de Normalização em caixa (930ºC); 8ª) Decapagem, Lavagem, Limpeza com escovas e Secagem; 9ª) Polimento na Laminadeira, a frio, 2 a 3 passadas; 10ª) Segundo recozimento em caixa (600 a 650ºC); 11º) Laminado ligeiro a frio “skin pass”, que deixa uma superfície polida e provoca um leve endurecimento superficial da chapa. Este tratamento evita adelgaçamentos quando se efetua a embutição; 12ª) Aplainado na máquina de cilindros; 13ª) Inspeção, escolha, lubrificação, empacotamento. Nas laminadeiras modernas, estas diversas operações são feitas em série.

As chapas obtidas por laminação a frio devem ter uma espessura regular e um perfeito acabamento superficial.

Para obter tais resultados é indispensável que os lingotes utilizados para a fabricação de “blooms” e placas estejam isentos de defeitos, pois estes se transmitirão à chapa.

Estes defeitos são principalmente: 1) bolhas: furos produzidos na chapa, por inclusão de gás; 2) picadas: bolhas muito pequenas e muito numerosas; Estes defeitos, tornados mais ou menos

invisíveis, ao laminar, podem, após a decapagem, dar chapas arqueadas ou picadas; 3) bolsadas: vácuo central, criado pela contração; exige a eliminação das extremidades do lingote

antes da laminação; 4) fendas: produzidas durante o resfriamento do lingote ou devido a um forjado a tempeatura

muito baixa (defeito grave, difícil de se descobrir).

Page 10: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

10

1.3.4 - Características dos Metais em Chapas

CARACTERÍSTICAS DOS METAIS EM CHAPAS

Material Carga de Ruptura

(Kgf/mm2)

Alonga-mento

(%)

Profundidade Ericksen

(mm)

Pressão "p" do

sujeitador (kgf/cm2)

Aço para corte (Thomas) 36 20 9 28 Aço de embutição 33 24 10 25 Aço de embutição Profunda 35 26 10,4 24 Aço para carroçarias 36 25 10,6 22 Aço-siliício 48 - - - Aço inoxidável (18/8) 55 23 13 20 Chapa fina estanhada 32 20 9,5 30 Cobre 23 37 12 20 Bronze de estanho 45 10 10 25 Bronze de alumínio 35 40 11,5 20 Latão Lt 72 30 45 14,5 20 Latão Lt 60 a 63 doce 33 45 13,5 22 Latão Lt 60 a 63 semiduro 39 25 12 22 Zinco 13 56 8 12 Alumínio doce 9 25 10 10 Alumínio semiduro 12 8 8,5 12 Alumínio duro 15 5 7 15 Duralumínio doce 20 19 10 10 Duralumínio laminado a frio 40 12 8 12 Níquel 47 45 12 20 Monel 50 40 11 18 Maillechort 40 30 - -

Nota: Os valores indicados são valores médios.

1.3.5 - Características das Chapas

Para efetuar as distintas operações a que está sujeito o metal e, principalmente o repuxo, é necessário que este seja homogêneo, maleável, dúctil, com grão suficientemente fino e com um bom acabamento superficial.

As chapas caracterizam-se por: a) sua resistência à ruptura (expressa em kgf/mm2); b) seu limite de elasticidade (expresso em kgf/mm2); c) seu alongamento em %; d) sua dureza superficial (Brinel-Rockwell, etc.); e) sua profundidade de embutido (Ericksen-Guilery).

1.3.6 - Verificações das Chapas

Ao receber o material pedido, é preciso ter certeza de que o mesmo obedece às prescrições exigidas.

As chapas devem ser verificadas conforme dentro dos limites de tolerância especificadas no pedido e normas. Essas verificações serão efetuadas nas:

Page 11: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

11

a) dimensões - comprimento; - largura; - espessura.

b) características mecânicas Verificação das Qualidades Mecânicas: - Ensaio de Tração; - Ensaio de Dureza; - Dureza Rockwell; - Dureza Shore.

c) qualidades tecnológicas - Ensaio de Dobra; - Ensaio de Embutição; - Máquina Ericksen; - Máquina Guillery.

Eventualmente poderão ser realizados ensaios químicos (ensaio macrográfico e ensaio micrográfico). Estas verificações são feitas geralmente tomando de um lote de chapas algumas delas para que sejam verificadas. Se as chapas forem perfeitas, o lote pode ser aceito.

Page 12: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

12

2 - OPERAÇÕES DE CORTE 2.1 - Corte com tesoura guilhotina

Page 13: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

13

2.1.1 - Força de corte em tesoura guilhotina.

Fc = Ac x τcis

Onde τcis = Tensão de cisalhamento do material (kgf/mm²)

Ac = Área de corte (secção resistiva de corte) = l.e l = comprimento de corte ( mm)

e = espessura de corte (mm) 2.1.2 - Fases do corte em tesoura guilhotina.

1ª Fase: Deformação Plástica

Obs: a folga excessiva das facas de corte pode conduzir em quebra da ferramenta de corte.

Page 14: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

14

2ª fase: Cisalhamento

Obs: Para materiais mais moles, se utilizam facas de corte com ângulos de corte menores.

3ª Fase: Ruptura

Características da seção de corte

Após o corte ,o material apresenta,no perfil do corte,três faixas bem distintas :

Deformação: Região 1 Um canto arredondado, no contorno em contato com um dos lados planos da chapa, e que

corresponde à deformação do material no regime plástico.

Cisalhamento: Região 2 Uma faixa brilhante, ao redor de todo o contorno de corte,com espessura quase constante, e

que corresponde a um cisalhamento no metal cortado.

Ruptura: Região 3 Uma faixa áspera, devido à granulação do material,levemente inclinada que corresponde ao trecho onde ocorreu o destacamento,visto que a área útil resistente vai diminuindo até que se dê a separação total das partes.

Page 15: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

15

Comentários:

Maiores ângulos das facas Para materiais mais duros Material mole maior cisalhamento Material duro maior ruptura Material mole Provoca abrasão na superfície da ferramenta levando ao rápido desgaste

2.1.3 - Tesoura guilhotina com facas paralelas.

Fc = Ac x τcis

Onde τcis = Tensão de cisalhamento do material (kgf/mm²)

Ac = Área de corte (secção resistiva de corte) = l .e l = comprimento de corte ( mm)

e = espessura de corte (mm)

Exercício:

Determinar qual é a força de corte (Fc) necessária para cortar uma chapa em uma guilhotina de facas paralelas.

l = 30cm e = 3mm

τcis = 30kgf/mm²

Page 16: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

16

2.1.4 - Tesoura guilhotina com faca inclinada.

Neste equipamento observa-se nas tiras muito finas um fenômeno conhecido como efeito “hélice” em que a chapa tende a se enrolar. Esta construção necessita um curso um pouco maior devido ao desalinhamento sendo isto uma limitação.

e_ = tg λ (1)

x Ac = e² (3) 2.tg.λ Ac = e.x_ (2) 2

Fc = Ac. τcis Fc = e².τcis (4)

2.tg.λ

Exercício:

Determinar qual é a força de corte (Fc) necessária para cortar uma chapa em kgf com uma guilhotina de facas inclinadas.

l = 30cm e = 3mm

λ = 8°

τcis = 30 kgf / mm²

Page 17: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

17

2.1.5 – Condição de máxima inclinação das facas.

2 Fat ≥ Ft (1)

P = FN . cos λ (2) Obs : Valores típicos de λ = de 8° a 10° Ft =FN . sen λ (3)

Fat = P. μ (4)

.·. de (1) e (4)

2 Fat = 2P. μ .·. 2 P. μ ≥ Ft

2 FN.cos λ . μ ≥ FN.sen λ 2cos λ . μ ≥ sen λ

Exercícios: 1- Determinar qual é a máxima inclinação das facas para a mesma chapa do caso anterior, porém, considerando faca inclinada, onde:

μ = 0,15 (aço/alumínio).

2 μ ≥ tg λ (5)

Page 18: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

18

2 - Uma indústria deseja comprar uma tesoura guilhotina para cortar chapas de aço, cobre e alumínio. Determinar a capacidade da tesoura e o ângulo de inclinação das facas, sabendo-se que as espessuras máximas das chapas são:

Aço – 1” τcis = 30 kgf / mm² μ = 0,2 (aço / aço) Cobre – 1 1/2” τcis = 20 kgf / mm² μ = 0,11 (aço / cobre) Alumínio - 2” τcis = 17 kgf / mm² μ = 0,15 (aço / Al)

Cálculo da inclinação da faca

Aço Cobre Alumínio

Cálculo da força de corte

Aço Cobre Alumínio

Page 19: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

19

2.1.6 - Geometria de corte das facas.

Particularidades :

Um ângulo menor de β implica em redução na resistência da faca.

A potência requerida aumenta para maiores ângulos de β. Ângulos típicos:

β = 77 a 85 ° γ = 0 a 10° α = 0 a 6° Σαβγ = 90°

2.1.7 - Folga entre as facas da guilhotina.

Folga = Espessura 25 Obs : Folgas grandes podem provocar a quebra das facas. Folgas pequenas provocam o rápido desgaste das arestas de corte.

2.2 – Puncionamento

É uma operação utilizada para as se efetuar o corte de figuras geométricas por meio de punção e matriz por impacto.

O conjunto de ferramentas que executa operações de corte em série é chamado de estampo progressivo de corte.

Page 20: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

20

2.2.1 – Força de corte no puncionamento

Fc = Ac x τcis

Onde τcis = Tensão de cisalhamento do material (kgf/mm²)

Ac = Área de corte (secção resistiva de corte) = l . e

l = comprimento de corte ( mm)

e = espessura de corte (mm)

Neste caso:

Ac = área do perímetro de corte = π . d . e Fc = π . d . e . τcis

2.2.2 - Folga entre punção e matriz

Segundo Oehler: (f = D - d) ____

f/2 = 0,005 . e . √ τcis p/ e ≤ 3 mm ___ f/2 = (0,010.e - 0,015) . √τcis p/ e >3mm e = espessura da chapa (mm)

τcis = tensão de cisalhamento ( kgf/mm²) Obs : Folgas excessivas provocam rebarbas na peça.

