Películas absorbedoras para celdas solares por depósito ...pkn/Solace2008Tutorial.pdf · CdTe-...

Preview:

Citation preview

TutorialJanuary 20, 2008

Cochin University of Science and Technology

Research in chemically deposited solar cells

P. Karunakaran Nair

Centro de Investigación en EnergíaUniversidad Nacional Autónoma de México

Temixco, Morelos 62580, Méxicopkn@cie.unam.mx

In Collaboration with:

M. T. S. Nair, Harumi Moreno, Sarah Messina, D. Avellaneda, Jose Campos, O. GomezDaza, Ma. Luisa Ramon G.

Pilkington-Toledo OH, BHEL-Gurgaon

Funding: CONACYT, Mexico; DGAPA-UNAM

Solace2008, Kochi

Outline

1. PV fundamentals and material issues - just how

many solar cell technologies..?

2. Chemical deposition and scope for low efficiency

solar cells

3. Chemically deposited photovoltaic structures

4. Prospects

PV fundamentals and material issues just how many solar cell

technologies..?

Borrowed from David E. Carlson talk, March 2006

Borrowed from David E. Carlson talk, March 2006

Just how many solar cell technologies..?

1950 1960 1970 1980 1990 2000

5

10

15

20

25E

ffici

ency

(%)

Year

crystalline Siamorphous Sinano TiO2CIS/CIGSCdTe

Nathan S. Lewis, www.caltech.edu

Just how many solar cell technologies..?

Worst day insolation map (kWh/m2/day ) PV sellers’ strategic web map

Just how many solar cell technologies..?

6 Boxes at 3.3 TW each; Nathan S. Lewis, www.caltech.edu

Just how many solar cell technologies..?

Just how many solar cell technologies..?Semicond. Mexican

Production (2004)

William W. Porterfield, Inorganic Chemistry: a united approach, Academic 1993 San Diego, p. 9.

Ag (3,000 ton)

www.inegi.gob.mx

Chalcogenide Absorbers

Most investigated:

• CdTe - Eg, 1.47 eV; α > 105 cm-1 (vis)solar cells: η ~ 16.5%

• Chalcopyrite - Cu(In1-xGax)Se2 (CIGS) Eg, 1.04 – 1.37 eV; α >105 cm-1

solar cells: η ~ 19.5% (x = 0.3)

Cd2SnO4/Zn2SnO4/CdS/CdTe/CuTe:HgTe-doped graphite paste

CTO – rf magnetron sputtering, low resistivity;ZTO – Buffer, high resistivity;CdS – Chemical bath;CdTe- Close-space sublimation (css)

Voc, 845 mV; Jsc, 25.88 mA/cm2; FF, 75.51%; 1.032 cm2

NREL: X. Wu et al, Preprint NCPV Program Review Meeting, Lakewood, CO, Oct 2001

η ~ 16.5%

Mo/CuIn1-xGaxSe2/CdS/ZnO-Al2O3 dopedZnO/Ni-Al grid/MgF2

• Mo-sputter coating• CIGS (2-4 µm)- evaporation,

three-stage process: (In-Ga)2Se, react with Cu & Se,

• Evaporation of In and Ga in the presence of Se;

• CdS (50 nm) – chemical bath;• ZnO (90 nm)-Al2O3 coated

ZnO (120 nm) – sputter coating, 60-70 Ω/;

• MgF2 (100 nm)- electron beam evaporation

• CIGS: x ~ 0.3; Eg, ~1.14 eV • η ~ 19.5%- area, 0.41 cm2

• Voc, 693 mV; • Jsc, 35.34 mA/cm2; • FF, 79.4 %.

K. Ramanathan et al, Thin Solid Films 480-481 (2005) 499-502;

Contreras et al, Prog. Photovolt : Res. Appl. 13 (2005) 209-216

Abundance: Cd, 0.1 ppm; Te, 0.005 ppm; In, 0.05 ppm; Ga,15 ppm; Ru, 0.0001ppm

At system efficy. of 10%, for 100,000 TWh/yr PV electricity

Solar cell Mater. req. Total req.

