Equações do 2.º grau

Preview:

Citation preview

Equações do 2.º Grau

Entre os vários tipos de equações, encontram-se as equações do 2.º grau com uma incógnita, com as quais já tomámos contacto no 8.º ano, mas, apenas em algumas das formas que estas equações podem tomar.

O que se pretende neste capítulo é estudar a resolução de qualquer tipo de equações do 2.º grau com uma incógnita, escolhendo a maneira mais adequada mais adequada de o fazer.

Problema:

O campo de jogos da nossa escola tem 2800 m2 de área. Determina as dimensões do campo de futebol.

A equação que permite determinar o comprimento e a largura é

( ) 280030 =+xx

( )

0280030

280030

280030

2

2

=−+⇔

⇔=+⇔

⇔=+

xx

xx

eequivalentéque

xx

Temos assim uma equação e neste caso, mais exactamente, uma equação do 2.º grau, já que o maior expoente da incógnita é 2.o maior expoente da incógnita é 2.

Chamamos equação do 2.º grau com uma incógnita a toda a expressão que se possa escrever na forma:

002 ≠=++ acomcbxax

02 =++ cbxax 0≠aÀ forma , chamamos forma canónicaforma canónica.

Nota:

A maioria das equações do 2.º grau não estão escritas na forma canónica, temos que as colocar utilizando as regras de resolução de equações (parênteses, denominadores,…)

Uma equação está escrita na forma canónica quando:

- o 1.º membro é um polinómio reduzido;- o 1.º membro é um polinómio reduzido;- o 2.º membro é zero.- o 2.º membro é zero.

2ax

bx

Quando a equação está escrita na forma canónica, dizemos que:

é o termo de grau 2 e aa o seu coeficiente

em x (de grau 1) e bb o seu coeficiente

independente (de grau zero) é o termo

é o termo

c

02800302 =−+ xxAssim, e voltando ao nosso problema, temos que

é uma equação do 2.º grau, em que:

a= 1 coeficiente do termo de grau 2 ou do 2.º grau;

b=30, coeficiente do termo de grau 1;

c=-2800, coeficiente do termo de grau zero ou termo independente.

002 ≠=++ acomcbxax

Exemplos:

x2 - 5x + 6 = 0, onde a = 1, b = -5 e c = 6.

7x2 - x = 0, onde a = 7, b = -1 e c = 0.

-x2 - 36 = 0, onde a = -1, b = 0 e c = -36.

Uma equação do 2º grau é completa quando b e c são diferentes de zero (porque para ser do segundo grau o valor de a tem de ser sempre diferente de zero).

A equação que dá resposta ao nosso problema

diz-se completadiz-se completa, porque tem os 3 termos (2.º, 1.º e grau 0).

02800302 =−+ xx

Uma equação do 2º grau é incompletaincompleta quando b ou c é igual a zero, ou ainda, quando ambos são iguais a zero.

Equações da forma ax² +bx = 0, (c = 0)

x² - 3x = 0, onde a = 1, b = -3. -2x² + 4x = 0, onde a = -2, b = 4.

Equações do tipo ax² +c = 0, (b = 0)

3x² - 2 = 0, onde a = 3, c = -2. x² + 5 = 0, onde a = 1, c = 5.

Equações do tipo ax² = 0, (b=c=0)

-2x² = 0, onde a = -2

Raízes de uma Equação do 2º Grau

Resolver uma equação do 2º grau significa determinar as suas raízes ou soluções.

Raiz ou solução é o número real que, ao substituir aincógnita de uma equação, a transforma

numa proposição verdadeira.

O conjunto formado pelas raízes de uma equação denomina-se conjunto-solução.

Resolução de Equações Incompletas

Equações incompletas do tipo 0,02 === cbax

00

0 22 =⇔=⇔= xa

xax

Exemplos:

22

2

2

25,04

1

03

2

08

xx

x

x

=

=−

=−

De uma forma geral a solução deste tipo de equações é zero.