Folgas pequenas provocam desgaste rápido das arestas de corte.

Page 21: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

21

Regra de corte :

Peça recortada - Matriz com Ø nominal (mínimo)

Furo estampado - Punção com Ø nominal (máximo)

Exercício: Determinar as dimensões dos punções e matrizes para estampagem da arruela abaixo. Calcular a força de corte e esquematizar o ferramental.

Material : Aço SAE 1020 τcis = 28 kgf/mm²

Resolução:

Para o furo estampado:

Ø Matriz Ø Punção (Nominal)

Para o diâmetro externo recortado:

Ø Matriz (Nominal) Ø Punção

Page 22: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

22

Calculo da Força de Corte:

Esquematizar o Ferramental:

2.2.3 – Dimensionamento das peças ( Cálculo de espaçamento entre peça e bordas)

S= 0,4e + 0,8 mm B ≤ 70mm ; e ≥ 0,5 S= 2 – 2e B ≤ 70mm ; e < 0,5 S= 1,5 (0,4e + 0,8 mm) B ≥ 70mm ; e ≥ 0,5 S= 1,5 (2 – 2e) B ≥ 70mm ; e < 0,5

2.2.4 – Utilização racional do material

A disposição das peças na tira deve levar em conta:• Economia do material. • Forma e as dimensões do material a empregar. • Sentido de laminação, especialmente para as peças que devem ser dobradas.

Page 23: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

23

A economia do material é o aspecto mais importante, que justifica os cálculos para assegurar uma utilização racional do material. A determinação do intervalo ou espaço a deixar entre as duas peças e nos cantos da chapa, varia conforme as dimensões da peça e espessura do material. Adota-se geralmente:

Porcentagem de utilização da chapa

% Utilização = Ap.n_ x 100 At

Onde : Ap = Superfície total da peça em mm². n = número de peças por metro. At = Superfície total da tira em mm².

Peças retangulares

Exemplo:

Determinar as diferentes disposições sobre a tira possíveis para cortar a peça acima. Utilize chapa de aço padronizada de 2000x1000x1.

Calcular:

A. Passo (ou avanço).Largura da tira. B. Número de peças /tira. C. Número de tiras /chapa. D. Número de peças / chapa. E. % de Utilização da Chapa

Page 24: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

24

2.2.4.1 - Estampo com disposição normal (linha de centro em 90° com a borda)

Cálculo de S : (S)

Cálculo do Passo: (a)

Cálculo da largura da tira: (B)

Tiras de 2 metros comprimento (1) Tiras de 1 metro de comprimento (2)

Número de tiras de 2 metros de comprimento por chapa: (ntc1)

Número de peças por tira: (npt1)

Número de peças por chapa: (npc1)

% de Utilização: (%U1)

Número de tiras de 1 metro de comprimento por chapa: (ntc2)

Número de peças por tira: (npt2)

Número de peças por chapa: (npc2)

% de Utilização: (%U2)

Page 25: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

25

2.2.4.2 - Estampo com disposição normal (horizontalmente)

Cálculo de S : (S)

Cálculo do Passo: (a)

Cálculo da largura da tira: (B)

Tiras de 2 metros comprimento (1) Tiras de 1 metro de comprimento (2)

Número de tiras de 2 metros de comprimento por chapa: (ntc1)

Número de peças por tira: (npt1)

Número de peças por chapa: (npc1)

% de Utilização: (%U1)

Número de tiras de 1 metro de comprimento por chapa: (ntc2)

Número de peças por tira: (npt2)

Número de peças por chapa: (npc2)

% de Utilização: (%U2)

Page 26: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

26

2.2.4.3 - Estampo com disposição e inversão de corte

Cálculo de S : (S)

Cálculo do Passo: (a)

Cálculo da largura da tira: (B)

Tiras de 2 metros comprimento (1) Tiras de 1 metro de comprimento (2)

Número de tiras de 2 metros de comprimento por chapa: (ntc1)

Número de peças por tira: (npt1)

Número de peças por chapa: (npc1)

% de Utilização: (%U1)

Número de tiras de 1 metro de comprimento por chapa: (ntc2)

Número de peças por tira: (npt2)

Número de peças por chapa: (npc2)

% de Utilização: (%U2)

Page 27: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

27

2.2.4.4 - Peças Circulares

Estampos com uma carreira de corte

B = largura da tira a = avanço n = número de peças

B = D + 2S a + D + S

Estampos com 2 carreiras de corte

B= (D+S).sen60°+D+2S a + D + S n = [(l - (D + S) . sen30° + D + 2S)] . 2 + 2 D + S

Page 28: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

28

Estampos com 3 carreiras de corte

B= (2D+2S).sen60°+D+2S A+D+S

n = { [l-(D+2S)].3} + 2 D+S

Determinar o número de peças circulares com diâmetro de 80 mm que se pode obter de uma chapa 2000x1000x1 mm considerando:

Estampo com 1 carreira Estampo com 2 carreiras Estampo com 3 carreiras

Resolução:

S= 1,5(0,4e+0,8) mm S= 1,5.0,4+0,8 = s+1,8o mm

a =D+S a =80+1,8 a =81,8 mm

Cálculo de B para 1 carreira

B= D+2 s B= 80+2.1,8 B= 83,6 mm

Page 29: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

29

Cálculo de B para 2 carreiras

B=(D + s).sen60°+D+2S B=(80+1,80)sen 60º+80+2.1,8 B= 154,5 mm

Cálculo de B para 3 carreiras

B= (2D+2S)sen60°+D+2S B=(2.80+2.1,80)sen60°+80+2.1,80 B= 225,28 mm

Cálculo do número de peças para 1 carreira

Para tiras de lt = 1000 mm 23 tiras

n = l – D + 2S +1 D+S

n = 1000-80+2.1,80 +1 80+1,8

n = 12,2. 23,9 :. n = 276 tiras

Para tiras de lt = 2000 mm 11 tiras

n = 2000-80+2.1,80 +1 80+1,8

n = 23,4+1 . 11,96 n = 264 peças

Cálculo do número de peças para 2 carreiras

Para tiras de lt = 1000 mm 12 tiras

n = [( l -(D+S).sen30° +D+2S) .2]+2 D+S

n = [(1000-(81,8.sen30° +80+2.1,8).2] +2 80+1,8

Cálculo do número de peças para 3 carreiras

Para tiras de lt=1000 mm 8 tiras

n ={[ n-(D+2S)].3} +2 D+S n ={ [1000-(80+2.1,8)].3} +2 80+1,8

Page 30: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

30

n = 35 . 8 n = 280 peças

Para tiras de lt = 2000 mm 4 tiras

n = 2000-(83,16) .3 +2 81,8 n = 72 . 4 n = 288 peças

Nota : usar chapa de B= 225,26x2000 3 carreiras s =1,80 mm

2.2.5 – Determinação do posicionamento da espiga

2.2.5.1 – Método Analítico

Xg = P1.x1+P2.x2+P3.x3+P4.x4 (P1+P2+P3+P4)

Equilíbrio através do momento onde Pt = ΣPi de 1 a 4

XG = ΣPixi donde se deduz que ΣPi

XG = ΣLixi onde Li = π .d (perímetro) ΣLi

d1 10 d2 12 d3 14 x1 10 x2 30 x3 50 y1 50 y2 30 y3 10

Page 31: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

31

XG = P1.X1+P2.X2+P3.X3 P1+P2+P3

P1 = L1.e.τcis

P2 = L2.e.τcis

P3 = L3.e.τcis XG = e. τcis . (L1.X1+L2.X2+L3.X3)

e.τcis.(L1+L2+L3) XG = ΣLi.Xi

ΣLi

YG = ΣLi.Yi

ΣLi

Ponto Xi Yi Li Li.Xi Li.Yi 1 2 3 Σ

ΣLi ΣXiLi ΣYiLi

2.2.5.2 – Método do Baricentro do Perímetro

XG = Σ Li.Xi Σ Li

YG = Σ Li.yi Σ Li

Page 32: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

32

Exemplo :

Não é válido calcular o CG em relação à área para figuras irregulares. Nestes casos calculamos o CG em relação ao perímetro que é onde haverá corte.

XG = ΣLi.xi = _80x10 + 50x35 + 35x60 + 60x90 + 45x120 + 110x65 = 59,47 mm

ΣLi 80 + 50 + 35 + 60 + 45 + 110

YG = ΣLi.y = 80x50 + 50x90 + 35x72,5 + 60x55 + 45x 32,5 + 110x10 = 44,47 mm

ΣLi 80 + 50 + 35 + 60 + 45 + 110

Page 33: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

33

Exemplo : Dividir sempre uma figura a ser puncionada em perímetros conhecidos localizando os seus próprios centros de gravidade.

Centro de gravidade de curvas

Exercício: Determinar o CG do estampo :

Page 34: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

34

Ponto Xi Yi Li Xi.Li Yi.Li 01 02 03 04 05 06 07 08 09 10 11 12

Σ

XG = Σ Li.Xi =

Σ Li XG =

YG = Σ Li.Yi =

Σ Li

YG =

2.2.5.3 – Espiga de Fixação

A fixação da parte móvel do estampo no martelo da prensa é feita aplicando-se um pino roscado, o qual denominar-se de espiga. A espiga é introduzida no furo existente no martelo e, por intermédio de um parafuso, fixa-se o conjunto. A espiga é um elemento de forma cilíndrica e o seu diâmetro, assim como o comprimento, deverá ser de acordo com o furo do martelo já existente na prensa, onde será montado o estampo. Geralmente, a espiga é constituída com um aço comum como, por exemplo, SAE 1010 ou 1020, exceto em casos especiais, nunca receberá tratamento térmico. Esta deve ser suficientemente robusta para poder resistir ao peso do móvel mais o esforço de extração. Assim, em uma espiga, a sua parte mais fraca é o menor diâmetro, vamos desenvolvê-la considerando o diâmetro do núcleo da rosca como o mais crítico.

