Transcript
Page 1: Manual de Experimentacao Agraria

UNIVERSIDADE EDUARDO MONDLANE

Manual Experimentação Agrária

Gilead Mlay, Prof. Associado, Departamento de Produção e Protecção Vegetal, Faculdade de Agronomia e Engenharia Florestal

Sérgio Dista, Assistente Estagiário, Departamento de Matemática e Informática, Faculdade de Ciências

e Inácio C. Maposse, Prof. Auxiliar, Departamento de Produção e Protecção Vegetal, Faculdade de Agronomia e Engenharia Florestal

Page 2: Manual de Experimentacao Agraria

Experimentação Agrária

CAPITULO I: INTRODUÇÃO

Experimento é um inquérito planeado para obter factos novos ou para confirmar resultados de estudos prévios. O objectivo final da experimentação é a produção de informação que pode ser usada na tomada de decisões. O problema com experimentos biológicos é a existência de grande variação que é inerente às nas unidades experimentais. Esta variação incontrolável influencia os efeitos experimentais que se pretende estudar. Exemplo: Ensaios para comparar variedades da mesma cultura (ex: variedades de milho). Para fazer a comparação, a área experimental é dividida em parcelas, e sementes das variedades são semeadas em mais de uma parcela por variedade. No fim do experimento, podemos fazer comparações das variedades com base em variáveis medidas. Contudo, experiência mostra que quando a mesma variedade é produzida em todas as parcelas existirá ainda a variação da produção entre parcelas. As características principais desta variação são:

i. Parcelas vizinhas têm resultados mais semelhantes do que parcelas distantes (afastadas). ii. Pode existir um gradiente de factores de crescimento(ex: fertilidade do solo) que vai criar

diferenças na expressão das variáveis medidas nas parcelas. iii. Se o mesmo ensaio for repetido em anos diferentes ou em campos diferentes, pode haver

mudanças significativas na produção média. Com a situação acima referida, coloca-se a questão: como podemos planificar um experimento de modo a ser possível separar os efeitos experimentais da variação incontrolável? Como podemos analisar os dados do ensaio de modo que possamos tirar conclusões, e/ou decisões válidas? Uma abordagem científica de experimentação inclui os seguintes elementos:

i. O Plano de Pesquisa: a. Reconhecimento que existe um problema b. Formulação do problema. Precisa de identificar as causas principais do problema c. Os objectivos de pesquisa. O que é que o investigador pretende estudar e porquê?

ii. Escolha de factores e seus níveis iii. Especificação de variáveis a medir iv. Definição do espaço de inferência para o experimento v. Escolha das unidades experimentais vi. Escolha de delineamento experimental vii. Colocação aleatória dos tratamentos às unidades experimentais viii. Esboço da análise que corresponde ao delineamento escolhido, incluindo o modelo

estatístico que é a base de ANOVA ix. Colecção de dados x. Análise de dados xi. Interpretação de Resultados e Conclusões

Manual de Experimentação Agrária 2

Page 3: Manual de Experimentacao Agraria

Experimentação Agrária

Uma proposta de pesquisa (A Research Proposal) 1. Introdução

Uma descrição breve sobre o assunto de pesquisa, incluindo antecedentes Definição do problema e breve revisão da literatura sobre o mesmo Objectivos da pesquisa Questões principais da pesquisa

2. Revisão bibliográfica detalhada

Qual é estado de conhecimento sobre o problema de pesquisa? (Aspectos teóricos/ metodológicos e empíricos)

3. Metodologia

Teoria (Quadro teórico ou Quadro Conceptual) Delineamento do estudo incluindo materiais Variáveis que serão medidas Métodos de análise

4. Calendário das actividades 5. Orçamento 6. Lista de Referências Os objectivos desta disciplina são os de estudar:

(i) princípios básicos para planificar experimentos biológicos; (ii) delineamento simples com muitas aplicações na agricultura e silvicultura; (iii) métodos de análise de dados na base dos delineamentos em (ii); (iv) interpretação de resultados de análise estatística.

Manual de Experimentação Agrária 3

Page 4: Manual de Experimentacao Agraria

Experimentação Agrária

CAPITULO II: CONSIDERAÇÕES BÁSICAS NA EXPERIMENTAÇÃO

Definições de alguns termos (a) Um experimento é um inquérito planeado para obtenção de novos factos ou para confirmar resultados de estudos prévios e para gerar informações a serem usadas na tomada de decisões. Exemplo:

recomendação de uma nova variedade de milho; métodos químicos para tratamento de madeira recomendação de fertilizantes para uso numa cultura recomendação de uma dieta para uma classe de animais.

Quer em agricultura, quer em florestas, os experimentos são conduzidos para responder a questões chave cuja resolução se afigura necessária para incrementar a produção e/ou assegurar uma boa utilização de produtos agrícolas e florestais. (b) Unidade experimental: este é o mais pequeno material experimental no qual o tratamento é fixado em casualizações singulares. Exemplos:

• Talhão/parcela de terra em experimentos de fertilizantes e variedades • Um pedaço de madeira num experimento de tratamento químico • Um cercado com animais em pastoreio

(c) Tratamento: Este é um procedimento ou uma condição aplicada à unidade experimental que, efectivamente está para ser dimensionada ou comparada com outras. Exemplos

• Métodos de tratamento de madeira com um dado agente químico • Variedades de uma dada cultura. • Níveis de fertilizante nitrogénio aplicados a uma variedade de milho • Época de sementeira de uma cultura • Métodos de pastoreio

(d) Factor: Quando um conjunto de tratamentos está concebido em níveis diferentes, isto é referido como um factor. Exemplo: Quatro níveis (0,Kg/ha, 50kg/ha, l00 Kg/ha e l50 Kg/ha) do fertilizante Sulfato de Amónia em experimentos de fertilização no milho. Os quatro níveis juntos formam o factor "fertilizante". (e) Erro experimental: Esta é a dimensão da variação entre unidades experimentais igualmente tratadas. Esta variação é devida à variabilidade inerente às unidades experimentais e ao falhanço das unidades experimentais em serem processadas ou avaliadas identicamente (por erro do observador, limitações dos instrumentos usados, etc.). A presença do erro experimental em experimentos biológicos dá uma justificação à aplicação de técnicas estatísticas. Na ausência do erro experimental, técnicas estatísticas não são necessárias, desde que a observação singular em cada tratamento seja adequada para determinar se existem diferenças entre

Manual de Experimentação Agrária 4

Page 5: Manual de Experimentacao Agraria

Experimentação Agrária

tratamentos. Delineamentos dos experimentos e métodos estatísticos fornecem meios para dimensionar o erro experimental e também para o seu controlo. Fontes do erro experimental para experimentos de campo

— variabilidade de plantas — variabilidade sazonal — variabilidade de solo — variabilidade de animais — defeitos nos instrumentos de medição

(f) Exactidão (Accuracy) e Precisão (Precision) Exactidão refere-se a contiguidade duma estimativa ao valor verdadeiro (parâmetro). É uma medida relacionada com viés (‘Bias’) Viés = E (X) – θ Precisão e repetibilidade de medição estão relacionadas com o erro experimental Princípios de Delineamento Experimental Introdução Quando um experimento é conduzido e uma diferença é notada entre as médias dos tratamentos, é preciso ter-se uma base para atribuição do efeito aos tratamentos, desde que se torne claro que também, a diferença seja devida à inerente variabilidade nas unidades experimentais ou falta de uniformidade na condução física do experimento. Igualmente, se não for revelada alguma diferença entre tratamentos, é preciso, ter-se uma base para dizer que não existem efeitos dos tratamentos desde que seja possível que diferenças entre tratamentos não tenham sido detectadas devido a um maior erro experimental. Neste caso, o experimento falhou na detecção das diferenças que, de facto, existem. Uma outra consideração importante em experimentação são os limites do seu espaço de inferência. Isto é, deve-se definir com antecedência, os limites dentro dos quais os resultados do experimento serão aplicáveis. Replicação (repetições) Quando o tratamento aparece mais do que uma vez, diz-se que foi replicado. Replicações têm as seguintes funções. (i) Elas permitem a estimação do erro experimental que é necessário para avaliar a significância das diferenças entre as médias dos tratamentos. Exemplo: Suponha que duas variedades A e B são comparadas em termos de produção de grão. Dois talhões do mesmo tamanho são estabelecidos e a variedade A é semeada no primeiro talhão enquanto a variedade B é semeada no segundo talhão. No fim do experimento, o rendimento em kg de cada talhão é registado e a variedade com o mais elevado rendimento é considerada como a melhor. Assim, a conclusão não deve ser verdadeira desde que isto presume que, qualquer diferença entre os rendimentos é causada pela variedade e nada mais. Isto, nunca pode ser correcto, mesmo se a mesma variedade fosse semeada em ambos os talhões, os rendimentos iriam diferir por causa de variação inerente aos talhões e falta de uniformidade na condução

Manual de Experimentação Agrária 5

Page 6: Manual de Experimentacao Agraria

Experimentação Agrária

física do experimento. Por isso, é necessário isolar tal variação da variação total. Isto pode ser atingido se o experimento for replicado. (ii) Replicação melhora a precisão do experimento devido à redução do erro padrão das médias dos tratamentos. Se r é igual ao número de repetições, o erro padrão das médias dos tratamentos é definido

como rσ

Obviamente quando o r aumenta, o erro padrão das médias dos tratamentos é reduzido.

Note: Deve manter um balanço entre melhoramento da precisão dum experimento e o aumento dos custos do experimento. (iii) Dentro das replicações é possível aumentar o âmbito de inferência do experimento, por selecção e uso apropriado de uma gama de unidades experimentais. Exemplo: Um ensaio de variedades pode ser conduzido de tal modo que um número suficiente de replicações é introduzido para cobrir o tipo de solos da área de estudo. Também, no sentido de contabilizar de ano para ano a variabilidade atmosférica, o experimento pode ser repetido de acordo com o número de anos. O número de replicações depende de: - modelo e magnitude (extensão) da variabilidade de solos no campo experimental - tamanho da diferença entre as médias dos tratamentos - nível de significância estabelecido - número de tratamentos -recursos disponíveis Determinação de número de repetições Na comparação de dois tratamentos é necessário que o experimento seja suficientemente largo para garantir se existe uma diferença verdadeira entre os tratamentos, o experimento obterá resultados significativos. O nível de precisão dum experimento é medido pela variância do erro ('error variance'). Portanto, o nível de precisão desejável pode ser especificado em duas maneiras: -pelo tamanho da diferença verdadeira entre as médias dos tratamentos, -pela largura do intervalo de confiança Seja d igual à diferença verdadeira especificada pelo investigador. Seja ji xx −

r igual à diferença entre as

duas médias amostrais. Se ji xx − > d, a diferença é significativa

Se <− ji xx d, a diferença não é significativa O tamanho da amostra desejável pode ser determinado com a seguinte fórmula

rs

xxt ji

22

−=α

Manual de Experimentação Agrária 6

Page 7: Manual de Experimentacao Agraria

Experimentação Agrária

Substitua ji xx − por ⎮d⎮para obter:

rs

dt22||

Portanto,

2

222d

str α=

Outra regra:

3ds

ji xx =−

ou O d é pelo menos igual a 3 erros padrões. Isto garante dois erros padrões para atingir o nível de significância de 5% e mais um erro padrão para medir o risco de não detectar diferença verdadeira. Em termos gerais, o número de repetições varia de 4 a 8 Casualização/Aleatorização: Este é o procedimento para fixar os tratamentos nas unidades experimentais de tal maneira que, cada tratamento tenha probabilidade igual de ser destinado a qualquer unidade experimental (favorável ou não favorável). As razões de fazer casualização: -Para eliminar viés através de controlo dos erros sistemáticos -Para garantir que as observações sejam independentes. Exemplo: Suponha que duas variedades A e B de milho; cada uma é semeada em 4 talhões como se mostra a seguir:

1 2 3 4 5 6 7 8 A A A A B B B B

──────────────────────────> A fertilidade decresce no sentido indicado pela seta. Se o campo tiver um gradiente de fertilidade com uma redução gradual da produtividade da esquerda para direita, a variedade B estará então em desvantagem porque ela está sempre à direita da variedade A. Por isso, a comparação do rendimento atingido será a favor da variedade A. Para minimizar tais problemas, as variedades precisam de ser fixadas aleatoriamente às unidades experimentais. A casualização pode ser efectuada com o uso de tabelas de números aleatórios. Porém, mesmo com a casualização o problema pode persistir, pois não há garantia de que as duas variedades

Manual de Experimentação Agrária 7

Page 8: Manual de Experimentacao Agraria

Experimentação Agrária

estarão igualmente expostas às condições ambientais. É preciso considerar outras medidas, como a formação de blocos (“blocking”), que veremos adiante. Essas outras medidas são colectivamente referidas como controlo local. Controlo local O controlo local refere-se às técnicas de delineamento ou análise que são usadas para reduzir ou controlar o erro experimental. O controlo local é assim, a selecção dum delineamento e/ou análise da covariância. (i) "Blocking": Este consiste no esboço dum experimento entretanto, algumas das variações naturais ao longo da colecção das unidades experimentais são fisicamente manipuladas, tal que, elas não façam uma contribuição ao erro experimental. Esta técnica envolve a priori, agrupamento de unidades experimentais em grupos homogéneos, conhecidos como blocos. Os blocos são fixados desta maneira como forma de maximizar as diferenças entre eles, enquanto se minimizam as diferenças dentro deles. Os tratamentos são assim aleatoriamente fixados dentro dos blocos. As diferenças observadas entre os tratamentos dentro dos blocos são largamente devidas aos efeitos de tratamentos e são menos vistas como tendo sido devido à variação aleatória. As diferenças entre blocos não são incluídas no erro experimental reduzindo-se assim, a magnitude do erro experimental. Especificamente, as razões de 'blocking' são:

para aumentar a precisão do experimento para que as comparações entre os tratamentos sejam mais uniformes devido ao facto de as

comparações entre os tratamentos serem feitas dentro de blocos com parcelas homogéneas. para aumentar o âmbito de inferência.