Total req/ resources

CdTe (1.5 µm) 4.7 g/m2 of Te 2,400,000 m.tons

110

CuIn0.75Ga0.25Se2 (2 µm) 2.9 g/m2 of In 1,400,000 m.tons

650

Potential to reduce materials exists: only 0.5 µm of CIGS and 1.0 µm of CdTeare needed to absorb 90% of the photons

B. A. Andersson, et al, Energy, 23 (1998) 407 – 411; Energy Policy 28 (2000) 1037-1049

CdTe & CIGS cells

Material constraints are unlikely to affect production prior to 2015

Could serve as bridging technologies so that other solar cell technologies can emerge

Abundant use of these cells would:(i) prepare the electricity market for solar cells in

general(ii) be beneficial for the emergence of the solar cell

industry as a whole

Just how many solar cell technologies..?

A Statement of Understanding

• Photovoltaic technologies meeting the future demand for photovoltaic modules would complement each other.

• There is room for developing distinct technologies making use of local/regional raw materials and appropriate technologies to satisfy local need.

Chemical depositionscope for low efficiency solar cells

Chemical deposition – by flotation

Optimization of: 1. composition of bath mixture

2. quantity of bath per surface area of the substrate

3. duration and temperature of deposition

4. post deposition processing and/or multilayer deposition

Chemical deposition – solar radiation control and low-efficiency solar cells..

Heat transfer - G. Alvarez, et al: Solar Energy 78 (2005) 113

Mechanical - J. O. Aguilar, et al: Surf. Coat. Technol. 200 (2005) 2557

Tvis 20%, Tsol 13%, Rsol 16%, Asol 71%

End use saving 40%, PV gen 5%

a great step forward!

Chemical deposition – by immersion

Chemical deposition – scope for low efficiency solar cells..

980 W/m2

180 W/m2

Chemical deposition – scope for low efficiency solar cells..

www.sunwize.com grid-tieD. E. Carlson talk, 2006

Create comfort space with a solar roof; the value added is welcome!

Then 5% PV/solar control roof too has a role to play!

chemical deposition:scope for low efficiency solar cells

PV cells inside cellular plastic sheets – no lamination or

support structures

Sheet area: 15 sheets x 1.5 square meter: 22.5 sq mPV power @ 5% efficiency ≈ 1 kWe

And we also just created 22.5 sq m of valuable comfort zone underneath!

Hu, Nair, PET: J. Cryst.Growth 152(1995)150; Nair et al, Polyethersulfone: Thin Solid Films, 401 (2001) 243; J. Cardoso et al, polyimide: Semicond Sci. Technol. 16 (2001) 123

Chemically deposited photovoltaic structures

Chemically deposited photovoltaic structures…

Chemical deposition: a brief history1835 Liebig ‘silver mirror’1869 PbS, CuS, Sb2S3 thin films from chemical solutions1884 Emerson-Reynolds - PbS thin films, J. Chem. Soc. 45:162, 18841906 Rosenheim et al – Chemically deposited PbS IR detectors1940’s Chemically deposited PbS y PbSe detectors in missile heads

1960-2006 II-VI: CdS, ZnS; IV-VI: PbS,SnS; V-VI: Sb2S3; I-VI:CuS;I-III-VI: CuInS2; I-V-VI: CuSbS2; III-V: InAs, InSb; I-II-IV-VI: Cu2ZnSnS4 and the selenides

1990’s Chemically deposited CdS thin films in high efficiency solar cells2000’s Nano-technology

Gary Hodes: Chemical Solution Deposition of Semiconductor Films, Marcel Dekker 2003

