228
Universidade de Lisboa Faculdade de Medicina de Lisboa Resposta Humoral na Infecção por VIH-2: Impacto no diagnóstico, prevenção e evolução viral José Maria Marcelino Doutoramento em Ciências Biomédicas 2011

Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

Embed Size (px)

Citation preview

Page 1: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

Universidade de Lisboa

Faculdade de Medicina de Lisboa

Resposta Humoral na Infecção por VIH-2: Impacto no

diagnóstico, prevenção e evolução viral

José Maria Marcelino

Doutoramento em Ciências Biomédicas

2011

Page 2: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 3: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

Universidade de Lisboa

Faculdade de Medicina de Lisboa

Resposta Humoral na Infecção por VIH-2: Impacto no

diagnóstico, prevenção e evolução viral

José Maria Marcelino

Orientador

Prof. Doutor Nuno Taveira

Co-Orientadores

Charlotta Nilsson, PhD

Prof. Doutor Rui MM Victorino

Especialidade em Ciências Biopatológicas

Todas as afirmações efectuadas no presente documento são da exclusiva

responsabilidade do seu autor, não cabendo qualquer responsabilidade à

Faculdade de Medicina de Lisboa pelos conteúdos nele apresentados.

Page 4: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 5: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

A impressão desta dissertação foi aprovada pelo Conselho Cientifico da

Faculdade de Medicina de Lisboa em reunião de 22 de Fevereiro de

2011.

Page 6: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 7: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

Dissertação apresentada à Faculdade de Medicina da Universidade de

Lisboa, para obtenção do grau de Doutor em Ciências Biomédicas.

Page 8: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 9: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

A presente dissertação foi realizada na Unidade de

Tecnologia de Proteínas e Anticorpos Monoclonais,

Instituto Nacional de Engenharia, Tecnologia e Inovação;

na Unidade de Retrovírus e Infecções Associadas,

Faculdade de Farmácia da Universidade de Lisboa e no

Swedish Institute for Infectious Disease Control,

Estocolmo, Suécia.

O trabalho aqui apresentado foi financiado pelo

POCTI/ESP/48045/2002, Fundação para a Ciência e a

Tecnologia.

Bolsa de Doutoramento da Fundação para a Ciência e a

Tecnologia, (Referência: SFRH/BD/13892/2003).

Page 10: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 11: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

À minha família

Page 12: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 13: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

Índice Geral

Agradecimentos .................................................................................. i

Resumo .............................................................................................. v

Summary...........................................................................................xi

Capítulo I

Introdução ......................................................................................... 1

A Pandemia ................................................................................... 3

VIH-2 ................................................................................................. 3

Origem, Estrutura e Replicação .................................................... 3

Patogénese da Infecção VIH .......................................................... 6

Defesas do Hospedeiro na Infecção por VIH .................................. 8

Resposta Celular..................................................................... 9

Resposta Humoral ................................................................ 10

O papel dos anticorpos na infecção VIH ........................... 10

Anticorpos Neutralizantes................................................ 13

Determinantes da neutralização no invólucro do VIH ....... 14

Escape à Neutralização ..................................................... 18

Vacinas para o VIH .......................................................................... 19

Desafios e dificuldades ............................................................... 19

Modelos Animais ......................................................................... 21

Referências ...................................................................................... 22

Capítulo II

Objectivos e Plano de Trabalho ............................................................ 41

Objectivos e Plano de Trabalho ........................................................ 43

Capítulo III

Teste de ELISA específico para o VIH-2 (ELISA-VIH2) .......................... 47

Resumo ........................................................................................... 49

Abstract ........................................................................................... 51

Referências ...................................................................................... 60

Page 14: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

Capítulo IV

Resposta de anticorpos IgA e IgG inespecíficos e específicos para as

glicoproteínas gp36 e gp125 do VIH-2 ................................................. 67

Resumo ........................................................................................... 69

Abstract ........................................................................................... 71

Introdução ....................................................................................... 73

Material e Métodos .......................................................................... 74

Resultados....................................................................................... 77

Discussão ........................................................................................ 82

Referências ...................................................................................... 85

CAPÍTULO V

Resposta humoral na evolução molecular das regiões C2, V3 e C3 do

invólucro do VIH-2 em pacientes crónicos ........................................... 93

Resumo ........................................................................................... 95

Abstract ........................................................................................... 97

Introdução ....................................................................................... 99

Material e Métodos ........................................................................ 100

Resultados..................................................................................... 103

Discussão ...................................................................................... 108

Conclusões .................................................................................... 111

Referências .................................................................................... 113

CAPÍTULO VI

Escape à Neutralização na Infecção VIH-2 ......................................... 123

Resumo ......................................................................................... 125

Abstract ......................................................................................... 127

Introdução ..................................................................................... 129

Material e Métodos ........................................................................ 130

Resultados e Discussão ................................................................. 133

Conclusões .................................................................................... 141

Page 15: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

Referências .................................................................................... 142

CAPÍTULO VII

Anticorpos neutralizantes contra isolados VIH-2 primários produzidos

em murganhos BALB\c……. .............................................................. 149

Resumo ......................................................................................... 151

Abstract ......................................................................................... 153

Introdução ..................................................................................... 154

Material e Métodos ........................................................................ 155

Resultados..................................................................................... 159

Discussão ...................................................................................... 165

Referências .................................................................................... 167

CAPÍTULO VIII

Discussão Geral e Conclusões ........................................................... 177

Discussão Geral e Conclusões ....................................................... 179

Referências .................................................................................... 189

Page 16: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 17: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

i

Agradecimentos

Quero agradecer a todos os que contribuíram para a realização deste

trabalho e conclusão da minha tese de doutoramento:

Ewa Bjorling, my initial co-supervisor from Microbiology, Tumor and

Biology Center (MTC) at Karolinska Institutet in Sweden. Thank you

for answer without hesitation to the question I put you by email a

few years ago: “Can you receive me at your lab for some weeks? I

would like to get some practice with your HIV-2 neutralization

method.” You received me without knowing me before and you

opened me a door to share extensive knowledge and experience with

you and your group. Thank you for encouraging my initial work and

for the important support you gave it, which resulted in an important

scientific collaboration along these last years between our

workgroups. I wish you all the luck for your new professional trails.

Charlotta Nilsson, my co-supervisor after Ewa Bjorling and until

now, thank you for sharing with me all your scientific experience and

for your good suggestions and stimulating discussions about my

work. Your enthusiastic new ideas and knowledge on this field have

enriched a lot this thesis. Working with you was excellent and I hope

we’ll have new opportunities to collaborate again in the future.

Rigmor Thorthesson, director of Vaccinology and Immunology

Department of SMI, for having received me and having allowed that

Charlotta Nilsson substituted Ewa Bjorling as my co-supervisor.

All the members of the Swedish group: Qin Lizeng, for nice

discussions about work and for the homemade Chinese food, of

course. Mia, thanks you for receiving me at a weekend in my first

arrival to Stockholm. Kerstin Andersson, for the great support with

PBMC’s at P3 security level. Gunnel Biberfield for your sympathy to

this foreign PhD student. Samer Sourial and Andreas Mörner for all

your support in the months I spent in your lab along these

years….and Sam I will never, never forget the triple mortal jump you

did in front of my eyes when trying to skiing down the Rocky

Mountains in 2002 in Keystone Symposia. If you’ll try to do such

things now you wouldn’t do it better!

Nuno Taveira, obrigado por teres aceitado ser meu orientador deste

fantástico projecto que teve início alguns anos atrás. Terminei uma

Page 18: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

ii

fase desse percurso, mas não sei onde e como vai terminar! Foi bom

teres partilhado comigo o teu conhecimento científico numa área tão

delicada e exigente, e teres sido fundamental para a evolução da

minha carreira científica. Nuno, obrigado pela excelente orientação e

pela tua amizade.

Prof. Doutor Rui Victorino (Faculdade de Medicina de Lisboa) é com

satisfação que lhe agradeço não só por ter aceitado ser co-orientador

deste trabalho, como pela disponibilidade que sempre mostrou para

me receber sempre que lho solicitei.

Carlos Novo (director da UTPAM, INETI), gostava de salientar que

independentemente das mudanças que a vida nos trás, vais ser

sempre a pessoa que me abriu “aquela” porta, a porta por onde um

dia entrei para encontrar todas as seguintes, algumas abertas

novamente por ti. Pessoas como tu são pouco comuns nos dias que

correm. Agradeço-te por teres acreditado em mim desde o início e na

confiança que tens depositado em mim ao longo destes anos. A vida

está sempre a mudar, e novos desafios a surgirem, mas a verdadeira

amizade permanece e não desaparece. Obrigado Carlos.

Dra. Alda Fidalgo (Ex-directora da UTPAM, INETI), quero agradecer-

lhe a confiança que depositou em mim e todo o seu empenho em me

abrir a porta de entrada no INETI.

Doutor Roseiro (Director do Departamento de Biotecnologia, INETI),

quero agradecer-lhe as palavras de incentivo que sempre me dirigiu.

Maria Marques, agradeço-te o teu apoio e amizade contínua, as tuas

constantes palavras de encorajamento acerca do meu trabalho e as

várias conversas de “corredor” que tanto ajudavam a manter o

ambiente agradável de trabalho!

Aos restantes colegas da UTPAM, agradeço todo o apoio ao longo do

tempo.

Prof. José Moniz-Pereira (Coordenador da URIA, FFUL), agradeço-lhe

por ter permitido e apoiado o desenvolvimento da maior parte deste

trabalho na URIA.

Prof. Helena Lourenço (Ex-responsável pelo Laboratório de Virologia)

a sua capacidade de fazer pelos outros é também infindável. A sua

Page 19: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

iii

disponibilidade para apadrinhar este projecto foi fundamental, pois

sem ela não seria possível realizá-lo. Obrigado pelo seu apoio e

amizade.

No grupo de Microbiologia e na URIA, foram várias as pessoas que de

uma forma ou outra também contribuíram para a realização deste

trabalho, e aos quais quero agradecer a sua amizade e o bom

ambiente de trabalho durante estes anos: Prof. Graciete, Prof. Aida,

João Vital, José Miguel Pereira, Isabel Portugal, Madalena Pimentel,

Elsa Anes, Perpétua Gomes, Ana Clara Ribeiro, Alexandra Maia e

Silva, João Gonçalves (e o seu extenso grupo de colaboradores),

Acilino Freitas, João Pedro Frade, Helena Barroso, Pedro Borrego,

Cheila Rocha, Inês Bártolo, Marta Calado, Paula Matoso, Maria

Espírito Santo, Ofélia, Vera, Lena Brás, Dr.ª Paula Resende, Lavínia,

Nela (Mana!), D. Noémia, D. Fátima, Dina…e todos aqueles que vou

acabar por não mencionar porque a lista já vai longa mas de quem

não esqueci.

À Dra. Manuela Doroana e Prof. Doutor Francisco Antunes, do

serviço de Doenças Infecciosas do Hospital Santa Maria, e ao Dr.

Fernando Maltêz do serviço de doenças infecciosas do Hospital Curry

Cabral, quero agradecer-lhes o empenho no recrutamento dos

doentes e na obtenção das amostras biológicas para que este

trabalho pudesse ter sido realizado.

Aos doentes do Hospital de Santa Maria e do Curry Cabral, a chave

deste estudo, que concordaram em participar neste estudo,

agradeço-vos o vosso empenho, que foi essencial para podermos

compreender mais um pouco desta doença, que afecta milhões de

pessoas.

Aos meus pais e irmãs, a vossa presença na minha vida tem sido

importante não só para partilhar os bons momentos, mas também

para ultrapassar as dificuldades. Os vossos sorrisos e incentivos têm

sido importantes ao longo deste percurso e noutros caminhos. Sem

vocês, tenho a certeza que a vida seria mais difícil.

Aos meus sogros, quero agradecer a disponibilidade que sempre

demonstraram ao longo destes anos, e que em muito contribui para

a realização deste trabalho. Obrigado por tudo.

Page 20: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

iv

Aos meus filhos, Sara e João, que me incentivam a acreditar e lutar

por um futuro melhor, e à Xana, não quero deixar de lhe dizer o

quanto a amo e que sem a força e o apoio dela as dificuldades para

realizar este trabalho seriam ainda maiores.

Ao meu irmão Henrique, quero que saibas que este objectivo

alcançado é também teu, pois muito do caminho que já percorri

nesta área, a ti o devo. Queria partilhar contigo este momento, como

partilhamos outros, mas não posso, por isso aqui expresso o meu

muito obrigado por tudo o que passamos juntos.

Page 21: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

v

Resumo

Os indivíduos infectados pelo VIH-2 progridem mais lentamente do

que os infectados pelo VIH-1, e estima-se que mais de 95% dos

indivíduos infectados por VIH-2 estejam incluídos na definição

clínica de long-term nonprogressors. Esta diferença faz do VIH-2 um

potencial modelo de estudo de uma infecção VIH atenuada que pode

fornecer uma visão única da patogénese da infecção VIH-1. Até ao

momento, os mecanismos responsáveis pelo fenótipo atenuado do

VIH-2 não são bem conhecidos. A carga viral plasmática é inferior

nos indivíduos infectados pelo VIH-2 do que pelo VIH-1. Isto sugere

que a principal diferença entre os dois tipos de VIH pode estar no

grau de replicação viral, e presume que a resposta imunológica do

hospedeiro contribui directamente para um controlo mais eficiente

da replicação do VIH-2. Actualmente não existem dúvidas de que a

maioria dos indivíduos infectados pelo VIH-1 ou VIH-2 produzem

anticorpos neutralizantes (AcNT) autólogos e heterólogos. Contudo,

existe alguma controvérsia sobre se os AcNT controlam de facto a

replicação viral, uma vez que na maioria dos casos não se observa

correlação inversa entre o título de AcNT e a carga viral plasmática.

Na realidade, tanto no VIH-1 como no VIH-2, parece haver uma

correlação directa entre o título de AcNT e a replicação viral o que

sugere que a replicação viral é essencial para a produção de AcNT.

Neste contexto, uma questão importante é saber como e quando

serão induzidos os AcNT nos indivíduos infectados por VIH-1 e VIH-2

sem carga viral detectável.

Em contraste com o VIH-1, não existem estudos que caracterizem de

forma qualitativa e quantitativa a cinética da resposta humoral anti-

VIH-2 nos primeiros dias da infecção uma vez que a infecção por este

vírus é quase sempre detectada na fase crónica. Obter informação

detalhada sobre os vírus que estabelecem as infecções por VIH-2 e

sobre a natureza da resposta imunológica durante a fase aguda da

infecção por VIH-2 é vital para a produção de uma vacina. Neste

contexto, o principal objectivo desta tese foi caracterizar no decurso

da infecção VIH-2 aguda e crónica, de forma qualitativa e

quantitativa, a natureza e dinâmica da resposta humoral

neutralizante e não neutralizante e caracterizar o impacto destes

anticorpos na evolução molecular e fenotípica do vírus. Também

foram analisados os alvos da resposta neutralizante anti-VIH-2 e o

potencial de dois novos imunogénios VIH-2 para uma vacina.

Page 22: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

vi

O primeiro estudo (Capítulo III) teve como objectivo caracterizar em

detalhe a antigenicidade de dois polipéptidos recombinantes

derivados das glicoproteínas de superfície (rpC2-C3) e

transmembranar (rgp36) do VIH-2ALI, o isolado primário de

referência do grupo A. Utilizando estes dois polipéptidos, produziu-se

um novo teste imunoenzimático (ELISA-VIH2) que revelou ter a

sensibilidade e especificidade necessárias para diagnosticar

serologicamente a infecção por VIH-2. A reactividade dos plasmas

VIH-2+ foi significativamente maior para o antigénio rgp36 do que

para o rpC2-C3, sugerindo que o ectodomíno da rgp36 é a região

antigénica imunodominante no invólucro do VIH-2. A resposta de

anticorpos para o rpC2-C3 foi mais variável, permitindo agrupar os

doentes conforme a produção de anticorpos seja baixa ou alta. O

teste permitiu ainda confirmar a infecção VIH-2 em plasmas que

apresentam dupla serologia por testes comerciais. Devido às

características evidenciadas, o teste ELISA-VIH2 poderá ser uma

excelente alternativa aos testes comerciais de diagnóstico serológicos

e de confirmação da infecção por VIH-2. O formato de antigénio

duplo apresentado no teste permite ainda caracterizar em termos

quantitativos e qualitativos a evolução da produção de anticorpos

para as glicoproteínas do invólucro do VIH-2 em doentes infectados.

Os antigénios rpC2-C3 e rgp36 produzidos na primeira fase do

trabalho foram reagentes essenciais para o segundo trabalho

(Capítulo IV), em que a presença de anticorpos IgA e IgG

inespecíficos e específicos para as proteínas do Env do VIH-2 foi

analisada num grupo de doentes VIH-2 na fase aguda (crianças VIH-

2 positivas infectadas via perinatal) e crónica da infecção.

Demonstrou-se que, tal como na infecção VIH-1, a activação

inespecífica das células B também ocorre na infecção VIH-2 crónica

mas só ao nível das células B secretoras de IgG, uma vez que a

concentração total de IgA no plasma dos indivíduos positivos para o

VIH-2 foi idêntica à dos indivíduos saudáveis não infectados por VIH

(grupo controlo). Em relação à resposta humoral específica para as

glicoproteínas do invólucro do VIH-2, observou-se uma associação

inversa entre os anticorpos IgG anti-rpC2-C3 e o número de

linfócitos T CD4+ o que sugere que estes anticorpos reflectem a

progressão da infecção VIH-2. A maioria dos indivíduos também

produziu anticorpos IgA para os dois polipéptidos, o que identifica

pela primeira vez a região C2-C3 como um forte indutor de

anticorpos IgA no soro e confirma a forte antigenicidade do

ectodomíno da gp36. Apesar da amplitude da resposta IgA, não se

Page 23: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

vii

observou nenhuma associação entre os anticorpos IgA anti-gp36 ou

anti-gp125 e o estádio da doença como foi descrito para a infecção

VIH-1. Em termos qualitativos (avidez) e quantitativos (titulo e

concentração) a resposta IgG não neutralizante foi maioritariamente

dirigida para a gp36. As subclasses de anticorpos IgG produzidas na

fase crónica da infecção foram IgG1 (reactivos para ambos os

polipéptidos) e IgG3 (reactivo para a gp36). Não se detectou nenhum

efeito protector dos anticorpos IgG1 e IgG3 anti-gp36 na evolução

clínica da SIDA, como foi sugerido para os anticorpos IgG2 anti-gp41

na infecção VIH-1. Contudo, numa análise longitudinal observou-se

uma associação inversa significativa entre os anticorpos IgG anti-C2-

C3 e o número de células T CD4+. Estes resultados são consistentes

com a função imunoprotectora atribuída à região C2-C3 na infecção

VIH-2. Uma vez que a resposta IgG anti-C2-C3 parece reflectir

adequadamente o estado imunológico e a evolução clínica da infecção

VIH-2, a concentração de anticorpos IgG anti-C2-C3 pode ser um

marcador útil para monitorizar a progressão da doença na infecção

VIH-2.

O principal promotor da evolução molecular e fenotípica do VIH-1 é a

pressão selectiva exercida inicialmente pela resposta celular

citotóxica e depois pelos anticorpos neutralizantes. A informação

sobre este assunto no VIH-2 é ainda muito limitada. No Capitulo V

deste trabalho analisou-se longitudinalmente a evolução molecular

das regiões C2, V3 e C3 do Env em 18 doentes VIH-2 recorrendo a

métodos filogenéticos e moleculares e correlacionou-se esta evolução

com a resposta humoral anti-Env. A média da diversidade

nucleotídica intra-hospedeiro aumentou ao longo do curso da

infecção na maioria dos pacientes. A diversidade ao nível dos

aminoácidos foi significativamente mais baixa para a região V3 e

mais elevada para a região C2. A taxa de evolução do VIH-2 na região

que compreende os domínios C2, V3 e C3 região foi de 0,014

substituições/local/ano, que é semelhante à que tem sido referida

para a infecção VIH-1 crónica. O número e posição dos locais

seleccionados positivamente foi muito variável, excepto para os

codões 267 e 270 na região C2 que estiveram sob uma pressão

selectiva forte e persistente na maioria dos doentes. Os locais de

glicosilação ligados á asparagina localizados na C2 e na V3

mantiveram-se conservados em todos os pacientes ao longo do curso

da infecção. A variação intra-hospedeiro da resposta IgG específica

para as regiões C2, V3 e C3, ao longo do tempo, estava inversamente

associada à variação nos nucleótidos e diversidade dos aminoácidos

Page 24: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

viii

na região C2-V3-C3. A variação da resposta IgA específica para a C2-

V3-C3 estava inversamente associada à variação no número de locais

N-glicosilação. Os resultados destes estudos demonstram que a

dinâmica evolutiva do invólucro do VIH-2 durante infecções

avirémicas crónicas é semelhante à do VIH-1, o que implica que o

vírus deve estar em replicação activa nos compartimentos celulares.

Contudo, a evolução convergente da N-glicosilação na C2 e V3 e a

diversificação limitada da V3, indicam que existem factores

funcionais importantes que constrangem a potencial diversidade do

invólucro do VIH-2. Na globalidade, os resultados sugerem que: 1) os

anticorpos IgG anti-C2V3C3 são potencialmente eficazes no controlo

da população viral; 2) a região C3 é um alvo importante para os

anticorpos IgA e a N-glicosilação desta região pode prevenir o

reconhecimento de epitopos IgA.

Actualmente, está provado que a maioria dos indivíduos infectados

cronicamente por VIH-2 produz AcNT de largo espectro. No entanto,

conhece-se muito pouco sobre a dinâmica evolutiva desta resposta

neutralizante na infecção VIH-2 crónica e existe informação

controversa sobre o papel dos AcNT no controlo da replicação viral. O

objectivo do trabalho apresentado no Capitulo VI desta tese foi

caracterizar a dinâmica evolutiva da resposta neutralizante na

infecção VIH-2 crónica e a sua relação com a evolução molecular e

fenotípica do VIH-2 e com a evolução da doença. Neste contexto,

analisou-se longitudinalmente ao longo de 3-4 anos a resposta

neutralizante dirigida contra isolados virais primários autólogos e

heterólogos num grupo de doentes VIH-2. A maioria dos doentes

(8/12) estava infectada com vírus que utilizavam o coreceptor CCR5

(R5) e apenas quatro doentes estavam infectados com vírus que

utilizam o coreceptor CXCR4 (X4). Estes resultados confirmam que o

CCR5 é o principal coreceptor utilizado pelo VIH-2 in vivo. A

presença de anticorpos IgG neutralizantes contra isolados autólogos

foi detectada apenas em doentes infectados com vírus R5. È de

realçar que, os quatro doentes infectados com vírus X4 e dois com

vírus R5, não produziram anticorpos capazes de neutralizar os vírus

autólogos. Estes resultados demonstram pela primeira vez que o

escape à neutralização é bastante frequente na infecção crónica por

VIH-2 e que há uma forte relação entre tropismo e neutralização (R5>

sensibilidade e X4> resistência, P <0.0001) do VIH-2. Com uma

única excepção, todos os doentes testados desenvolveram AcNT

contra isolados VIH-2 heterólogos de fenótipo R5. A amplitude desta

resposta neutralizante heteróloga é superior à que se observa

noutros estudos de neutralização em que foram utilizados

Page 25: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

ix

pseudovírus e isolados primários de VIH-2. Contudo, tal como

observado anteriormente, nenhum dos doentes produziu anticorpos

neutralizantes contra isolados X4. A ausência de AcNT autólogos e

heterólogos para os isolados X4 sugere fortemente que o escape do

VIH-2 à neutralização in vivo está associado a alterações no tropismo

celular (passagem de R5 para X4). Na infecção VIH-1, os estudos

existentes sobre este assunto sugerem que não há uma relação entre

a susceptibilidade dos vírus e o escape à neutralização e a utilização

de coreceptores.

Demonstrou-se pela primeira, que a potência dos AcNT está

inversamente associada com os anticorpos de ligação para a rpC2-C3

(título e avidez) e não para a rgp36. Estes resultados sugerem

fortemente que os AcNT anti-VIH-2 têm como principal alvo as

regiões C2, V3 e C3 no Env e que a maturidade é um factor

importante na sua actividade neutralizante. As diferenças mais

significativas entre os vírus R5 sensíveis à neutralização e os vírus

X4 resistentes à neutralização ocorreram na região V3. Os vírus

resistentes aos AcNT tinham a região V3 mais longa e um número

maior de aminoácidos carregados positivamente. Estes dados

sugerem que a V3 é o principal alvo dos AcNT dentro do domínio C2-

V3-C3.

Tal como acontece com o VIH-1 são necessárias novas estratégias de

prevenção da infecção VIH-2. O último objectivo desta tese (Capítulo

VII) foi produzir novos imunogénios derivados do isolado de

referência do grupo A, VIH-2ALI e avaliar o seu potencial

neutralizante a nível pré-clínico em ratinhos. As proteínas nativas ou

truncadas do invólucro do VIH-2ALI foram expressas em vírus da

vacina e bactérias. A imunização de murganhos Balb\C com a gp125

truncada (gp125t) ou com o polipéptido rpC2-C3 só induziu uma

resposta de anticorpos de ligação, semelhante à que o VIH-2 induz

no homem, mas não induziu a produção de AcNTs. No entanto, a

indução de AcNTs pelas mesmas proteínas monoméricas foi muito

eficiente quando se imunizou previamente os animais com o vírus da

vacina a expressar quantidades elevadas de gp125t. Os anticorpos

desenvolvidos neutralizaram apenas vírus R5, que são, vírus com

fenótipo igual ao do vírus que originou os imunogénios vacinais (VIH-

2ALI). Os vírus X4 resistentes à neutralização apresentavam

alterações importantes na sequência e estrutura da região V3, que

divergiam significativamente da sequência aminoacídica, da carga

total, tamanho e conformação da região V3 do VIH-2ALI.

Globalmente, os resultados destes estudos demonstraram, pela

Page 26: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

x

primeira vez, que AcNT amplamente reactivos contra o VIH-2 podem

ser obtidos utilizando uma estratégia de imunização que consiste

num priming com vírus da vacina recombinante a exprimir a

glicoproteína monomérica gp125 seguida de reforços com o

polipéptido rpC2-C3. Os resultados sugerem ainda que a região V3 é

um domínio neutralizante de largo espectro no VIH-2 e confirmam a

ligação existente entre o escape à neutralização e o tropismo X4 na

infecção VIH-2 (Capítulo VI).

Em conclusão, os resultados obtidos nesta tese permitem evidenciar

o papel central que a região C2-V3-C3 do Env tem na infecção VIH-2

e o impacto que pode ter no diagnóstico, monitorização e prevenção

da infecção por este vírus. Por um lado, esta região é altamente

antigénica, o que se revelou útil no diagnóstico serológico da

infecção. Por outro lado, a associação inversa entre a resposta

humoral contra esta região e o número de linfócitos T CD4+ significa

que o nível de anticorpos anti-C2V3C3 é útil para monitorizar o

estado imunológico e a evolução clínica de indivíduos infectados por

VIH-2. As regiões C2, V3 e C3 contêm os determinantes antigénicos

responsáveis pela indução de AcNT de elevada potência e ampla

reactividade que são comuns nos indivíduos infectados por VIH-2.

Estes resultados, em associação com as experiências de imunização

em ratinho, sugerem fortemente que uma vacina para o VIH-2 deve

direccionar a resposta humoral contra a C2, V3 e C3 na gp125.

Contudo, ao contrário do que se presumia até aqui, a emergência de

vírus resistentes à neutralização é comum na infecção por VIH-2 e

está principalmente associada à emergência de vírus com tropismo

X4 e com maior patogenicidade. Isto deve ser tido em conta na

concepção de uma vacina para o VIH-2. Estes resultados também

são relevantes para a utilização de antagonistas do CCR5 em

pacientes VIH-2.

Palavras-chave: Infecção VIH-2; ELISA específico para VIH-2;

Anticorpos IgA e IgG específicos para o invólucro do VIH-2; Resposta

neutralizante autóloga e heteróloga na infecção VIH-2 crónica;

Escape à neutralização; Indução de anticorpos neutralizantes anti-

VIH-2 em ratinhos.

Page 27: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

xi

Summary

Individuals infected with HIV-2 progress more slowly than those

infected by HIV-1, and it is estimated that over 95% of individuals

infected by HIV-2 are included in the clinical definition of long-term

nonprogressors. This difference makes HIV-2 a potential model of an

attenuated HIV infection that can provide a unique insight into the

pathogenesis of HIV-1 infection. So far, the mechanisms responsible

for the attenuated phenotype of HIV-2 are not well known. Plasma

viral load is lower in individuals infected with HIV-2 comparing to

those infected with HIV-1. This suggests that the main difference

between the two types of HIV may be at the level of viral replication,

and assumes that the host immune response contributes

significantly to a more efficient replication control of HIV-2.

Currently, there is no doubt that the majority of individuals infected

with HIV-1 or HIV-2 produce autologous and heterologous

neutralizing antibodies (NAb).However there is some controversy over

whether the NAb effectively control viral replication, since most cases

have not shown an inverse correlation between the titer of NAb and

plasma viral load. In fact, both HIV-1 and HIV-2 seems to show a

direct correlation between the titer of NAb and viral replication

suggesting that viral replication is essential for the production of

NAb. In this context, an important question is how and when the

NAb are induced in individuals infected with HIV-1 and HIV-2

without detectable viral load.

In contrast to HIV-1, there are no studies that characterize both

qualitatively and quantitatively the kinetics of the anti-HIV-2

humoral response in the first days of infection since the infection by

this virus is often detected in chronic phase. To get detailed

information on viruses that establish HIV-2 infections and on the

nature of the immune response during the acute phase of infection

by HIV-2 is vital for the production of a vaccine. In this context, the

main objective of this thesis was to characterize the course of acute

and chronic HIV-2 infection, both qualitatively and quantitatively,

the nature and dynamics of the neutralizing and non-neutralizing

humoral antibody response and characterize the impact of these

antibodies on the molecular and phenotypic evolution of the virus.

We also analyzed the anti-HIV-2 neutralizing response targets and

the potential of two HIV-2 new immunogens for a vaccine.

The first study (Chapter III) aimed to characterize in detail the

antigenicity of two recombinant polypeptides derived from the

surface (rpC2-C3) and transmembrane glycoproteins (rgp36) of HIV-

Page 28: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

xii

2ALI, the reference group A primary isolate. Using these two

polypeptides, a new enzyme linked immunoassay (ELISA-HIV2) was

established that had enough sensitivity and specificity to diagnose

HIV-2 infection serologically. The reactivity of HIV-2+ plasma was

significantly higher for antigen rgp36 than for rpC2-C3, suggesting

that the ectodomain of rgp36 is the immunodominant antigenic

region in the envelope of HIV-2. The antibody response to the rpC2-

C3 was more variable, allowing grouping of patients according to low

or high antibody production. The test also allowed us to confirm HIV-

2 in plasma samples that have dual serology result with commercial

tests. Due to the observed characteristics, the ELISA-HIV2 may be a

great alternative to commercial tests for serological diagnosis and for

confirmation of infection by HIV-2. The format of double antigen

presented in the test also allows for characterization, in a

quantitative and qualitative manner, of the evolution of antibody

production against the envelope glycoproteins of HIV-2 in infected

patients.

The rpC2-C3 and rgp36 antigens produced in the first phase of this

study were essential reagents for the second work (Chapter IV) in

which the presence of specific and nonspecific IgA and IgG antibodies

against HIV-2 Env proteins were analyzed in a group of HIV-2

patients in the acute (HIV-2 positive children perinatally infected)

and chronic phase of infection. It was shown that, as in HIV-1

infection, nonspecific activation of B cells also occurs in chronic HIV-

2 infection but only at the level of B cells secreting IgG, since the

total concentration of IgA in the plasma of positive individuals for

HIV-2 was identical to that of healthy individuals not infected with

HIV (control group). Regarding the specific humoral response to the

envelope glycoproteins of HIV-2, we observed an inverse association

between anti rpC2-C3 IgG and the number of CD4+ T lymphocytes

which suggests that these antibodies reflect the progression of HIV-2

infection. Most individuals also produced IgA antibodies against both

polypeptides, which identifies for the first time C2-C3 region as a

strong inducer of IgA antibodies in serum and confirms the strong

antigenicity of the ectodomain of gp36. Despite the magnitude of IgA

response, there was no association between IgA anti-gp36 or anti-

gp125 and the stage of disease as described for the HIV-1 infection.

In qualitative (avidity) and quantitative terms (titer and

concentration) the non-neutralizing IgG response was mainly

directed to the gp36. The subclasses of IgG antibodies produced in

the chronic phase of infection were IgG1 (reactive to both

Page 29: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

xiii

polypeptides) and IgG3 (reactive to gp36). Any protective effect of

anti-gp36 IgG1 and IgG3 on clinical AIDS was not detected, as has

been suggested for the anti-gp41 IgG2 in HIV-1 infection. However, a

longitudinal analysis revealed a significant inverse association

between anti-C2-C3 IgG antibodies and the number of CD4+ T cells.

These results are consistent with the immune protective role

assigned to the C2-C3 region in HIV-2 infection. Since the anti-C2-

C3 IgG response seems to adequately reflect the immunological

status and clinical outcome of HIV-2 infection, the concentration of

anti-C2-C3 IgG may be a useful marker for monitoring disease

progression in HIV-2 infection.

The main promoter of molecular and phenotypic evolution of HIV-1 is

the selective pressure exerted initially by cytotoxic cellular response

and thereafter by neutralizing antibodies. In HIV-2, the information

on this subject is still very limited. In Chapter V of this study we

analyzed the molecular evolution of C2, V3 and C3 Env regions

longitudinally, in 18 HIV-2 patients using molecular and

phylogenetic methods and we correlated these changes with anti-Env

humoral response. The mean intra-host nucleotide diversity has

increased over the course of infection in most patients. The diversity

at amino acid level was significantly lower for V3 region and higher

for C2 region. The rate of evolution of HIV-2 in the region comprising

the C2, V3 and C3 domains was 0.014 substitutions/site/year,

which is very similar to what has been referred to for chronic HIV-1

infection. The number and position of positively selected sites was

highly variable, except for codons 267 and 270 in the C2 region that

were under a strong and persistent selective pressure in most

patients. The N-linked glycosylation sites located in C2 and V3

remained preserved in all patients throughout the course of

infection. The intra-host specific IgG response for the regions C2, V3

and C3, over time, was inversely associated with variation in

nucleotide and amino acid diversity in C2-V3-C3 region. The

variation of specific IgA response to C2-V3-C3 was inversely

associated with variation in the number of N-glycosylation sites. The

results of these studies show that the evolutionary dynamics of HIV-

2 envelope during non viremic chronic infections is similar to HIV-1,

which implies that the virus must be actively replicating in cellular

compartments. However, the convergent evolution of N-glycosylation

in C2 and V3 and the limited diversification of V3, indicates that

there are important functional factors that constrain the potential

diversity of HIV-2 envelope. Overall, the results suggest that: 1) anti-

Page 30: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

xiv

C2V3C3 IgG antibodies are potentially effective in controlling viral

population; 2) the C3 region is an important target for IgA antibodies

and N-glycosylation of this region can prevent recognition of IgA

epitopes.

Currently, there is evidence that the majority of individuals

chronically infected with HIV-2 produce a wide spectrum of NAb.

However, very little is known about the evolutionary dynamics of

neutralizing response in chronic HIV-2 infection and controversial

information exists on the role of NAb in controlling viral replication.

The aim of the work presented in Chapter VI of this thesis was to

characterize the evolutionary dynamics of neutralizing response in

chronic HIV-2 infection and its relationship with the molecular and

phenotypic evolution of HIV-2 and with the evolution of the disease.

In this context, we analyzed longitudinally over 3-4 years the

neutralizing response directed against autologous and heterologous

primary viral isolates in a group of HIV-2 patients. Most patients (8

out of 12) were infected with viruses that used the CCR5 coreceptor

(R5) and only four patients were infected with viruses that used the

CXCR4 coreceptor (X4). These results confirmed that CCR5 is the

principal coreceptor used by HIV-2 in vivo. The presence of

neutralizing IgG antibodies against autologous isolates was detected

only in patients infected with R5 virus. Remarkably, four patients

infected with X4 virus and two with R5 virus, failed to produce

antibodies capable of neutralizing autologous viruses. These results

show for the first time that neutralization escape is quite common in

chronic infection by HIV-2 and there is a strong correlation between

tropism and neutralization (R5> sensitive and X4> resistant,

P>0.0001) of HIV-2. With only one exception, all patients tested

developed NAb against heterologous HIV-2 isolates with R5

phenotype. The breadth of this heterologous neutralizing response is

higher than that observed in other neutralization studies where

pseudovirus and primary isolates of HIV-2 were used. However, as

noted earlier, none of the patients produced neutralizing antibodies

against X4 isolates. The absence of autologous and heterologous

NAbs against the X4 isolates, strongly suggests that escape of HIV-2

from neutralization in vivo is associated with changes in cell tropism

(transition from R5 to X4). In HIV-1 infection, the existing studies on

this subject suggest that there is no relationship between virus

susceptibility and escape from neutralization and coreceptor usage.

We demonstrated for the first time that the potency of NAb response

was inversely associated with binding antibodies to rpC2-C3 (titer

and avidity) but not to rgp36. These results strongly suggest that the

Page 31: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

xv

HIV-2 NAb mostly target the C2, V3 and C3 regions in Env and that

maturity is an important factor in their neutralizing activity. The

most significant differences between the R5 virus sensitive to

neutralization and X4 viruses resistant to neutralization occurred in

the V3 region. NAb-resistant viruses had the longest V3 region and a

larger number of positively charged amino acids. These data suggest

that V3 is the main NAb target within the C2-V3-C3 domain.

As for HIV-1, new strategies for prevention of HIV-2 infection are

required. The final objective of this thesis (Chapter VII) was to

produce new Env immunogens derived from the reference isolate of

group A, HIV-2ALI and evaluate their neutralizing potential at a pre-

clinical level in the mice model. Native or truncated proteins of the

HIV-2ALI envelope were expressed in vaccinia virus and bacteria. The

immunization of Balb\C mice with the truncated gp125 (gp125t) or

with the polypeptide rpC2-C3 induced a binding antibody response,

similar to the one HIV-2 induces in man, but did not induce the

production of NAb. However, the induction of NAb from the same

monomer proteins was highly efficient when the animals were

previously immunized with vaccinia virus expressing high amounts

of gp125t.The antibodies developed neutralized only R5 virus, that is,

virus with the same phenotype of the virus that originated the

vaccine immunogens (HIV-2ALI). X4 viruses resistant to

neutralization showed significant changes in the sequence and

structure of the V3 region, which diverged significantly from the

amino acid sequence, the total charge, size and conformation of the

V3 region of HIV-2ALI. Overall, the results of these studies

demonstrated, for the first time, that NAb broadly reactive against

HIV-2 can be obtained using an immunization strategy consisting of

priming with a recombinant vaccinia virus expressing the monomer

glycoprotein gp125 followed by boosting immunizations with the

polypeptide rpC2-C3. The results also suggest that the V3 region is a

broad spectrum neutralizing domain in HIV-2 and confirm the link

between neutralizing escape and X4 cell tropism in HIV-2 infection

(Chapter VI).

In conclusion, the results obtained in this thesis highlight the central

role that the C2-V3-C3 Env region plays in HIV-2 infection and the

impact that it may have on the diagnosis, monitoring and prevention

of infection by this virus. On one hand, this region is highly

antigenic, which has proved useful in serological diagnosis of

infection. On the other hand, the inverse association between the

Page 32: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

xvi

humoral response against this region and the number of CD4+ T

lymphocytes means that the level of anti-C2V3C3 antibodies is

useful for monitoring the immune status and clinical outcome of

infected individuals by HIV-2. The C2, V3 and C3 regions contain the

antigenic determinants responsible for induction of potent and

broadly reactive NAb which are common in individuals infected with

HIV-2. These results, in combination with immunization experiments

in mice strongly suggest that a vaccine against HIV-2 should drive

the humoral response against C2, V3 and C3 in gp125. However,

unlike what was assumed until now, the emergence of neutralization

resistant virus is common in HIV-2 and, most importantly, is

associated with the emergence of viruses with X4 tropism and higher

pathogenicity. This has to be taken into account in the design of a

vaccine against HIV-2. These results are also relevant for the use of

CCR5 antagonists in HIV-2 patients.

Keywords: HIV-2 infection; ELISA specific for HIV-2, IgG and IgA

antibodies specific to the envelope of HIV-2, Autologous and

heterologous neutralizing response in chronic HIV-2 infection;

Neutralization escape; Neutralizing antibodies to HIV-2 in mice

induction.

Page 33: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

1

CAPÍTULO I

Introdução

Page 34: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

2

Page 35: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

3

A PANDEMIA

A Síndrome da Imunodeficiência Adquirida (SIDA) constitui

actualmente um grave problema de Saúde Pública a nível mundial.

Desde que foi descrito o primeiro caso de SIDA nos Estados Unidos

da América em 1981, já morreram aproximadamente 25 milhões de

pessoas em todo o mundo, sendo os países em vias de

desenvolvimento os mais afectados, e estima-se que actualmente

mais de 33.4 milhões de pessoas estejam infectadas com o Vírus da

Imunodeficiência Humana (VIH) em todo o mundo [1].

A SIDA caracteriza-se por uma deterioração progressiva do sistema

imunitário e subsequente aparecimento de infecções oportunistas

que conduzem à morte do hospedeiro [2]. Estudos epidemiológicos e

genéticos confirmam que o VIH é o agente etiológico da SIDA. Há dois

tipos de VIH: VIH-1 e VIH-2. O VIH-1 é responsável pela maioria das

infecções a nível mundial [3], enquanto a infecção VIH-2 está

geograficamente limitada a países da África Ocidental. Portugal é o

país da Europa que tem maior prevalência (3.2%) de casos de SIDA

notificados. Do total de 15.685 casos de SIDA acumulados até 31 de

Dezembro de 2009, 494 foram causados pelo VIH-2 [4].

VIH-2

Origem, Estrutura e Replicação

A colaboração entre clínicos, investigadores portugueses e franceses

em 1985 culminou com a identificação de um novo retrovírus, o VIH-

2 [5]. Estudos filogenéticos indicam que o VIH-2 foi introduzido na

população humana a partir do sooty mangabey, vírus que induz

imunodeficiência no símio, e que o foco inicial (epicentro) terá

acontecido na Costa do Marfim entre 1940 e 1950 [6]. Esta infecção é

considerada endémica, em particular, na Guiné-Bissau, Senegal,

Gâmbia, Gana, Costa do Marfim e Cabo Verde, sendo a Guiné-

Bissau o país em que a prevalência de infecção por VIH-2 é maior.

Os oito grupos de VIH-2 podem ser classificados como epidémicos (A

e B) e não epidémicos (C até H), mas só os vírus do grupo A e B é que

têm relevância clínica [7;8]. O grupo A é predominante em todos os

países e talvez na Costa do Marfim, e o grupo B na Costa do Marfim

[9]. Estruturalmente, as partículas virais do VIH-2 são constituídas

por um invólucro externo (com origem na membrana da célula

hospedeira), composto pela glicoproteína (gp) transmembranar (TM) e

de superfície (SU), uma matriz interna proteica e uma nucleocápside

proteica em forma de cone onde se encontram as moléculas de ácido

Page 36: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

4

ribonucleico (ARN), e as enzimas necessárias à replicação viral

(Figura 1).

Figura 1. Esquema de uma partícula vírica do VIH-2 (Adaptado da

referência [10]).

As glicoproteínas de SU e TM desempenham um papel fundamental

na entrada do vírus na célula hospedeira. A infecção inicia-se pela

interacção entre a gp-SU (125kDa, gp125) e o receptor celular CD4,

originando alterações na conformação da gp125 e subsequente

ligação ao coreceptor das quimiocinas, CCR5 (R5) ou CXCR4 (X4). As

alterações conformacionais da gp36 ocorrem após interacção do

péptido de fusão com a membrana citoplasmática da célula

hospedeira (Figura 2). Ao contrário do VIH-1, a maioria dos isolados

Figura 2. Esquema representativo do processo de fusão do VIH

(Adaptado da referência [11]).

Page 37: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

5

VIH-2 primários in vitro conseguem infectar células na ausência do

receptor CD4 [12;13] e podem também utilizar uma grande

variedade de outros coreceptores celulares para além do R5 e do X4

[14-17].

O ciclo de replicação inicia-se (Figura 3) após a fusão entre a

membrana viral e a celular. A cápside viral entra no citoplasma da

célula hospedeira, o seu conteúdo é libertado, e o ARN viral é

transcrito para uma cadeia dupla de ácido desoxirribonucleico (ADN)

pela transcriptase reversa (RT). O ADN proviral é transportado para o

núcleo e inserido no cromossoma da célula hospedeira pela integrase

viral. Depois da integração o ADN proviral é transcrito, produzindo

uma cadeia de ácido ribonucleico (ARN) viral que é transportada do

núcleo para o citoplasma, onde o ARNm (mensageiro) viral é

traduzido originando na maioria das vezes (porque nem sempre se

formam as poliproteínas vif, nef, ver e tat) as poliproteínas que vão

dar origem às proteínas virais. A poliproteína precursora gp160 é

clivada pela protease na gp125 e gp36 sendo depois transportadas

para a membrana plasmática da célula infectada. A associação entre

as poliproteínas do Gag (p55) e Gag-Pol (p160) na superfície interna

da membrana plasmática e o ARN genómico do VIH vai originar à

formação de um novo virião a partir da membrana da célula

hospedeira [18].

Figura 3. Esquema do ciclo replicativo do VIH [18].

Page 38: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

6

Patogénese da Infecção VIH

A infecção VIH é geralmente caracterizada por uma fase aguda de

intensa replicação viral e difusão para os tecidos linfóides, uma fase

crónica, muitas vezes assintomática em que a activação imunitária e

a replicação viral se mantêm, e uma fase avançada de depleção

acentuada das células T CD4+, que leva à SIDA [19]. Durante a

infecção VIH ocorre uma depleção profunda de células T CD4+,

principalmente, no tecido associado ao intestino (GALT), que é

acompanhada por níveis elevados de viremia plasmática e

disseminação do vírus para outros órgãos (Figura 4). Neste período,

são estabelecidos reservatórios víricos, de que são exemplo as células

foliculares dendríticas nos centros germinativos, as células T e

macrófagos latentemente infectadas, que possuem o ADN vírico, mas

que não expressam proteínas víricas e, por isso, escapam ao sistema

imunitário. Durante a fase crónica da infecção, a replicação do VIH

também ocorre nos tecidos secundários, resultando numa activação

imunitária generalizada, numa produção sustentada de vírus, numa

renovação elevada de células T e, finalmente, na destruição do

sistema imunitário do hospedeiro e progressão rápida da doença

[20].

Figura 4. Principais eventos na progressão da doença associados à

infecção pelo VIH (Adaptado da referência [20]).

Page 39: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

7

Estudos efectuados em modelos animais e no homem sugerem que a

activação imunitária é determinante na imunopatogénese do VIH.

Este processo pode ser originado, aquando da replicação do VIH no

interior do epitélio da mucosa intestinal e consequente danificação,

pela alteração do fenótipo e das múltiplas funções das células T, e

pela indução de vias moduladoras que regulam negativamente certas

funções específicas das células T [21]. Durante o estabelecimento da

viremia (Figura 5), as células de ambos os braços do sistema

imunitário, imunidade inata e adaptativa, são activadas pelas

proteínas virais e pela translocação dos produtos microbianos dos

tecidos associados ao intestino (GALT) para o sangue periférico. As

células activadas vão produzir quantidades de citocinas pró-

inflamatórias, como o factor de necrose tumoral alfa, interferão alfa

Figura 5. Factores associados com a activação imunitária induzida

pelo VIH (Adaptado da referência [20]).

Infecção VIH

Page 40: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

8

(IFN-) e interleucina (IL) -1beta e IL-6, que levam a uma activação

imunitária crónica. Além disso, a replicação do VIH e a resposta

imunológica do hospedeiro à infecção contribuem também para a

activação imunitária. Estes eventos promovem níveis elevados de

replicação do VIH, que acabam por levar à exaustão e destruição do

sistema imunitário [20].

O VIH-2 também causa a SIDA no hospedeiro. Contudo, o VIH-2 está

associado a uma progressão mais lenta da doença [22], em que só

25% dos indivíduos infectados progridem para a fase de SIDA [23].