Equações incompletas do tipo 0,02 ==+ bcax

a

cx

a

cxcaxcax −±=⇔−=⇔−=⇔=+ 222 0

Equações da forma: ax² +c = 0, (b = 0)

No geral, a equação do tipo ax² +c = 0:• possui duasduas raízes reais simétricas raízes reais simétricas se:

- c/a for um nº positivo.• Zero, se –c/a=0

• não possui raiz real não possui raiz real se: - c/a for um nº negativo.

Equação possível

Equação impossível

0102

025

0142

2

2

2

=−−=−

=+−

x

x

xExemplos:Exemplos:

Se x є R, y є R , x² = y x = √ y ou x = -√ y⇔

0,02 ==+ bcax

Equações incompletas do tipo 0,02 ==+ cbxax

( )

a

bxxbaxx

baxxbxax

−=∨=⇔=+∨=⇔

⇔=+⇔=+

000

002

Equações da forma: ax² +bx = 0, (c = 0)

A equação do tipo ax² +bx = 0 tem como soluções:

x = 0

e

x = - b/a

xx 32 =( )

10

2

5

1 2 +=+ xx

0287 2 =− xx

Exemplos:Exemplos:

Primeiro: Forma canónica;Primeiro: Forma canónica;Segundo: Factorização do polinómio;Segundo: Factorização do polinómio;Terceiro: LAPTerceiro: LAP

0,02 ==+ cbxax

( )

( )

−=

=+⇔⇔+=++⇔

⇔+=++⇔

⇔+=+

×

2

3,0

.032

2242

min10

2

5

12

10

2

5

1

2

2

2

2

2

S

resolversabemjáagoraExx

canónicaformanaColocarxxx

adoresdenoosTirarxxx

parêntesesosTirarxx

( )

{ }3,030

03

03

Re32

2

==∨=⇔

⇔=−⇔⇔=−⇔

⇔=

S

xx

produtodoanulamentodoLeixx

polinómiooFactorizarxx

canónicaformaàequaçãoaduzirxx

Equações de 2.º grau completas

Uma equação do 2º grau é completa quando b e c são diferentes de zero. quando b e c são diferentes de zero.

Denomina-se equação do 2º grau, na incógnita x, toda equação da forma: ax2 + bx + c=0 ; a ≠ 0.

Observa que:

a representa o coeficiente de  x²;b representa o coeficiente de x;c representa o termo independente.

Exemplos:

x2 - 5x + 6 = 0, onde a = 1, b = -5 e c = 6.

7x2 – x-10 = 0, onde a = 7, b = -1 e c =-10.

x2 - 36 = 0, onde a = 1, b = 0 e c = -36. IncompletaIncompleta

Reparem que nas eq. completas b e c são diferentes de zero.

Resolução de Equações CompletasFórmula de Bhaskara

Para solucionar equações completas do 2º grau utilizaremos a Fórmula de Bhaskara.

A partir da equação ax2 + bx + c = 0, a ≠ 0, desenvolveremos passo a passo a dedução da Fórmula de Bhaskara.

1º passo: multiplicaremos ambos os membros por 4a. (4a).(ax² + bx + c) = 0.(4a)

4a²x² + 4abx + 4ac = 0

2º passo: passar 4ac para o 2º membro.4a²x² + 4abx = - 4ac

Fórmula de Bhaskara

3º passo: adicionar b² aos dois membros.4a²x² + 4abx + b² = b² - 4ac

4º passo: factorizar o 1º membro.(2ax + b) ² = b² - 4ac

5º passo: extrair a raiz quadrada dos dois membros.

6º passo: passar b para o 2º membro.

( ) acbbax 42 22 −±=+

acbbax 42 2 −±=+

acbbax 42 2 −±−=

Fórmula de Bhaskara

7º passo: dividir os dois membros por 2a.