O peso da parte superior é calculado sempre para este caso de uma maneira aproximada, considerando-o até por estimativa. A letra “S” encontrada logo após a fórmula será o coeficiente de segurança que adotaremos com sendo 2,5 a 3 para determinarmos a área do núcleo da rosca. Depois que calcularmos a área do núcleo da rosca, podemos encontrar o diâmetro do mesmo com a fórmula a seguir:

Page 35: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

35

Obs.: Este é um modelo de espiga para estampos de pequeno e médio porte.

Dificilmente iremos calcular um diâmetro de núcleo que coincida com uma rosca normalizada, por este motivo, podemos aumentá-lo até encontrar um diâmetro de rosca imediatamente superior.

Usualmente o dimensionamento do cálculo da espiga está na capacidade da prensa conforme tabela abaixo:

Capacidade da Prensa

Diâmetro (D)

10 tf/cm2 20

20 tf/cm2 25

30 tf/cm2 32

30 tf/cm2 35

30 tf/cm2 38

30 tf/cm2 40

50 tf/cm2 50

80 tf/cm2

80 tf/cm2 63 65

Page 36: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

36

2.2.6 - Construção e execução dos estampos de corte 2.2.6.1 - Estampo simples de corte

Para corte sem muita precisão Precisão de corte ± 0.2 mm

2.2.6.2 - Estampo aberto com guia para o punção

2.2.6.3 - Estampo fechado com guias para o punção e para a chapa

Page 37: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

37

2.2.6.4 - Estampo aberto com colunas de guias

2.2.6.5 - Estampo aberto com sujeitador guiado por colunas

Page 38: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

38

2.2.6.6 - Estampo aberto com sujeitador e porta - punção guiado por colunas

3.6.7 - Estampo de Corte Progressivo (esquemático) 2.2.6.7 - Estampo de Corte Progressivo (esquemático)

Page 39: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

39

2.2.7 – Estampos progressivos de corte

Obs.: não há retalho rebobinável 1º passo – corte do retalho lateral e marcação do passo 2º passo – corte dos furos internos. 3 º passo – corte do contorno externo com separação das peças.

Na figura acima tem-se o caso de aproveitamento dos dois punções laterais marcadores de passo, como cortadores do retalho lateral, e um terceiro de forma, para separação das peças, e corte do retalho que se forma entre elas. No exemplo da figura abaixo tem-se o aproveitamento dos punções marcadores de passo como cortadores de retalho lateral. Para o destacamento das peças utilizou-se um jogo de facas paralelas. Neste caso não houve formação de retalhos entre as peças. Como dissemos anteriormente, nem sempre se utiliza sistematicamente corte de retalho. É o caso de se rebobinar a lâmina cortada. Este método de alimentação com material bobinado subentende que se deseje alta produção, e que o material e a sua espessura conferem a lâmina uma certa flexibilidade que permita o desenrolamento da bobina e o bobinamento do retalho obtido com certa facilidade. Neste caso, geralmente, as peças produzidas são de pequena dimensão. A alta produção nos obrigaria a colocar um alimentador automático na prensa. A bobina, a fim de se tornar plana, nos obrigaria a utilizar uma estreitadora de chapas. O esquema de conjunto seria então indicado pela figura abaixo (esquema de um conjunto utilizado em alta produção). Quando a espessura, a largura e o material da lâmina, forem tais que um bobinamento se torne incomodo, passa-se a utilizar, ainda que com produção elevada, um sistema de tiras obtidas numa tesoura guilhotina.

Page 40: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

40

Corte utilizando uma faca para destacar a peça no final da seqüência

Obs.: Não há retalho rebobinável. 1 º passo – corte do retalho lateral e marcação do passo. corte do furo interno 2 º passo – corte do rasgo para completar a forma do furo interno. 3 º passo – passo morto. 4 º passo – separação das peças.

Esquema de um conjunto utilizado em alta produção

A – bobina de material enrolado D – estampo B – endireitadora de chapa E – bobina de retalho C – alimentador automático

Page 41: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

41

1° Passo – corte dos furos internos 2° Passo – corte do contorno 3° Passo – separação do retalho

vantagem – controle direcional desvantagem - usinagem

(Pode fazer a peça em dois estágios)

1° Passo – corte dos furos internos 2° Passo – execução do recorte externo 3° Passo – corte do contorno e separação do retalho

No segundo caso a solução mais indicada seria cortar o retalho em secções curtas. O terceiro caso impossibilita alternativa a não ser armazenar as pontas e sobras em containeres. Vem desta maneira que os estampos deverão ser providos, em alguns casos de elementos que possibilitam o corte da lâmina em pequenos retalhos, com finalidade de facilitar o transporte e o armazenamento. Tais elementos recebem uma construção típica conforme o tipo de peça com que esteja lidando.

2.2.8 – Elementos construtivos dos estampos de corte. 2.2.8.1- Limitadores de avanço

Para melhorar a produção é necessário que a prensa seja alimentada com continuidade e a chapa colocada em disposição correta. Para isto, existem dispositivos simples e complexos,com funcionamento manual ou automático. Eles limitam o avanço da fita a cada golpe da prensa.

Page 42: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

42

Limitadores de Avanços Manuais:

Limitadores de pino fixo (pino stop)

Pino Stop, acionado aperto manual por mola

Page 43: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

43

Limitadores de pino móvel

Faca de avanço

Page 44: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

44

Limitador por entalhe lateral

Limitadores centralizadores

Balancim ou encosto oscilante

Page 45: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

45

Avanços Automáticos

São dispositivos mecânicos ou pneumáticos que funcionam com movimentos sincronizados com as prensas utilizadas para estampar.

2.2.8.2 – Placas de choque

Placa de Choque Inteiriça Placa de Choque Segmentada

Para impedir que a punção penetre no cabeçote, coloca-se entre a cabeça do punção e o

cabeçote do estampo, uma placa de aço temperado com espessura máxima de 5 mm a 8mm. Outra função é a distribuição da pressão da punção.

O Material é normalmente utilizado o aço SAE 1045 e levando um tratamento térmico não obrigatório de HRC 45-48, não havendo necessidade de maior dureza para não torná-la quebradiça.

Podemos usar também uma única placa com o mesmo dimensionamento (largura e comprimento) do porta punção, por haver um menor tempo de usinabilidade e/ou por motivos de punções com geometrias mais complexas, para isso chamamos de placa de choque inteiriça.

Dimensionamento:

A placa de choque será empregada sempre que a pressão específica em qualquer punção for superior a P = 4 kgf/mm2. Recomenda-se analisar o menor punção. Cálculo de Pe (pressão específica): Pe = Fc

Placa de Choque

Placa de Choque

Page 46: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

46

Acabeça do punção

Onde:

Fc= Força que atua no punção (Kgf)

Pe = Pressão específica dimensionada para a placa = 4 kgf/mm²

Acabeça do punção = Área da cabeça do punção (mm²)

2.2.8.3 - Punções

Tipos e forma de fixação:

Quanto a aresta de corte:

Page 47: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

47

O tipo mais utilizado é o retificado em esquadro (1); é o mais barato e sempre usado para corte de chapas com e ≤ 2mm. Os punções de Ø relativamente grande são comumente feitos côncavos ou com fio de corte inclinado (2,3,4,5). O tipo 6 é usado para trabalhos muitos grosseiros ou em forjaria, para corte a quente. Os punções tipo faca (7,8,9) são usados para materiais não metálicos ou fracos, e trabalham sem matriz, usando como base uma placa de borracha ou madeira topo.

Verificação de punções

Verificação 1: Resistência à compressão

Em geral se o diâmetro da punção for bem superior à espessura da chapa, não há necessidade de se fazer a verificação da resistência de compressão. Para diâmetros próximos a espessura da chapa pode-se utilizar a seguinte regra prática:

Para materiais com σr ≤ 40 Kgf/ mm2 - dmin = e Para materiais com σr > 40 Kgf/ mm2 - dmin = 1,5e

Verificação 2: Flambagem

Onde: E – Módulo de elasticidade (aço 2,1 . 10 E6 kgf/mm²) J – Menor momento de inércia da seção Fc – Força de corte (kgf)

Comprimento dos punções (usual) 50 a 80 mm Alguns Valores de J

Jmin = πd4 64

Jmin = _a4

12

Page 48: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

48

2.2.8.4 – Porta-punção

Na fixação conveniente dos punções pequenos, geralmente são utilizadas placas denominadas de porta-punção, confeccionadas comumente de aços SAE 1010 ou 1020. A espessura do porta-punção é o fator primordial, sendo que podemos considerá-la no mínimo 0,25 do comprimento do punção, independentemente da espessura, o punção deve ter apoio lateral suficiente e sua localização no porta-punção varia conforme a peça a ser confeccionada. Com referência à ajustagem dos punções no porta punção, devemos observar que o punção deve ter um ajuste perfeito, evitando qualquer movimento. Na parte da cabeça do punção podemos deixar a medida de 1mm de diâmetro maior que o diâmetro da cabeça do punção d2, e o encaixe que vai receber a cabeça do punção de medida ex: 4,2-0,1, deve ser usinado com medida 4,1-0,05, retificando-se o excesso deixado para obter um ajuste uniforme entre o punção e o porta-punção. Quando o contorno for de perfil cilíndrico podemos usinar o encaixe do corpo do punção com “N7” e, provavelmente, o punção terá “h6”. Quando o contorno do punção não for de perfil cilíndrico podemos usinar o encaixe do corpo do mesmo com “H7” e se acrescenta um sistema de travamento, caso não possua cabeça. Esta mesma tolerância pode ser empregada em punções cilíndricos, desde que sejam recambiáveis.