Apesar do grau de activação imunitária ser semelhante na fase

crónica da infecção por VIH-1 e por VIH-2 para o mesmo grau de

depleção de células T CD4+ [24;25], os indivíduos infectados pelo

VIH-2 têm uma taxa de declínio de linfócitos T CD4+ menos

acentuada [26] e uma carga viral plasmática inferior à dos indivíduos

infectados por VIH-1 [27;28]. Vários estudos referem que a carga

proviral é similar em ambas as infecções [22;29-32]. Contudo, dois

estudos recentes sugerem diferenças na carga proviral entre as duas

infecções. Um estudo refere que a carga proviral é superior nos

indivíduos infectados por VIH-2 comparado com os indivíduos

infectados por VIH-1, para contagens de células T CD4+ inferiores a

300 células [33]. O outro estudo refere que a carga proviral é idêntica

nas duas infecções para contagens de células T CD4+ inferiores a

300, mas é superior nos indivíduos infectados por VIH-1 para

contagem de células T CD4+ superiores a 300 [34]. Recentemente, foi

observada uma correlação positiva, entre a frequência de células T

CD4 específicas para o VIH-2 e a activação imunológica, e negativa

entre frequência de células T CD4 e a carga proviral [35]. A

manutenção das células T CD4 durante a infecção VIH-2 crónica

poderá estar correlacionada com uma timopoiese mais eficiente [36].

Ao invés do VIH-1, o VIH-2 não afecta a maturação e diferenciação

das células dendríticas, essenciais à produção de IFN-, uma

citocina importante na estimulação de outras células do sistema

imunitário, com capacidade antiviral, e fundamental na ligação entre

a imunidade inata e adquirida [37].

Defesas do hospedeiro na infecção por VIH

Durante a fase inicial e aguda da infecção por VIH o hospedeiro

desenvolve respostas celulares [38-40] e humorais [41-44] específicas

para o VIH, ainda que a maioria dessas respostas não evite a

replicação do vírus na maioria dos indivíduos infectados. Nesta fase

há selecção de variantes virais que conseguem escapar ao controlo

Page 41: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

9

imunitário exercido pela resposta celular [45;46] ou humoral [43;47-

49].

A imunidade inata é a primeira linha de defesa a responder à

infecção antes do desenvolvimento de uma resposta adaptativa

específica [50]. Os macrófagos, as células dendríticas (DC), as células

“natural killer” (NK), as células T γδ, as citocinas (IL-2, IL-12, IFNγ,

IL-4, IL-10 e IL-15), as quimiocinas (CCR5, CXCR4 e IFN γ) e

outras pequenas moléculas circulantes (defensinas) têm um papel

fundamental no controlo e replicação do VIH [51;52]. Existem cada

vez mais evidências sobre o papel do sistema complemento no

controlo da replicação do VIH na fase inicial [53] e em fases

posteriores da infecção [54].

Resposta Celular

Apesar de existir alguma controvérsia quanto ao papel da resposta

celular no controlo da infecção pelo VIH-1, uma vez que em alguns

estudos não foram observadas correlações entre a resposta celular e

a carga viral no plasma [55;56]. Contudo, a maioria dos estudos

sugere que uma resposta de células T CD8+ especifica para

antigénios VIH-1 está associada a um melhor controlo da replicação

do vírus, a uma carga viral mais baixa e a uma progressão mais

lenta da doença nas fases iniciais da infecção por VIH-1 [57-62].

Na infecção VIH-2, as respostas celulares específicas têm sido

documentadas num pequeno número de indivíduos infectados.

Comparando as células T CD8+ especificas para o VIH-2 e para o

VIH-1 quanto à produção de IFN-γ [63-65], capacidade proliferativa

[66], e citoxicidade [64], não foram observadas diferenças

significativas, o que sugere que estes aspectos da resposta

adaptativa para o VIH-2 não contribuem para um maior controlo do

vírus e uma melhor evolução clínica. No entanto, a frequência de

células T CD4+ especificas para o VIH-2 com maior capacidade

proliferativa e uma maior capacidade de produzir IL-2 é mais

frequente na infecção VIH-2 crónica do que na infecção por VIH-1

[65;67;68]. A manutenção da produção de IL-2 pode estar associada

a uma maior capacidade de renovação das células T, bem como à

diminuição da apoptose na infecção VIH-2, uma vez que na infecção

por VIH-1, a diminuição da produção de IL-2 tem sido associada a

uma possível redução da renovação das células T e a um aumento da

susceptibilidade à apoptose celular [69].

Page 42: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

10

Resposta Humoral

O papel dos anticorpos na infecção VIH

Não existem dúvidas quanto ao papel que os anticorpos têm no

diagnóstico da infecção VIH [70;71]. Os anticorpos específicos para o

VIH podem ser detectados em vários compartimentos como, no

sangue, nas mucosas e fluidos genitais. Os primeiros anticorpos

surgem aproximadamente 15 dias após o início da infecção (Figura 6)

e são a base para a maioria dos testes de despiste da infecção (ex.

Elisa). Mais tarde, quando se observa uma redução na virémia e na

antigenémia, detectam-se os anticorpos neutralizantes autólogos. Os

anticorpos no plasma reagem contra as proteínas do Env, gag, Pol e

proteínas reguladoras – vpr, tat, nef. [72]. Durante a infecção VIH

são produzidas imunoglobulinas (Igs) do tipo M (IgM), G (IgG) e A

(IgA).

Figura 6. Cinética da resposta humoral na fase aguda da infecção

pelo VIH quanto à evolução da carga viral, anticorpos não

neutralizante e anticorpos neutralizantes (Adaptado da referência

[73]).

A IgM é a primeira Ig a ser produzida, mas apresenta uma baixa

afinidade para o antigénio e encontra-se apenas no sangue [74].

A IgA é a Ig predominante na superfície das mucosas no homem e na

maioria dos mamíferos, e é a segunda Ig mais abundante em

circulação no homem. As múltiplas formas moleculares e as

Page 43: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

11

diferentes subclasses da IgA fazem com que seja a mais heterogénea

das Ig [75]. No homem existem 3 formas: a monomérica (mIgA)

representa mais de 80-90% da IgA no soro; a dimérica (dIgA) ou

polimérica (pIgA) e a forma secretora (sIgA). Os dois subtipos de IgA

presentes no soro são a IgA1 e a IgA2. A IgA1 representa 85% das IgA

totais. Em termos funcionais as IgA podem ser divididas em IgA

secretoras em (compartimento da mucosa), ou IgA plasmáticas

(compartimento sistémico). Vários estudos têm sugerido que os

anticorpos IgA presentes nas mucosas (secreções vaginais e saliva)

protegem contra a infecção VIH-1 e VIH-2 [76-81].

A IgG1 é a subclasse predominante no soro de pacientes infectados

por VIH-1 [82;83]. Na infecção VIH-1 o título de anticorpos IgG1

contra a p24 e a gp120 é significantemente maior nos pacientes que

controlam a replicação comparado com progressores crónicos [82]. A

neutralização de isolados VIH-1 R5, X4 ou R5X4 é mais eficaz com a

IgG3 do que com a IgG1 ou IgG2, isto deve-se á região que liga o

fragmento Fc ao fragmento variável ser maior [82]. Em alguns

indivíduos VIH-1 assintomáticos ocorre a produção de anticorpos

anti-Tat e a sua presença tem sido correlacionada com o estado de

LTNP [84].

Os anticorpos desempenham um papel fundamental no controlo e

eliminação das partículas virais e células infectadas pelo VIH. Os

anticorpos que se ligam às proteínas do invólucro e inibem

directamente a entrada do vírus na célula são denominados de

anticorpos neutralizantes (AcNT). A figura 7 exemplifica o modo de

Figura 7. Esquema do modo de acção de alguns AcNT humanos

como o b12 (B), 17b e 2G12 (C) e 2F5 e 4E10 (D), em várias fases do

processo de entrada do VIH na célula (Adaptado da referência [85]).

Page 44: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

12

acção de alguns AcNT humanos de largo espectro e com uma elevada

potência neutralizante. O anticorpo b12 interfere no local de ligação

da gp120 ao receptor CD4; o 2G12 é dirigido para um epitopo

glicosilado na gp120, o 17b liga-se ao domínio de ligação ao

coreceptor que fica exposto após a ligação da gp120 ao receptor CD4,

e os anticorpos 2F5 e 4E10 evitam a fusão entre a membrana do

vírus e da célula ao ligar-se à gp41 [85].

Os anticorpos não formalmente neutralizantes podem também ter

actividade antiviral que é mediada pela região constante (Fc) do

anticorpo, e resulta da interacção entre a região Fc do anticorpo e os

receptores da região Fc expressos na membrana celular de vários

tipos de células (ex. NK, macrófagos, dendríticas e neutrófilos). Estes

anticorpos actuam através de um ou mais dos seguintes mecanismos

antivirais (Figura 8): citoxicidade dependente do complemento (CDC),

citoxicidade celular dependente do anticorpo (ADCC), inibição viral

mediada por células e dependente dos anticorpos (ADCVI), e

fagocitose [86-91]. O mecanismo de acção antiviral da ADCVI é

semelhante ao da ADCC, só que em vez de ocorrer a lise da célula

infectada, ocorre a inibição da saída dos viriões das células

infectadas [92;93]

Figura 8. Mecanismos antivirais mediados pela região Fc do

anticorpo (Adaptado da referência [94]).

Page 45: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

13

Numerosos estudos têm demonstrado uma associação inversa entre

resposta ADCC e ADCVI e progressão da doença, e uma associação

directa com o número de células CD4 e a carga viral em indivíduos

positivos para VIH-1 [95].

Anticorpos Neutralizantes

A resposta neutralizante desenvolvida pela maioria dos indivíduos

durante a infecção pelo VIH é dirigida contra as glicoproteínas do

invólucro do VIH (gp-TM e SU) [96-100]. A presença de AcNT (Figura

9) autólogos no plasma é detectada normalmente ao fim de seis

meses após a infecção, enquanto os AcNT heterólogos são

normalmente detectados na fase mais avançada da infecção e apenas

uma minoria de indivíduos infectados produz AcNT heterólogos com

actividade neutralizante para múltiplos isolados VIH-1 primários

[85;96;96;101]. Há estudos que associam a presença de anticorpos

neutralizantes específicos para o VIH-1 (de amplitude e potencia

elevada) com a não progressão da infecção [102-104]. Contudo,

noutros estudos não foi possível observar esse efeito no controlo da

replicação [105;106]. A progressão da doença VIH-1 tem sido

associada à perda da actividade neutralizante, escape viral e a

ausência de anticorpos neutralizantes [103;107;108]. A presença de

AcNT no plasma de indivíduos infectados por VIH-2 foi demonstrada

pela primeira vez por Robin Weiss e colaboradores [109]. Os vários

estudos realizados sobre neutralização do VIH-2 têm apresentado

algumas lacunas no que respeita ao número de amostras utilizadas

nos ensaios, à utilização de isolados adaptados em vez de isolados

primários, à falta de correlação clínica e à não utilização de ensaios

de neutralização padronizados [110-112].

Figura 9. Evolução da viremia, resposta celular citotóxica e

anticorpos neutralizantes (AcNT) durante a infecção VIH (Adaptado

da referência [113]).

Page 46: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

14

Apesar destas limitações, os resultados obtidos sugerem que o VIH-2

tem uma menor capacidade de escapar aos AcNT comparado com o

VIH-1 [47]. A glicosilação da glicoproteína externa do invólucro,

gp125, a infecção não dependente do CD4 e a utilização de

coreceptores alternativos in vitro parecem ser factores determinantes

para um melhor controlo dos isolados VIH-2 primários pelos AcNT

[112;114;115].

A resposta neutralizante autóloga e heteróloga em indivíduos

infectados pelo VIH-2 ou pelo VIH-1 tem sido analisada e comparada

em vários estudos. Os AcNT contra isolados primários autólogos são

mais comuns na infecção VIH-2 do que na infecção VIH-1 [111;116].

Um estudo recente sugere que os indivíduos VIH-2 positivos

desenvolvem uma resposta neutralizante heteróloga de grande

amplitude, mas com uma potência de neutralização mais baixa [117].

Esta maior amplitude no VIH-2 pode não ter sido originada pela

diversidade viral ou pelo escape à neutralização como no VIH-1, mas

sim devido a uma propriedade intrínseca do VIH-2 como antigénio. A

existência de um repertório de anticorpos neutralizantes mais amplo

nos indivíduos VIH-2 positivos pode também ser consequência de um

sistema imunitário mais bem preservado. Os AcNT com actividade

neutralizante contra isolados VIH-1 primários heterólogos só são

encontrados nas fases finais da infecção VIH-1, e a maioria dos

indivíduos infectados não conseguem desenvolver uma resposta

neutralizante heteróloga que neutralize múltiplos vírus diferentes

durante o primeiro da infecção [118].

Existem indivíduos infectados por VIH-1 que se mantêm saudáveis

na ausência de terapia anti-retroviral. Estes indivíduos denominados

de “long-term non-progressors” [LTNPs] mantêm o número de células

T CD4+ dentro dos valores normais durante mais de 10 anos, e

representam entre 5 a 15% da população de indivíduos VIH-1

positivos crónicos. Os níveis de ARN viral no plasma dos LTNP são

frequentemente baixos. Entre os indivíduos LTNP foram identificados

dois subgrupos, os "elite controllers" [ECs] que mantêm a carga viral

abaixo do limite de detecção (50 cópias de ARN/ml) dos testes

comerciais [119] e os "viremic controllers" que persistentemente têm

carga viral detectável, mas em níveis muito baixos. Os EC

representam menos de 1% da população infectada por VIH-1 [120].

Determinantes da neutralização no invólucro do VIH

A glicoproteína de SU do VIH é composta por 5 regiões hipervariáveis

(V1 a V5) separadas por 5 regiões relativamente mais conservadas,

regiões C1 a C5 (Figura 10). Nos últimos anos a região V3,

denominada o principal determinante da neutralização (PDN), tem

Page 47: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

15

merecido especial atenção, uma vez que para além de conter o PDN,

esta região também está envolvida na fusão viral e no tropismo

celular [121;122]. Durante a fase aguda e crónica da infecção VIH-1

o título de anticorpos específicos contra a região V3 é muito elevado

[122].

Figura 10. Estrutura secundária representativa das regiões

constantes e variáveis da glicoproteína de superfície do VIH

(Adaptado da referência [123]).

Apesar de esta região ser muito imunogénica, a actividade

neutralizante dos anticorpos anti-V3 é muito baixa contra isolados

VIH-1 primários, enquanto os isolados adaptados são facilmente

neutralizados [124-126].

Figura 11. Desenho esquemático das regiões variáveis da gp120 de

isolados VIH-1 primários A) e adaptados B) com os locais de ligação

ao receptor CD4 (R) e ao coreceptor (CoR) R5 ou X4. (Adaptado da

referência [126] ).

Page 48: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

16

Os epitopos conformacionais presentes na região V3 da gp120 dos

isolados VIH-1 primários induzem AcNT com elevada potência

neutralizante, frequentemente abaixo de ng/ml, comparado com os

anticorpos induzidos por epitopos lineares [127;128].

Está bem definido que a ligação da gp120 do VIH-1 ao receptor CD4

altera as posições das regiões V1/V2 e V3, expondo desta forma as

regiões conservadas adjacentes à região V3 [129-131]. Os glicanos

existentes nas regiões V1/V2 e na base da V3 restringem o acesso

dos anticorpos à região V3 [132-134]. A deleção da região V1/V2

redirecciona a resposta humoral para a região V3 alterando a

imunogenicidade da gp120 [135-137]. Estes dados sugerem a

existência de dois estados conformacionais da gp-SU. O primeiro

estado corresponde a uma estrutura fechada, em que os epitopos

nos locais de ligação ao CD4 e ao coreceptor R5 ou X4 não estão

expostos aos anticorpos; o segundo estado é uma estrutura aberta,

em que os epitopos nos locais de ligação ao CD4 e ao R5 ou X4 ficam

expostos aos anticorpos (Figura 11) [126].

Os determinantes da neutralização do VIH-2 não estão tão bem

caracterizados como os do VIH-1. Apesar da região V3 do VIH-2

apresentar um elevado grau de similaridade entre os diferentes

grupos [138] e da região central da V3 ser muito conservada, o papel

da V3 na indução de anticorpos neutralizantes no VIH-2 não tem

sido consensual. Alguns trabalhos descrevem que no VIH-2 a

utilização de péptidos lineares é suficiente para induzir anticorpos

neutralizantes contra a região V3 [139-141]. No entanto, outros

estudos não lhe atribuem esse papel [142;143].

As regiões V1/V2 da gp125 dos isolados VIH-2 primários parecem

não interferir com a ligação dos anticorpos à região V3, como

acontece no VIH-1, uma vez que a deleção desta região não aumenta

o acesso dos anticorpos à região V3 do VIH-2 [144]. Os isolados VIH-

2 primários mais sensíveis aos AcNT são os que não precisam do

receptor celular CD4 para infectar as células [12], enquanto nos

isolados VIH-1 primários só a deleção da região V1/V2 é que torna os

isolados mais sensíveis à neutralização. As diferenças estruturais

entre as glicoproteínas nativas do invólucro de ambos os vírus

sugerem que no VIH-2 a gp125 dos isolados primários terá uma

estrutura aberta, permitindo deste modo que o domínio de ligação ao

coreceptor celular na região V3 fique parcial ou totalmente exposta

aos anticorpos (Figura 11) [145]. No entanto este assunto ainda é

Page 49: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

17

controverso porque indivíduos infectados por VIH-2 não produzem

anticorpos anti-V3.

As características estruturais que as glicoproteínas de SU (gp120) do

VIH-1 apresentam, como uma forte glicosilação (50% de glicanos),

uma grande variabilidade ao nível da sequência de aminoácidos

[47;124;146;147], assim como a não exposição dos locais de ligação

ao receptor, têm sido grandes obstáculos à indução de AcNT

protectivos de largo espectro para o VIH-1 [47]. A produção de AcNT

de amplitude elevada nos indivíduos VIH-1+ é geralmente baixa.

Apenas 10 a 30% dos indivíduos VIH-1 infectados desenvolvem AcNT

de amplitude elevada [148]. Apesar de terem sido isolados vários

anticorpos monoclonais humanos contra o invólucro do VIH, apenas

uma pequena percentagem deles neutraliza múltiplos isolados VIH-1

primários [128;149]. Estes anticorpos (Tabela 1) reconhecem

epitopos conformacionais no domínio externo da gp120 e na região

externa da gp41 próxima da membrana [128;149] Até ao momento

não foram ainda isolados anticorpos monoclonais neutralizantes

humanos para o VIH-2.

Tabela 1. Anticorpos monoclonais humanos neutralizantes de largo

espectro de neutralização (Adaptado da referência [96]).

Anticorpos

neutralizantes

Epitopo

(local)

Características do

epitopo

4E10 MPER da gp41 do VIH-1 Região NWFNIT pode ter

reactividade cruzada com a

cardiolipina

2F5 MPER da gp41 do VIH-1 Região ELDKWA pode ter

reactividade cruzada com a

cardiolipina

Z13 MPER da gp41 do VIH-1 WNWFDITN

447-52D gp120 Epitopo conformacional

conservado no domínio

externo da gp120

PG9 e PG16 Regiões V1/V2 e V3 na

gp120

Conformacional

VCR01 Local de ligação ao

receptor CD4

Conformacional

B12 gp120 Epitopo conformacional

conservado no domínio

externo da gp120

MPER: região externa próxima da membrana

Page 50: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

18

Escape à Neutralização

Um dos maiores desafios que o VIH tem colocado à investigação é a

forma como consegue superar e ultrapassar as respostas imunes

mediadas pelas células T e anticorpos, e finalmente induzir

imunodeficiência no hospedeiro. Os anticorpos dirigidos contra a

glicoproteína do invólucro podem ser detectados no início da infecção

e são capazes de neutralizar as variantes dos vírus autólogos com os

títulos de neutralização a aumentarem ao longo do tempo na maioria

dos pacientes [150-152]. No entanto, a elevada variabilidade genética

do VIH, especialmente ao nível das glicoproteínas do invólucro (gp41e

gp120) e uma rápida evolução do invólucro permite aos vírus escapar

aos AcNT produzidos pelo hospedeiro, originando deste modo ciclos

sucessivos de produção de novos anticorpos e consequente escape

viral [47;152-154].

Devido à pressão exercida pelos AcNT, a quantidade e/ as posições

dos glicanos evoluem de forma a criar um escudo protector que

muda continuamente sobre a superfície do invólucro de forma a

proteger determinadas regiões do invólucro essenciais para a entrada

do vírus na célula hospedeira [155;156]. As variações observadas nas

sequências de aminoácidos das regiões variáveis (ex. inserções e

deleções, e mudanças no número de potenciais locais de glicosilação

ligados à asparagina) têm sido associadas com o escape viral aos

AcNT [157;158]. Em particular, o comprimento e as características

da glicosilação nas regiões V1/V2 parecem desempenhar um papel

na resistência aos AcNT [102;159-162], evitando desta forma que

regiões subjacentes do invólucro sejam reconhecidas pelos

anticorpos [163].

A maioria dos estudos sugere que o escape aos AcNT é um

acontecimento frequente na infecção VIH-1 [164-166]. Na infecção

VIH-2 este assunto não está estudado de forma efectiva como no

VIH-1. O escape aos AcNT foi apenas observado num estudo

efectuado por Shi e colaboradores, mas utilizando um pequeno

número de amostras [112]. Compreender os mecanismos que estão

na base do controlo imunológico e de que forma o VIH consegue

escapar ao controlo imunitário, poderá num futuro próximo ser a

chave para o desenvolvimento de vacinas para o VIH-2.

Page 51: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

19

Vacinas para o VIH

Desafios e dificuldades

A disseminação mundial do VIH representa um sério problema ao

desenvolvimento global e à saúde pública. O desenvolvimento de

uma vacina segura, eficaz e protectora acessível a nível mundial, é a

melhor forma para controlar a pandemia no futuro. Nos últimos anos

foram feitos progressos significativos nas áreas da virologia,

imunologia, patogénese do VIH/SIDA e também no desenvolvimento

de medicamentos anti-retrovirais. No entanto, o desenvolvimento de

uma vacina contra o VIH-1 enfrenta enormes desafios científicos

devido à grande variabilidade genética do vírus, à ausência de

correlatos de uma resposta imunológica protectora, dificuldade na

construção e apresentação dos imunogénios neutralizantes,

limitações com os modelos animais existentes e ainda problemas

logísticos associados com a realização dos ensaios clínicos [167].

Apesar da necessidade urgente de uma vacina para o VIH-1, apenas

dois conceitos de vacinas completaram os estudos de eficácia clínica.

O primeiro conceito desenvolvido pela VaxGen utilizava subunidades

recombinantes da gp120 de subtipos B e E do VIH-1 para induzir

uma resposta humoral, mas os anticorpos neutralizantes obtidos não

protegiam contra a infecção VIH-1 e não tinham um largo espectro.

O segundo conceito utilizava um adenovírus recombinante do

serotipo 5 (Ad5) para expressar as proteínas dos genes Gag, Pol e

Nef, e induzir células T CD8+ específicas para o VIH-1, que fossem

capazes de prevenir ou reduzir a carga viral após a infecção. Na Fase

2b dos estudos de eficácia do Ad5 da Merck, apesar da maioria dos

indivíduos ter desenvolvido uma resposta celular, houve indivíduos

em que esse efeito foi suprimido pela pré-existência de anticorpos

neutralizantes contra o Ad5, e alguns adquiriram a infecção pelo

VIH-1. [168]. Os quatro principais ensaios clínicos para avaliar a

eficácia de uma vacina para o VIH-1, AIDSVAX 003 e AIDSVAX 004

(conduzidos pela Empresa VaxGen) e HVTN 502 e HTVN 503 (HIV

Vaccine Trials Network financiado pelo NIH) não foram bem-

sucedidos.

No entanto, um ensaio recente conduzido na Tailândia (RV144)

demonstrou que é possível induzir uma resposta imunitária

esterilizante (apesar de reduzida) por anticorpos não neutralizantes

Page 52: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

20

[169], renovando assim o optimismo quanto à obtenção de uma

vacina para o VIH-1 [170]. A tabela 2 resume as diferentes

estratégias utilizadas para estimular uma resposta humoral e

celular. Resume também as vantagens e desvantagens de cada tipo

de vacina, as implicações caso sejam vacinas vivas atenuadas,

subunidades proteicas da gp120, vacinas baseadas em vectores

vivos, vacinas ADN, vacinas vírus inactivados e combinação de

produtos [167].

Tabela 2. Tipo de vacinas produzidas para o VIH-1.

Vacina Características Vantagens Desvantagens

Viva ou

atenuada

Deficiente no gene

Nef e em LTR

Resposta

CTL

Potencialmente

patogénica

Recombinante Usa proteínas do

VIH para induzir

anticorpos

Induz

anticorpos

in vitro

Não induz CTL e

os anticorpos são

ineficazes

Viva (baseada

em vectores)

Inserção de parte

do genoma em

bactérias ou vírus

Resposta

celular e

humoral

Potencialmente

patogénica

ADN Inserção de genes

num plasmídeo

bacteriano

Baratas e

fáceis de

transportar

Potencialmente

patogénica

Inactivada Vírus inactivado

por métodos

químicos e/ou UV

Segura (se

inactivada)

Resposta contra

células em vez dos

vírus

Pseudovírus Expressam

proteínas VIH:

ausência de ARN

viral e genes

replicativos

Resposta

celular e

humoral;

segura

Não protege

contra a infecção

A vacinação é um processo complexo e a sua eficácia pode ser

influenciada por múltiplos factores como: a) vector utilizado, b) dose

da vacina, c) intervalo entre a primeira imunização e o reforço, d)

tropismo do vírus e espécie do hospedeiro, e) imunidade prévia que

não teve origem na vacina, f) tipo de imunidade pretendida (humoral

ou celular) e g) tempo de duração da resposta imunitária [168].

As diferentes estratégias utilizadas para a produção de uma vacina

para o VIH-2 não têm conseguido induzir uma resposta neutralizante

protectora, e as respostas neutralizantes obtidas são fracas e não

evitam que os animais sejam infectados (Tabela 2).

Page 53: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

21

Tabela 3. Imunogénios e vectores utilizados na indução de uma

vacina para o VIH-2.

VIH-2

[Referência]

Imunogénios Modelo

Animal

Resposta

SBL6669 [139;171;172]

SBL6669 [173-176]

gp125 e regiãoV3

Canarypox e Vírus da Vacina atenuado (expressão de várias proteínas), e reforço com gp160, gp125 e péptidos da V3

Murganho e porquinho Guiné Macaco Cynomolgus e Rhesus

AcNT autólogos e heterólogos. Neutralização fraca; protecção parcial contra isolados VIH-2 autólogos.

BEN [177]

Subunidades da gp130 (em micelas)

Macaco Cynomolgus

Neutralização fraca de isolados autólogos e heterólogos.

ROD [178]

Vírus Vacina (expressa gene Env e Gag)

Macaco Rhesus

Ausência de AcNT e resposta protectora.

UC2 [179]

ADN (gene Tat, Nef, Gag e Env)

Babuíno Protecção parcial para isolados autólogos; não induz AcNT

Modelos Animais

Os primatas não humanos têm sido o modelo animal mais utilizado

para estudar o desenvolvimento de uma vacina para o VIH. Os

chimpanzés, (Pan troglodytes) e os macacos de rabo de porco,

(Macaca nemestrina), são susceptíveis à infecção pelo VIH, mas

mantêm baixos níveis de carga viral e não desenvolvem sintomas

clínicos da SIDA. Os macacos africanos são hospedeiros naturais de

uma grande variedade de vírus dos símios (VISagm, VISsm, VISsyk,

VIScol, etc.), mas não desenvolvem doença clínica após serem

infectados [180]. Os babuínos (Papio cynocephalus) têm sido

essenciais para estudar a patogénese da infecção VIH-2 uma vez que

o VIH-2 causa uma infecção crónica que progride durante vários

anos antes do aparecimento da fase de SIDA [181].

Page 54: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

22

Por outro lado a avaliação da eficácia das vacinas utilizando o

macaco implica infectar os animais com doses elevadas de vírus

(entre 103 e 105 TCID50), o equivalente a 5x107 cópias de ARN/ml.

Estas doses elevadas de vírus são necessárias para garantir 100% de

infecção nos animais controlo. No entanto, estas doses elevadas de

vírus utilizadas nos ensaios não correspondem à exposição natural

por parte do homem ao VIH, onde têm sido observadas

concentrações no plasma seminal de 103 a 105 cópias de ARN/ml

[182;183].

Estudos efectuados em modelos animais sugerem que uma vacina

eficaz que proteja os indivíduos da infecção por VIH deverá ser capaz

de estimular a produção de anticorpos neutralizantes e as respostas

mediadas por células.

Referências

[1] UNAIDS/WHO global AIDS statistics. AIDS Care 2003 Feb;15(1):144.

[2] Pantaleo G, Fauci AS. Immunopathogenesis of HIV infection. Annu Rev Microbiol 1996;50:825-54.

[3] Greene WC. A history of AIDS: looking back to see ahead. Eur J Immunol 2007 Nov;37 Suppl 1:S94-102.

[4] de Silva TI, Cotten M, Rowland-Jones SL. HIV-2: the forgotten AIDS virus. Trends Microbiol 2008 Dec;16(12):588-95.

[5] Clavel F, Guetard D, Brun-Vezinet F, et al. Isolation of a new human retrovirus from West African patients with AIDS. Science 1986 Jul 18;233(4761):343-6.

[6] Lemey P, Pybus OG, Wang B, Saksena NK, Salemi M, Vandamme AM. Tracing the origin and history of the HIV-2 epidemic. Proc Natl Acad Sci U S A 2003 May 27;100(11):6588-92.

[7] Damond F, Worobey M, Campa P, et al. Identification of a highly divergent HIV type 2 and proposal for a change in HIV type 2 classification. AIDS Res Hum Retroviruses 2004 Jun;20(6):666-72.

Page 55: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

23

[8] Jaffar S, Grant AD, Whitworth J, Smith PG, Whittle H. The natural history of HIV-1 and HIV-2 infections in adults in Africa: a literature review. Bull World Health Organ 2004 Jun;82(6):462-9.

[9] Ntemgwa ML, d'Aquin TT, Brenner BG, Camacho RJ, Wainberg MA. Antiretroviral drug resistance in human immunodeficiency virus type 2. Antimicrob Agents Chemother 2009 Sep;53(9):3611-9.

[10] Sierra S, Kupfer B, Kaiser R. Basics of the virology of HIV-1 and its replication. J Clin Virol 2005 Dec;34(4):233-44.

[11] O'Hara BM, Olson WC. HIV entry inhibitors in clinical development. Curr Opin Pharmacol 2002 Oct;2(5):523-8.

[12] Thomas ER, Shotton C, Weiss RA, Clapham PR, McKnight A. CD4-dependent and CD4-independent HIV-2: consequences for neutralization. AIDS 2003 Feb 14;17(3):291-300.

[13] Reeves JD, Hibbitts S, Simmons G, et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 1999 Sep;73(9):7795-804.

[14] Morner A, Bjorndal A, Albert J, et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J Virol 1999 Mar;73(3):2343-9.

[15] McKnight A, Dittmar MT, Moniz-Periera J, et al. A broad range of chemokine receptors are used by primary isolates of human immunodeficiency virus type 2 as coreceptors with CD4. J Virol 1998 May;72(5):4065-71.

[16] Azevedo-Pereira JM, Santos-Costa Q, Moniz-Pereira J. HIV-2 infection and chemokine receptors usage - clues to reduced virulence of HIV-2. Curr HIV Res 2005 Jan;3(1):3-16.

[17] McKnight A, Dittmar MT, Moniz-Periera J, et al. A broad range of chemokine receptors are used by primary isolates of human immunodeficiency virus type 2 as coreceptors with CD4. J Virol 1998 May;72(5):4065-71.

[18] Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res 2010 Jan;85(1):119-41.

[19] Levy JA. HIV pathogenesis: 25 years of progress and persistent challenges. AIDS 2009 Jan 14;23(2):147-60.

Page 56: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

24

[20] Moir S, Chun TW, Fauci AS. Pathogenic Mechanisms of HIV Disease. Annu Rev Pathol 2010 Jan 15.

[21] Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 2009;60:471-84.

[22] Bock PJ, Markovitz DM. Infection with HIV-2. AIDS 2001;15 Suppl 5:S35-S45.

[23] de Silva TI, Cotten M, Rowland-Jones SL. HIV-2: the forgotten AIDS virus. Trends Microbiol 2008 Dec;16(12):588-95.

[24] Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 2002 Sep 15;169(6):3400-6.

[25] Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RM, Paul WE. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat Med 2002 Apr;8(4):319-23.

[26] Jaffar S, Wilkins A, Ngom PT, et al. Rate of decline of percentage CD4+ cells is faster in HIV-1 than in HIV-2 infection. J Acquir Immune Defic Syndr Hum Retrovirol 1997 Dec 15;16(5):327-32.

[27] Shanmugam V, Switzer WM, Nkengasong JN, et al. Lower HIV-2 plasma viral loads may explain differences between the natural histories of HIV-1 and HIV-2 infections. J Acquir Immune Defic Syndr 2000 Jul 1;24(3):257-63.

[28] MacNeil A, Sarr AD, Sankale JL, Meloni ST, Mboup S, Kanki P. Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. J Virol 2007 May;81(10):5325-30.

[29] Ariyoshi K, Berry N, Wilkins A, et al. A community-based study of human immunodeficiency virus type 2 provirus load in rural village in West Africa. J Infect Dis 1996 Jan;173(1):245-8.

[30] Sarr AD, Popper S, Thior I, et al. Relation between HIV-2 proviral load and CD4+ lymphocyte count differs in monotypic and dual HIV infections. J Hum Virol 1999 Jan;2(1):45-51.

[31] Soares R, Foxall R, Albuquerque A, et al. Increased frequency of circulating CCR5+ CD4+ T cells in human immunodeficiency virus type 2 infection. J Virol 2006 Dec;80(24):12425-9.

Page 57: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

25

[32] Gomes P, Taveira NC, Pereira JM, Antunes F, Ferreira MO, Lourenco MH. Quantitation of human immunodeficiency virus type 2 DNA in peripheral blood mononuclear cells by using a quantitative-competitive PCR assay. J Clin Microbiol 1999 Feb;37(2):453-6.

[33] Gottlieb GS, Hawes SE, Kiviat NB, Sow PS. Differences in proviral DNA load between HIV-1-infected and HIV-2-infected patients. AIDS 2008 Jul 11;22(11):1379-80.

[34] Gueudin M, Damond F, Braun J, et al. Differences in proviral DNA load between HIV-1- and HIV-2-infected patients. AIDS 2008 Jan 11;22(2):211-5.

[35] Foxall RB, Cortesao CS, Albuquerque AS, Soares RS, Victorino RM, Sousa AE. Gag-specific CD4+ T-cell frequency is inversely correlated with proviral load and directly correlated with immune activation in infection with human immunodeficiency virus type 2 (HIV-2) but not HIV-1. J Virol 2008 Oct;82(19):9795-9.

[36] Gautier D, Beq S, Cortesao CS, Sousa AE, Cheynier R. Efficient thymopoiesis contributes to the maintenance of peripheral CD4 T cells during chronic human immunodeficiency virus type 2 infection. J Virol 2007 Nov;81(22):12685-8.

[37] Cavaleiro R, Brunn GJ, Albuquerque AS, Victorino RM, Platt JL, Sousa AE. Monocyte-mediated T cell suppression by HIV-2 envelope proteins. Eur J Immunol 2007 Dec;37(12):3435-44.

[38] McMichael AJ, Rowland-Jones SL. Cellular immune responses to HIV. Nature 2001 Apr 19;410(6831):980-7.

[39] Wick WD, Yang OO, Corey L, Self SG. How many human immunodeficiency virus type 1-infected target cells can a cytotoxic T-lymphocyte kill? J Virol 2005 Nov;79(21):13579-86.

[40] Douek DC, Picker LJ, Koup RA. T cell dynamics in HIV-1 infection. Annu Rev Immunol 2003;21:265-304.

[41] Cao H, Walker BD. Immunopathogenesis of HIV-1 infection. Clin Dermatol 2000 Jul;18(4):401-10.

[42] Trkola A, Kuster H, Leemann C, et al. Humoral immunity to HIV-1: kinetics of antibody responses in chronic infection reflects capacity of immune system to improve viral set point. Blood 2004 Sep 15;104(6):1784-92.

[43] Bunnik EM, Pisas L, van Nuenen AC, Schuitemaker H. Autologous neutralizing humoral immunity and evolution of the viral

Page 58: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

26

envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol 2008 Aug;82(16):7932-41.

[44] Burke B, Barnett SW. Broadening our view of protective antibody responses against HIV. Curr HIV Res 2007 Nov;5(6):625-41.

[45] Oxenius A, Price DA, Trkola A, et al. Loss of viral control in early HIV-1 infection is temporally associated with sequential escape from CD8+ T cell responses and decrease in HIV-1-specific CD4+ and CD8+ T cell frequencies. J Infect Dis 2004 Aug 15;190(4):713-21.

[46] Stebbings R, Berry N, Waldmann H, et al. CD8+ lymphocytes do not mediate protection against acute superinfection 20 days after vaccination with a live attenuated simian immunodeficiency virus. J Virol 2005 Oct;79(19):12264-72.

[47] Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1. Nature 2003 Mar 20;422(6929):307-12.

[48] Stevceva L, Yoon V, Anastasiades D, Poznansky MC. Immune responses to HIV Gp120 that facilitate viral escape. Curr HIV Res 2007 Jan;5(1):47-54.

[49] van Gils MJ, Bunnik EM, Burger JA, et al. Rapid escape from preserved cross-reactive neutralizing humoral immunity without loss of viral fitness in HIV-1-infected progressors and long-term nonprogressors. J Virol 2010 Apr;84(7):3576-85.

[50] Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216.

[51] Lehner T, Wang Y, Pido-Lopez J, Whittall T, Bergmeier LA, Babaahmady K. The emerging role of innate immunity in protection against HIV-1 infection. Vaccine 2008 Jun 6;26(24):2997-3001.

[52] Suresh P, Wanchu A. Chemokines and chemokine receptors in HIV infection: role in pathogenesis and therapeutics. J Postgrad Med 2006 Jul;52(3):210-7.

[53] Stoiber H. Complement, Fc receptors and antibodies: a Trojan horse in HIV infection? Curr Opin HIV AIDS 2009 Sep;4(5):394-9.

[54] Stoiber H, Banki Z, Wilflingseder D, Dierich MP. Complement-HIV interactions during all steps of viral pathogenesis. Vaccine 2008 Jun 6;26(24):3046-54.

[55] Addo MM, Yu XG, Rathod A, et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-

Page 59: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

27

cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 2003 Feb;77(3):2081-92.

[56] Kaufmann DE, Bailey PM, Sidney J, et al. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. J Virol 2004 May;78(9):4463-77.

[57] Rosenberg ES, Billingsley JM, Caliendo AM, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997 Nov 21;278(5342):1447-50.

[58] Norris PJ, Rosenberg ES. CD4(+) T helper cells and the role they play in viral control. J Mol Med 2002 Jul;80(7):397-405.

[59] Norris PJ, Rosenberg ES. Cellular immune response to human immunodeficiency virus. AIDS 2001 Feb;15 Suppl 2:S16-S21.

[60] McMichael AJ, Rowland-Jones SL. Cellular immune responses to HIV. Nature 2001 Apr 19;410(6831):980-7.

[61] Kim GJ, Lee HS, Hong KJ, Kim SS. Dynamic correlation between CTL response and viral load in primary human immunodeficiency virus-1 infected Koreans. Virol J 2010;7:239.

[62] Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 2002 Mar;76(5):2298-305.

[63] Gillespie GM, Pinheiro S, Sayeid-Al-Jamee M, et al. CD8+ T cell responses to human immunodeficiency viruses type 2 (HIV-2) and type 1 (HIV-1) gag proteins are distinguishable by magnitude and breadth but not cellular phenotype. Eur J Immunol 2005 May;35(5):1445-53.

[64] Jaye A, Sarge-Njie R, Schim vdL, et al. No differences in cellular immune responses between asymptomatic HIV type 1- and type 2-infected Gambian patients. J Infect Dis 2004 Feb 1;189(3):498-505.

[65] Zheng NN, Kiviat NB, Sow PS, et al. Comparison of human immunodeficiency virus (HIV)-specific T-cell responses in HIV-1- and HIV-2-infected individuals in Senegal. J Virol 2004 Dec;78(24):13934-42.

Page 60: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

28

[66] Duvall MG, Jaye A, Dong T, et al. Maintenance of HIV-specific CD4+ T cell help distinguishes HIV-2 from HIV-1 infection. J Immunol 2006 Jun 1;176(11):6973-81.

[67] Pinto LA, Covas MJ, Victorino RM. T-helper cross reactivity to viral recombinant proteins in HIV-2-infected patients. AIDS 1993 Oct;7(10):1389-91.

[68] Sousa AE, Chaves AF, Loureiro A, Victorino RM. Comparison of the frequency of interleukin (IL)-2-, interferon-gamma-, and IL-4-producing T cells in 2 diseases, human immunodeficiency virus types 1 and 2, with distinct clinical outcomes. J Infect Dis 2001 Sep 1;184(5):552-9.

[69] Jaleco AC, Covas MJ, Victorino RM. Analysis of lymphocyte cell death and apoptosis in HIV-2-infected patients. Clin Exp Immunol 1994 Nov;98(2):185-9.

[70] Azevedo-Pereira JM, Lourenco MH, Barin F, et al. Multicenter evaluation of a fully automated screening test, VIDAS HIV 1 + 2, for antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol 1994 Oct;32(10):2559-63.

[71] Kannangai R, Ramalingam S, Prakash KJ, et al. A peptide enzyme linked immunosorbent assay (ELISA) for the detection of human immunodeficiency virus type-2 (HIV-2) antibodies: an evaluation on polymerase chain reaction (PCR) confirmed samples. J Clin Virol 2001 Aug;22(1):41-6.

[72] Gaines H, von Sydow M, Sonnerborg A, et al. Antibody response in primary human immunodeficiency virus infection. Lancet 1987 May 30;1(8544):1249-53.

[73] Tomaras GD, Haynes BF. HIV-1-specific antibody responses during acute and chronic HIV-1 infection. Curr Opin HIV AIDS 2009 Sep;4(5):373-9.

[74] Tomaras GD, Yates NL, Liu P, et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol 2008 Dec;82(24):12449-63.

[75] Russell MW, Lue C, van den Wall Bake AW, Moldoveanu Z, Mestecky J. Molecular heterogeneity of human IgA antibodies during an immune response. Clin Exp Immunol 1992 Jan;87(1):1-6.

Page 61: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

29

[76] Barassi C, Lazzarin A, Lopalco L. CCR5-specific mucosal IgA in saliva and genital fluids of HIV-exposed seronegative subjects. Blood 2004 Oct 1;104(7):2205-6.

[77] Devito C, Broliden K, Kaul R, et al. Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J Immunol 2000 Nov 1;165(9):5170-6.

[78] Devito C, Hinkula J, Kaul R, et al. Cross-clade HIV-1-specific neutralizing IgA in mucosal and systemic compartments of HIV-1-exposed, persistently seronegative subjects. J Acquir Immune Defic Syndr 2002 Aug 1;30(4):413-20.

[79] Ferre AL, Hunt PW, Critchfield JW, et al. Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood 2009 Apr 23;113(17):3978-89.

[80] Lehner T. Innate and adaptive mucosal immunity in protection against HIV infection. Vaccine 2003 Jun 1;21 Suppl 2:S68-S76.

[81] Lizeng Q, Skott P, Sourial S, et al. Serum immunoglobulin A (IgA)-mediated immunity in human immunodeficiency virus type 2 (HIV-2) infection. Virology 2003 Apr 10;308(2):225-32.

[82] Banerjee K, Klasse PJ, Sanders RW, et al. IgG subclass profiles in infected HIV type 1 controllers and chronic progressors and in uninfected recipients of Env vaccines. AIDS Res Hum Retroviruses 2010 Apr;26(4):445-58.

[83] Cavacini LA, Kuhrt D, Duval M, Mayer K, Posner MR. Binding and neutralization activity of human IgG1 and IgG3 from serum of HIV-infected individuals. AIDS Res Hum Retroviruses 2003 Sep;19(9):785-92.

[84] Rezza G, Fiorelli V, Dorrucci M, et al. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters. J Infect Dis 2005 Apr 15;191(8):1321-4.

[85] Humbert M, Dietrich U. The role of neutralizing antibodies in HIV infection. AIDS Rev 2006 Apr;8(2):51-9.

[86] Forthal DN, Moog C. Fc receptor-mediated antiviral antibodies. Curr Opin HIV AIDS 2009 Sep;4(5):388-93.

[87] Gomez-Roman VR, Patterson LJ, Venzon D, et al. Vaccine-elicited antibodies mediate antibody-dependent cellular cytotoxicity correlated with significantly reduced acute viremia in rhesus

Page 62: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

30

macaques challenged with SIVmac251. J Immunol 2005 Feb 15;174(4):2185-9.

[88] Lambotte O, Ferrari G, Moog C, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS 2009 May 15;23(8):897-906.

[89] Klein JS, Webster A, Gnanapragasam PN, Galimidi RP, Bjorkman PJ. A dimeric form of the HIV-1 antibody 2G12 elicits potent antibody-dependent cellular cytotoxicity. AIDS 2010 Jul 17;24(11):1633-40.

[90] Ng CT, Jaworski JP, Jayaraman P, et al. Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nat Med 2010 Oct;16(10):1117-9.

[91] Hessell AJ, Hangartner L, Hunter M, et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 2007 Sep 6;449(7158):101-4.

[92] Forthal DN, Landucci G, Bream J, Jacobson LP, Phan TB, Montoya B. FcgammaRIIa genotype predicts progression of HIV infection. J Immunol 2007 Dec 1;179(11):7916-23.

[93] Hidajat R, Xiao P, Zhou Q, et al. Correlation of vaccine-elicited systemic and mucosal nonneutralizing antibody activities with reduced acute viremia following intrarectal simian immunodeficiency virus SIVmac251 challenge of rhesus macaques. J Virol 2009 Jan;83(2):791-801.

[94] Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 2007 Dec;25(12):1421-34.

[95] Chung A, Rollman E, Johansson S, Kent SJ, Stratov I. The utility of ADCC responses in HIV infection. Curr HIV Res 2008 Nov;6(6):515-9.

[96] Baum LL. Role of humoral immunity in host defense against HIV. Curr HIV /AIDS Rep 2010 Feb;7(1):11-8.

[97] Lagenaur LA, Villarroel VA, Bundoc V, Dey B, Berger EA. sCD4-17b bifunctional protein: extremely broad and potent neutralization of HIV-1 Env pseudotyped viruses from genetically diverse primary isolates. Retrovirology 2010;7:11.

Page 63: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

31

[98] Gray ES, Madiga MC, Moore PL, et al. Broad neutralization of human immunodeficiency virus type 1 mediated by plasma antibodies against the gp41 membrane proximal external region. J Virol 2009 Nov;83(21):11265-74.

[99] Binley J. Specificities of broadly neutralizing anti-HIV-1 sera. Curr Opin HIV AIDS 2009 Sep;4(5):364-72.

[100] Sather DN, Armann J, Ching LK, et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol 2009 Jan;83(2):757-69.

[101] van Gils MJ, Euler Z, Schweighardt B, Wrin T, Schuitemaker H. Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression. AIDS 2009 Nov 27;23(18):2405-14.

[102] Cao J, Sullivan N, Desjardin E, et al. Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol 1997 Dec;71(12):9808-12.

[103] Cecilia D, Kleeberger C, Munoz A, Giorgi JV, Zolla-Pazner S. A longitudinal study of neutralizing antibodies and disease progression in HIV-1-infected subjects. J Infect Dis 1999 Jun;179(6):1365-74.

[104] Zhang YJ, Fracasso C, Fiore JR, et al. Augmented serum neutralizing activity against primary human immunodeficiency virus type 1 (HIV-1) isolates in two groups of HIV-1-infected long-term nonprogressors. J Infect Dis 1997 Nov;176(5):1180-7.

[105] Bailey JR, Williams TM, Siliciano RF, Blankson JN. Maintenance of viral suppression in HIV-1-infected HLA-B*57+ elite suppressors despite CTL escape mutations. J Exp Med 2006 May 15;203(5):1357-69.

[106] Harrer T, Harrer E, Kalams SA, et al. Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retroviruses 1996 May 1;12(7):585-92.

[107] Jolly PE, Weiss HL. Neutralization and enhancement of HIV-1 infection by sera from HIV-1 infected individuals who progress to disease at different rates. Virology 2000 Jul 20;273(1):52-9.