Assim, a fórmula resolvente da equação do 2º grau:Assim, a fórmula resolvente da equação do 2º grau:

a

acbb

a

ax

2

4

2

2 2 −±−=

a

acbbx

a

acbbx

a

acbbx

2

4

2

4

2

4

22

2

−−−=∨−+−=

⇔−±−=

Fórmula resolvente das equações do 2.º grau

Em que:

a é o coeficiente do termo de grau 2.

b é o coeficiente do termo de grau 1.

c é o coeficiente do termo independente.

( )

a

acbbx

a

acbbx

a

acbbxacomcbxax

2

4

2

4

2

400

22

22

−+−=∨−−−=⇔

⇔−±−=⇔≠=++

Nota: Só se pode aplicar a fórmula resolvente quanto uma equação do 2.º grau está na forma canónica.

Exemplo:

⇔=− 1222 2 xx1.º Colocar a equação na forma canónica (não está na forma canónica porque o 2.º membro não é zero)

( ) ( ) ( )

{ }3,2234

102

4

102

4

1002

4

9642

22

122422

1222

.

01222

2

2

−=−=∨=⇔

⇔−=∨+=⇔±=⇔+±=⇔

⇔×

−××−−±−−=⇔

−=−==−

−⇔=−−⇔

CSxx

xxxx

x

cba

resolventefórmulaaseaplicaeequação

datermosdosescoeficientossemIdentificaxx

a

acbbx

2

42 −±−=

Equações do 2.º grau em que o 1.º membro é o desenvolvimento do quadrado de um binómio

Se conseguirmos identificar estes casos, não precisamos de aplicar a fórmula resolvente. Repara:

036244 2 =++ xx

6262224

636

24

:.º12

porxdedobrooéxx

dequadradooé

xdequadradooéx

equaçãodamembrooObserva

××=

( ) ⇔=+⇔=++ 062036244

,22 xxx

Logo

33

6262

062062

−=∨−=⇔⇔−=∨−=⇔⇔=+∨=+⇔

xx

xx

xx { }3−=S

Surgiram duas soluções (ou raízes) iguais. Diz-se que -3 é uma solução ou raiz dupla.

Equações em que o 1.º membro não é o desenvolvimento do quadrado deum binómio, como no primeiro caso que resolvemos, encontram-se as raízes,aplicando a fórmula resolvente.

Nota: Nota: É possível resolver sempre qualquer equação do 2.º grau , É possível resolver sempre qualquer equação do 2.º grau , completa ou incompleta , pela fórmula resolvente.completa ou incompleta , pela fórmula resolvente.

⇔=− 074 2x

7

0

4

−===

c

b

a

a

acbbx

2

42 −±−=

( )

8

112

8

112

8

112

42

74400 2

−=∨=⇔

⇔±=⇔

⇔×

−××−±=⇔

xx

x

x

Mas, é muito mais simples, resolver aplicando de imediato, a definição da raiz quadrada:

4

7

4

7

47

4

7

74074

2

22

−=∨=⇔

⇔±=⇔=⇔

⇔=⇔=−

xx

xx

xx

É óbvio que:

8

112

4

7 =

±=

8

112.S

8

112

4

7 =

74722

72272272112 22224

=××

=××=××=×=

Então:

2

7

8

74

8

112 == e

2

7

4

7

4

7 ==

C.A.

1 2

56 2

28 2

14 2

7 7

1

Logo:

8

112

4

7 =

Muito Importante:

Ao resolver uma equação do 2.º grau, deve-se procurar sempre utilizar o processo mais simples:

Definição de raiz quadrada.

Lei do anulamento do produto.

Fórmula resolvente.

NÚMERO DE SOLUÇÕES DE UMA EQUAÇÃO DO 2.º GRAUNÚMERO DE SOLUÇÕES DE UMA EQUAÇÃO DO 2.º GRAU

07152 2 =+− xx 09124 2 =−+− xx 01513 2 =−+− xx

Resolve, utilizando a fórmula resolvente, cada uma das seguintes equações.

