METABOLISMO MICROBIANO. Processos bioquímicos na produção de energia

Preview:

Citation preview

METABOLISMO MICROBIANO

Processos bioquímicos naprodução de energia

ADP: difosfato de adenosina

ATP: trifosfato de adenosina, um nucleotídeo formado por uma base nitrogenada- a adenina, um açúcar - a ribose e três moléculas de ácido fosfórico

Função: armazenar energia

GLOSSÁRIO

NAD: nicotinamida-adenina dinucleotídeo Função: transportador hidrogênio

NADH: nicotinamida-adenina dinucleotídeo

FAD: flavina-adenina dinucleotídeoFunção: transportador hidrogênio

FADH: flavina-adenina dinucleotídeo

ENERGIA DA CÉLULAENERGIA DA CÉLULAUma célula viva requer energia para realizar

diferentes tipos de trabalho, incluindo:

-Biossíntese das partes estruturais da célula, tais como paredes celulares, membrana ou apêndices externos;

-Síntese de enzimas, ácidos nucleicos, polissacarídeos, fosfolipídeos e outros componentes químicos da célula;

-Reparo de danos e manutenção da célula em boas condições;

-Crescimento e multiplicação;

-Armazenamento de nutrientes e excreção de produtos de escória;

-Mobilidade

ENERGIA DA CÉLULAENERGIA DA CÉLULA• Obtida através da quebra de

moléculas orgânicas

• Armazenada na forma de ATP

• Utilizada na síntese de moléculas ou outras funções celulares

TIPOS DE RESPIRAÇÃOTIPOS DE RESPIRAÇÃO

•ANAERÓBIAANAERÓBIA–Ausência de O2

•AERÓBIAAERÓBIA –Presença de O2

RESPIRAÇÃO ANAERÓBIARESPIRAÇÃO ANAERÓBIA• Também chamada de fermentação

(quebra parcial da glicose na ausência de O2)

• Ocorre, por exemplo, em organismos unicelulares– Fermentação láctica– Fermentação alcoólica

• Vinho, cerveja, aguardente– Fermentação acética

• Vinagre

• Fermentação lácticaFermentação láctica

– Glicose (C H O) é degradada em duas moléculas menores, com três átomos de carbono, o ácido pirúvico (C H O)

glicólise– Gera 2 moléculas de ATP– C H O 2C H O + 2ATP

RESPIRAÇÃO ANAERÓBIARESPIRAÇÃO ANAERÓBIA

Fermentação LácticaFermentação Láctica

RESPIRAÇÃO AERÓBIARESPIRAÇÃO AERÓBIA• EtapasEtapas

– Glicólise

– Ciclo de Krebs

– Cadeia Respiratória

RESPIRAÇÃO AERÓBIARESPIRAÇÃO AERÓBIA•Glicólise

– Ocorre no citoplasma e consiste na quebra parcial da molécula de glicose, carregando energeticamente duas moléculas de ATP, liberando duas moléculas de ácido pirúvico que serão utilizadas na próxima etapa.

– A glicólise da respiração é idêntica à da fermentação.

GLICÓLISEGLICÓLISE

- Ciclo de Krebs - Ocorre no interior das mitocôndrias, mais especialmente na matriz mitocondrial.

- Neste ciclo, as duas moléculas de ácido pirúvico (CHO) resultantes da glicólise, serão desidrogenadas (perdem hidrogênio) e descarboxiladas (perdem carbono). Os hidrogênios retirados são capturados por aceptores de hidrogênio, que podem ser o NAD (nicotinamida-adenina dinucleotídio) ou FAD (flavina-denina dinucleotídio), com a conseqüente formação de NADH e FADH.

•Ciclo de Krebs

– O ácido pirúvico, perdendo hidrogênio e carbono, converte-se em aldeído acético.

– O aldeído acético se reúne a uma substância denominada coenzima A (CoA), formando acetil-CoA

– A acetil-CoA combina-se a um composto de quatro átomos de carbono, já existente na matriz mitocondrial, denominado ácido oxalacético.

– Nesse momento inicia-se propriamente o ciclo de Krebs.

- Ciclo de Krebs

– A coenzima A apenas ajuda o aldeído acético a se ligar ao ácido oxalacético, e não permanece no ciclo.

– Forma-se um composto de seis átomos de carbono, que é o ácido cítrico.

– Este ácido possui três carboxilas (-COOH); dessa forma o ciclo de Krebs é também conhecido como ciclo do ácido cítrico, ou seja, do ácido tricarboxílico.

•Ciclo de Krebs

– O ácido cítrico sofre descarboxilações e desidrogenações, resultando em vários compostos intermediários.

– No final do processo, o ácido oxalacético é regenerado e devolvido à matriz mitocondrial.

– Nesse processo, cada acetil-CoA degradada libera três moléculas de NADH e uma molécula de FADH, duas moléculas de CO, que são expedidas para o meio, e uma molécula de ATP.

CICLO DECICLO DE KREBSKREBS

•Cadeia Respiratória– Esta etapa ocorre nas cristas mitocondriais do

interior das mitocôndrias.

– As moléculas de hidrogênio retiradas da glicose pelas moléculas de NAD e FAD, produzindo NADH e FADH,durante a glicólise e o ciclo de Krebs, serão transportadas até o oxigênio, formando moléculas de água, liberando energia para a produção de ATP.

– Na cadeia respiratória, as moléculas de NAD e FAD funcionam como transportadoras de hidrogênio.

– A combinação de hidrogênio com oxigênio não se realiza de forma direta.