[108] Bartolo I, Camacho R, Barroso H, Bezerra V, Taveira N. Rapid clinical progression to AIDS and death in a persistently seronegative

Page 64: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

32

HIV-1 infected heterosexual young man. AIDS 2009 Nov 13;23(17):2359-62.

[109] Weiss RA, Clapham PR, Weber JN, et al. HIV-2 antisera cross-neutralize HIV-1. AIDS 1988 Apr;2(2):95-100.

[110] Schulz TF, Whitby D, Hoad JG, Corrah T, Whittle H, Weiss RA. Biological and molecular variability of human immunodeficiency virus type 2 isolates from The Gambia. J Virol 1990 Oct;64(10):5177-82.

[111] Bjorling E, Scarlatti G, von Gegerfelt A, et al. Autologous neutralizing antibodies prevail in HIV-2 but not in HIV-1 infection. Virology 1993 Mar;193(1):528-30.

[112] Shi Y, Brandin E, Vincic E, et al. Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. J Gen Virol 2005 Dec;86(Pt 12):3385-96.

[113] Mascola JR, Montefiori DC. The role of antibodies in HIV vaccines. Annu Rev Immunol 2010 Mar;28:413-44.

[114] de Silva TI, Cotten M, Rowland-Jones SL. HIV-2: the forgotten AIDS virus. Trends Microbiol 2008 Dec;16(12):588-95.

[115] Reeves JD, Hibbitts S, Simmons G, et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 1999 Sep;73(9):7795-804.

[116] Tamalet C, Simon F, Dhiver C, et al. Autologous neutralizing antibodies and viral load in HIV-2-infected individuals. AIDS 1995 Jan;9(1):90-1.

[117] Rodriguez SK, Sarr AD, MacNeil A, et al. Comparison of heterologous neutralizing antibody responses of human immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected Senegalese patients: distinct patterns of breadth and magnitude distinguish HIV-1 and HIV-2 infections. J Virol 2007 May;81(10):5331-8.

[118] Chenna R, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003 Jul 1;31(13):3497-500.

Page 65: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

33

[119] O'Connell KA, Bailey JR, Blankson JN. Elucidating the elite: mechanisms of control in HIV-1 infection. Trends Pharmacol Sci 2009 Dec;30(12):631-7.

[120] Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 2007 Sep;27(3):406-16.

[121] Laakso MM, Lee FH, Haggarty B, et al. V3 loop truncations in HIV-1 envelope impart resistance to coreceptor inhibitors and enhanced sensitivity to neutralizing antibodies. PLoS Pathog 2007 Aug 24;3(8):e117.

[122] Davis KL, Gray ES, Moore PL, et al. High titer HIV-1 V3-specific antibodies with broad reactivity but low neutralizing potency in acute infection and following vaccination. Virology 2009 May 10;387(2):414-26.

[123] Pikora CA. Glycosylation of the ENV spike of primate immunodeficiency viruses and antibody neutralization. Curr HIV Res 2004 Jul;2(3):243-54.

[124] Burton DR, Desrosiers RC, Doms RW, et al. HIV vaccine design and the neutralizing antibody problem. Nat Immunol 2004 Mar;5(3):233-6.

[125] Spenlehauer C, Saragosti S, Fleury HJ, Kirn A, Aubertin AM, Moog C. Study of the V3 loop as a target epitope for antibodies involved in the neutralization of primary isolates versus T-cell-line-adapted strains of human immunodeficiency virus type 1. J Virol 1998 Dec;72(12):9855-64.

[126] Wyatt R, Kwong PD, Desjardins E, et al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 1998 Jun 18;393(6686):705-11.

[127] Gorny MK, Williams C, Volsky B, et al. Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. J Virol 2002 Sep;76(18):9035-45.

[128] Pinter A. Roles of HIV-1 Env variable regions in viral neutralization and vaccine development. Curr HIV Res 2007 Nov;5(6):542-53.

[129] Mbah HA, Burda S, Gorny MK, et al. Effect of soluble CD4 on exposure of epitopes on primary, intact, native human

Page 66: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

34

immunodeficiency virus type 1 virions of different genetic clades. J Virol 2001 Aug;75(16):7785-8.

[130] Wyatt R, Moore J, Accola M, Desjardin E, Robinson J, Sodroski J. Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. J Virol 1995 Sep;69(9):5723-33.

[131] Sullivan N, Sun Y, Sattentau Q, et al. CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 1998 Jun;72(6):4694-703.

[132] Losman B, Bolmstedt A, Schonning K, et al. Protection of neutralization epitopes in the V3 loop of oligomeric human immunodeficiency virus type 1 glycoprotein 120 by N-linked oligosaccharides in the V1 region. AIDS Res Hum Retroviruses 2001 Jul 20;17(11):1067-76.

[133] Ly A, Stamatatos L. V2 loop glycosylation of the human immunodeficiency virus type 1 SF162 envelope facilitates interaction of this protein with CD4 and CCR5 receptors and protects the virus from neutralization by anti-V3 loop and anti-CD4 binding site antibodies. J Virol 2000 Aug;74(15):6769-76.

[134] Schonning K, Jansson B, Olofsson S, Nielsen JO, Hansen JS. Resistance to V3-directed neutralization caused by an N-linked oligosaccharide depends on the quaternary structure of the HIV-1 envelope oligomer. Virology 1996 Apr 1;218(1):134-40.

[135] Barnett SW, Lu S, Srivastava I, et al. The ability of an oligomeric human immunodeficiency virus type 1 (HIV-1) envelope antigen to elicit neutralizing antibodies against primary HIV-1 isolates is improved following partial deletion of the second hypervariable region. J Virol 2001 Jun;75(12):5526-40.

[136] Kim YB, Han DP, Cao C, Cho MW. Immunogenicity and ability of variable loop-deleted human immunodeficiency virus type 1 envelope glycoproteins to elicit neutralizing antibodies. Virology 2003 Jan 5;305(1):124-37.

[137] Srivastava IK, VanDorsten K, Vojtech L, Barnett SW, Stamatatos L. Changes in the immunogenic properties of soluble gp140 human immunodeficiency virus envelope constructs upon partial deletion of the second hypervariable region. J Virol 2003 Feb;77(4):2310-20.

[138] Plantier JC, Damond F, Souquieres S, Brun-Vezinet F, Simon F, Barin F. V3 serological subtyping of human immunodeficiency

Page 67: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

35

virus type 2 infection is not relevant. J Clin Microbiol 2001 Oct;39(10):3803-7.

[139] Bjorling E, Chiodi F, Utter G, Norrby E. Two neutralizing domains in the V3 region in the envelope glycoprotein gp125 of HIV type 2. J Immunol 1994 Feb 15;152(4):1952-9.

[140] Matsushita S, Matsumi S, Yoshimura K, Morikita T, Murakami T, Takatsuki K. Neutralizing monoclonal antibodies against human immunodeficiency virus type 2 gp120. J Virol 1995 Jun;69(6):3333-40.

[141] McKnight A, Shotton C, Cordell J, Jones I, Simmons G, Clapham PR. Location, exposure, and conservation of neutralizing and nonneutralizing epitopes on human immunodeficiency virus type 2 SU glycoprotein. J Virol 1996 Jul;70(7):4598-606.

[142] Babas T, Benichou S, Guetard D, Montagnier L, Bahraoui E. Specificity of antipeptide antibodies produced against V2 and V3 regions of the external envelope of human immunodeficiency virus type 2. Mol Immunol 1994 Apr;31(5):361-9.

[143] Robert-Guroff M, Aldrich K, Muldoon R, et al. Cross-neutralization of human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus isolates. J Virol 1992 Jun;66(6):3602-8.

[144] Sourial S, Nilsson C, Warnmark A, Achour A, Harris RA. Deletion of the V1/V2 region does not increase the accessibility of the V3 region of recombinant gp125. Curr HIV Res 2006 Apr;4(2):229-37.

[145] Bhattacharya J, Peters PJ, Clapham PR. Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles. J Virol 2004 May;78(10):5500-6.

[146] Kwong PD, Doyle ML, Casper DJ, et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 2002 Dec 12;420(6916):678-82.

[147] Mascola JR, Montefiori DC. HIV-1: nature's master of disguise. Nat Med 2003 Apr;9(4):393-4.

[148] Walker LM, Simek MD, Priddy F, et al. A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1 infected individuals. PLoS Pathog 2010 Aug;6(8).

Page 68: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

36

[149] Pantophlet R, Burton DR. GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 2006;24:739-69.

[150] Albert J, Abrahamsson B, Nagy K, et al. Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS 1990 Feb;4(2):107-12.

[151] Pilgrim AK, Pantaleo G, Cohen OJ, et al. Neutralizing antibody responses to human immunodeficiency virus type 1 in primary infection and long-term-nonprogressive infection. J Infect Dis 1997 Oct;176(4):924-32.

[152] Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A 2003 Apr 1;100(7):4144-9.

[153] Moog C, Fleury HJ, Pellegrin I, Kirn A, Aubertin AM. Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J Virol 1997 May;71(5):3734-41.

[154] Mahalanabis M, Jayaraman P, Miura T, et al. Continuous viral escape and selection by autologous neutralizing antibodies in drug-naive human immunodeficiency virus controllers. J Virol 2009 Jan;83(2):662-72.

[155] Raska M, Novak J. Involvement of envelope-glycoprotein glycans in HIV-1 biology and infection. Arch Immunol Ther Exp (Warsz ) 2010 Jun;58(3):191-208.

[156] Quinones-Kochs MI, Buonocore L, Rose JK. Role of N-linked glycans in a human immunodeficiency virus envelope glycoprotein: effects on protein function and the neutralizing antibody response. J Virol 2002 May;76(9):4199-211.

[157] Draenert R, Allen TM, Liu Y, et al. Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus. J Exp Med 2006 Mar 20;203(3):529-39.

[158] Frost SD, Wrin T, Smith DM, et al. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci U S A 2005 Dec 20;102(51):18514-9.

[159] Chackerian B, Rudensey LM, Overbaugh J. Specific N-linked and O-linked glycosylation modifications in the envelope V1 domain

Page 69: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

37

of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies. J Virol 1997 Oct;71(10):7719-27.

[160] Pinter A, Honnen WJ, He Y, Gorny MK, Zolla-Pazner S, Kayman SC. The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J Virol 2004 May;78(10):5205-15.

[161] Rong R, Bibollet-Ruche F, Mulenga J, Allen S, Blackwell JL, Derdeyn CA. Role of V1V2 and other human immunodeficiency virus type 1 envelope domains in resistance to autologous neutralization during clade C infection. J Virol 2007 Feb;81(3):1350-9.

[162] Sagar M, Wu X, Lee S, Overbaugh J. Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol 2006 Oct;80(19):9586-98.

[163] Gray ES, Moore PL, Choge IA, et al. Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. J Virol 2007 Jun;81(12):6187-96.

[164] Rong R, Li B, Lynch RM, et al. Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways. PLoS Pathog 2009 Sep;5(9):e1000594.

[165] Bosch KA, Rainwater S, Jaoko W, Overbaugh J. Temporal analysis of HIV envelope sequence evolution and antibody escape in a subtype A-infected individual with a broad neutralizing antibody response. Virology 2010 Mar 1;398(1):115-24.

[166] Parren PW, Wang M, Trkola A, et al. Antibody neutralization-resistant primary isolates of human immunodeficiency virus type 1. J Virol 1998 Dec;72(12):10270-4.

[167] Girard MP, Osmanov SK, Kieny MP. A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine 2006 May 8;24(19):4062-81.

[168] Barouch DH. Challenges in the development of an HIV-1 vaccine. Nature 2008 Oct 2;455(7213):613-9.

[169] Alter G, Moody MA. The humoral response to HIV-1: new insights, renewed focus. J Infect Dis 2010 Oct 15;202 Suppl 2:S315-S322.

Page 70: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

38

[170] Bansal GP, Malaspina A, Flores J. Future paths for HIV vaccine research: Exploiting results from recent clinical trials and current scientific advances. Curr Opin Mol Ther 2010 Feb;12(1):39-46.

[171] Bjorling E, Broliden K, Bernardi D, et al. Hyperimmune antisera against synthetic peptides representing the glycoprotein of human immunodeficiency virus type 2 can mediate neutralization and antibody-dependent cytotoxic activity. Proc Natl Acad Sci U S A 1991 Jul 15;88(14):6082-6.

[172] Gilljam G. Envelope glycoproteins of HIV-1, HIV-2, and SIV purified with Galanthus nivalis agglutinin induce strong immune responses. AIDS Res Hum Retroviruses 1993 May;9(5):431-8.

[173] Andersson S, Makitalo B, Thorstensson R, et al. Immunogenicity and protective efficacy of a human immunodeficiency virus type 2 recombinant canarypox (ALVAC) vaccine candidate in cynomolgus monkeys. J Infect Dis 1996 Nov;174(5):977-85.

[174] Franchini G, Robert-Guroff M, Tartaglia J, et al. Highly attenuated HIV type 2 recombinant poxviruses, but not HIV-2 recombinant Salmonella vaccines, induce long-lasting protection in rhesus macaques. AIDS Res Hum Retroviruses 1995 Aug;11(8):909-20.

[175] Myagkikh M, Alipanah S, Markham PD, et al. Multiple immunizations with attenuated poxvirus HIV type 2 recombinants and subunit boosts required for protection of rhesus macaques. AIDS Res Hum Retroviruses 1996 Jul 20;12(11):985-92.

[176] Patterson LJ, Peng B, Abimiku AG, et al. Cross-protection in NYVAC-HIV-1-immunized/HIV-2-challenged but not in NYVAC-HIV-2-immunized/SHIV-challenged rhesus macaques. AIDS 2000 Nov 10;14(16):2445-55.

[177] Luke W, Voss G, Stahl-Hennig C, et al. Protection of cynomolgus macaques (Macaca fascicularis) against infection with the human immunodeficiency virus type 2 strain ben (HIV-2ben) by immunization with the virion-derived envelope glycoprotein gp130. AIDS Res Hum Retroviruses 1993 May;9(5):387-94.

[178] Vogt G, le Grand R, Vaslin B, et al. Heterologous HIV-2 challenge of rhesus monkeys immunized with recombinant vaccinia viruses and purified recombinant HIV-2 proteins. Vaccine 1995 Feb;13(2):202-8.

[179] Locher CP, Witt SA, Ashlock BM, et al. Human immunodeficiency virus type 2 DNA vaccine provides partial

Page 71: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

39

protection from acute baboon infection. Vaccine 2004 Jun 2;22(17-18):2261-72.

[180] Peeters M, Courgnaud V, Abela B, et al. Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerg Infect Dis 2002 May;8(5):451-7.

[181] Locher CP, Witt SA, Herndier BG, Tenner-Racz K, Racz P, Levy JA. Baboons as an animal model for human immunodeficiency virus pathogenesis and vaccine development. Immunol Rev 2001 Oct;183:127-40.

[182] Chakraborty H, Sen PK, Helms RW, et al. Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS 2001 Mar 30;15(5):621-7.

[183] Gray RH, Wawer MJ, Brookmeyer R, et al. Probability of HIV-1

transmission per coital act in monogamous, heterosexual, HIV-1-

discordant couples in Rakai, Uganda. Lancet 2001 Apr

14;357(9263):1149-53.

Page 72: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

40

Page 73: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

CAPÍTULO II

Objectivos e Plano de Trabalho

Page 74: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

42

Page 75: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

43

Objectivos e Plano de Trabalho

Em contraste com a quase generalidade dos indivíduos infectados

por VIH-1, a maior parte dos indivíduos infectados por VIH-2 não

tem carga viral plasmática detectável e não progridem para SIDA

mesmo na ausência de tratamento antiretrovírico. Os determinantes

do aparente equilíbrio existente entre o VIH-2 e o hospedeiro são

ainda desconhecidos e a sua compreensão poderá contribuir para o

desenvolvimento de uma vacina.

Pensa-se que a resposta imunitária humoral contribui directamente

para o controlo da replicação na infecção VIH-2. De facto, os poucos

estudos existentes, todos efectuados em doentes crónicos, indicam

que a maioria dos indivíduos infectados por VIH-2 produz anticorpos

neutralizantes de largo espectro. Contudo, existe ainda muita

controvérsia sobre o exacto papel destes anticorpos in vivo uma vez

que nos doentes VIH-2 a correlação inversa entre o título de

anticorpos neutralizantes e a carga viral plasmática é mais a

excepção do que a regra.

O papel dos anticorpos neutralizantes na infecção VIH-2 poderá ser

clarificado, analisando a cinética evolutiva da resposta humoral anti-

VIH-2 ao longo da infecção e caracterizando o seu impacto na

evolução do vírus. Neste contexto, o primeiro objectivo desta tese foi

caracterizar, no decurso da infecção VIH-2 aguda e crónica, a

natureza e dinâmica da resposta humoral neutralizante e não

neutralizante. O segundo objectivo foi caracterizar e analisar o

impacto destes anticorpos na evolução molecular e fenotípica do VIH-

2. O terceiro e último objectivo foi analisar, em modelo animal, o

potencial neutralizante de novos imunogénios derivados do Env do

VIH-2.

Para cumprir o primeiro objectivo, uma vez que os anticorpos

neutralizantes bem como grande parte dos não neutralizantes têm

como alvo epitopos localizados no invólucro, decidiu-se caracterizar

apenas a resposta humoral dirigida contra as duas glicoproteínas do

invólucro, gp125 e gp36. Foram identificadas na literatura as duas

regiões potencialmente mais antigénicas do invólucro do VIH-2 e

desenhou-se dois polipéptidos contendo, presumivelmente, estas

regiões. A primeira fase experimental desta tese destinou-se à

clonagem, expressão, purificação e análise da antigenicidade destes

dois novos polipéptidos (designados rpC3-C3 e rgp36). Os métodos

escolhidos para a análise da antigenicidade foram o ensaio

imunoenzimático ELISA e o Western blot e as amostras de plasma

Page 76: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

44

utilizadas neste processo foram colhidas de um número significativo

(≥100) de doentes infectados por VIH-2 e/ou por VIH-1, e também de

um número igualmente significativo de indivíduos não infectados

(Capítulo III).

Para investigar a natureza e dinâmica da resposta humoral no

decurso da infecção por VIH-2 (Objectivo 1), foram seleccionadas

duas crianças infectadas por via perinatal (infecção aguda por VIH-2)

e um conjunto significativo de doentes com infecção crónica

apresentando diferentes graus de comprometimento imunológico e

clínico. Estes doentes foram seguidos durante um período de 3-4

anos, em média. A análise qualitativa dos anticorpos IgG e IgA anti-

VIH-2 baseou-se na medição da sua reactividade específica e avidez

para os dois antigénios do invólucro (rpC2-C3 e rgp36); o título e a

concentração de anticorpos no plasma constituíram os parâmetros

quantitativos analisados (Capítulo IV). A resposta neutralizante foi

investigada com anticorpos IgG purificados do plasma e vírus

autólogos e heterólogos isolados dos doentes (Capítulo VI). Todos os

isolados foram classificados quanto ao seu tropismo R5 ou X4 de

forma a permitir investigar também a associação entre neutralização

e tropismo na infecção VIH-2 (Objectivo 2).

O impacto dos anticorpos neutralizantes e não neutralizantes na

evolução molecular do VIH-2 (Objectivo 2) foi investigado a partir de

sequências clonais do Env (regiões C2, V3 e C3) dos isolados de um

subgrupo de doentes seguidos ao longo de alguns anos. Os

parâmetros analisados, seleccionados a partir de trabalhos análogos

efectuados no VIH-1, foram os seguintes: diversidade nucleotídica e

aminoacídica, taxa de evolução anual, grau de glicosilação, pressão

positiva, e dimensão e carga da região V3. Para este trabalho foram

utilizados métodos filogenéticos e moleculares previamente validados

em estudos efectuados em doentes infectados por VIH-1 (Capítulo V).

O último objectivo desta tese foi produzir e analisar a nível pré-

clínico o potencial neutralizante de novos imunogénios baseados no

Env do VIH-2. Neste trabalho pretendeu-se contribuir para tentar

ultrapassar o principal obstáculo à produção de uma vacina contra o

VIH: a inexistência de imunogénios capazes de induzir a produção de

anticorpos neutralizantes de largo espectro contra múltiplos

isolados. O isolado primário de referência VIH-2ALI (tropismo R5) foi

seleccionado para a partir dele se exprimir as glicoproteínas do

invólucro num vector vivo, o vírus da vacina. Com base em estudos

anteriores, o animal seleccionado para realizar os ensaios de

imunogenicidade foi o murganho Balb/C e a modalidade de

imunização o prime-boosting em que o prime foi efectuado com vírus

Page 77: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

45

da vacina a exprimir a gp125 do VIH-2ALI e o boost foi efectuado com

a proteína rpC2-C3, cuja elevada antigenicidade tinha sido

comprovada no Capítulo III. A resposta neutralizante gerada por

estes novos imunogénios irá ser analisada contra o extenso painel de

isolados virais VIH-2 obtidos nas primeiras fases deste trabalho

(Capítulo III) onde se incluíram isolados com tropismo R5 e X4.

Conforme previsto no Decreto-Lei 388/70, art. 8º, parágrafo 2, parte

integral dos resultados apresentados encontra-se publicada ou

submetida para publicação nos seguintes artigos:

José Maria Marcelino, Helena Barroso, Fátima Gonçalves, Sofia

Marques Silva, Carlos Novo, Perpétua Gomes, Ricardo Camacho, and

Nuno Taveira. Use of a New Dual-Antigen Enzyme-Linked

Immunosorbent Assay To Detect and Characterize the Human

Antibody Response to the Human Immunodeficiency Virus Type 2

Envelope gp125 and gp36 Glycoproteins. Journal of Clinical

Microbiology, 2006, 44: 607–611.

José Maria Marcelino, Charlotta Nilsson, Helena Barroso, Perpétua

Gomes, Pedro Borrego, Fernando Maltez, Lino Rosado, Manuela

Doroana, Francisco Antunes and Nuno Taveira. Envelope-specific

antibody response in HIV-2 infection: C2V3C3-specific IgG response

is associated with disease progression. AIDS, 2008, 22: 2257–2265.

Pedro Borrego, José Maria Marcelino, Cheila Rocha, Manuela

Doroana, Francisco Antunes, Fernando Maltez, Perpétua Gomes,

Carlos Novo, Helena Barroso and Nuno Taveira. The role of the

humoral immune response in the molecular evolution of the envelope

C2, V3 and C3 regions in chronically HIV-2 infected patients.

Retrovirology, 2008, 5:78.

José Maria Marcelino, Pedro Borrego, Charlotta Nilsson, Helena

Barroso, Manuela Doroana, Francisco Antunes, Carlos Novo, and

Nuno Taveira. Escape from neutralization is a frequent event in HIV-

2 infection and is strongly associated with X4 tropism. (Submitted).

José Maria Marcelino, Pedro Borrego, Cheila Rocha, Helena

Barroso, Alexandre Quintas, Carlos Novo and Nuno Taveira. Potent

and broadly reactive HIV-2 neutralizing antibodies elicited by a

Vaccinia virus vector-prime C2V3C3 polypeptide boost immunization

strategy. J Virol. 2010, 84: 12429-12436.

Page 78: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

46

Page 79: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

CAPÍTULO III

Teste de ELISA específico para o VIH-2

(ELISA-VIH2).

Page 80: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

48

Page 81: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

49

Desenvolvimento de um novo teste imunoenzimático

específico para o VIH-2 (ELISA-VIH-2)

Publicação: Use of a New Dual-Antigen Enzyme-Linked

Immunosorbent Assay To Detect and Characterize the

Human Antibody Response to the Human

Immunodeficiency Virus Type 2 Envelope gp125 and

gp36 Glycoproteins.

José Maria Marcelino, Helena Barroso, Fátima

Gonçalves, Sofia Marques Silva, Carlos Novo, Perpétua

Gomes, Ricardo Camacho, and Nuno Taveira.

Journal of Clinical Microbiology, 2006, 44: 607–611.

Sumário

Foi desenvolvido um novo teste imunoenzimático de duplo antigénio

específico para proteínas do invólucro do vírus da imunodeficiência

humana do tipo 2 (VIH-2), ELISA-VIH2, utilizando dois novos

polipeptídeos recombinantes, rpC2-C3 e rgp36, derivados do

invólucro do VIH-2. O desempenho do diagnóstico foi determinado

com amostras VIH-2, VIH-1, e VIH-1/2. Ambos os polipeptídeos

mostraram 100% de especificidade clínica. A sensibilidade clínica foi

de 100% para o rgp36 e 93,4% para o rpC2-C3. O teste ELISA-VIH2

pode ser útil para diagnosticar e confirmar a infecção pelo VIH-2.

Page 82: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

50

Page 83: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

51

Use of a New Dual-Antigen Enzyme-Linked Immunosorbent

Assay To Detect and Characterize the Human Antibody

Response to the Human Immunodeficiency Virus Type 2

Envelope gp125 and gp36 Glycoproteins.

ABSTRACT

A dual-antigen enzyme-linked immunosorbent assay specific for

human immunodeficiency virus type 2 (HIV-2) envelope proteins,

ELISA-HIV2, was developed with two new recombinant polypeptides,

rpC2-C3 and rgp36, derived from the HIV-2 envelope. The diagnostic

performance was determined with HIV-2, HIV-1, and HIV-1/2

samples. Both polypeptides showed 100% specificity. Clinical

sensitivity was 100% for rgp36 and 93.4% for rpC2-C3. ELISA-HIV2

may be used for the specific diagnosis and confirmation of HIV-2

infection.

Page 84: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

52

Page 85: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

53

Human immunodeficiency virus type 2 (HIV-2), the second AIDS

virus isolated from West African patients in 1985 (8), is now present

in all continents (20, 21, 23). The highest prevalence of HIV-2 in

West Africa is found in Guinea-Bissau, where prevalence rates of

between 5 and 10% of the adult urban population have been

reported (39). The highest prevalence of HIV-2 outside West Africa is

found in Portugal, where a prevalence rate of 3.4% has been reported

among AIDS cases (9).

Six immunogenic regions were identified in the HIV-2 envelope

glycoproteins: three in gp125 (amino acids 234 to 248 in C2, 296 to

337 in V3, and 472 to 507 in C5) and three in the gp36 ectodomain

(amino acids 573 to 595, 634 to 649, and 644 to 658) (11, 13, 18, 27,

30, 34, 40, 50). The gp36 ectodomain is highly conserved and elicits

a type-specific antibody response (13, 33). Hence, most licensed

diagnostic assays incorporate gp36-derived antigens to detect HIV-2-

specific antibodies (1, 4, 12, 28, 29, 38, 42, 45, 48). The sensitivity of

these assays to detect HIV-2 seroconversions has not been formally

tested. However, the sensitivity of several fourth-generation HIV1/2

assays was low with diluted HIV-2-positive samples (29), suggesting

that some screening assays may not detect low levels of HIV-2

antibodies (32). The reduced sensitivity of these kits may be caused

by inappropriate antigen selection and/or reduced antibody levels in

the HIV-2 patients (19, 26, 45).

It is important to differentiate between single infection with either

HIV-1 or HIV-2 and dual infection. Dual HIV-1 and HIV-2

seroreactivity is relatively frequent in countries where both HIV-1

and HIV-2 are endemic, such as Portugal (1.4%), Guinea-Bissau

(0.7%), Senegal (0.4%), and India (up to 2%) (9, 17, 24, 35). However,

the true rate of dual infections in these countries is generally

unknown. This is in part due to the lack of sensitive and specific

HIV-2 antibody tests. In fact, only two enzyme-linked

immunosorbent assays (ELISAs) of low specificity (92%) are currently

available for the diagnosis of HIV-2 infection, both of which use the

same viral lysate antigen (2, 7). Most often, reactivity with gp36- or

gp125-derived antigens (peptides or recombinant proteins)

incorporated into Western blot (WB) and immunoblot assays is used

to distinguish between HIV-2 and HIV-1 infections (41). However, the

sensitivity of these tests is generally low, and serological

crossreactivity between the HIV-1 and HIV-2 Env glycoproteins has

been described, which may complicate the final diagnosis (10, 37,

49).

In this study, we produced a new HIV-2 ELISA (ELISAHIV2) using

two new recombinant proteins, rgp36 and rpC2-C3, derived from the

reference primary isolate HIV-2ALI (44). Using pSK7.3 plasmid as a

Page 86: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

54

template, which contains the HIV-2ALI env gene (44), a PCR was

performed with primers Hepit 11 (5’-TTT AGATACTGTGCACC-3’) and

Hepit 12 (5’-TTAGTCCAC ATATATAC-3’) to obtain a C2-C3 env

fragment with 497 bp (positions 661 to 1157 in HIV-2 ALI env). The

thermal cycling conditions were as follows: denaturation at 94°C for

1 min, annealing 60°C for 1 min, and extension at 72°C for 1 min for

45 cycles. Another PCR was performed with primers Hepit 15 (5’-

GGCACGGCAGCTTTAACGC-3’) and Hepit 17 (5’-GTC

CCTGCAGTTATTTTTGTAGTTCATATG-3) to obtain a gp36 fragment

with 385 bp (positions 1578 to 1963 in HIV- 2ALI env). The thermal

cycling conditions were as follows: denaturation at 94°C for 1 min,

annealing at 65°C for 1 min, and extension at 72°C for 1 min for 40

cycles. The resulting fragments were cloned into the bacterial

expression vector pTrcHis (Invitrogen), generating recombinant

plasmids pTrcC2-C3 and pTrcgp36. The expression of both

recombinant polypeptides rpC2-C3 and rgp36 in Escherichia coli

strain TOP10 was induced with isopropyl--D-thiogalactopyranoside

following the instructions from the manufacturer. Purification of the

histidinated rgp36 and rpC2-C3 polypeptides was done using a fast

protein liquid chromatography system (Pharmacia). The purified

recombinant polypeptides were analyzed by sodium dodecyl sulfate-

12% polyacrylamide gel electrophoresis under reducing conditions to

determine the size of the fusion proteins. Quantification of the

purified proteins was done with the Bio-Rad protein assay. The

recombinant histidinated polypeptides rgp36 and rpC2-C3 were

purified to 95% homogeneity, and final concentrations of 7 and 3.4

mg/liter were obtained for rgp36 and rpC2-C3, respectively.

A microplate ELISA, ELISA-HIV2, was developed using rgp36 and

rpC2-C3 polypeptides as independent capture antigens. Polystyrene

immune module microwells (Maxisorp; Nalgen Nunc International)

were independently coated (100 l/well) with each recombinant

polypeptide at a concentration of 2.5 lg/ml in 0.05 M bicarbonate

buffer, pH 9.4, and incubated overnight at 4°C. After one wash with

0.01 M Tris and 0.15 M NaCl, pH 7.4 (TBS), microwells were blocked

with 1% gelatin (Bio-Rad) for 1 h and washed twice with TBS buffer.

One hundred milliliters of a 1/100 dilution of each HIV-positive and

negative plasma sample in TBS containing 0.05% Tween-20 (TBS-T),

0.1% gelatin, and 5% goat serum (Sigma-Aldrich) was added, and

this mixture was then incubated for 1 h at room temperature. After

five washes with TBS-T, a 1:2,000 dilution of goat anti-human

immunoglobulin G (Fc specific) conjugated to alkaline phosphatase

(Sigma-Aldrich) in TBS-T was added and incubated for 1 h at room

temperature. The color was developed using p-nitrophenylphosphate

Page 87: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

55

tablets (Sigma-Aldrich) as a chromogenic substrate, and the optical

density (OD) was measured with an automated LP 400 microplate

reader (Bio-Rad) at 405 nm against a reference wavelength of 620

nm. The clinical cutoff value of the assay, calculated as the mean OD

value of HIV-seronegative samples more 3 times the standard

deviation [SD], was determined using samples from healthy HIV-

seronegative subjects (n = 60). The results of the assay are expressed

quantitatively as ODclinical sample/ODcut-off (S/CO) ratios. For

ratio values of >1, the sample is considered seroreactive.

The clinical specificity of ELISA-HIV2 was evaluated against a panel

of plasma samples from healthy HIV-seronegative subjects. These

included samples from blood donors (n = 130) and from pregnant

women (n = 30). Two samples reacted weakly against rgp36 (mean

S/CO ratio, 1.21 [SD, 0.27]); eight samples reacted weakly against

rpC2-C3 (mean S/CO ratio, 1.18 [SD, 0.23]). Upon retesting in

duplicate, all samples gave negative results. Therefore, 100% clinical

specificity was obtained for both polypeptides. The 100% specificity

of the ELISA-HIV2 assay compares favorably to the specificity of the

two licensed HIV-2 serodiagnosis assays (<92%) (2, 7) and to the

specificity of most mixed HIV-1/HIV-2 assays (mean, 99%; range,

94.6% to 100% for assays based on recombinant proteins; mean,

98%; range 90.4% to 100% for assays based on synthetic peptides)

(1, 4, 5, 12, 14, 22, 28, 31, 38, 42, 43, 45, 48).

A panel of samples from 106 HIV-2-positive and 95 HIV-1-positive

patients was used to determine the clinical sensitivity of the ELISA-

HIV2 assay. HIV seropositivity was first determined by using the kit

VIDAS HIV DUO (Bio Merieux). Positive samples were subsequently

tested by Peptilav 1-2, an immunoblot assay containing a single

peptide antigen from the transmembrane glycoprotein of HIV-1 and

HIV-2. Depending on the Peptilav results, samples were further

tested by WB using the HIV-1 kit WB 2.2 and/or the HIV-2 kit New

LAV Blot II. Patients with samples reacting positive in HIV-1 and

HIV-2 Western blots were considered dually seroreactive. WB results

were considered positive when two Env bands with or without Gag

and/or Pol bands were present (16). WB results were considered

negative when no HIV-specific band was present and indeterminate

when any band pattern shown was not considered positive or

negative.

All 106 HIV-2 samples reacted with rgp36, and 99 (93.4%) samples

reacted also with rpC2-C3 (Fig. 1A and B). The 100% clinical

sensitivity and specificity obtained with rgp36 indicate that the

ELISA-HIV2 assay can be used in the serodiagnosis of HIV-2

infection. The mean S/CO ratio was significantly higher for the rgp36

antigen than that for rpC2-C3 (8.27 [SD, 1.49] versus 4.89 [SD,

Page 88: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

56

2.51]; P < 0.0001). These results suggest that the gp36 ectodomain is

the immunodominant antigenic region in the HIV-2 envelope and are

consistent with previous studies showing that recombinant gp36

proteins derived from several laboratory strains of HIV-2 are highly

immunogenic (18, 40, 50). Most commercial and homemade ELISAs

report similar sensitivities using substantially more sera per reaction

compared to our assay (50 to 200 l versus 1 l) (38, 43, 48).

However, several fourth-generation mixed HIV-1/2 assays performed

poorly with diluted (up to 1:1,000) HIV-2 samples, suggesting that

FIG. 1. Patterns of reactivity of HIV plasma samples with rgp36 and

rpC2-C3. Reactivity of HIV-1 and HIV-2 samples with rgp36 (A) and

rpC2-C3 (B). (C) Low (LR) and high (HR) rpC2-C3 responders. S/CO,

ODsample/ODcutoff ratio. Reactivity to rgp36 and rpC2-C3 is

indicated by open ( ) and black (■) squares, respectively. The

horizontal solid line represents the cutoff value; samples with S/CO

values of ≥1 are considered reactive. The dotted line represents the

lower S/CO value obtained with HIV-2 samples for rgp36. Student’s t

test was used to compare mean S/CO OD values obtained for both

antigens.

they may not detect the low levels of antibodies present at

seroconversion and early infection (29). The higher sensitivity of the

ELISA-HIV2 assay suggests that it may permit improved detection of

HIV-2 seroconversions and recent infections. Testing of longitudinal

Page 89: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

57

specimens from recently infected individuals would be needed to

support this claim. Such studies are, however, difficult to perform

due to the low incidence of HIV-2 infection (20).

The finding that 93.4% of the HIV-2 samples reacted also with the

rpC2-C3 polypeptide contrasts with the low immunoreactivity (below

81%) reported for recombinant proteins encoded by corresponding

sequences in HIV-2 strains SBL6669 (6), ROD (40), NIHZ (50), and

ST (18). One explanation for this discrepancy is that rpC2-C3 may

comprise epitopes which are more antigenic than the corresponding

regions in HIV-2 strains SBL6669, ROD, NIHZ, and ST, all of which

are laboratory- adapted isolates. Therefore, antibodies present in the

infected immune sera may recognize the HIV-2ALI antigen better.

HIV-2 patients could be clustered into high immune responders and

low immune responders according to the level of antibodies to rpC2-

C3 (Fig. 1C). Conflicting reports exist on the prognostic value of

gp120 antibody responses. Nevertheless, high gp120 binding

antibody titers were negatively correlated to immune functions and

viremia control in chronically HIV-1-infected patients (46). It will be

important to investigate the correlations between the titer of C2-C3

binding antibodies, viremia, and immune functions, including

neutralizing antibody response, in HIV-2 infection.

Antibodies to the envelope gp41 develop early in HIV-1 infection,

while antibodies to the V3 region of gp120 develop later in infection.

Therefore, the different antibody responses to rpC2-C3 may also be

due to the timing of infection (32, 36). Further testing of longitudinal

specimens from seroconverters will be needed to study the kinetics of

antibody responses to this envelope protein and to assess the

usefulness of this information to date the timing of HIV-2 infection.

All 95 HIV-1 samples analyzed with ELISA-HIV2 gave negative

results with rpC2-C3. Thirty-one (32.6%) samples crossreacted with

rgp36, but the reactivity was significantly weaker than that of HIV-2

samples (mean S/CO ratio, 2.42 [SD, 0.85] versus 8.27 [SD, 1.49]; P

≤ 0.0001) (Fig. 1A). These results suggested that the ELISA-HIV2

assay could be useful to discriminate between HIV-1 and HIV-2

infection in individuals with dual-positive serology. Seven HIV-1 and

HIV-2 dually reactive serum samples were analyzed by ELISA-HIV2

and PCR amplification of HIV gag and/or env genes. For PCR,

proviral DNA was extracted from uncultured peripheral blood

mononuclear cells with the Wizard genomic DNA purification kit

(Promega). For HIV-1, nested PCR was used to amplify a 409-bp

fragment from the C2-C3 env region, using outer primer pair JA167

and JA170 and inner primers JA168 and JA169, and a 582-bp

fragment from the p17 gag region, using outer primer pair JA152

and JA155 and inner primers JA153 and JA154. Thermal cycling

Page 90: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

58

conditions for PCR and primer numbers and positions have been

described previously (25). For HIV-2, nested PCR was used to amplify

a 378-bp fragment from the HIV-2 C2-C3 env gene region (positions

6949 to 7327 in HIV-2ALI) as described elsewhere (3). The amplified

PCR products were visualized by electrophoresis in 2% agarose gel.

For each patient, at least two independent PCRs were performed

under identical conditions. HIV-1 plasma viral load was determined

using the Quantiplex HIV RNA 3.0 (bDNA) kit (Bayer Diagnostics).

TABLE 1. Type of infection in dually HIV-1 and HIV-2 seroreactive

individuals determined with ELISA-HIV2 and PCR amplification.

The PCR and ELISA-HIV2 results indicated that none of the patients

was dually infected, four patients being infected with HIV-2 and

three with HIV-1 (Table 1). Therefore, the ELISA-HIV2 assay can be

used to discriminate between HIV-1 and HIV-2 infections in dually

seroreactive patients. In Portugal, the reported rate of dual HIV-

1/HIV-2 seropositivity is 1.4% but the true rate of dual infections is

unknown (9). The finding that none of the dually seroreactive

patients was dually infected suggests that dual HIV-1/HIV-2

infections are rare in Portugal. Earlier reports suggested that most

dually seropositive individuals from Guinea-Bissau (78 to 86%) (47),

Ivory Coast, and the Gambia (72%) (19) were indeed dually infected.

In more recent studies performed in India (22) and Senegal (15), a

40% rate of dual infections was reported among dually seroreactive

patients. Although the number of patients was small in all studies,

the declining prevalence of dual infections that they document is

consistent with the worldwide decreasing incidence and prevalence

rates of HIV-2 infection (9, 20). Reactivity against two envelope

Page 91: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

59

glycoproteins is the World Health Organization criterion used for the

WB confirmation of HIV infection (16).

TABLE 2- Diagnostic performance of ELISA-HIV2 with HIV-1

samples classified as indeterminate in HIV-2 Western blot (New LAV

Blot II).

To further investigate the reliability of ELISA-HIV2 as a confirmatory

test, we tested a panel of samples (n = 56) that were reactive in the

screening assay VIDAS HIV DUO and in the confirmatory assay New

LAV Blot II (51 positive and 5 indeterminate). All 51 WB-positive

samples reacted as HIV-2 samples in ELISA- HIV2, whereas the

indeterminate samples were HIV-2 negative in ELISA-HIV2 (Table 2).

Four indeterminate samples reacted as HIV-1 in the HIV-1 Western

blot and Peptilav 1-2. One indeterminate sample, which reacted also

as HIV-1 in WB, was dually HIV-1/HIV-2 seroreactive in Peptilav 1-2.

These results demonstrate that ELISA-HIV2 can be used as a

confirmatory assay for the serodiagnosis of HIV-2 infection.

In conclusion, the highly sensitive and specific ELISA-HIV2 is an

excellent alternative to the available tests for the serologic diagnosis

and confirmation of HIV-2 infection. The dual-antigen format

adopted in ELISA-HIV2 will permit the qualitative and quantitative

characterization of the antibody response to the envelope gp125 and

gp36 glycoproteins in HIV-2-infected patients.

This work was supported by grant POCTI/ESP/48045/2002 from

Fundação para a Ciência e Tecnologia (FCT), Portugal.

Page 92: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

60

References

1. Andersson, S., Z. da Silva, H. Norrgren, F. Dias, G. Biberfeld.

1997. Field evaluation of alternative testing strategies for diagnosis

and differentiation of HIV-1 and HIV-2 infections in an HIV-1 and

HIV-2-prevalent area. AIDS 11:1815-1822.

2. Azevedo-Pereira, J. M., M. H. Lourenço, F. Barin, R. Cisterna, F.

Denis, P. Moncharmont, R. Grillo and M. O. Santos-Ferreira. 1994.

Multicenter evaluation of a fully automated screening test, VIDAS

HIV 1+ 2, for antibodies to human Immunodeficiency virus types 1

and 2. J. Clin. Microbiol. 32:2559-2563.

3. Barroso, H., F. Araújo, M. H. Gomes, A. Mota-Miranda, N. Taveira.

2004. Phylogenetic demonstration of two cases of perinatal Human

Immunodeficiency Virus Type 2 infection diagnosed in adulthood.

AIDS Res. Hum. Retroviruses 20:1373-1376.

4. Beelaert, G., G. Vercauteren, K. Fransen, M. Mangelschots, M. De

Rooy, S. Garcia-Ribas, G. van der Groen. 2002. Comparative

evaluation of eight commercial enzyme linked immunosorbent assays

and 14 simple assays for detection of antibodies to HIV. J. Virol.

Methods 105:197-206.

5. Benitez, J., D. Palenzuela, J. Rivero, J. V. Gavilondo. 1998. A

recombinant protein based immunoassay for the combined detection

of antibodies to HIV-1, HIV-2 and HTLV-I. J. Virol. Methods 70:85-

91.

6. Bottiger, B., A. Karlsson, P. A. Andreasson, A. Naucler, C. M.

Costa, E. Norrby, G. Biberfeld. 1990. Envelope cross-reactivity

between human immunodeficiency virus types 1 and 2 detected by

different serological methods: correlation between cross-

neutralization and reactivity against the main neutralizing site. J.

Virol. 64:3492-3499.

7. Center for Disease Control. 1990. Current trends in surveillance

for HIV-2 infection in blood donors: United States, 1987-1989.

MMWR 39:829-831.

8. Clavel, F., D. Guetard, F. Brun-Vezinet, S. Chamaret, M. A. Rey,

M. O. Santos-Ferreira, A. G. Laurent, C. Dauguet, C. Katlama, C.

Rouzioux, D. Klatzman, J. L. Champalimaud, and L. Montagnier.

Page 93: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

61

1986. Isolation of a new human retrovirus from West African

patients with AIDS. Science 233:343-346.

9. Comissão Nacional de Luta Contra a Sida. 2004. A situação em

Portugal a 30 de Dezembro de 2004.Documento SIDA 133/CVEDT.

10. Decker, J. M., F. Bibollet-Ruche, X. Wei, S. Wang, D. N. Levy, W.

Wang, E. Delaporte, M. Peeters, C. A. Derdeyn, S. Allen, E. Hunter,

M. S. Saag, J. A. Hoxie, B. H. Hahn, P. D. Kwong, J. E. Robinson,

and G. M. Shaw. 2005. Antigenic conservation and immunogenicity

of the HIV coreceptor binding site. J.Exp.Med. 201:1407-1419.

11. de Wolf, F., R. H. Meloen, M. Bakker, F. Barin, J. Goudsmit.

1991. Characterization of human antibody-binding sites on the

external envelope glycoprotein of human immunodeficiency virus

type 2. J. Gen. Virol. 72:1261-1267.

12. Galli, R. A., S. Castriciano, M. Fearon, C. Major, K. W. Choi, J.

Mahony, M. Chernesky. 1997. Performance characteristics of

recombinant enzyme immunoassay to detect antibodies to human

immunodeficiency virus type 1 (HIV-1) and HIV-2 and to measure

early antibody responses in seroconverting patients. J. Clin.

Microbiol. 34:999-1002.

13. Gnann, J. W., J. B. McCormick, S. Mitchell, J. A. Nelson, M. B.

A. Oldstone. 1987. Synthetic peptide immunoassay distinguishes

HIV type 1 and HIV type 2 infections. Science 237:1346-1349.

14. Gonzalez, L., R. W. Boyle, M. Zhang, J. Castillo, S. Whittier, P.

Della-Latta, L. M. Clarke, J. R. George, X. Fang, J. G. Wang, B.

Hosein, C. Y. Wang. 1997. Synthetic-peptide-based enzyme-linked

immunosorbent assay for screening human serum or plasma for

antibodies to human immunodeficiency virus type 1 and type 2. Clin.

Diagn. Lab. Immunol. 4:598-603.

15. Gottlieb, G. S., P. S. Sow, S. E. Hawes, I. Ndoye, A. M. Coll-Seck,

M. E. Curlin, C. W. Critchlow, N. B. Kiviat, J. I. Mullins. 2003.

Molecular epidemiology of dual HIV-1/HIV-2 seropositive adults from

Senegal, West Africa. AIDS Res. Hum. Retroviruses 19:575-584.

16. Guèye-Ndiaye, A. 2002. Serodiagnosis of HIV Infection, p. 121-

138. In Max Essex, Souleymane Mboup, P. J. Kanki, R. G. Marlink,

and S. D. Tlou (ed.), AIDS in Africa, 2nd ed. Kluer Academic/Plenum

Publishers, New York.

Page 94: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

62

17. Holmgren, B., Z. da Silva, O. Larsen, P. Vastrup, S. Andersson,

P. Aaby. 2003. Dual infections with HIV-1, HIV-2 and HTLV-I are

more common in older women than in men in Guinea-Bissau. AIDS

17:241-253.

18. Huang, M. L., M. Essex, T. H. Lee. 1991. Localization of

immunogenic domains in the human immunodeficiency virus type 2

envelope. J. Virol. 65:5073-5079.

19. Ishikawa, K., K. Fransen, K. Ariyoshi, J. N. Nkengasong, W.

Janssens, L. Heyndrickx, H. Whittle, M. O. Diallo, P. D. Ghys, I. M.

Coulibaly, A. E. Greenberg, J. Piedade, W. Canas-Ferreira, G. van der

Groen. 1998. Improved detection of HIV-2 proviral DNA in dually

seroreactive individuals by PCR. AIDS 12:1419-1425.

20. Jaffar, S., A. D. Grant, J. Whitworth, P. G. Smith, and H.

Whittle. 2004. The natural history of HIV-1 and HIV-2 infections in

adults in Africa: a literature review. Bull.World Health Organ.

82:462-469.

21. Kanki, P. J., J-L. Sankalé and S. Mboup. 2002. Biology of

Human Immunodeficiency Virus Type 2 (HIV-2), p. 74-103. In Max

Essex, Souleymane Mboup, P. J. Kanki, R. G. Marlink, and S. D.

Tlou (ed.), AIDS in Africa, 2nd ed. Kluer Academic/Plenum

Publishers, New York.