Chemically deposited photovoltaic structures…

CdS direct ~ 2.45 eVZnS direct ~ 3.7 eVZnSe direct ~ 2.7 eV

CdSe direct ~ 1.7 - 2.0 eVSb2S3 direct ~ 1.7 - 1.8 eVSnS direct ~ 1.6 eV

CuSe, Cu2-xSe direct ~ 2.1 – 2.3 eV; indirect, ~ 1.2 - 1.4 eV

CuS, Cu1.8S, Cu1.96S direct, ~ 1.55 - 1.4 eV

Bi2S3 direct ~ 1.4 – 1.5 eVSb2Se3 indirect? ~ 1 – 1.2 eVTl2S direct ~ 1.12 eV, Bi2Se3 direct ~ 1.08-1.06 eV Ag2S direct ~ 1 eVPbS direct ~ 0.4 – 0.7 eV PbSe direct ~ 0.6 eV(?)

CuSbS2, Cu3SbS4, AgSbSe2, Cu3BiS3, Cu4SnS4, Cu2SnS3,

TlSbS2, TlSbS2

P. K. Nair, et al, Sol. Energy Mater. Sol. Cells, 52, 313 (1998)….more than 70 compound semiconductors to work with!

Chemically deposited photovoltaic structures..

0.5 1.0 1 .5 2. 0 2.5 3.0 3.5 4.0102

103

104

105

106

CdS(cub)2.45 eV

Sb2(S/Se)

3

1 eV

Sb2 S3 1.7 eV

Optical Absorption Coeff ic ients of Chemically Deposited Thin Filims

PbS0.6 eV

ZnS3.45 eV

ZnO3.4 eV

CdS( hex)2.6 eV

SnS(cub)1.75 eV

Bi2S3 1.6 eV

α (c

m)-1

hυ (eV)

95% abs, 300 nm

For quantum size effects...G. Hodes, Phys. Chem. Chem. Phys. 9(2007) 2181-2196

Optical Conversion Efficiency: (i) photon absorption and e-h generation;(ii) Separation of e-h across the depletion region (iii) collection and work

Optical

Effic. %

Optical band gap Eg(eV)

Carrier multiplication at hν > 2Eg and super efficiencies ..? G. Nair, M. Bawendi, Phys. Rev. B 76, 081304(R) (2007)

Chemically deposited photovoltaic structures…

SnO2:F-CdS-SnS(A)-CuS-AgCdS (100 nm) - 0.1 M cadmium nitrate,1 M sodium citrate,

ammonia (aq), 1M thiourea,; 80 oC, 3h; predominantly hexagonal; photoconductive with conductivity σ~ 10-3 – 10-2 (Ω cm)-1, can be doped n-type; Eg ~ 2.6 eV

SnS - (Bath A) (100 nm)

CuS – 0.5 M CuCl2, 3.7 M triethanolamine, 30% NH3 (aq),1 M NaOH1 M thiourea; 30 oC, 30 min - 1 h; covellite (hexagonal); p-type conductivity, σ ~ 103 (Ω cm)-1; Eg indir. ~ 1.55 eV

315 oC in 300 mTorr Nitrogen

Avellaneda, Nair, Nair, Thin-Film Compound Semiconductor Photovoltaics—2007, MRS. Symp. Proc. Volume 1012 (2007), 1012-Y12-29 (on line)

Chemically deposited SnS thin films

(Bath A): 0.1 M Sn(II) in acetic acid and HCl, 10 ml; 3.7 M triethanolamine, 30 ml; 30% NH3 (aq), 16 ml; 0.1M thioacetamide, 10 ml; 20 to 25 oC, 6 h (100 nm); zinc blende, photoconductive, σ ~10-6 (Ω cm)-1; Eg dir. 1.7 eV

(Bath B): 1 g SnCl2 dissolved in acetone, of 3.7 M triethanolamine, 12 ml; 1 M thioacetamide, 8 ml; 4 M NH3 (aq), 10 ml; 55 oC, 8 h (400 nm); orthorhombic; photoconductive, σ ~ 10-4 (Ω cm)-1; Eg indir. ~ 1.1eV

..