Jmin = b.h3

12

Jmin = π(D4 - d4) 64

Porta-Punção

Page 49: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

49

2.2.8.5 – Régua de Guia da Fita

As réguas de guia ou guias laterais do produto tem como objetivo guiar convenientemente a tira do produto dentro do estampo, sendo montadas numa distância entre si igual à largura da tira mais um mínimo de folga que possibilite um deslizamento regular da tira que geralmente é cerca de 20% da espessura da chapa. O material das réguas poderá ser SAE 1045 não havendo obrigatoriedade de tratamento térmico com HRC 45-48. O dimensionamento das réguas de guia far-se-á de acordo com o que se deseja, por exemplo, para a largura da régua dever-se-á levar em consideração o diâmetro da cabeça do parafuso de fixação, sendo que esta largura deverá ter no mínimo 2,5 vezes este diâmetro já referido, e quando tiver encosto móvel é determinada conforme o apoio deste. O comprimento também deverá ser calculado segundo o bom senso, pois a régua deverá se suficientemente comprida para guiar a tira. Recomendam-se guias com comprimento 2 vezes superior à largura da tira. Esse dimensionamento seria a partir do punção até à parte da entrada da tira. A espessura da régua de guia é uma das partes mais delicadas deste elemento, porque devemos considerar que, em um estampo fechado o intervalo existente entre a guia do punção e a matriz deve ser considerado para espessura acima de 0,5 mm e que este intervalo será duas vezes a espessura mínima da chapa menos 0,2 a 0,3, isto para evitar que possam entrar duas peças de uma só vez no estampo e garantir também que não haja ruptura de punção.

Esta altura obedece as seguintes dimensões:

p/ p/

Em geral:

p/ p/

p/ p/

Page 50: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

50

A abertura “A” costuma-se fazer:

Para tiras e chapas:

p/ p/

Para ferro chato:

p/ p/

e = espessura da chapa a = largura da tira

Dimensionamento da régua em relação ao comprimento

Espessura da régua (mm) Comprimento da régua (mm) 8 até 200 10 até 300 12 até 400

Caso esta régua seja temperada e acima de 400 mm de comprimento, é conveniente dividi-la em segmentos para evitar empenamentos durante tratamento térmico.

2.2.8.6 – Apoio da tira

É uma simples placa fabricada em material comum SAE 1010, fixada com parafuso não sendo necessário colocar pinos. Quanto a usinagem, pode ser feita somente do lado em que a tira do produto seja apoiada. Geralmente tem largura igual ao somatório entre os elementos, régua guia e a largura do produto. A espessura em geral é igual a 8 mm. O comprimento é determinado pelas réguas de guia. Em estampos cujo produto tem espessura fina aplicamos um tipo de apoio formando um túnel, que seria o apoio normal, e uma placa montada na parte superior, dando o intervalo nesta montagem de 2 espessuras mínimas do produto.

Page 51: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

51

2.2.8.7 – Placa Guia

A placa de guia geralmente é confeccionada de aço SAE 1020 não havendo necessidade de tratamento térmico. Sua espessura deve-se relacionar com o comprimento do punção sendo que, em geral, aplicamos:

h = L 4

A distância da placa guia á matriz, ou seja, o intervalo (i), depende da espessura da peça e da régua guia como antes já foi observado. Quando cortamos uma peça e não a retalhamos, com o decorrer das operações de corte o retalho tende a enrolar, e para evitar isso venha a interferir no andamento do retalho, aliviamos conforme o indicado. O guia do punção pode ser simplificado utilizando enxertos, quando se tem punções com perfil complexo ou quando se deseja reduzir a área que irá tocar a peça, deixando a parte mais trabalhosa em usinagem para o enxerto. A placa guia normalmente é fixa com o conjunto inferior do estampo e tem a utilidade também de extrair o punção de dentro do furo cortado na operação. Temos também placas iguais á placa guia, somente que são móveis e as denominaremos de sujeitadores prensa-chapas ou ainda de extratores móveis, sendo que escolhemos a denominação conforme a função do elemento.

2.2.8.8 – Molas

Para se calcular as molas, devemos conhecer a força de extração. Esta força é aquela que tem o objetivo de extrair o punção de dentro do furo cortado, pois, quando furamos uma determinada peça o furo pode prender o punção. Para o entendimento, a extração é determinada com os pontos em que se dará interferência na extração. Então consideremos a força de extração (Fe):

Passagem livre p/ chapa

Régua

Matriz

Placa Guia

Base Inferior

Page 52: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

52

Para cálculo do curso de trabalho desta, devemos considerar a “Fe” no ponto exato, onde temos o ponto máximo de penetração do punção na matriz “c” que, geralmente, deixamos com 1mm. Também encontramos o ponto máximo de penetração do punção no extrator “b” que também costumamos deixar 1 mm e finalizando temos o ponto onde a força de extração atinge o máximo “a”, neste ponto, as molas devem ter força maior ou igual à força de extração. Portanto, o curso de trabalho “f” das molas será a soma dos respectivos pontos, sendo que no lugar de “a” acrescentamos a espessura da chapa, assim:

A mola ainda deve ser pressionada de 0,5 a 1 mm para que já inicie com uma pré-compressão. Os cálculos devem ser verificados rigorosamente se as molas atingem o curso de trabalho “f” mais a pré-compressão, assim como devem ser observados com o mesmo rigor, se no ponto “a” tiverem força suficiente para extrair a peça. Para determinarmos a capacidade da prensa devemos somar a “Fc” a todas as cargas das molas quando estão totalmente comprimidas e, no final desta somatória, acrescentamos um coeficiente de segurança de 10 a 30%, dependendo da máquina. Por outro lado, podemos adquirir as molas no mercado, pois os fabricantes normalmente nos informam todas as referências, tais como Ø do arame, Ø da mola, carga que pode suportar, curso, etc., tendo disponível no mercado uma enorme série para ser escolhida de acordo com a situação. Para efeito de conhecimento, temos a seguir as formulas para os cálculos das molas.

Mola Quadrada Mola Redonda Mola Retangular Cálculos:

Page 53: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

53

Mola Quadrada Mola Redonda Mola Retangular

Onde:

P = Força aplicada (Kp) σt = Resistência prática do aço ao cisalhamento, cerca de 30 a 40 Kp/mm2

n = Número de espiras úteis G = Módulo de elasticidade ao cisalhamento, cerca de 8000 a 10000/mm2

f = flecha, suportando a força P.

Portanto, a deformação do anel será “g” e a para molas a compressão

Logo

Para molas a tração:

2.2.9 - Matrizes

Matrizes e punções constituem os elementos fundamentais das ferramentas. Na matriz está recortado o formato negativo da peça a ser produzida. A matriz é fixada rigidamente sobre a base inferida com parafusos, porta matriz ou outro meio, sempre de modo a formar um conjunto bem sólido. A matriz deverá ser confeccionada com material de alta qualidade e com acabamento finíssimo. Características principais das matrizes de corte são:

• Ângulo de saída para facilitar o escoamento do material cortado. • A folga entre punção e a matriz que é responsável pelo corte da peça desejada. • Altura do talão determina nº de afiações possíveis.

Page 54: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

54

2.2.9.1 - Características Geométricas

2.2.9.2 - Cálculo da vida útil e espessura do talão

A altura do talão determina o nº de afiações possíveis na matriz Em geral após o corte de 30 mil a 40 mil peças a matriz deve ser afiada. Cada afiação reduz aproximadamente 0,15 mm da espessura da matriz

T= n º de peças x 0,15 30.000 à 50.000

T = espessura do talão Espessura retirada numa afiação (média) = 0,15 mm Expectativa de peças produzidas entre afiações = 30000 a 40000 peças

Nota: o talão t deve ter no máximo 12 mm. Tmáx =12 mm

Alturas recomendadas para o talão

T≤ 3,0.e para e‹1,5 mm T≈ 1,5.e para e›1,5 mm T= 1,0.e para e›6,0 mm 2.2.9.3 - Cálculo da espessura da matriz

A força de punção se distribui ao longo dos gumes de corte da matriz, de forma tal que se esta não tiver espessura suficiente, acabará não resistindo aos esforços.

Page 55: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

55

2.2.9.4 - Cálculo da espessura da parede entre furos

D 3 - 6 6 - 12 12 - 20 X 6 10 13

F (ton) 10 15 20 30 50 90 120 E (mm) 16 16 22 28 34 40 46 C (mm) 9 - 10 12 - 13 14 - 15 17 - 18 21 - 23 29 - 30 34 - 35 C' (mm) 11 - 12 14 - 15 17 - 18 21 - 22 26 - 27 36 - 37 41 - 42

1,2 a 3 . em para matrizes pequenas OBS: Para matrizes inteiriças Y (mm) 2 a 3 . em para matrizes grandes ou encaixadas podemos Z (mm) α . e (e = espessura da chapa em mm) tomar 0,8 . em

Para os valores de α, vide tabela abaixo:

Valores de α :

em que: p = perímetro de corte (mm) e = espessura da chapa (mm) Espessura da matriz, por outros autores:

p \ e 0,2 – 0,5 0,8 – 1 1,2 – 1,5 1,8 – 2,5 2,8 – 3,516 4 – 10 2,5 – 3 1,7 – 2 1,2 - 1,5 0,8 – 130 4 – 13 3 – 4 2 – 3 1,5 - 1,8 1,4 – 1,560 6 – 15 4 – 5 3 – 3,5 2,2 - 2,6 1,8 – 2100 8 – 20 5 – 6 4 – 4,2 3 – 3,5 2 – 2,5150 10 – 25 6 – 7 4,5 – 5 3,2 – 4 2,8 – 3200 15 – 30 7 – 8 5 – 6 3,8 – 5 3,5 – 4300 15 – 35 7,5 – 9 5,5 – 6,5 5 – 6,2 4 – 4,6

F Eton cmkgf mm

Page 56: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

56

2.2.9.5 – Materiais para punções e matrizes

Características:

1. Elevada resistência mecânica 2. Dureza elevada após tratamento térmico. 3. Resistência ao desgaste. 4. Resistência ao choque. 5. Boa temperatura e usinabilidade. 6. Indeformabilidade durante o tratamento térmico.