22. Kannangai, R., S. Ramalingam, K. J. Prakash, O. C. Abraham,

R. George, R. C. Castillo, D. H. Schwartz, M. V. Jesudason, G.

Sridharan. 2001. A peptide enzyme linked immunosorbent assay

(ELISA) for the detection of human immunodeficiency virus type-2

(HIV-2) antibodies: an evaluation on polymerase chain reaction (PCR)

confirmed samples. J. Clin. Virol. 22:41-46.

23. Kulkarni, S., S. Tripathy, K. Agnihotri, N. Jatkar, S. Jadhav, W.

Umakanth, K. Dhande, P. Tondare, R. Gangakhedkar, R. Paranjape.

2005. Indian primary HIV-2 isolates and relationship between V3

genotype, biological phenotype and coreceptor usage. Virology

337:68-75.

24. Laurent, C., K. Seck, N. Coumba, T. Kane, N. Samb, A. Wade, F.

Liegeois, S. Mboup, I. Ndoye, E. Delaporte. 2003. Prevalence of HIV

and other sexually transmitted infections, and risk behaviours in

unregistered sex workers in Dakar, Senegal. AIDS 17:1811-1816.

Page 95: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

63

25. Leitner, T., D. Escanilla, S. Marquina, J. Wahlberg, C. Brostrom,

H. B. Hansson, M. Uhlen, J. Albert. 1995. Biological and molecular

characterization of subtype D, G, and A/D recombinant HIV-1

transmissions in Sweden. Virology 10:136-146.

26. Lizeng, Q., C. Nilsson, S. Sourial, S. Andersson, O. Larsen, P.

Aaby, M. Ehnlund, E. Bjorling. 2004. Potent neutralizing serum

immunoglobulin A (IgA) in human immunodeficiency virus type 2-

exposed IgG-seronegative individuals. J. Virol. 78:7016-7022.

27. Lizeng, Q., P. Skott, S. Sourial, C. Nilsson, S. Andersson, M.

Ehnlund, N. Taveira, E. Bjorling. 2003. Serum immunoglobulin A

(IgA)-mediated immunity in human immunodeficiency virus type 2

(HIV-2) infection. Virology 308:225-232.

28. Ly, T. D., S. Laperche, C. Brennan, A. Vallari, A. Ebel, J. Hunt,

L. Martin, D. Daghfal, G. Schochetman, S. Devare. 2004. Evaluation

of the sensitivity and specificity of six HIV combined p24 antigen and

antibody assays. J. Virol. Methods 122:185-194.

29. Ly, T. D., L. Martin, D. Daghfal, A. Sandridge, D. West, R.

Bristow, L. Chalouas, X. Qiu, S. C. Lou, J. C. Hunt, G. Schochetman,

S. G. Devare. 2001. Seven human immunodeficiency virus (HIV)

antigen-antibody combination assays: evaluation of HIV

seroconversion sensitivity and subtype detection. J. Clin. Microbiol.

39:3122-3128.

30. Mannervik, M., P. Putkonen, V. Ruden, K. A. Kent, E. Norrby, B.

Wahren, P. A. Broliden. 1992. Identification of B-cell antigenic sites

on HIV-2 gp125. AIDS 5:177-187.

31. Manocha, M., K. T. Chitralekha, M. Thakar, D. Shashikiran, R.

S. Paranjape, D. N. Rao. 2003. Comparing modified and plain peptide

linked enzyme immunosorbent assay (ELISA) for detection of human

immunodeficiency virus type-1 (HIV-1) and type-2 (HIV-2) antibodies.

Immunol. Lett. 85:275-278.

32. McDougal, J. S., C. D. Pilcher, B. S. Parekh, G. Gershy-Damet,

B. M. Branson, K. Marsh, S. Z.Wiktor. 2005. Surveillance for HIV-1

incidence using tests for recent infection in resource-constrained

countries. AIDS. Suppl 2:S25-30.

33. Norrby, E., G. Biberfeld, F. Chiodi, A. von Gegerfeldt, A. Naucler,

E. Parks, R. Lerner. 1987. Discrimination between antibodies to HIV

Page 96: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

64

and to related retroviruses using site-directed serology. Nature

329:248-250.

34. Norrby, E., P. Putkonen, B. Bottiger, G. Utter, G. Biberfeld.

1991. Comparison of linear antigenic sites in the envelope proteins of

human immunodeficiency virus (HIV) type 2 and type 1. AIDS Res.

Hum. Retroviruses 7:279-285.

35. Paranjape, R. S., S. P. Tripathy, P. A. Menon, S. M. Mehendale,

P. Khatavkar, D. R. Joshi, U. Patil, D. A. Gadkari, and J. J.

Rodrigues. 1997. Increasing trend of HIV seroprevalence among

pulmonary tuberculosis patients in Pune, India. Indian J. Med. Res.

106:207-211.

36. Pilcher, C. D., S. A. Fiscus, T. Q. Nguyen, E. Foust, L. Wolf, D.

Williams, R. Ashby, J. O. O'Dowd, J. T. McPherson, B. Stalzer, L.

Hightow, W. C. Miller, J. J. Eron, Jr., M. S. Cohen, P. A. Leone.

2005. Detection of acute infections during HIV testing in North

Carolina. N. Engl. J. Med. 352:1873-1883.

37. Robert-Guroff, M., K. Aldrich, R. Muldoon, T. L. Stern, G. P.

Bansal, T. J. Matthews, P. D. Markham, R. C. Gallo, G. Franchini,.

1992. Cross-neutralization of human immunodeficiency virus type 1

and 2 and simian immunodeficiency virus isolates. J. Virol. 66:3602-

3608.

38. Saville, R. D., N. T. Constantine, F. R. Cleghorn, N. Jack, C.

Bartholomew, J. Edwards, P. Gomez, W. A. Blattner. 2001. Fourth-

generation enzyme-linked immunosorbent assay for the

simultaneous detection of human immunodeficiency virus antigen

and antibody. J. Clin. Microbiol. 39:2518-2524.

39. Schim van der Loeff, M. F., P. Aaby. 1999. Towards a better

understanding of the epidemiology of HIV-2. AIDS 13:S69-84.

40. Schulz, T. F., W. Oberhuber, J. M. Hofbauer, P. Hengster, C.

Larcher, L. C. Gurtler, R. Tedder, H. Wachter, M. P. Dierich. 1989.

Recombinant peptides derived from the env-gene of HIV-2 in the

serodiagnosis of HIV-2 infections. AIDS 3:165-172.

41. Schupbach, J. 1999. Human immunodeficiency viruses, p. 847-

870. In Eds Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C.

Yolken, R. H. (ed), Manual of clinical microbiology, 7th ed. American

Society for Microbiology.

Page 97: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

65

42. Sickinger, E., M. Stieler, B. Kaufman, H. P. Kapprell, D. West, A.

Sandridge, S. Devare, G. Schochetman, J. C. Hunt, D. Daghfal;

AxSYM Clinical Study Group. 2004. Multicenter evaluation of a new,

automated enzyme-linked immunoassay for detection of human

immunodeficiency virus-specific antibodies and antigen. J. Clin.

Microbiol. 42:21-29.

43. Simon, F., S. Souquiere, F. Damond, A. Kfutwah, M. Makuwa, E.

Leroy, P. Rouquet, J. L. Berthier, J. Rigoulet, A. Lecu, P. T. Telfer, I.

Pandrea, J. C. Plantier, F. Barre-Sinoussi, P. Roques, M. C. Muller-

Trutwin, C. Apetrei. 2001. Synthetic peptide strategy for the

detection of and discrimination among highly divergent primate

lentiviruses. AIDS Res. Hum. Retroviruses 17:937-952.

44. Taveira, N. C., F. Bex, A. Burny, D. Robertson, M. O. Ferreira, J.

Moniz-Pereira. 1994. Molecular characterization of the env gene from

a non-syncytium-inducing HIV-2 isolate (HIV-2ALI). AIDS Res. Hum.

Retroviruses 10:223-224.

45. Thorstensson, R., S. Andersson, S. Lindback, F. Dias, F. Mhalu,

H. Gaines, G. Biberfeld. 1998. Evaluation of 14 commercial HIV-

1/HIV-2 antibody assays using serum panels of different

geographical origin and clinical stage including a unique

seroconversion panel. J. Virol. Methods 70:139-151.

46. Trkola, A., H. Kuster, C. Leemann, A. Oxenius, C. Fagard, H.

Furrer, M. Battegay, P. Vernazza, E. Bernasconi, R. Weber, B.

Hirschel, S. Bonhoeffer, and H. F. Gunthard. 2004. Humoral

immunity to HIV-1: kinetics of antibody responses in chronic

infection reflects capacity of immune system to improve viral set

point. Blood 104:1784-1792.

47. Walther-Jallow, L., S. Andersson, Z. da Silva, G. Biberfeld. 1999.

High concordance between polymerase chain reaction and antibody

testing of specimens from individuals dually infected with HIV types

1 and 2 in Guinea-Bissau, West Africa. AIDS Res. Hum. Retroviruses

15:957-962.

48. Weber, B., M. Moshtaghi-Boronjeni, M. Brunner, W. Preiser, M.

Breiner, H. W. Doerr. 1995. Evaluation of the reliability of 6 current

anti-HIV-1/HIV-2 enzyme immunoassays. J. Virol. Methods 55:97-

104.

Page 98: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

66

49. Weiss, R. A., P. R. Clapham, J. N. Weber, D. Whitby, R. S.

Tedder, T. O'Connor, S. Chamaret, L. Montagnier. 1998. HIV-2

antisera cross-neutralize HIV-1. AIDS 2:95-100.

50. Zuber, M., K. P. Samuel, J. A. Lautenberger, P. J. Kanki, T. S.

Papas. 1990. Bacterially produced HIV-2 env polypeptides specific for

distinguishing HIV-2 from HIV-1 infections. AIDS Res. Hum.

Retroviruses 6:525-534.

Page 99: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

CAPÍTULO IV

Resposta de anticorpos IgA e IgG

inespecíficos e específicos para as

glicoproteínas gp36 e gp125 do VIH-2.

Page 100: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

68

Page 101: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

69

Análise da Resposta IgA e IgG Inespecífica e

Caracterização da Cinética, Isotipo e Avidez dos

Anticorpos IgA e IgG Específicos das Glicoproteínas gp36 e

gp125 do VIH-2.

Publicação: Envelope-specific antibody response in HIV-2

infection: C2V3C3-specific IgG response is associated

with disease progression.

José Maria Marcelino, Charlotta Nilsson, Helena

Barroso, Perpétua Gomes, Pedro Borrego, Fernando

Maltez, Lino Rosado, Manuela Doroana, Francisco

Antunes and Nuno Taveira.

AIDS, 2008, 22: 2257 – 2265.

Sumário

Objectivos: Estudar as respostas IgA e IgG inespecíficas e

específicas do invólucro na infecção VIH-2 aguda e crónica.

Métodos: Foram estudados 28 indivíduos adultos com infecção VIH-

2 crónica e duas crianças infectadas via perinatal. As concentrações

totais de IgA e IgG no plasma foram determinadas por nefelometria.

A reactividade dos anticorpos IgA e IgG contra a região

imunodominante na gp36 e a região C2V3C3 na gp125 foi analisada

com o ensaio imunoenzimático, ELISA-VIH2. Obtiveram-se as

sequências clonais da região C2V3C3 do env da maioria dos

pacientes.

Resultados: A concentração total de IgG no plasma, ao contrário da

IgA, foi significativamente mais elevada nos pacientes VIH-2+ do que

nos indivíduos saudáveis, e revelou uma correlação inversa

relativamente às contagens de células T CD4+. A seroconversão

relativa à gp36 ocorreu durante o primeiro ano de vida em ambas as

crianças. A criança que apresentou uma rápida progressão da

doença não produziu anticorpos específicos contra a região C2V3C3.

A maioria dos pacientes cronicamente infectados produziu

anticorpos IgG1, IgG3 e IgA contra a gp36 e a C2V3C3. A ausência

de resposta IgG específica contra a C2V3C3 em dois pacientes

mostrou estar associada a uma alteração major na região V3. Através

de uma análise longitudinal, verificou-se a existência de uma

associação inversa significativa entre a resposta de anticorpos

específica para a C2V3C3 e a contagem de células T CD4+.

Page 102: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

70

Conclusão: O VIH-2 induz inicialmente uma forte e ampla resposta

de anticorpos IgG e IgA específicos para a C2V3C3 e gp36. O

aumento na resposta IgG contra a região C2V3C3 do invólucro está

associado a uma perda elevada de células T CD4 + nos pacientes

cronicamente infectados. Estes resultados fornecem um maior

suporte ao papel imune protector da região C2V3C3 do invólucro

durante a infecção VIH-2 e tem implicações directas no diagnóstico

do VIH-2, e na gestão clínica e na patogénese.

Page 103: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

71

Envelope-specific Antibody Response in HIV-2 Infection:

C2V3C3-specific IgG Response is Associated with Disease

Progression.

Abstract

Objective: To examine the unspecific and envelope-specific IgA and

IgG responses in acute and chronic HIV-2 infection.

Methods: Twenty-eight chronically infected adults and two children

with perinatal infection were studied. Total plasma concentrations of

IgA and IgG were determined by nephelometry. IgA and IgG reactivity

against the immunodominant region in gp36 and the C2V3C3 region

in gp125 was tested with the enzyme-linked immunosorbent assay

(ELISA)–HIV-2 assay. Clonal sequences of the C2V3C3 env region

were obtained for most patients.

Results: Total plasma IgG concentration, but not IgA, was

significantly higher than normal in HIV-2 patients and correlated

inversely with CD4+ T-cell counts. Seroconversion to gp36 occurred

during the first year of life in both infants. The infant with rapid

disease progression did not elicit C2V3C3-specific antibodies. Most

chronically infected patients produced plasma IgG1, IgG3 and IgA

antibodies against gp36 and C2V3C3. Lack of C2V3C3-specific IgG

response in two patients was associated with a major antigenic

change in the V3 region. In longitudinal analysis, there was a

significant inverse association between the C2V3C3-specific IgG

antibody response and the number of CD4+ T cells.

Conclusion: HIV-2 promotes an early, strong and broad gp36 and

C2V3C3-specific IgG and IgA response. Increase in the IgG response

against the envelope C2V3C3 region is associated with increased loss

of CD4+ T cells in chronically infected patients. These results provide

further support for the immune protective role of the C2V3C3

envelope region during HIV-2 infection and have direct implications

for HIV-2 diagnosis, clinical management and pathogenesis.

Page 104: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

72

Page 105: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

73

Introduction

HIV-2 causes localized infections in Western African countries,

mostly in Guinea-Bissau, Gambia and Senegal, and in a few other

countries with former colonial ties with these countries, including

Portugal and France. There is limited knowledge on the natural

history of HIV-2 infection because no study has investigated the full

course of infection from the time of seroconversion. The available

data indicate that the majority of HIV-2-infected individuals behave

like HIV-1 controllers (long-term nonprogressors and elite

suppressors) having normal CD4+ T-cell counts, low or absent

plasma viremia and absence of clinical disease [1,2]. Not

surprisingly, HIV-2 infection has a minor effect on survival in most

adults [3,4]. The low or absent plasma viremia in most HIV-2

patients [5–9] probably determines low HIV-2 heterosexual and

vertical transmission rates [10–12] and explains the declining

prevalence of HIV-2 infection worldwide [13,14].

The mechanisms underlying immune control of HIV-2 replication and

disease progression are still not fully understood. Robust

polyfunctional T-cell responses, mainly directed to the Gag protein,

have been recently associated with viremia control in HIV-2 infection

[15,16]. Lower capacity to infect dendritic cells [17], lower in-vitro

replication rates and replication kinetics in peripheral blood

lymphocytes [5] and macrophages [18], and lower replication rate in

vivo [9] have also been implicated in the lower plasma viremia and

pathogenesis of HIV-2 compared with HIV-1. Finally, compared with

HIV-1, HIV-2- infected individuals may have higher titers of IgG and

IgA neutralizing antibodies that may contribute for the better control

of viral replication in these patients [19–21].

Chronic immune activation is a characteristic of HIV disease

progression and an important driving force of HIV-1 and HIV-2

pathogenesis [22–27]. Immune activation provides the virus with

activated CD4 T-cell targets and it predicts disease progression

better than either the peripheral blood CD4 T-cell count or the viral

load in plasma [28–31]. A lower rate of CD4 and CD8 cells immune

activation and dysfunction has been described in HIV-2 patients with

normal CD4 cell counts compared with their HIV-1-infected

counterparts [1]. More recently, this has been associated with the

CD4 and CD8 cells immunosuppressive activity of the C2V3C3

envelope region [32].

Very few studies have been published on the nature and dynamics of

the antibody response against HIV-2. In general, the antibody

Page 106: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

74

response against the viral proteins in HIV-2 chronically infected

patients does not seem to be different from that of HIV-1 infection.

Indeed, the majority of HIV-2 patients produce IgG antibodies

against the structural proteins of the virus and this forms the basis

for their serologic diagnosis [33–35].

B-cell activation, however, may be less pronounced in chronic HIV-2

infection compared with HIV-1 infection. This has been suggested in

one study [36] in which total serum IgG concentration was

significantly higher in HIV-2-infected patients from Senegal

compared with uninfected controls but lower than in HIV-1 patients.

The magnitude and kinetics of the IgA and IgG-antibody response

against the envelope glycoproteins have so far not been investigated

in the course of HIV-2 infection.

Previously, we have used the new enzyme-linked immunosorbent

assay (ELISA)–HIV2 assay to show that the majority of HIV-2 patients

produce IgG antibodies against rpC2–C3 and rgp36, two recombinant

polypeptides representing the gp125 and gp36 envelope glycoproteins

[33]. We have also shown that HIV-2 patients could be divided into

high and low-immune responders according to the level of antibodies

produced against the C2–C3 envelope region suggesting that the

antibody response against this region could be a marker of clinical

condition. In the present study, we examine in detail, the magnitude

and dynamics of the unspecific and env-specific IgA and IgG

responses in chronic and acute HIV-2 infection.

Patients, samples and methods

We analyzed 30 HIV-2-infected patients from three hospitals in

Lisbon and 50 seronegative individuals (blood donors). Two patients

were children with perinatal HIV-2 infection. The characteristics of

the patients enrolled in the study are described in Table 1. Patients

were born in Portugal (16), Guinea Bissau (12), Cape Vert Islands (1)

and Mozambique (1). All patients are living in Lisbon for over a

decade.

HIV seropositivity was determined with VIDAS HIV DUO (Bio-

Mérieux, Lyon, France). HIV-1 and HIV-2 differentiation was done by

Western Blot 2.2 (Genelabs Diagnostics, Science Park, Singapore),

New LAV Blot II and Peptilav 1-2 (Bio-Rad, Hercules, California,

USA). HIV-2 infection in children was determined by virus isolation,

as described previously [37]. Ethical approval was obtained from

each hospital ethics committee and each participant or their parents,

in the case of the children, gave informed consent before entry into

the study.

Page 107: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

75

Table 1. Characteristics of the HIV-2-infected adults and children

included in this study.

Quantification of CD4R T cells, plasma virémia and IgA and IgG.

CD4+ T-cell counts were determined in total blood samples by flow

cytometric analysis using FACSCalibur (Becton Dickinson, Franklin

Lakes, New Jersey, USA). HIV-2 viremia in the plasma was quantified

with a quantitative-competitive reverse transcriptase-PCR assay as

described elsewhere [38]. IgA and IgG nephelometry Turbox kits

(Orion Diagnostica’s Turbox plus, Finland) were used to evaluate the

total concentrations of IgA and IgG in plasma, following the

manufacturer’s instructions.

IgA and IgG antibody reactivity against the HIV-2 antigens rgp36

and rpC2–C3. The location of the recombinant rpC2–C3 (165 amino

acids in gp125) and rgp36 (128 amino acids in the gp36 ectodomain)

polypeptides used in this work was described previously [33]. IgG

reactivity against rgp36 and rpC2–C3 was determined using the

ELISA-HIV-2 test also as described previously [33]. IgA reactivity was

determined with horseradish peroxidase (HRP)-conjugated rabbit

antihuman IgA. The clinical cutoff value of the assay was determined

using samples from healthy HIV-seronegative individuals. The results

of the assay are expressed quantitatively as optical density of the

clinical sample (ODcs)/optical density of the cutoff (ODco) ratios. For

ratio values above 1, the sample was considered as seroreactive.

Page 108: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

76

Rgp36 and rpC2–C3-specific antibodies in plasma were titrated with

the ELISA-HIV-2 test using six serial four-fold dilutions (initial

dilution of 1:100). Antibody titers were defined by linear regression

analysis as the higher antibody dilution giving a positive reaction.

IgG subclass reactivity against rgp36 and rpC2–C3. Reactivity of

the different IgG subclasses against rgp36 and rpC2–C3 was

determined with ELISA-HIV-2 test with the following modifications.

After incubation of plasma samples, HRP-conjugated sheep

antihuman IgG1, IgG2, IgG3 or IgG4 antibody (The Binding Site Ltd.,

Birmingham, UK) was added and incubated at room temperature.

The anti-IgG1 antibody was diluted at 1:6000 and the others at

1:3000.

Envelope glycoprotein-specific antibody avidity. The avidity index

values of rgp36 and rpC2–C3-specific IgG1 antibodies were

determined by measuring the resistance of IgG1–rgp36 or IgG1–

rpC2–C3 complexes to dissociation with 6 mol/l urea as previously

described [39]. ELISA-HIV2 test was used with the following

modifications. A 6 mol/l urea solution in phosphate buffered saline

(PBS) was added to duplicate wells incubated previously with HIV-2-

positive and negative samples. In control wells, PBS was added

instead of urea. After 10 min incubation, the wells were washed and

incubated with sheep antihuman IgG1 HRP-conjugated for 1 h. The

reaction was revealed with SIGMA FAST OPD solution (Sigma, St.

Louis, Missouri, USA) as described previously. The cutoff value for

this avidity test was calculated as the mean optical density value of

HIV-seronegative samples incubated with urea or PBS alone and

three times the SD. Sample/cutoff ratios were calculated and the

avidity index of HIV antibodies was then calculated as the following

ratio: (sample/cutoff ratio of the urea aliquot)/ (sample/cutoff ratio

of the PBS aliquot) [40].

DNA extraction, PCR amplification, cloning and sequencing.

Proviral DNA was extracted from peripheral blood mononuclear cells

(PBMCs) with the Wizard Genomic DNA Purification kit (Promega,

Madison, Wisconsin, USA). A fragment of the C2V3C3 region (394 bp)

of the HIV-2 env gene was amplified by PCR, cloned and sequenced

as described previously [41]. For each patient, an average of 13

clones was sequenced.

Statistical analysis. Statistical analyses were performed with

GraphPad Prism 4.02. Nonparametric tests were used to compare

means between variables: Mann–Whitney U-test was used to

Page 109: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

77

compare IgA and IgG antibody response against both polypeptides

and the correlation between antibody concentration, titer and avidity

to rgp36 and rpC2–C3 was determined using the Spearman rank

test. Deming linear regression was used to study the overall variation

(slopes) of dynamics of CD4 cells and IgG response against rpC2–C3

of each patient as a function of time (longitudinal analysis). All P

values are two tailed and P values below 0.05 were considered

significant.

Results

Total concentrations of plasma IgA and IgG in HIV-2 infection.

The total IgG and IgA plasma concentrations were determined in 50

healthy controls (blood donors) and 28 HIV-2-infected adult patients

Fig. 1. Total and envelope-specific antibody response in HIV-2

infection. (a) Correlation between CD4+ T-cell counts in peripheral

blood and total concentration of IgA and IgG in plasma of HIV-2-

infected patients; (b) level of IgA and IgG antibodies produced against

the polypeptides rgp36 and rpC2–C3; (c) reactivity of the four human

IgG subclasses (IgG1, IgG2, IgG3 and IgG4) against rgp36 and rpC2–

C3; (d) avidity index of rgp36 and rpC2–C3–IgG1-specific antibodies.

residing in Portugal showing different clinical, virologic and

epidemiologic features (Table 1). Total IgG plasma concentrations

were significantly higher in HIV-2 patients compared with uninfected

controls (mean 19.2 ± 6.3 vs. 10.1 ± 2.3 g/l, P<0.0001). Total IgA

concentrations were similar in HIV-2 patients and uninfected

Page 110: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

78

controls (mean 2.4 ± 1.1 vs. 2.1 ± 0.8 g/l, P = 0.1626). In HIV-2-

infected patients, total IgG concentration was negatively correlated to

the number of CD4+ T cells (r = -0.5829, P<0.0001) (Fig. 1a). No

association was found between the total IgA concentration and the

number of CD4+ T cells (r = 0.1392, P = 0.2540). Total IgA and IgG

concentrations were positively correlated in healthy individuals (r =

0.4132, P = 0.0039). In HIV-2 patients, there was no correlation

between the total IgA and IgG concentrations (r = -0.1927; P = 0.1).

IgG and IgA antibody response against the HIV-2 envelope

glycoproteins. The presence of envelope-specific IgG and IgA

antibodies was investigated in 28 HIV-2-infected patients by using

the ELISA-HIV-2 test [33]. With the exception of patient number 27

showing only IgG antibodies against rgp36 in two consecutive

samples, all patients had IgA antibodies binding to the recombinant

polypeptides rgp36 and rpC2–C3. IgG antibodies against rgp36 were

detected in all 28 patients; IgG antibodies against rpC2–C3 were

detected in 26 patients (Fig. 1b). The magnitude of the IgG response

was significantly higher against rgp36 than against rpC2–C3 (median

optical density/cutoff 16.09 for rpC2–C3 vs. 34.22 for rgp36,

P<0.0001).

The IgA response against both polypeptides was significantly lower

when compared with the IgG response (P<0.0001) (Fig. 1b). There

was, however, no significant difference in IgA reactivity against both

polypeptides (P = 0.3988). IgA and IgG antibody responses against

both polypeptides were not directly correlated (data not shown). The

level of reactivity of the different IgG subclasses produced against the

two polypeptides was also investigated (Fig. 1c). All patients had IgG1

antibodies binding to rgp36; 26 (92.8%) patients also produced IgG1

to rpC2–C3. The response against rgp36 was significantly stronger as

compared with rpC2–C3 (mean optical density/cutoff 29.24 for rgp36

vs. 16.14 for rpC2–C3, P<0.0001). Ten patients produced IgG2

against rgp36; six patients produced also IgG2 to rpC2–C3. However,

the antibody reactivity against both polypeptides was very weak

(mean optical density/cutoff 1.43 for rgp36 and 1.48 for rpC2–C3).

Twenty patients produced IgG3 antibodies against rgp36; only three

patients produced IgG3 against rpC2–C3. Similar to IgG1, IgG3

reactivity was stronger against rgp36 as compared with rpC2–C3

(mean optical density/cutoff 8.23 for rgp36 vs. 1.51 for rpC2–C3,

P<0.0001). IgG4 antibodies against rgp36 were detected in two

patients only (patient numbers 4 and 11).

Page 111: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

79

Correlation between antibody concentration, titer and avidity to

rgp36 and rpC2–C3. The titer (log10) of the IgG antibodies produced

against rpC2–C3 ranged from 3.08 to 4.32 and ranged from 3.65 to

5.45 to rgp36.

Fig. 2. Longitudinal analysis of anti-rpC2–C3 IgG response and

CD4+ T-cell counts in HIV-2-infected patients. Anti-C2–C3 antibody

response was plotted as a function of the number of CD4+ T cells in

patients with at least 500 CD4+ T cells/ml (a), patients with less

than 500 CD4+ T cells/ml (b); Deming regression analysis of the

dynamics of the C2–C3-specific IgG response and CD4+ T-cell counts

along the course of HIV-2 infection (c); comparison of the annual

variation (slopes) in the number of CD4+ T cells/ml in antiretroviral-

treated and untreated patients (Mann–Whitney test) (d). Dotted lines

indicate C2–C3-specific IgG level.

Significantly higher IgG antibody titers were obtained against rgp36

than rpC2–C3 (median titer 4.57 for rgp36 vs. 3.27 for rpC2–C3,

P<0.0001). There was a positive correlation between the antibody

titers against both polypeptides (r = 0.5641, P = 0.0027).

The avidity index of the IgG1 antibodies binding to rgp36 was

significantly higher as compared with rpC2–C3 (mean avidity index

0.96 for rgp36 vs. 0.89 for rpC2–C3; P = 0.0032) (Fig. 1d). The

relationship between IgG antibody titer, concentration and avidity

Page 112: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

80

was investigated. There was a strong positive correlation between

antibody titer and concentration for rpC2–C3 (r = 0.8779, P<0.0001)

and rgp36 (r = 0.4875, P = 0.0099). Antibody titer and avidity were

marginally associated only for rpC2–C3 (r = 0.3703, P = 0.0626).

Fig. 3. Kinetics of IgG antibody response against rgp36 and rpC2–C3

and CD4+ T-cell counts in two children infected by mother-to-child

transmission.

The antibody response against the HIV-2 Env C2–C3 region is a

sensitive marker of disease progression. The antibody response

against rpC2–C3 and rgp36 and the number of CD4+ T cells was

investigated prospectively for a period of 4 years in 16 adult HIV-2

patients (Table 1; Fig. 2a and b). There was a significant inverse

correlation between the dynamics of CD4 cell counts and IgG

response against rpC2–C3 over time (Deming regression analysis, F =

5.817; P = 0.0345) (Fig. 2c). No such correlation was found for the

IgG response against rgp36 (data not shown).

Antiretroviral therapy (ART) has a modest impact on CD4 cell

recovery in HIV-2 patients [42,43]. In the present study, ART also

had no significant impact in the within-patient annual variation of

the number of CD4+ T cells (ART patients, median variation = -21.24

CD4+ cells per year; range -187.0–50.26 vs. drug-naïve patients,

median = -11.58; range -49.61–83.50; Mann–Whitney test, P = 0.154)

(Fig. 2d). ART also did not impact the within-patient evolution of the

C2–C3-IgG response (data not shown).

The IgG response against the C2–C3 and rgp36 antigens was

measured retrospectively in two children with perinatal infection for

a mean period of 7.5 years (Fig. 3). Both children exhibited a rapid

decline in the number of CD4+ T cells and progressed rapidly to

AIDS, children C1 dying at the age of 8 years (Table 1) [44].

Page 113: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

81

Clinical condition of patient C2 remains stable up to this day with

undetectable viral load. In the first year of infection, the antibody

response against gp36 was in the same order of magnitude in both

patients, waning significantly only in patient C1 in association with a

sharp decline in the number of CD4+ T cells (Fig. 3a).

Antibody response against rpC2–C3 was always weak in patient C1

being almost undetectable at the time of death. Patient C2 produced

a strong antibody response against gp36 and C2–C3 in a setting of

significant decline in the number of CD4+ T cells (Fig. 3b).

Sequencing of the env C2V3C3 regions .Clonal sequences were

obtained from the env C2–C3 region of most patients. To try to find

an explanation for the absence of IgG antibodies binding to the

rpC2–C3 polypeptide in patient numbers 27 and 28, we compared

the C2–C3 amino acid sequence of these patients with those of the

other patients and of the HIV-2ALI isolate that was used to produce

the rpC2–C3 polypeptide [33] (Fig. 4).

Fig. 4. Alignment of the consensus C2V3C3 amino acid sequences of

patient numbers 27 and 28 with the reference HIV-2ALI sequence

and with a consensus sequence of all the remaining patients

included in this study. The polymorphisms found exclusively in

patient numbers 27 and 28 sequences are shown in bold letters.

Nine unique amino acid substitutions and one insertion were found

in the C2–C3 regions of patient numbers 27 and 28. These

polymorphisms occurred mostly (six out of 10) at the core of the V3

region.

Discussion

In this study, we examined, for the first time, the unspecific and

Env-specific IgA and IgG responses in acute and chronic HIV-2

infection. As previously found in Senegalese patients [36], total

serum IgG concentrations were significantly higher in chronic HIV-2

Page 114: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

82

adult patients than in uninfected controls. These results indicate

that, similar to chronic HIV-1 infection, unspecific B-cell activation

also occurs in chronic HIV-2 infection. Total IgG concentration

correlated inversely with CD4+ T-cell counts establishing, for the first

time, a link between CD4 cell loss and B-cell activation in HIV-2

infection. However, this is not a polyclonal activation as contrary to

HIV-1 infection in which the levels of all immunoglobulin isotypes are

increased in association with immunological and/or virological

failure [45,46], total IgA antibody production was not affected in our

patients. Importantly, as most IgA-producing B cells are activated in

intestinal lymphoid tissue [47], the normal production of total IgA

and HIV-specific IgA (see below) in HIV-2 infection suggests that the

gastrointestinal immune system is not as severely affected in HIV-2

as it is in HIV-1 infection [23,48].

The human antibody response against rpC2–C3 and rgp36, two

polypeptides representing the most antigenic regions of the HIV-2

gp125 and gp36 envelope glycoproteins, was analyzed in two infants

infected with HIV-2 by their mothers and in 28 chronically infected

adults. In both infants, seroconversion to gp36 occurred during the

first year of age but at different levels. For the infant who is still

controlling the infection (patient C2) antibody response to gp36 and

C2V3C3 rose to levels similar to those found in chronic patients,

even in a context of progressive CD4 cell count decline. In contrast,

de-novo production of anti-C2V3C3 antibodies did not occur in

infant C1 who progressed quickly to AIDS and death. Hence, these

results indicate that an early, strong and sustained antibody

response to C2V3C3 in gp125 is important to prevent progression to

AIDS and death. It is likely that patient C1 was infected in early

pregnancy and that this prevented the adequate development of the

immune system. The weakened antibody response may have

contributed significantly for the rapid evolution of the infecting virus

to a highly aggressive phenotype, which caused rapid immune

deficiency and death [44, 49, 50].

In two patients (number 27 and 28), we could not detect IgG

antibodies reacting with the rpC2–C3 polypeptide. A high number of

amino acid changes were detected in the C2–C3 region of these

patients compared with the other patients and with the rpC2–C3

antigen used in the ELISA-HIV2 assay. These occurred mostly at the

core of the V3 region, which is the principal antigenic determinant in

the HIV-2 surface glycoprotein [51]. Therefore, it is likely that the

type-specific antibodies produced against this divergent C2V3C3

region fail to recognize the particular rpC2–C3 antigen used in the

ELISA-HIV2 assay.

Page 115: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

83

All but one patient that exclusively produced antigp36 IgA, produced

IgA antibodies reacting with both the C2–C3 and gp36 polypeptides.

These findings are consistent with a healthy gastrointestinal immune

system in HIV-2 infection (see above) and signal an important

difference for HIV-1 infection as only 32–91% of HIV-1 patients

produce serum IgA antibodies against the gp41 and/or gp120

envelope glycoproteins, this being inversely related to the stage of

disease [45,52–54]. Our results confirm the strong IgA antigenicity of

the gp36 ectodomain in HIV-2 infection [20] and identify, for the first

time, the C2–C3 region as a strong inducer of serum IgA antibodies.

The finding that the C2–C3 region and the gp36 ectodomain contain

highly antigenic IgA epitopes and that these are different from the

IgG epitopes may inform the production of better HIV-2

serodiagnostic tests (e.g. rapid tests using mucosal samples).

IgG titers against rgp36 and rpC2–C3 were strongly correlated, which

indicates that in the native envelope glycoprotein complexes the

corresponding epitopes are presented in a similar way to the B

lymphocytes. Nonetheless, the IgG response was predominantly

directed to gp36 both qualitatively (avidity) and quantitatively (titer

and concentration). Gp36 also induces higher levels of all IgG

subclasses when compared with gp125. Together, these results

extend our previous observations providing definitive evidence for the

immunodominant role of the gp36 ectodomain in HIV-2 infection

[20,33].

We found that IgG1 is the predominant antibody subclass produced

against both HIV-2 envelope glycoproteins. However, unlike in HIV-1

infection, IgG3 and not IgG2 was the second most reactive subclass

to gp36 [55–59]. In HIV-1 infection, the inverse relationship between

gp41- specific IgG2 antibody levels and clinical progression to AIDS

suggests that this type of antibodies may be protective [55,56,59–61].

For HIV-2, such a protective effect could instead be attributed to

IgG1 or IgG3 [62]. We investigated this hypothesis in our longitudinal

adult cohort and could not find any association between IgG1 and

IgG3 response against the gp36 polypeptide and disease progression

measured by the loss of CD4+ T cells. Instead, we found a significant

inverse association between C2 and C3-specific IgG antibody

production and the number of CD4+ T cells. Importantly, this

association was also found in one pediatric patient with progressive

infection. How can the loss of CD4+ T cells be associated with the

IgG response against the C2V3C3 region? Cavaleiro et al. [32,63]

have recently demonstrated that the C2V3C3 region of the HIV-2

envelope exerts an immunosuppressive activity on the CD4 and CD8

cells and suggested that this may be associated with the low rate of

Page 116: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

84

immune activation and CD4 cell loss observed in most HIV-2

patients. In this context, increasing levels of anti-C2V3C3 antibodies

are expected to decrease the immunosuppressive function of this

region leading to higher immune activation and the associated CD4

cell loss. Overall, our results provide further support for the immune

protective function of the C2V3C3 envelope region during HIV-2

infection [32].

In agreement with most HIV-2 reports, we have shown here that

chronic HIV-2 infection usually courses without evidence for viral

replication in the plasma [9]. The number of CD4+ T cells is the only

available marker to monitor disease progression in these patients.

However, as shown here and elsewhere [9], HIV-2 patients may live

many years with low CD4+ T-cell counts without sign of disease

progression. Our results show that the anti-C2–C3 IgG response

adequately reflects the immunological and clinical progression in the

HIV-2 patients. We suggest, therefore, that antibody concentration

against the C2–C3 envelope region should be a useful marker to

monitor disease progression in HIV-2 infection.

Acknowledgements

The present work was supported by Fundação para a Ciência e

Tecnologia (project POCTI/ESP/48045). José Marcelino is the

recipient of a PhD scholarship from Fundação para a Ciência e

Tecnologia (FCT), Portugal. The Instituto Português do Sangue (IPS),

Portugal, is gratefully acknowledged for the provision of seronegative

plasma samples. We thank Luisa Papoila for statistical support.

J.M.M., C.N. and N.T. designed the study. J.M.M. performed all

antibody assays. H.B. and P.B. provided analytical reagents and

nucleotide sequences. F.M., L.R., F.A. and M.D. contributed clinical

data from the patients. P.G. performed the viral load assays. H.B.,

P.B., F.M., L.R., F.A., M.D. and P.G. assisted in data analysis.

J.M.M., C.N. and N.T. analyzed the data and wrote the paper.

References

1. Rowland-Jones S. Protective immunity against HIV infection:

lessons from HIV-2 infection. Future Microbiol 2006; 1:427– 433.

2. Rowland-Jones SL, Whittle HC. Out of Africa: what can we learn

from HIV-2 about protective immunity to HIV-1? Nat Immunol 2007;

8:329–331.

Page 117: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

85

3. Holmgren B, da Silva Z, Vastrup P, Larsen O, Andersson S, Ravn

H, et al. Mortality associated with HIV-1, HIV-2, and HTLV-I single

and dual infections in a middle-aged and older population in Guinea-

Bissau. Retrovirology 2007; 4:85.

4. Poulsen AG, Aaby P, Gottschau A, Kvinesdal BB, Dias F, Molbak

K, et al. HIV-2 infection in Bissau, West Africa, 1987–1989:

incidence, prevalences, and routes of transmission. J Acquir Immune

Defic Syndr 1993; 6:941–948.

5. Blaak H, van der Ende ME, Boers PH, Schuitemaker H, Osterhaus

AD. In vitro replication capacity of HIV-2 variants from long-term

aviremic individuals. Virology 2006; 353:144–154.

6. Arien KK, Abraha A, Quinones-Mateu ME, Kestens L, Vanham G,

Arts EJ. The replicative fitness of primary human immunodeficiency

virus type 1 (HIV-1) group M, HIV-1 group O, and HIV-2 isolates. J

Virol 2005; 79:8979–8990.

7. Soriano V, Gomes P, Heneine W, Holguin A, Doruana M, Antunes

R, et al. Human immunodeficiency virus type 2 (HIV-2) in Portugal:

clinical spectrum, circulating subtypes, virus isolation, and plasma

viral load. J Med Virol 2000; 61:111– 116.

8. Gueudin M, Damond F, Braun J, Taieb A, Lemee V, Plantier JC, et

al. Differences in proviral DNA load between HIV-1- and HIV-2-

infected patients. AIDS 2008; 22:211–215.

9. MacNeil A, Sarr AD, Sankale JL, Meloni ST, Mboup S, Kanki P.

Direct evidence of lower viral replication rates in vivo in human

immunodeficiency virus type 2 (HIV-2) infection than in HIV-1

infection. J Virol 2007; 81:5325–5330.

10. Kanki PJ, Travers KU, Mboup S, Hsieh CC, Marlink RG, Gueye-

Ndiaye A, et al. Slower heterosexual spread of HIV-2 than HIV-1.

Lancet 1994; 343:943–946.

11. Adjorlolo-Johnson G, De Cock KM, Ekpini E, Vetter KM, Sibailly

T, Brattegaard K, et al. Prospective comparison of mother-tochild

transmission of HIV-1 and HIV-2 in Abidjan, Ivory Coast. JAMA

1994; 272:462–466.

Page 118: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

86

12. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C,

Wabwire-Mangen F, et al. Viral load and heterosexual transmission

of human immunodeficiency virus type 1. Rakai Project Study

Group. N Engl J Med 2000; 342:921–929.

13. Mansson F, Alves A, Silva ZJ, Dias F, Andersson S, Biberfeld G,

et al. Trends of HIV-1 and HIV-2 prevalence among pregnant women

in Guinea-Bissau, West Africa: possible effect of the civil war 1998–

1999. Sex Transm Infect 2007; 83:463–467.

14. Marcelino JM, Novo C, Pereira JM, Picotez F, Clemente A, Taveira

N. Production and characterization of a mouse monoclonal antibody

against the Gag p26 protein of human immunodeficiency virus type

2: identification of a new antigenic epitope. AIDS Res Hum

Retroviruses 2001; 17:1279–1283.

15. Leligdowicz A, Yindom LM, Onyango C, Sarge-Njie R, Alabi A,

Cotten M, et al. Robust Gag-specific T cell responses characterize

viremia control in HIV-2 infection. J Clin Invest 2007; 117:3067–

3074.

16. Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ,

Whittle HC, et al. Polyfunctional T cell responses are a hallmark of

HIV-2 infection. Eur J Immunol 2008; 38:350–363.

17. Duvall MG, Lore K, Blaak H, Ambrozak DA, Adams WC, Santos

K, et al. Dendritic cells are less susceptible to human

immunodeficiency virus type 2 (HIV-2) infection than to HIV-1

infection. J Virol 2007; 81:13486–13498.

18. Marchant D, Neil SJ, McKnight A. Human immunodeficiency

virus types 1 and 2 have different replication kinetics in human

primary macrophage culture. J Gen Virol 2006; 87:411–418.

19. Rodriguez SK, Sarr AD, MacNeil A, Thakore-Meloni S, Gueye-

Ndiaye A, Traore I, et al. Comparison of heterologous neutralizing

antibody responses of human immunodeficiency virus type 1 (HIV-1)-

and HIV-2-infected Senegalese patients: distinct patterns of breadth

and magnitude distinguish HIV-1 and HIV-2 infections. J Virol 2007;

81:5331–5338.

20. Lizeng Q, Skott P, Sourial S, Nilsson C, Andersson SS, Ehnlund

M, et al. Serum immunoglobulin A (IgA)-mediated immunity in

Page 119: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

87

human immunodeficiency virus type 2 (HIV-2) infection. Virology

2003; 308:225–232.

21. Tamalet C, Simon F, Dhiver C, Matheron S, de Micco P, Gastao

JA, et al. Autologous neutralizing antibodies and viral load in HIV-2-

infected individuals. AIDS 1995; 9:90–91.

22. Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a

mucosal catastrophe? Nat Immunol 2006; 7:235–239.

23. Douek D. HIV disease progression: immune activation, microbes,

and a leaky gut. Top HIV Med 2007; 15:114–117.

24. Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z,

Victorino RM. CD4 T cell depletion is linked directly to immune

activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly

to the viral load. J Immunol 2002; 169:3400–3406.

25. Grossman Z, Meier-Schellersheim M, Paul WE, Picker LJ.

Pathogenesis of HIV infection: what the virus spares is as important

as what it destroys. Nat Med 2006; 12:289–295.

26. Hunt PW. Role of immune activation in HIV pathogenesis. Curr

HIV/AIDS Rep 2007; 4:42–47.

27. Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RM,

Paul WE. CD4RT-cell depletion in HIV infection: are we closer to

understanding the cause? Nat Med 2002; 8:319–323.

28. Deeks SG, Kitchen CM, Liu L, Guo H, Gascon R, Narvaez AB, et

al. Immune activation set point during early HIV infection predicts

subsequent CD4R T-cell changes independent of viral load. Blood

2004; 104:942–947.

29. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B,

Jacobson LP, et al. Shorter survival in advanced human

immunodeficiency virus type 1 infection is more closely associated

with T lymphocyte activation than with plasma virus burden or virus

chemokine coreceptor usage. J Infect Dis 1999; 179:859–870.

30. Hazenberg MD, Otto SA, van Benthem BH, Roos MT, Coutinh

RA, Lange JM, et al. Persistent immune activation in HIV-1 infection

is associated with progression to AIDS. AIDS 2003; 17:1881–1888.

Page 120: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

88

31. Choudhary SK, Vrisekoop N, Jansen CA, Otto SA, Schuitemaker

H, Miedema F, et al. Low immune activation despite high levels of

pathogenic human immunodeficiency virus type 1 results in long-

term asymptomatic disease. J Virol 2007; 81:8838–8842.

32. Cavaleiro R, Brunn GJ, Albuquerque AS, Victorino RM, Platt JL,

Sousa AE. Monocyte-mediated T cell suppression by HIV-2 envelope

proteins. Eur J Immunol 2007; 37:3435–3444. 33.

33. Marcelino JM, Barroso H, Goncalves F, Silva SM, Novo C, Gomes

P, et al. Use of a new dual-antigen enzyme-linked immunosorbent

assay to detect and characterize the human antibody response to the

human immunodeficiency virus type 2 envelope gp125 and gp36

glycoproteins. J Clin Microbiol 2006; 44:607–611.

34. Azevedo-Pereira JM, Lourenco MH, Barin F, Cisterna R, Denis F,

Moncharmont P, et al. Multicenter evaluation of a fully automated

screening test, VIDAS HIV 1 R 2, for antibodies to human

immunodeficiency virus types 1 and 2. J Clin Microbiol 1994;

32:2559–2563.

35. Clavel F, Mansinho K, Chamaret S, Guetard D, Favier V, Nina J,

et al.Human immunodeficiency virus type 2 infection associated with

AIDS in West Africa. N Engl J Med 1987; 316:1180–1185.

36. Michel P, Balde AT, Roussilhon C, Aribot G, Sarthou JL,

Gougeon ML. Reduced immune activation and T cell apoptosis in

human immunodeficiency virus type 2 compared with type 1:

correlation of T cell apoptosis with beta2 microglobulin concentration

and disease evolution. J Infect Dis 2000; 181:64–75.

37. Cavaco-Silva P, Taveira NC, Rosado L, Lourenco MH, Moniz-

Pereira J, Douglas NW, et al. Virological and molecular

demonstration of human immunodeficiency virus type 2 vertical

transmission. J Virol 1998; 72:3418–3422.

38. Gomes P, Taveira NC, Pereira JM, Antunes F, Ferreira MO,

Lourenco MH. Quantitation of human immunodeficiency virus type 2

DNA in peripheral blood mononuclear cells by using a quantitative-

competitive PCR assay. J Clin Microbiol 1999; 37:453–456.

39. Levett PN, Sonnenberg K, Sidaway F, Shead S, Niedrig M,

Steinhagen K, et al. Use of immunoglobulin G avidity assays for

Page 121: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

89

differentiation of primary from previous infections with West Nile

virus. J Clin Microbiol 2005; 43:5873–5875.

40. Martro E, Suligoi B, Gonzalez V, Bossi V, Esteve A, Mei J, et al.

Comparison of the avidity index method and the serologic testing

algorithm for recent human immunodeficiency virus (HIV)

seroconversion, two methods using a single serum sample for

identification of recent HIV infections. J Clin Microbiol 2005;

43:6197–6199.

41. Barroso H, Taveira N. Evidence for negative selective pressure in

HIV-2 evolution in vivo. Infect Genet Evol 2005; 5:239– 246.