Os blocos não devem ser vistos necessariamente como entidades físicas, pois o agrupamento de unidades experimentais pode ser feito com entidades de outra natureza como espaço de tempo, idade, raça, etc.

(ii) Análise de covariância: Quando variação dentro das unidades experimentais for em parte devido à variação em algumas características não suficientemente controladas para ser útil na fixação das unidades experimentais em blocos, assim, o erro experimental pode ser reduzido pelo uso da análise de covariância. O método preciso do uso de observações suplementares. Para tal, deve se assegurar que a covariável não sofre efeitos dos tratamentos e que é medida antes da aplicação dos tratamentos.

Manual de Experimentação Agrária 8

Page 9: Manual de Experimentacao Agraria

Experimentação Agrária

CAPITULO III: DELINEAMENTO COMPLETAMENTE CASUALIZADO Quando usar o delineamento? O delineamento é útil quando as unidades experimentais são essencialmente homogéneas. Isto é, quando a variação entre as unidades experimentais é pequena. Vantagens e desvantagens do delineamento Vantagens

O delineamento é flexível no sentido de que o número de tratamentos e repetições é constrangido apenas pela disponibilidade de unidades experimentais. Neste delineamento, o número de repetições pode variar entre os tratamentos, embora, o mesmo número de repetições para todos tratamentos seja preferível.

A análise estatística é simples. A perda de informação quando há talhões perdidos é menor relativa aos outros delineamentos. O número de graus de liberdade para estimar o erro experimental é máximo.

Desvantagens

O delineamento não é eficiente. Dado que a aleatorização não é restringida, o erro experimental inclui a variação inteira entre as unidades experimentais, menos a variação devida aos tratamentos.

Casualização e 'layout' Assuma que um investigador pretende avaliar 5 variedades de milho. Ele conseguiu um terreno homogéneo que é suficiente para conduzir o ensaio utilizando 4 repetições para cada variedade. A homogeneidade do terreno permite o uso do delineamento completamente casualizado. Faça casualização e apresente o 'layout'. Passo 1Divida o terreno em 20 parcelas segundo as dimensões do investigador. Enumere as parcelas de 1 a 20.

1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

4 8 12 16 20

Passo 2Seleccione vinte números da tabela de números aleatórios usando um ponto de partida aleatoriamente escolhido. O número de dígitos deve ser mais um acima do número de dígitos para o número total de parcelas. No exemplo, o número de dígitos que será utilizado é 3 já que o número de dígitos para o número total de parcelas é 2.

Manual de Experimentação Agrária 9

Page 10: Manual de Experimentacao Agraria

Experimentação Agrária

───────────────────────────────────────────────────────── N.A Seq. N.A Seq. N.A Seq. N.A Seq. N.A Seq. ───────────────────────────────────────────────────────── 523 1 863 5 371 9 910 13 785 17 676 2 376 6 783 10 727 14 178 18 243 3 043 7 063 11 461 15 908 19 929 4 062 8 514 12 332 16 718 20 ───────────────────────────────────────────────────────── N.A= Número aleatório Seq.=Sequência. (A sequência dos números aleatórios na tabela) Passo 3Ordene os números aleatórios de menor para maior ───────────────────────────────────────────────────────────── Seq. Ord. Seq. Ord. Seq. Ord. Seq. Ord. Seq. Ord. ───────────────────────────────────────────────────────────── 1 11 5 17 9 07 13 19 17 16 2 12 6 08 10 15 14 14 18 04 3 05 7 01 11 03 15 09 19 18 4 20 8 02 12 10 16 06 20 13 ───────────────────────────────────────────────────────────── Seq.= Sequência, Ord = Ordem. A sequência irá representar os tratamentos e a ordem, a parcela onde um tratamento específico será colocado. No exemplo, sequência 1-4 representa a 1ª variedade, 5-8 a 2ª variedade, 9-12 a 3ª variedade, 13-16 a 4ª variedade e 17-20 a 5ª variedade. No caso da 1º variedade, será colocada nas parcelas 11, 12, 5, e 20. A mesma coisa pode ser repetida para as outras variedades. Passo 4 Utilizando a informação do passo 3 o seguinte 'layout é obtido

1 V2

5 V1

9 V4

13 V5

17 V2

2 V2

6 V4

10 V3

14 V4

18 V5

3 V3

7 V3

11 V1

15 V3

19 V4

4 V5

8 V2

12 V1

16 V5

20 V1

Manual de Experimentação Agrária 10

Page 11: Manual de Experimentacao Agraria

Experimentação Agrária

Análise de variância: Qualquer observação que é feita numa unidade experimental pode ser representada por um modelo linear aditivo. O Modelo Linear Aditivo (Uma observação por unidade experimental): ; i=1,2,...,t; j=1,2,...,rijiijY ετµ ++= i

Onde: εij =O termo erro correspondente ao tratamento i na repetição j e εij ~ iidN (0, σ2) (iid = identicamente e independentemente distribuídas) Yij = O valor observado na unidade experimental j que recebeu o tratamento i.

µ= A média geral que é igual a ∑∑==

=t

iii

t

iii ernonder

n 11;1 µµ é a média verdadeira para o tratamento i

τi = µµ −i (Efeito do tratamento i ) Para especificar o modelo completamente, precisa-se de apresentar os pressupostos sobre os efeitos dos tratamentos (τi) (a) Modelo Fixo

Os τi são fixos e ∑=

=t

iiir

10τ

Os tratamentos são deliberadamente seleccionados, e a repetição do experimento irá trazer no experimento exactamente os mesmos tratamentos significando os mesmos τi. Assim, no modelo fixo os τi são constantes fixos e o interesse é de fazer inferência apenas sobre os tratamentos que serão testados. (b) Modelo AleatórioNo modelo aleatório, os tratamentos testados são uma amostra aleatória duma população de tratamentos e a repetição do experimento será trazer novos tratamentos. Neste caso o interesse é de fazer inferência sobre a população de tratamentos e não apenas sobre os tratamentos que serão testados. No modelo aleatório, assume-se que τi ~ iidN (0, σ2τ) e são independentes dos εij.

Manual de Experimentação Agrária 11

Page 12: Manual de Experimentacao Agraria

Experimentação Agrária

Notação────────────────────────────────────────────────────────────────── Tratamento Observações ────────────────────────────────────── 1 2 3 ... j ... ri Total Média ────────────────────────────────────────────────────────────────── 1 Y11 Y12 Y13 ... Y1j ... Y1r1 Y1. .1Y

2 Y21 Y22 Y23 ... Y2j ... Y2r2 Y2. .2Y

3 Y31 Y32 Y33 ... Y3j ... Y3r3 Y3. .3Y .

. . . . ... . ... . . . . . . . ... . ... . . . . . . . ... . ... . . . i Yi1 Yi2 Yi3 ... Yij ... YIri Yi. .iY . . . . ... . ... . . . . . . . ... . ... . . . . . . . ... . ... . . . t YT1 YT2 YT3 ... Ytj ... Ytrt Yt. .tY ────────────────────────────────────────────────────────────────── Note

n = (O número total de observações) ∑=

t

iir

1

Y.. (O valor total para todas as observações) ∑∑∑== =

==t

ii

t

i

r

jij YY

i

1.

1 1

..Y .= ∑ ∑∑= ==

==t

i

t

ii

r

jij n

YYn

Yn

i

1

..

1.

1

11 (A média para todas as observações)

.iY = (O valor total para tratamento i) ∑=

ir

jijY

1

.iY =i

i

i

r

jij

rY

r

Yi

.1 =∑= (Média para tratamento i)

(i) Variação total (Soma dos Quadrados Totais -SQT)

( )∑∑ ∑∑∑∑

= = = =

= =⎟⎟⎠

⎞⎜⎜⎝

−=−=t

i

r

j

t

i

r

j

t

i

r

jij

ijij

i i

i

n

YYYYSQT

1 1 1 1

2

1 122..

Manual de Experimentação Agrária 12

Page 13: Manual de Experimentacao Agraria

Experimentação Agrária

Onde ( )2

ijYn

∑∑ é factor de correcção (FC) e n é o numero total de observações para o ensaio

Ou

2..

1 1

2 YnYSQTt

i

r

jij

i

−= ∑∑= =

(ii) Os diferentes componentes da variação total A variação total pode ser apresentada pela seguinte identidade:

( ) ( ) ( ) ( ) ( )( )∑∑ ∑∑ ∑∑ ∑∑∑∑= = = = = = = == =

−−+−+−≡−+−≡−t

i

r

j

t

i

r

j

t

i

r

j

t

i

r

jiiijiiijiiij

t

i

r

jij

i i i ii

YYYYYYYYYYYYYY1 1 1 1 1 1 1 1

....2

...2

.2

....1 1

2.. 2

Podemos apresentar o terceiro termo da identidade da maneira seguinte:

( )( ) ( ) ( )∑∑∑∑=== =

−−=−−ii r

jiij

t

iii

t

i

r

jiij YYYYYYYY

1.

1......

1 1.

mas

( ) 01

=−∑=

ir

jiij YY

Portanto: 2 ( )( ) 0...1 1

. =−−∑∑= =

YYYY i

t

i

r

jiij

i

Então

( ) ( ) ( ) ( )∑∑ ∑∑ ∑∑∑∑= = = = = == =

−+−≡−+−≡−t

i

r

j

t

i

r

j

t

i

r

jiiijiiij

t

i

r

jij

i ii

YYYYYYYYYY1 1 1 1 1 1

2...

2.

2....

1 1

2..

i

( )n

Yr

YYYt

i i

it

i

r

jiij

i 2..

1

2.

1 1

2. −+−≡ ∑∑∑

== =

SQT SQE + SQTrat ≡ SQT = Soma dos Quadrados Totais, Variação Total SQE = Soma dos Quadrados do Erro, variação de cada observação da média do tratamento correspondente (variação dentro da população), variação devido ao erro. SQTrat = Soma dos Quadrados dos Tratamentos, variação das médias dos tratamentos da média geral (variação entre tratamentos), variação devido aos tratamentos

Manual de Experimentação Agrária 13

Page 14: Manual de Experimentacao Agraria

Experimentação Agrária

Note: µµτ −= ii é o efeito verdadeiro do tratamento i e o seu estimador é ..ˆ YYii −=τ . Assim, a SQTrat poder ser apresentada da seguinte maneira:

∑∑ ∑= = =

==t

i

r

j

t

iiii

i

rSQTrat1 1 1

22 ˆˆ ττ

Tabela de Análise de Variância para os Delineamentos Completamente Casualizados ──────────────────────────────────────────────────────────────────Fonte de G.l SQ QM Quadrado Médio Esperado __________________________________ Modelo fixo Modelo Casual ──────────────────────────────────────────────────────────────────

Tratamentos t-1 SQTrat 1−t

SQTrat 2

1

22

11

i

t

iirtτσε ∑

=−+ 2

02

τε σσ r+

Erro n-t SQE tn

SQE−

2εσ

2εσ

Total n-1 SQT ──────────────────────────────────────────────────────────────────

Onde 1

1

2

0 −

⎟⎟⎟⎟

⎜⎜⎜⎜

=

∑=

t

n

rn

r

t

ii

Manual de Experimentação Agrária 14

Page 15: Manual de Experimentacao Agraria

Experimentação Agrária

Inferências sob o modelo de efeitos fixos Um teste de igualdade simultâneas de todas as médias 0...: 210 ==== tH τττ

Ha: A hipótese nula não verdadeira (pelo menos um iτ é diferente de zero A hipótese nula acima pode ser apresentada também da seguinte forma: Ho: µ 1= µ 2=...= µ t Ha: A hipótese nula não é verdadeira A hipótese nula está a dizer que não há diferença entre as médias das populações. Num experimento qualquer, espera-se que haja algumas diferenças entre as médias amostrais. Quanto desta variação é devida à amostragem e aos factores não controláveis (variação casual)? De outra maneira, até que ponto podemos dizer que a variação é tão grande que não pode ser atribuída inteiramente aos factores casuais, mas também às diferenças entre as médias dos tratamentos? A resposta depende muito do tamanho da variância entre as populações (σε2).

