25
74 com , 1 b y b x = > com , 1 b y b x = < 2. Algumas explorações No primeiro conjunto de questões desta tarefa, os alunos devem escolher vários valores a atribuir ao parâmetro b , de modo a estabelecerem as propriedades comuns aos elementos da família do tipo , 0 b y b x = . Comece-se por analisar o caso 0 b > , representando graficamente algumas funções deste tipo e tomando como referência a função 1 y x = . Assim, podem obter-se as seguintes representações gráficas: No caso de 0 b < , as representações gráficas das funções da família b y x = ob- têm-se das anteriores por simetria em relação ao eixo das abcissas. Neste caso, podemos obter: com , 1 0 b y b x = - < < com , 1 b y b x = <-

2. Algumas explorações - Associação de Professores de ... · 2.1. Efeito do parâmetro b nas famílias de funções do tipo , 0 b y b x = ≠ Para além da análise das propriedades

Embed Size (px)

Citation preview

74

com, 1b

y bx

= > com, 1b

y bx

= <

2. Algumas explorações

No primeiro conjunto de questões desta tarefa, os alunos devem escolher vários

valores a atribuir ao parâmetro b , de modo a estabelecerem as propriedades comuns aos

elementos da família do tipo , 0b

y bx

= ≠ . Comece-se por analisar o caso 0b > ,

representando graficamente algumas funções deste tipo e tomando como referência a

função 1

yx

= .

Assim, podem obter-se as seguintes representações gráficas:

No caso de 0b < , as representações gráficas das funções da família b

yx

= ob-

têm-se das anteriores por simetria em relação ao eixo das abcissas. Neste caso, podemos

obter:

com, 1 0b

y bx

= − < <

com, 1b

y bx

= < −

75

Assim, após a análise das propriedades das funções representadas, os alunos po-

dem concluir que:

b

yx

= Domínio Contradomínio Paridade Assímptotas

0b >

{ }\ 0R { }\ 0R

Funções ímpares

– as representa-

ções gráficas são

simétricas em

relação à origem

0y = - assímptota hori-

zontal;

0x = - assímptota vertical; 0b <

Quanto ao sinal e variação, tem-se:

x ∞− 0 ∞+

by

x=

0b >

Sinal – – +

Variação 0 -

∞− S.S.

∞+

0 +

0b <

Sinal + – –

Variação

∞+

0 +

S.S.

0 –

∞−

Deste modo, podem concluir que o parâmetro b , na família de funções do tipo

by

x= , não altera o domínio, o contradomínio nem as assímptotas vertical e horizontal.

As funções desta família não têm zeros, mas os intervalos nos quais as funções são ne-

gativas ou positivas e a monotonia, são influenciadas pelo parâmetro b . De igual modo,

a curvatura da função e o afastamento dos ramos da hipérbole varia de acordo com o

valor absoluto do parâmetro b : à medida que o valor absoluto de b aumenta, a curvatu-

ra da função é menos acentuada e os ramos das respectivas hipérboles vão-se afastando

cada vez mais.

Como as representações gráficas das funções desta família são hipérboles equilá-

teras centradas em relação à origem, pode ainda verificar-se que as rectas y x= e

y x= − são eixos de simetria dos respectivos gráficos quando 0b > e 0b < , respecti-

vamente.

76

No segundo conjunto de questões desta tarefa, os alunos devem estudar a influ-

ência dos parâmetros a e d no comportamento das famílias de funções do tipo

1y a

x= + e

1y

x d=

+, nomeadamente quanto ao domínio, contradomínio, varia-

ção, sinal e assímptotas. Neste caso, o estudo das alterações provocadas pela mudança

de sinal de cada um dos parâmetros é deixada ao cuidado dos alunos. No entanto, caso

seja necessário, o professor deverá sugerir a análise de valores positivos e negativos.