42. Matheron S, Damond F, Benard A, Taieb A, Campa P, Peytavin

G, et al. CD4 cell recovery in treated HIV-2-infected adults is lower

than expected: results from the French ANRS CO5 HIV-2 cohort.

AIDS 2006; 20:459–462.

43. Drylewicz J, Matheron S, Lazaro E, Damond F, Bonnet F, Simon

F, et al. Comparison of viro-immunological marker changes between

HIV-1 and HIV-2-infected patients in France. AIDS 2008; 22:457–

468.

44. Cavaco-Silva P, Taveira NC, Lourenco MH, Santos Ferreira MO,

Daniels RS. Vertical transmission of HIV-2. Lancet 1997; 349:177–

178.

45. Cartry O, Moja P, Quesnel A, Pozzetto B, Lucht FR, Genin C.

Quantification of IgA and IgG and specificities of antibodies to viral

proteins in parotid saliva at different stages of HIV-1 infection. Clin

Exp Immunol 1997; 109:47–53.

46. Lugada ES, Mermin J, Asjo B, Kaharuza F, Downing R,

Langeland N, et al. Immunoglobulin levels amongst persons with and

without human immunodeficiency virus type 1 infection in Uganda

and Norway. Scand J Immunol 2004; 59:203– 208.

47. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner

H, Zinkernagel RM. A primitive T cell-independent mechanism of

intestinal mucosal IgA responses to commensal bacteria. Science

2000; 288:2222–2226.

Page 122: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

90

48. Gordon SN, Klatt NR, Bosinger SE, Brenchley JM, Milush JM,

Engram JC, et al. Severe depletion of mucosal CD4R T cells in AIDS-

free simian immunodeficiency virus-infected sooty mangabeys. J

Immunol 2007; 179:3026–3034.

49. Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution

of the neutralizing antibody response to HIV type 1 infection. Proc

Natl Acad Sci U S A 2003; 100:4144–4149.

50. Zhang ZQ, Casimiro DR, Schleif WA, Chen M, Citron M, Davies

ME, et al. Early depletion of proliferating B cells of germinal center in

rapidly progressive simian immunodeficiency virus infection. Virology

2007; 361:455–464.

51. Taveira NC, Ferreira MO, Pereira JM. Amplification of fulllength

HIV-2 envelope genes. Mol Cell Probes 1996; 10:91– 98.

52. Wu X, Jackson S. Plasma and salivary IgA subclasses and IgM in

HIV-1-infected individuals. J Clin Immunol 2002; 22:106– 115.

53. Raux M, Finkielsztejn L, Salmon-Ceron D, Bouchez H, Excler JL,

Dulioust E, et al. Comparison of the distribution of IgG and IgA

antibodies in serum and various mucosal fluids of HIV type 1-

infected subjects. AIDS Res Hum Retroviruses 1999; 15: 1365–1376.

54. Mestecky J, Jackson S, Moldoveanu Z, Nesbit LR, Kulhavy R,

Prince SJ, et al. Paucity of antigen-specific IgA responses in sera and

external secretions of HIV-type 1-infected individuals. AIDS Res Hum

Retroviruses 2004; 20:972–988.

55. Ngo-Giang-Huong N, Candotti D, Goubar A, Autran B, Maynart

M, Sicard D, et al. HIV type 1-specific IgG2 antibodies: markers of

helper T cell type 1 response and prognostic marker of

longtermnonprogression. AIDS Res Hum Retroviruses 2001;

17:1435–1446.

56. Chiodi F, Mathiesen T, Albert J, Parks E, Norrby E, Wahren B.

IgG subclass responses to a transmembrane protein (gp41) peptide

in HIV infection. J Immunol 1989; 142: 3809–3814.

57. Raux M, Finkielsztejn L, Salmon-Ceron D, Bouchez H, Excler JL,

Dulioust E, et al. IgG subclass distribution in serum and various

Page 123: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

91

mucosal fluids of HIV type 1-infected subjects. AIDS Res Hum

Retroviruses 2000; 16:583–594.

58. Wu X, Jackson S. Plasma and salivary IgG subclasses in HIV

type 1 infection: evidence of both transudation and local synthesis of

IgG in parotid saliva. AIDS Res Hum Retroviruses 2000; 16:1423–

1431.

59. Forthal DN, Landucci G, Bream J, Jacobson LP, Phan TB,

Montoya B. FcgammaRIIa genotype predicts progression of HIV

infection. J Immunol 2007; 179:7916–7923.

60. Lal RB, Heiba IM, Dhawan RR, Smith ES, Perine PL. IgG

subclass responses to human immunodeficiency virus-1 antigens:

lack of IgG2 response to gp41 correlates with clinical manifestation

of disease. Clin Immunol Immunopathol 1991; 58:267–277.

61. Martinez V, Costagliola D, Bonduelle O, N’go N, Schnuriger A,

Theodorou I, et al. Combination of HIV-1-specific CD4 Th1 cell

responses and IgG2 antibodies is the best predictor for persistence of

long-term nonprogression. J Infect Dis 2005; 191:2053–2063.

62. Scharf O, Golding H, King LR, Eller N, Frazier D, Golding B, et al.

Immunoglobulin G3 from polyclonal human immunodeficiency virus

(HIV) immune globulin is more potent than other subclasses in

neutralizing HIV type 1. J Virol 2001; 75:6558– 6565.

63. Cavaleiro R, Sousa AE, Loureiro A, Victorino RM. Marked

immunosuppressive effects of the HIV-2 envelope protein in spite of

the lower HIV-2 pathogenicity. AIDS 2000; 14:2679– 2686.

Page 124: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 125: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

93

CAPÍTULO V

Resposta Humoral na Evolução Molecular

das Regiões C2, V3 e C3 do Invólucro do

VIH-2 em Pacientes Crónicos

Page 126: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

94

Page 127: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

95

O Papel da Resposta Humoral na Evolução Molecular das

Regiões C2, V3 e C3 do Invólucro do VIH-2 em Pacientes

Cronicamente Infectados.

Publicação: The role of the humoral immune response in the

molecular evolution of the envelope C2, V3 and C3

regions in chronically HIV-2 infected patients.

Pedro Borrego, José Maria Marcelino, Cheila Rocha,

Manuela Doroana, Francisco Antunes, Fernando

Maltez, Perpétua Gomes, Carlos Novo, Helena Barroso

and Nuno Taveira.

Retrovirology, 2008, 5:78

Sumário

Introdução: Este estudo foi planeado para investigar, pela primeira

vez, a evolução molecular num curto período, as regiões C2, V3 e C3

do invólucro do VIH-2 e a sua associação com a resposta imune. A

partir de uma coorte de dezoito pacientes infectados com VIH-2,

seguidos prospectivamente ao longo de 2-4 anos, foram obtidas

sequências clonais da região C2V3C3 do env. Na região C2V3C3

foram analisadas a diversidade genética, divergência, selecção

positiva e glicosilação em função do número de células T CD4+ e da

reactividade dos anticorpos IgG e IgA contra a C2V3C3.

Resultados: A média da diversidade nucleotídica intra-hospedeiro foi

2,1% (DP, 1,1%), aumentando ao longo do curso da infecção na

maioria dos pacientes. A diversidade ao nível dos aminoácidos foi

significativamente mais baixa para a região V3 e mais elevada para a

região C2. A taxa média de divergência foi 0,014

substituições/local/ano, que é semelhante à que tem sido referida

para a infecção VIH-1 crónica. O número e posição dos locais

seleccionados positivamente foi muito variável, excepto para os

codões 267 e 270 na região C2 que estiveram sob uma pressão

selectiva forte e persistente na maioria dos pacientes. Os locais de

glicosilação ligados á asparagina (N-glicosilação) localizados na C2 e

na V3 mantiveram-se conservados em todos os pacientes ao longo do

curso da infecção. A variação intra-hospedeiro da resposta IgG

específica para a C2V3C3, ao longo do tempo, mostrou estar

inversamente associada à variação nos nucleótidos e diversidade dos

aminoácidos na região C2V3C3. A variação da resposta IgA específica

Page 128: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

96

para a C2V3C3 mostrou estar inversamente associada à variação no

número de locais N-glicosilação.

Conclusão: A dinâmica evolucionária do invólucro do VIH-2 durante

infecções avirémicas crónicas é semelhante à do VIH-1, o que implica

que o vírus deve estar em replicação activa nos compartimentos

celulares. A evolução convergente da N-glicosilação na C2 e V3, e a

diversificação limitada da V3, indicam que existem factores

funcionais importantes na potencial diversidade do invólucro do VIH-

2. Os anticorpos IgG específicos para a C2V3C3 são eficazes na

redução da dimensão da população viral limitando o número de vírus

mutantes com capacidade de escape. A região C3 parece ser um alvo

para os anticorpos IgA e a N-glicosilação elevada pode prevenir o

reconhecimento do invólucro do VIH-2 por parte destes anticorpos.

Os nossos resultados trazem novas reflexões sobre a biologia do VIH-

2 e a sua relação com o hospedeiro humano e podem ter importantes

implicações na concepção de uma vacina.

Page 129: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

97

The Role of the Humoral Immune Response in the

Molecular Evolution of the C2, V3 and C3 Regions in

Chronically HIV-2 Infected Patients

Abstract

Background: This study was designed to investigate, for the first

time, the short-term molecular evolution of the HIV-2 C2, V3 and C3

envelope regions and its association with the immune response.

Clonal sequences of the env C2V3C3 region were obtained from a

cohort of eighteen HIV-2 chronically infected patients followed

prospectively during 2–4 years. Genetic diversity, divergence, positive

selection and glycosylation in the C2V3C3 region were analysed as a

function of the number of CD4+ T cells and the anti-C2V3C3 IgG and

IgA antibody reactivity

Results: The mean intra-host nucleotide diversity was 2.1% (SD,

1.1%), increasing along the course of infection in most patients.

Diversity at the amino acid level was significantly lower for the V3

region and higher for the C2 region. The average divergence rate was

0.014 substitutions/site/year, which is similar to that reported in

chronic HIV-1 infection. The number and position of positively

selected sites was highly variable, except for codons 267 and 270 in

C2 that were under strong and persistent positive selection in most

patients. N-glycosylation sites located in C2 and V3 were conserved

in all patients along the course of infection. Intra-host variation of

C2V3C3-specific IgG response over time was inversely associated

with the variation in nucleotide and amino acid diversity of the

C2V3C3 region. Variation of the C2V3C3-specific IgA response was

inversely associated with variation in the number of N-glycosylation

sites.

Conclusion: The evolutionary dynamics of HIV-2 envelope during

chronic aviremic infection is similar to HIV-1 implying that the virus

should be actively replicating in cellular compartments. Convergent

evolution of N-glycosylation in C2 and V3, and the limited

diversification of V3, indicates that there are important functional

constraints to the potential diversity of the HIV-2 envelope. C2V3C3-

specific IgG antibodies are effective at reducing viral population size

limiting the number of virus escape mutants. The C3 region seems to

be a target for IgA antibodies and increasing N-linked glycosylation

may prevent HIV-2 envelope recognition by these antibodies. Our

results provide new insights into the biology of HIV-2 and its relation

Page 130: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

98

with the human host and may have important implications for

vaccine design.

Page 131: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

99

Background

The etiologic agents of AIDS, HIV-1 and HIV-2, are two distinct

human lentiviruses with similar structural and genomic organization

but sharing only 50% of genetic similarity [1]. Compared to HIV-1,

the infection by HIV-2 is associated with better prognosis, slower

disease progression and transmission, longer latency period and

reduced mortality rate [2-6]. Moreover, most HIV-2 patients have

normal CD4+ T cell counts and low or undetectable plasmatic viral

levels [7,8]. Two possible explanations for these differences may be

the slower replication capacity of HIV-2 and a more efficient immune

control of HIV-2 [9-13].

The env gene codes for the viral envelope glycoproteins, which are

responsible for HIV entry into cells [14]. Rapid evolutionary changes

and high genetic variability are two major characteristics of the HIV

env gene [15]. In HIV-1 infection, conflicting associations have been

reported between disease status and within-patient env gene

evolution. Hence, some studies have shown that genetic diversity and

divergence from the infecting strain increase during HIV-1 infection

but become stable or even decrease in the advanced stage of disease,

with the lower CD4+ T cell counts and progression to AIDS [16-18].

Other authors have shown that higher genetic diversity and

divergence are found in patients with rapid progression to disease

than in slow- or non-progressors [19,20]. There is also a positive

correlation between viral replication and intrahost HIV-1 evolution in

elite controllers and long-term nonprogressors [21].

The number of studies investigating within-patient HIV-2 molecular

evolution and their association with clinical and immunological

evolution is limited. In one transversal study, we have shown that

the genetic diversity of the HIV-2 env may be directly related to the

period of infection [22]. Longitudinal studies performed in Senegal

have shown that higher variability in the env V3 region is generally

found in patients with faster disease progression to AIDS [23] and

that in elite controllers (patients infected for ≈ 10 years with normal

CD4+ T cell counts without antiretroviral therapy and with low or

undetectable viral load) the rate of env gene diversification may be

positively associated with the rate of CD4+ T cell number decrease

[24].

Higher rate of molecular evolution, with predominance of

nonsynonymous amino acid substitutions, tends to occur in regions

of the HIV-1 env gene submitted to strong selective pressure from the

immune system [15,25-28]. A structure of particular importance in

this process is the V3 loop of the surface glycoprotein which is

essential for HIV coreceptor usage [29-32] and for inducing the

Page 132: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

100

production of neutralizing and nonneutralizing antibodies in HIV

infected individuals [33]. Neutralizing antibody responses, both

autologous [34-36] and heterologous [36,37] may be more common in

HIV-2 than in HIV-1 infection. Still, little is known about the role of

humoral immunity in the evolution of the HIV-2 env gene. In the

present study we analyze, for the first time, the molecular evolution

of the env C2V3C3 regions in chronically HIV-2 infected patients over

a two to four year period in the context of their antibody response

(IgG and IgA) against the same envelope region.

Methods

Patients. Eighteen HIV-2 patients attending different hospitals in

Lisbon, Portugal, were followed prospectively during 2–4 years (Table

1). Fourteen patients were taking reverse transcriptase and/or

protease inhibitors. During the follow-up period three patients

(PTHCC20, PTHSM9 and PTHSM10) had detectable plasma viral

load. Eight patients had < 200 CD4+ T cells/μl (AIDS defining

condition).

Quantification of HIV-2 plasma virémia. HIV-2 viremia in the

plasma was quantified with a quantitative-competitive RT-PCR assay

as described elsewhere [38].

DNA extraction, PCR amplification, cloning and sequencing.

PBMCs from all patients were co-cultivated with normal PBMCs to

try to isolate virus [39]. At the end of the culture period, which is

when the culture was positive (mean, 15 days), cells were harvested

and DNA was extracted with the Wizard® Genomic DNA Purification

kit (Promega) for subsequent analysis. A fragment of the C2V3C3

region (378 bp) of the HIV-2 env gene was amplified in a nested

Polymerase Chain Reaction (PCR) as described previously [22]. PCR

fragments were cloned into pCR®4-TOPO® vector (Invitrogen) and

transformed into One Shot® Match1™-T1R competent cells

(Invitrogen). Cloned plasmids were extracted [40], purified and

sequenced using BigDye Terminator Cycle sequencing kit (Applied

Biosystems), with M13 Forward and Reverse primers, and an

automated sequencer (ABI Prism 3100, Applied Biosystems). For

each patient an average of 13 clones (range 7–21) was sequenced per

sampling year.

Page 133: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

101

Table 1: Virological and immunological characterization of the

patients.

Sequence analysis and phylogenetic studies. The nucleotide

sequences were aligned using Clustal X [41] and manual

adjustments were made using Genedoc [42]. Genetic distances

between sequences were calculated using the maximum composite

likelihood method implemented in the MEGA version 4 [43]. Inter-

and intra-sample synonymous (dS) and nonsynonymous (dN)

distances were estimated using the modified Nei-Gojobory method

with the Jukes-Cantor correction, also implemented in the MEGA

software package.

Maximum likelihood analyses [44] were performed using the best-fit

model of molecular evolution estimated by Model test under the

Akaike information criterion [45]. The chosen model was TVM+G+I.

Tree searches were conducted in PAUP version 4.0 using the nearest-

neighbor interchange (NNI) and tree bisection and reconnection (TBR)

heuristic search strategies [46], and bootstrap resampling [47]. The

nucleotide divergence rate was estimated using an adaptation of the

methodology previously described by Salazar-Gonzalez et al. [48].

Firstly, maximum likelihood trees were constructed for each patient

Page 134: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

102

using all clonal sequences from each time point and rooted with the

consensus sequences from other patients. Then, assuming a

molecular clock, the branch lengths between the leafs and the root of

the tree were calculated by using Branchlength Calculator [49] and

plotted against time in years.

Natural selection of specific amino acids was examined using

Codeml, models M0 and M3, with the HYPHY package [50]. Potential

N-glycosylation sites were identified using N-Glycosite [51]. The

entropy at each position in protein alignment was measured with

Shannon Entropy [52].

Humoral antibody response against the env C2V3C3 regions. IgG

and IgA antibody response against the env C2V3C3 region was

quantified with the ELISA-HIV2 test developed in our laboratory, as

described elsewhere with some modifications [53]. Briefly, microtiter

plates (96-well) were coated with rgp36 and rpC2-C3 by overnight

incubation at 4°C and blocked with 1% gelatine in Tris-buffered

saline (TBS). HIV-2-positive plasma samples were added to the

antigen coated wells at a 1:100 dilution. Bound antibodies were

detected by using alkaline phosphatase (AP)-conjugated goat anti-

human IgG (diluted 1:2000 in TBS) or horseradish peroxidase (HPR)-

conjugated rabbit anti-human IgA (diluted 1:2000 in phosphate-

buffer saline) (Sigma-Aldrich). The colour was developed using p-

nitrophenilphosphate (p-NPP Tablets, Sigma-Aldrich) as chromogenic

substrate to AP and o-phenylenediamine dihydrochloride (OPD) to

HPR. Optical density (OD) was measured with an automated

microplate reader LP 400 (Bio-Rad) at 405 and 492 nm against a

reference wavelength of 620 nm. The clinical cut-off value of the

assay, calculated as the mean OD value of HIV-seronegative samples

plus three times the standard deviation [SD], was determined using

samples from healthy HIV-seronegative subjects. The results of the

assay are expressed quantitatively as ODclinical sample(S)/ODcut-

off (CO) ratios. For ratio values >1 the sample is considered as

seroreactive.

Statistical analysis. Statistical analysis was performed in GraphPad

Prism version 4.00 for Windows (GraphPad Software), with a level of

significance of 5%. For the inter-patient statistical analysis across

time, only information obtained from one time point (one sample) per

patient was considered in order to guarantee the independence of the

data analyzed. Thus, to maximize the number of observations in the

analysis, we chose the first sample (first time point) available for

each patient. Nonparametric tests were used to compare means and

Page 135: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

103

medians between variables: paired data was analyzed with Wilcoxon-

matched pairs test and Friedman test; unpaired variables were

tested with Mann Whitney U test and Kruskal-Wallis test. To study

how two variables varied together linear regression was performed

and Spearman correlation coefficients were computed. Finally,

Deming linear regression was used to study the overall variation

(slopes) of intra-patient data with time (longitudinal analysis).

GenBank accession numbers. Sequences have been assigned the

following GenBank accession numbers: EU358115–EU358499,

EU358501, EU358504, EU358507, EU358509, EU358513,

EU358517, EU358519–EU358521, EU358524, EU358525,

EU358527–EU358531, EU358533, EU358536–EU358538,

EU358541, EU358543, EU358546–EU358549, EU358551–

EU358567, EU360797–EU360799.

Results

Phylogenetic relationships, genetic diversity and divergence. To

investigate the molecular evolution of the HIV-2 env gene we have

amplified, cloned and sequenced the env gene fragment coding for

the C2, V3 and C3 regions using yearly samples collected from 18

patients followed prospectively for 2–4 years. A total of 431 clonal

sequences were obtained from 18 patients (average of 13 sequences

per patient per sampling year). Phylogenetic analysis showed that all

sequences clustered together within HIV-2 group A and that each

patient sequences formed monophyletic sub-clusters with high

bootstrap supporting values (Figure 1). Phylogenetic analysis also

showed that with the exceptions of patients PTHCC1, PTHCC5 and

PTHCC20, sequences from most patients were not segregated

according to sampling years, a clear indication that there were no

major shifts in virus population structure from one year to the other.

The mean evolutionary distance between different nucleotide

sequences from each sample/year (nucleotide diversity) was 2.1%

(standard deviation = 1.1) (additional file 1). Nucleotide diversity was

neither associated with clinical status (2.1% mean median genetic

distance in AIDS patients vs 1.4% in the other patients; p = 0.203)

nor with plasma viremia (2.3% in viremic patients vs 1.8% in

aviremic patients; p = 0.386) (n = 18).

Page 136: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

104

Figure 1. Maximum-likelihood phylogenetic analysis. The

phylogenetic tree was constructed with reference sequences from

HIV-2 groups A, B and G, under the TVM+G+I evolutionary model,

using the NNI heuristic search strategy and 1000 bootstrap

replications. The triangles represent the compressed subtrees

containing clonal sequences obtained from all samples collected for

each patient. The length of the triangle represents the intra-patient

nucleotide diversity and its thickness is proportional to the number

of sequences. The bootstrap values supporting the internal The scale

bar represents evolutionary distances in and higher for the C2 region

(p < 0.005) (additional file 1). The inset contains the subtrees of

patient PTHCC1 (A), PTHCC20 (B) and PTHCC5 C) (Yellow circle –

2003; green circle – 2004; blue circle – 2005).

Considering the first and the last samples of each patient, nucleotide

diversity increased along the course of infection in all patients,

Page 137: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

105

except for patient PTHCC5 (additional file 1). Shannon's entropy was

used to measure the relative amino acid variability in our set of

sequences [52]. The sum of entropy values of the amino acid

alignments varied between regions (p < 0.001), being significantly

lower for the V3 region (p < 0.001) and higher for the C2 region (p <

0.005) (additional file 1).

Within-patient nucleotide divergence rate was on average 0.014

substitutions per site per year for the C2V3C3 region, but it varied

widely between patients (SD = 0.011). There was no association

between the divergence rate and the variation in the number of CD4+

T cells over time (Deming regression analysis, F = 0.058, p = 0.816).

Likewise, the divergence rate of the C2V3C3 regions was not related

with the level of IgG antibodies produced against the homologous

peptide over time (F = 0.192, p = 0.675).

Selection analysis and adaptation rate of the C2, V3, and C3

regions. Intra-patient analysis showed that the overall C2V3C3

region was under purifying selection (dN/dS ratio < 1) along the

course of infection in all patients (additional file 1). Analysis of the

number and location of positively selected codons is useful to identify

particular amino acids that may be under the selective pressure of

the immune system, regions that can define potential neutralizing

epitopes or that are functionally important for the protein [15, 25-

28]. In the present study, higher number of sites under positive

selection tended to be found in patients with detectable viremia

compared to patients with undetectable viremia (median, 15 sites vs

2; p = 0.061) (n = 18) (additional file 1). Otherwise, the number of

positively selected sites was highly variable in number and position

in most patients (Figure 2). Notable exceptions were amino acids at

positions 267 and 270 in C2 (numbered according to the reference

HIV-2ALI strain) that were under strong positive selection in all

patients. Selection at these two sites persisted for at least two years

in 9 patients (Figure 2). Because of these two sites, the median

number of positively selected codons per sample was higher in the

C2 region compared with the other regions (p < 0.005) (n = 18).

Finally, using linear regression analysis we found that within each

patient an average of 1.0 (SD = 3.8) positively selected site varied per

year (adaptation rate).

Page 138: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

106

y,itensity and distribution of positively

Figure 2. Frequency, intensity and distribution of positively selected

sites in the C2, V3 and C3 regions along the course of HIV-2

infection. Positively selected codons (obtained with Codeml, model

M3) were classified in two categories according to the ω ratio:ω>6,

codons under strong selective pressure; 1<ω<6, codons under weak

selective pressure. The frequency and distribution of positively

selected sites in the C2, V3 and C3 regions are shown in each

infection year. Higher frequency positively selected sites are shown in

bold letters. Sites were numbered according to the reference HIV-

2ALI strain. (na, not available).

Glycosylation of the HIV-2 env C2-C3 region. Since the

glycosylation pattern of the HIV-1 env gene may influence

neutralization escape to the immune system, viral tropism and

clinical progression [32,36,54-57], we determined the number of

potential N-glycosylation sites in our sequences and examined its

variation as a function of time and other parameters analyzed in this

study. The number of N-glycosylation sites ranged from 5 to 8

(median, 7) and tended to be conserved along the infection in each

patient, the exception being patient PTHCC1 with an increase in two

sites over the three years of follow up (Figure 3). The number of

glycosylation sites varied significantly between C2, V3 and C3 (p <

0.001), being concentrated particularly in C2 (p < 0.001) (n = 18). At

the intra- and inter-patient level, the most conserved N-glycosylation

sites were located in C2 and V3. With one exception, all sites that

varied over time were located in C3. The number of N-linked

glycosylation sites was directly associated with the number of

positively selected sites (r2 = 0.301; p = 0.018).

Page 139: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

107

Figure 3. Frequency and distribution of potential N-glycosylation

sites in the C2, V3 and C3 regions along the course of infection. The

frequency and distribution of potential N-linked glycosylation sites in

the C2, V3 and C3 regions are shown in each infection year. Higher

frequency glycosylation sites are shown in bold letters. Sites were

numbered according to the reference HIV-2ALI strain. (na, not

available).

Molecular evolution of the C2, V3 and C3 regions as a function

of the antibody response. All patients produced IgA antibodies

against the C2V3C3 region whereas IgG antibodies were detected in

all but two patients, PTHSM9 and PTHSM10 (Table 1). Intrapatient

analysis revealed that along the course of the infection the variation

of C2V3C3-specific IgG response was inversely associated with the

variation of nucleotide diversity (F = 22.09; p = 0.002) as well as with

the dN rate (F = 22.800; p = 0.002) and amino acid diversity

(Shannon's entropy, F = 23.610; p = 0.002), particularly in the V3 (F

= 11.660; p = 0.014) and C3 regions (F = 6.214; p = 0.041) (n = 9)

(Figure 4).

Page 140: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

108

Figure 4. C2V3C3 sequence evolution along the course of infection

as a function of antibody response. Deming regression analysis. (A)

Annual variation (slope) of the C2V3C3-IgG response vs annual

variation (slope) of the mean nucleotide diversity; (B) Annual

variation (slope) of the C2V3C3-IgA response vs annual variation

(slope) of the number of potential N-glycosylation sites.

Variation of the C2V3C3-specific IgA response over time was

inversely associated with variation in the number of N-linked

glycosylation sites (F = 22.090; p = 0.042; n = 4) which occurred in

four patients particularly in the C3 region (Figure 4).evolution along

the course of infection as a function of antibody response

Discussion

In this study we have examined, for the first time, the molecular

evolution of the envelope C2, V3 and C3 regions during chronic HIV-

2 infection and its correlation with the antibody response against the

same regions. Our cohort was constituted by long-term infected

patients showing, in general, low CD4+ T cell counts and

undetectable plasma viremia.

Nucleotide diversity increased with time in all but one patient with

values similar to those obtained in an earlier study performed with

HIV-2 elite controllers (2.1%, this study, vs 1.7%; p = 0.3440) [24].

This value is also similar to the 2.5% median diversity reported for

chronically HIV-1 infected patients [58] and to the 3.0% mean

diversity reported for some long-term nonprogressors with low viral

load [21].

In phylogenetic analysis we found low quasispecies complexity in

most patients, i.e. virus populations from most patients were mostly

homogeneous during the follow up period. This was expected since

HIV-2 is generally seen as a slowly evolving virus and over a short

period of time one would expect to observe few evolutionary changes

[22,24,59]. However, in three patients there was evidence for

segregation of virus quasispecies according to the year of infection,

Page 141: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

109

which implies high rate of evolutionary change and immune selection

in these patients [15,60]. Consistent with this, we found that the

nucleotide divergence rate varied widely between patients. Moreover,

the average nucleotide divergence rate (0.014 substitutions per site

per year) was very high when compared to that reported for HIV-2

elite controllers (mean, 0.23%) [24] and for HIV-1 long-term non

progressors with low plasma viral load (mean, 0.27%) [21]. Even

though we could not detect any association between nucleotide

divergence and the number of CD4+ T cells, the higher net

divergence observed in our patients might be related to their high

immune deterioration, as higher genetic divergence is generally

found in HIV-1 rapid progressors compared to slow- or non-

progressors [19,20]. In fact, the 0.014 annual divergence rate found

in our patients is similar to that found in chronically HIV-1 infected

patients (between 1.0% and 1.5% per year) [17,58]. In conclusion,

the sampling schedule used in our study, and possibly the fact that

we have analyzed the virus present inside the cells and not in the

plasma, has enabled us to demonstrate that the evolutionary

dynamics of HIV-2 during chronic infection is surprisingly similar to

HIV-1. This implies that HIV-2 is actively replicating during chronic

infection, possibly in the lymphoid tissue, as in HIV-2 patients the

mononuclear cells in the lymph nodes are heavily infected, even

more than the mononuclear cells in the peripheral blood [61,62].

Future studies of HIV-2 nucleotide divergence should include also

the virus populations present in the lymphoid tissue and other

cellular compartments (e.g. GI tract).

Despite the high nucleotide divergence rate, most of the

substitutions were of a synonymous nature such that the dN/dS

ratio of the C2V3C3 region was always below one and, most

importantly, it decreased over time in most patients. These results

are in agreement with previous reports that have examined the

C2V3C3 region [22,24] and with the observation that, globally, the

HIV-2 env gene is under purifying selection [25]. Consistent with

previous studies of a cross-sectional nature, we found that C2 and

C3, but not V3, were the fastest evolving regions at the nucleotide

and amino acid level contributing significantly to the high within-

patient nucleotide divergence rate [22,63]. The conservation of the V3

region in vivo implies that in HIV-2, as in HIV-1, this region is

submitted to strong structural and conformational constraints which

are probably related to its crucial functional roles at the level of

coreceptor binding and cell entry [29-32].

It is probable that adaptation to immune pressure is the main driver

of the rapid intra-host evolution of the C2 and C3 regions in HIV-2

Page 142: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

110

[15,25,58,60,64-66]. Indeed, we found that most of the amino acids

under selection are located in C2, including the two amino acids that

are under strongest positive selection in all patients (positions 267

and 270). Moreover, selection at these two sites persisted for at least

two years in the majority of the patients which is a clear indication

that they are under continued immune pressure in vivo [60,67]. The

equivalent amino acids in HIV-1 are not under positive selection [67],

are located in the hidden surface of envelope glycoprotein complex

[58] and define a cytotoxic T cell epitope [68]. Thus, our results also

suggest that the antigenic presentation of the C2, and perhaps the

C3 region (see below), in the envelope complex of HIV-2 differs

substantially from that of HIV-1.

Glycans on HIV-1 envelope protein play an important role in the

folding of the glycoproteins, in infection and in evasion from the host

immune response (reviewed in [69]). We found that, as for HIV-1

[51,58], the majority of potential N-glycosylation sites were

concentrated in the C2 region. The four N-glycosylation sites in C2

and the site in the beginning of V3 were highly conserved in all

patients throughout infection which is strongly indicative of

convergent evolution at these glycosylation hotspots and suggests an

unexpected constraint on the potential diversity of the HIV-2

envelope [70,71]. The convergent evolution of glycosylation sites may

have important implications for both vaccine design and antiviral

therapeutic [69].

To try to identify the immune correlates of the molecular evolution of

HIV-2 C2, V3 and C3 regions we have looked into all possible

associations between the number of CD4+ T cells or the IgA and IgG

antibody levels and different parameters that reflect viral molecular

evolution. In longitudinal analysis there was no significant

association between the number of CD4+ T cells and nucleotide

diversity, amino acid entropy, nucleotide divergence, dN/dS ratio and

number of positively selected sites. These results are in partial

contrast to those of MacNeil et al. [24], who found a direct

association between the rates of HIV-2 diversification and rates of

CD4+ T cell decline in long term non progressors followed for a

decade in Senegal. The short term follow-up and the associated

modest variation in the number of CD4 + T cells might have

prevented the detection of this type of association in our patients.

Strikingly, however, there was a close relationship between virus

diversification and evolution and C2V3C3-specific antibody response

over time. In fact, higher IgG response was significantly associated

with lower viral variability at the nucleotide and amino acid levels as

well as with lower frequency of nonsynonymous substitutions. These

Page 143: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

111

results imply that the anti-C2V3C3 IgG antibodies are effective at

reducing viral population size limiting the number of virus escape

mutants [72]. This is in striking contrast to the majority of acute and

chronic HIV-1 infections where the virus quickly escapes from anti-

V3 and anti-C3 autologous neutralizing antibodies [33,73-76].

Consistent with the lower capacity of HIV-2 to escape from C2V3C3-

neutralizing antibodies when compared to HIV-1, we found that on

average HIV-2 has a five-fold lower adaptation rate in vivo than HIV-1

(1 positively selected site per year vs 5 sites per year) [60,77]. The

HIV-2 low adaptation rate may be related to its low replicative

capacity and low plasma viral load [12,13,78]. Overall, these results

provide support for a crucial role of neutralizing antibody response in

the effective containment of viral replication in HIV-2 infection in vivo

[36].

Surprisingly, in some patients addition of glycans to the C3 region

was associated with a reduction in the IgA immunogenicity of the

C2V3C3 region. Envelope-specific plasma IgA antibodies, mostly

binding to the gp36 transmembrane glycoprotein, have been found to

neutralize HIV-2 [79]. Increasing the number of N-glycans in the

envelope gp120 surface glycoprotein, or varying the position of

glycosylation sites, has been associated with escape from IgG

neutralizing antibody response in simian immunodeficiency virus

(SIV) and HIV-1 infection [57,80-82]. Hence, one plausible

explanation for the inverse association between IgA response and N-

glycosylation is that the C3 envelope region induces IgA neutralizing

antibodies to which HIV-2 escapes through the occlusion of the C3

region with N-linked glycans. This may have important implications

for vaccine design. Ongoing studies will determine whether C2V3C3-

specific IgA antibodies present in these patients effectively neutralize

their autologous virus.

Conclusion

The evolutionary dynamics of HIV-2 envelope during chronic and

highly suppressed infection is surprisingly similar to HIV-1 implying

that the virus is actively replicating in cellular compartments.

Convergent evolution of N-glycosylation in C2 and V3, as well as the

limited diversification of V3, indicates however that there are

important functional constraints to the potential diversity of the HIV-

2 envelope. HIV-2 envelope diversification is inversely related to the

C2V3C3-specific IgG antibody response over time implying that these

antibodies are effective at reducing viral population size, limiting the

number of virus escape mutants. The C3 region seems to be a target

for IgA antibodies and increasing N-linked glycosylation may prevent

Page 144: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

112

HIV-2 envelope recognition by these antibodies. Our results provide

new insights into the biology of HIV-2 and its relation with the

human host and may have important implications for vaccine design.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

NT designed and coordinated the study. PB performed most of the

cloning and sequencing experiments. JMM isolated the viruses and

quantified the antibody responses. HB and CR participated in virus

isolation and in the sequencing analysis of some patients. MD, FA

and FM recruited the patients and were responsible for collecting the

blood samples and the clinical data. PG quantified the plasma

viremia. CN and PG helped with the interpretation of data and

revision of the manuscript. PB and NT preformed statistical analysis.

PB and NT interpreted the data and wrote the manuscript. All

authors reviewed and accepted the final manuscript.

Additional material file 1

Table 2. Results from sequence and phylogenetic analysis. adN/dS –

ratio of nonsynonymous and synonymous substitutions, obtained with

Codeml (model M0). bdN/dS – ratio of nonsynonymous and

synonymous substitutions between the first and the last time point,

obtained with Codeml (model M0), when applicable. c Sum of

Shannon's entropy values at each position in protein alignment. d

Number of positively selected codons in the nucleotide alignment,

obtained with Codeml (model M3). SD – Standard deviation. Click here

for file

http://www.biomedcentral.com/content/supplementary/1 42-4690-

5-78-S1.xls]

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia

(project POCTI/ESP/48045). Pedro Borrego is supported by a PhD

grant from Fundação para a Ciência e Tecnologia.

References

1. Hu DJ, Dondero TJ, Rayfield MA, George JR, Schochetman G,

Jaffe HW, Luo CC, Kalish ML, Weniger BG, Pau CP, et al.: The

emerging genetic diversity of HIV. The importance of global

Page 145: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

113

surveillance for diagnostics, research, and prevention. JAMA 1996,

275:210-216.

2. Andersson S, Norrgren H, da Silva Z, Biague A, Bamba S, Kwok S,

Christopherson C, Biberfeld G, Albert J: Plasma viral load in HIV-1

and HIV-2 singly and dually infected individuals in Guinea-Bissau,

West Africa: significantly lower plasma virus set point in HIV-2

infection than in HIV-1 infection. Arch Intern Med 2000, 160:3286-

3293.

3. Kanki PJ, Travers KU, S MB, Hsieh CC, Marlink RG, Gueye NA,

Siby T, Thior I, Hernandez-Avila M, Sankale JL, et al.: Slower

heterosexual spread of HIV-2 than HIV-1. Lancet 1994, 343:943-946.

4. Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I,

Hsieh CC, Dia MC, Gueye EH, et al.: Reduced rate of disease

development after HIV-2 infection as compared to HIV-1. Science

1994, 265:1587-1590.

5. Whittle H, Morris J, Todd J, Corrah T, Sabally S, Bangali J, Ngom

PT, Rolfe M, Wilkins A: HIV-2-infected patients survive longer than

HIV-1-infected patients. AIDS 1994, 8:1617-1620.

6. Reeves JD, Doms RW: Human immunodeficiency virus type 2. J

Gen Virol 2002, 83:1253-1265.

7. Berry N, Ariyoshi K, Jaffar S, Sabally S, Corrah T, Tedder R,

Whittle H: Low peripheral blood viral HIV-2 RNA in individuals with

high CD4 percentage differentiates HIV-2 from HIV-1 infection. J

Hum Virol 1998, 1:457-468.

8. Soares R, Foxall R, Albuquerque A, Cortesao C, Garcia M,

Victorino RM, Sousa AE: Increased frequency of circulating CCR5+

CD4+ T cells in human immunodeficiency virus type 2 infection. J

Virol 2006, 80:12425-12429.

9. Anderson DE, Llenado RA, Torres JV: Humoral immunity and the

evolution of HIV-2. Viral Immunol 2004, 17:436-439.

10. Berry N, Jaffar S, Schim van der Loeff M, Ariyoshi K, Harding E,

N'Gom PT, Dias F, Wilkins A, Ricard D, Aaby P, et al.: Low level

viremia and high CD4% predict normal survival in a cohort of HIV

Page 146: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

114

type-2-infected villagers. AIDS Res Hum Retroviruses 2002, 18:1167-

1173.

11. Lizeng Q, Nilsson C, Sourial S, Andersson S, Larsen O, Aaby P,

Ehnlund M, Bjorling E: Potent neutralizing serum immunoglobulin A

(IgA) in human immunodeficiency virus type 2-exposed IgG-

seronegative individuals. J Virol 2004, 78:7016-7022.

12. MacNeil A, Sarr AD, Sankale JL, Meloni ST, Mboup S, Kanki P:

Direct evidence of lower viral replication rates in vivo in human

immunodeficiency virus type 2 (HIV-2) infection than in HIV-1

infection. J Virol 2007, 81:5325-5330.

13. Blaak H, Ende ME van der, Boers PH, Schuitemaker H,

Osterhaus AD: In vitro replication capacity of HIV-2 variants from

longterm aviremic individuals. Virology 2006, 353:144-154.

14. Levy JA: HIV and the pathogenesis of AIDS 2nd edition.

Washington, D.C.: ASM Press; 1998.

15. Lemey P, Rambaut A, Pybus OG: HIV evolutionary dynamics

within and among hosts. AIDS Rev 2006, 8:125-140.

16. Delwart EL, Pan H, Sheppard HW, Wolpert D, Neumann AU,

Korber B, Mullins JI: Slower evolution of human immunodeficiency

virus type 1 quasispecies during progression to AIDS. J Virol 1997,

71:7498-7508.

17. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch

D, Farzadegan H, Gupta P, Rinaldo CR, Learn GH, He X, et al.:

Consistent viral evolutionary changes associated with the

progression of human immunodeficiency virus type 1 infection. J

Virol 1999, 73:10489-10502.

18. Williamson S, Perry SM, Bustamante CD, Orive ME, Stearns MN,

Kelly JK: A statistical characterization of consistent patterns of

human immunodeficiency virus evolution within infected patients.

Mol Biol Evol 2005, 22:456-468.

19. Castiglione F, Poccia F, D'Offizi G, Bernaschi M: Mutation,

fitness, viral diversity, and predictive markers of disease progression

in a computational model of HIV type 1 infection. AIDS Res Hum

Retroviruses 2004, 20:1314-1323.

Page 147: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

115

20. Markham RB, Wang WC, Weisstein AE, Wang Z, Munoz A,

Templeton A, Margolick J, Vlahov D, Quinn T, Farzadegan H, Yu XF:

Patterns of HIV-1 evolution in individuals with differing rates of CD4

T cell decline. Proc Natl Acad Sci USA 1998, 95:12568-12573.

21. Bello G, Casado C, Sandonis V, Alvaro-Cifuentes T, Dos Santos

CA, Garcia S, Rodriguez C, Del Romero J, Pilotto JH, Grinsztejn B, et

al.: Plasma viral load threshold for sustaining intrahost HIV type 1

evolution. AIDS Res Hum Retroviruses 2007, 23:1242-1250.

22. Barroso H, Taveira N: Evidence for negative selective pressure in

HIV-2 evolution in vivo. Infect Genet Evol 2005, 5:239-246.

23. Sankale JL, de la Tour RS, Renjifo B, Siby T, Mboup S, Marlink

RG, Essex ME, Kanki PJ: Intrapatient variability of the human

immunodeficiency virus type 2 envelope V3 loop. AIDS Res Hum

Retroviruses 1995, 11:617-623.

24. MacNeil A, Sankale JL, Meloni ST, Sarr AD, Mboup S, Kanki P:

Longterm intrapatient viral evolution during HIV-2 infection. J Infect

Dis 2007, 195:726-733.

25. Choisy M, Woelk CH, Guegan JF, Robertson DL: Comparative

study of adaptive molecular evolution in different human

immunodeficiency virus groups and subtypes. J Virol 2004, 78:1962-

1970.

26. Mikhail M, Wang B, Lemey P, Beckthold B, Vandamme AM, Gill

MJ, Saksena NK: Role of viral evolutionary rate in HIV-1 disease

progression in a linked cohort. Retrovirology 2005, 2:41.

27. Yamaguchi Y, Gojobori T: Evolutionary mechanisms and

population dynamics of the third variable envelope region of HIV

within single hosts. Proc Natl Acad Sci USA 1997, 94:1264-1269.

28. Zhang H, Hoffmann F, He J, He X, Kankasa C, Ruprecht R, West

JT, Orti G, Wood C: Evolution of subtype C HIV-1 Env in a slowly

progressing Zambian infant. Retrovirology 2005, 2:67.

29. De Jong JJ, De Ronde A, Keulen W, Tersmette M, Goudsmit J:

Minimal requirements for the human immunodeficiency virus type 1

V3 domain to support the syncytium-inducing phenotype: analysis

by single amino acid substitution. J Virol 1992, 66:6777-6780.

Page 148: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

116

30. Delobel P, Nugeyre MT, Cazabat M, Pasquier C, Marchou B,

Massip P, Barre-Sinoussi F, Israel N, Izopet J: Population-based

sequencing of the V3 region of env for predicting the coreceptor

usage of human immunodeficiency virus type 1 quasispecies. J Clin

Microbiol 2007, 45:1572-1580.

31. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E,

Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, et al.:

Structure of a V3-containing HIV-1 gp120 core. Science 2005,

310:1025-1028.

32. Isaka Y, Sato A, Miki S, Kawauchi S, Sakaida H, Hori T,

Uchiyama T, Adachi A, Hayami M, Fujiwara T, Yoshie O: Small

amino acid changes in the V3 loop of human immunodeficiency virus

type 2 determines the coreceptor usage for CXCR4 and CCR5.

Virology 1999, 264:237-243.

33. Zolla-Pazner S: Improving on nature: focusing the immune

response on the V3 loop. Hum Antibodies 2005, 14:69-72.

34. Bjorling E, Scarlatti G, von Gegerfelt A, Albert J, Biberfeld G,

Chiodi F, Norrby E, Fenyo EM: Autologous neutralizing antibodies

prevail in HIV-2 but not in HIV-1 infection. Virology 1993, 193:528-

530.

35. Andersson S: HIV-2 and the immune response. AIDS Reviews

2001, 3:11-23.

36. Shi Y, Brandin E, Vincic E, Jansson M, Blaxhult A, Gyllensten

K, Moberg L, Brostrom C, Fenyo EM, Albert J: Evolution of human

immunodeficiency virus type 2 coreceptor usage, autologous

neutralization, envelope sequence and glycosylation. J Gen Virol

2005, 86:3385-3396.

37. Rodriguez SK, Sarr AD, MacNeil A, Thakore-Meloni S, Gueye-

Ndiaye A, Traore I, Dia MC, Mboup S, Kanki PJ: Comparison of

heterologous neutralizing antibody responses of human

immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected

Senegalese patients: distinct patterns of breadth and magnitude

distinguish HIV-1 and HIV-2 infections. J Virol 2007, 81:5331-5338.

38. Soriano V, Gomes P, Heneine W, Holguin A, Doruana M,

Antunes R, Mansinho K, Switzer WM, Araujo C, Shanmugam V, et

Page 149: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

117

al.: Human immunodeficiency virus type 2 (HIV-2) in Portugal:

clinical spectrum, circulating subtypes, virus isolation, and plasma

viral load. J Med Virol 2000, 61:111-116.

39. Cavaco-Silva P, Taveira NC, Rosado L, Lourenco MH, Moniz-

Pereira J, Douglas NW, Daniels RS, Santos-Ferreira MO: Virological

and molecular demonstration of human immunodeficiency vírus type

2 vertical transmission. J Virol 1998, 72:3418-3422.

40. Sambrook J, Maniatis T, Fritsch EF: Molecular cloning: a

laboratory manual 2nd edition. Cold Spring Harbor, N.Y.: Cold Spring

Harbor Laboratory; 1989.

41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins

DG: The CLUSTAL_X windows interface: flexible strategies for

multiple sequence alignment aided by quality analysis tools. Nucleic

Acids Res 1997, 25:4876-4882.

42. Nicholas KB, Nicholas Hugh B Jr: GeneDoc: a tool for editing

and annotating multiple sequence alignments. Distributed by the

author. 1997.

43. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular

Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol

Evol 2007, 24:1596-1599.

44. Felsenstein J: Evolutionary trees from DNA sequences: a

maximum likelihood approach. J Mol Evol 1981, 17:368-376.

45. Posada D, Crandall KA: MODELTEST: testing the model of DNA

substitution. Bioinformatics 1998, 14:817-818.

46. Swofford DL: PAUP*. Phylogenetic Analysis using Parsimony

(*and other Methods). Version 4. Sinauer-Associates, Sunderland,

Massachusetts; 1998.

47. Felsenstein J: Confidence limits on phylogenies: An approach

using the bootstrap. Evolution 1985, 39:783-791.

48. Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB,

Keele BF, Derdeyn CA, Farmer P, Hunter E, Allen S, et al.:

Deciphering human immunodeficiency virus type 1 transmission and

Page 150: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

118

early envelope diversification by single-genome amplification and

sequencing. J Virol 2008, 82:3952-3970.

49.BranchlengtCalculator[http://www.hiv.lanl.gov/content/sequenc

e/BRANCHLENGTH/branchlength.html]

50. Pond SL, Frost SD, Muse SV: HyPhy: hypothesis testing

usingphylogenies. Bioinformatics 2005, 21:676-679.

51. Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, Kuiken C,

Korber B: Tracking global patterns of N-linked glycosylation site

variation in highly variable viral glycoproteins: HIV, SIV, and HCV

envelopes and influenza hemagglutinin. Glycobiology 2004, 14:1229-

1246.

52. Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly

MM, Levy R, Wolinsky SM: Genetic differences between blood- and

brain-derived viral sequences from human immunodeficiency virus

type 1-infected patients: evidence of conserved elements in the V3

region of the envelope protein of brain derived sequences. J Virol

1994, 68:7467-7481.