F = QMTQME

~ Fn-t, t-1 se a hipótese nula fôr verdadeira. ;

Se a hipótese nula for verdadeira, significa que Σriτi2 é igual a zero e E(QMT)=E(QME) e F=1. Se a hipótese nula não for verdadeira, Σriτi2 >0 e E(QMT)>E(QME) e F>1. Efeitos significativos dos tratamentos são indicados apenas quando o valor da estatística F é suficientemente maior que 1. Por outras palavras, se o valor de F calculado for inferior ao valor de F critico (que se pode encontrar na tabela de F), quer dizer que a hipótese nula não é falsa. Não existe variação significativa nos efeitos dos tratamentos. Na prática valores de F menores que 1 podem ser encontrados. Tais valores serão justificados pelas seguintes razões:

• Flutuação de amostragem aleatória ('Random sampling fluctuation'). Devido a tais flutuações, sempre existe uma possibilidade do QMT ser um valor subestimado enquanto que o QME é uma estimativa exagerada.

• Um modelo linear não correcto. Uso dum modelo não correcto pode gerar valores de F menores que 1 por causa do erro experimental incluir a variação que um modelo correcto pode tirar.

Manual de Experimentação Agrária 15

Page 16: Manual de Experimentacao Agraria

Experimentação Agrária

EXEMPLOS PARA O MODELO FIXO (1) Quando o número de repetições é igual para todos os tratamentos Foi conduzido um ensaio para comparar o rendimento de duas variedades estrangeiras de Soja (A e B) com uma variedade local (C). O delineamento completamente casualizado com 10 repetições foi utilizado para o ensaio. Os dados do ensaio são em baixo apresentados em termos de rendimento de grão em kg por talhão. Variedade (i)

Repetições (j) .iy .iy

A 3,0 2,9 2,7 3,0 2,8 3,1 2,9 3,0 3,0 3,1 29,5 3,0 B 2,6 2,4 2,4 2,3 2,6 2,6 2,6 2,9 2,3 2,5 25,2 2,5 C 3,1 3,2 2,9 3,1 3,0 3,0 3,0 3,0 3,1 3,1 30,5 3,1 .. 3,0 2,9,...,3.1 85,2ijY Y= = + =∑∑

.. 85,2.. 2,8410*3

YYrt

= = =

Pressupostos para a Análise de Variância A análise de Variância apoia-se em vários pressupostos, sendo:

- homogeneidade de variâncias - distribuição normal dos resíduos - linearidade e aditividade de componentes do modelo

O teste de Homogeneidade das variâncias Antes de fazer a análise de variância, é necessário verificar se as variâncias das três populações são homogéneas ou não. Ho: 2

322

21 σσσ ==

Ha: A hipótese nula não é verdadeira Para testar as hipóteses, o teste de Hartley pode ser usado. (a) O teste de Hartley

tvFSSF ,2

min

2max ~=

Onde: Max( )=a variância máxima 2

iSMin( )=a variância mínima 2

iSFv, t =o valor da tabela de Hartley. O v são os graus de liberdade associados a . Se o v não for constante para todas as variâncias, use o v mínima. O t representa o número de tratamentos.

2iS

Manual de Experimentação Agrária 16

Page 17: Manual de Experimentacao Agraria

Experimentação Agrária

Se o valor calculado é menor do que o valor crítico, não se pode rejeitar a hipótese nula. Se o valor calculado é maior do que o valor crítico a hipótese nula é rejeitada. Do exemplo:

21s = 0,0161 22s = 0,0329 23s = 0,0072

0, 0329 4,5690,0072

F = =

F9,t=3, α=0,05 = 5,34 Dado que o valor calculado é menor do que o valor crítico, não se pode rejeitar a hipótese nula. Isto significa que não há evidência que mostra que as variâncias são heterogéneas e assim, o pressuposto de homogeneidade das variâncias é mantido. (b) O teste de Bartlett

( )

( )

21

210 ~

1)13

11

log3026,2−

⎟⎠⎞

⎜⎝⎛ −

−+

−= t

p

AD

t

CSAM χ se a hipótese nula for verdadeira

onde:

i

t

ii ffA ;

1∑=

= - são os graus de liberdade para a a variância amostral associada ao tratamento i

∑=

=t

iii SfB

1

2

∑=

=t

iii SfC

1

210log

∑=

=t

i ifD

1

1;

)1(...)1()1()1(...)1()1(

21

2222

2112

−++−+−−++−+−

==t

ttp rrr

SrSrSrABS

Pode-se usar a fórmula seguinte se o número de repetições é constante:

21

1

210

210

~

311

loglog3026,2

−=

⎥⎦

⎥⎢⎣

⎢ ++

⎟⎠

⎞⎜⎝

⎛−

=∑

t

t

iip

tft

SStfM χ se a hipótese nula for verdadeira

Onde: t = o número de tratamentos f = graus de liberdade para cada variância

Manual de Experimentação Agrária 17

Page 18: Manual de Experimentacao Agraria

Experimentação Agrária

t

SS

t

ii

p

∑== 1

2

2

Do exemplo

0187,03

0072,00329,00161,01

2

2 =++

==∑=

t

ss

t

ii

p

7281,1log 210 −=ps

4187,5loglogloglog 2310

2210

2110

1

210 −=++=∑

=

sssst

ii

( ) ( )[ ] 082,4

9*3*3131

4187,57281,13*9*3026,2=

++

−−−=m

χ22, α=0,05=5,99 Dado que o valor calculado é menor do que o valor crítico não se pode rejeitar a hipótese nula. O resultado do teste de homogeneidade mostra que as inferências estatísticas baseadas na análise de variância serão válidas. Análise de Variância i. Factor de Correcção (CF)

968,24110*32,85

2

1 1 ==⎟⎟⎠

⎞⎜⎜⎝

⎛∑∑= =

rt

yFC

t

i

r

jij

ii. Soma dos Quadrados Totais (SQT)

092,2968,2411,3...9,20,3 222

1 1

2 =−+++=−=∑∑= =

FCySQTt

i

r

jij

Manual de Experimentação Agrária 18

Page 19: Manual de Experimentacao Agraria

Experimentação Agrária

iii. Soma dos Quadrados dos Tratamentos (SQTrat)

586,1968,24110

5,302,252,29 2221

2.

=−++

=−=∑= FCr

ySQTrat

t

ii

iv. Soma dos Quadrados do Erro (SQE) SQE = SQT – SQtrat =2,092-1,586 =0,506 Tabela da Análise de Variância Fonte de variação G.L SQ QM Fcal F27,2;α=0,05 F27,2;α=0,01

Variedades 2 1,586 0,793 41,737 3,35 5,49 Erro 27 0,506 0,019 Total 29 2,092 Coeficiente de Variação (CV): Expressa o nível de precisão dum experimento.

100*..y

QMECV =

Nos experimentos agrícolas o valor do CV é considerado:

Baixo - CV<10% Médio - 10%<CV<20% Alto - 20%<CV<30% Muito alto - CV>30%

Há ensaios que por natureza têm coeficientes de variação elevados devido à variabilidade do material experimental. Este problema é comum em ensaios de pastoreio e de alimentação de animais. Nos ensaios de pastoreio contribuem para o erro experimental a variação entre cercados uma vez que são maiores que parcelas usadas para ensaios agronómicos; a variação entre animais. Nos animais procura-se sempre considerar a idade e a raça para minimizar o erro experimental, mas há outros factores difíceis de controlar, como o estado fisiológico do animal. Do exemplo anterior,

100*..y

QMECV = =4,9%

O nível de precisão do ensaio é alto e portanto as inferências baseadas nos dados do ensaio serão seguras.

Manual de Experimentação Agrária 19

Page 20: Manual de Experimentacao Agraria

Experimentação Agrária

Da tabela da análise de variância, há evidência suficiente ao nível de significância de 1% para concluir que os rendimentos médios das três variedades não são iguais. Quando uma tabela da análise de variância mostra efeitos significativos dos tratamentos, um investigador pode apresentar uma tabela de diferença entre as médias com o erro padrão das diferenças.

siYY si ≠− ;.. é um estimador não enviesado ('unbiased estimator') de µi-µj e com o erro padrão correspondente de :

⎟⎟⎠

⎞⎜⎜⎝

⎛+=−

siYY rr

QMESsi

11..

se ri é igual a rs a formular será r

QMESsi YY

2..=−

Do exemplo Ay =3,0

By =2,5

Cy =3,1

062,010

019,0*22..

===− rQMEs

si yy

A Tabela de Diferenças entre as Média ────────────────────────────────── Variedades Diferença Erro padrão ────────────────────────────────── A e B 0,5 0,062 A e C -0,1 0,062 B e C -0,6 0,062 ────────────────────────────────── O teste de DMS Para responder ao objectivo do ensaio, os rendimentos médios das variedades estrangeiras serão comparados com o rendimento médio da variedade local, usando o teste de DMS.

127,0062,0*052,2*..025,02/,27025,02/ === −== si yystDMS αα

Se .. si yy − >DMSα/2 significa que a diferença entre as duas médias é significativa.

Se .. si yy − <DMSα/2 significa que não há diferença significativa entre as duas médias. Os resultados do ensaio mostram que existe uma diferença significativa em rendimento médio entre a variedades estrangeira B e a variedade local C (p<0,05). A variedade local é significativamente superior na produção média de grão do que a variedade estrangeira B. Não há diferença significativa entre a variedade estrangeira A e a variedade local C em termos de rendimento médio de grão.

Manual de Experimentação Agrária 20

Page 21: Manual de Experimentacao Agraria

Experimentação Agrária

Manual de Experimentação Agrária 21

Page 22: Manual de Experimentacao Agraria

Experimentação Agrária

(2) Quando o número de repetições varia entre os tratamentos Os dados abaixo apresentados são de conteúdo de ácido ascórbico de três variedades de pêssegos maduros. O conteúdo de ácido ascórbico é medido em mg por 100g. Faça análise de variância e o teste F ao nível de significância de 0,05. Variedade (i)

Replicações .iy .iy

∑=

ir

jijy

1

2

A 5,34 5,58 5,26 5,47 5,39 5,50 5,42 5,47 5,71 5,62 54,76 5,48 300,0284B 7,12 6,89 6,93 6,82 7,06 6,80 6,91 6,76 55,29 6,91 382,2331C 6,28 6,01 6,27 6,15 6,38 6,40 6,12 6,24 6,31 6,37 62,53 6,25 391,1433 (a) Teste de homogeneidade das variâncias Ho: 2

322

21 σσσ ==

Ha: A hipótese nula não é verdadeira O teste de Hartley 2

1s = 0,0181

22s = 0,0157

23s = 0,0159

tvFSSF ,2

min

2max ~= se a hipótese nula for verdadeira

Fcal0, 0181 1,150, 0157

= = Fv=7, t=3=α=0,05 = 6,94

Dado que o valor calculado é menor do que o valor crítico, não se pode rejeitar a hipótese nula. O teste de Bartlett Quando os graus de liberdade não são iguais a seguinte formula é usada.