=

=∨=⇔

⇔−=∨+=⇔

⇔±=⇔

⇔−±=⇔

⇔=+−

7,2

1217

4

1315

4

13154

16915

4

5622515

07152 2

S

xx

xx

x

x

xx

=

=∨=⇔

⇔−

−−=∨−

+−=⇔

⇔−±−=⇔

⇔−

−±−=⇔

⇔=−+−

2

32

3

2

38

012

8

0128

012

8

14414412

09124 2

S

xx

xx

x

x

xx

26

275

26

52255

01513 2

−−±−=⇔

⇔−

−±−=⇔

⇔=−+−

x

x

xx

A equação tem duas raízes diferentes.

A equação tem uma raiz dupla ou duas raízes iguais.

A equação não tem solução. É impossívelem R . S={ }

Como não há nenhum númeroreal que elevado ao quadrado dê um número negativo, a ex-pressão não tem significadonão tem significadoem R.em R.

Uma equação do 2.º grau pode portanto, ter 2 soluções diferentes2 soluções diferentes, 1 1 solução (ou duas soluções iguais) solução (ou duas soluções iguais) ou não ter soluções. não ter soluções.

Observando a resolução destas equações podemos verificar que o número de soluções depende do cálculo da raiz.

Sem resolver a equação, como podemos saber o número de Sem resolver a equação, como podemos saber o número de raízes? raízes?

a

acbb

2

42 −±−

acb 42 −

Se pensarmos que na fórmula resolvente, , verificamos

que a expressão que determina o número de raízes de uma equação, é:

À expressão chama-se BINÓMIO BINÓMIO DISCRIMINANTEDISCRIMINANTE por discriminar o número de soluções de uma equação do 2.º grau.

Representa-se por (letra grega que se lê delta).

acb 42 −

∆acb 42 −=∆

Δ = b2 - 4ac

Podemos agora, escrever a Fórmula de Bhaskara, da seguinte forma:

De acordo com o binómio discriminnte, temos três casos a considerar:

a

bx

a

acbbx

22

42 ∆±−=⇔−±−=

1º Caso: Se Δ > 0, a equação tem duas soluções diferentes.

2º Caso: Se Δ = 0, a equação duas soluções iguais, (raiz dupla).

3º Caso: Se Δ < 0, a equação não tem raízes. Equação impossível em R.

Δ > O Δ = O Δ < O

O valor de √Δ é realreal e a equação tem

duas raízes reaisduas raízes reais diferentes, assim

representadas:

O valor de √Δ é nulo é nulo e a equação tem

duas raízes reais duas raízes reais e iguais (solução

dupla), assim representadas:

O valor de √Δ

não existe em IR, não existindo,

portanto, raízes reais.

Em R a equação é impossível S=

As raízes da equação são número complexos.a

acbbx

a

acbbx

2

4'

2

4

2

2

−−−=

−+−=

a

bxx

2' −==

Se, dada uma determinada equação, pretendermos saber apenas o número de soluções (e não necessariamente quais as soluções), basta determinar o binómio discriminante.

Δ = b2 - 4ac

Gráfico de uma equação do 2.º grauGráfico de uma equação do 2.º grau

A representação gráfica de uma equação do 2.º grau é uma curva que se denomina parábola.

