Proteção e Higiene das Radiações

Preview:

DESCRIPTION

Proteção e Higiene das Radiações Resumo para estudo da primeira prova..

Citation preview

Proteção e higiene das Radiações

RESUMO PARA ESTUDO DA

PRIMEIRA PROVA

Prof. Tecgo em Radiologia Nathanael Mel. Brancaglione.

Disciplina: Radioproteção e Higiene das Radiações

Curso Técnico em Radiologia Médica

COLÉGIO TÉCNICO RENASCER-2013

A importância da Radioproteção aos profissionais da

Radiologia

Para os profissionais que atuam na área de radiologia médica, é de extrema

importância o conhecimento sobre radioproteção.

A radioproteção tem a finalidade de fornecer condições seguras para atividades

que envolvam radiações ionizantes.

Condições básicas de segurança devem ser observadas no exercício profissional.

Breve Histórico

•A radiobiologia surgiu para estudar aqueles efeitos, e trazendo à luz da

ciência os efeitos determinísticos, estocásticos e o risco fetal.

•A partir desse conhecimento fez-se necessário criar princípios de proteção

radiológica.

•Já os princípios de radioproteção fornecem diretrizes básicas para as

atividades operacionais que utilizam radiação ionizante.

•São eles:

•Justificativa, Otimização e Limitação da dose, todos baseados no princípio

fundamental conhecido como ALARA acrômio para As Low As reasonable

Achievable, que significa: tão baixo quanto possivelmente exeqüível.

Em consonância com esses princípios (ALARA), desenvolveram se formas deradioproteção baseadas no:

Tempo de exposição,

Distância da fonte de radiação e

Blindagem com a finalidade de reduzir ao máximo os efeitos deletérios daradiação.

Breve Histórico

ICRU (“International Commission on radiological Units and Measurements”)

Criado em 1925, este órgão propõe grandezas e unidades relacionadas aos níveis de

radiação estabelecidos e recomenda procedimentos para sua medição.

Breve Histórico

•ICRP (“International Commission on Radiological Protection”)

•Criado em 1928, este órgão estabelece limites de dose e princípios

básicos para proteção contra a radiação.

Comissões Internacionais

Fis.Roberta Giglioti - CNEN MN 1159

Breve Histórico

Comissões Nacionais

CNEN – Comissão Nacional de Energia Nuclear:

CNEN NN 3.01- “Diretrizes e Básicas de Proteção Radiológica”

Janeiro de 2006 (primeira versão de dezembro de 1988). g

ANVISA – Agência Nacional de Vigilância Sanitária:

PORTARIA 453 de 1 de Junho de 1998

Resolução RE 1016 de 3 de abril de 2006

Radiodiagnóstico Médico e Odontológico

Fis.Roberta Giglioti - CNEN MN 1159

O que é radioatividade? Algumas vezes o centro de um átomo, seu núcleo, possui muita energia. Um átomo

não pode deter esta energia para sempre. Mais cedo ou mais tarde, o átomo deve

livrar-se deste excesso de energia e retornar ao seu estado normal, estável.

Os átomos que possuem muita energia em seu núcleo são chamados de radioativos.

Livram-se do excesso de energia emitindo radiação. Alguns átomos radioativos

existem naturalmente no planeta, outros são produzidos artificialmente pelo homem.

O que é radiação? Um átomo radioativo emite radiação para livrar-se do excesso

de energia. A radiação pode ser emitida na forma de

partículas que se movimentam em alta velocidade, ou na forma

de energia pura.

Qual é o significado do sievert? O sievert é a unidade de dose de radiação.

Normalmente é usado para descrever a quantidade de

energia que é depositada em algum material ou em alguma

pessoa.

Sievert Quando comparado com a dose de radiação que uma pessoa

recebe, normalmente, todos os dias de sua vida provenientedas fontes de ocorrência natural, ele é uma dose de radiaçãomuito grande.