Recomendação de materiais para punção e matriz

AISI Villares D – 6 VC – 131 D – 3 VC – 130 O – 1 VND O – 7 VW – 1 S - 1 VW – 3

A tabela acima está em ordem decrescente de qualidade e preço. Os dois primeiros são os mais empregados para fabricação de punções e matrizes.

Tratamento térmico

Para o tratamento térmico dos punções e matrizes deve-se consultar o catálogo do fabricante. A dureza dos punções deve ser a princípio na faixa de 56 a 62 HRC após o revenimento.

Recomendações de projetos para punção e matriz

Para que não haja problemas de concentração de tensões durante e depois do tratamento térmico deve-se seguir as seguintes recomendações :

1. Evitar cantos vivos ou raios de arredondamento muito pequenos. 2. Evitar variações bruscas de secções. 3. Evitar massas com distribuição heterogêneas. 4. Evitar furos cegos, roscas e pinos. 5. Evitar proximidade de furos ocasionando paredes finas.

A

té 1

00

100

– 1

50

150

– 2

00

200

– 3

00

300

– 4

00

400

– 5

00

500

- 6

50

650

– 1

000

0 – 0,5 16 16 18 18 20 22 24 260,5 – 1 16 18 18 20 22 24 26 281 – 1,5 18 18 20 23 26 28 30 321,5 – 2 19 20 22 24 27 30 32 352 – 2,5 20 22 24 27 30 32 34 38

2,5 – 3,5 22 24 27 31 34 37 40 453,5 – 6 27 33 33 38 42 45 48 53

e \ p

Page 57: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

57

3 – OPERAÇÕES DE DEFORMAÇÃO 3.1 – Dobra

Para operações de dobra não é recomendada a utilização de prensas excêntricas, pois a força final de dobramento se torna incontrolável e muito perigosa para a máquina. A operação de dobra em “V” pode ser considerada em dois estágios: O primeiro corresponde ao dobramento de uma viga sobre dois apoios devido a flexão e o segundo corresponde a força de compressão suportada pela matriz e que garante a eficiência da dobra.

3.1.1 - Cálculo da força de dobramento.

Onde: P = força de dobramento. la = abertura da matriz. lb = comprimento da dobra. e = espessura da chapa.

σd = tensão de dobra.

ω = módulo de resistência.

sendo:

Substituindo temos:

σd = M ω

M = P . la 4

ω = Jy = lb . e³ / 12 = lb . e² y e / 2 6

σd = P . la . 6 4 . lb . e²

P = 2 . lb . e² . σd 3 la

Page 58: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

58

Devido a dificuldade de se obter o valor correto de σd, costuma-se trabalhar com σr (tensão de ruptura).

Nota: Segundo Schuler e Cincinati; σd = 2 . σr, isto é, a tensão de dobra é o dobro da tensão de ruptura à tração, porém para dobras a 90° com la / e ≤ 10 não se aplica esta definição. I - Caso Se a ferramenta é como a figura do caso 2 (compressão), a força de dobra é dada por:

P = 2 . lb . e² . 2 .σr σr = tensão de ruptura (kgf/mm²) 3 la e = espessura da chapa (mm) la = abertura da matriz (mm) lb = comprimento da dobra(mm) I – Exemplo Qual é a força necessária para dobrar em ângulo reto uma tira de 1m de comprimento, espessura de

3mm , σr = 40 kgf/mm² e a abertura ''V'' = 50mm.

Dados: lb = 1000mm la = 50mm

σr = 40 kgf/mm²

σd = 2 . σr = 2 . 40 = 80 kgf/mm²

Resolução:

P = 2 . lb . e² . 2 .σr = 3 la P = 2 . 1000 . 3² . 2 .40 = 9600 kgf 3 50

3.1.2 - Raio mínimo na dobra.

A observação do raio mínimo na dobra interna é fundamental para a operação de dobramento. De acordo com a característica e espessura do material, deve ser escolhido o raio para o punção e para a matriz. Na falta de valores específicos (DIN 9635), podemos usar os seguintes valores:

Material Raio Aço r = (1 a 3)e Cobre r = (0,8 a 1,2)e Latão r = (1 a 1,8)e Zinco r = (1 a 2)e Alumínio r = (0,8 a 1)e Ligas de Alumínio r = (0,9 a 3) e

Page 59: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

59

3.1.3 – Cálculo do comprimento desenvolvido.

A camada de material que na dobra não sofre deformações de recalque ou de estiramento é chamada de Linha Neutra (L.N.).

No dobramento, devido aos materiais se deformarem mais a tração do que a compressão, a

Linha Neutra em geral não coincide com o centro (de gravidade geométrica) da secção da peça. Em geral quando a relação r/e for maior que 4 a L.N. coincide com a linha dos centros de gravidade da secção.

Valores de K (Função da Relação r/e)

r/e ≥ 0,5 ≥ 0,65 ≥ 1 ≥ 1,5 ≥ 2,4 ≥ 4 K 0,5 0,6 0,7 0,8 0,9 1

L = a + b + π (r + e x K) β 2 180°

Page 60: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

60

EXERCÍCIOS:

1- Calcule o comprimento total desenvolvido (Lt), da peça abaixo:

Resolução:

Page 61: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

61

2- Conforme figura abaixo calcule:

Dados: (σr = 30kgf/mm²)

a) Abertura da matriz;.

b) Comprimento desenvolvido;

c) Força de dobramento;

d) Esquematizar a matriz;

e) Distância entre apoios.

3.1.4 - Dobras de Perfil em ‘U’

Nas dobras de perfil em U as forças necessárias estão de acordo com a construção da ferramenta. Em primeiro plano temos como influência a folga ente o punção e a matriz, e em segundo plano a forma das entradas da matriz nos pontos de apoio do material. A folga deve ser escolhida, suficientemente grande de forma que não haja estiramento do material, e sim apenas as dobras nos raios internos. Raios internos das dobras (tanto na peça como na matriz), devem ser no mínimo igual a espessura do material. Nas dobras de perfis em “U” sem pisadores tornam-se os fundos abaulados, que em parte necessitam de grandes forças para a sua planificação. As forças para planificar o fundo no fim do dobramento podem alcançar valores de até duas vezes e meia a força de dobramento normal.

Page 62: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

62

3.1.4.1 - Força de dobramento sem planificação de fundo

3.1.4.2 - Força de dobramento com planificação de fundo

3.1.4.3 - Força de dobramento com utilização de pisadores

P = 1,2 . lb . e² . σd ≈ 1,2 . lb . e² . σd . ε u u

ε ≈ 2,5

P = 2 . lb . e² . σd 3 u

u ≥ 2 . e

Força do pisador = 25% da força para dobramento.

Page 63: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

63

EXERCÍCIO:

1 - Calcular a força necessária para dobrar em ' u', 1m de chapa de aço com σr = 40kgf/mm² e

espessura e = 3mm+/-0,1; em ferramentas de dobrar tipo matriz e punção.

a) Calcular sem planificação de fundo.

b) Calcular com planificação no fundo.

c) Calcular com prensa-chapa

3.1.5 - Estampos de Enrolar A operação de enrolar pode ser efetuada por vários métodos.

Nos dois casos acima a peça deve ter uma pré-dobra para iniciar o desenvolvimento.

Page 64: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

64

3.2 - Repuxo

Na operação de repuxo obtem-se peças ocas partindo-se de placas ou chapas planas. Durante a operação de repuxo o material sofre esforços de compressão (nas bordas da matriz) e esforços de estiramento.

Na operação de repuxo praticamente a espessura da peça se mantém igual a do Blanque.

3.2.1 - Cálculo do Diâmetro do BLANQUE

Peças com formas de corpos de revolução, o blanque pode ser calculado de duas formas: pelo processo de igualdade das áreas ou pelo método do baricentro do perímetro.

Exemplo: Calcular o diâmetro do blanque para a peça da página abaixo:

3.2.1.1 - Processo pela igualdade das áreas.

Ou seja

Sblanque = Σ Scírculo + Scilindro

Page 65: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

65

π . D² = π . d1 . h1 + π . d1² 4 4

π . D² = 4π . d1 . h1 + π . d1² 4 4

D² = 4d1 . h1 + d1² D = √4d1 . h1 + d1² D = √4 . 100 . 50 + 100² D = √30000 D = 173,205mm

ou ainda:

S = π . d1 . h1 + π . d1² S = π .100 . 50 + π .100² 4 4 S = 15707,96 + 7853,98

S = 23561,94 como S = π x D² 4 então temos: π . D² = 23561,94 π . D² = 4 . 23561,94 4 D² = 4 . 23561,94 D² = 30000 π D = √30000 = 173,205mm

3.2.1.2 - Método do Baricentro do Perímetro (Processo Analítico) Calculo pelo centro de gravidade das figuras:

Page 66: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

66

π . D² = 2π . R1 . L1 + 2π . R2 . L2

4 π . D² = 4 . 2π (R1 . L1 + R2 . L2)

D² = 8 (Σ Ri . Li)

D = √8 (Σ Ri . Li) D = √8 (50 . 50 + 25 . 50) D = √30000 D = 173,205mm Este processo é o mais utilizado pois pode utilizar a fórmula D = √8 (Σ Ri . Li), para qualquer que seja o repuxo que quisermos determinar o diâmetro do blanque. A sequência do calculo é:

1°- Dividir o repuxo em figuras regulares como cilindros, discos, anéis, etc. 2°- Determinar o C.G de cada figura e a distância destes até o centro da peça (Ri) 3°- Determinar o comprimento desenvolvido de cada parte na seção mostrada (Li)

4°- Aplicar a fórmula: R² = 2π . R . m x Σ li

3.2.2 - Repuxo em vários estágios

Peças com grandes profundidades de repuxo devem ser repuxados em várias operações: O número das operações depende da profundidade de repuxo e das características de estampabilidade do material da chapa. Coeficiente de repuxo - O coeficiente de repuxo fornece a menor relação entre o diâmetro do punção e o diâmetro do blanque (ainda peça intermediária) em função do material da chapa.

m ≤ d1 ( m = coeficiente para 1° operação) D

m1≤ dn ( m1 = coeficiente para demais operações) dn – 1

Material m m1

Aço para repuxo 0,60 – 0,65 0,80

Aço para repuxo profundo 0,55 – 0,60 0,75 – 0,80

Aço para carroceria 0,52 – 0,58 0,75 – 0,80

Aço Inoxidável 0,50 – 0,55 0,80 – 0,85

Cobre 0,55 – 0,60 0,85

Latão 0,50 – 0,55 0,75 – 0,80

Alumínio Mole 0,53 – 0,60 0,8

Duralumínio 0,55 – 0,60 0,9

Page 67: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

67

Exemplo 1: Determinar o diâmetro do disco e o número de operações necessárias para obtermos um recipiente cilíndrico de chapa de aço inoxidável com as dimensões da figura.