( )

( )

21

210 ~

1)13

11

log3026,2−

⎟⎠⎞

⎜⎝⎛ −

−+

−= t

p

AD

t

CSAM χ se a hipótese nula for verdadeira

Manual de Experimentação Agrária 22

Page 23: Manual de Experimentacao Agraria

Experimentação Agrária

onde:

i

t

ii ffA ;

1∑=

= - são os graus de liberdade para a a variância amostral associada ao tratamento i

∑=

=t

iii SfB

1

2

∑=

=t

iii SfC

1

210log

∑=

=t

i ifD

1

1;

)1(...)1()1()1(...)1()1(

21

2222

2112

−++−+−−++−+−

==t

ttp rrr

SrSrSrABS

A = 25 B = 0,4159 C = -44,1874 D = 0,3651

2ps =0,0166

log( )=-1,7790 2ps

m = 0,0483 χ22,α=0,05=5,99 Dado que o valor calculado é menor do que o valor crítico, não se pode rejeitar a hipótese nula. Análise de variância i. Factor de Correcção (FC)

( ) 7081,1063

2853,6229,5576,54 2

2

1 1 =++

=⎟⎟⎠

⎞⎜⎜⎝

=∑∑= =

n

yFC

t

i

r

jij

, onde n = r1 + r2 + r3

ii. Soma dos Quadrados Totais (SQT)

6957,97081,106337,6...58,534,5 222

1 1

2 =−+++=−=∑∑= =

FCySQTt

i

r

jij

iii. Soma dos Quadrados dos Tratamentos (SQTrat)

2798,91081,10631053,62

829,55

1076,54 222

1

2. =−++=−=∑

=

FCrySQTrat

t

i i

i

Manual de Experimentação Agrária 23

Page 24: Manual de Experimentacao Agraria

Experimentação Agrária

iv. Soma dos Quadrados do Erro (SQE) SQE = SQT – SQTrat = 9,6957-9,2798 = 0,4159 Quadro da Análise de Variância Fonte de variação G.L SQ QM Fcal F27,2;α=0,05 F27,2;α=0,01

Variedades 2 9,2798 4,6399 279,51 3,39 7,77 Erro 25 0,4159 0,0166 Total 27 9,6957 CV = 2,1% O nível de precisão do ensaio é alto e portanto, as inferências baseadas nos dados do ensaio serão seguros. Comparação simultânea das médias dos Tratamentos Ho: µ1= µ 2= µ 3 Ha: A hipótese nula não é verdadeira. Dado que o valor de F calculado é maior do que o valor crítico, existe efeitos significativos das variedades de pêssegos sobre o conteúdo do acido ascórbico (p<0,01).

Manual de Experimentação Agrária 24

Page 25: Manual de Experimentacao Agraria

Experimentação Agrária

EXEMPLO PRÁTICO: Foi realizado um ensaio para saber se os tratamentos com químicos diferem no rendimento da cultura de couve. Foram testados 3 tratamentos (A, B, C), com 8 repetições. Os dados são apresentados na tabela seguinte e estão em Kg/talhão. Variedade (i)

Repetições (j)

A 4 5 5 4 6 6 4 5 B 4 5 4 3 4 5 3 3 C 5 3 3 3 3 3 4 5 Faça análise de variância ao nível de significância de 5%. Resolução:

Ho: µA = µB = µC

Ha: A hipótese nula não é verdadeira

Tratamento A B C Totais 39 31 29 99

Factor de correcção (FC):

FC=( ) 375,408

3*8293139

*

2

2

1 1 =++

=⎟⎟⎠

⎞⎜⎜⎝

⎛∑∑= =

tr

yt

i

r

jij

Soma dos quadrados totais (SQT):

625,22375,4085...54 222

1 1

2 =−+++=−=∑∑= =

FCySQTt

i

r

jij

Manual de Experimentação Agrária 25

Page 26: Manual de Experimentacao Agraria

Experimentação Agrária

Soma de quadrados dos tratamentos (SQTrat):

0,7375,4088

293139 2221

2.

=−++

==∑=

r

ySQTrat

t

ii

Soma de quadrados do erro (SQE)

625.150.7625.22

=−=

−=

SQESQE

SQTratSQTSQE

Tabela da Análise de Variância

Fonte de variação GL SQ QM Fcal F21,2,0.05

Tratamento 2 7.0 3.5 4.7 3.47 Erro 21 15.625 0.744 Total 23 22.625

Fcal > Fcrit ⇒ Rejeita-se Ho. Com base no teste e no nível de significância, temos evidência suficiente para rejeitar a Ho. Então, os tratamentos químicos aplicados dão diferentes rendimentos em Kg/talhão da cultura de couve. Teste DMS

Tratamento A B C y..

Totais 39 31 29 99 Médias 4,875 3,875 3,625

897,08744,0*2*080,22*2* 05,0,21)1( ==== =− r

QMEtr

QMEtDMS rt α

Manual de Experimentação Agrária 26

Page 27: Manual de Experimentacao Agraria

Experimentação Agrária

Tratamentos a serem comparados Diferença das médias DMS Decisão A – B 1.0 0.897 Significativo A – C 1.25 0.897 Significativo B – C 0.25 0.897 Não significativo

Exercícios 1. Desejamos saber se 4 tratamentos de pesticidas para broca de milho diferem na eficácia. Um talhão foi sujeito a diferentes tratamentos. No fim de um determinado período específico foi-se medir a eficácia do tratamento, e obtiveram-se resultados seguintes:

T1 64

T3 74

T4 80

T2 80

T4 88

T1 71

T4 95

T2 70

T1 72

T3 60

T1 79

T3 75

T2 76

T1 88

T3 66

T4 87

T2 75

T4 85

T3 58

T4 90

T2 90

T1 80

T3 82

T2 82

a) Use α = 0.05 b) Use α = 0.01 2. Um experimento foi conduzido para comparar três métodos de empacotamento duma certa comida congelada. O critério foi o conteúdo de Ácido Ascórbico (mg/100mg) depois de um determinado tempo. Os dados obtidos foram as seguintes:

Método de empacotamento A B C

14.29 20.06 20.04 19.10 20.64 26.23 19.09 18.00 22.74 16.25 19.56 24.04 15.09 19.47 23.37 16.61 19.07 25.02 19.63 18.38 23.27

a) Forneça evidência suficiente a nível de significância de 0.01 que os dados indicam uma diferença no método de empacotamento b) Use α = 0.05

Manual de Experimentação Agrária 27

Page 28: Manual de Experimentacao Agraria

Experimentação Agrária

3. Três grupos de animais foram usados num experimento para comparar o tempo de resposta, em segundos, a três diferentes estimulantes. Os resultados obtidos foram os seguintes:

Estimulante I II III

16 6 8 14 7 10 14 7 9 13 8 10 13 4 6 12 8 7 12 9 10 17 6 9 17 8 11 17 6 11 19 4 9 14 9 10 15 5 9 20 5 5

Forneça evidência suficiente que os dados indicam uma verdadeira diferença no meio da população? a) Use α = 0.05 b) Use α = 0.01 c) Com base no teste DMS, compare as médias. 4. Um estudante do 5º ano pretende avaliar quatro variedades de feijão. A faculdade atribuí u - lhe um terreno homogéneo e ele decide conduzir o ensaio utilizando três repetições para cada variedade. Faça casualização e apresente o “layout” do ensaio. 5. Acredita-se que a concentração de colesterol de alta densidade (HDL) no plasma sanguíneo esteja associada ao reduzido risco da doença da artéria coronária. Para investigar os mecanismos que contribuem para a baixa incidência da doença do coração em atletas da modalidade de longa distância, mediram-se concentrações de HDL (ml de HDL por 100 ml de plasma sanguíneo) para 20 atletas de elite, 8 atletas considerados bons e 72 não praticantes da modalidade. Usar os dados sumarizados para testar a possibilidade que a prática da modalidade aumenta a concentração de HDL?

Elite (n=20)

Bom (n=8)

Não (n=72)

Média 56 52 49 Variância 146.41 118.81 110.25

a) Formular as Hipóteses. b) Com teste DMS compare todos pares possíveis de média. 6. Em 5 vasos, cada um com adubação diferente, cultivou-se algodão. Determinou-se a resistência à tracção em 3 fibras retiradas ao acaso em cada vaso. Investigar se a adubação produz efeitos sobre a característica do algodão que foi observada. Os resultados constam do quadro que se segue.

Manual de Experimentação Agrária 28

Page 29: Manual de Experimentacao Agraria

Experimentação Agrária

Adubação com K2O em kg/ha 0 50 100 150 200

7.62 8.14 7.76 7.17 7.46 8.00 8.15 7.73 7.57 7.68 7.93 7.87 7.74 7.80 7.21

7. Investigadores desejam comparar 4 programas de saúde física para agricultores. 30 agricultores foram casualizados e destinados a um dos 4 programas. A tabela que se segue mostra resultados das diferenças entre a saúde dos agricultores antes e depois da participação no programa.

Programa A B C D 13 11 12 22 24 13 19 26 19 20 9 22 18 14 14 22 9 11 21 26 21 21 7 19 17 14 6 22 8 24

a) Podemos concluir com estes dados que os 4 programas diferem na sua eficácia? (α = 0.05) b) faça o teste DMS, para comparar as médias.

Manual de Experimentação Agrária 29

Page 30: Manual de Experimentacao Agraria

Experimentação Agrária

8. Deseja-se estudar as alturas, em metros, das árvores de 3 tipos de povoamento florestal. Do levantamento que se fez resultou a tabela seguinte:

Povoamentos Tipo 1 tipo 2 tipo 3 1 23.4 22.5 18.9 2 24.4 22.9 21.1 3 24.6 23.7 21.2 4 24.9 24.0 22.1 5 25.0 24.4 22.5 6 26.2 24.5 23.6 7 26.3 25.3 24.5 8 26.8 26.0 24.6 9 26.8 26.2 26.2 10 26.9 26.4 26.7 11 27.0 26.7 - 12 27.6 26.9 - 13 27.7 27.4 - 14 - 28.5 -

a) Com base nestes dados verificar se existe diferença significativa de um tipo para outro. 9. Um editor deseja escolher uma capa dentre 3 possíveis para um novo livro. Para testar as três capas, recolheu uma amostra aleatória de 15 consumidores e remeteu cada capa a 5 dentre eles tomados aleatoriamente. Seguidamente pediu a cada um deles para atribuir uma nota de 1 a 20. Eis os resultados obtidos.

C1 C2 C3

14 16 14 6 14 16 12 8 14 10 8 14 8 14 12

a) Com base nestes resultados tirar as conclusões apropriadas.

Resultados 2. Fcal = 20.83 7. Fcal = 6.48 9. Fcal = 2.31

Manual de Experimentação Agrária 30

Page 31: Manual de Experimentacao Agraria

Experimentação Agrária

CAPITULO IV: DELINEAMENTO DE BLOCOS COMPLETOS CASUALIZADOS Quando usar o delineamento Este delineamento usa-se para reduzir o erro experimental, através da eliminação da contribuição das fontes de variação conhecidas nas unidades experimentais. Isto é, se as unidades experimentais não forem homogéneas mas podendo ser significativamente agrupadas, de modo que a variabilidade dentro de cada grupo (bloco) seja minimizada e a variabilidade entre blocos seja maximizada então este delineamento torna-se apropriado para uso. Definição Um bloco é um grupo de unidades experimentais que fornecem efeitos homogéneos numa variável de resposta. Um bloco completo é um grupo homogéneo de unidades experimentais nas quais cada um dos tratamentos aparece o mesmo número de vezes (que no caso normal cada tratamento aparece só uma vez). Portanto a noção de 'Blocking' refere a agrupamentos específicos de unidades experimentais nas quais subconjuntos de unidades experimentais homogéneas são identificadas. Exemplos de casos em que (DBCC) é apropriado: (a) Num experimento com animais: onde os animais são agrupados na base de características como: peso, sexo, idade, estágio de aleitamento, raça, etc. (b) Ensaio de culturas ou árvores no campo onde cada bloco consiste em agrupamento de talhões. Experimentos no campo devem tomar em conta os seguintes aspectos para o processo da formação de blocos:

• Selecção de fonte de variabilidade a ser usada como base na formação dos blocos; • Selecção do tipo de bloco e sua orientação.

Uma fonte ideal de variação a ser usada como base para o processo "BLOCKING" é aquela que é larga (ampla) e prognosticável tal como: (i) A heterogeneidade do solo no caso dum ensaio de variedades ou dum ensaio de fertilizantes onde o rendimento é a característica de interesse primária. (ii) Declive do campo num estudo da reacção da planta ao stress hídrico.

Manual de Experimentação Agrária 31

Page 32: Manual de Experimentacao Agraria

Experimentação Agrária

Tipo de blocos a usar (a) Quando o gradiente for unidireccional use blocos que são longos e estreitos. A orientação dos blocos deve ser de modo que o seu comprimento seja perpendicular à direcção do gradiente como se mostra abaixo. Direcção do gradiente.