Sievert

Existem unidades menores que o sievert

os sub múltiplos do sievert, o

centisievert, o milisievert e o

microsievert. Um centisievert é a

centésima parte do sievert, 1/100, 1

cSv; o milisievert é a milésima parte do

sievert, 1/1000, 1 mSv; e o microsievert

é a milionésima parte do sievert,

1/1000000, 1 μSv.

Bequerel

Portanto, é mais conveniente usarmos unidades

menores para indicar a quantidade de

radioatividade.

Milisievert e bequerel Uma boa chama para aquecimento numa lareira é um bom exemplo para explicar

a diferença entre estes dois termos. Numa lareira, a madeira que está sendoqueimada irradia calor, neste caso, a quantidade de madeira que está sendoqueimada, combustível da lareira, é similar à quantidade de bequerel deradioatividade.

A quantidade de calor liberada pela lareira, energia, é similar à quantidade demilisievert, energia da radiação.

Quando são observadas 60

desintegrações por minuto tem-

se a medida de 1 becquerel de

radioatividade, 1 desintegração

por segundo.

Radiação natural Um outro tipo de radiação natural é a radiação cósmica proveniente do sol e das estrelas.

Devido a atmosfera terrestre absorver parte desta radiação

Geralmente para cada aumento de 30 metros na altitude existe um incremento na dose anual de 10microsievert

Em Ohio, nos Estados Unidos 600 microsievert por ano

Brasil, apresenta uma taxa de 50 microsievert por hora.

Não é possível prever quando um átomo

radioativo irá decair

A taxa de decaimento é simplesmente a ocorrência do número de

átomos radioativos decaindo durante um período específico.

A taxa de decaimento é

convencionalmente conhecida como a

atividade ou radioatividade de um

material, amostra ou meio.As unidades de atividade incluem

desintegração por segundo, dps,

desintegração por minuto, dpm,

bequerel, Bq, e curie,

Radiação X Os raios X são radiações eletromagnéticas geradas fora do núcleo atômico.

Tanto a radiação X como a radiação gama são altamente penetrantes e podem produzir

doses de radiação de corpo inteiro.

Um tipo de radiação X que oferece um risco a segurança nos laboratórios de pesquisa é

aquele denominado radiação de frenamento (bremsstrahlung).

Estes fótons são emitidos quando os elétrons são desacelerados rapidamente ao interagir com

o campo elétrico ao redor do núcleo atômico.

A energia do fóton resultante está relacionada com a energia do elétron incidente ou β- bem

como com a intensidade do campo elétrico

átomos de baixo número atômico, tais como o hidrogênio, carbono e oxigênio, a energia e a

intensidade da radiação de frenamento (bremsstrahlung) é minimizada. Portanto, o lucite

(plexiglass) deve ser escolhido como material para blindagem da radiação beta.

Como se caracteriza um Radionuclídeo Basicamente, existem três fatores que separam um radionuclídeo

de outro.

a meia vida,

a energia da partícula ou fóton associado com o decaimento,

e o tipo de emissão.

A meia vida é definida como o tempo necessário para que

metade ou 50% dos átomos radioativos sofram decaimento

radioativo.

é conhecida como meia vida radioativa ou física. meia vida biológica..

Uma vez que a meia vida é definida para o tempo em que 50%

dos átomos decairão, porque não podemos prever quando um

átomo individualmente irá decair.

•meia vida biológica

Radionuclídios de vida curta e longa

Os radionuclídeos de meia vida curta são usados frequentementeem aplicações médicas.

O tecnécio-99 na forma metaestável e o iodo-131, usados emmedicina nuclear, possuem meia vida de 6 horas e 8 dias,respectivamente.

Radionuclídeos de meia vida longa sendo usados em aplicaçõesmédicas, é o caso do plutônio-239 utilizado em marcapassoscardíacos, com uma meia vida de 87,7 anos.

A meia vida deve ser suficientemente longa, pois para o implante énecessário fazer uma intervenção cirúrgica.

Meia vida biológica e meia vida física Comparando com a meia vida física, a meia vida biológica é a medida do

tempo necessária para que a metade da radioatividade seja eliminada do

corpo por processos biológicos, por exemplo, pela excreção.