Obs: Deixar 3% de sobremetal do blanque para usinagem posterior da altura, arredondar para o número inteiro mais próximo. Pela tabela temos: m = 0,55 m1 = 0,85

Diâmetro do blanque. D = √4d1 . h1 + d² D = √4 . 72 . 56 + 70² D = √21028 D = 145,01

Da = 1,03 . 145,01 Da = 149,36 Da ≈ 149mm Número de operações: d1 = Da . m d2 = d1 . m1

d1 = 149,055 d2 = 81,95 . 0,85 d1 = 81,95mm d2 = 69,65 = 70mm

h1 = Da² – dm²1 h2 = Da² - dm²2

4 . dm1 4 . dm2

h1 = 149² – 83,95² h2 = 149² - 72² 4 . 83,95 4 . 72

h1 = 15153,39 h2 = 17017 335,8 288

h1 = 45126mm h2 = 59,086mm

Page 68: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

68

Exercício: 1 - Determinar o número de operações de repuxo e as respectivas profundidades para estampagem da peça abaixo: Calcular o diâmetro do blanque pela igualdade das áreas:

Material – Latão 0,5m 0,8m1

Page 69: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

69

2 – Calcular o diâmetro do blanque para a peça abaixo: Material – aço para repuxo profundo

Page 70: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

70

Exemplo 2:

1- Determinar o blanque. (dois processos) 2- Calcular o número de operações e como são feitas. Obs: Deixar 5% de sobremetal no blanque para usinagem posterior da altura.(arredondar % para o n° inteiro mais próximo para mais ou para menos)

Resolução: 1- Cálculo do blanque

S1 = π . d1 . h1 S1 = π . 52 . 48 = 7841,41

S2 = 2π . r² + π² . r . d onde d = 50 – (2 . 2) = 46 2

S2 = 2π . 3² + π² . 3 . 46 = 56,54 + 681 = 737,54 2 S3 = π . d² S3 = π . 46² = 1661,85 4 4

Speça = 7841,41 + 737,54 + 1661,85 = 10240,85

Sblanque = Speça

π . D² = 10240,85 π . D² = 4 . 10240,85 D² = 40963,4 D = √13039,05

4 π

D = 114,18 mm

Material – Latão 0,5m

0,8m1

Page 71: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

71

Pelo processo analítico: CG (raio) = 0,635 . 3 = 1,9 mm Perímetro = 2π . r / 4 = 2π . 3 = 4,71 mm

D = √ 8 (Σ Ri . Li) D = √8 (26 . 48 + 24,9 . 4,71 + 11,5 . 23) D =114,18 mm

Da = 1,05 . 114,18 = 120mm

d1 ≥ 120 . 0,5 = 60mm d2 ≥ 120 . 0,8 = 48mm d2 = 50mm

Page 72: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

72

Exercício: 1- Determinar o diâmetro do blanque. 2- Determinar o número e como serão as operações.

Material – Aço Inoxidável

0,55m 0,85m1

Page 73: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

73

4 - FERRAMENTAS

Esta denominação necessita de certa lógica para evitar confusões. Se a ferramenta efetua várias operações, poderá ser útil mencionar cada uma delas, indicando

eventualmente a ordem na qual irão ser efetuadas.

4.1- Classificações das Ferramentas

Podem ser classificadas as ferramentas, inicialmente, pelas operações que efetuam; temos assim: a) Ferramentas de corte; b) Ferramentas para deformação; c) Ferramentas de embutir ou repuxar;

Em outros casos as ferramentas podem combinar várias operações, temos assim: d) Ferramentas combinadas.

Classificação:

a) Ferramentas de corte

Estas ferramentas podem ser classificadas pelo tipo de trabalho: - ferramenta de corte simples; - ferramenta de corte progressivo; - ferramenta de corte total.

Pelas formas da ferramenta: - ferramenta de corte; aberta (para corte simples);- ferramenta de corte coberta ou com placa-guia (para corte simples ou progressivo); - ferramenta de corte com colunas (para corte simples, progressivo ou total); - ferramenta de corte com guia cilíndrica (para corte total).

b) Ferramentas para deformação

A classificação destas ferramentas pode ser feita somente em função do serviço a ser realizado: - ferramenta de dobra em V, U ou L; - ferramenta de enrolar (extremo ou total) - ferramenta de aplainar - ferramenta de estampar

c) Ferramentas de Embutir ou Repuxar

Classificam-se pelo tipo de trabalho: - ferramenta de repuxo sem prendedor de chapa (para repuxo de ação simples) - ferramenta de repuxo com prendedor de chapa (para repuxo de ação dupla), para prensas se simples e duplo efeito.

d) Ferramentas Combinadas

Apresentam-se sob formas diversas, sendo possível classificá-las em: - ferramentas combinadas totais;

Page 74: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

74

- ferramentas combinadas progressivas.

Ferramenta de Estampo Progressivo de Corte, Dobra e Repuxo

4.2 - Elementos Normalizados Bases

Page 75: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

75

Buchas Guias e Mola

Colunas

Page 76: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

76

5- EQUIPAMENTOS 5.1 - Prensas

No trabalho dos metais em chapas, as máquinas usadas são denominadas “PRENSAS”. A classificação destas máquinas é feita observando o funcionamento e os movimentos. Em 1º lugar se distinguem: - Prensas Mecânicas; - Prensas Hidráulicas. Em cada um destas categorias, os movimentos de que são dotadas essas prensas permitem

diferenciá-las em: 1- Prensas de simples ação, ou seja, com um só movimento (mais usual); 2- Prensas de dupla ação, ou seja, com dois movimentos; 3- Prensas de tripla ação. Citaremos somente a de simples ação.

Neste tipo de prensa é possível diferenciar: 1 – pela sua função: a) prensas para cortar e embutir; b) prensas para dobrar e puncionar c) prensas de forja.

2 – pelo seu comando: a) prensa de balancim manual;

Trabalho de corte, dobra, embutição ou estampagem que não precisam grandes esforços. b) prensa de fricção;

Trabalho de forja, estampagem e dobra. c) prensa de excêntricos; (mais usual)

Trabalho de corte, dobra, embutição ou estampagem de diversos esforços. d) prensa de virabrequim;

Trabalho de corte, dobra, embutição ou estampagem, mas que constitui um virabrequim. e) prensa de rótula.

Trabalho de corte, dobra, embutição ou estampagem, com diferente acionamento do cabeçote.

5.1.1 - Características das Prensas

Para definir uma prensa devem ser indicadas as características que se seguem: - tipo; - força máxima em toneladas e trabalho; - percursos; - distância entre mesa e cabeçote; - potência do motor; - dimensões externas. Ademais, o fabricante deve definir sempre as dimensões das fundações previstas para instalação da

máquina. Prensas Mecânicas: Para prensas de pequena e média potência, pode ser executado em ferro

fundido, aço fundido ou em chapas de aço soldadas. Esta armação aberta por três lados, permite a passagem lateral da fita. Possuem mancais na parte superior, guias verticais e uma mesa para fixação das ferramentas. Os principais tipos são: balancim, fricção, excêntrica, virabrequim, rótula. Prensas Hidráulicas: estas se diferenciam somente das precedentes pelo comando do cabeçote. São de uma ou várias colunas e a armação é de ferro fundido ou de chapas de aço soldadas. A

Page 77: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

77

vantagem destas prensas reside na facilidade existente para se regular a pressão do óleo, o que permite utilizar somente a força necessária e que esta seja controlada.

5.1.2 - Escolha da Prensa Conveniente

Para se escolher uma prensa para uma determinada operação, devemos conhecer as características das prensas de que dispõe. Para um trabalho a se realizar devem ser determinados:

1) a força (em toneladas) necessária; 2) o trabalho (em quilogrâmetros) necessário; 3) as dimensões da ferramenta; 4) o percurso necessário; 5) o modo pelo qual se deve trabalhar (golpe a golpe ou em continuação).

Estas especificações vão tomar a escolha mais fácil. A primeira permite que se determine a força exigida da prensa. A segunda fixa a escolha entre uma prensa de comando direto ou com aparelhos. A terceira permite assegurar a possibilidade de montagem das ferramentas.

Para a escolha de uma prensa, deve-se evidentemente ter em conta o tipo de trabalho a ser executado.