De modo a estudar a influência do parâmetro a , na família de funções do tipo

1y a

x= + , pretende-se que os alunos analisem as representações gráficas obtidas

para diferentes valores de a , tomando como referência a função 1

yx

= :

Recorrendo aos conhecimentos do 10.º ano de escolaridade, e de acordo com a

observação das representações obtidas, pretende-se que os alunos concluam que o gráfi-

co das funções da família 1

y ax

= + pode ser obtido a partir do gráfico da função

1y

x= , por meio de uma translação vertical associada ao vector ( )0,u a

��. Para além

disso, poderão ainda concluir que:

Domínio Contradomínio Variação Assimptotas

1y a

x= + { }\ 0R { }\ 0R

Funções decres-

centes em

] [0;∞− e em

] [∞+;0

0x = - assímptota verti-

cal;

y a= - assímptota hori-

zontal;

77

Assim, o parâmetro a , na família de funções 1

y ax

= + , influencia o contra-

domínio e a assímptota horizontal. Pode, também, reparar-se que os zeros e o sinal da

função são influenciados pela variação do parâmetro a . Com o intuito de estabelecer

uma relação entre a localização do zero da função e o sinal de a , os alunos poderão

verificar, analiticamente, que as funções do tipo 1

y ax

= + (com 0a≠ ) admitem um

zero para 1

xa

= − . Atendendo ao esboço das representações gráficas, podem ainda

apresentar as seguintes conclusões quanto à variação de sinal para 0a > e para 0a < :

De modo idêntico ao anterior, pretende-se que os alunos analisem alguns casos

de funções do tipo 1

yx d

=+

, atribuindo a d diferentes valores, tomando como refe-

rência a função 1

yx

= . Assim, tem-se:

∞− 1

a−

0 + ∞

1y a

x= + , a > 0 + 0 – S.S. +

∞− 0 1

a− + ∞

1y a

x= + , a < 0 – S.S. + 0 –

com1

, 0y dx

= > com1

, 0y dx

= <

78

Na análise desta família de funções, os alunos deverão ter especial atenção ao

modo como introduzem, na calculadora, as expressões das funções que pretendem visu-

alizar. De facto, poderá haver a tendência, por parte dos alunos, de não usar parênteses

na expressão do denominador e, deste modo, irão analisar funções que pertencem às

famílias do tipo 1

y ax

= + .

De novo, tendo como referência os conhecimentos adquiridos no ano curricular

anterior, pode observar-se que os gráficos destas funções podem ser obtidos a partir do

gráfico da função 1

yx

= por meio de uma translação horizontal, associada ao vector

( ), 0v d−��

. De acordo com o observado a partir das diferentes representações gráficas,

pretende-se que os alunos concluam que:

Domínio Contradomínio Variação Assimptotas

1y

x d=

+ { }\ d−R { }\ 0R

Funções decrescentes

em ] [; d− ∞ − e

em] [;d− + ∞ .

x d= − , assímptota

vertical;

0y = , assímptota

horizontal;

Deste modo, conclui-se que o parâmetro d , na família de funções 1

yx d

=+

,

influencia o domínio e a assímptota vertical. Pode ainda observar-se que as funções des-

te tipo não têm zeros e os intervalos para os quais as funções são negativas e positivas

dependem também do parâmetro d .

Explorações de alunos

1. Identificação de propriedades das funções racionais

Com a exploração desta tarefa pretende-se que os alunos identifiquem algumas

características das funções racionais, agrupadas em famílias, partindo da análise das

representações obtidas na calculadora gráfica.

Numa primeira fase, é de esperar que os alunos aceitem as sugestões dadas no

enunciado da tarefa e se dediquem ao estudo das propriedades pretendidas, analisem o

79

comportamento de vários elementos das famílias dadas e sintetizem as informações re-

colhidas com o preenchimento das tabelas dadas:

No entanto, o professor deve estar atento ao trabalho desenvolvido pelos alunos,

uma vez que alguns podem iniciar o preenchimento da tabela, baseando as suas conclu-

sões na visualização de apenas um elemento das famílias dadas. Nesta situação, o pro-

fessor deve incentivá-los a atribuir vários valores a cada um dos parâmetros indicados e

a visualizar simultaneamente as respectivas representações. Deste modo, os alunos po-

dem adquirir maior convicção quanto às propriedades que se mantêm invariantes e à

influência provocada pela variação dos parâmetros.