A meia vida física do césio-137 é aproximadamente 30 anos quando fora

do corpo.

Quando dentro do corpo, o césio-137 possui uma meia vida biológica de

70 dias. Isto indica que o processo biológico acelera a taxa de eliminação

associada com o radionuclídeo em comparação à meia vida física.

Metade da radioatividade será eliminada em 70 dias.

Como medir a radioatividade Podemos medir indiretamente

fazendo uso dos efeitos causados por

ela.

Ao contrário da luz solar que

podemos ver, a radiação nuclear

invisível produz um efeito elétrico em

materiais pelos quais ela passa.

Se medirmos o efeito elétrico,

podemos determinar quanta radiação

passou através do material.

Este meio é o principio operacional

básico para a medida da

radioatividade.

Instrumentos para medida da

radioatividade

O método definitivo para verificar a

presença da radioatividade é fazer

medidas com um instrumento adequado,

empregando procedimentos

adequados.

Não existe um instrumento universal que

trabalha em todas as circunstâncias.

A contribuição da radiação de

ocorrência natural deve ser

considerada quando for determinar a

existência de radioatividade.

Ionização

Ionização é o processo onde a radiação possui

energia suficiente para arrancar elétrons do átomo.

O processo de ionização resulta na formação de um

elétron livre e um átomo residual positivo com falta

de um elétron orbital. A radiação que é capaz de

iniciar o processo de ionização é conhecida como

radiação ionizante.

Exemplos deste tipo de radiação incluem as

partículas radioativas, com massa, tais como

partículas alfa e beta; e as radiações fotônicas,

energia pura, tais como a radiação gama e X.

Os nêutrons e prótons são exemplos adicionais de

radiações ionizantes.

Excitação A excitação está relacionada com o

processo onde a radiação não possuienergia suficiente para arrancar elétronsdos átomos porém excita-os ou promove-os para um estado energético superiordentro do átomo.

Os elétrons não são removidosfisicamente do átomo.

Uma vez excitado, os elétrons retornarãopara o estado fundamental ou original,emitindo a energia associada com estatransição na forma de radiação X.

Radioterapia (terapia)

Nesta prática, a irradiação do paciente, a fim de destruir as célulascancerígenas de um órgão, pode ser feita de três formas distintas:

a) A fonte radioativa é posicionada a certa distância do paciente e airradiação se dá por feixe colimado (teleterapia).

b) A fonte radioativa é posicionada em contato direto com o tumor ouinserida no mesmo (braquiterapia).

c) A substância radioativa é injetada no paciente, a qual se

instala no órgão de interesse por compatibilidade bioquímica.

Aplicações na medicina O uso de materiais radioativos na medicina engloba

tanto o diagnóstico como a terapia, sendo elesferramentas essenciais na área de oncologia

Pode-se dizer que este tipo de ensaio é utilizado paratodos os órgãos e sistemas do corpo humano,destacando-se, entre muitos, os estudos do miocárdio,da função renal e tireoidiana e a detecção deneuroblastomas

Aplicações na indústria Na indústria, os materiais radioativos têm uma grande variedade de usos,

destacando-se, principalmente, o controle de processos e produtos, o

controle de qualidade de soldas e a esterilização.

Medidores de nível, espessura, densidade e detectores de fumaça utilizam

princípios semelhantes.

Uma fonte radioativa é colocada em posição oposta a um detector e o

material a ser controlado, que passa entre a fonte e o detector, age como

blindagem da radiação, fazendo com que o fluxo detectado varie.

Fontes radioativas de alta atividade são utilizadas, principalmente, para

esterilização de materiais cirúrgicos, tais como suturas, luvas, seringas,

esterilização de alimentos e produção de polímeros.

Aplicações na agricultura

Na agricultura, os materiais radioativos são

utilizados para controle de pragas e pestes,

ibridação de sementes, preservação de aimentos,

estudos para aumento de produção etc.