Os trabalhos de corte podem ser realizados em todos os tipos de prensas de simples efeito. As dobras deverão ser efetuadas em prensas excêntricas, prensas de fricção, ou em prensas

especiais para dobrar. A escolha é mais delicada para trabalhos de embutição. As prensas de duplo efeito, com mesa

móvel, deverão ser utilizadas para trabalhos embutição cilíndrica profunda em chapas finas. As prensas hidráulicas permitem grandes pressões a grandes profundidades. As prensas de simples efeito, providas de almofada pneumática, podem ser utilizadas como

prensas de embutir. Estas prensas permitem exercer grandes pressões de deformação e maior produção.

5.1.3 - Dispositivos de Proteção

As prensas são máquinas perigosas para as mãos dos operadores, por esta razão são empregados diversos dispositivos para que se aumente a segurança, no trabalho.

Uma das mais simples é que se obrigue a utilizar as duas mãos para o comando, o que evita que o operário deixe uma das mãos debaixo do cabeçote (bi-manual).

Nas grandes prensas, manejadas por vários operadores, dispositivos elétricos no comando obrigam-lhes a utilizar as mãos na manobra.

Algumas prensas têm uma pantalha protetora, a qual deve ser descida, a fim de acionar a máquina. Este movimento força o operário a retirar as mãos da zona perigosa. Modelos de algumas máquinas:

Page 78: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

78

5.2 - Corte a Laser

Modelo: Amada corte Laser LC-2415 Corte Laser em execução

Neste modelo há o mais recente desenvolvimento de máquina CNC e tecnologia de ressonador de laser. O LC-2415 é projetado para o alto-volume de corte de produção de metal de chapa separa, enquanto caracterizando alta velocidade processando seguro, material carregando fácil, e descarga automatizada de partes múltiplas. As séries LC também caracteriza avançadas técnicas cortantes, CleanCut™ e DoubleCut™.

Este corte é gerado pela fundição do laser no material e assim cortando-o. A informação para o corte do perfil da peça é de forma CAD-CAM, pois primeiro é feito o arquivo no CAD e convertido para o CAM e assim efetuado o trabalho.

Vantagens: - Melhor aproveitamento da chapa; - Corte de precisão com excelente acabamento; - Flexibilidade e rapidez na mudança do projeto; - Qualquer quantidade de produção; - Não tem investimento em ferramental; - Projeto desenvolvido em CAD/CAM; - Flying Optical – Laser flutuante; - Pequena área de influencia térmica; - Rapidez na entrega; - Área de trabalho em média 1250x2500 mm;

Page 79: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

79

- Projetos enviados por e-mail (internet), via sistema intranet; - Corte de geometria complexa com grande precisão e baixo custo.

Capacidade: - Aço carbono SAE 1020 até 16 mm; - Aço inox 304 até 9 mm; - Alumínio até 5 mm; - Madeira MDF até 20 mm; - Acrílico e/ou Policarbonato até 20 mm.

5.3 – Corte a Plasma

Desde sua invenção na metade da década de 50, o processo de corte por plasma incorporou várias tecnologias e se mantém como um dos principais métodos de corte de metais. Porém, até poucos anos atrás, o processo detinha uma reputação duvidosa na indústria de corte de metais devido ao elevado consumo dos itens componentes do sistema, o ângulo de corte e a inconsistência do processo. Os recentes desenvolvimentos agrupando tecnologias em sistemas de cortes manuais e mecanizados proporcionaram um marco importante na história do corte plasma. Os plasmas manuais mais modernos são equipados com sistema de jato coaxial de ar, que constringe ainda mais o plasma, permitindo um corte mais rápido e com menos ângulo. O projeto de escuto frontal permite ao operador apoiar a tocha na peça mesmo em correntes elevadas na ordem de 100 A. Nos sistemas mecanizados, utilizados principalmente em manipuladores XYZ comandados por controle numérico, foram incorporam tecnologias que aumentam a consistência do processo e prolongam a vida útil dos componentes consumíveis através de um controle mais eficiente dos gases e do sistema de refrigeração respectivamente. O processo de corte plasma, tanto manual como mecanizado ganhou espaço considerado na indústria do corte de metais. Mesmo descontado o crescimento desta indústria, a participação do corte plasma teve substancial ampliação devido a sua aplicação em substituição ao processo oxi-corte, em chapas grossas, e ao LASER em chapas finas ou de metais não ferrosos.

Modelo: Koike IK600 Plasma System

Page 80: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

80

5.3.1 - Relação entre Processos (Oxi-Corte, Plasma, Laser)

O processo plasma ocupa uma vasta área de aplicação com vantagens técnicas e econômicas. Porém, existem aplicações que os outros processos de corte térmico (ou termoquímico) mais adequados. Para peças em aço carbono, com espessuras acima de 40 mm, o processo mais recomendado é o Oxi-Corte devido ao baixo custo inicial e operacional do processo. Para peças de espessura abaixo de 6 mm, com requisitos de ângulo reto, ou nível 1 ou 2 de segundo a ISO o processo mais recomendado seria o LASER. O LASER também pode ser aplicado em maiores espessuras dependendo da potência do ressonador. O que se deve avaliar é a rugosidade da superfície de corte e principalmente a velocidade de corte.

Esquema do bico HyFlow de alta definição

Plasma de alta definição que revoluciona o processo plasma e o torna aplicável em peças com maiores exigências de qualidade de corte. O processo utiliza um orifício reduzido no bico HyFlow e um canal extra para saída de excesso de gás plasma resultando num corte praticamente sem chanfro e sem geração de escória.

Page 81: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

81

5.4 - Corte a Jato de água

O corte por jato de água é comprovado sempre que os processos convencionais fornecem uma qualidade insatisfatória. Não há despesas extras devido ao processamento adicional ou devido a menor velocidade do processo. Como no corte não são originados gases nem vapores, o processo é seguro e limpo, e não agride o meio ambiente denominação necessita de certa lógica para evitar confusões.

Sistemas modernos de corte por jato de água incrementam a otimização do processo e a melhoria da qualidade na indústria de processamento.

Modelo: Byjet – Bystronic Os equipamentos flexíveis para corte por jato de água destinado a aplicações exigentes; com mesa intercambiável, carregamento giratório e novo cabeçote de corte

5.5 – Puncionadeira: Corte e Repuxo

Modelo: Amada Vipros 255 – Puncionadeira Hidráulica de Alta Velocidade com Torre de Perfuração

Sistema hidráulico da pressão dupla - uma válvula servo linear avançada assegura a energia máxima é consumida durante a perfuração, reduzindo desse modo o consumo de potência. O Vipros combina a excelência no CNC, na máquina, e em tecnologias de perfuração hidráulicas. O sistema hidráulico controlado servo fornece processar de alta velocidade e a operação baixa do ruído. O controle da precisão da brake-like como dar forma ao ciclo entrega a alta qualidade que dá forma com ajuste eletrônico fácil da profundidade. Com toneladas da força perfurando da vibração baixa, a construção rígida do frame da ponte e a capacidade grande da tabela fazem a máquina ideal para uma escala larga da folha grande que processa aplicações.

Peça cortada e puncionada

Page 82: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

82

Uma boa aplicação e a principal vantagem desta máquina são quando se tem um lote pequeno de peças com furadas e repuxadas a serem fabricadas e não se quer gastar com ferramental, fabrica-se somente o punção com a geometria da peça e após isto é acoplado o punção na torre da máquina e assim é estampado (puncionado).

5.5.1 – Esquema de Repuxo e Estampo Progressivo

Estampo Progressivo Peça Estampada na Ferramenta ao lado

5.6 - Dobradeira

Dobradeira Amada FBD 3 – 8025NT Dobrando uma chapa Peça Dobrada

Este modelo é um marco no sistema de dobramento automático completamente diferente em conceito de qualquer sistema convencional. Possui programação simplificada e permite o sistema de conferência no perfil da parte fabricada como também qualquer interface. Também podem ser

Faca

Canal

chapa

Page 83: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

83

executadas modificações de usuário para o programa antes de processar. O sistema é projetado para prover dobramento para cima e para baixo de 180 a 45 graus. Ele processa produtos novos sem perda de tempo pela organização de operações. Considerando que não requer nenhum óleo hidráulico, o este mantém um ambiente de trabalho limpo. Com automatização Integrada, é desenvolvido para aumentar produtividade idealmente enquanto reduzindo custos em uma variedade de loja que processa métodos. O sistema também pode ser ampliado e pode ser integrado com outro equipamento do mesmo fabricante.

5.7 - Automação em Prensas

Desbobinador Endireitador Prensa

Sistema de Automação projetada por Stampco-Setrema

Neste sistema de automação acima, consiste três equipamentos:

- Desbobinador - Endireitador - Prensa Hidráulica (descrito no item 3.1)

5.7.1 - Desbobinador para Fitas

Destinados ao processamento de materiais em rolos / bobinas. Podem ser fornecido com mandril único ou duplo, eixo com ponta lisa para carretéis ou base giratória para desenrolamento direto de “pallets”.

Desbobinador c/Mandril Único Desbobinador c/ Mandril Duplo

Page 84: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

84

Características técnicas• Expansão do diâmetro manualmente acionada • Suportes laterais para sustentação e guiamento do material • Freio de inércia para controle do desbobinamento (modelo sem motorização) • Acionamento por motorredutor (modelo com acionamento) • Velocidade variável por inversor de freqüência • Seletor para reversão do sentido de rotação • Sensor eletrônico para controle de laço - “looping” (modelo com acionamento)

Acessórios opcionais• Braço pneumático com rolo pressor • Freio de inércia de atuação pneumática • Controlador de laço por ultrasom ou sensores fotoelétricos • Expansão hidráulica do mandril • Carro transportador / elevador de bobinas • Telas de proteção conforme PPRPS • Rolos cônicos para guiamento lateral do material

5.7.2 - Endireitadores para Fitas

São destinados ao processamento de materiais contínuos em fitas. Podem ser fornecidos em conjunto com desbobinadores em gabinete único (montagem compacta).