(A):D. Avellaneda, G. Delgado, M. T. S. Nair, P. K. Nair, Thin Solid Films 515(2007) 5771-5776; (B): Semicond. Sci. Technol. 6 (1991) 132-134

20 30 40 50 600

255075

100

2 θ (deg)

SnS- herzenbergite PDF# 39-0354

a)

(%)

X-ra

y in

tens

ity(r

elat

ive)

b)

c)

0255075

100

(222

)

(311

)

(220

)

(200

)Zinc Blende (a = 5.7911)

(111

)

Structural data on SnS thin films

XRD patterns of a) acetone bath, b)acetic acid bath, ZB as prepared, c)SnS ZB annealed in N2, 1h 300 mTorr, 350ºC

Ref:E. C. Greyson, et al, “ Tetrahedral Zinc Blende Tin Sulfide Nanoand Microcrystals", Small 2 (2006) 368-371.

Anneal: Changes in Composition

a)SnS+Se annealed at 300 ºC, N2 along with the standard pattern of SnSe (PDF 38105); c)SnS+200 mg of S, annealed at 300 ºC, N2; d)SnS annealed in air at 400 ºC; e)SnS annealed in air at 550 ºC,

1,5 2,0 2,50

1

2

3

4

5

hν (eV)

(αhν

)2/3 (

103 c

m-2

/3eV

2/3 )

1.7 eV1.6 eV

After heating

Before heating

Optical properties of SnS ZB thin films annealed in air at differenttemperatures, and in the presence of Se, and S.

500 1000 1500 2000 25000

20

40

60

80

100

0

20

40

60

80

100

R %

W avelength (nm)

T %

550º 500º 400º 300ºC As prepared

Optical properties

SnO2:F-CdS-SnS(A)-CuS-Ag

-0,2 0,0 0,2 0,4

-1,5

-1,0

-0,5

0,0

0,5C

urre

nt (

10-4

A) Voltage (V)

Cu2SnS3

SnS

luz

CdS

Pintura de plata

SnO2:F

0.36FF6 kΩRp

300 ΩRs

200 mVVm

340 mVVoc

3.0A

3.7 mA/cm2Jm

6.0 mA/cm2Jsc

6.4 mA/cm2Jp

5x10-2 mA/cm2Jo

0.36FF6 kΩRp

300 ΩRs

200 mVVm

340 mVVoc

3.0A

3.7 mA/cm2Jm

6.0 mA/cm2Jsc

6.4 mA/cm2Jp

5x10-2 mA/cm2Jo

J = Jo [ exp(q(Voc-JRS)/AkBT) – 1] + [(V-JRS)/RP ] - JP

FF= Jm Vm/ Jsc Voc, Lambert W function used.

MRS Proc. Volume 1012, 2007, 1012-Y12-29

SnOSnO22:F /CdS/SnS(1,2)/:F /CdS/SnS(1,2)/CuSCuS//AgAg

-0.2 0.0 0.2 0.4 0.6 0.8

-7.7

-3.8

0.0

3.8

7.7

11.5

15.4

19.2

23.1 DARK LIGHT

J sc (m

A/cm

2 )

Voltage (V)

VOC = 380 mVJSC = 7.7 mA/cm2

Vm = 220 mVJm = 4.53 mA/cm2

FF = 0.34Eff. = 1%

SnS (1)SnS (2)

IL= 850 W/m2

SnO2:F

CuS

CdS

SnO2:F/CdS/SnS/PbS/Ag

-0,2 0,0 0,2 0,4

-8

-6

-4

-2

0

2

Voltage (V)

Cur

rent

(10-6

A)

0.27FF

70 kΩRp

90 ΩRs

160 mVVm

300 mVVoc

2.7A

0.247 mA/cm2Jm

0.484 mA/cm2Jsc

0.485 mA/cm2Jp

1x10-3 mA/cm2Jo

0.27FF

70 kΩRp

90 ΩRs

160 mVVm

300 mVVoc

2.7A

0.247 mA/cm2Jm

0.484 mA/cm2Jsc

0.485 mA/cm2Jp

1x10-3 mA/cm2Jo

-0,2 0,0 0,2 0,4

-2

-1

0

1

Cur

rent

(10-5

A)