Unidades para atividades No Sistema Internacional de Unidades (SI), o becquerel (Bq) é

definido como uma transformação nuclear atômica por

segundo, ou seja Dps( desintegrações por segundos)

O curie (Ci) foi definido como a atividade de 1 g de Ra-226,

porém foi redefinido mais tarde como a atividade de material

radioativo em que o núcleo de 3,7x10 à 10 átomos se

desintegra por segundo (dps).

Conseqüentemente, um Curie é igual a 2,2x10 a 12

desintegrações por minuto (dpm).

Submultiplos do Ci e

multiplos de becquerel

Unidades para exposição a Radiação

O coulomb por quilograma (C/kg) éa unidade do SI usada para medira ionização induzida pela radiaçãonum volume cuja massa é unitária

O roentgen (R) é a unidade antigadefinida como a quantidade deradiação que produz íons, portandoum coulomb de carga de ambos ossinais por centímetro cúbico de ar

Unidades para dose absorvidadas

A unidade do SI usada para medir a energia cedida para a matériairradiada é chamada de gray (Gy). É definida como a dose deradiação absorvida de um joule por Kg.

O RAD (Radiação Absorvida Dose) era a unidade usadaanteriormente e, portanto, é mais conhecida que o gray, e é definidacomo uma dose de radiação absorvida de 100 ergs/g ou 0,01Joules/kg.

1 gray (Gy) = 1 J/kg

1 gray = 100 rads

Unidade de Eficácia Biológica Relativa

EBR O sievert (Sv) é a unidade do SI que leva em conta o efeito

biológico de um tipo de emissão de radiação na dose absorvida

O sievert substitui a unidade antiga Roentgen Equivalente ao Homemou REM (RAD x Q). DOSE EQUIVALENTE NO HOMEM

O fator de qualidade Q relaciona o efeito de diferentes tipos de radiação em termos de danos aos tecidos

1 Sv =100 rem

1 mSv = 100 mrem

1μSv = 0,1 mrem

Monitoração individual externa A dosimetria termo luminescente é o método mais preciso utilizado para determinar a exposição individual

a radiação externa.

Os componentes funcionais de um dosímetro termo luminescente (DTL) são as pastilhas de fluoreto de lítio

que possuem uma estrutura cristalina que varia quando ionizada pela radiação.

Esta alteração estrutural aprisiona os elétrons livres num estado metaestável até que a pastilha seja

aquecida, com a conseqüente emissão de um foco de luz.

A quantidade de luz produzida é proporcional à quantidade de radiação absorvida, e pode ser medida e

registrada.

Monitoração individual externa Qualquer indivíduo que for trabalhar com mais de 50MBq necessita

portar um dosímetro para extremidades.

Evitar a contaminação do dosímetro e leituras de exposição nãorecebida pelo indivíduo.

Monitoração individual externa

As câmaras de ionização de bolso são usadas em áreas com altosníveis de radiação onde uma estimativa imediata da dose énecessária após períodos de exposição bastante curtos. Estesdosímetros podem ser do tipo leitura direta, ou com um sinal dealarma pré-estabelecido e deve ser utilizado juntamente com odosímetro termoluminescente. Em condições específicas são fornecidospelo SRP.

Dose máxima permitida

Exposição interna A dosimetria interna é mais difícil de ser avaliada com precisão que as

doses externas, portanto, em muitos casos a medida direta da quantidade edistribuição dos radioisótopos é praticamente impossível, especificamente seos isótopos ingeridos ou inalados forem emissores de radiação beta.

Os cálculos para a dose interna estão baseados nas quantidades destesisótopos que podem ser encontradas no ar exalado ou na urina.

Efeitos biológicos das Radiações

Ionizantes Em geral, resulta uma das duas coisas seguintes:

Primeiro a célula pode morrer, isto é conhecido

como efeito agudo;

Segundo a célula pode ser danificada.

Se a célula danificada for reparada, não existirá

efeito.

Se a célula não for reparada, porém, as funções

da célula não foram alteradas, continuará a não

existir efeito.

Porém, se o dano causado à célula provocar uma

disfunção, a célula sofre uma mutação.