(b) Quando o gradiente de fertilidade ocorre em duas direcções; ambos de igual tamanho e perpendiculares um do outro usa-se blocos quadrados ou blocos estreitos (rectangulares), com o seu comprimento perpendicular à direcção de um dos gradientes; e a técnica de covariância para outro gradiente. Alternativamente usa-se o delineamento dos quadrados latinos.

Bloco Estreito e Comprido

Bloco quadrado

Se o modelo de variabilidade não for conhecido os blocos devem ser quadrados. Layout e Casualização O número de unidades experimentais (talhões) dentro do bloco deve corresponder ao número de tratamentos como se mostra no exemplo abaixo: Ensaio com 6 tratamentos e quatro repetições (replicações) Gradiente 1 4 2 5 3 6 Bloco I Bloco II Bloco III Bloco IV

Manual de Experimentação Agrária 32

Page 33: Manual de Experimentacao Agraria

Experimentação Agrária

Como se mostra acima, a área experimental é dividida em 4 blocos. O tipo e a orientação dos blocos são baseados nas indicações previamente apresentadas. Cada bloco é dividido em 6 talhões representando o número de tratamentos. Casualização Esta é feita separadamente para cada bloco. Passo 1: Enumere cada talhão consecutivamente de cima para baixo como se apresenta para o bloco 1. Passo 2: Seleccione seis números da tabela de números aleatórios usando um ponto de partida aleatoriamente escolhido: Número Aleatório Sequência de selecção 36 1 55 2 09 3 30 4 56 5 81 6 Passo 3: Ordene os números aleatórios do menor para o maior como se mostra abaixo. Número aleatório Sequência Ordem 36 1 (A) 3 55 2 (B) 4 09 3 (C) 1 30 4 (D) 2 56 5 (E) 5 81 6 (F) 6 Passo 4: Conceda os seis tratamentos para os seis talhões, usando a sequência em que ocorreram os números aleatórios como os números dos tratamentos e a correspondente ordem como número do talhão para o qual o particular tratamento está para ser fixado (assinado). Se os tratamentos são A, B, C, D, E, e F, a concessão será como se mostra abaixo

1 C

4 B

2 D

5 E

3 A

6 F

Repita as quatro fases para os blocos restantes, separadamente.

Manual de Experimentação Agrária 33

Page 34: Manual de Experimentacao Agraria

Experimentação Agrária

Análise de variância O Modelo Linear Aditivo (Uma observação por unidade experimental): Yij = µ + τi + Βi + εij ; εij ~ iidN(0,σ²) onde: Yij = é o valor observado no bloco j que recebeu o tratamento i (i=1,2, ...,t ; j = 1,2,...,r) µ = média geral τi = µi.-µ efeito do tratamento i Βj = µ.j-µ o efeito do bloco j εij = Erro ( a parte de variação devido a factores não controlados). Antes da análise deve-se decidir o tipo de modelo que se tem: modelo fixo, modelo casual (aleatório) ou modelo misto. Modelo fixo: Neste caso tanto os tratamentos e blocos são seleccionados, e não casuais (aleatórios); Significa que todos os tratamentos em que as suas inferências estão para ser consideradas são incluídos no ensaio (experimento). O mesmo aplica-se para os blocos. Neste caso, efeitos de blocos e tratamentos podem ser testados pelo quadrado médio do erro. Para este modelo, um pressuposto adicional é: Στi = ΣΒj =0, significa que os efeitos dos tratamentos e dos blocos são medidos como desvio da média geral. Modelo Aleatório: Neste caso os tratamentos e blocos, incluídos no ensaio (experimento) são amostras casuais das respectivas populações dos tratamentos e dos blocos. Inferências neste caso são tomadas acerca da população dos tratamentos e blocos em simultâneo no ensaio, e não separadamente. Ambos efeitos de blocos e tratamentos podem ser testadas pelo uso do quadrado médio do erro. Para este modelo, os pressupostos adicionais são: τi ~ iidN(0, στ2) Βj ~ iidN(0, σΒ2) E τ's Β's e ε's são independentemente distribuídos Modelo Misto: Este tipo de modelo é aplicável onde um dos factores (bloco ou tratamento) é aleatório e o outro é fixo. Muitas vezes os blocos são casuais e os tratamentos são fixos nos casos onde este modelo é válido.

Manual de Experimentação Agrária 34

Page 35: Manual de Experimentacao Agraria

Experimentação Agrária

Formato de Análise ───────────────────────────────────────────────────────────── Blocos Tratamento Totais Médias

1 2 ... j ... r Yi. .iY

─────────────────────────────────────────────────────────────

1 Y11 Y12 ... Y1j ... Y1r Y1. .1Y

2 Y21 Y22 ... Y2j ... Y2r Y2. .2Y

. . .

i Yi1 Yi2 ... Yij ... Yir Yi.. .iY

. . .

t Yt1 Yt2 ... Ytj ... Ytr Yt.. .tY

─────────────────────────────────────────────────────────────

Totais de Blocos Y.1 Y.2 ... Y.j ... Y.r ..Y (Y.j)

Médias de Blocos 1.Y 2.Y ... jY. ... rY. ..Y

)( . jY

─────────────────────────────────────────────────────────────

Onde: e ..1 1

.. ∑∑= =

=t

i

r

jijYY

..

1 1.. rt

YY

t

i

r

jij∑∑

= ==

Os estimadores de efeitos dos tratamentos e dos blocos são:

...ˆ YYii −=τ

...ˆ YY jj −=β

Análise de Variância

(i) Factor de Correcção (FC): FC=rt

Yt

i

r

jij

2

1 1⎟⎟⎠

⎞⎜⎜⎝

⎛∑∑= =

(ii) Soma dos Quadrados Totais (SQT): SQT = FCYt

i

r

jij −∑∑

= =1 1

2

Manual de Experimentação Agrária 35

Page 36: Manual de Experimentacao Agraria

Experimentação Agrária

(iv) Soma dos Quadrados dos Blocos (SQB): SQB = FCt

Yr

jj

−∑=1

2.

(v) Soma dos Quadrados dos Tratamentos (SQTrat): SQTrat = FCr

Yt

ii

−∑=1

2.

(vi) Soma dos Quadrados do Erro (SQE): SQE = SQT – SQB – SQTrat

Quadro de Análise de Variância ──────────────────────────────────────────────────────────────────Fonte GL SQ QM F Quadrados Médios Esperados

───────────────────────────

Modelo Fixo Modelo Aleatório ──────────────────────────────────────────────────────────────────

Blocos r-1 SQB 1−r

SQB

QMEQMB

---- ----

Tratamentos t-1 SQTrat 1−t

SQtrat

QMEQMT

σ2ε + ∑=−

t

iit

r1

2

1τ σ2ε+rσ2τ

Erro (r-1)(t-1) SQE )1)(1( −− tr

SQE - σ2ε σ2ε

Total rt-1 SQT - - …. ……. ────────────────────────────────────────────────────────────────── 1. Erro padrão da média dum tratamento

r

QMESiY =.

2. Erro padrão da diferença entre duas médias

r

QMESsi YY

2..=−

3. Coeficiente de Variação (CV)

100..

xYQME

CV =

Manual de Experimentação Agrária 36

Page 37: Manual de Experimentacao Agraria

Experimentação Agrária

Exemplo Um ensaio para avaliar o rendimento de 5 variedades de milho produziu os resultados apresentados abaixo. Os rendimentos foram medidos em kg por 100m2

Blocos Variedades 1 2 3 4 5

Total

A 34 26 33 36 31 160 B 26 37 42 34 36 175 C 37 45 39 41 53 215 D 23 28 30 37 35 150 Total 120 136 144 148 152 700 Faça Análise de Variância e dê conclusões? Resolução: Passo 1: Faça um teste de homogeneidade das variâncias

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

−−

= ∑∑

=

=r

j

r

jij

iji r

yy

rs

1

2

122

11

3,31 ;0,40 ;0,34 ;5,14 2222 ==== DCBA ssss

2222: DCBAoH σσσσ ===

:aH A hipótese nula não é verdadeira

Fcal= 76,25,140,40

2min

2max ==

ss

5,2505,0:5,4 ==αF

Dado que o Fcal e inferior ao Fcrit, não se pode rejeitar a hipótese nula. Conclui-se com base no teste de Hartley ao nível de significância de 0,05 não há evidencia que mostre que as variâncias são diferentes. Passo 2: Faça a análise de variância com base nos dados amostrais sem transformação (Dado que o pressuposto de homogeneidade das variâncias não foi violado) Factor de correcção (FC):

Soma de quadrados totais (SQT):

2700 2450020

FC = =

2 2 234 26 32 24500

950SQTSQT

= + + + −=

K

Manual de Experimentação Agrária 22 2 2160 175 215 150 24500

5490

SQTrat

SQTrat

+ + += −

=

37

Page 38: Manual de Experimentacao Agraria

Experimentação Agrária

Soma de quadrados do tratamento (SQTrat): Soma de quadrados dos blocos (SQB)

2 2 2 2 2120 136 144 148 152 245004

160

SQB

SQB

+ + + += −

= Soma de quadrados do erro (SQE)

uadrado médio do tratamento (QMTrat):

uadrado médio do bloco (QMB)

(QME):

a tratamentos:

Tabela da Análise de Variância

Fonte de variação GL SQ QM Fcal F12,3,0.05

950 490 160300

SQESQE

= − −=

Q

Q

Quadrado médio do erro

4903

163.33

QMTrat

QMTrat

=

=

1604

40

QMB

QMB

=

=

300QME =

Cálculo de F par

3 * 425QME =

163.33

6.53calF =25cal =F

Bloco 4 160 40 Tratamento 3 6.53 3.49 490 163.3 Erro 12 300 25 Total 19 950

Manual de Experimentação Agrária 38

Page 39: Manual de Experimentacao Agraria

Experimentação Agrária

Com bas ste F e no nível de significância de 5%, o agró mo pode então concluir que as ariedades estudadas não têm, em média, a mesma produção.

e no te nov

Manual de Experimentação Agrária 39

Page 40: Manual de Experimentacao Agraria

Experimentação Agrária

Exemplo prático Um ensaio foi conduzido para comparar seis proporções de sementeira de arroz, variedade IR8. O ensaio foi desenhado num DBCC com 4 repetições (replicações). Do ensaio resultaram os seguintes dados que se apresentam abaixo:

Rendimento do grão de arroz variedade IR8 ──────────────────────────────────────────── Rendimento do grão, kg/ha Tratamento ───────────────────────────────── kg Semente/ha Total Média Rep I RepII RepIII RepIV .iy .iy ──────────────────────────────────────────── 25 5.113 5.398 5.307 4.678 20.496 5.124 50 5.346 5.952 4.719 4.264 20.281 5.070 75 5.272 5.613 5.483 4.749 21.217 5.304 100 5.164 4.831 4.986 4.410 19.391 4.848 125 4.804 4.848 4.432 4.748 18.832 4.708 150 5.254 4.542 4.919 4.098 18.813 4.703 ──────────────────────────────────────────── Totais dos blocos 30.953 31.184 29.846 26.947 )( . jyMédias dos Blocos )( . jy 5.159 5.197 4.974 4.491

Total de todas as observações 118.930 )( ..yMédia geral )( ..y 4.955 ──────────────────────────────────────────── Factor da Correcção (FC)

FC = 704.347.5896*4

030.1190 22.. ==

rty

Soma de Quadrados Totais (SQT)

∑∑= =

−=t

i

r

jij FCySQT

1 1

2

=(5.113²+5.398²+...+4.098²)-589.347.704 = 4.659.968 Soma de Quadrados dos blocos (SQB)

FCt

ySQB

r

jj

−=∑=1

2.

Manual de Experimentação Agrária 40

Page 41: Manual de Experimentacao Agraria

Experimentação Agrária

= 728.894.1704.347.5896

9475.26...284.31953.30 22

=−+++

Soma dos Quadrados dos Tratamentos (SQTrat)

FCr

ySQTrat

t

ii

−=∑=1

2.

= 481.131.1704.347.5894

813.18...281.20496.20 222

=−+++

Soma dos Quadrados do Erro (SQE) SQE = SQT – SQB – SQTrat =4.659.968-1.894.728-1.131.481 =1.633.759 Tabela de Análise de Variância ────────────────────────────────────────────────────────────── Fcrít. Fonte de Variação GL SQ QM Fcal α=0,05 α=0,01 ────────────────────────────────────────────────────────────── Blocos 3 1.894.728 631.576 5,80** 3,29 5,42 Tratam. 5 1.131.481 226.296 2,08 2,90 4,56 Erro 15 1.633.759 108.917 - - - Total 23 4.659.968 ──────────────────────────────────────────────────────────────

CV = %7,6100..