Voltage (V)

0.28FF

22 k ΩRp

650 Ω (Area 1 mm2)

Rs

180 mVVm

320 mVVoc

2.2A

0.83 mA/cm2Jm

1.6 mA/cm2Jsc

1.7 mA/cm2Jp

1x10-3 mA/cm2Jo

0.28FF

22 k ΩRp

650 Ω (Area 1 mm2)

Rs

180 mVVm

320 mVVoc

2.2A

0.83 mA/cm2Jm

1.6 mA/cm2Jsc

1.7 mA/cm2Jp

1x10-3 mA/cm2JoSnS(A)

SnS(B)

PbS:1 M lead nitrate, 1 M NaOH, 1 M thiourea, 1 M triethanolamine; 40 oC, 2 h

Sb2S3 and Sb2SxSe3-xSb2S3 (i) Thin FilmsSbCl3 650 mgAcetone 2.5 mlNa2S2O3 25 ml

Sb2S3 (ii) Thin FilmsPotasium antimony tartrate 0.1 M,TEA 50% , Ammonia aq.Thioacetamide 0.1 M

Selenium Thin FilmsNa2SeSO3 → Se (@ pH 4.5)

0 1 2 3 4 5 6 7 8 9 100

100

200

300

400

500

600

700

Growth curve of Sb2S3 at diferent temperature

Thic

knes

s (n

m)

Deposition duration (h)

-3 °C 1 °C 5°C 10 °C

(i) M T S Nair, Y Peña, J Campos, V M García, P K Nair J. Electrochem. Soc. 145 (1998) 2113(ii) O Savadogo, and K C Mandal, Solar Energy Materials 26 (1991) 117

(Se) K. Bindu, M. Lakshmi, S. Bini, C. Sudha Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, Semicond. Sci. Technol., 17 (2002) 270.

Sb2S3-xSex formationx=0.75, calculated from XRD data

XRD: Sb2S3 film heated in contact with Se film, 300oC

Eg direct (forbidden), 1.3 eV (?); orthorhombic: a =11.81 Å, b=11.47 Å, c=3.71 Åα , 105 cm-1 in the visible; conductivity, ≈ 10-8 Ω-1cm-1

1 0 2 0 3 0 4 0 5 0

1 0 2 0 3 0 4 0 5 0

S b2S

xS e

3 -x

(211

)

(420

)

(301

)

(221

)

θ = 0 .5 °

(230

)

b )

θ = 1 .5 °

(420

)

Inte

nsity

[a.u

.]

2 θ [d e g re e s ]

S b 2S 3

P D F # 4 2 -1 3 9 3

(120

)

a )

(520

)

(301

)

(140

)

(211

)

(320

)

(200

)

(310

)

(220

)

(110

)

(130

)(3

10)

(120

)

(020

)

S b 2S e 3 P D F # 1 5 -0 6 8 1

(520

)

(321

)

Sb2S3 and Sb2(S/Se)3absorber thin films

1.5 2.0 2.5 3.00.0

5.0x103

hν [eV]

(αhν

)2/3 [e

V cm

-1]2/

3

Eg=1.76 eV

1.0 1.5 2.0 2.50

1000

2000

3000

4000

5000

1.0 1.5 2.0 2.50

1000

2000

3000

4000

5000

Eg=1,38

Se+Sb2S3 horneado a 300°C en N2

(αhν

)2/3 [e

Vcm

-1]2/

3

hν [eV]

Eg=1,31

Sb2S3 + Se horneado a 300°C en N2

(αhν

)2/3 [e

Vcm

-1]2/

3

hν [eV]

500 1000 1500 2000 25000

20

40

60

80

100500 1000 1500 2000 2500

0

50

Tran

smitt

ance

(%)

Wavelength (nm)

Sb2S3

Sb2(S/Se)3

Ref

lect

ance

(%)