Algumas mutações podem dar origem ao câncer.

Características gerais dos efeitos biológicos

das radiações

Tempo de latência: É o tempo que decorre entre o momento da irradiação e o

aparecimento de um dano biológico visível.

Reversibilidade: A reversibilidade de um efeito dependerá do tipo de célula

afetada e da possibilidade de restauração desta célula. Existem, porém, os

danos irreversíveis como o câncer e as necroses.

Transmissibilidade: A maior parte das alterações causadas pelas radiações

ionizantes que afetam uma célula ou um organismo não são transmitidos a

outras células ou outros organismos a não ser danos causados aos ovários e aos

testículos, esses danos podem ser transmitidos através da reprodução.

Limiar de dose: Certos efeitos biológicos necessitam de pelo menos 1 Sv para se

manifestar.

Efeitos biológicos das Radiações

Ionizantes

Efeitos agudos

Efeitos determinísticos ou (agudo) são aqueles para os quais

existe uma relação causal clara entre a quantidade de

exposição e o efeito observado.

Uma certa dose mínima deve ser excedida antes que um efeito

em particular seja observado, em cujo ponto a intensidade ou

gravidade do efeito aumenta com o valor da dose.

Efeitos tardios Os efeitos estocásticos são aqueles para os quais um aumento na dose aumenta a

probabilidade de ocorrência de um efeito ao invés de sua amplitude ou

gravidade.

Ocorrem por acaso e aparecem entre as pessoas expostas bem como em

indivíduos não expostos.

Quando estamos considerando a radiação ionizante, os principais efeitos

estocásticos são as enfermidades malignas e os efeitos genéticos.

Estudos epidemiológicos indicam que estes efeitos surgem alguns anos após a

exposição a radiação e não possuem limiar de dose para o seu aparecimento, o

que significa dizer que até mesmo para pequenas doses existe

proporcionalmente um aumento pequeno na probabilidade de ocorrência do

efeito.

Exposição a Radiação

Menos de 250 mSv, não existem efeitos observáveisdiretos.

Existem variações em algumas células que podem serobservadas com um microscópio em exposições acimade 100 mSv.

De 250 mSv a 500 mSv, não ocorrerá sintomas, maspode existir alterações na química do sangue doindivíduo.

Síndrome Aguda da Radiação

Para doses de aproximadamente 2 Sv (200 rem), as células mais danificadas serãoaquelas com maior sensibilidade, como as células da medula óssea.

Desta forma, os efeitos observáveis durante a manifestação deste estágio dasíndrome são relativos a danos nessas células. Temos então a observação de anemia,leucopenia, plaquetopenia, infecção, febre e hemorragia. Esta é conhecida comoforma hematopoiética da síndrome aguda da radiação.

Com doses mais altas, acima de 8 Sv (800 rem), as células mais danificadas serão ascélulas do tecido epitelial (mucosa) que revestem o trato gastrointestinal.

Para doses acima de 50 Sv (5000 rem), as células relativamente resistentes dosistema nervoso central serão danificadas e o indivíduo afetado rapidamenteapresentará sintomas de dano nesse órgão, apresentando convulsões, estado dechoque, desorientação.

Dose equivalente (H T)

Para um mesmo valor de dose absorvida , observa se que algumas radiações são mais efetivas do que

outras em causar efeitos estocásticos.

Para considerar isto, foi introduzida uma grandeza mais apropriada, a dose equivalente, Ht definida como

o produto da dose absorvida média em um órgão ou tecido pelo fator de peso da radiação, wR.

Foi então definida a grandeza dose equivalente, cujo símbolo é H.

A dose equivalente é numericamente igual ao produto da dose absorvida (D) pelos fatores de qualidade

Q e N.

Dose equivalente (H T) Para um mesmo valor de dose absorvida , observa se que algumas radiações são mais

efetivas do que outras em causar efeitos estocásticos.

Para considerar isto, foi introduzida uma grandeza mais apropriada, a dose equivalente, Ht

definida como o produto da dose absorvida média em um órgão ou tecido pelo fator de

peso da radiação, wR.