Endireitadora c/ Abertura Manual Endireitadora c/ Abertura Hidráulica

Características técnicas• Rolos puxadores para tracionamento do material • Regulagem da pressão dos rolos tracionadores por molas • Número de rolos endireitadores: (05) cinco ou (07) sete • Ajuste individual da posição dos rolos endireitadores superiores • Comando por inversor de freqüência • Sensor eletrônico para controle do laço (“looping”) • Seletor no painel para modo de operação “Automática / Manual” • Guia fita na entrada / cesto de rolos na saída do material

Page 85: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

85

Acessórios opcionais• Abertura manual ou hidráulica do cabeçote endireitador (introdução da ponta) • Controlador de laço por ultrasom ou sensores fotoelétricos • Abertura pneumática para os rolos tracionadores • Mesa articulada para introdução da ponta da bobina • Rolo pré-endireitador para preparação

Page 86: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

86

Apêndice I 6 - Simbologia de Estampagem

e = Espessura da chapa (mm) u = Distância entre os pontos de contato da peça com a matriz e o punção(mm) l = Comprimento da tira (mm)

s = Espaçamento entre peça e borda (mm) n = Número de peças por metro. a = Avanço ou passo(mm) f = Folga entre punção e matriz (mm) la = Abertura da matriz(mm) lb = Comprimento da dobra.(mm) d1 = Diâmetro da peça repuxada (repuxo cilíndrico) (mm) h1 = Altura do repuxo (mm) m = Coeficiente de repuxo para 1° operação m1= Coeficiente de repuxo para demais operações

B = Largura da fita (mm) Ac = Área de corte (secção resistiva de corte) (mm²)

Fc = Forca de corte em tesoura guilhotina (kgf)

L = Comprimento de corte ( mm) Ap = Superfície total da peça ( mm²) At = Superfície total da tira ( mm²) P = Força de dobramento (kgf) D = Diâmetro do blanque (mm) Da = Diâmetro adotado considerando usinagem posterior (mm)

Pe = Pressão específica dimensionada para a placa de choque (kgf/mm²)

R = Raio do blanque (mm) Ri = Raio interno do repuxo (método analítico) (mm) Li = Altura do reuxo (método analítico) (mm)

τcis = Tensão de cisalhamento do material (kgf/mm²)

λ = Ângulo de inclinação da faca de corte (°) σƒ = Tensão de flexão.(kgf/mm²) σr = Tensão de ruptura a tração(kgf/mm²) J min = Menor momento de inércia E = Módulo de elasticidade do material(Pa)

ε = Coeficiente para dobras com planificação de fundo

μ = Coeficiente de inclinação

ω = Módulo de resistência.

Page 87: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

87

Apêndice II 7- Projeto de Estampo Progressivo de Corte

P a r t e 1. M e m o r i a l d e C á l c u l o

1. Estudo da Fita 1.1. Definir a posição ideal da peça na fita, com no mínimo: 2 estudos com inversão de corte e 2 sem inversão 1.2. Calcular o número de peças por chapa padronizada 1.3. Calcular a porcentagem de utilização da chapa (considerar o limitador de avanço) 1.3.1. Considerar peça real (com furos) 1.3.2. Considerar a peça bruta (desconsiderar furos)

2. Estudo do Limitador de Avanço 2.1. O projeto deverá considerar avanço manual 2.2. O uso de faca de avanço reduz o rendimento no uso da chapa 2.3. Caso se utilize faca de avanço o rendimento no uso da chapa deverá ser revisto

3. Dimensionamento da Matriz 3.1. Calcular a folga entre punção e matriz 3.2. Efetuar o estudo da parede entre furos 3.3. Calcular a espessura do talão 3.4. Determinar a espessura, comprimento e largura da matriz 3.5. Determinar a vida útil de cada matriz

4. Verificação dos Punções 4.1. Verificar flambagem e resistência à compressão 4.2. Verificar a necessidade de uso da placa de choque

5. Espiga 5.1. Calcular o centro de gravidade do perímetro de corte 5.2. Sugerir tipo da espiga 5.3. Indicar a prensa adequada (fator segurança entre 10 e 20%)

6. Outros Elementos Construtivos 6.1. Elementos Construtivos Padronizados Bases, colunas de guia (pino), buchas, molas, parafusos, pino-guia (DIN 6325) arruelas, etc., devem ser

normalizados ou padronizados pelos fabricantes: Danly, Miranda, Polimold, Onça, etc. Apresentar a fonte desses elementos.

6.2. Demais Elementos Construtivos Definir: porta-punções, sistema de guias e extratores, prensa-chapa, limitadores de avanço e demais

elementos construtivos.

P a r t e 2. D e s e n h o s

1. Apresentar uma pasta com desenhos em tamanho máximo A1 2. Fazer o desenho do conjunto (montagem) em 3 vistas se necessário 3. Fazer o detalhamento de todos os itens do ferramental 4. Punções e Matrizes deverão ter todas as especificações para fabricação. Considerar que esses elementos

operam em conjunto 5. Todos os elementos deverão apresentar: tolerâncias e acabamentos

Page 88: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

88

Apêndice III 8 - Componentes Fundamentais de um Estampo

Page 89: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

89

1. Pino de Fixação

Sua função é fixar componentes do estampo que podem ter movimentos horizontais. Material: Aço prata.

2. Parafuso hexagonal interna (Tipo “Allen”) - DIN 912

3. Punção ou Macho – Obs.: Ø ≥ e da chapa

Sua função é dar o formato final do produto. É um elemento de muita precisão. Material: Aço RCC, Aço VC-131 – Temperado 60-62 HRC

Aço VT-131 – Temperado e Retificado p/ trabalho a quente 62-64 HRC.

4. Pino de Fixação

Sua função é fixar componentes do estampo que podem ter movimentos horizontais. Material: Aço prata.

5. Parafuso hexagonal interna (Tipo “Allen”) – DIN 912

6. Régua de Guia

Sua função é guiar a tira durante o processo de estampagem. Material: Aço SAE 1045 – não havendo obrigatoriedade de tratamento térmico com HRC 45-48.

7. Chapa de Apoio

Sua função é apoiar a tira antes de entrar no estampo. Material: SAE 1020.

8. Espiga – Obs.: A rosca da Espiga não é cementada

Sua função é fixar a base superior do estampo no cabeçote da prensa. Material: Aço SAE 1020.

9. Base Superior – Obs.: Espessura ≥ 20 mm

Sua função é apoiar o conjunto superior do estampo no cabeçote da prensa. Material: Aço SAE 1020 ou Ferro Fundido.

10. Placa de Choque – Obs.: Espessura entre 5 e 8 mm

Sua função é evitar a penetração dos punções na base superior. Material: Aço SAE 1045 – não havendo obrigatoriedade de tratamento térmico com HRC 45-48. Aço VND - não havendo obrigatoriedade de tratamento térmico com HRC 52-56.

11. Bucha de Guia

Sua função é de guiar as colunas do estampo durante o processo de estampagem. Favorece o deslizamento do cabeçote sobre as colunas. Material: Aço VND – Temperado 52-54 HRC, Bronze. (Parafusos de Fixação: Aço Liga).

12. Porta Punção

Sua função é posicionar e fixar firmemente os punções. Material: Aço SAE 1020.

Page 90: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

90

13. Mola de Compressão

Sua função é de possibilitar o recuo do piloto quando ocorrer posicionamento incorreto da tira. Material: Aço SAE 9260, VS-60 – Temperado 46-48 HRC.

14. Placa Guia

Sua função é guiar os punções e extrair a tira dos punções na subida do cabeçote da prensa. Material: Aço SAE 1020.

15. Colunas de Guia - Obs.: Encaixe ≥ 1,5 Ø

Sua função é guiar o conjunto superior e inferior do estampo para que não ocorra nenhum deslocamento entre si. Material: Aço SAE 1010/1020 Cementado – Temperado 60-62 HRC.

16. Punção ou Macho – Obs.: Ø ≥ e da chapa

Sua função é dar o formato final do produto. É um elemento de muita precisão. Material: Aço RCC, Aço VC-131 – Temperado 60-62 HRC

Aço VT-131 – Temperado e Retificado p/ trabalho a quente 62-64 HRC.

17. Pino Piloto

Sua função é a de garantir o perfeito avanço da tira corrigindo possíveis falhas no sistema de avanço. Material: Aço VND – Temperado 58-60 HRC Aço Prata – SAE 1040/1050 – Temperado e Retificado.

18. Base Inferior

Sua função é apoiar e fixar o conjunto inferior do estampo na mesa da prensa. Material: Aço SAE 1020 ou Ferro Fundido.

19. Matriz ou Fêmea

Sua função é a de juntamente com o respectivo punção, formar o produto. Material: Aço RCC, Aço VC-131 – Temperado 60-62 HRC

Aço VT-131 – Temperado e Retificado p/ trabalho a quente 62-64 HRC.

20. Parafuso Cabeça Escareada - DIN 93

21. Faca de Avanço

Sua função é determinar o avanço (passo) da tira após a cada descida do cabeçote da prensa. Material: Aço RCC, Aço VC-131 – Temperado 60-62 HRC

Page 91: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

91

Apêndice IV 9 - Exemplo de Estampo de Corte Explodido

Page 92: TECNOLOGIA DE ESTAMPAGEM - Viviane's Blog · 2 TECNOLOGIA DE ESTAMPAGEM – CONTEÚDO PROGRAMÁTICO 1- INTRODUÇÃO pág 04 1.1- Operações de corte pág 05 1.2- Operações de deformação

92

10 - Bibliografia

• Estampo de Corte – BRITO, OSMAR DE

• Projetista de Máquinas – PRO-TEC – PROVENZA, FRANCESCO

• Estampos I – PRO-TEC - PROVENZA, FRANCESCO

• Estampos II – PRO-TEC – PROVENZA, FRANCESCO

• Manual do ferramenteiro – KONINCK, J. DE. GUTTER, D