53. Marcelino JM, Barroso H, Goncalves F, Silva SM, Novo C, Gomes

P, Camacho R, Taveira N: Use of a new dual-antigen enzymelinked

immunosorbent assay to detect and characterize the human

antibody response to the human immunodeficiency virus type 2

envelope gp125 and gp36 glycoproteins. J Clin Microbiol 2006,

44:607-611.

54. Botarelli P, Houlden BA, Haigwood NL, Servis C, Montagna D,

Abrignani S: N-glycosylation of HIV-gp120 may constrain recognition

by T lymphocytes. J Immunol 1991, 147:3128-3132.

55. Clevestig P, Pramanik L, Leitner T, Ehrnst A: CCR5 use by

human immunodeficiency virus type 1 is associated closely with the

gp120 V3 loop N-linked glycosylation site. J Gen Virol 2006, 87:607-

612.

56. Pollakis G, Kang S, Kliphuis A, Chalaby MI, Goudsmit J, Paxton

WA: N-linked glycosylation of the HIV type-1 gp120 envelope

glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor

utilization. J Biol Chem 2001, 276:13433-13441.

Page 151: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

119

57. Polzer S, Dittmar MT, Schmitz H, Schreiber M: The N-linked

glycan g15 within the V3 loop of the HIV-1 external glycoprotein

gp120 affects coreceptor usage, cellular tropism, and neutralization.

Virology 2002, 304:70-80.

58. Joos B, Fischer M, Schweizer A, Kuster H, Boni J, Wong JK,

Weber R, Trkola A, Gunthard HF: Positive in vivo selection of the

HIV-1 envelope protein gp120 occurs at surface-exposed regions. J

Infect Dis 2007, 196:313-320.

59. Barroso H, Araujo F, Gomes MH, Mota-Miranda A, Taveira N:

Phylogenetic demonstration of two cases of perinatal human

immunodeficiency virus type 2 infection diagnosed in adulthood.

AIDS Res and Hum Retroviruses 2004, 20:1373-1376.

60. Rambaut A, Posada D, Crandall KA, Holmes EC: The causes and

consequences of HIV evolution. Nat Rev Genet 2004, 5:52-61.

61. Gomes P, Taveira NC, Pereira JM, Antunes F, Ferreira MO,

Lourenco MH: Quantitation of human immunodeficiency virus type 2

DNA in peripheral blood mononuclear cells by using a quantitative-

competitive PCR assay. J Clin Microbiol 1999, 37:453-456.

62. Jobe O, Ariyoshi K, Marchant A, Sabally S, Corrah T, Berry N,

Jaffar S, Whittle H: Proviral load and immune function in blood and

lymph node during HIV-1 and HIV-2 infection. Clin Exp Immunol

1999, 116:474-478.

63. Parreira R, Esteves A, Santos C, Piedade J, Venenno T, Canas-

Ferreira WF: Genetic variability of human immunodeficiency virus

type 2 C2V3 region within and between individuals from Bissau,

Guinea-Bissau, West Africa. AIDS Res and Hum Retroviruses 2000,

16:1307-1312.

64. Yamaguchi-Kabata Y, Gojobori T: Reevaluation of amino acid

variability of the human immunodeficiency virus type 1 gp120

envelope glycoprotein and prediction of new discontinuous epitopes.

J Virol 2000, 74:4335-4350.

65. Yang W, Bielawski JP, Yang Z: Widespread adaptive evolution in

the human immunodeficiency virus type 1 genome. J Mol Evol 2003,

57:212-221.

Page 152: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

120

66. Lemey P, Kosakovsky Pond SL, Drummond AJ, Pybus OG,

Shapiro B, Barroso H, and Taveira N, Rambaut A: Synonymous

substitution rates predict HIV disease progression as a result of

underlying replication dynamics. PLoS Comput Biol 2007, 3:e29.

67. Ross HA, Rodrigo AG: Immune-mediated positive selection drives

human immunodeficiency virus type 1 molecular variation and

predicts disease duration. J Virol 2002, 76:11715-11720.

68. Korber BT M, Brander C, Haynes BF, Koup R, Moore JP, Walker

BD, Watkins DI: HIV Molecular Immunology 2006/2007. Los Alamos

National Laboratory, Theoretical Biology and Biophysics, Los Alamos,

New Mexico. LA-UR 07-4752.

69. Scanlan CN, Offer J, Zitzmann N, Dwek RA: Exploiting the

defensive sugars of HIV-1 for drug and vaccine design. Nature 2007,

446:1038-1045.

70. Fischer PB, Karlsson GB, Butters TD, Dwek RA, Platt FM:

Nbutyldeoxynojirimycin-mediated inhibition of human

immunodeficiency virus entry correlates with changes in antibody

recognition of the V1/V2 region of gp120. J Virol 1996, 70:7143-

7152.

71. Poon AF, Lewis FI, Pond SL, Frost SD: Evolutionary interactions

between N-linked glycosylation sites in the HIV-1 envelope. PLoS

Comput Biol 2007, 3:e11.

72. Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA,

Holmes EC: Unifying the epidemiological and evolutionary dynamics

of pathogens. Science 2004, 303:327-332.

73. Zolla-Pazner S: Identifying epitopes of HIV-1 that induce

protective antibodies. Nat Rev Immunol 2004, 4:199-210.

74. Richman DD, Wrin T, Little SJ, Petropoulos CJ: Rapid evolution

of the neutralizing antibody response to HIV type 1 infection. Proc

Natl Acad Sci USA 2003, 100:4144-4149.

75. Frost SD, Wrin T, Smith DM, Kosakovsky Pond SL, Liu Y,

Paxinos E, Chappey C, Galovich J, Beauchaine J, Petropoulos CJ, et

al.: Neutralizing antibody responses drive the evolution of human

Page 153: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

121

immunodeficiency virus type 1 envelope during recent HIV infection.

Proc Natl Acad Sci USA 2005, 102:18514-18519.

76. Moore PL, Gray ES, Choge IA, Ranchobe N, Mlisana K, Abdool

Karim SS, Williamson C, Morris L: The c3-v4 region is a major target

of autologous neutralizing antibodies in human immunodeficiency

virus type 1 subtype C infection. J Virol 2008, 82:1860-1869.

77. Williamson S: Adaptation in the env gene of HIV-1 and

evolutionary theories of disease progression. Mol Biol Evol 2003,

20:1318-1325.

78. Marchant D, Neil SJ, McKnight A: Human immunodeficiency

virus types 1 and 2 have different replication kinetics in human

primary macrophage culture. J Gen Virol 2006, 87:411-418.

79. Lizeng Q, Skott P, Sourial S, Nilsson C, Andersson SS, Ehnlund

M, Taveira N, Bjorling E: Serum immunoglobulin A (IgA)-mediated

immunity in human immunodeficiency virus type 2 (HIV-2) infection.

Virology 2003, 308:225-232.

80. Chackerian B, Rudensey LM, Overbaugh J: Specific N-linked

and O-linked glycosylation modifications in the envelope V1 domain

of simian immunodeficiency virus variants that evolve in the host

alter recognition by neutralizing antibodies. J Virol 1997, 71:7719-

7727.

81. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-

Gonzalez JF, Salazar MG, Kilby JM, Saag MS, et al.: Antibody

neutralization and escape by HIV-1. Nature 2003, 422:307-312.

82. Sagar M, Wu X, Lee S, Overbaugh J: Human immunodeficiency

virus type 1 V1-V2 envelope loop sequences expand and add

glycosylation sites over the course of infection, and these

modifications affect antibody neutralization sensitivity. J Virol 2006,

80:9586-959

Page 154: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

122

Page 155: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

CAPÍTULO VI

Escape à Neutralização na Infecção VIH-2

Page 156: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

124

Page 157: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

125

Escape à Neutralização é um Evento Frequente na Infecção

VIH-2 e está Fortemente Associado com o Tropismo X4

Publicação: Escape from neutralization is a frequent event in HIV-

2 infection and is strongly associated with X4 tropism.

José Maria Marcelino, Pedro Borrego, Charlotta

Nilsson, Helena Barroso, Manuela Doroana, Francisco

Antunes, Carlos Novo, and Nuno Taveira.

Submitted, 2010

Sumário

Introdução: A infecção VIH-2 induz a produção de anticorpos

neutralizantes (AcNT) de largo espectro. No entanto, pouco se

conhece sobre os alvos neutralizantes, a dinâmica dos AcNT e o

escape à neutralização durante a infecção VIH-2. Este estudo foi

realizado para investigar estes assuntos.

Método: Um coorte de 28 pacientes infectados por VIH-2 foi seguido

e estudado durante 4 anos. A actividade neutralizante autóloga e

heteróloga foi determinada com isolados VIH-2 primários e

anticorpos IgG purificados num ensaio de neutralização utilizando

células TZM-bl. A utilização de coreceptores foi determinada em

células GHOST. A sequência das regiões C2, V3 e C3 foi determinada

para todos os pacientes. O teste de ELISA-VIH2 foi utilizado para

determinar o título de anticorpos de ligação reactivos para os

polipeptidos que representam, a gp125 (rpC2-C3) e a gp36 (rgp36),

subunidades do invólucro.

Resultados: Foram isolados 24 novos isolados primários de 12

pacientes. A maioria dos pacientes (8 em 12) estava infectada com

vírus R5, e os restantes 4 com vírus X4. A presença de AcNT

autólogos (mediana IC50 = 3.91 g/ml) só foi detectada em 6

pacientes, todos infectados com vírus R5. A maioria dos pacientes (4

em 6) que não produziram AcNT autólogos estava infectada com

vírus X4. Com excepção de um paciente todos produziram anticorpos

contra os vírus R5. A resposta de anticorpos heterólogos diferiu

muito em termos de potência entre os pacientes (mediana IC50 = 4.14

g/ml, variação = 0.049-49.08 g/ml). A potência dos anticorpos

neutralizantes estava inversamente associada com os anticorpos de

ligação e a avidez para o rpC2-C3 e não para a gp36.

Surpreendentemente nenhum dos pacientes produziu anticorpos

Page 158: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

126

neutralizantes contra isolados X4. A carga e o tamanho da ansa V3

estavam fortemente associados com o tropismo e a resistência à

neutralização.

Conclusões: Anticorpos neutralizantes heterólogos de elevada

potência e espectro são produzidos na maioria dos pacientes VIH-2

com infecção crónica, mas parecem ser restritos apenas aos vírus

R5. O escape à neutralização é um acontecimento frequente na

infecção VIH-2 e está fortemente associado com o tropismo X4. Uma

resposta de anticorpos forte e bem desenvolvida é essencial para a

produção de anticorpos neutralizantes potentes contra a região C2,

V3 e C3 da gp125 do invólucro. Os determinantes virais para a

resistência à neutralização e o tropismo X4 parecem estar localizados

principalmente na região V3. Estes resultados têm implicações claras

para o desenho de imunogénios vacinais capazes de induzir a

produção de anticorpos neutralizantes de reactividade alargada.

Page 159: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

127

Escape from Neutralization is a Frequent Event in HIV-2

Infection and is strongly associated with X4

ABSTRACT

Background: HIV-2 infection induces the production of a broad

neutralizing antibody (NAb) response. However, little is known about

the neutralizing targets and the dynamics of the NAb response and

viral escape from neutralization during HIV-2 infection. This study

was set out to investigate these issues.

Methods: A cohort of 28 HIV-2 infected patients followed during 4

years was analyzed. Autologous and heterologous neutralizing

activities were determined with primary isolates and purified IgG

antibodies in a TZM-bl cells-based assay. Coreceptor usage of the

viruses was determined in GHOST cells. The sequence of the C2, V3

and C3 env regions was determined for all patients. The ELISA-HIV2

assay was used to determine the binding antibody titter against

polypeptides representing gp125 (rpC2-C3) and gp36 (rgp36)

envelope subunits.

Results: Twenty four new primary isolates were obtained from 12

patients. Most patients (8 out of 12) were infected with R5-viruses;

the remaining 4 patients harbored X4-viruses. Autologous NAbs

(median IC50 = 3.91 µg/ml; range = 0.049-38 µg/ml) were detected

only in 6 patients, all infected with R5-viruses. Most (4/6) patients

unable to produce autologous NAbs were infected with X4-viruses.

All but one patient produced NAbs targeting heterologous R5

isolates. The heterologous NAb response differed widely in potency

between patients (median IC50 = 4.14 µg/ml; range= 0.049-49.08

µg/ml). Potency of the neutralizing antibodies was inversely

associated with binding antibody titters and avidity to rpC2-C3 but

not to rgp36. Strikingly, none of the patients produced neutralizing

antibodies against X4 isolates. The charge and size of the V3 loop

was strongly associated with X4 tropism and resistance to

neutralization.

Conclusions: Potent and broadly reactive heterologous neutralizing

antibodies are elicited in most chronically infected HIV-2 patients but

they seem to be restricted to R5 isolates. Escape from neutralization

is a frequent event in HIV-2 infection and is strongly associated with

X4 tropism. A strong and mature antibody response is required for

the production of potent neutralizing antibodies targeting the C2, V3

and C3 regions in the gp125 envelope. Viral determinants of

neutralization resistance and X4 tropism seem to be located mostly

Page 160: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

128

in the V3 region. These results have clear implications for the design

of HIV-2 vaccine immunogens able to elicit the production of broadly

reactive neutralizing antibodies.

Page 161: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

129

Introduction

In contrast to the HIV-1 pandemic, HIV-2 is only prevalent in West

Africa where it seems to have been present since the 1940s (21). In

Europe, infection with HIV-2 remains rare (2-3% of all AIDS cases),

being observed mainly in France and Portugal (14, 39, 45). Eight

different HIV-2 groups named A through H have been reported but

only groups A and B cause human epidemics (12, 13, 18, 47).

Isolates from group A are, however, responsible for the vast majority

of HIV-2 infections worldwide (38).

For reasons that are still not clear, HIV-1 and HIV-2 infections lead

to very different immunological and clinical outcomes. In contrast to

HIV-1 infected patients, the majority of HIV-2-infected individuals

have reduced general immune activation, normal CD4+ T cell counts,

low or absent viremia and absence of clinical disease (2, 15, 25, 42).

This may be related with a more effective immune response produced

against HIV-2. In fact, most HIV-2 infected individuals have strong

cytotoxic responses to Env and Gag proteins and raise autologous

and heterologous neutralizing antibodies (5, 14, 22, 37, 40). The

attenuated course of HIV-2 infection compared to HIV-1 has also

been associated to a lower state of immune activation, which may be

related to the immunosuppressive activity of the C2-V3-C3 envelope

region (10, 11, 20). Similar immunosuppressive activity has not been

found in the homologous C2-V3-C3 region in the HIV-1 envelope

(11). Finally, the transmission rate of HIV-2 is also significantly lower

than that of HIV-1 and this has been associated with the low or

absent viremia found in most HIV-2 patients (7, 23).

It is now well established that HIV-2 infection elicits the production

of broadly reactive neutralizing antibodies (NAb) (5, 22, 37, 40).

However, little is known about the dynamics of the NAb response in

chronic HIV-2 infection and no information exists regarding the role

of this NAbs in control of viral replication. One study found that

there was a significant positive correlation between heterologous NAb

titer and viral load in chronically HIV-2 infected patients, suggesting

that heterologous antibodies may be driven by viral replication (37).

Interestingly, this would imply that HIV-2 escapes easily from the

neutralizing antibodies. However, a recent study did not find

evidence of viral escape from neutralizing antibodies and instead

suggested that highly effective NAbs, together with low viral

replicative capacity, prevents HIV-2 from escaping the neutralizing

response (40). A better understanding of the dynamics of the NAb

Page 162: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

130

response and viral escape from neutralization during HIV-2 infection

is clearly needed.

The antibody specificities that mediate HIV-2 neutralization are still

elusive. The V3 region in the envelope gp125 has been identified as a

neutralizing target by some but not by all investigators (1, 3, 4, 9, 26,

36, 44). Other weakly neutralizing epitopes were identified in V1, V2,

V4 and C5 regions in gp125 and in the COOH-terminal region of the

gp41 ectodomain (3, 4, 28). The identification of the most important

neutralizing determinants in the HIV-2 Env will provide crucial

information for vaccine design. The aims of this study were to

characterize the evolution and dynamics of the NAb response

(autologous and heterologous) and escape in chronically HIV-2

infected patient and identify neutralizing targets and determinants.

Material and Methods

Study population. Twenty eight HIV-2 patients attending different

hospital in Lisbon were followed prospectively during 4 years. The

characteristic of the patients enrolled in the study have been

reported previously (8). HIV seropositivity was determined with

VIDAS HIV DUO (Bio-Mérieux, Lyon, France). HIV-1 and HIV-2

differentiation was done by Western Blot 2.2 (Genelabs Diagnostics,

Science Park, Singapore), New LAV Blot II and Peptilav 1-2 (Bio-Rad,

Hercules, California, USA). HIV-2 viremia in the plasma was

quantified with a quantitative-competitive reverse transcriptase-PCR

assay as described elsewhere(19). Ethical approval was obtained

from each hospital ethics committee and each participant gave

informed consent before entry into the study.

Cloning and sequencing. DNA extraction, PCR amplification,

cloning and sequencing analysis of the C2V3C3 region (378 bp) of

the HIV-2 env gene was done as described elsewhere (8).

Purification and quantification of IgGs. The serum samples were

diluted (1:1 ratio) in 500 mM NaCl (binding buffer) and mixed with

equal volume (200 l) of protein G SepharoseTm 4 Fast Flow (GE

Healthcare Europe). The beads were washed three times with binding

buffer and one time with buffer phosphate saline (PBS), and the

antibodies were eluted by mixing 200 ml of 100 mM glycine-HCl

elution buffer (pH 2.7) for 30 s. The beads were then

microcentrifuged for 30 seconds and held in place on the bottom of

the tube. The acid-eluted solution containing IgG was quickly

Page 163: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

131

removed and placed into a separate tube containing 1 M Tris (pH 9.0)

buffer to reach pH 7.0 to 7.4.

IgG nephelometry Turbox kits (Orion Diagnostica’s Turbox plus,

Finland) were used to evaluate the concentrations of IgG fractions,

following the manufacturer’s instruction.

Determination of coreceptor usage. Coreceptor usage of the HIV-2

isolates was determined by using GHOST cells expressing CCR1,

CCR2, CCR3, CCR4, CCR5, CXCR4, Bonzo/STRL33 or BOB/GPR15.

Parental GHOST cells without coreceptors were also included. Fifty

thousand cells per well were seeded in 24-well dishes and infected

with 50 l of reporter virus containing 2 to 15 nanograms (ng) of p24

antigen and incubated during 3 hr in an volume of 0,25 ml of

Dulbecco’s modified essential medium (D-MEM) containing 10%

heat-inactivated fetal calf serum (FCS), 2% penicillin-streptomycin,

1% L-glutamine, 500 g/ml geneticin, 50 g/ml hygromycin, 1 g/ml

puromycin, and 20 g/ml polybrene. The cells were maintained in 1

ml of D-MEM medium and incubated at 37°C overnight. The parental

GOSTH cell line medium no contains puromycin. On next day the

virus/plasma mixture was removed, the cells were washed once with

1 ml of phosphate-buffered saline (PBS) followed by the addition of 1

ml D-MEM medium and incubated at 37°C for 72 hours. The culture

supernatants were collected and analyzed in an in-house enzyme-

linked immunosorbent assay (ELISA) for detection of HIV-2/SIV

antigen (43).

Assay to measuring neutralization antibodies. The neutralizing

activity of IgG antibodies against HIV-2 primary isolates was

analyzed in a sensitive, single-round viral infectivity assay using a

Luciferase Reporter Gene Assay in TZM-bl cells (also called JC53BL-

13) (30, 46). We first demonstrated that all primary HIV-2 isolates

replicated efficiently in TZM-bl cells after 48h hours of infection (Fig.

1). These results indicated that we could use these cells in the

neutralization assays. For the neutralization assays, the cells (15,000

cells in 100 l of complete growth medium (GM) that consist of D-

MEM supplemented with 10% fetal bovine serum (FBS, heat-

inactivated), 25 mM HEPES and 50 g/ml gentamicin) were added to

each well of 96-well flat-bottom culture plates (Nunc) and allowed to

adhere overnight before addition of equals parts of IgG antibodies

and virus. T he eluted IgG samples (concentrations tested between

100 to 0.05 g/ml) were mixed with 2 to 15 ng of HIV-2 isolates,

previously quantified for p24 content using a commercial enzyme-

linked immunosorbent assay (INNOTEST HIV Antigen mAb;

Page 164: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

132

INNOGENETICS N. V., Belgium) and incubated for 1 h at 37°C in a

total volume of 200 l of GM containing polybrene (20 g/ml).

FIG. 1. Infectivity of HIV-2 isolates. Virus stocks were produced in

PBMC. Infectivity was determined by infection of TZM-

bl/CD4/CCR5/CXCR4-expressing cells and measurement of

luciferase light signals in target cell lysates per nanogram of p24.

Error bars represent standard errors from a five independent

experiments to each isolate. HIV-1Bal and TZM-bl cells alone were

used as control.

Forty-eight hours later, cells were lysed directly in the neutralization

plate during 2 min, 100 l of culture medium was removed from each

well and added 100 l of One-Glo luciferase assay substrate reagent

(Promega, Madison, WI). Plates were immediately analyzed for

luciferase activity on a luminometer read. Background luminescence

was measured using control wells that contained only target cells

and medium. Neutralizing activity was displayed as the percent

inhibition of viral infection (luciferase activity) at each antibody

concentration compared to an antibody-negative control: percent

inhibition = [1 - (luciferase with antibody/luciferase without

antibody)] X 100. Fifty percent inhibitory concentrations (IC50s) of

purified immunoglobulin G (IgG) were derived by determination of

Page 165: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

133

antibody concentrations that 50% of the infectious virus was

neutralized. Values were calculated through a dose-response curve

fit with nonlinear function (four-parameter logistic equations) using

GraphPad prism software (San Diego, CA). To monitor the amount of

neutralization activity that is not HIV Env protein specific, each IgG

sample was also tested against a pseudovirus carrying the vesicular

stomatitis virus (VSV) envelope protein (obtained through the NIH

AIDS Research and Reference Reagent Program). These VSV envelope

proteins are able to mediate virus entry into the target cells used but

are not inhibited by anti-HIV Env antibodies. Assays for heterologous

neutralization were performed as described above against six HIV-2

virus isolates from the panel studied.

Statistical analyses. Statistical analyses were performed using the

GraphPad Prism version 5.01 for Windows (San Diego, CA) with a

level of significance of 5%. The Mann Whitney U was used to

compare means between variables. Contingency tables were analyzed

with Fisher’s exact test. To study how two variables varied together,

linear regression was performed and Spearman correlation

coefficients were computed against the transmembrane glycoprotein

gp36 and neutralization potency.

Results and Discussion

CXCR4 tropism may be a marker of disease progression in HIV-2

infection. Between 2003 and 2006 twenty-five primary HIV-2

isolates were obtained from twelve Portuguese HIV-2 patients living

in Portugal. Only patient PT11 was naïve to antiretroviral therapy

(Table 1). Eight patients harbored viruses that preferentially used

CCR5 whereas viruses from the remaining 4 patients used mainly

CXCR4. Overall, these results confirm that CCR5 is the major co-

receptor used by HIV-2 in vivo (6, 32, 33, 40). Consistent with

previous reports, R5 and X4 isolates were able to infect GHOST-

CD4+ cells expressing a number of alternative coreceptores; X4

isolates showed a broader coreceptor usage compared with R5

isolates (Table 1) (6, 32, 33, 40).

Page 166: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

134

Table 1. Characteristics of patients and coreceptor usage by primary

HIV-2 isolates.

*, patient age in 2003; †, values > 1 indicate coreceptor use with base on antigen production; -

, values < 1 no coreceptor use; S, yes; N, no; B, black; C, Caucasian; F, female; M, male; ND,

not done.

The median CD4+ T-cell counts in patients infected with X4 isolates

was five times lower when compared with patients infected with R5

isolates (median [interquartile range] = 66 [21.5 to 210] vs [IQR] =

333 [209.5 to 402]; P = 0.0727). These results are consistent with the

positive association between plasma viremia and CXCR4 usage in

HIV-2 patients (6) and provide further support for a potential

association between HIV-2 disease progression and CXCR4 usage

(40).

Autologous neutralization and escape is frequent in HIV-2

patients and is related to cell tropism. Autologous neutralization

was investigated in 12 HIV-2 patients. A durable autologous

neutralizing response was found in six patients (50%) all infected

with R5 isolates (Fig. 2A). The four patients infected with X4 isolates

and two R5 infected patients did not produce antibodies able to

neutralize the autologous isolates. These results reveal a significant

association between R5 tropism and neutralization sensitivity and

between X4 tropism and neutralization resistance (Fisher’s exact

test, P = 0.001).

Page 167: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

135

FIG. 2. Autologous neutralizing IgG response against HIV-2 isolates-

R5 [white bars] or X4 [black bars] A) and potency of IgG antibodies to

R5 isolates (B).

Regarding the potency of the neutralizing response, there were major

differences between patients (Fig. 2B). Some patients produced very

potent NAbs able to neutralize their autologous isolates at very low

concentrations (patient V18-03, IC50, 0.049 g/ml) whereas for other

patients 100-fold more antibodies was required to neutralize the

autologous isolate (see patient V11-03 in Fig 2B). There was no

association between the autologous neutralization response and the

CD4 T-cell count or viral load of the patients. In all, these results

confirm and extend previous results indicating that a potent and

durable autologous neutralizing response is relatively common in

chronic HIV-2 patients (5, 40) and provide strong evidence indicating

that escape to neutralization is a frequent event in HIV-2 infection,

especially in patients infected with X4 isolates. In contrast to us, Shi

et al (40) found HIV-2 escape from autologous neutralizing antibodies

to be a rare event. However, these authors studied only four patients

and only one of them harbored an X4 isolate. The different results

can also be due to the use of different neutralization methods and

cell lines. Frequent HIV-2 escape from neutralization is, however,

highly consistent with the positive association between plasma

viremia and neutralization potency found in one study (37) and with

the remarkably high evolutionary rate of HIV-2 envelope gene in

chronically infected patients (41) .The striking association between

X4 tropism and resistance to neutralization suggests that HIV-2

escape from antibody neutralization in vivo is mostly driven by a

change in cell tropism associated with a change from R5 to X4 co-

receptor usage. In HIV-1, escape from neutralization has only rarely

been associated with changes in viral tropism (27, 29).

A B

Page 168: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

136

HIV-2 patients produce a very broad and potent heterologous

NAb response against R5 isolates. Plasma IgGs were purified from

28 patient samples (one time point per patient, year 2003) and their

neutralizing activity was tested against two X4 isolates and six

heterologous primary HIV-2 isolates (all R5). No neutralization was

observed against the X4 isolates. In contrast, with one exception

(patient PT28), all patients produced IgG antibodies that neutralized

at least three R5 isolates; the majority of the patients (18/27; 67.8%)

could neutralized all six R5-isolates (Table 2).

Table 2. Heterologous neutralizing antibody IgG response against R5

isolates.

Nd; not determined

Viruses were neutralized at a median IgG concentration of 4.1 g/ml

(range, 0.05-49.080 g/ml) but there were some differences between

isolates (Fig. 3). These results confirm and extend previous findings

indicating that HIV-2 patients produce a very broad (37) and

sometimes potent heterologous NAb response and demonstrate, for

Page 169: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

137

the first time, that this response is restricted to R5 isolates.

Moreover, they confirm our previous finding that X4 HIV-2 isolates

are inherently resistant to antibody neutralization. As neutralization

sensitivity of HIV-1 seems is generally unrelated to co-receptor usage

(31), our results may signal a new and fundamental difference

between the HIV-2 and HIV-1 envelope.

FIG. 3. Potency of IgG neutralizing antibodies against HIV-2 R5-

isolates.

ART therapy has no impact in the neutralizing activity in HIV-2

infection. Most HIV-2 patients are elite controllers and are no taking

any antiretroviral medication. Purified IgG antibodies from plasma of

drun naïve (n = 9) and undergoing ART (n = 19) patients were

analyzed in terms of neutralization response. To investigate the

impact of ART on the neutralizing activity, we analyzed the

heterologous neutralizing potency in patients undergoing ART (n =

18) and drug-naïve patients (n = 9). No statistic difference was

observed between neutralizing activity of the two groups of patients

against all six primary isolates (Fig. 4). These results demonstrate

that ART therapy has no role in neutralizing response against HIV-2

and suggest that little or no viral replication in the plasma is needed

to maintain the production of neutralizing antibodies against this

virus.

Page 170: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

138

FIG. 4. Potency of IgG neutralizing antibodies purified from plasma

patients under antiretroviral therapy (grey column) and drug-naïve

patients (black column) against primary HIV-2 R5-isolates.

The NAb response in HIV-2 patients is directed to the C2, V3 and

C3 regions in gp125. Previously, we have obtained data suggesting

that the binding antibody reactivity against a polypeptide comprising

the C2, V3 and C3 envelope regions (rpC2-C3 polypeptide) was

inversely related with the evolution of number of the CD4+ T cells in

HIV-2 patients (24). Here we decided to investigate the nature of the

association between the neutralizing and binding antibody response

in the same patients. Remarkably, a significant inverse association

was detected between the potency of heterologous NAbs and the titer

(Spearman r = -0.4729; P = 0.0262) and avidity (Spearman r = -

0.6136; P = 0.0024) of binding IgG antibodies produced against a

polypeptide comprising the C2, V3 and C3 envelope regions (rpC2-C3

polypeptide) (Fig. 5). However, there was no association between the

binding antibody response against the transmembrane glycoprotein

gp36 and neutralization potency (titer, Spearman r = -0.3968; P =

0.0675; avidity, Spearman r = -0.3199; P = 0.1466). These results

strongly suggest, on the one hand, that the NAb IgG response in HIV-

2 patients is mostly directed to the C2, V3 and C3 regions in gp125

and, on the other hand, that a strong and mature antibody response

is required for the production of potent neutralizing antibodies

targeting these envelope regions. It should be noted that in contrast

to the NAb IgG response, NAb IgA response in HIV-2 patients

Page 171: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

139

response seem to target preferentially the transmembrane gp36

glycoprotein (22).

FIG. 5. Relation between the potency of heterologous neutralizing

IgG antibodies and binding IgG titer and avidity against rpC2-C3.

V3 region is the most important IgG neutralizing target in HIV-2

infection. To investigate the interplay between the NAb response

and the virus isolates in each individual and try to determine the

molecular basis of neutralization sensitivity and escape, the C2, V3

and C3 env regions of the patient isolates were sequenced and

aligned with the reference HIV-2ALI sequence (Fig. 6). Despite the

high variability found in the C2 and C3 regions, the most interesting

amino acid changes possibly associated with neutralizing phenotype

were found in the V3 loop. Neutralizable isolates had a V3 loop

median net charge of 7 (range, 6-7) which was well inferior to the V3

loop charge of non-neutralizable isolates (R5 and X4) (median 9,

range 8-11) (Table 3).

Page 172: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

140

FIG. 6. Tropism and amino acid sequence of C2, V3 and C3 domains

of the HIV-2 envelope protein of sequential isolates from the twelve

study subjects. Potential N-linked glycosilation sites are shaded in

green. Charged amino acids that are present in the neutralization

resistant isolates and absent from the neutralization sensitive

isolates are shaded in blue. Insertions are indicated by bold red

letters.

However, these differences did not reach statistical significance

indicating that the charge of the V3 loop is not the sole determinant

of neutralization phenotype. Strikingly, however, we found that all

non-neutralizable X4 isolates had a 1-3 amino acid insertion at the

tip of the V3 loop. Thus, the increase in charge and size may lead to

significant changes in V3 loop conformation which may decrease its

exposure and/or its binding affinity to the neutralizing antibodies. In

HIV-1, escape from neutralization has been associated with multiple

amino acid substitutions in different regions of the envelope

glycoproteins including but not limited to the V3 loop (16, 17, 35,

46). Resistance to neutralization in HIV-1 has also been associated

with a decrease in net positive charge in the V3 loop (34) and an

increase in the size and glycan content of the variable regions,

specially V1 and V2, in the surface glycoprotein (46).

Page 173: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

141

Table 3. Tropism, neutralization susceptibility and size and charge of

the V3 region.

Conclusions

Potent and broadly reactive heterologous neutralizing antibodies are

elicited in most chronically infected HIV-2 patients but they seem to

be restricted to R5 isolates. Escape from neutralization is a frequent

event in HIV-2 infection and is strongly associated with X4 tropism.

A strong and mature antibody response is required for the

production of potent neutralizing antibodies targeting the C2, V3 and

C3 regions in the gp125 envelope. Viral determinants of

neutralization resistance and X4 tropism seem to be located mostly

in the V3 region. These results strongly suggest that escape from the

neutralizing antibodies is the major selective force driving the

molecular and phenotypic evolution of HIV-2 in vivo. These results

have clear implications for the design of HIV-2 vaccine immunogens

Page 174: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

142

able to elicit the production of broadly reactive neutralizing

antibodies.

References

1. Babas, T., S. Benichou, D. Guetard, L. Montagnier, and E.

Bahraoui. 1994. Specificity of antipeptide antibodies produced

against V2 and V3 regions of the external envelope of human

immunodeficiency virus type 2. Mol Immunol 31:361-9.

2. Berry, N., K. Ariyoshi, S. Jaffar, S. Sabally, T. Corrah, R. Tedder,

and H. Whittle. 1998. Low peripheral blood viral HIV-2 RNA in

individuals with high CD4 percentage differentiates HIV-2 from HIV-

1 infection. J Hum Virol 1:457-68.

3. Bjorling, E., K. Broliden, D. Bernardi, G. Utter, R. Thorstensson,

F. Chiodi, and E. Norrby. 1991. Hyperimmune antisera against

synthetic peptides representing the glycoprotein of human

immunodeficiency virus type 2 can mediate neutralization and

antibody-dependent cytotoxic activity. Proc Natl Acad Sci U S A

88:6082-6.

4. Bjorling, E., F. Chiodi, G. Utter, and E. Norrby. 1994. Two

neutralizing domains in the V3 region in the envelope glycoprotein

gp125 of HIV type 2. J Immunol 152:1952-9.

5. Bjorling, E., G. Scarlatti, A. von Gegerfelt, J. Albert, G. Biberfeld,

F. Chiodi, E. Norrby, and E. M. Fenyo. 1993. Autologous neutralizing

antibodies prevail in HIV-2 but not in HIV-1 infection. Virology

193:528-30.

6. Blaak, H., P. H. Boers, R. A. Gruters, H. Schuitemaker, M. E. van

der Ende, and A. D. Osterhaus. 2005. CCR5, GPR15, and CXCR6 are

major coreceptors of human immunodeficiency virus type 2 variants

isolated from individuals with and without plasma viremia. J Virol

79:1686-700.

7. Blaak, H., M. E. van der Ende, P. H. Boers, H. Schuitemaker, and

A. D. Osterhaus. 2006. In vitro replication capacity of HIV-2 variants

from long-term aviremic individuals. Virology 353:144-54.

8. Borrego, P., J. M. Marcelino, C. Rocha, M. Doroana, F. Antunes,

F. Maltez, P. Gomes, C. Novo, H. Barroso, and N. Taveira. 2008. The

Page 175: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

143

role of the humoral immune response in the molecular evolution of

the envelope C2, V3 and C3 regions in chronically HIV-2 infected

patients. Retrovirology 5:78.

9. Bottiger, B., A. Karlsson, P. A. Andreasson, A. Naucler, C. M.

Costa, E. Norrby, and G. Biberfeld. 1990. Envelope cross-reactivity

between human immunodeficiency virus types 1 and 2 detected by

different serological methods: correlation between cross-

neutralization and reactivity against the main neutralizing site. J

Virol 64:3492-9.

10. Cavaleiro, R., G. J. Brunn, A. S. Albuquerque, R. M. Victorino, J.

L. Platt, and A. E. Sousa. 2007. Monocyte-mediated T cell

suppression by HIV-2 envelope proteins. Eur J Immunol 37:3435-44.

11. Cavaleiro, R., A. E. Sousa, A. Loureiro, and R. M. Victorino.

2000. Marked immunosuppressive effects of the HIV-2 envelope

protein in spite of the lower HIV-2 pathogenicity. AIDS 14:2679-86.

12. Chen, Z., A. Luckay, D. L. Sodora, P. Telfer, P. Reed, A. Gettie, J.

M. Kanu, R. F. Sadek, J. Yee, D. D. Ho, L. Zhang, and P. A. Marx.

1997. Human immunodeficiency virus type 2 (HIV-2) seroprevalence

and characterization of a distinct HIV-2 genetic subtype from the

natural range of simian immunodeficiency virus-infected sooty

mangabeys. J Virol 71:3953-60.

13. Damond, F., M. Worobey, P. Campa, I. Farfara, G. Colin, S.

Matheron, F. Brun-Vezinet, D. L. Robertson, and F. Simon. 2004.

Identification of a highly divergent HIV type 2 and proposal for a

change in HIV type 2 classification. AIDS Res Hum Retroviruses

20:666-72.

14. de Silva, T. I., M. Cotten, and S. L. Rowland-Jones. 2008. HIV-2:

the forgotten AIDS virus. Trends Microbiol 16:588-95.

15. Drylewicz, J., S. Matheron, E. Lazaro, F. Damond, F. Bonnet, F.

Simon, F. Dabis, F. Brun-Vezinet, G. Chene, and R. Thiebaut. 2008.

Comparison of viro-immunological marker changes between HIV-1

and HIV-2-infected patients in France. AIDS 22:457-68.

16. Frost, S. D., Y. Liu, S. L. Pond, C. Chappey, T. Wrin, C. J.

Petropoulos, S. J. Little, and D. D. Richman. 2005. Characterization

of human immunodeficiency virus type 1 (HIV-1) envelope variation

Page 176: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

144

and neutralizing antibody responses during transmission of HIV-1

subtype B. J Virol 79:6523-7.

17. Frost, S. D., T. Wrin, D. M. Smith, S. L. Kosakovsky Pond, Y.

Liu, E. Paxinos, C. Chappey, J. Galovich, J. Beauchaine, C. J.

Petropoulos, S. J. Little, and D. D. Richman. 2005. Neutralizing

antibody responses drive the evolution of human immunodeficiency

virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci

U S A 102:18514-9.

18. Gao, F., L. Yue, D. L. Robertson, S. C. Hill, H. Hui, R. J. Biggar,

A. E. Neequaye, T. M. Whelan, D. D. Ho, G. M. Shaw, and et al.

1994. Genetic diversity of human immunodeficiency virus type 2:

evidence for distinct sequence subtypes with differences in virus

biology. J Virol 68:7433-47.

19. Gomes, P., N. C. Taveira, J. M. Pereira, F. Antunes, M. O.

Ferreira, and M. H. Lourenco. 1999. Quantitation of human

immunodeficiency virus type 2 DNA in peripheral blood mononuclear

cells by using a quantitative-competitive PCR assay. J Clin Microbiol

37:453-6.

20. Grossman, Z., M. Meier-Schellersheim, A. E. Sousa, R. M.

Victorino, and W. E. Paul. 2002. CD4+ T-cell depletion in HIV

infection: are we closer to understanding the cause? Nat Med 8:319-

23.

21. Lemey, P., O. G. Pybus, B. Wang, N. K. Saksena, M. Salemi, and

A. M. Vandamme. 2003. Tracing the origin and history of the HIV-2

epidemic. Proc Natl Acad Sci U S A 100:6588-92.

22. Lizeng, Q., P. Skott, S. Sourial, C. Nilsson, S. S. Andersson, M.

Ehnlund, N. Taveira, and E. Bjorling. 2003. Serum immunoglobulin

A (IgA)-mediated immunity in human immunodeficiency virus type 2

(HIV-2) infection. Virology 308:225-32.

23. MacNeil, A., A. D. Sarr, J. L. Sankale, S. T. Meloni, S. Mboup,

and P. Kanki. 2007. Direct evidence of lower viral replication rates in

vivo in human immunodeficiency virus type 2 (HIV-2) infection than

in HIV-1 infection. J Virol 81:5325-30.

24. Marcelino, J. M., C. Nilsson, H. Barroso, P. Gomes, P. Borrego,

F. Maltez, L. Rosado, M. Doroana, F. Antunes, and N. Taveira. 2008.

Page 177: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

145

Envelope-specific antibody response in HIV-2 infection: C2V3C3-

specific IgG response is associated with disease progression. Aids

22:2257-65.

25. Marlink, R., P. Kanki, I. Thior, K. Travers, G. Eisen, T. Siby, I.

Traore, C. C. Hsieh, M. C. Dia, E. H. Gueye, and et al. 1994. Reduced

rate of disease development after HIV-2 infection as compared to

HIV-1. Science 265:1587-90.

26. Matsushita, S., S. Matsumi, K. Yoshimura, T. Morikita, T.

Murakami, and K. Takatsuki. 1995. Neutralizing monoclonal

antibodies against human immunodeficiency virus type 2 gp120. J

Virol 69:3333-40.

27. McKnight, A., and P. R. Clapham. 1995. Immune escape and

tropism of HIV. Trends Microbiol 3:356-61.

28. McKnight, A., C. Shotton, J. Cordell, I. Jones, G. Simmons, and

P. R. Clapham. 1996. Location, exposure, and conservation of

neutralizing and nonneutralizing epitopes on human

immunodeficiency virus type 2 SU glycoprotein. J Virol 70:4598-606.

29. McKnight, A., R. A. Weiss, C. Shotton, Y. Takeuchi, H. Hoshino,

and P. R. Clapham. 1995. Change in tropism upon immune escape

by human immunodeficiency virus. J Virol 69:3167-70.

30. Montefiori, D. C. 2009. Measuring HIV Neutralization in a

Luciferase Reporter Gene Assay. Methods Mol Biol 485:395-405.

31. Montefiori, D. C., R. G. Collman, T. R. Fouts, J. Y. Zhou, M.

Bilska, J. A. Hoxie, J. P. Moore, and D. P. Bolognesi. 1998. Evidence

that antibody-mediated neutralization of human immunodeficiency

virus type 1 by sera from infected individuals is independent of

coreceptor usage. J Virol 72:1886-93.

32. Morner, A., A. Bjorndal, J. Albert, V. N. Kewalramani, D. R.

Littman, R. Inoue, R. Thorstensson, E. M. Fenyo, and E. Bjorling.

1999. Primary human immunodeficiency virus type 2 (HIV-2)

isolates, like HIV-1 isolates, frequently use CCR5 but show

promiscuity in coreceptor usage. J Virol 73:2343-9.

33. Morner, A., A. Bjorndal, A. C. Leandersson, J. Albert, E. Bjorling,

and M. Jansson. 2002. CCR5 or CXCR4 is required for efficient

Page 178: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

146

infection of peripheral blood mononuclear cells by promiscuous

human immunodeficiency virus type 2 primary isolates. AIDS Res

Hum Retroviruses 18:193-200.

34. Naganawa, S., M. Yokoyama, T. Shiino, T. Suzuki, Y.

Ishigatsubo, A. Ueda, A. Shirai, M. Takeno, S. Hayakawa, S. Sato, O.

Tochikubo, S. Kiyoura, K. Sawada, T. Ikegami, T. Kanda, K.

Kitamura, and H. Sato. 2008. Net positive charge of HIV-1 CRF01_AE

V3 sequence regulates viral sensitivity to humoral immunity. PLoS

One 3:e3206.

35. O'Rourke, S. M., B. Schweighardt, P. Phung, D. P. Fonseca, K.

Terry, T. Wrin, F. Sinangil, and P. W. Berman. 2010. Mutation at a

Single Position in the V2 Domain of the HIV-1 Envelope Protein

Confers Neutralization Sensitivity to a Highly Neutralization-

Resistant Virus. J Virol 84:11200-9.

36. Robert-Guroff, M., K. Aldrich, R. Muldoon, T. L. Stern, G. P.

Bansal, T. J. Matthews, P. D. Markham, R. C. Gallo, and G.

Franchini. 1992. Cross-neutralization of human immunodeficiency

virus type 1 and 2 and simian immunodeficiency virus isolates. J

Virol 66:3602-8.

37. Rodriguez, S. K., A. D. Sarr, A. MacNeil, S. Thakore-Meloni, A.

Gueye-Ndiaye, I. Traore, M. C. Dia, S. Mboup, and P. J. Kanki. 2007.

Comparison of heterologous neutralizing antibody responses of

human immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected

Senegalese patients: distinct patterns of breadth and magnitude

distinguish HIV-1 and HIV-2 infections. J Virol 81:5331-8.

38. Rowland-Jones, S. 2006. Protective immunity against HIV

infection: lessons from HIV-2 infection. Future Microbiol 1:427-33.

39. Semaille, C., F. Barin, F. Cazein, J. Pillonel, F. Lot, D. Brand, J.

C. Plantier, P. Bernillon, S. Le Vu, R. Pinget, and J. C. Desenclos.

2007. Monitoring the dynamics of the HIV epidemic using assays for

recent infection and serotyping among new HIV diagnoses:

experience after 2 years in France. J Infect Dis 196:377-83.

40. Shi, Y., E. Brandin, E. Vincic, M. Jansson, A. Blaxhult, K.

Gyllensten, L. Moberg, C. Brostrom, E. M. Fenyo, and J. Albert.

2005. Evolution of human immunodeficiency virus type 2 coreceptor

Page 179: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

147

usage, autologous neutralization, envelope sequence and

glycosylation. J Gen Virol 86:3385-96.

41. Skar, H., P. Borrego, J. M. Marcelino, M. Mild, H. Barroso, N.

Taveira, T. Leitner, and J. Albert. 2010. HIV-2 genetic evolution in

patients with advanced disease is faster than in matched HIV-1

patients. J Virol. In press.

42. Soares, R., R. Foxall, A. Albuquerque, C. Cortesao, M. Garcia, R.

M. Victorino, and A. E. Sousa. 2006. Increased frequency of

circulating CCR5+ CD4+ T cells in human immunodeficiency virus

type 2 infection. J Virol 80:12425-9.

43. Thorstensson, R., L. Walther, P. Putkonen, J. Albert, and G.

Biberfeld. 1991. A capture enzyme immunoassay for detection of

HIV-2/SIV antigen. J Acquir Immune Defic Syndr 4:374-9.

44. Traincard, F., M. A. Rey-Cuille, I. Huon, S. Dartevelle, J. C.

Mazie, and S. Benichou. 1994. Characterization of monoclonal

antibodies to human immunodeficiency virus type 2 envelope

glycoproteins. AIDS Res Hum Retroviruses 10:1659-67.

45. Valadas, E., L. Franca, S. Sousa, and F. Antunes. 2009. 20

years of HIV-2 infection in Portugal: trends and changes in

epidemiology. Clin Infect Dis 48:1166-7.

46. Wei, X., J. M. Decker, S. Wang, H. Hui, J. C. Kappes, X. Wu, J.

F. Salazar-Gonzalez, M. G. Salazar, J. M. Kilby, M. S. Saag, N. L.

Komarova, M. A. Nowak, B. H. Hahn, P. D. Kwong, and G. M. Shaw.

2003. Antibody neutralization and escape by HIV-1. Nature 422:307-

12.

47. Yamaguchi, J., S. G. Devare, and C. A. Brennan. 2000.

Identification of a new HIV-2 subtype based on phylogenetic analysis

of full-length genomic sequence. AIDS Res Hum Retroviruses 16:925-

30.

Page 180: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação
Page 181: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

149

CAPÍTULO VII

Anticorpos Neutralizantes contra isolados

VIH-2 Primários Produzidos em Murganhos

BALB\c

Page 182: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

150

Page 183: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

151

Anticorpos Neutralizantes de Elevada Potência e Grande

Reactividade para Isolados VIH-2 Induzidos via uma

Estratégia de Imunização que utiliza como Priming o Vírus

da Vacina e como Reforço o polipeptido C3V3C3

Publicação: Potent and broadly reactive HIV-2 neutralizing

antibodies elicited by a Vaccinia virus vector-prime

C2V3C3 polypeptide boost immunization strategy.

José Maria Marcelino, Pedro Borrego, Cheila Rocha,

Helena Barroso, Alexandre Quintas, Carlos Novo and

Nuno Taveira.