Foi então definida a grandeza dose equivalente, cujo símbolo é H.

A dose equivalente é numericamente igual ao produto da dose absorvida (D) pelos fatores de

qualidade Q e N.

Dose equivalente efetiva (E ) A dose recebida em cada

órgão do corpo humano é

multiplicada por um fator

de ponderação (WT), o

qual leva em conta o risco

de efeitos estocásticos.

HE = ∑ WT. HT

WT - fator de ponderação: considera o grau

de dano que um órgão causaria

independentemente para o corpo todo

Na tabela é apresentado um resumo das principais

unidades e grandezas usadas em radioproteção.

PRINCÍPIOS DE PROTEÇÃO

RADIOLÓGICA

A principal finalidade da proteção radiológica éproteger os indivíduos, seus descendentes e ahumanidade como um todo dos efeitos danosos dasradiações ionizantes, permitindo, desta forma, asatividades que fazem uso das radiações.

Para atingir essa finalidade, três princípios básicos daproteção radiológica são estabelecidos: Justificação,Limitação de dose e Otimização.

Limites de dose

Limites de dose representam um valor máximo de dose,abaixo do qual os riscos decorrentes da exposição àradiação são considerados aceitáveis. No caso dasradiações ionizantes, são estabelecidos limites de doseanuais máximos admissíveis (LAMA),

Para o estabelecimento dos limites máximos admissíveispara trabalhadores foram considerados os efeitossomáticos tardios, principalmente o câncer.

Limites primáriosAs medidas adotadas para situações normais de operação devem ser tais

que os limites de dose para trabalhadores e para indivíduos do público não

excedam aos níveis recomendados pela CNEN.

Limites Derivados para Irradiação

ExternaSão função da fração de tempo gasto para executar as tarefas projetadas

para o ano nos locais de trabalho. Por exemplo, o limite derivado para um

trabalhador, baseado numa semana de 40 horas trabalhadas, para 50 semanas

em um ano de trabalho, equivale a 25 mSv/h.

Este limite garante a concordância com o limite de 50 mSv por ano, conforme

mostrado a seguir.

Tipos de fonte (eletromagnéticas) As fontes de radiação ionizante de maior interesse para a radioproteção são os

aparelhos de raios X, os aceleradores de partículas, as substâncias radioativas e os

reatores nucleares.

Nos aparelhos de raios X, um filamento de lâmpada produz um feixe de elétrons que

é acelerado num campo elétrico e lançado contra um alvo metálico de número

atômico elevado e densidade alta.

Ao atingir o alvo, os elétrons são freados, emitindo sua energia na forma de radiação

de frenamento que é o raios X.

Nos aceleradores de partículas, gases ionizados são injetados em um campo

magnético onde são acelerados e lançados contra um alvo onde provocam reações

nucleares.

Estes dois tipos de aparelhos são fontes de radiação somente enquanto estão

conectados à rede elétrica

Tipos de fonte (nucleares) As fontes de radiação constituídas de substâncias radioativas, ao

contrário, emitem radiação contínua e independentemente da açãodo homem, até que todos os átomos da fonte tenham sedesintegrado.

Radiações emitidas depende da massa do radionuclídeo na amostrae varia continuamente, de acordo com as leis do decaimentoradioativo.

Proteção contra a irradiação externa

Desta forma existem duas maneiras para se reduzir a dose equivalente do trabalhador, ou seja, fornecer-lhe proteção adequada.

A primeira considera a variação do tempo de irradiação

A segunda considera a redução da taxa de dose, conseguida por redução da atividade da fonte.

O aumento da distância fonte-indivíduo.

Blindagem.

Será examinado a seguir, com mais detalhes, como esta redução da dose pode ser conseguida.

Proteção contra a irradiação externa

Desta forma existem duas maneiras para se reduzir a dose equivalente do trabalhador, ou seja, fornecer-lhe proteção adequada.

A primeira considera a variação do tempo de irradiação

A segunda considera a redução da taxa de dose, conseguida por redução da atividade da fonte.