Photocurrent response of Sb2SxSe3-x

60 120 180 2401E-12

1E-11

1E-10

1E-9

1E-8

1E-7

bias 50 V

Sb2S3 + Se 300°C air

Sb2S3 300°C air

Sb2S3 + Se 300°C N2

Sb2S3 300°C N2

curre

nt [A

]

time [s]

Sarah Messina, 2007

Chemically deposited photovoltaic structures…

Sarah Messina, Nair, Nair, Communicated 2007

Chemically deposited photovoltaic structures…

Sarah Messina, Nair, Nair Communicated 2007

Chemically deposited photovoltaic structures…

Sarah Messina, Nair, Nair Communicated 2007

500 1000 1500 2000 25000

20

40

60

80

100

TCO-CdS-(Sb2S

3+Se)-PbS

TCO-CdS-Sb2S

3+ Se

TCO-CdS-Sb2S

3

TCO-CdS

Tran

smitt

ance

[%]

Wavelength [nm]

SnOSnO22:F/:F/CdS(CubCdS(Cub, , hexhex)/Sb)/Sb22(S/Se)(S/Se)33/PbS/PbS--AgAg

0.0 0.2 0.4 0.6

-10

0

10 Ag PbS (200 nm)Sb

2(S/Se)

3 (250 nm)

CdS (cub) (90 nm)

SnO2:F

Voc=480 mVJsc=6 mA/cm2

FF= 0.38η= 1.4 %

Cur

rent

Den

sity

(mA/

cm2 )

Voltage (V)

0.0 0.2 0.4 0.6 0.8 1.0

-10

-5

0

5

10

15

AgPbS (200 nm)Sb2(S/Se)3 (500 nm)

CdS(hex) (200 nm)

Voc=640 mVJsc=7.5 mA/cm2

FF=0.26η=1.56%

Cur

rent

Den

sity

(mA

/cm

2 )Voltage (V)

Sb2(S/Se)3:D.Y. Suárez-Sandoval et al., J. Electrochem. Soc. 153 (2006) C91-C96.

SnO2:F/CdS/Sb2S3 /SnS/CuS-Ag

-0.2 0.0 0.2 0.4 0.6

-6.0x10-5

-4.0x10-5

-2.0x10-5

0.0

2.0x10-5

Curva I-V de la estructura FV SnO2-CdS-Sb2S3-SnS-CuS

Voc= 450 mVIsc = 40 µA; Jsc= 4 mA/cm2

A = 1 mm2

IL = 1 kW/m2

corr

ient

e [A

]

voltaje [V]

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-5.0x10-7

0.0

5.0x10-7

1.0x10-6

1.5x10-6

2.0x10-6

2.5x10-6

Curva IV de la estructura FV SnO2-CdS-Sb2S3-SnS-CuS

corr

ient

e [A

]

voltaje [V]

CdS

SnO2

SnS

IL=1000W/m2

silver print

Sb2S3

CuS

Voltage (V)

Voltage (V)

Current (A) Current (A)

Photoconductivity in CdS and PbS thin films

0 60 120 1801E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5σ = 0.1 (Ωcm)-1

σ = 10-7 (Ωcm)-1

CdS (Cubic)

100 nm60 nm

bias 10 V

Cur

rent

(A)

Time (s)

-0.2 0.0 0.2 0.4 0.6

-1.0x10-5

0.0

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

-0.2 0.0 0.2 0.4

-2.0x10-5

-1.0x10-5

0.0

1.0x10-5

Curva IV de la estructura fotovoltaica CdS-PbS IL=1 kW/m2

Voc = 297 mVIsc = 13 µA; 0.3 mA/cm2 A = 4 mm2

IL = 1 kW/m2 tung-hal

Cor

rient

e (A

)

Voltaje (V)

+-

Lost generation cells...? CdS(100 nm)/ PbS(250nm)S. Watanabe, Y. Mita, J. Electrochem. Soc. 166 (1969) 989

dark Voltage (V)

Voltage (V)

Cur

rent

(A)

Cur

rent

(A)

dark

photo

n-CdS Eg : 2.5 eV dir - windowp-PbS Eg : 0.4 eV ind –absorb.