•Cadeia Respiratória– Existem então, proteínas intermediárias

denominadas citocromos, que permitem a liberação gradativa de energia. As proteínas citocromos têm o papel de transportar os elétrons dos hidrogênios gradativamente.

– Os hidrogênios liberam energia, utilizada na fosforilação (formação de ATP a partir de ADP+P). Depois de descarregados, já no final da cadeia respiratória, o hidrogênio combina-se com o oxigênio, formando água .

– Por ocorrer na presença do oxigênio, a fosforilação é denominada oxidativa.

CADEIA RESPIRATÓRIACADEIA RESPIRATÓRIA

SALDO ENERGÉTICOSALDO ENERGÉTICOEtapaEtapa HidrogênioHidrogênio ATPATP

Glicólise 2 NADH 4 ATP

Ciclo de Krebs (2 moléculas de ácido pirúvico, portanto 2 voltas)

8 NADH

2 FADH

2 ATP

Cadeia respiratória 10 NADH 30 ATP

2 FADH 4 ATP

Total Geral 40 ATP

Gasto 2 ATP na glicólise -2 ATP

Saldo líquido 38 ATP

SALDO ENERGÉTICOSALDO ENERGÉTICO

RESPIRAÇÃO AERÓBIARESPIRAÇÃO AERÓBIA

C H O 6CO2 + 6H2O+ 38ATP

Um dos processos mais importantes na terra, realizado por organismos autotróficos, que possibilita a conversão da energia luminosa em energia química, a qual é então utilizada para a conversão do CO2 da atmosfera em compostos de carbono reduzidos, especialmente açúcares. Neste processo, os elétrons são obtidos a partir dos átomos de hidrogênio da água.

A fotossíntese pode ser dividida em duas etapas: fase clara e fase escura.

Na fase clara, a energia luminosa é utilizada na conversão de ADP a ATP e na redução de NADP a NADPH. Há ainda a fase escura, os elétrons são utilizados, juntamente com o ATP, para reduzir o CO2 a compostos orgânicos.

FOTOSSÍNTESE

Reações luminosas: correspondem à fotofosforilação, onde a energia luminosa é absorvida pelos pigmentos (clorofila, bacterioclorofila), excitando os elétrons, que passam para a primeira de uma série de moléculas transportadoras, semelhante à cadeia de transporte de elétrons.

Com isso, há a passagem de prótons pela membrana, com a conversão de ADP em ATP.

A fotofosforilação pode ser de dois tipos: cíclica e acíclica. No processo cíclico, o elétron retorna à clorofila, enquanto na acíclica, processo mais comum, os elétrons liberados não retornam à clorofila, sendo incorporados ao NADPH. Os elétrons perdidos são substituídos por outros, provenientes da água ou outro composto oxidável, tal como H2S.

Na cíclica, quanto há a absorção dos quanta pela bacterioclorofila, a molécula se excita, perdendo um elétron, tornando-se um agente oxidante potente. O elétron é transferido num processo semelhante a CTE (Ferredoxina – ubiquinona – cit.b – cit.f) e retorna à bacterioclorofila. Entre b e f há a produção de ATP.

Na acíclica (algas) há dois sistemas de pigmentos que também perdem elétrons, passam por um processo semelhante à CTE, mas o elétron é usado para reduzir o NADP a NADH.

Reações escuras: não requerem a luz para que ocorram e incluem o ciclo de Calvin-Benson, onde o CO2 é fixado.

Outros tipos metabólicos

Fotoautotróficos: Utilização de compostos inorgânicos como doadores: Ocorre nos quimiolitotróficos, sendo as fontes o H2S, H2 e NH3. Os processos são similares à respiração aeróbia. A fonte de carbono é geralmente o CO2.

Quimiolitotróficos: O CO2 é reduzido a gliceraldeído 3P (fixação), que será metabolizado via o ciclo de Calvin. A energia para a realização destes processos advém da oxidação de compostos inorgânicos (H2, NH4, NO3).As bactérias púrpuras e verdes usam a luz para produzir ATP; produzem NADPH a partir da oxidação de H2S ou compostos orgânicos (fotossíntese anoxigênica). As algas e cianobactérias geralmente obtém o NADPH pela hidrólise da água, sendo um evento mediado pela luz (oxigênica).

Processos bioquímicos nautilização de energia

• Processos biossintéticos: aqueles nos quais os constituintes químicos complexos de uma célula são construídos.

• Generalizações sobre as vias biossintéticas:– As vias biossintéticas começam com a síntese das

unidades estruturais necessárias para a produção de substâncias mais complexas;

– As unidades estruturais são então ativadas, usualmente com a energia das moléculas de ATP. Essa energia é necessária para estabelecer as ligações covalentes que subsequentemente irão ligar as unidades estruturais.

– As unidades estruturais ativadas são unidas uma à outra para formar substâncias complexas que se tornam parte estrutural ou funcional da célula.

• BIOSSÍNTESE DE COMPOSTOS NITROGENADOS– Biossíntese de aminoácidos e proteínas– Biossíntese de nucleotídeos e ácidos nucleicos

• BIOSSÍNTESE DE LIPÍDEOS– Biossíntese de ácidos graxos de cadeia longa– Biossíntese de fosfolipídeos

• BIOSSÍNTESE DE CARBOIDRATOS– Biossíntese de peptideoglicano de parede celular

• A célula também requer energia para executar outras funções celulares além da síntese de constituintes químicos complexos. Por exemplo, uma célula bacteriana utiliza energia para operar os mecanismos de transporte que conduzem os nutrientes do ambiente para dentro da célula. Outro processo que requer energia, mas não envolve biossíntese, é a atividade do flagelo na motilidade celular.

Recommended