O aumento da distância fonte-indivíduo.

Blindagem.

Será examinado a seguir, com mais detalhes, como esta redução da dose pode ser conseguida.

MODOS DE EXPOSIÇÃO

Entende-se por exposição interna aquela em que a fonte de

radiação está dentro do corpo da

pessoa irradiada

Entende-se por exposição externa aquela em que a

fonte de radiação, aparelhos de raios X ou fontes

radioativas, estão fora do corpo da pessoa irradiada.

Exposição internaExposição externa

Aumento da distância fonte-indivíduo

A dose de radiação

recebida por um indivíduo

é inversamente

proporcional ao quadrado

da distância, entre o

indivíduo e a fonte.

A medida que um

indivíduo se afasta da

fonte de radiação, a dose

por ele recebida diminui

H1 / H2 = (d2)2 / (d1)2

Uso de blindagem

Particulasalfa

• Não é necessário proteção externa para radiação alfa

Partículas Beta

• tem por objetivo evitar a irradiação da pele, cristalino dos olhos egônadas

Radiação Gama ou X

• A camada semiredutora de um material utilizado para blindagem é aespessura necessária para reduzir a intensidade de radiação àmetade.

Materiais para blindagem Proteção

contra a contaminação

y , X

• Usa-se chumbo, a espessura dependerá da atividade da fonte e daenergia da radiação emitida. Também são usados concreto, ferro eoutros materiais de alta densidade

Beta

• Normalmente usa-se 1 cm de lucite ou outro material plásticoseguido de uma folha de chumbo de 1 cm de espessura, que éusado para blindar a radiação de freiamento (bremsstrahlung).

• Para fontes de baixa atividade pode ser dispensável o uso destafolha de chumbo.

Proteção contra a contaminação

Os EPIs tais como: luvas botas, aventais, óculospumbliferos e máscaras ou fazendo o controle deacessos a áreas contaminadas

O confinamento dos materiais radioativos deve ser feitoutilizando uma capela ou “glove box” (caixa de luvas),com sistema de exaustão e filtração adequados.

A contaminação interna acontece quando o materialradioativo é incorporado pelo indivíduo por inalação,ingestão ou absorção através da pele.

Proteção contra a inalação de materiais

radioativos

Ao trabalhar com substâncias radioativas na forma de pó, voláteis egasosas deve se ter o cuidado para evitar sua dispersão no ar e manipulá-las em locais apropriados, como capelas e caixas com luvas.

Além disso, pode ser necessário o uso de máscaras ou outros equipamentosde proteção respiratória.

Proteção contra a ingestão de material radioativo.

Na manipulação de substâncias radioativas devem serutilizadas luvas e os materiais de laboratório não devem serlevados à boca.

A higiene das mãos após a saída da área de trabalho éfundamental para se evitar uma contaminação interna.

Controle de acesso em áreas restritas

A entrada numa área com potencial de contaminação exige o usode roupas de proteção, as quais devem ser removidas ao deixar olocal.

As roupas de proteção são basicamente compostas por sapatilhas,galochas, macacões, luvas, toucas, e máscaras de proteçãorespiratória.

Nas áreas de trabalho onde é necessário um controle mais rigoroso,o acesso é feito através de vestiários, que devem contar com, piaspara lavar as mãos, recipientes para recolher as roupas deproteção utilizadas na área, instruções para operação normal e ememergência e monitores para detectar a contaminação.

Detectores por ionização A radiação incidente cria pares de

íons no volume de medida do

detector.

Este volume de medida geralmente é

preenchido com um gás ou uma

mistura de gases.

A quantidade de pares de íons

criados são contados em um

dispositivo de medida da corrente

elétrica.

Ex: Camara de ionização, contador

proporcional e o contador Geiger-

Muller

Detectores à cintilação

O iodeto de sódio (NaI); o sulfeto de zinco

(ZnS); e cintiladores plásticos são exemplos

de

instrumentos com meio de detecção sólido.