J Virol. 2010: 84, 2: 12429-12436

Sumário

A infecção com o Vírus da Imunodeficiência Humana tipo 2 (VIH-2)

afecta cerca de 1-2 milhões de indivíduos, na sua maioria da África

Ocidental, Europa e Índia. Tal como acontece com o VIH-1 são

necessárias novas estratégias de prevenção da infecção VIH-2. O

nosso objectivo foi produzir novos imunogénios para vacinas que

induzissem a produção de anticorpos neutralizantes (AcNT) de largo

espectro contra o VIH-2. A partir do isolado de referência HIV-2ALI

expressaram-se, no vírus da vacina e em bactérias, proteínas nativas

ou truncadas do invólucro. Este isolado foi utilizado devido às suas

características fenotípicas únicas, que combinam a independência do

receptor CD4 e a utilização do CCR5. Os AcNT não foram obtidos nos

murganhos BALB/c através de imunização simples com a gp125 do

invólucro truncada (gp125t) ou com o polipéptido recombinante

(rpC2-C3) que incluía as regiões C2, V3 e C3 do invólucro. Contudo,

uma forte e ampla resposta de AcNT foi obtida em murganhos

inicialmente imunizados com a gp125t expressa em vírus da vacina e

sujeitos a um reforço com rpC2-C3. O soro destes animais

neutralizou potentemente (mediana do título de neutralização de

50% = 3.200) 6/6 isolados primários VIH-2 altamente divergentes. A

utilização de co-receptores e a sequência V3 dos isolados

susceptíveis aos AcNT revelaram-se semelhantes aos do imunogénio

da vacina (HIV-2ALI). Em contraste, os AcNT não reagiram contra os

3 isolados X4 que apresentavam alterações major na sequência e

estrutura da ansa da V3. No seu conjunto, estes resultados

demonstram que os AcNT amplamente reactivos contra o VIH-2

podem ser obtidos utilizando uma estratégia de imunização, que

consiste numa imunização inicial com o vírus da vacina e depois

Page 184: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

152

reforços com o rpC2-C3, e sugerem também uma potencial relação

entre o escape à neutralização e o tropismo celular.

Page 185: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

153

Potent and Broadly Reactive HIV-2 Neutralizing Antibodies

Elicited by a Vaccinia Virus Vector-Prime C2V3C3

Polypeptide Boost Immunization Strategy

Abstract

Human immunodeficiency virus type 2 (HIV-2) infection affects about

1 to 2 million individuals, the majority living in West Africa, Europe,

and India. As for HIV-1, new strategies for the prevention of HIV-2

infection are needed. Our aim was to produce new vaccine

immunogens that elicit the production of broadly reactive HIV-2

neutralizing antibodies (NAbs). Native and truncated envelope

proteins from the reference HIV-2ALI isolate were expressed in

vaccinia virus or in bacteria. This source isolate was used due to its

unique phenotype combining CD4 independence and CCR5 usage.

NAbs were not elicited in BALB/c mice by single immunization with a

truncated and fully glycosylated envelope gp125 (gp125t) or a

recombinant polypeptide comprising the C2, V3, and C3 envelope

regions (rpC2-C3). A strong and broad NAb response was, however,

elicited in mice primed with gp125t expressed in vaccinia virus and

boosted with rpC2-C3. Serum from these animals potently

neutralized (median 50% neutralizing titer, 3,200) six of six highly

divergent primary HIV-2 isolates. Coreceptor usage and the V3

sequence of NAb-sensitive isolates were similar to that of the

vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not

reactive on three X4 isolates that displayed major changes in V3 loop

sequence and structure. Collectively, our findings demonstrate that

broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus

vector-prime/rpC2-C3–boost immunization strategy and suggest a

potential relationship between escape to neutralization and cell

tropism.

Page 186: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

154

Page 187: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

155

Introduction

Human immunodeficiency virus type 2 (HIV-2) infection affects 1 to 2

million individuals, most of whom live in India, West Africa, and

Europe (17). HIV-2 has diversified into eight genetic groups named A

to H, of which group A is by far the most prevalent worldwide.

Nucleotide sequences of Env can differ up to 21% within a particular

group and by over 35% between groups.

The mortality rate in HIV-2-infected patients is at least twice that of

uninfected individuals (26). Nonetheless, the majority of HIV-2-

infected individuals survive as elite controllers (17). In the absence of

antiretroviral therapy, the numbers of infected cells (39) and viral

loads (36) are much lower among HIV-2-infected individuals than

among those who are HIV-1 infected. This may be related to a more

effective immune response produced against HIV-2. In fact, most

HIV-2-infected individuals have proliferative T-cell responses and

strong cytotoxic responses to Env and Gag proteins (17, 31).

Moreover, autologous and heterologous neutralizing antibodies

(NAbs) are raised in most HIV-2-infected individuals (8, 32, 48, 52),

and the virus seems unable to escape from these antibodies (52). As

for HIV-1, the antibody specificities that mediate HIV-2

neutralization and control are still elusive. The V3 region in the

envelope gp125 has been identified as a neutralizing target by some

but not by all investigators (3, 6, 7, 11, 40, 47, 54). Other weakly

neutralizing epitopes were identified in the V1, V2, V4, and C5

regions in gp125 and in the COOH terminal region of the gp41

ectodomain (6, 7, 41). A better understanding of the neutralizing

determinants in the HIV-2 Env will provide crucial information

regarding the most relevant targets for vaccine design.

The development of immunogens that elicit the production of broadly

reactive NAbs is considered the number one priority for the HIV-1

vaccine field (4, 42). Most current HIV-1 vaccine candidates intended

to elicit such broadly reactive NAbs are based on purified envelope

constructs that mimic the structure of the most conserved

neutralizing epitopes in the native trimeric Env complex and/or on

the expression of wild-type or modified envelope glycoproteins by

different types of expression vectors (4, 5, 29, 49, 58). With respect to

HIV-2, purified gp125 glycoprotein or synthetic peptides representing

selected V3 regions from HIV-2 strain SBL6669 induced autologous

and heterologous NAbs in mice or guinea pigs (6, 7, 22). However,

immunization of cynomolgus monkeys with a subunit vaccine

consisting of gp130 (HIV-2BEN) micelles offered little protection

against autologous or heterologous challenge (34). Immunization of

rhesus (19, 44, 45) and cynomolgus (1) monkeys with canarypox or

Page 188: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

156

attenuated vaccinia virus expressing several HIV-2 SBL6669

proteins, including the envelope glycoproteins, in combination with

booster immunizations with gp160, gp125, or V3 synthetic peptides,

elicited a weak neutralizing response and partial protection against

autologous HIV-2 challenge. Likewise, vaccination of rhesus monkeys

with immunogens derived from the historic HIV-2ROD strain failed to

generate neutralizing antibodies and to protect against heterologous

challenge (55). Finally, baboons inoculated with a DNA vaccine

expressing the tat, nef, gag, and env genes of the HIV-2UC2 group B

isolate were partially protected against autologous challenge without

the production of neutralizing antibodies (33). These studies

illustrate the urgent need for new vaccine immunogens and/or

vaccination strategies that elicit the production of broadly reactive

NAbs against HIV-2. The present study was designed to investigate in

the mouse model the immunogenicity and neutralizing response

elicited by novel recombinant envelope proteins derived from the

reference primary HIV-2ALI isolate, when administered alone or in

different prime-boost combinations.

MATERIALS AND METHODS

Cells, plasmids, viruses, and antibodies. HeLa and Rat-2 (TK-) cells

were purchased from American Type Culture Collection (Rockville,

MD). The Western Reserve strain of vaccinia virus (vWR),

recombinant vaccinia virus expressing HIV-2ROD Env (rVV/ROD)

(43), and GHOST/CD4/CXCR4 and GHOST/ CD4/CCR5 cells were

provided by the AIDS Research and Reference Reagent Program,

National Institutes of Health. T-cell lines and peripheral blood

mononuclear cells were grown in RPMI 1640 medium with 10% fetal

calf serum. HeLa, Rat2, GHOST/CD4/CXCR4, and

GHOST/CD4/CCR5 cells were grown in Dulbecco minimal essential

medium (DMEM) with 10% fetal calf serum and antibiotics. Plasmid

pMJ601 was a gift from Bernard Moss (16). HIV-2 antisera were

obtained from infected individuals.

Cloning of native and mutated HIV-2ALI env genes. The HIV-2ALI

env gene was amplified by PCR as described previously (53) and

cloned into the SalI site of the vaccinia virus insertion vector

pMJ601. This procedure generated the recombinant plasmid pMJALI

(Fig. 1A). In this vector, protein expression is driven by a strong

synthetic late vaccinia virus promoter (16). Using the megaprimer

method of site-directed mutagenesis (50), a TAG stop codon was

introduced at position 8143 in the HIV-2ALI env gene. In the first

PCR the left outside primer was 5’-ATTGGGGATTATAAATTAG-3’

Page 189: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

157

(nucleotides [nt] 8124 to 8143 of HIV-2ALI) and the right outside

primer was 5’-TCACAGGAGGG CAATTTCTGC-3’ (nt 9262 to 9282).

PCR product (mega primer) was isolated and purified by agarose gel

electrophoresis. For the second PCR amplification, the left outside

primer was 5’-CGAAAGGGCAGACGAAGAAGGACTCC-3’ (nt 6623 to

6648, in the rev gene) and the right outside primer was the mega-

primer. The vaccinia virus insertion plasmid containing HIV-2ALI

mutated env gene was named pMJALIM2.

Production of recombinant vaccinia viruses. Recombinant

vaccinia viruses were obtained as previously described (35). In brief,

pMJALI or pMJALIM2 were transfected into the thymidine kinase-

negative Rat2 (TK) cells by the calcium orthophosphate method, and

cells were simultaneously infected with vaccinia virus strain WR.

Recombinant vaccinia viruses, both 5-bromodeoxyuridine resistant

and -galactosidase positive, were selected for further studies. The

recombinant vaccinia viruses were named rVV/ALI and rVV/ALIM2.

Radiolabeling and immunoprecipitations. Confluent monolayers of

HeLa cells were infected with 5 PFU of recombinant vaccinia

virus/cell and labeled for 16 to 18 h with 100 Ci of

[35S]methionine/ml. For pulse-chase studies, the cells were pulsed

with 100 Ci of [35S]methionine/ml for 30 min and chased for various

periods with DMEM containing 10% fetal calf serum. Labeled cells

were lysed, and proteins from the cell lysate and from the cell-free

supernatant were immunoprecipitated with 10 l of human anti-HIV-

2 sera and adsorbed to protein A-Sepharose. Immunoprecipitated

proteins were characterized by SDS-PAGE at 7.5% and visualized by

autoradiography after fluorographic enhancement (Amersham

Amplify; GE Healthcare).

Mouse immunizations. Four groups (I, II, III, and V) of 6-week-old

female BALB/c mice were immunized intraperitoneally (i.p.) with 2 x

107 PFU of vaccinia virus vWR or rVV/ALIM2 in 100 l of phosphate-

buffered saline (PBS). Another two groups (IV and VI) of mice were

immunized by the i.p. route with 10 g of the rpC2-C3 polypeptide

(37) or soluble gp125t emulsified in complete Freund adjuvant

(priming) or incomplete Freund adjuvant (boosts). Four mice were

used in each group. For all mice, the schedule of immunization

included one priming and two boosts at days 14 and 28 (see Table S1

in the supplemental material). Mice were bled 14 days after each

immunization to assay for binding and neutralizing antibodies.

Page 190: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

158

ELISAs. Enzyme-linked immunosorbent assay (ELISA) plates were

coated with the rpC2-C3 polypeptide as described previously (37). To

produce gp125t for ELISAs, 293 cells were infected with rVV/ALIM2

(4 PFU per cell). The infecting virus was replaced with serum-free

DMEM at 3 h postinfection. The medium containing gp125t was

collected at 24 h postinfection, clarified by centrifugation at 2,000 x g

for 5 min, and passed through a 0.2-m-pore-size filter. Immuno

MaxiSorp 96-well microplates (Nunc) were coated with the gp125t

supernatant (1:5 dilution) or recombinant polypeptide rpC2-C3 (2.5

g/ml) both diluted in 0.05 M bicarbonate buffer (pH 9.4) and

blocked with 1% gelatin (Bio-Rad). Mouse antiserum at serial 2-fold

dilutions (starting at 1:100) was added to the microplates and, after

1 h of incubation at room temperature, alkaline phosphatase (AP)-

conjugated goat anti-mouse IgG was added as a secondary antibody.

Colorimetric reaction was developed with p-nitrophenylphosphate

(pNPP) and read at 405 nm on a microplate reader. Negative controls

were serum from preimmune mice and mice immunized with vWR.

Positive control was serum from HIV-2-infected individuals. In this

case, the secondary antibody was AP-conjugated anti-human IgG.

Sera with an optical density (OD) above the cutoff (mean OD of the

preimmune mice serum plus two times the standard deviation) were

considered positive.

Neutralization assays. Primary virus isolates were obtained from

nine unrelated HIV-2-infected Portuguese patients by using the

cocultivation method as described previously (13). The neutralizing

activity of mice serum against these HIV-2 primary isolates was

analyzed in a single-round viral infectivity assay using a luciferase

reporter gene assay in TZM-bl cells (56, 57). The cells (15,000 cells in

100 l of complete growth medium (GM) that consists of DMEM

supplemented with 10% fetal bovine serum (heat inactivated), 25 mM

HEPES, and 50 g of gentamicin/ml were added to each well of 96-

well flat-bottom culture plates (Nunc) and allowed to adhere

overnight before addition of equals parts of serum and virus

dilutions. Next, 100-l portions of 5-fold serial dilutions (beginning at

1:40) of heat-inactivated mouse sera were mixed with 100 l of each

virus (corresponding to 5 to 15 ng of capsid p26, as quantified by

Innotest HIV antigen MAb [Innogenetics N.V., Belgium]) and

incubated for 1 h at 37°C in a total volume of 200 l of GM

containing Polybrene (20 g/ml). After 48 h, culture medium was

removed from each well, and cells were lysed directly in the plate

during 2 min with 100 l of One-Glow luciferase assay substrate

reagent (Promega, Madison, WI). Plates were immediately analyzed

Page 191: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

159

for luciferase activity on a luminometer (TECAN). Background

luminescence was measured by using control wells that contained

only target cells and medium. Virus neutralization titer was defined

as the maximal dilution of plasma required to reduce virus

production by 50% on day 2 after infection. Neutralizing titer was

displayed as the percent inhibition of viral infection (luciferase

activity) at each serum dilution: % inhibition = [1 - (luciferase serum

samples/luciferase without serum samples)] x 100. To monitor the

amount of neutralization activity that is not HIV-2 specific, each

serum sample was also tested against a pseudovirus carrying the

vesicular stomatitis virus (VSV) envelope protein. These VSV

envelope proteins are able to mediate virus entry into the target cells

used but are not inhibited by anti-HIV Env antibodies. The reduction

of VSV infection by different sera was 15% at a 1:40 dilution, 5% at a

1:100 dilution, and 0% at a dilution of >1:100. The different mice

sera were also tested against an HIV-1 isolate (HIV-1BAL), and no

reduction in virus infectivity was observed.

Molecular and evolutionary analysis of C2-V3-C3 Env sequences.

Maximum likelihood phylogenetic trees were constructed with

alignments of C2, V3, and C3 consensus nucleotide sequences

obtained from all primary isolates used in the present study.

GenBank accession number for PTHCC6.03 is GU591163. Accession

numbers for all other sequences can be found elsewhere (10).

Reference HIV-2 sequences were obtained from GenBank.

Evolutionary distances between sequences were calculated by using

the HKY model of nucleotide substitution. Maximum-likelihood tree

searches were conducted using Treefinder (28) with bootstrap

resampling. Three-dimensional (3D) structural homology modeling of

C2, V3, and C3 amino acid sequences from HIV-2 isolates was

performed using SWISS-MODEL (2). This tool maps linear amino

acid sequences to 3D structures of proteins. This is done by

comparing the source protein sequence to that of proteins with

known 3D structures in the Protein Data Bank (PDB). The tool

generates an alignment between the query sequence and a

homologous sequence from the PDB and allows visualizing the

result.

Data analysis. The statistical significance of differences between

groups was determined by using the Mann-Whitney test within the

program GraphPad Prism (version 4.00). A P value of <0.05 was

considered statistically significant.

Page 192: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

160

RESULTS

Expression of native and truncated HIV-2ALI Env glycoproteins

in vaccinia virus. HIV-2 ALI, considered the prototypic group A

primary isolate, uses predominantly the CCR5 coreceptor to enter

cells and is relatively CD4 independent (46). The full-length env gene

of this isolate was cloned into the pMJ601 vaccinia virus insertion

vector generating pMJALI (Fig. 1A) and recombinant vaccinia virus

rVV/ALI was produced as described previously (35).

FIG. 1. Immunoprecipitation analysis of HIV-2ALI envelope

glycoproteins expressed by recombinant vaccinia viruses. (A)

Schematic representation of the pMJALI plasmid used to produce

rVV/ALI. The env gene from HIV-2ALI was cloned into the unique

SalI site of the pMJ601 plasmid, which is located adjacent to the

synthetic late promoter within the X region (16). (B) HIV-2ALI and

HIV-2ROD envelope glycoproteins expressed in HeLa cells by

recombinant vaccinia viruses rVV/ALI and rVV/ROD (positive

control), respectively. (C) Schematic representation of gp125t protein

expressed by rVV/ALIM2, with the sizes and approximate locations

of the conserved and variable domains indicated. (D) Pulsechase

analysis of gp125t expression. HeLa cells infected with rVV/ALIM2

were metabolically labeled for 30 min with [35S]methionine and

chased for 1, 3, and 18 h. In panels C and D, viral glycoproteins were

immunoprecipitated from cell lysates (E) and supernatant (S) with

antiserum from an HIV-2-infected individual and analyzed by SDS-

PAGE and fluorography. Mock, uninfected cells; vWR, cells infected

with the WR strain of vaccinia virus (negative control). Standard

molecular mass markers are indicated in kilodaltons.

Page 193: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

161

Immunoprecipitation assays with human HIV-2 antiserum showed

that rVV/ALI expresses high levels of HIV-2 precursor envelope

glycoprotein (gp140) that is processed to originate the surface

(gp125) and transmembrane (gp36) glycoproteins that are then

transported to the cell surface (Fig. 1B). In these assays,

recombinant vaccinia virus expressing the Env glycoproteins of the

historical HIV-2ROD isolate (rVV/ROD) was used as a positive

control. Cell-to-cell fusion assays showed that rVV/ALI only induced

syncytium formation in CCR5-positive cells (GHOST/CD4/ CCR5)

(see Table S1 in the supplemental material). To be able to produce

high amounts of gp125, a stop codon was inserted by site-directed

mutagenesis at the end of the corresponding env coding region. The

mutated env gene should code for a truncated gp125 (gp125t)

lacking 26 amino acids at the carboxyl terminus of the C5 region

(Fig. 1C). As anticipated, recombinant vaccinia virus rVV/ALIM2

secreted gp125t into the cell supernatant in high levels (95% of total

amount after 18 h of chase, as determined by densitometric analysis

of the bands), and no gp140 or gp36 was produced (Fig. 1D).

Secreted gp125t bound poorly to cellular CD4 (data not shown).

Together, these results are consistent with the relative CD4

independence and CCR5 usage of HIV-2ALI (46), indicating that the

envelope glycoproteins expressed in vaccinia virus maintain the

structure and function of the original viral isolate.

HIV-2ALI Env-based immunogens elicit a strong and broad NAb

response in mice. To investigate the humoral immunogenicity of

HIV-2ALI-derived envelope gp125t and rpC2-C3 polypeptide (37),

BALB/c mice were inoculated with one or more of the following

immunogens: rVV/ALIM2, gp125t or rpC2-C3 polypeptide (see Table

S2 in the supplemental material). The binding antibody response to

each immunogen was analyzed with the ELISA-HIV2 assay (37),

which uses the rpC2-C3 polypeptide as antigen, and with a newly

derived ELISA using gp125t as a capture antigen. All mice produced

IgG antibodies reacting with gp125t or rpC2-C3 polypeptide (Fig. 2).

Mice immunized solely with rpC2-C3 produced the strongest rpC2-

C3-specific binding antibody responses (endpoint titer, 1:25,600) but

did not produce antibodies against gp125t. Conversely, mice

immunized solely with gp125t produced a strong IgG response

against gp125t (endpoint titer, 25,600) but not against rpC2-C3 (Fig.

2).

Page 194: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

162

FIG. 2. Binding IgG response against the rpC2-C3 polypeptide and

gp125t in BALB/c mice immunized with different HIV-2ALI antigens.

Four mice were immunized with each vaccine regimen. For all mice,

the schedule of immunization included one priming and two boosting

at days 14 and 28. Fourteen days after each immunization, sera were

collected and assayed for the presence of binding IgG antibodies to

rpC2-C3 polypeptide and soluble gp125t. Mice antiserum at a 1:100

dilution was added to rpC2-C3 polypeptide (A) or gp125t (B) coated

microplates, and alkaline phosphatase (AP)-conjugated goat anti-

mouse IgG was added as a secondary antibody. (C) Endpoint

antibody titers against rpC2-C3 after the last immunization (boost II).

(D) Endpoint antibody titers against gp125t after the last

immunization (boost II). The boxes in panels A and B indicate the

median antibody responses and standard deviations. The lines in

panels C and D indicate the median antibody responses.

Importantly, mice primed with rVV/ALIM2 and boosted with rpC2-C3

produced IgG antibodies that bound strongly to rpC2- C3 (median

titer, 19,200; range, 12,800 to 25,600) and gp125t (median titer,

9,600; range, 6,400 to 25,600).

The neutralizing properties of mice antiserum were tested against

nine highly divergent heterologous isolates of HIV-2 group A (see Fig.

Page 195: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

163

S1 in the supplemental material), of which six used the CCR5

coreceptor and three used the CXCR4 coreceptor (Table 1).

The genetic diversity of the primary virus isolates was significantly

higher compared to the reference isolates (median number of

nucleotide substitutions per site, 0.2399 versus 0.1657 [P = 0.0013])

(see Table S3 in the supplemental material). The median divergence

from the vaccinating ALI strain was also very high (0.2146 nucleotide

substitutions per site), and this was independent of coreceptor

usage.

Mice inoculated with rVV/ALIM2 alone and mice inoculated with

prime-boost regimens containing rVV/ALIM2 and rpC2-C3

polypeptide or rVV/ALIM2 and gp125t, generated antibodies

neutralizing the R5 isolates (Table 1). In contrast, mice immunized

Table 1. Neutralization of primary HIV-2 isolates by antiserum from

mice immunized with envelope proteins derived from HIV-2ALI

solely with rpC2-C3 or gp125t did not produce neutralizing

antibodies. The strongest and broadest neutralizing responses were

found in mice primed with rVV/ ALIM2 and boosted with rpC2-C3.

Sera from these animals potently neutralized (50% median

neutralizing titers, 3,200; range, 1,280 to 10,240) all primary isolates

of the CCR5 phenotype. However, none of the immunogens generated

neutralizing antibodies reactive against the X4 isolates. Together,

these results demonstrate that a potent and broad HIV-2

neutralizing response can be elicited with a vaccinia virus vector

prime/ rpC2-C3-boost vaccination strategy that direct the antibody

response to the central C2, V3, and C3 envelope regions in the native

HIV-2 envelope complex.

Sequence and structure markers of viral susceptibility to

antibody-mediated neutralization. Considering the C2, V3, and C3

regions, ALI differed from the other isolates by a median of 16 amino

acids (magnitude range, 11 to 30) (Fig. 3). C2 was the most

conserved region reference HIV-2ALI strain and the other primary

Page 196: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

164

HIV-2 isolates analyzed in the present study. Amino acids only

present in the V3 region of the X4 neutralization resistant isolates

are shown in boldface letters. (median number of amino acid

replacements, 3; range, 2 to 5), whereas C3 was the most divergent

region (median, 11; range, 8 to 17).

Table 1. Neutralization of primary HIV-2 isolates by antiserum from

mice immunized with envelope proteins derived from HIV-2ALI.

This was unrelated with the tropism of the virus isolates. However,

the V3 loop of neutralization-sensitive R5 (NS-R5) isolates differed

only by 1 amino acid from ALI (magnitude, 0 to 1), whereas those

from neutralization-resistant X4 (NR-X4) isolates differed by an

average of 8 amino acids (magnitude, 7 to 9) (P = 0.0238). Compared

to ALI and with the NS-R5 isolates, the V3 loop of the NR-X4 isolates

was longer, due to the insertion of 1 to 3 amino acids at the tip of the

loop, and had a higher number of charged amino acids, mostly

arginine, leading to a higher overall net charge (Fig. 3 and Table 1).

Superimposed 3D structures of C2, V3, and C3 regions derived from

the primary isolates and HIV-2ALI were obtained by homology

modeling with the conformational structure of an unliganded SIV

gp120 envelope glycoprotein (PDB ID 2bf1) (14). Not surprisingly, the

V3 loop structure from NS-R5 isolates was similar to ALI and differed

significantly from the V3 loop structure of the NR-X4 isolates (Fig. 4).

Taken together, these results suggest that the V3 loop is a major

neutralization determinant in the HIV-2 envelope. Since X4 usage

evolves from R5 usage, the results also suggest a potential

relationship between HIV-2 escape to neutralization, coreceptor

usage and cell tropism.

Page 197: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

165

FIG. 4. Conformational structure of the C2-V3-C3 domains from the

primary HIV-2 isolates, as determined by homology modeling. (A) V3

loop conformation of reference HIV-2ALI and neutralization sensitive

isolates (PTHCC2.03, PTHCC6.03, PTHCC7.03, PTHCC12.03,

PTHCC17.03, and PTHCC19.03). Two different patterns are

predicted: a conformational pattern similar to the reference HIV-2

ALI (PTHCC6.03, PTHCC7.03, PTHCC12.03, and PTHCC17.03) and a

pattern slightly more exposed than the reference (PTHCC2.03 and

PTHCC19.03). (B) V3 loop structure conformation of reference and of

neutralization resistant isolates (PTHCC20.03, PTHSM9.03, and

PTHSM10.03). All of the conformational patterns are structurally

different from the reference HIV-2ALI. The V3 loop is highlighted by a

red color gradient, while the C2 and C3 domains are shown in white.

DISCUSSION

We show here, for the first time, that a potent and broad HIV-2

neutralizing response can be elicited in mice using a vaccinia virus

vector-prime/rpC2-C3-polypeptide boost vaccination strategy. All

Page 198: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

166

immunogens used in the present study were derived from the

envelope gene of HIV-2ALI. We used this source isolate for three

main reasons. First, because it is the prototypic primary isolate of

HIV-2 group A, the most prevalent group worldwide. Second, because

it uses predominantly the CCR5 coreceptor to enter cells (46), a

phenotypic feature that is shared by most HIV-2 isolates found in

asymptomatic patients (9) and that is commonly found in

transmitted HIV isolates (30). Third, because HIV-2 ALI is as CD4

independent as many other primary HIV-2 isolates (46), and this has

been associated with an increased likelihood of exposition of broadly

neutralizing epitopes in vivo (58). Based on the published

information, we reasoned that the combination of these three

features would make this an appropriate source isolate for the

production of Env-based vaccine immunogens aimed at eliciting

neutralizing antibodies targeting the most commonly transmitted

strains of HIV-2. A new recombinant vaccinia virus, rVV/ALIM2, was

produced expressing high levels of a truncated version of gp125 from

HIV-2ALI. Mice immunized with this virus elicited a binding IgG

antibody response that is similar to natural HIV-2 infection (37, 38)

and elicited the production of low levels of NAbs. In contrast, animals

vaccinated solely with monomeric gp125t or rpC2-C3, despite

eliciting a binding IgG antibody response that was even stronger

than that attained in natural infection (4.4 log10 versus 3.3 log10)

(38), could not raise the production of NAbs. These results indicating

that NAb epitopes are not formed or presented effectively by our

monomeric Env immunogens are consistent with previous data

showing poor induction of HIV NAbs by envelope subunits (12, 18,

51). Strikingly, however, elicitation of NAbs by the same monomeric

Env proteins was highly effective in animals primed with rVV/ALIM2

expressing truncated gp125t. To our knowledge, this is the first

demonstration that a robust and broad HIV neutralizing response

can be elicited with a prime-boost vaccination strategy based on

replicating competent poxvirus vectors and monomeric Env

subunits.

Replication-competent poxvirus vectors, in contrast to nonreplicating

poxvirus such as MVA, NYVAC, or canarypox, allows sustained and

high-level transgene expression in vivo, and this has been related

with strong CD8 (21, 27) and CD4 (27) T-cell responses.

Recent evidence indicates that the generation and persistence of a

strong antiviral antibody response depends on the previous

induction of a strong Th2 type-specific cellular immune response

(20). Thus, the high-level expression of Env glycoproteins ascribed by

the strong late promoter present in our recombinant vaccinia virus

Page 199: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

167

vector may have been a determinant for the generation of a strong

Th2 type-specific response and B-cell activation, which then enabled

an effective NAb production following the booster immunizations with

either gp125t or rpC2-C3. Of note, the specific cellular immune

response triggered by nonreplicating poxvirus vectors is of the Th1

type, which may explain the weak antibody response elicited by these

vectors (23, 25). Our results therefore provide support for the use of

replicating competent recombinant vaccinia virus as a component of

an HIV vaccine. To this end, new recombinant vaccinia virus vectors

may need to be produced using highly attenuated smallpox vaccine

strains such as, for instance, ACAM2000 (24).

The data also demonstrate that directing the antibody response to

the central C2, V3, and C3 envelope regions in the native HIV-2

envelope complex was determinant for the elicitation of high levels of

broadly reactive NAbs. These core Env regions contain highly

antigenic and immunodominant HIV-2 epitopes, and most HIV-2-

infected patients produce IgG and IgA antibodies reacting with them

(37, 38). We have recently shown that the V3 and C3 regions in the

HIV-2 envelope are remarkably stable over the course of infection

and that C2V3C3-specific IgG antibodies may contribute to reduce

viral population size and limit the number of virus escape mutants

(10). Collectively, therefore, the results suggest that a therapeutic or

sterilizing vaccine strategy targeting the C2, V3, and C3 envelope

regions may lead to a sustained neutralizing response and durable

control of HIV-2 replication (15).

We noticed that all neutralizable HIV-2 isolates used the CCR5

coreceptor and that the V3 amino acid sequence and structure of

these isolates was remarkably conserved and diverged very little from

that of the vaccine isolate (HIV-2ALI). In contrast, X4-tropic viruses

were resistant to neutralization and their V3 loop diverged

significantly from ALI in amino acid sequence, net charge (higher

charge), size (longer), and structural conformation. These results

suggest that the V3 loop is the broadly neutralizing domain

contained within the C2, V3, and C3 envelope regions and establish

a possible link between neutralization escape and tropism in HIV-2.

These results also provide important new leads for the design of new

vaccine immunogens aimed at eliciting antibodies that neutralize

both R5 and X4 HIV-2 isolates.

In conclusion, a prime-boost immunization strategy with

recombinant vaccinia virus expressing the envelope gp125 of HIV-

2ALI, a CD4-independent R5 primary isolate, and a polypeptide

comprising the C2, V3, and C3 envelope regions of the same isolate

induces in mice a strong and broadly neutralizing antibody response,

Page 200: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

168

possibly targeting the V3 region of the vast majority of primary HIV-2

isolates (R5 isolates of group A). Our findings provide support for

testing these new HIV -2 immunogens in vaccine trials in other

animal models. Finally, our findings provide proof-of-concept for a

new type of HIV vaccine aimed at eliciting high levels of broadly

NAbs, one that uses replication-competent recombinant vaccinia

virus vectors to prime the cellular immune response and activate B

cells and monomeric polypeptides comprising broadly neutralizing

epitopes to boost the neutralizing B-cell response.

ACKNOWLEDGMENTS

This study was supported by grant PTDC/SAU-FCF/67673/2006

from Fundação para a Ciência e Tecnologia (Portugal). The following

reagents were obtained through the AIDS Research and Reference

Reagent Program, Division of AIDS, NIAID, NIH: rVV/ROD from Mark

J. Mulligan and TZM-bl from John C. Kappes, Xiaoyun Wu, and

Tranzyme, Inc.

We do not have a commercial or other association that might pose a

conflict of interest.

References

1. Andersson, S., B. Makitalo, R. Thorstensson, G. Franchini, J.

Tartaglia, K. Limbach, E. Paoletti, P. Putkonen, and G. Biberfeld.

1996. Immunogenicity and protective efficacy of a human

immunodeficiency virus type 2 recombinant canarypox (ALVAC)

vaccine candidate in cynomolgus monkeys. J. Infect. Dis. 174:977–

985.

2. Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-

MODEL workspace: a web-based environment for protein structure

homology modeling. Bioinformatics 22:195–201.

3. Babas, T., S. Benichou, D. Guetard, L. Montagnier, and E.

Bahraoui. 1994. Specificity of antipeptide antibodies produced

against V2 and V3 regions of the external envelope of human

immunodeficiency virus type 2. Mol. Immunol. 31:361–369.

4. Barouch, D. H. 2008. Challenges in the development of an HIV-1

vaccine. Nature 455:613 619.

5. Barouch, D. H., K. L. O’Brien, N. L. Simmons, S. L. King, P.

Abbink, L. F. Maxfield, Y. H. Sun, A. La Porte, A. M. Riggs, D. M.

Page 201: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

169

Lynch, S. L. Clark, K. Backus, J. R. Perry, M. S. Seaman, A. Carville,

K. G. Mansfield, J. J. Szinger, W. Fischer, M. Muldoon, and B.

Korber. Mosaic HIV-1 vaccines expand the breadth and depth of

cellular immune responses in rhesus monkeys. Nat. Med. 16:319–

323.

6. Bjorling, E., K. Broliden, D. Bernardi, G. Utter, R. Thorstensson,

F. Chiodi, and E. Norrby. 1991. Hyperimmune antisera against

synthetic peptides representing the glycoprotein of human

immunodeficiency virus type 2 can mediate neutralization and

antibody-dependent cytotoxic activity. Proc. Natl. Acad. Sci. U. S. A.

88:6082–6086.

7. Bjorling, E., F. Chiodi, G. Utter, and E. Norrby. 1994. Two

neutralizing domains in the V3 region in the envelope glycoprotein

gp125 of HIV type 2. J. Immunol. 152:1952–1959.

8. Bjorling, E., G. Scarlatti, A. von Gegerfelt, J. Albert, G. Biberfeld,

F. Chiodi, E. Norrby, and E. M. Fenyo. 1993. Autologous neutralizing

antibodies prevail in HIV-2 but not in HIV-1 infection. Virology

193:528–530.

9. Blaak, H., P. H. Boers, R. A. Gruters, H. Schuitemaker, M. E. van

der Ende, and A. D. Osterhaus. 2005. CCR5, GPR15, and CXCR6 are

major coreceptors of human immunodeficiency virus type 2 variants

isolated from individuals with or without plasma viremia. J. Virol.

79:1686–1700.

10. Borrego, P., J. M. Marcelino, C. Rocha, M. Doroana, F. Antunes,

F. Maltez, P. Gomes, C. Novo, H. Barroso, and N. Taveira. 2008. The

role of the humoral immune response in the molecular evolution of

the envelope C2, V3, and C3 regions in chronically HIV-2-infected

patients. Retrovirology 5:78.

11. Bottiger, B., A. Karlsson, P. A. Andreasson, A. Naucler, C. M.

Costa, E. Norrby, and G. Biberfeld. 1990. Envelope cross-reactivity

between human immunodeficiency virus types 1 and 2 detected by

different serological methods: correlation between cross-

neutralization and reactivity against the main neutralizing site. J.

Virol. 64:3492–3499.

12. Buonaguro, L., L. Racioppi, M. L. Tornesello, C. Arra, M. L.

Visciano, B. Biryahwaho, S. D. Sempala, G. Giraldo, and F. M.

Buonaguro. 2002. Induction of neutralizing antibodies and cytotoxic

Page 202: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

170

T lymphocytes in BALB/c mice immunized with virus-like particles

presenting a gp120 molecule from a HIV-1 isolate of clade A. Antivir.

Res. 54:189–201.

13. Cavaco-Silva, P., N. C. Taveira, L. Rosado, M. H. Lourenco, J.

Moniz- Pereira, N. W. Douglas, R. S. Daniels, and M. O. Santos-

Ferreira. 1998. Virological and molecular demonstration of human

immunodeficiency virus type 2 vertical transmission. J. Virol.

72:3418–3422.

14. Chen, B., E. M. Vogan, H. Gong, J. J. Skehel, D. C. Wiley, and S.

C. Harrison. 2005. Structure of an unliganded simian

immunodeficiency virus gp120 core. Nature 433:834–841.

15. Davenport, M. P., L. Loh, J. Petravic, and S. J. Kent. 2008. Rates

of HIV immune escape and reversion: implications for vaccination.

Trends Microbiol. 16:561–566.

16. Davison, A. J., and B. Moss. 1990. New vaccinia virus

recombination plasmids incorporating a synthetic late promoter for

high level expression of foreign proteins. Nucleic Acids Res. 18:4285–

4286.

17. de Silva, T. I., M. Cotten, and S. L. Rowland-Jones. 2008. HIV-2:

the forgotten AIDS virus. Trends Microbiol. 16:588–595.

18. Dey, B., M. Pancera, K. Svehla, Y. Shu, S. H. Xiang, J.

Vainshtein, Y. Li, J. Sodroski, P. D. Kwong, J. R. Mascola, and R.

Wyatt. 2007. Characterization of human immunodeficiency virus

type 1 monomeric and trimeric gp120 glycoproteins stabilized in the

CD4-bound state: antigenicity, biophysics, and immunogenicity. J.

Virol. 81:5579–5593.

19. Franchini, G., M. Robert-Guroff, J. Tartaglia, A. Aggarwal, A.

Abimiku, J. Benson, P. Markham, K. Limbach, G. Hurteau, J. Fullen,

et al. 1995. Highly attenuated HIV type 2 recombinant poxviruses,

but not HIV-2 recombinant Salmonella vaccines, induce long-lasting

protection in rhesus macaques. AIDS Res. Hum. Retrovir. 11:909–

920.

20. Gaucher, D., R. Therrien, N. Kettaf, B. R. Angermann, G.

Boucher, A. Filali-Mouhim, J. M. Moser, R. S. Mehta, D. R. Drake III,

E. Castro, R. Akondy, A. Rinfret, B. Yassine-Diab, E. A. Said, Y.

Chouikh, M. J. Cameron, R. Clum, D. Kelvin, R. Somogyi, L. D.

Page 203: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

171

Greller, R. S. Balderas, P. Wilkinson, G. Pantaleo, J. Tartaglia, E. K.

Haddad, and R. P. Sekaly. 2008. Yellow fever vaccine induces

integrated multilineage and polyfunctional immune responses. J.

Exp. Med. 205:3119–3131.

21. Geiben-Lynn, R., J. R. Greenland, K. Frimpong-Boateng, and N.

L. Letvin. 2008. Kinetics of recombinant adenovirus type 5, vaccinia

virus, modified vaccinia Ankara virus, and DNA antigen expression

in vivo and the induction of memory T-lymphocyte responses. Clin.

Vaccine Immunol. 15:691–696.

22. Gilljam, G. 1993. Envelope glycoproteins of HIV-1, HIV-2, and

SIV purified with Galanthus nivalis agglutinin induce strong immune

responses. AIDS Res. Hum. Retrovir. 9:431–438.

23. Gomez, C. E., J. L. Najera, V. Jimenez, K. Bieler, J. Wild, L.

Kostic, S. Heidari, M. Chen, M. J. Frachette, G. Pantaleo, H. Wolf, P.

Liljestrom, R. Wagner, and M. Esteban. 2007. Generation and

immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-

1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 25:1969–1992.

24. Handley, L., R. M. Buller, S. E. Frey, C. Bellone, and S. Parker.

2009. The new ACAM2000 vaccine and other therapies to control

orthopoxvirus outbreaks and bioterror attacks. Expert Rev. Vaccines

8:841–850.

25. Harari, A., P. A. Bart, W. Stohr, G. Tapia, M. Garcia, E. Medjitna-

Rais, S. Burnet, C. Cellerai, O. Erlwein, T. Barber, C. Moog, P.

Liljestrom, R. Wagner, H. Wolf, J. P. Kraehenbuhl, M. Esteban, J.

Heeney, M. J. Frachette, J. Tartaglia, S. McCormack, A. Babiker, J.

Weber, and G. Pantaleo. 2008. An HIV-1 clade C DNA prime, NYVAC

boost vaccine regimen induces reliable, polyfunctional, and long-

lasting T-cell responses. J. Exp. Med. 205: 63–77.

26. Holmgren, B., Z. da Silva, P. Vastrup, O. Larsen, S. Andersson,

H. Ravn, and P. Aaby. 2007. Mortality associated with HIV-1, HIV-2,

and HTLV-1 single and dual infections in a middle-aged and older

population in Guinea- Bissau. Retrovirology 4:85.

27. Hovav, A. H., M. W. Panas, C. E. Osuna, M. J. Cayabyab, P.

Autissier, and N. L. Letvin. 2007. The impact of a boosting

immunogen on the differentiation of secondary memory CD8 T

cells. J. Virol. 81:12793–12802.

Page 204: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

172

28. Jobb, G. 2008. TREEFINDER version of October 2008 ed.

Distributed by the author. G. Jobb, Munich, Germany.

29. Johnston, M. I., and A. S. Fauci. 2007. An HIV vaccine: evolving

concepts. N. Engl. J. Med. 356:2073–2081.

30. Keele, B. F., E. E. Giorgi, J. F. Salazar-Gonzalez, J. M. Decker, K.

T. Pham, M. G. Salazar, C. Sun, T. Grayson, S. Wang, H. Li, X. Wei,

C. Jiang, J. L. Kirchherr, F. Gao, J. A. Anderson, L. H. Ping, R.

Swanstrom, G. D. Tomaras, W. A. Blattner, P. A. Goepfert, J. M.

Kilby, M. S. Saag, E. L. Delwart, M. P. Busch, M. S. Cohen, D. C.

Montefiori, B. F. Haynes, B. Gaschen, G. S. Athreya, H. Y. Lee, N.

Wood, C. Seoighe, A. S. Perelson, T. Bhattacharya, B. T. Korber, B.

H. Hahn, and G. M. Shaw. 2008. Identification and characterization

of transmitted and early founder virus envelopes in primary HIV-1

infection. Proc. Natl. Acad. Sci. U. S. A. 105:7552–7557.

31. Leligdowicz, A., and S. Rowland-Jones. 2008. Tenets of

protection from progression to AIDS: lessons from the immune

responses to HIV-2 infection. Expert Rev. Vaccines 7:319–331.

32. Lizeng, Q., P. Skott, S. Sourial, C. Nilsson, S. S. Andersson, M.

Ehnlund, N. Taveira, and E. Bjorling. 2003. Serum immunoglobulin

A (IgA)-mediated immunity in human immunodeficiency virus type 2

(HIV-2) infection. Virology 308:225–232.

33. Locher, C. P., S. A. Witt, B. M. Ashlock, P. Polacino, S. L. Hu, S.

Shiboski, A. M. Schmidt, M. B. Agy, D. M. Anderson, S. I. Staprans,

J. zur Megede, and J. A. Levy. 2004. Human immunodeficiency virus

type 2 DNA vaccine provides partial protection from acute baboon

infection. Vaccine 22:2261– 2272.

34. Luke, W., G. Voss, C. Stahl-Hennig, C. Coulibaly, P. Putkonen,

H. Petry, and G. Hunsmann. 1993. Protection of cynomolgus

macaques (Macaca fascicularis) against infection with the human

immunodeficiency virus type 2 strain ben (HIV-2ben) by

immunization with the virion-derived envelope glycoprotein gp130.

AIDS Res. Hum. Retrovir. 9:387–394.

35. Mackett, M., G. L. Smith, and B. Moss. 1985. The construction

and characterization of vaccinia virus recombinants expressing

foreign genes, p. 191– 212. In D. M. Glover (ed.), DNA cloning. IRL

Press, Oxford, United Kingdom.

Page 205: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

173

36. MacNeil, A., A. D. Sarr, J. L. Sankale, S. T. Meloni, S. Mboup,

and P. Kanki. 2007. Direct evidence of lower viral replication rates in

vivo in human immunodeficiency virus type 2 (HIV-2) infection than

in HIV-1 infection. J. Virol. 81:5325–5330.

37. Marcelino, J. M., H. Barroso, F. Goncalves, S. M. Silva, C. Novo,

P. Gomes, R. Camacho, and N. Taveira. 2006. Use of a new dual-

antigen enzyme-linked immunosorbent assay to detect and

characterize the human antibody response to the human

immunodeficiency virus type 2 envelope gp125 and gp36

glycoproteins. J. Clin. Microbiol. 44:607–611.

38. Marcelino, J. M., C. Nilsson, H. Barroso, P. Gomes, P. Borrego, F.

Maltez, L. Rosado, M. Doroana, F. Antunes, and N. Taveira. 2008.

Envelope-specific antibody response in HIV-2 infection: C2V3C3-

specific IgG response is associated with disease progression. AIDS

22:2257-2265.

39. Matheron, S., S. Pueyo, F. Damond, F. Simon, A. Lepretre, P.

Campa, R. Salamon, G. Chene, and F. Brun-Vezinet. 2003. Factors

associated with clinical progression in HIV-2 infected-patients: the

French ANRS cohort. AIDS 17:2593–2601.

40. Matsushita, S., S. Matsumi, K. Yoshimura, T. Morikita, T.

Murakami, and K. Takatsuki. 1995. Neutralizing monoclonal

antibodies against human immunodeficiency virus type 2 gp120. J.

Virol. 69:3333–3340.

41. McKnight, A., C. Shotton, J. Cordell, I. Jones, G. Simmons, and

P. R. Clapham. 1996. Location, exposure, and conservation of

neutralizing and nonneutralizing epitopes on human

immunodeficiency virus type 2 SU glycoprotein. J. Virol. 70:4598–

4606.

42. Montefiori, D., Q. Sattentau, J. Flores, J. Esparza, and J.

Mascola. 2007. Antibody-based HIV-1 vaccines: recent developments

and future directions. PLoS Med. 4:e348.

43. Mulligan, M. J., G. D. Ritter, Jr., M. A. Chaikin, G. V.

Yamshchikov, P. Kumar, B. H. Hahn, R. W. Sweet, and R. W.

Compans. 1992. Human immunodeficiency virus type 2 envelope

glycoprotein: differential CD4 interactions of soluble gp120 versus

the assembled envelope complex. Virology 187:233–241.

Page 206: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

174

44. Myagkikh, M., S. Alipanah, P. D. Markham, J. Tartaglia, E.

Paoletti, R. C. Gallo, G. Franchini, and M. Robert-Guroff. 1996.

Multiple immunizations with attenuated poxvirus HIV type 2

recombinants and subunit boosts required for protection of rhesus

macaques. AIDS Res. Hum. Retrovir. 12: 985–992.

45. Patterson, L. J., B. Peng, A. G. Abimiku, K. Aldrich, L. Murty, P.

D. Markham, V. S. Kalyanaraman, W. G. Alvord, J. Tartaglia, G.

Franchini, and M. Robert-Guroff. 2000. Cross-protection in NYVAC-

HIV-1-immunized/ HIV-2-challenged but not in NYVAC-HIV-2-

immunized/SHIV-challenged rhesus macaques. AIDS 14:2445–2455.

46. Reeves, J. D., S. Hibbitts, G. Simmons, A. McKnight, J. M.

Azevedo-Pereira, J. Moniz-Pereira, and P. R. Clapham. 1999. Primary

human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-

negative cells via CCR5 and CXCR4: comparison with HIV-1 and

simian immunodeficiency virus and relevance to cell tropism in vivo.

J. Virol. 73:7795–7804.

47. Robert-Guroff, M., K. Aldrich, R. Muldoon, T. L. Stern, G. P.

Bansal, T. J. Matthews, P. D. Markham, R. C. Gallo, and G.

Franchini. 1992. Crossneutralization of human immunodeficiency

virus type 1 and 2 and simian immunodeficiency virus isolates. J.

Virol. 66:3602–3608.

48. Rodriguez, S. K., A. D. Sarr, A. MacNeil, S. Thakore-Meloni, A.

Gueye- Ndiaye, I. Traore, M. C. Dia, S. Mboup, and P. J. Kanki.

2007. Comparison of heterologous neutralizing antibody responses of

human immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected

Senegalese patients: distinct patterns of breadth and magnitude

distinguish HIV-1 and HIV-2 infections. J. Virol. 81:5331–5338.

49. Santra, S., H. X. Liao, R. Zhang, M. Muldoon, S. Watson, W.

Fischer, J. Theiler, J. Szinger, H. Balachandran, A. Buzby, D. Quinn,

R. J. Parks, C. Y. Tsao, A. Carville, K. G. Mansfield, G. N. Pavlakis, B.

K. Felber, B. F. Haynes, B. T. Korber, and N. L. Letvin. Mosaic

vaccines elicit CD8 T lymphocyte responses that confer enhanced

immune coverage of diverse HIV strains in monkeys. Nat. Med.