=xy

QME

Conclusão Tratamentos: Desde que o valor do F calculado seja menor do que o valor do F tabelado ao nível de significância de 5% conclui-se que não há evidência que mostre que as seis proporções de sementeira são diferentes em termos de rendimento de arroz. b) Blocos: A pesar de se fazer cálculos da Soma de Quadrados, Quadrado Médio e valor de F para os Blocos, o teste dos efeitos deste não tem qualquer utilidade, uma vez não constituir uma hipótese de interesse. Por outro lado tal teste viola regras estatísticas uma vez que os blocos não estão replicados. Portanto, a inclusão dos blocos nas fontes de variação serve apenas para se absorver a variação que de outro modo seria incluída no Erro Experimental. Eficiência de Formação de Blocos

Manual de Experimentação Agrária 41

Page 42: Manual de Experimentacao Agraria

Experimentação Agrária

O cálculo da Eficiência Relativa (E R) envolve a determinação da magnitude de redução do erro experimental devido a formação de blocos. Isto é, ganho de eficiência atingido no processo de formação de blocos em relação ao delineamento completamente casualizado. Calcula-se da seguinte maneira:

QMErtQMEtrQMBrER

)1()1()1(

−−+−

=

Onde: QME= Quadrado Médio do Erro no DBCC QMB= Quadrado Médio dos Blocos Se os graus de liberdade do erro forem menores que 20 o valor ER é ajustado com a seguinte fórmula:

( )( )[ ] ( )[ ]( )( )[ ] ( )[ ]11311

31111+−+−−+−+−−

=rttrrttrk

Do exemplo:

63,1917.108*)124(

917.108*5*4576.631*3=

−+

=ER

Mas note que os graus de liberdade do erro são 15, por isso é necessário usar um factor de ajuste K:

[ ][ ][ ][ ] 882,0

13*635*333*615*3=

++++

60,1982,0*63,1* === ERkERajustada

O resultado mostra que o uso do DBCC em vez do DCC aumentou a precisão do ensaio em 60 porcento.

Manual de Experimentação Agrária 42

Page 43: Manual de Experimentacao Agraria

Experimentação Agrária

O teste de DMS (i) O Erro padrão duma média (

.iYS )

r

QMESiY =.

Do exemplo

kg/ha 013.1654917.108

.==

iys

(ii) O Erro padrão duma diferença entre duas médias (syi-yl)

r

QMESsi YY

2..=−

Do exemplo,

hakgssi yy /36.233

4917.108*2

..==−

Assumindo que a proporção de sementeira de 50Kg/ha é um sistema padrão na área de estudo e o experimento teve como objectivo a comparação deste sistema padrão com os outros, o teste de DMS será apropriado para tal.

080,40936,233*753,1*..05,0),1)(1(05,0 === −=−−= si yytr stDMS αα

───────────────────────────────────────────────────── Pares comparados Diferenças entre as Decisão médias ───────────────────────────────────────────────────── (25kg e 50Kg) 5.124 - 5.070 = 54 não é significativa (75Kg e 50Kg) 5.279 - 5.070 = 209 " " (100Kg e 50Kg 4.848 - 5.070 = 222 " " (125Kg e 50Kg) 4.708 - 5.070 = 362 " " (150Kg e 50Kg) 4.703 - 5.070 = 367 " " ───────────────────────────────────────────────────── Na base do teste DMS ao nível de significância de 0,05 não existem diferenças significativas em produção média entre o sistema padrão e os outros. Isto é, a diminuição ou o aumento da proporção de sementeira da proporção padrão não tem efeito significativo na produção de arroz. Análise de Variância com Talhão Perdido Suponha que no experimento com arroz foi perdido o talhão com tratamento 4 no bloco II. Para fazer análise de variância é necessário estimar o valor para o talhão perdido. Tal valor é artificial e não

Manual de Experimentação Agrária 43

Page 44: Manual de Experimentacao Agraria

Experimentação Agrária

contribui com informação adicional. Para fazer análise de variância com talhão perdido, use o procedimento seguinte; Passo l Use a fórmula seguinte para estimar o valor perdido.

( )( )0 0

1 1rB tT Gyr t+ −

=− −

Onde:

y = estimativa do valor perdido. B0 = é total dos talhões restantes no bloco em que figura o talhão perdido. r = número de repetições t = é o número de tratamentos

T = é o valor total do tratamento do talhão perdido nos outros blocos G0= é o total dos talhões disponíveis.

Do exemplo

245.5)16)(14(

099.114)560.14(6)353.26(4=

−−−+

=y

Passo 2 Substitua o valor y no lugar do dado perdido e faça análise de variância. Do exemplo obtemos os resultados seguintes. Tabela de Análise de Variância ───────────────────────────────────────── Fonte GL SQ QM ───────────────────────────────────────── Blocos 3 2.116.459 705.486 Tratamentos 5 1.078.040 215.608 Erro 15 1.526.706 101.780 Total 23 4.721.205 ───────────────────────────────────────── Passo 3 Faça as seguintes modificações nos resultados de Análise de Variância do passo 2: (a) Subtraia 1 nos graus de liberdade tanto para o total como para o erro (b) Calcule o factor de correcção, usando a fórmula seguinte:

[ ] [ ] 546)16(6

)245.5)(16(353.26)1()1( 2

0 =−−−

=−−−

=tt

ytBB

(c) Subtraia o factor B da soma dos quadrados totais e da soma dos quadrados dos tratamentos.

Manual de Experimentação Agrária 44

Page 45: Manual de Experimentacao Agraria

Experimentação Agrária

Portanto, SQT Adjustado = SQT - B = 4.721.205-546 = 4.720.659 SQTtrat(Adjustado) = SQTtrat - B =1.078.040 - 546 =1.077.494 Então a tabela de análise de variância final é: Fonte de variação G.L SQ QM Fcal

05,0=αF 01,0=αF Blocos 3 2.116.459 705.486 Tratamentos 5 1.077.494 215.499 1,98 2,96 4,69 Erro 14 1.526.706 109.050 Total 22 4.720.659 Passo 4 Para fazer comparações entre médias onde um tratamento tem um valor perdido, use a fórmula seguinte:

( )( ) ( ) ( ) hakgtrr

tr

sssi yy /79,255

16*14*46

42050.109

1122

..=⎥

⎤⎢⎣

⎡−−

+=⎥⎦

⎤⎢⎣

⎡−−

+=−

7,54879,255*145,2*

..05,0,1405,0 === −== si yystDMS αα

Manual de Experimentação Agrária 45

Page 46: Manual de Experimentacao Agraria

Experimentação Agrária

Exercício 1. Três sistemas de serviço de comida foram testados em 5 hospitais. A variabilidade de interesse foi o tempo (em minutos) utilizado por refeição servida. A refeição do meio dia foi servida por cada hospital e por cada método, com seguintes resultados.

Hospital Método A B C Total 1 7.56 9.68 11.65 28.89 2 9.98 9.69 10.69 30.36 3 7.23 10.49 11.77 29.49 4 8.22 8.55 10.72 27.49 5 7.59 8.30 12.36 28.25

total 40.58 46.71 57.19 144.48 Depois de eliminados os efeitos dos hospitais, sugere a estes dados uma diferença entre os métodos em tempos médios por cada refeição servida. Use nível de significância de 5%. 2. Dezasseis (16) obesos participaram num estudo para comparar 4 regimes de perda de peso. Os obesos foram agrupados consoante ao peso inicial e cada 4 obesos de cada grupo de peso inicial foram casualmente destinados para um dos 4 regimes. No fim do período experimental, as seguintes perdas de peso ( em libras) foram registados.

Peso inicial Regime (em libras) A B C D TOTAL 150-174 12 26 24 23 85 175-199 15 29 23 25 92 200-225 15 27 25 24 91

>225 18 38 33 31 120 TOTAL 60 120 105 103 388

Dê evidência ao nível de significância de 0.01 que os dados dão uma diferença nos regimes. 3. Quatro variedades participaram num experimento para comparar 3 métodos de alívio de stress hídrico. Cada variedade foi colocada numa situação de stress em três diferentes ocasiões. Os diferentes métodos para a redução do stress foram usados para cada variedade. Os resultados que estão na tabela são quantidades de decréscimo do nível de stress, medido antes e depois dos tratamentos.

Tratamento Variedade A B C

1 16 26 22 2 16 20 23 3 17 21 22 4 28 29 26

Faça a tabela de ANOVA e faça o teste F com nível de significância de 5% para tirar conclusões.

Manual de Experimentação Agrária 46

Page 47: Manual de Experimentacao Agraria

Experimentação Agrária

4. Foi conduzido um ensaio para estudar o efeito da rega e de adubação na capacidade de retenção de água pelas folhas de alface. Para isso foram usados dois níveis de rega (nível baixo R0 e médio R1) e dois níveis de adubação ( 0kg/ha - N0; 50kg/ha - N1). O delineamento usado foi o de blocos completos casualizados. Os resultados do ensaio estão apresentados na tabela abaixo.

Blocos Tratamento I II III IV totais

R0N0 10.4 8.0 15.6 7.4 41.4 R0N1 15.6 12.3 20.0 23.8 71.7 R1N0 23.1 33.8 23.1 46.9 126.9 R1N1 19.0 31.5 21.2 28.3 100.0 Totais 68.1 85.6 79.9 106.4 340

a) Dê o modelo estatístico para o ensaio. b) Assumindo homogeneidade das variâncias, faça Análise das Variância e o teste F ao nível de significância de 0.05. c) Faça comparações apropriadas para os componentes significativos d) Sumarize as suas conclusões sobre o ensaio. 5. Os delineamentos de blocos completos casualizados, são muito usados na investigação agronómica. Porém, têm as suas vantagens e desvantagens e limitações. a) Em que casos é aconselhável o seu uso? b) Quais são as suas limitações e vantagens?

Manual de Experimentação Agrária 47

Page 48: Manual de Experimentacao Agraria

Experimentação Agrária

6. Foi realizado um ensaio para comparar 6 variedades de feijão vulgar ( A, B, C, D, E, F ). Para isso foi usado o Delineamento de Blocos Completos Casualizados. Os dados do ensaio são apresentados abaixo em termos de rendimento de grão em Kg/parcela.

A 60

E 65

C 66

F 59

D 59

B 56

Bloco I

F 45

A 55

C 59

E 58

D 50

B 57

Bloco II

B 55

C 51

E 43

D 54

A 45

F 50

Bloco III

a) Faça o teste apropriado ao nível de significância de 5% b) Com base no teste DMS, faça a comparação das variedades A e B com a variedade D. Dê conclusões. c) Calcule a eficiência do uso de blocos em relação ao DCC. A que conclusões você chega? 7. Imagine agora que no mesmo ensaio acima, o rendimento do tratamento D no bloco II foi perdido devido a inundações.

A 60

E 65

C 66

F 59

D 59

B 56

Bloco I

F 45

A 55

C 59

E 58

D ?

B 57

Bloco II

B 55

C 51

E 43

D 54

A 45

F 50

Bloco III

8. A tabela abaixo apresenta dados sobre a produção de milho da SEMOC em ton/ha, de quatro variedades de milho em cinco tipos de solo.

Tipo de solo Variedade A B C D Totais

Arenoso 4.00 4.00 5.52 3..76 17.28 Areno-limoso 4.48 4.72 4.72 4.00 17.92

franco 4.16 5.28 5.44 4.32 19.2 Areno-argiloso 4.40 4.72 5.76 4.96 19.84

Argiloso 5.76 5.28 5.76 4.96 21.76 Totais 22.8 24 27.2 22 96

a) Faça um teste apropriado ao nível de significância de 5% e tire as conclusões sobre a produção de milho na SEMOC?

Manual de Experimentação Agrária 48

Page 49: Manual de Experimentacao Agraria

Experimentação Agrária

9. O Departamento de Florestas da Faculdade de Agronomia e Engenharia Florestal tem um estudo sobre o crescimento de três variedades de Eucaliptus spp em diferente regiões. Para o estudo usou-se o Delineamento de blocos completos Casualizados. A tabela mostra os resultados em metros/dia

Região variedade A B C Totais

Maputo 50 57 60 167 Beira 54 60 62 176

Nampula 58 61 58 177 Quelimane 49 59 56 164

Totais 211 237 236 684 a) Faça Análise de Variância e o teste F ao nível de significância de 5%. b) Faça o teste DMS para comparar as médias. c) Tire algumas conclusões. 10. São dados os pesos de três ratos aos 30, 34, 38, 42, 46 dias de idade. Considere que cada animal é um bloco e que as idades são tratamentos.

a) Faça Análise de Variância e interprete os resultados. b) Critique a concepção deste ensaio, no que respeita aos tratamentos.