Os detectores de iodeto de sódio e sulfeto

de

zinco são sólidos cristalinos inorgânicos que

respondem a radiação gama e alfa,

respectivamente, produzindo lampejos de

luz. Por isso, é que são chamados de

cintiladores.

Tubo Geiger-Mueller O detector mais comum para radiação alfa, beta e

gama é o tubo Geiger-Mueller (G-M), e é particularmente adequado para as monitorações em radioproteção.

Dosímetros

As principais características que um bom dosímetro deve apresentarsão:

Deve cobrir um grande intervalo de dose deve medir todos os tipos deradiação ionizante, ser pequeno, leve, de fácil manuseio, confortávelpara o uso e econômico quanto à fabricação.

Até hoje não existe um dosímetro que preencha todos essesrequisitos de forma ideal, mas apenas parcialmente. Os principaistipos de dosímetros são: fotográfico,

termoluminescente (TLD) e câmara de ionização de bolso (canetadosimétrica

Dosímetros

Dosímetro fotográfico: Osfilmes dosimétricos utilizam àpropriedade das radiaçõesionizantes de impressionaremchapas fotográficas.

Os filmes dosimétricos oferecem a vantagem de assegurar uma informação permanente (podem ser guardados).

Dosímetros Dosímetro termoluminescente (TLD): Se este dosímetro for

aquecido, a uma certa temperatura, após ter sido irradiado,a energia armazenada será liberada com emissão de luz,fenômeno conhecido como termoluminescência.

A quantidade de luz emitida durante o aquecimento éproporcional à dose absorvida pelo dosímetro.

Os dosímetros TLD têm o formato de pastilhas e, geralmente, são utilizados num

Estojo que acomoda vários filtros, com a mesma finalidade daqueles utilizados nos dosímetros fotográficos

A grande vantagem desses dosímetros é que podem serreutilizados.

A desvantagem é que uma vez lido, não pode ser feita aleitura novamente.

Câmara de ionização de bolso caneta dosimétrica: são utilizados

como dosímetros complementares,

quando é necessário uma medida

direta e rápida, permitindo ao

usuário verificar a dose a que foi

submetido durante um determinado

trabalho. O princípio de

funcionamento deste dosímetro é

semelhante do dosímetro

fotográfico.

PROGRAMAS E PROCEDIMENTOS DE

MONITORAÇÃO.

Para que as monitorações atinjamsuas finalidades, devem serracionalmente planejadas erealizadas dentro de um programa.Um programa de monitoração inclui:

a obtenção de medidas,

a interpretação das medidasobtidas,

registro dos dados e

as providências, quando necessário.

Monitoração individual

Monitoração individual externa: tem como objetivo aobtenção de dados para avaliar as doses equivalentesrecebidas pelo corpo inteiro, pela pele ou pelasextremidades, quando o indivíduo é irradiadoexternamente.

Monitoração individual interna: Pode ser feita pelaanálise de excretas (técnica “in vitro”) ou pelacontagem direta (técnica “in vivo”), quando irradiadointernamente

Monitoração de área

Monitoração do nível de radiação: É utilizada para daruma indicação dos níveis de radiação existentes em locaisde trabalho, sendo eles câmaras de ionização, detectoresGeiger- Muller, cintiladores etc.

Medem taxas de taxas de dose (mSv/h ou mGy/h) ou astaxas de exposição (mC / (kg.h)).

Os detectores antigos possuem escala em mrad/h ou mR/h.

Podem ser portáteis ou fixos.

Sinais e avisos de radiação

Os equipamentos, os recipientes, as áreas ou os

recintos, que possuam riscos potenciais de

radiações ionizantes, devem ser marcados com

sinais de advertência de radiação.

O sinal consiste de um trifólio que representa a

radiação, juntamente com dizeres apropriados.

Os dizeres mais comuns são:

PERIGO: - ÁREA RADIOATIVA

PERIGO: - MATERIAL RADIOATIVO

PERIGO: - RISCO DE RADIAÇÃO

Boa prova

nbrancaglione@gmail.com

Recommended