Relações entre os Coeficientese as Raízes

1ª Relação: Soma das Raízes (S)

a

b

a

b

a

bb

a

bb

a

b

a

bxx −=−=−−=∆−−∆+−=∆−−+∆+−=+

2

2

2222'

2

202

2

2020422 −=∨+=⇔=−− xxxx

Concretamente:

2

202202

2

202

2

202 −++=−++

a

b−⇒= 22

4

2ª Relação: Produto das Raízes (P)

( )( )2

2

2 4422'

a

b

a

bb

a

b

a

bxx

∆−=∆−−∆+−=∆−−×∆+−=×

Mas como , podemos escrever: acb 42 −=∆

( )a

c

aa

ac

a

acbb

a

acbb

a

b ==+−=−−=∆−4

4

4

4

4

4

4 2

22

2

22

2

2

2

202

2

2020422 −=∨+=⇔=−− xxxx

Concretamente:

( )( )4

202202

2

202

2

202 −+=−×+

a

c⇒−=−=−= 44

16

4

204

Relações entre os Coeficientese as Raízes

Soma das RaízesSoma das Raízes:

É representada pela letra S.

S =-b/a

Obviamente, se a=1,

S=-b

Produto das RaízesProduto das Raízes:

É representado pela letra P.

P = c/aP = c/a

Se a=1, P=c

Composição de uma Equação do2º Grau, conhecidas as Raízes

Considera a equação do 2º grau ax2 + bx + c = 0. Dividindo todos os termos por a, a ≠ 0, obtemos:

000 22

2 =++⇔=++⇔=++a

cx

a

bx

a

c

a

bx

a

axcbxax

Como: S =-b/a e P = c/a, podemos escrever a equação desta maneira:

x2 - Sx + P = 0 Para que serve tudo isto?Para que serve tudo isto?

O conhecimento destas relações permite-nos rapidamente escrever uma equação conhecidas as suas soluções e resolver mentalmente algumas equações.

04032 =−+ xx

Exemplos:Exemplos:

{ }5,8.. −=SC

Somando (S) as duas soluções vem -8 + 5 = Somando (S) as duas soluções vem -8 + 5 = -3-3

Fazendo o produto (P) obtemos Fazendo o produto (P) obtemos 4058 −=×−

Comparemos agora os valores obtidos com a nossa equação inicial.

02 =+− PSxx

.

S=-b/aP=c/a

02 =++a

cx

a

bx

Vejamos ainda um outro exemplo:

0844 2 =−− xx CS= {-1, 2}

S= 1S= 1 P=-2P=-2

14

4 =−−=−=a

bS 2

4

8 −=−==a

cP

Neste caso verificamos que,

Podemos então concluir:

Numa equação do 2.º grau,

temos que a soma das soluções é igual a e o produto é

igual a .

a

b

a

c

( )002 ≠=++ acomcbxax

0204

8

4

4

4

4 22

=−−⇔=−− xxxx

Escreve uma equação do 2.º grau cujas raízes são -2 e 7. 

 

A soma das raízes corresponde a: 

S = -2 + 7 = 5 

O produto das raízes corresponde a: 

P = -2 . 7 = -14 

A equação é dada por x2 - Sx + P = 0, onde S = 5 e P = -14. 

Logo, x2 - 5x - 14 = 0 é a equação procurada.

Exercício:

Escreve uma equação cuja:

Exercício:

a) solução seja 5 e 10.

S = 15P = 50

Então, 050152 =+− xx

●) solução seja e -6.

S = -11/2P = -3

Então:

2

1

032

112 =−+ xx

Resolve mentalmente a equação 094 2 =−x

S = 0 P = - 9/4

É necessário descobrir dois números cujo produto dê -9/4 e a soma dê 0.

Assim: S =

2

3,2

3

Exercício:

Resolução de problemas que envolvem equações do 2.º grau.

Existem numerosos e variadíssimos problemas que se traduzem matematicamente por equações do 2.º grau, cuja resolução permite, portanto, encontrar as respostas procuradas. Chamam-se por isso problemas do 2.º grau.

Recordemos como se equaciona um problema e de que forma se pode resolver.

PROBLEMA

EQUAÇÃO

SOLUÇÕES DA

EQUAÇÃO

ANÁLISE DAS SOLUÇÕES DA EQUAÇÃO NO CONTEXTO DO

PROBLEMA

SOLUÇÕES DO PROBLEMA

A Rita é três anos mais nova que a sua irmã e o produto das suas idades é 18. Quantos anos tem a Rita?