16:324–328.

50. Sarkar, G., and S. S. Sommer. 1990. The “megaprimer” method

of sitedirected mutagenesis. Biotechniques 8:404–407.

Page 207: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

175

51. Schneider, J. A., S. A. Alam, M. Ackers, B. Parekh, H. Y. Chen, P.

Graham, M. Gurwith, K. Mayer, and R. M. Novak. 2007. Mucosal

HIV-binding antibody and neutralizing activity in high-risk HIV-

uninfected female participants in a trial of HIV-vaccine efficacy. J.

Infect. Dis. 196:1637–1644.

52. Shi, Y., E. Brandin, E. Vincic, M. Jansson, A. Blaxhult, K.

Gyllensten, L. Moberg, C. Brostrom, E. M. Fenyo, and J. Albert.

2005. Evolution of human immunodeficiency virus type 2 coreceptor

usage, autologous neutralization, envelope sequence and

glycosylation. J. Gen. Virol. 86:3385–3396.

53. Taveira, N. C., F. Bex, A. Burny, D. Robertson, M. O. Ferreira,

and J. Moniz-Pereira. 1994. Molecular characterization of the env

gene from a non-syncytium-inducing HIV-2 isolate (HIV-2ALI). AIDS

Res. Hum. Retrovir. 10:223–224.

54. Traincard, F., M. A. Rey-Cuille, I. Huon, S. Dartevelle, J. C.

Mazie, and S. Benichou. 1994. Characterization of monoclonal

antibodies to human immunodeficiency virus type 2 envelope

glycoproteins. AIDS Res. Hum. Retrovir. 10:1659–1667.

55. Vogt, G., R. le Grand, B. Vaslin, F. Boussin, M. H. Auboyer, Y.

Riviere, P. Putkonen, P. Sonigo, M. P. Kieny, M. Girard, et al. 1995.

Heterologous HIV-2 challenge of rhesus monkeys immunized with

recombinant vaccinia viruses and purified recombinant HIV-2

proteins. Vaccine 13:202–208.

56. Wei, X., J. M. Decker, H. Liu, Z. Zhang, R. B. Arani, J. M. Kilby,

M. S. Saag, X. Wu, G. M. Shaw, and J. C. Kappes. 2002. Emergence

of resistant human immunodeficiency virus type 1 in patients

receiving fusion inhibitor (T-20) monotherapy. Antimicrob. Agents

Chemother. 46:1896–1905.

57. Wei, X., J. M. Decker, S. Wang, H. Hui, J. C. Kappes, X. Wu, J.

F. Salazar- Gonzalez, M. G. Salazar, J. M. Kilby, M. S. Saag, N. L.

Komarova, M. A. Nowak, B. H. Hahn, P. D. Kwong, and G. M. Shaw.

2003. Antibody neutralization and escape by HIV-1. Nature 422:307–

312.

58. Zhang, P. F., F. Cham, M. Dong, A. Choudhary, P. Bouma, Z.

Zhang, Y. Shao, Y. R. Feng, L. Wang, N. Mathy, G. Voss, C. C.

Broder, and G. V. Quinnan, Jr. 2007. Extensively cross-reactive anti-

Page 208: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

176

HIV-1 neutralizing antibodies induced by gp140 immunization. Proc.

Natl. Acad. Sci. U. S. A. 104:10193–10198

Page 209: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

177

CAPÍTULO VIII

Discussão Geral e Conclusões

Page 210: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

178

Page 211: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

179

Discussão Geral e Conclusões

Na infecção VIH-2 só uma minoria dos indivíduos infectados

desenvolve a SIDA. A carga viral plasmática e a taxa de depleção das

células T CD4 são significativamente mais baixas nos indivíduos

infectados por VIH-2 do que por VIH-1 [1-3]. Os estudos já realizados

sugerem que a resposta humoral e celular produzida pelos

indivíduos infectados por VIH-2 são mais eficazes no controlo da

replicação viral do que a desenvolvida pelos indivíduos infectados por

VIH-1 [4-11]. Neste contexto, o VIH-2 tem sido descrito como um

modelo natural de infecção atenuada por VIH de grande utilidade

para investigar as correlações imunológicas protectoras da infecção

VIH.

O estudo apresentado nesta tese teve como objectivo contribuir para

um melhor conhecimento da resposta humoral nas fases aguda e

crónica da infecção VIH-2. Primeiro, desenvolveu-se um novo teste

imunoenzimático (ELISA-HIV2) para determinar o potencial

antigénico e aplicação em diagnóstico de proteínas recombinantes

derivadas da glicoproteína de superfície gp125 e da proteína

transmembranar gp36 (Capítulo III). A resposta humoral contra o

VIH-2 foi analisada de forma qualitativa e quantitativa em 28

doentes com infecção crónica e duas crianças infectadas por via

perinatal durante um período aproximado de 4 anos. Avaliou-se a

concentração de anticorpos IgA e IgG total (resposta inespecífica) e

caracterizou-se a cinética, isotipo e avidez da resposta IgA e IgG

dirigida especificamente para as glicoproteínas gp36 e gp125

(Capítulo IV). Determinou-se o impacto dos anticorpos IgA e IgG na

evolução molecular das regiões C2, V3 e C3 da glicoproteína gp125

(Capítulo V). Caracterizou-se a dinâmica evolutiva da resposta

neutralizante autóloga e heteróloga na infecção VIH-2 (Capítulo VI).

Finalmente, avaliou-se a resposta neutralizante induzida por duas

proteínas recombinantes derivadas do invólucro do isolado primário

de referência VIH-2ALI em murganhos Balb/C (Capítulo VII).

O diagnóstico serológico da infecção VIH-2 baseia-se na detecção de

anticorpos para as proteínas do VIH-2. A especificidade da maioria

dos testes comerciais de diagnóstico serológico licenciados para a

infecção VIH-2 é inferior a 100% e a sensibilidade clínica varia

consideravelmente quando se testam diluições de amostras de

plasma positivas para VIH-2 [12]. A existência de reactividade entre

plasmas de VIH-1 e a glicoproteína transmembranar (gp36) do

invólucro do VIH-2 pode interferir com o diagnóstico da infecção por

VIH-2 [13-16]. A maioria dos antigénios recombinantes usados nos

Page 212: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

180

testes de diagnóstico serológicos tem origem em isolados de

laboratório, sobretudo do VIH-2ROD. A procura de novos antigénios

derivados de isolados VIH-2 primários é determinante para o

desenvolvimento de métodos de diagnóstico mais específicos e de

novas vacinas. Um dos primeiros objectivos deste trabalho foi

produzir por métodos recombinantes novos antigénios derivados das

regiões imunodominantes do invólucro do isolado primário de

referência do grupo A, o VIH-2ALI. As proteínas rgp36 e rpC2-C3

correspondentes, respectivamente, à região mais imunogénica da

gp36 e gp125 do VIH-2 [17, 18] foram purificadas e utilizadas no

desenvolvimento de um teste de ELISA (ELISA-VIH2) para detectar a

presença de anticorpos específicos das glicoproteínas do invólucro do

VIH-2 [16]. A avaliação do teste foi aferida com amostras de plasmas

positivas para VIH-2 e VIH-1, e plasmas de indivíduos saudáveis não

infectados por VIH. A especificidade do teste para os antigénios

rgp36 e rpC2-C3 foi superior à dos testes de serodiagnóstico

licenciados para o VIH-2, e da maioria dos testes mistos (testes

baseados em proteínas recombinantes e péptidos sintéticos) para

VIH-1/VIH-2, quando foram analisadas amostras negativas para VIH

[19-26]. A sensibilidade clínica (100%) obtida no teste ELISA-VIH2

com o antigénio rgp36 é idêntica à dos testes de ELISA comerciais e

aos desenvolvidos em laboratório que usam a gp36 como antigénio.

Contudo, os testes comerciais necessitam de usar maiores volumes

de plasma por reacção (50 a 200µl) comparado com o ELISA-VIH2

(1µl). Os resultados de sensibilidade e especificidade obtidos com a

rgp36 sugerem que o teste pode ser útil no serodiagnóstico da

infecção por VIH-2. Por outro lado, a forte antigenicidade da proteína

rgp36 em relação à rpC2-C3, sugere que o ectodomíno da gp36 é a

região antigénica imunodominante no invólucro do VIH-2, e está de

acordo com estudos anteriores que mostraram que as proteínas gp36

recombinantes provenientes de estirpes VIH-2 laboratoriais são

altamente imunogénicas [27, 28].

Ao invés da proteína rpC2-C3, em que trinta e uma das amostras

VIH-1 eram positivas com a rgp36 (reactividade quatro vezes inferior

à das amostras VIH-2), nenhuma das amostras VIH-1 apresentou

reactividade com o rpC2-C3. Estes resultados sugerem que o teste

pode ser útil para discriminar entre a infecção por VIH-1 e VIH-2 em

indivíduos com dupla serologia positiva. Para investigar esta

possibilidade, analisou-se por PCR e ELISA-VIH2 sete amostras de

plasma positivas para VIH-1 e VIH-2 (com base em testes serológicos

comerciais). Com base no teste de ELISA-VIH-2 e confirmado por

PCR verificou-se que quatro amostras eram positivas para VIH-2 e

três para VIH-1. Estes resultados sugerem que o teste pode ser útil

Page 213: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

181

para discriminar entre infecção por VIH-1 ou VIH-2 em pacientes

duplamente seroreactivos. Segundo dados do Núcleo de Vigilância

Laboratorial de Doenças Infecciosas do Instituto Nacional de Saúde,

I.P, a taxa de indivíduos infectados por VIH-1/VIH-2 é de 1,4%.

Tendo em atenção aos resultados obtidos com o teste e à taxa de

duplas infecções reportadas [16], seria importante testar mais

amostras de pacientes referenciados como duplamente infectados

para se poder determinar qual a taxa de duplas infecções em

Portugal.

A reactividade contra as duas glicoproteínas do invólucro do VIH é o

critério definido pela Organização Mundial de Saúde para a

confirmação por WB da infecção por VIH [29]. A avaliação do ELISA-

VIH2 como um teste de confirmação da infecção VIH-2 foi efectuado

com 56 amostras testadas previamente pelos testes, VIDAS VIH DUO

(teste de triagem), e New LAV Blot II (teste confirmatório), 51 das 56

amostras testadas apresentaram resultados positivas para VIH-2 e 5

apresentaram resultados indeterminadas. As 51 amostras

consideradas positivas em WB reagiram positivamente no teste

ELISA-VIH2, enquanto as cinco amostras indeterminadas

apresentaram resultados negativos no teste ELISA-VIH2. Quatro das

cinco amostras indeterminadas reagiram como amostras positivas

para VIH-1 no WB VIH-1 e no Peptilav 1 e 2. A outra amostra que

deu indeterminado, e que era positiva para VIH-1 no WB, foi

considerada positiva para VIH-1/VIH-2 no teste Peptilav 1-2. Em

conclusão, neste estudo demonstrámos: 1) a antigenicidade das

proteínas recombinantes, rgp36 e rpC2-C3; 2) que estas regiões são

imunodominantes nos pacientes VIH-2 e 3) que a elevada

sensibilidade e especificidade obtida com o teste ELISA-VIH2 poderia

constituir uma alternativa aos testes serológicos disponíveis para

diagnosticar e confirmar a infecção por VIH-2.

Os antigénios rpC2-C3 e rgp36 usados no teste ELISA-VIH2 foram

essenciais para a caracterização qualitativa e quantitativa da

resposta de anticorpos para a gp125 e gp36 em pacientes infectados

pelo VIH-2.

A hiperactivação dos linfócitos B e níveis elevados de

imunoglobulinas (hipergamaglobulinémia) são características

patogénicas das infecções crónicas persistentes e estão bem

caracterizadas nos indivíduos infectados por VIH-1 [30]. As

concentrações elevadas de anticorpos IgG (principalmente IgG1 e

IgG3) e IgA não específicas das proteínas do VIH-1 presentes no soro

são comuns nos indivíduos infectados e resultam de uma activação

policlonal das células B pelo VIH-1 [31]. Neste trabalho, a resposta

Page 214: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

182

humoral inespecífica foi analisada longitudinalmente em 28

pacientes VIH-2+ crónicos ao longo de 4 anos. Os resultados obtidos

sugerem que a activação inespecífica das células B também ocorre

na infecção VIH-2 crónica, mas só ao nível das células B secretoras

de IgG, uma vez que a concentração total de IgA no soro é idêntica à

dos indivíduos não infectados [32]. Esta diferença pode estar

relacionada com uma melhor preservação do sistema gastrointestinal

na infecção VIH-2. Contudo, um estudo recente sugere que a

translocação microbiana para o sangue periférico também ocorre nos

indivíduos infectados pelo VIH-2, contribuindo para a activação

imunitária tanto nos indivíduos infectados por VIH-1 como por VIH-2

[33]. Seria importante investigar qual o mecanismo que regula a

diferenciação e proliferação das células B produtoras de anticorpos

IgA na infecção por VIH-2.

Existem vários estudos que correlacionam a resposta humoral com o

ritmo de progressão da infecção VIH-1. Anticorpos anti-p24 estão

correlacionados com uma progressão mais lenta enquanto os

anticorpos anti-gp120 estão correlacionados com uma progressão

rápida [34-36]. Na infecção VIH-2 crónica não existem dados sobre o

papel da resposta humoral na progressão da infecção VIH-2. Neste

trabalho, a magnitude e a cinética da resposta IgA e IgG contra a

gp36 e a gp125 do invólucro do VIH-2 foram analisadas

longitudinalmente em 28 pacientes adultos positivos para VIH-2 e

duas crianças infectadas pelas mães. Nas duas crianças a

seroconversão para a gp36 ocorreu durante o primeiro ano de vida.

Na criança em que não houve progressão da infecção (paciente C2),

os níveis de anticorpos IgG anti-gp36 e gp125 eram semelhantes aos

observados nos pacientes adultos crónicos, mesmo num contexto de

declínio progressivo das células CD4. Em contrapartida, a criança

(paciente C1) que progrediu rapidamente para SIDA e faleceu não

produziu anticorpos anti-gp125. Uma resposta de anticorpos forte e

sustentada anti-gp125 na fase inicial da infecção pode ser

determinante na progressão da infecção. Por outro lado, uma

resposta humoral debilitada pode ter contribuído para o

desenvolvimento de isolados com fenótipo mais agressivo.

A presença de anticorpos IgG específicos para o antigénio

representativo da gp125 (rpC2-C3) também não foi detectada nos

pacientes 27 e 28. A região C2-V3-C3 dos isolados virais desses

pacientes apresentava um elevado número de aminoácidos alterados

quando comparadas com as regiões homólogas dos isolados dos

outros pacientes e com o antigénio rpC2-C3 utilizado no teste ELISA-

VIH2. A ausência de reactividade para a região C2-C3 nestes

pacientes pode ser consequência das alterações ocorridas

Page 215: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

183

principalmente nos determinantes antigénicos da região V3 dos

respectivos vírus [37, 38]. Á excepção de um paciente que produziu

exclusivamente IgA para a gp36, todos os outros produziram

anticorpos IgA que reagiram contra ambos os polipéptidos, C2-C3 e

gp36. Na infecção VIH-1 apenas uma fracção reduzida de pacientes

produzem anticorpos IgA anti-gp41 e / ou anti-gp120, estando esta

produção relacionada inversamente com o estádio da doença [39,

40]. Os nossos resultados confirmam a antigenicidade do ectodomíno

da gp36 na infecção VIH-2, e identificam pela primeira vez a região

C2-C3 como indutora de anticorpos IgA no soro. Constatou-se que a

região C2-C3 e a gp36 contêm epitopos que induzem anticorpos IgA,

o que, pode ser relevante para a produção de novos testes de

diagnóstico serológico para a infecção VIH-2 (por exemplo, testes

rápidos utilizando amostras de saliva).

A forte correlação entre os títulos de anticorpos IgG para a gp36 e

gp125 nos pacientes VIH-2 (P = 0.0027) sugere que as duas

proteínas são muito imunogénicas. No entanto, a resposta IgG foi

dirigida predominantemente para a gp36 em termos qualitativos

(avidez) e quantitativos (título e concentração). A gp36 também

induziu níveis mais elevados de todas as subclasses de IgG, ao invés

da gp125.

A IgG1 foi a subclasse mais produzida contra as duas glicoproteínas

do invólucro do VIH-2. Na infecção VIH-1, o anticorpo IgG3 foi a

segunda subclasse mais reactiva contra a gp36 em vez do IgG2 [41,

42]. A correlação inversa entre os níveis de anticorpos IgG2 anti-gp41

e a evolução clínica da SIDA observada na infecção VIH-1 sugere que

os anticorpos IgG2 podem ter um papel protectivo [43]. Na infecção

VIH-2 não encontrámos qualquer associação entre a resposta IgG1 e

IgG3 anti-gp36 e a progressão da doença, tendo como base a

depleção de células T CD4+. O que realmente observámos foi uma

correlação inversa significativa entre anticorpos IgG anti-C2-C3 e a

contagem de células T CD4+. Esta correlação também foi observada

numa das crianças estudada. Pode a diminuição de células T CD4+

estar associada com a resposta IgG anti-C2V3C3? Cavaleiro e

colaboradores sugerem que a região C2V3C3 do invólucro do VIH-2

exerce uma actividade imunosupressora sobre as células T CD4 e

CD8, e que pode estar associado com uma baixa taxa de activação

imunitária e com a reduzida perda de células T CD4+ observada na

maioria dos pacientes VIH-2 [44]. Os nossos resultados fornecem

apoio adicional para a função imunoprotectora da região C2V3C3 do

invólucro do VIH-2 durante a infecção, uma vez que a resposta de

anticorpos IgG anti-C2-C3 parece reflectir o estado imunológico e a

evolução clínica dos pacientes VIH-2. Neste contexto, pode dizer-se

Page 216: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

184

que se justificava investigar se a concentração de anticorpos IgG

para anti-C2-C3 poderia ser mais um marcador para monitorizar a

progressão da doença na infecção VIH-2.

O principal promotor da evolução molecular e fenotípica do VIH-1 é a

pressão selectiva exercida pela resposta imunitária humoral

(anticorpos neutralizantes) e pela resposta celular citotóxica [45-47].

A informação existente sobre este assunto no VIH-2 é muito limitada.

Com o objectivo de determinar, pela primeira vez, a taxa de evolução

molecular do VIH-2 in vivo e caracterizar os seus potenciais

determinantes, analisámos longitudinalmente as sequências

nucleotídicas e aminoacídicas das regiões C2, V3 e C3 de 18

pacientes recorrendo a métodos filogenéticos e moleculares (Capítulo

V).

Com excepção de um paciente, os valores de diversidade nucleotídica

observados nos pacientes estudados foram semelhantes aos

encontrados nos EC para o VIH-2, nos indivíduos VIH-1 LTNP com

cargas virais baixas e nos indivíduos VIH-1 com infecções crónicas

[48, 49]. A taxa de divergência nucleotídica nos pacientes estudados

foi bastante elevada quando comparada com os pacientes infectados

por VIH-1 (1.4% versus 0.27%). Estes resultados confirmados

posteriormente num maior número de doentes ao nível da região C2-

V3-C3 e da glicoproteína de superfície [50] sugerem uma replicação

activa do VIH-2 durante a fase crónica da infecção, podendo esta

ocorrer no tecido linfoíde, uma vez que a carga proviral é maior nas

células mononucleadas dos nódulos linfáticos do que nas células do

sangue periférico [51, 52]. Novos estudos que analisem a divergência

nucleotídica na infecção VIH-2 devem incluir também a população

viral presente no tecido linfoíde e noutros compartimentos celulares

(por exemplo, do trato gastrointestinal).

Apesar das taxas elevadas de divergência nucleotídica, a maioria das

substituições foram de natureza sinónima e diminuíram ao longo do

tempo na maioria dos pacientes. Os resultados obtidos estão de

acordo com estudos anteriores sobre a região C2-V3-C3 e que

indicam que, globalmente, o gene env do VIH-2 está sob selecção

negativa ou purificadora [53]. Verificámos ainda que foram as regiões

C2 e C3 que evoluíram a taxas mais elevadas ao nível dos

nucleótidos e dos aminoácidos, contribuindo significativamente para

a elevada taxa de divergência nucleotídica observada em cada

paciente. A conservação da região V3 in vivo implica que, tanto no

VIH-2 como no VIH-1, esta região está submetida a fortes restrições

estruturais e conformacionais, relacionadas provavelmente com as

Page 217: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

185

funções cruciais que desempenha ao nível da ligação aos co-

receptores e entrada nas células [54, 55].

Será que a rápida evolução das regiões C2 e C3 resulta da adaptação

do VIH-2 à pressão imunitária do hospedeiro? A maioria dos

aminoácidos que estão sob selecção positiva concentra-se na região

C2, incluindo dois aminoácidos (posições 267 e 270) que estão sob

forte selecção positiva em todos os pacientes. Além disso, a selecção

nestas duas posições persistiu durante pelo menos dois anos na

maioria dos pacientes, o que indica que estiveram continuamente

sob pressão imunológica in vivo. No VIH-1, os aminoácidos

equivalentes definem um epitopo para as células T citotóxicas e não

estão sob selecção positiva, uma vez que se encontram localizados na

face oculta da gp120 [49]. No VIH-2, a maioria dos locais de

glicosilação concentra-se na C2 e na V3 e mantêm-se conservados ao

longo do tempo que é indicativo de uma evolução convergente e

sugere restrições inesperadas à diversidade do invólucro do VIH-2.

MacNeil e colaboradores [56] encontraram uma associação directa

entre as taxas de diversificação do VIH-2 e as taxas do declínio das

células T CD4+ em indivíduos seguidos durante mais de uma década

no Senegal. Nos nossos resultados não encontrámos nenhuma

correlação entre a contagem de células T CD4+ e a diversidade

nucleotídica, a entropia dos aminoácidos, a divergência nucleotídica,

o rácio dN/dS e o número de locais seleccionados positivamente.

Estes resultados podem estar relacionados com um curto período de

acompanhamento dos pacientes. No entanto, observámos uma

relação inversa entre a diversidade e evolução dos vírus e a resposta

de anticorpos específicos da C2V3C3 ao longo do tempo. A forte

resposta de anticorpos IgG específicos da C2V3C3 está

significativamente associada com uma menor variabilidade viral ao

nível dos nucleótidos e dos aminoácidos e com uma menor

frequência de substituições sinónimas. Observámos também uma

correlação inversa significativa entre a resposta IgA e a glicosilação

da região C3 da gp125. No VIH-1, o aumento ou alteração dos locais

de glicosilação na gp120 está associado com o escape do vírus aos

anticorpos IgG neutralizantes [57]. Assim, os nossos resultados

sugerem que a região C3 do VIH-2 poderá conter epitopos

neutralizantes para os anticorpos IgA.

Na infecção VIH-1 a maioria dos pacientes desenvolve AcNT contra

vírus autólogos, mas à medida que a infecção progride os novos

isolados não são neutralizados talvez devido ao desenvolvimento de

vírus autólogos resistentes muito rapidamente. Os invólucros dos

isolados autólogos resistentes à neutralização, em geral, sofreram

uma selecção positiva maior, um aumento da gp160 e do número de

Page 218: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

186

locais de glicosilação [47, 58]. Os anticorpos neutralizantes autólogos

estão presentes em doentes crónicos não progressores, evidenciando

o papel que têm no controlo da replicação viral [59]. Os anticorpos

neutralizantes heterólogos de largo espectro surgem apenas em

alguns pacientes ao fim do primeiro ano após a infecção e parece

haver uma associação entre a potência e o espectro destes anticorpos

com o tempo de infecção, a carga viral plasmática e a avidez de

ligação ao Env [60, 61]. No caso da infecção VIH-2 os estudos são

limitados e sugerem que a resposta neutralizante autóloga é

frequente nos doentes VIH-2 [62] e que a resposta heteróloga é de

maior espectro, mas de menor potência do que no VIH-1 [4, 63].

Contudo, apenas um estudo, utilizando um número muito pequeno

de doentes, analisou a dinâmica evolutiva da resposta neutralizante

na infecção VIH-2 e correlacionou-a com a replicação e evolução do

vírus e a progressão da doença. Neste estudo não se detectou escape

à neutralização pelo VIH-2 [5].

O objectivo do Capítulo 6 foi caracterizar a dinâmica da resposta

neutralizante na infecção VIH-2 crónica e relaciona-la com a

evolução viral e a evolução da doença. Neste contexto, analisámos

longitudinalmente ao longo de 3-4 anos a resposta neutralizante

dirigida contra isolados virais primários autólogos e heterólogos num

grupo de 28 pacientes positivos para VIH-2. A mediana da contagem

de células T CD4+, a idade dos pacientes e os anos de infecção após

o diagnóstico foram respectivamente de 363 células (variando entre

15 e 1523 células), 48 anos (variação entre 25 e 77 anos) e 8 anos

após o diagnóstico da infecção (variação entre 2 e 19 anos). Apenas

dois pacientes tinham carga viral detectável. Os vírus isolados de

cada paciente foram caracterizados quanto à utilização de

coreceptores e a sequência aminoacídica da região C2, V3 e C3 dos

vários isolados foi determinada.

A presença de anticorpos IgG com actividade neutralizante específica

para isolados autólogos foi detectada em apenas 6 dos 12 pacientes

(50% dos pacientes), todos eles infectados com isolados de fenótipo

R5. Estes resultados mostram que o escape à neutralização é

frequente na infecção crónica por VIH-2. Tendo em conta os dados

sobre a resposta neutralizante heteróloga obtidos em estudos

anteriores e comparando com os nossos resultados podemos sugerir

que a resposta neutralizante heteróloga tem realmente uma

amplitude maior na infecção VIH-2 do que na infecção VIH-1. É

importante realçar que, há excepção e um doente, todos os outros

desenvolveram AcNT IgG contra isolados heterólogos de fenótipo R5

mas não contra isolados X4. O facto de não se ter detectado AcNT

Page 219: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

187

contra isolados X4 sugere que o escape do VIH-2 à neutralização

poderá estar associado a alterações no tropismo. Na infecção VIH-1,

os poucos estudos existentes sobre este assunto sugerem que não há

uma relação entre a neutralização e a utilização de coreceptores [64-

66].

Observou-se uma correlação inversa entre a resposta neutralizante

heteróloga e o título de anticorpos de ligação e a avidez apenas para

o polipéptido rpC2-C3. A análise das sequências aminoacídicas das

regiões C2, V3 e C3 do Env dos vírus R5 sensíveis à neutralização

(R5-SN) e dos vírus X4 resistentes à neutralização (X4-RN) revelou

diferenças significativas na região V3. Os vírus X4-RN tinham a

região V3 mais longa, (inserções entre 1 e 3 aminoácidos) e um

número maior de aminoácidos carregados (maioria arginina). A

estrutura conformacional da região V3 dos isolados R5-SN é bem

diferente dos X4-RN.

Um dos objectivos no desenvolvimento de uma vacina para o VIH é a

produção de anticorpos neutralizantes que neutralizem todos os

subtipos virais [67, 68]. Contudo, as várias estratégias desenvolvidas

até hoje para induzir AcNT contra isolados VIH-1 ou VIH-2 primários

têm-se revelado ineficazes [69]. A principal dificuldade tem sido o

desenho e a produção de imunogénios que induzam a produção de

títulos elevados de anticorpos neutralizantes de largo espectro [70,

71]. Deste modo, a produção de novos imunogénios é uma das

prioridades no desenvolvimento de uma vacina para o VIH. O

trabalho inicial deste estudo mostrou que os indivíduos infectados

por VIH-2 produzem níveis elevados de anticorpos que têm como alvo

a região extracelular da gp36, a gp125 e, dentro desta, a região C2-

V3-C3 [16, 32].

Posteriormente, mostramos in vitro que os anticorpos testado são de

largo espectro neutralizante e que as regiões C2, V3 e C3 evoluem a

uma taxa muito elevada nos pacientes VIH-2 possivelmente em

resposta à pressão selectiva imposta pelos anticorpos neutralizantes

[72, 73]. Em conjunto, estes resultados sugerem que a resposta

neutralizante anti-C2-V3-C3 tem um papel determinante no controlo

da replicação viral in vivo. Assim, na parte final deste trabalho

testámos se a região C2-V3-C3 seria um bom imunogénio vacinal.

Verificámos que os murganhos imunizados só com a proteína rpC2-

C3 não desenvolveram uma resposta neutralizante. Contudo,

murganhos imunizados primeiro com vírus da vacina recombinante

exprimindo a proteína gp125t e depois com a proteína rpC2-C3

desenvolveram uma resposta neutralizante de largo espectro e

superior à que ocorre numa infecção normal por VIH-2 [4, 74]. Estes

Page 220: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

188

resultados mostraram que a proteína rpC2-C3 é um bom antigénio

de reforço, e que a imunização primária com a gp125t glicosilada

expressa por um vector viral replicativo é fundamental para a

indução de uma forte resposta neutralizante. Verificámos que todos

os isolados VIH-2 primários neutralizados utilizavam o coreceptor

CCR5. O fenótipo CCR5 é uma característica comum à maioria dos

isolados VIH-2 encontrados em pacientes assintomáticos [75] e nos

isolados VIH que são transmitidos [76]. A sequência de aminoácidos

e a estrutura da região V3 divergiram muito pouco do isolado vacinal

que também usa o CCR5 (VIH-2ALI). Pelo contrário, os vírus com

fenótipo X4 foram resistentes à neutralização e as regiões V3

divergiam significativamente em relação à do ALI na sequência de

aminoácidos, na carga total (carga superior), tamanho (maior) e

conformação estrutural. Estes resultados sugerem: 1) que o alvo dos

anticorpos neutralizantes induzidos nos murganhos está localizado

na região V3 e é de natureza conformacional; 2) a existência de uma

potencial correlação entre a utilização de co-receptores e a resposta

neutralizante e 3) novas abordagens para a produção de uma vacina

para o VIH-2 e podem ser essenciais também para a produção de

uma vacina para o VIH-1.

Em conclusão, os resultados apresentados nesta tese sugerem que

as glicoproteínas do invólucro do VIH-2, em comparação com as do

VIH-1, são mais eficazes na estimulação e manutenção de respostas

imunológicas humorais mais consistentes e com menor variabilidade

entre a maioria dos indivíduos infectados por VIH-2, permitindo

deste modo desenvolver novos antigénios essências para o

diagnóstico, prevenção e progressão da infecção por VIH-2.

Referências

[1] Andersson S, Norrgren H, da Silva Z, et al. Plasma viral load in

HIV-1 and HIV-2 singly and dually infected individuals in Guinea-

Bissau, West Africa: significantly lower plasma virus set point in

HIV-2 infection than in HIV-1 infection. Arch.Intern.Med.

2000;160(21):3286-93.

[2] Jaffar S, Grant AD, Whitworth J, Smith PG, Whittle H. The

natural history of HIV-1 and HIV-2 infections in adults in Africa: a

literature review. Bull.World Health Organ 2004;82(6):462-9.

[3] Popper SJ, Sarr AD, Travers KU, et al. Lower human

immunodeficiency virus (HIV) type 2 viral load reflects the difference

Page 221: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

189

in pathogenicity of HIV-1 and HIV-2. J.Infect.Dis.

1999;180(4):1116-21.

[4] Rodriguez SK, Sarr AD, MacNeil A, et al. Comparison of

heterologous neutralizing antibody responses of human

immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected

Senegalese patients: distinct patterns of breadth and magnitude

distinguish HIV-1 and HIV-2 infections. J.Virol. 2007;81(10):5331-

8.

[5] Shi Y, Brandin E, Vincic E, et al. Evolution of human

immunodeficiency virus type 2 coreceptor usage, autologous

neutralization, envelope sequence and glycosylation. J.Gen.Virol.

2005;86(Pt 12):3385-96.

[6] Rowland-Jones S. Protective immunity against HIV infection:

lessons from HIV-2 infection. Future.Microbiol. 2006;1:427-33.

[7] Rowland-Jones SL, Whittle HC. Out of Africa: what can we learn

from HIV-2 about protective immunity to HIV-1? Nat.Immunol.

2007;8(4):329-31.

[8] Sousa AE, Chaves AF, Loureiro A, Victorino RM. Comparison of

the frequency of interleukin (IL)-2-, interferon-gamma-, and IL-4-

producing T cells in 2 diseases, human immunodeficiency virus

types 1 and 2, with distinct clinical outcomes. J.Infect.Dis.

2001;184(5):552-9.

[9] Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z,

Victorino RM. CD4 T cell depletion is linked directly to immune

activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly

to the viral load. J.Immunol. 2002;169(6):3400-6.

[10] Foxall RB, Cortesao CS, Albuquerque AS, Soares RS, Victorino

RM, Sousa AE. Gag-specific CD4+ T-cell frequency is inversely

correlated with proviral load and directly correlated with immune

activation in infection with human immunodeficiency virus type 2

(HIV-2) but not HIV-1. J.Virol. 2008;82(19):9795-9.

[11] Leligdowicz A, Yindom LM, Onyango C, et al. Robust Gag-

specific T cell responses characterize viremia control in HIV-2

infection. J.Clin.Invest 2007;117(10):3067-74.

Page 222: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

190

[12] Ly TD, Martin L, Daghfal D, et al. Seven human

immunodeficiency virus (HIV) antigen-antibody combination assays:

evaluation of HIV seroconversion sensitivity and subtype detection.

J.Clin.Microbiol. 2001;39(9):3122-8.

[13] Weiss RA, Clapham PR, Weber JN, et al. HIV-2 antisera cross-

neutralize HIV-1. AIDS 1988;2(2):95-100.

[14] Robert-Guroff M, Aldrich K, Muldoon R, et al. Cross-

neutralization of human immunodeficiency virus type 1 and 2 and

simian immunodeficiency virus isolates. J.Virol. 1992;66(6):3602-8.

[15] Nyambi PN, Willems B, Janssens W, et al. The neutralization

relationship of HIV type 1, HIV type 2, and SIVcpz is reflected in the

genetic diversity that distinguishes them. AIDS

Res.Hum.Retroviruses 1997;13(1):7-17.

[16] Marcelino JM, Barroso H, Goncalves F, et al. Use of a new dual-

antigen enzyme-linked immunosorbent assay to detect and

characterize the human antibody response to the human

immunodeficiency virus type 2 envelope gp125 and gp36

glycoproteins. J.Clin.Microbiol. 2006;44(2):607-11.

[17] Huang ML, Essex M, Lee TH. Localization of immunogenic

domains in the human immunodeficiency virus type 2 envelope.

J.Virol. 1991;65(9):5073-9.

[18] Chiodi F, Bjorling E, Samuelsson A, Norrby E. Antigenic and

immunogenic sites of HIV-2 glycoproteins. Chem.Immunol.

1993;56:61-77.

[19] Andersson S, da Silva Z, Norrgren H, Dias F, Biberfeld G. Field

evaluation of alternative testing strategies for diagnosis and

differentiation of HIV-1 and HIV-2 infections in an HIV-1 and HIV-2-

prevalent area. AIDS 1997;11(15):1815-22.

[20] Benitez J, Palenzuela D, Rivero J, Gavilondo JV. A recombinant

protein based immunoassay for the combined detection of antibodies

to HIV-1, HIV-2 and HTLV-I. J.Virol.Methods 1998;70(1):85-91.

[21] Galli RA, Castriciano S, Fearon M, et al. Performance

characteristics of recombinant enzyme immunoassay to detect

antibodies to human immunodeficiency virus type 1 (HIV-1) and HIV-

Page 223: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

191

2 and to measure early antibody responses in seroconverting

patients. J.Clin.Microbiol. 1996;34(4):999-1002.

[22] Gonzalez L, Boyle RW, Zhang M, et al. Synthetic-peptide-based

enzyme-linked immunosorbent assay for screening human serum or

plasma for antibodies to human immunodeficiency virus type 1 and

type 2. Clin.Diagn.Lab Immunol. 1997;4(5):598-603.

[23] Kannangai R, Ramalingam S, Prakash KJ, et al. A peptide

enzyme linked immunosorbent assay (ELISA) for the detection of

human immunodeficiency virus type-2 (HIV-2) antibodies: an

evaluation on polymerase chain reaction (PCR) confirmed samples.

J.Clin.Virol. 2001;22(1):41-6.

[24] Manocha M, Chitralekha KT, Thakar M, Shashikiran D,

Paranjape RS, Rao DN. Comparing modified and plain peptide linked

enzyme immunosorbent assay (ELISA) for detection of human

immunodeficiency virus type-1 (HIV-1) and type-2 (HIV-2) antibodies.

Immunol.Lett. 2003;85(3):275-8.

[25] Simon F, Souquiere S, Damond F, et al. Synthetic peptide

strategy for the detection of and discrimination among highly

divergent primate lentiviruses. AIDS Res.Hum.Retroviruses

2001;17(10):937-52.

[26] Thorstensson R, Andersson S, Lindback S, et al. Evaluation of

14 commercial HIV-1/HIV-2 antibody assays using serum panels of

different geographical origin and clinical stage including a unique

seroconversion panel. J.Virol.Methods 1998;70(2):139-51.

[27] Zuber M, Samuel KP, Lautenberger JA, Kanki PJ, Papas TS.

Bacterially produced HIV-2 env polypeptides specific for

distinguishing HIV-2 from HIV-1 infections. AIDS

Res.Hum.Retroviruses 1990;6(4):525-34.

[28] Schulz TF, Oberhuber W, Hofbauer JM, et al. Recombinant

peptides derived from the env-gene of HIV-2 in the serodiagnosis of

HIV-2 infections. AIDS 1989;3(3):165-72.

[29] AIDS: proposed WHO criteria for interpreting western blot assays

for HIV-1, HIV-2, and HTLV-I/HTLV-II. Bull.World Health Organ

1991;69(1):127-3.

Page 224: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

192

[30] Swingler S, Zhou J, Swingler C, et al. Evidence for a pathogenic

determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS.

Cell Host.Microbe 2008;4(1):63-76.

[31] Abelian A, Burling K, Easterbrook P, Winter G.

Hyperimmunoglobulinemia and rate of HIV type 1 infection

progression. AIDS Res.Hum.Retroviruses 2004;20(1):127-8.

[32] Marcelino JM, Nilsson C, Barroso H, et al. Envelope-specific

antibody response in HIV-2 infection: C2V3C3-specific IgG response

is associated with disease progression. AIDS 2008;22(17):2257-65.

[33] Nowroozalizadeh S, Mansson F, da Silva Z, et al. Microbial

translocation correlates with the severity of both HIV-1 and HIV-2

infections. J.Infect.Dis. 2010;201(8):1150-4.

[34] Forthal DN, Gilbert PB, Landucci G, Phan T. Recombinant gp120

vaccine-induced antibodies inhibit clinical strains of HIV-1 in the

presence of Fc receptor-bearing effector cells and correlate inversely

with HIV infection rate. J.Immunol. 2007;178(10):6596-603.

[35] Trkola A, Kuster H, Leemann C, et al. Humoral immunity to

HIV-1: kinetics of antibody responses in chronic infection reflects

capacity of immune system to improve viral set point. Blood

2004;104(6):1784-92.

[36] Tang S, Zhao J, Wang A, et al. Characterization of immune

responses to capsid protein p24 of human immunodeficiency virus

type 1 and implications for detection. Clin.Vaccine Immunol.

2010;17(8):1244-51.

[37] McKnight A, Shotton C, Cordell J, Jones I, Simmons G, Clapham

PR. Location, exposure, and conservation of neutralizing and

nonneutralizing epitopes on human immunodeficiency virus type 2

SU glycoprotein. J.Virol. 1996;70(7):4598-606.

[38] Sourial S, Nilsson C. HIV-2 neutralization by intact V3-specific

Fab fragments. Virol.J. 2008;5:96

[39] Cartry O, Moja P, Quesnel A, Pozzetto B, Lucht FR, Genin C.

Quantification of IgA and IgG and specificities of antibodies to viral

proteins in parotid saliva at different stages of HIV-1 infection.

Clin.Exp.Immunol. 1997;109(1):47-53.

Page 225: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

193

[40] Mestecky J, Jackson S, Moldoveanu Z, et al. Paucity of antigen-

specific IgA responses in sera and external secretions of HIV-type 1-

infected individuals. AIDS Res.Hum.Retroviruses 2004;20(9):972-

88.

[41] Ngo-Giang-Huong N, Candotti D, Goubar A, et al. HIV type 1-

specific IgG2 antibodies: markers of helper T cell type 1 response and

prognostic marker of long-term nonprogression. AIDS

Res.Hum.Retroviruses 2001;17(15):1435-46.

[42] Forthal DN, Landucci G, Bream J, Jacobson LP, Phan TB,

Montoya B. FcgammaRIIa genotype predicts progression of HIV

infection. J.Immunol. 2007;179(11):7916-23.

[43] Lal RB, Heiba IM, Dhawan RR, Smith ES, Perine PL. IgG

subclass responses to human immunodeficiency virus-1 antigens:

lack of IgG2 response to gp41 correlates with clinical manifestation

of disease. Clin.Immunol.Immunopathol. 1991;58(2):267-77.

[44] Cavaleiro R, Sousa AE, Loureiro A, Victorino RM. Marked

immunosuppressive effects of the HIV-2 envelope protein in spite of

the lower HIV-2 pathogenicity. AIDS 2000;14(17):2679-86.

[45] O'Connell KA, Brennan TP, Bailey JR, Ray SC, Siliciano RF,

Blankson JN. Control of HIV-1 in elite suppressors despite ongoing

replication and evolution in plasma virus. J.Virol.

2010;84(14):7018-28.

[46] Bailey JR, Brennan TP, O'Connell KA, Siliciano RF, Blankson JN.

Evidence of CD8+ T-cell-mediated selective pressure on human

immunodeficiency virus type 1 nef in HLA-B*57+ elite suppressors.

J.Virol. 2009;83(1):88-97.

[47] Bunnik EM, Pisas L, van Nuenen AC, Schuitemaker H.

Autologous neutralizing humoral immunity and evolution of the viral

envelope in the course of subtype B human immunodeficiency virus

type 1 infection. J.Virol. 2008;82(16):7932-41.

[48] Bello G, Casado C, Sandonis V, et al. Plasma viral load threshold

for sustaining intrahost HIV type 1 evolution. AIDS

Res.Hum.Retroviruses 2007;23(10):1242-50.

Page 226: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

194

[49] Joos B, Fischer M, Schweizer A, et al. Positive in vivo selection of

the HIV-1 envelope protein gp120 occurs at surface-exposed regions.

J.Infect.Dis. 2007;196(2):313-20.

[50] Skar H, Borrego P, Wallstrom TC, et al. HIV-2 genetic evolution

in patients with advanced disease is faster than that in matched

HIV-1 patients. J.Virol. 2010;84(14):7412-5.

[51] Jobe O, Ariyoshi K, Marchant A, et al. Proviral load and immune

function in blood and lymph node during HIV-1 and HIV-2 infection.

Clin.Exp.Immunol. 1999;116(3):474-8.

[52] Gomes P, Taveira NC, Pereira JM, Antunes F, Ferreira MO,

Lourenco MH. Quantitation of human immunodeficiency virus type 2

DNA in peripheral blood mononuclear cells by using a quantitative-

competitive PCR assay. J.Clin.Microbiol. 1999;37(2):453-6.

[53] Choisy M, Woelk CH, Guegan JF, Robertson DL. Comparative

study of adaptive molecular evolution in different human

immunodeficiency virus groups and subtypes. J.Virol.

2004;78(4):1962-70.

[54] Isaka Y, Sato A, Miki S, et al. Small amino acid changes in the

V3 loop of human immunodeficiency virus type 2 determines the

coreceptor usage for CXCR4 and CCR5. Virology 1999;264(1):237-

43.

[55] Delobel P, Nugeyre MT, Cazabat M, et al. Population-based

sequencing of the V3 region of env for predicting the coreceptor

usage of human immunodeficiency virus type 1 quasispecies.

J.Clin.Microbiol. 2007;45(5):1572-80.

[56] MacNeil A, Sankale JL, Meloni ST, Sarr AD, Mboup S, Kanki P.

Long-term intrapatient viral evolution during HIV-2 infection.

J.Infect.Dis. 2007;195(5):726-33.

[57] Pantophlet R, Burton DR. GP120: target for neutralizing HIV-1

antibodies. Annu.Rev.Immunol. 2006;24:739-69.

[58] Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution

of the neutralizing antibody response to HIV type 1 infection.

Proc.Natl.Acad.Sci.U.S.A 2003;100(7):4144-9.

Page 227: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

195

[59] Mahalanabis M, Jayaraman P, Miura T, et al. Continuous viral

escape and selection by autologous neutralizing antibodies in drug-

naive human immunodeficiency virus controllers. J.Virol.

2009;83(2):662-72.

[60] Gray ES, Moore PL, Choge IA, et al. Neutralizing antibody

responses in acute human immunodeficiency virus type 1 subtype C

infection. J.Virol. 2007;81(12):6187-96.

[61] Sather DN, Armann J, Ching LK, et al. Factors associated with

the development of cross-reactive neutralizing antibodies during

human immunodeficiency virus type 1 infection. J.Virol.

2009;83(2):757-69.

[62] Bjorling E, Scarlatti G, von Gegerfelt A, et al. Autologous

neutralizing antibodies prevail in HIV-2 but not in HIV-1 infection.

Virology 1993;193(1):528-30.

[63] Lizeng Q, Skott P, Sourial S, et al. Serum immunoglobulin A

(IgA)-mediated immunity in human immunodeficiency virus type 2

(HIV-2) infection. Virology 2003;308(2):225-32.

[64] Lacasse RA, Follis KE, Moudgil T, et al. Coreceptor utilization by

human immunodeficiency virus type 1 is not a primary determinant

of neutralization sensitivity. J.Virol. 1998;72(3):2491-5.

[65] McKnight A, Clapham PR. Immune escape and tropism of HIV.

Trends Microbiol. 1995;3(9):356-61.

[66] McKnight A, Weiss RA, Shotton C, Takeuchi Y, Hoshino H,

Clapham PR. Change in tropism upon immune escape by human

immunodeficiency virus. J.Virol. 1995;69(5):3167-70.

[67] Sather DN, Stamatatos L. Epitope specificities of broadly

neutralizing plasmas from HIV-1 infected subjects. Vaccine 2010;28

Suppl 2:B8-12.

[68] Sather DN, Armann J, Ching LK, et al. Factors associated with

the development of cross-reactive neutralizing antibodies during

human immunodeficiency virus type 1 infection. J.Virol.

2009;83(2):757-69.

Page 228: Universidade de Lisboa Faculdade de Medicina de Lisboarepositorio.ul.pt/bitstream/10451/3795/1/ulsd060913_td_José... · correlação directa entre o título de AcNT e a replicação

196

[69] Montefiori D, Sattentau Q, Flores J, Esparza J, Mascola J.

Antibody-based HIV-1 vaccines: recent developments and future

directions. PLoS.Med. 2007;4(12):e348

[70] Walker LM, Phogat SK, Chan-Hui PY, et al. Broad and potent

neutralizing antibodies from an African donor reveal a new HIV-1

vaccine target. Science 2009;326(5950):285-9.

[71] Trkola A, Kuster H, Rusert P, et al. In vivo efficacy of human

immunodeficiency virus neutralizing antibodies: estimates for

protective titers. J.Virol. 2008;82(3):1591-9.

[72] Borrego P, Marcelino JM, Rocha C, et al. The role of the humoral

immune response in the molecular evolution of the envelope C2, V3

and C3 regions in chronically HIV-2 infected patients. Retrovirology.

2008;5:78

[73] Skar H, Borrego P, Wallstrom TC, et al. HIV-2 genetic evolution

in patients with advanced disease is faster than that in matched

HIV-1 patients. J.Virol. 2010;84(14):7412-5.

[74] Marcelino JM, Novo C, Pereira JM, Picotez F, Clemente A, Taveira

N. Production and characterization of a mouse monoclonal antibody

against the Gag p26 protein of human immunodeficiency virus type

2: identification of a new antigenic epitope. AIDS

Res.Hum.Retroviruses 2001;17(13):1279-83.

[75] Blaak H, Boers PH, Gruters RA, Schuitemaker H, van der Ende

ME, Osterhaus AD. CCR5, GPR15, and CXCR6 are major coreceptors

of human immunodeficiency virus type 2 variants isolated from

individuals with and without plasma viremia. J.Virol.

2005;79(3):1686-700.

[76] Keele BF, Giorgi EE, Salazar-Gonzalez JF, et al. Identification

and characterization of transmitted and early founder virus

envelopes in primary HIV-1 infection. Proc.Natl.Acad.Sci.U.S.A

2008;105(21):7552-7.