Idade

Rato 30 34 38 42 46 1 83 86 103 116 132 2 63 69 79 81 98 3 55 61 79 79 91

Resultados 1. Fcal = 13.17 3. Fcal = 3.74 9. a) Fcal = 8.68 9. b) A-B - significativo; A-C - significativo; A-D - não significativo

Manual de Experimentação Agrária 49

Page 50: Manual de Experimentacao Agraria

Experimentação Agrária

CAPITULO V: DELINEAMENTO DOS QUADRADOS LATINOS (DQL) Quando usar o delineamento? O delineamento de Quadrados Latinos (DQL) é usado nas situações em que existam duas fontes de variação conhecidas dentro das unidades experimentais. As duas fontes de variação são assim usadas como critério no processo de "BLOCKING". As duas direcções do "blocking" são comumente referidas como o "blocking" das linhas e o "blocking" das colunas. Neste delineamento cada tratamento ocorre somente uma vez em cada bloco da coluna e em cada bloco da linha. Com este procedimento torna possível estimar a variação dentro dos blocos da linha, assim como dos blocos das colunas, removendo-os do erro experimental. Exemplo:

A B C D

B A D C

C D A B

D C B A Nota-se acima, que cada tratamento aparece somente uma vez em cada coluna e linha, sendo o número das replicações (repetições) igual ao número de tratamentos. O uso do delineamento depende das seguintes condições: i. O número de tratamentos deve ser igual ao número de replicações. ii. Não pode haver uma interacção entre as duas fontes de variação e os tratamentos. iii. A casualização dos tratamentos deve ser feita de tal modo que cada tratamento apareça apenas uma vez em cada coluna e linha. Exemplos onde DQL pode ser usado (i) Campos de experimentação onde existam dois gradientes de fertilidade do solo orientados perpendicularmente um do outro. (ii) Experimento em que a direcção de sombreamento é perpendicular ao gradiente de fertilidade do solo dominante no local do experimento. (iii) Experimentos de processamento de alimentos em que há variação na qualidade do produto final ao longo dos dias úteis da semana e em que há diferentes operadores de máquinas de processamento, trabalhando em igual número de turnos.

Manual de Experimentação Agrária 50

Page 51: Manual de Experimentacao Agraria

Experimentação Agrária

Vantagens e Desvantagens do Delineamento Vantagem

Permite-se o controlo de duas fontes de variação Desvantagens

Os graus de liberdade para o erro são reduzidos Ensaios envolvendo um largo número de tratamentos aparecem como impraticáveis por causa

do largo número de replicações requerido. Na prática, o delineamento é usado quando o número de tratamentos estiver compreendido entre 4 e 8. Aleatorização e Layout (i) Faz-se um plano inicial ou selecciona-se um plano inicial dum livro de experimentação (ex. Cochrane e Cox, Experimental Designs 1957) como se mostra abaixo para quadrado latino de 5x5 onde A,B,C,D,E são os tratamentos. Plano 1

A B C D E

B A E C D

C D A E B

D E B A C

E C D B A Note que cada letra (tratamento) aparece apenas uma vez na linha e na coluna. (ii) Casualize a organização das linhas do plano inicial usando os números aleatórios. Neste caso, faz-se a selecção de números aleatórios com dois dígitos, da tabela de número aleatórios como se mostra abaixo. ──────────────────────────────────────── Nºs aleatórios Sequência Ordem ──────────────────────────────────────── 92 1 5 16 2 1 72 3 4 49 4 2 70 5 3 ──────────────────────────────────────── Onde: A sequência representa como os números foram ordenados na tabela. Ordem= A magnitude relativa dos números.

Manual de Experimentação Agrária 51

Page 52: Manual de Experimentacao Agraria

Experimentação Agrária

Use a ordem para representar as linhas do plano inicial e a sequência para representar as linhas do plano novo. Para o exemplo acima, linha 5 do plano inicial torna-se a linha 1 de plano novo, linha 1 torna-se a linha 2, etc como se mostra abaixo. Plano 2

E C D B A

A B C D E

D E B A C

B A E C D

C D A E B (iii) Casualize as colunas do 2º plano usando os mesmos passos acima descritos. Da tabela de números aleatórios: ──────────────────────────────── Nº aleatório sequência Ordem ──────────────────────────────── 02 1 1 41 2 3 16 3 2 65 4 5 49 5 4 ──────────────────────────────── Da tabela acima, a coluna 1 do plano 2 torna-se coluna 1 do plano 3, coluna 3 torna-se coluna 2, etc como o plano que se mostra abaixo: Plano 3: Plano final

E D C A B

A C B E D

D B E C A

B E A D C

C A D B E

Manual de Experimentação Agrária 52

Page 53: Manual de Experimentacao Agraria

Experimentação Agrária

Análise de Variância Modelo estatístico (modelo fixo) Yij(k) = µ + ßi + τj + Γ(k) + εij; Onde: Yij(k) = é o valor observado da intersecção da iésima linha e jésima coluna e associado com o késimo tratamento. (i = 1, 2 , ..., t; j = 1, 2 , ..., t; k = 1, 2, ..., t) βi = efeito da linha i τj = efeito da coluna j Γ(k) = efeito do tratamento k εij = erro. Pressupostos do modelo - Os componentes do modelo são aditivos - εij ~ iidN (0,σ²)

- 0 e 0 ;01

)(11

=Γ== ∑∑∑===

t

kk

t

jj

t

ii τβ

Estimação e os Cálculos para o DQL Apenas dois subscritos (ij) são necessários para identificar uma observação qualquer porque só um tratamento aparece para uma dada linha e coluna. O terceiro subscrito (k) será necessário para indicar qual é o tratamento que foi aleatoriamente colocado na célula (i,j). Os totais usados na estimação de parâmetros e na Análise de Variância são: i. O valor total para todas as observações

∑∑= =

=t

i

t

jijkYY

1 1...

ii. O valor total da linha i

∑=

=t

jijki YY

1..

iii. O valor total da coluna j

∑=

=t

iijkj YY

1..

iv. O total do tratamento k: é Y..k v. Estimador de efeitos dos tratamentos:

.....ˆ YY k −=Γ

Manual de Experimentação Agrária 53

Page 54: Manual de Experimentacao Agraria

Experimentação Agrária

Análise de Variância a. O Factor de Correcção (FC)

2

2

1 1

t

YFC

t

i

t

jijk ⎟⎟⎠

⎞⎜⎜⎝

=∑∑= =

b. A Soma dos Quadrados Totais (SQT)

FCYSQTt

i

t

jijk −=∑∑

= =1 1

2

c. A Soma dos Quadrados das Linhas (SQL)

FCt

YSQL

t

ii

−=∑=1

2..

d. A Soma dos Quadrados das Colunas (SQC)

FCt

YSQC

t

jj

−=∑=1

2..

e. A Soma dos Quadrados dos Tratamentos (SQTrat)

FCt

YSQTrat

t

kk

−=∑=1

2..

f. A Soma dos Quadrados do Erro (SQE) SQE = SQT – SQL – SQC – SQTrat Tabela da Análise de Variância

Manual de Experimentação Agrária 54

Page 55: Manual de Experimentacao Agraria

Experimentação Agrária

──────────────────────────────────────────────────────────────────Fonte de Variação G.L SQ QM Quadrados Médios Esperados ──────────────────────────────── Modelo Fixo Modelo Casual ──────────────────────────────────────────────────────────────────Linhas t-1 SQL QML --- --- Colunas t-1 SQC QMC --- ---

Tratamentos t-1 SQTrat QMT ∑=

Γ−

+t

kit

t1

22

11

εσ σ2ε 22Γ+ σσε t

Erro (t-1)(t-2) SQE QME 2εσ

2εσ

Total t2-1 SQT ────────────────────── ──────────────────────────────────────────── Exemplo Foi conduzido um ensaio da variedade de milho , envolvendo três híbridos (A , B e D ) e uma variedade de controlo C usando 4×4 DQL. O ensaio resultou em dados abaixo apresentados. ────────────────────────────────────────────────────────────────── Nº da Rendimento do grão linha ─────────────────────────────────────────── Col.1 Col. 2 Col. 3 Col.4 Total ────────────────────────────────────────────────────────────────── 1 1,640(B) 1,210(D) 1,425(C) 1,345(A) 5,620 2 1,475(C) 1,185(A) 1,400(D) 1,290(B) 5,350 3 1,670(A) 0,710(C) 1,665(B) 1,180(D) 5,225 4 1,565(D) 1,290(B) 1,655(A) 0,660(C) 5,170 ───────────────────────────────────────────────────────────────── Total 6,350 4,395 6,145 4,475 21,365 ───────────────────────────────────────────────────────────────── Da tabela acima, obtêm-se totais (y..k) e médias ( ў..k) de tratamentos, como se mostra a seguir: Tratamento A

1..y = [1,670+1,185+1,655+1,345) = 5,855

464,14855,5

41..

1.. ===yy

Tratamento B

2..y = 1,640+1,290+1,665+1,290 = 5,885

471,14885,5

22..

2.. ===yy

Manual de Experimentação Agrária 55

Page 56: Manual de Experimentacao Agraria

Experimentação Agrária

Tratamento C

3..y =1,475+0,710+1,425+0,660 = 4,270

068,14270,4

43..

3.. ===yy

Tratamento D

4..y = 1,565+1,210+1,400+1,180 = 5,355

339,14355,5

44..

4.. ===yy

──────────────────────────────────────── Tratamento Total ( ) Média (ky.. ky.. ) ──────────────────────────────────────── A 5,855 1,464 B 5,885 1,471 C 4,270 1,068 D 5,355 1,339 ──────────────────────────────────────── (i) Factor de correcção (FC)

528952,2816365,21

4

2

2

24

1

4

1 ==⎟⎟⎠

⎞⎜⎜⎝

=∑∑= =i j

ijkyFC

(ii) Soma de Quadrados Totais (SQT)

( )

413923,1528952,289428746,29

528952,28660,0...210,1649,1 2224

1

4

1

2

=−=

−+++=−=∑∑= =

FCySQTi j

ijk

(iii) Soma de Quadrados das Linhas (SQL)

030154,04

170,5225,5350,5620,54

2222

4

1

2..

=−+++

==∑= FC

ySQL i

i

(iv) Soma de Quadrados das Colunas (SQC)

Manual de Experimentação Agrária 56

Page 57: Manual de Experimentacao Agraria

Experimentação Agrária

827342,04

475,4145,6395,4350,64

2222

4

1

2..

=−+++

=−=∑= FCFC

ySQC j

j

(v) Soma de Quadrados dos Tratamentos (SQTrat)

426842,04

355,5270,4885,5855,54

2222

4

1

2..

=−+++

=−=∑= FCFC

ySQtrat k

k

(vi) Soma dos Quadrados do erro (SQE) SQE = SQT – SQL – SQC – SQTrat = 1,413923 - 0,030154 - 0,827342 - 0,426842 = 0,129585 Tabela da Análise de Variância ───────────────────────────────────────────────────────────────── Fonte GL SQ QM F F6,3 α=0,05 α=0,01 ───────────────────────────────────────────────────────────────── Linhas 3 0,0301554 0,010051 0,47 4,76 09,78 Colunas 3 0,827342 0,275781 12,77** Tratamentos 3 0,426842 0,142281 6,59* Erro 6 0,129585 0,021598 Total 15 1,413923 ─────────────────────────────────────────────────────────────────

%11100335,1

021592,0100...

=== xxy

QMECV

O valor de CV calculado mostra que o nível de precisão está dentro dos limites aceitáveis e assim, as inferências baseadas nestes dados serão provavelmente seguras. Os resultados do teste de F mostram que existem efeitos significativos das variedades no rendimento de milho (p<0,05). Notemos, no entanto, que este teste não nos diz que variedades são significativamente diferentes. Erro padrão duma média

0735,04

021598,0..

===t

QMEsky

Erro padrão duma diferença entre duas médias

Manual de Experimentação Agrária 57

Page 58: Manual de Experimentacao Agraria

Experimentação Agrária

1039,04

021598,0*22....