Exemplo 1

Resolução:

x3+x

Traduzindo em linguagem matemática, vem:

Idade da Rita-

Idade da irmã da Rita- ou

Idade da Rita-

Idade da irmã da Rita- x3−x

Equacionando o problema e resolvendo a equação:

( )

362

93

2

932

93

2

7293

0183183 2

=∨−=⇔

⇔+−=∨−−=⇔

⇔±−=⇔+±−=⇔

⇔=−+⇔=+

xx

xx

xx

xxxx A equação tem duas soluções, mas apenas uma apenas uma é solução do problema,atendendo que a idade da Rita só pode ser 3.

R.: A Rita tem 3 anos e a irmã tem 6 anos.

Exemplo 2

De um campo de voleibol sabemos que o seu perímetro mede 27 metros e a sua área mede 40,5 metros quadrados. Quais são as dimensões do campo?

Resolução:

x 2722 =+ yx 5,40=xyTraduzindo para linguagem matemática, vem:

Largura- Comprimento: y Perímetro: Área:

( ) ( )

=

==

=∨

==

=∨=⇔

=+−

=+

=+

=+

=

=+⇔

=

××

5,4

95,4

5,40

9

5,49

5,40

5,49

________

081272

_______

27281

_______

27281

______

2725,40

2

5,40

2722

5,40

22

y

x

y

x

yy

yyyyyy

yy

yx

yx

xy

yy

R.: As dimensões do campo de voleibol são 4,5 por 9 metros.

Problema do caderno de actividades página 80.

23. A figura representa a trajectória de um foguete que o Jorge lançou no arraial de S. João.23.1 Qual foi a altura máxima atingida pelo foguete?

23.2 A que altura se encontrava o foguete decorridos 2 segundos? E 10 segundos?

23.4 Onde se encontrava o foguete nos instantes t=0 e t=12?

23.5 Sabendo que a atura atingida pelo foguete é dada pela expressão , confirma, analiticamente, o momento de chegada ao solo.

ttth 605)( 2 +−=

23.3 Qual o valor de h(0)? Explica o significado da afirmação: «h(t)=0 quando t=0.»

30. Num referencial ortonormado xOy, está representada parte do gráfico da função:

852

)(2

−+−= xx

xf

No mesmo referencial está também representado um triângulo [ABC], cujos vértices pertencem ao gráfico da função f. Determina a área do triângulo [ABC].

9. Um campeão de saltos de trampolim, decide preparar uma série de saltos para uma competição. A figura mostra um desses saltos cuja trajectória é dada pela expressão (h em metros e t em segundos). 76)( 2 ++−= ttth

9.1 Determina a altura do topo da prancha até ao solo.

9.2 Determina o instante em que o campeão penetra na água.

9.3 A que altura do solo está o atleta ao fim de 2 segundos?

32. A Rita saiu de casa para visitar a avó. A distância d, em quilómetros, que a Rita tem de percorrer para chegar à casa da avó, t horas após ter iniciado a caminhada é dada pela expressão:

6)( 2 +−−= tttd

Numa pequena composição, explica os seguintes aspectos:•a distância que a Rita percorreu até chegar á casa da avó;•O tempo que demorou a chegar à casa da avó;•O valor de d(1), indicando o seu significado no contexto do problema.

31. Um fio encontra-se suspenso entre dois postes. A distância entre ambos é de 18 metros. Considera a função f definida por:

( ) 2612

1)( 2 +−= xxf

Admite que f(x) é a distância do solo, em metros, do ponto do fio situado a y metros à direita do 1.º poste.

31.1 Mostra que a altura do 1.º poste é 5 metros e a altura do 2.º poste é 14 metros.

31.2 Calcula o valor de y, sabendo que o ponto do fio correspondente está à mesma altura do solo que o primeiro poste.

Recommended