CdS: M.T.S. Nair, P.K. Nair, J.Campos Thin Solid Films 161 (1988) 21-34

PbS: P.K. Nair, M.T.S. Nair J. Phys. D: Appl. Phys 23 (1990) 150-155

Glass/plastic

SnO2:F/CdS(hex 100 nm)/PbS(250 nm)/Ag

-200 0 200 400 600 800 1000

-10

-5

0

5

10

15

20

J (m

A/cm

2 )

Voltage (mV)

Dark

-200 0 200 400 600

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0 Light

VOC = 0.5 VJSC = 2.3 mA/cm2

A = 1mm2

L = 850 W/m2J

(mA

/cm

2 )

Voltage (mV)

+-

SnO2:F

CdSPbS

850 W/m2

-300 -200 -100 0 100 200 300 400 500 600

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

TCO-CdS(hexagonal)-Bi2S3-PbS

J SC

(mA

/cm

2 )

Voltaje (mV)

Oscuridad Iluminacion

VCA = 340 mVJCS = 10 mA/cm2

A= 1.3 mm2

SnOSnO22:F/:F/CdS(CubCdS(Cub, , hexhex)/)/BiBi22SS33 /PbS/PbS--AgAg

PbS

SnO2:F CdSBiBi22SS33

Chemically deposited photovoltaic structures…

Chemically deposited photovoltaic structures..

-100 0 100 20 0 300 400 500

-8000

-6000

-4000

-2000

0

2000

-

24 mm 2

Ag + 200 nm

60 nm

PbS

SnO2:F

Bi 2S3

80 nmZnO-

B

A

A (1000 W/m2)V

OC = 2 20 mV

JSC

= 6.2 mA/cm2

B (3000 W/m2)V

OC = 300 mV

JSC

= 21 mA/cm2

I (µA

)

V (mV)

Prospects

Sulfosalts

Glass-Mo/Sn-Sb-S/CdS/ZnOVoc, 208 mV; Jsc, 13 mA/cm2

FF, 38%; η, 1.05%

H. Dittrich et al, Thin Solid Films 515 (2007) 5745Recent developments in thin film solar cells,

Solace 2008

M. Ichimura et al:Photochemically and electrochemically deposited solar cells:

Solace 2008

Cu2ZnSnS4 thin film solar cellCu2ZnSnS4: Eg, 1.45 eV; α, 104 cm-1

RF co-sputtering of ZnS, SnS, Cu; followed by sulfurization in N2+H2S (20%), at 580oC;

Cu/(Zn+Sn) = 0.87: Zn/Sn=1.15

ZnO:Al2O3/CdS/CZTS/Mo/glass: η, 5.74%

Voc, 662 mV; Jsc, 15.7 mA/cm2; FF, 0.55Katagiri and coworkers:

Thin Solid Films 515 (2007) 5997-5999

Photo-accelerated chemical depositionProspects..

Nair, Nair on CdS: Solar Energy Mater 15 (1987) 431

Nair et al on PbS: J. Phys. D. Appl. Phys. 24 (1991) 1466; Adv. Mater. Optics Electr. 1 (1992) 117; Semicond. Sci. Technol. 7 (1992) 239

Nair et al on Bi2S3: J. Electrochem. Soc. 140 (1993) 1085

PbS: bluish purple on goldenArt work by

Adrian Oskamsunlight

Bi2S3: Purple on golden golden on purple

Solace 2008, Kochi

Some Conclusions

Photovoltaic technologies meeting the future demand for photovoltaic modules would complement each other

There is room for developing distinct technologies making use of local/regional raw materials to satisfy local needs

Easy scale-up and low-capital intensive production are basic features of all-chemically deposited photovoltaic structures – promising for photovoltaic technology

Solace 2008, Kochi

Recommended