===− tQMEs

sk yy

Quadro de Diferenças entre as Médias

Variedades sk yy .... −

sk yys.... −

A e B -0,007 0,1039 A e C 0,396 0,1039 A e D 0,125 0,1039 B e C 0,403 0,1039 B e D 0,132 0,1039 C e D -0,271 0,1039

Eficiência do Delineamento As linhas e as colunas servem unicamente para explicar a variação que de outro modo iria contaminar o Erro Experimental, enfraquecendo os testes. Assim, à semelhança do que afirmámos em relação aos blocos, os testes associados às linhas e às colunas não são relevantes e nem obedecem a um rigor estatístico. Assim que se tiver usado o DQL pode-se calcular a eficiência relativa ao DCC e DBCC. Eficiência Relativa(ER) do DQL -Relativa ao DCC:

QMEt

QMEtQMCQMLDCCER)1(

)1()(−

−++=

Onde QML = Quadrado Médio da linha. QMC = Quadrado Médio da coluna QME = Quadrado Médio do erro t = Número de tratamentos.

0,010051+0,275781+(4-1)(0,021598)( ) 3.2

(4-1)(0,021598)ER DCC = = 5

Os resultados mostram que usando o delineamento de quadrados latinos em vez do delineamento completamente casualizado, a eficiência foi aumentada em 325%.

Manual de Experimentação Agrária 58

Page 59: Manual de Experimentacao Agraria

Experimentação Agrária

-Relativa ao DBCC

QMEtQMEtQMLlinhaDBCCER

*)1(),( −+

=

QMEtQMEtQMCcolunaDBCCER

*)1(),( −+

=

Quando os graus de liberdade para o erro no DQL forem menores que 20, o valor da ER será ajustada pelo seguinte factor.

( )( )[ ]( )[ ]( )( )[ ]( )[ ]11321

311212

2

+−+−−+−+−−

=ttttttk

Do exemplo:

ER (DBCC,linha) = 87,0021598,0*4

021598,0*)14(010051,0=

−+

ER (DBCC,Coluna) = 94,3021598,0*4

021598,0*)14(275781,0=

−+

Porque os graus de liberdade do erro são apenas seis, os dois valores acima necessitam de ser ajustados:

( )( )[ ]( )[ ]( )( )[ ]( )[ ] 93,0

1143241431412414

2

2

=+−+−−+−+−−

=k

ER (DBCC, linha) ajustada = 0,87x0,93 = 0,81 ER (DBCC, coluna) ajustada = 3,94x0,93 = 3,66 Os resultados mostram que "blocking" por linhas não aumentou a precisão comparado com o DBCC enquanto blocking por colunas aumentou a eficiência em 366%. A implicação global é de que o DBCC com colunas como blocos será tão eficiente como o delineamento dos quadrados latinos. O Teste de DMS Comparação entre as variedades híbridas com a variedade de controlo. 396,0068,1464,1 =−=− CA yy 403,0068,1471,1 =−=− CB yy 271,0068,1339,1 =−=− CD yy DMS α=0,05 = 1,943*0,1039=0,2019 Então

Manual de Experimentação Agrária 59

Page 60: Manual de Experimentacao Agraria

Experimentação Agrária

CA yy − >DMS0,05 = significativa CB yy − >DMS0,05 = significativa CD yy − >DMS0,05 = significativa. Os híbridos A e B são significativamente superiores à variedade de controlo em termos de rendimento médio, enquanto que o híbrido D é significativamente inferior à variedade de controlo em termos de rendimento médio. Análise de Variância com Talhão Perdido Suponhamos que no experimento com milho foi perdido o talhão da 4ª linha e 3ª coluna (1,655 é perdido). Passo 1 Usa-se a fórmula seguinte para estimar o valor perdido

( )( )( )

21 2

t Lo Co To Goy

t t+ + −

=− −

Onde t = número de tratamentos Lo = é o total de valores na linha com o valor perdido Co = é o total de valores na coluna com o valor perdido To = é o total do tratamento do valor perdido (soma do tratamento cujo valor foi perdido). Go = é total dos talhões disponíveis (grande total sem o valor do talhão perdido). Do Exemplo:

[ ] t/ha567,1

2*3)710,19(2)200,4490,4515,3(4=

−++=y

Passo 2 : Substitua o valor y no lugar do dado perdido e faça Análise de Variância. Do exemplo, obtemos os resultados seguintes: Quadro de Análise de Variância ─────────────────────────────────────── Fonte G.L SQ QM ─────────────────────────────────────── Linha 3 0,039142 0,013047 Coluna 3 0,793429 0,264476 Tratamentos 3 0,405689 0,1352297 Erro 6 0,126658 0,0211097 Total 15 1,364918 ─ ─────────────────────────────────────── Passo 3 Faça as seguintes modificações para os resultados da análise de variância em passo 2 -Subtraia 1 grau de liberdade tanto para o total como para o erro. -Calcule o factor de correcção como:

Manual de Experimentação Agrária 60

Page 61: Manual de Experimentacao Agraria

Experimentação Agrária

[ ][ ]

[ ][ ] 022251,0

)24)(14(200,1044(490,4515,3710,19

)2)(1()1(

2

2

2

20000

=−−

−−−−=

−−−−−−

=tt

TtCLGB

Subtraia o factor B da soma dos quadrados totais e da soma dos quadrados dos tratamentos Portanto: SQ T(ajustada) = SQT–B = 1,364918-0,022251 = 1,342667 SQTrat(ajustada) = SQTrat – B = 0,405689-0,022251 = 0,383438 Então o quadro da Análise de Variância final será: ────────────────────────────────────────────────────────────────── Fonte de variação G.L SQ QM F F5,3 α =0,05 α=0,01 ────────────────────────────────────────────────────────────────── Linha 3 0,039142 0,013047 <1 - - Coluna 3 0,793429 0,264476 10,44* 5,41 12,06 Tratamentos 3 0,383438 0,127813 5,05 5,41 12,06 Erro 5 0,126658 0,025332 Total 14 1,342667 ────────────────────────────────────────────────────────────────── Para fazer comparação entre médias onde um tratamento tem valor perdido, use a fórmula seguinte para calcular o erro padrão duma diferença entre duas médias:

⎥⎦

⎤⎢⎣

⎡−−

+=− )2)(1(122

.... tttss

sk yy

Do Exemplo

12995,012995,0)24)(14(

142025332,0

....=⎥

⎤⎢⎣

⎡=

−−+=− sk yys

Exemplo prático Pretende-se estudar o rendimento na produção das sementes da árvore de Leucaena com duas fontes de variação: tipo de solo e período de sementeira. Os dados são apresentados na tabela seguinte (nº de sementes/árvore).

Manual de Experimentação Agrária 61

Page 62: Manual de Experimentacao Agraria

Experimentação Agrária

Período de sementeira Tipo de solo 1 2 3 4 5 totais

1 A58 D80 B78 E74 C66 356 2 C60 A62 D81 B81 E70 354 3 E64 C65 A67 D89 B74 359 4 B68 E69 C68 A70 D80 355 5 D68 B70 E70 C70 A65 343

totais 318 346 364 384 355 1767

Faça Análise de Variância e o teste F ao nível de significância de 5%. Resolução Factor de correcção (FC):

21767 124891.5625

FC = =

Soma de quadrados totais (SQT):

2 2 2 258 60 80 651319.44

SQT FCSQT

= + + + + −=

K

Soma de quadrados dos tratamentos (SQTrat):

22 2 2 2322 371 329 398 3475

784.24

SQTrat FC

SQTrat

+ + + += −

= Soma de quadrados das linhas (SQL)

22 2 2 2356 354 559 355 3435

29.84

SQL FC

SQL

+ + + += −

=

Manual de Experimentação Agrária 62

Page 63: Manual de Experimentacao Agraria

Experimentação Agrária

Soma de quadrados das coluna (SQC)

oma de quadrados do erro (SQE)

uadrado médio do tratamento (QMTrat):

(QMC)

(QME):

tratamentos:

1319.44 29.84 471.84 784.2433.52

SQESQE

= − − −=

2 2 2 2 2318 346 364 384 3555

471.84

SQ C F C

SQ C

+ + + += −

= S

Q

784.244

196.06

QMTrat

QMTrat

=

=

29.844

QML =

Quadrado médio da linha (QML) 7.46L =QM

Quadrado médio da coluna

Quadrado médio do erro Cálculo de F para

33.5212

QME =

471.844

QMC =

117.96QMC =

2.793QME =

196.062.793

70.19calF =

calF =

Manual de Experimentação Agrária 63

Page 64: Manual de Experimentacao Agraria

Experimentação Agrária

Tabela da Análise de Variância Fonte de variação GL SQ QM Fcal F4,12,0.05

Linhas 4 29.84 7.46 2.67 3.26 Coluna 4 471.84 117.96 42.23* 3.26 Tratamento 4 784.24 196.06 70.19* 3.26 Erro 12 33.52 2.793 Total 24 1319.44

Com base no teste F e ao nível de significância de 5%, pode-se concluir que as variedades não têm a mesma produção de sementes por árvore.

Exercício 1. Um investigador pretende avaliar o diâmetro do caule (em cm) da Zea mays em diferentes pontos da zona norte do País. Segundo o investigador, as zonas seriam definidas em função da altitude: 10m, 80m, 240m. O investigador acha que o período de cultivo seria importante para o seu estudo. a) Faça a casualização e apresente o Layout. b) Faça o esqueleto da ANOVA e diga qual seria o problema do Delineamento escolhido? c) Dê o modelo estatístico e os seus pressupostos. 2. Muitas vezes os investigadores usam Delineamento de Quadrados Latinos para verificar se existem diferenças significativas entre tratamentos. a) Quando recomendaria o seu uso? b) Qual é a diferença entre o DQL e DBCC? c) Quais são os indicadores que mostram que no próximo Experimento seria aconselhável ou não o uso do DQL? Justifique como? 3. O INIA (Instituto Nacional de Investigação Agronómica) realizou um experimento usando o Delineamento de Quadrados Latinos. O ensaio consistia em avaliar o efeito de 5 tipos de tratamento e num determinado período. Os resultados estão apresentados na tabela seguinte:

VARIEDADE PERÍODO 1 2 3 4 5

1 A10 B14 C16 D19 E21 2 B12 C18 D13 E23 A19 3 C14 D23 E11 A22 B15 4 D13 E20 A15 B13 C11 5 E12 A17 B8.0 C18 D9.0

a) Faça Análise de Variância e o teste F ao nível de significância de 5%. b)Tire conclusões. 4. Um estudante do 5º ano da Faculdade de Agronomia e Engº Florestal pretende verificar se existem diferenças significativas entre as variedades de tomate se aplicados adubos em diferentes condições de solo.

Condições Adubo

Manual de Experimentação Agrária 64

Page 65: Manual de Experimentacao Agraria

Experimentação Agrária

do solo N P K Orgânico Totais 1 D20 A28 B27 C30 105 2 A27 B30 C34 D14 105 3 B31 C38 D20 A23 112 4 C35 D18 A30 B20 103

Totais 113 114 111 87 425 a) Dê o modelo estatístico para o ensaio? b) Assumindo que as variâncias são homogéneas, faça Análise de Variância e o teste F ao nível de significância de 5% e 1%. c) Com base no teste DMS, faça comparações entre os tratamentos d) Aconselharia no próximo ensaio o uso de DBCC? Porquê? e) Calcule o CV e elabore as conclusões. 5. Foi realizado um ensaio para avaliar o efeito de quatro tipos de ração (A, B, C e D), sobre a produção de leite de vaca. Para tal foi usado o Delineamento de Quadrados Latinos e, cada animal foi submetido a cada um dos quatro tipos de ração num período de três semanas e o leite total no fim das três semanas foi registado (em decilitros). Os resultados estão apresentados na tabela abaixo.

VACA período 1 2 3 4 totais

1 A191 B195 C292 D249 928 2 B190 D203 A218 C210 821 3 C214 A139 D245 B163 761 4 D221 C152 B204 A134 711

Totais 817 689 959 756 3221 a) Faça a Análise de Variância e o teste F ao nível de significância de 5%. Comente os seus resultados. b) Calcule o erro padrão da diferença entre duas médias dos tratamentos c) Calcule o erro padrão duma média dum tratamento.

Manual de Experimentação Agrária 65

Page 66: Manual de Experimentacao Agraria

Experimentação Agrária

6. Suponha agora que no ensaio da pergunta nº 5, o leite colhido na 2ª vaca do período 3 derramou no chão e o resultado ficou perdido.

VACA Período 1 2 3 4 Totais

1 A191 B195 C292 D249 928 2 B190 D?? A218 C210 618 3 C214 A139 D245 B163 761 4 D221 C152 B204 A134 711

Totais 817 486 959 756 3018 a) Faça a Análise de Variância e o teste F ao nível de significância de 5%. b) Calcule o CV e comente os seus resultados.

Manual de Experimentação Agrária 66