No relatório das actividades desenvolvidas, os alunos devem também apresentar

um esboço das representações obtidas e podem registar as suas propriedades, de acordo

com o guião fornecido no enunciado:

Por vezes, a análise das propriedades das funções pode ser ainda mais exaustiva

e os alunos procuram estudar outras propriedades das famílias de funções que identifi-

cam como invariantes: a existência de zeros ou de extremos, a injectividade, ou o com-

portamento da função nos ramos infinitos:

80

Pode, também, acontecer que os alunos mostrem preocupação em fundamentar

matematicamente as propriedades analisadas, tendo como referência o esboço das repre-

sentações que observaram:

No entanto, os alunos podem evidenciar algumas dificuldades em exprimir com

correcção matemática as suas observações e podem apresentar alguns erros, tanto no

que se refere a tentativas menos conseguidas de formalizar o conceito de assímptota

(noção que deve ser abordada intuitivamente em aulas anteriores), como na indicação

dos intervalos de monotonia da função. De facto, no que se refere a esta última proprie-

81

dade, é de prever que um número significativo de alunos refira que as funções de cada

uma das famílias são sempre crescentes (ou sempre decrescentes) ou que assinale o tipo

de variação da função recorrendo à união de intervalos que correspondem ao domínio,

como é o caso da seguinte resolução:

Noutros casos, os alunos podem caracterizar correctamente o tipo de monotonia,

mas interpretar o conceito de variação de função com a transcrição do comportamento

das respectivas imagens. Assim, referindo-se, por exemplo, à variação das funções da

família b

yx

= , as respostas apresentadas por alguns alunos, para o caso de 0b > ,

foram as seguintes:

Saliente-se que, neste caso, os “intervalos” indicados apresentam-se formalmen-

te incorrectos, de acordo com o sentido definido para os eixos do referencial, mas cor-

respondem a uma tentativa de transcrever o comportamento das imagens das funções

nos ramos em que x é maior do que zero e x é menor do que zero, respectivamente.

Na fase de discussão de resultados com o grupo turma, o professor deve ter em

atenção as dificuldades que os alunos podem manifestar e promover a oportunidade de

discutir em conjunto alguns conceitos cuja compreensão não lhes é tão imediata.

2. Análise da influência dos parâmetros nas famílias de funções racionais

2.1. Efeito do parâmetro b nas famílias de funções do tipo , 0b

y bx

= ≠

Para além da análise das propriedades que se mantêm invariantes nesta família

de funções, os alunos devem identificar a influência do parâmetro b nas respectivas

representações gráficas. Deste modo, é de prever que identifiquem, com bastante facili-

82

dade, a alteração dos quadrantes em que se situam os ramos da hipérbole, em função do

sinal do parâmetro b , e concluam que tal facto vai influenciar o sinal das respectivas

funções:

O maior ou menor afastamento dos ramos das hipérboles em relação à origem é

um dos aspectos que os alunos observam, também, com relativa facilidade:

No entanto, é de prever que alguns alunos apresentem dificuldade em identificar

correctamente as alterações das representações gráficas desta família de funções, no

caso de 0b < , e que retirem conclusões precipitadas:

Nesta situação, o professor deve questionar os alunos sobre a veracidade das su-

as conclusões, levando-os a compreender a necessidade de estudar a influência do pa-

râmetro b em função do seu sinal ou de recorrer à noção de valor absoluto, de modo a

corrigir as suas conjecturas.

Na fase de discussão de resultados, o professor pode ainda discutir com os alu-

nos se a conjectura formulada quanto ao maior ou menor afastamento dos ramos da hi-

pérbole em relação à origem se mantém quando 0 1b< < ou quando 1 0b− < < , uma

vez que, de modo natural, os alunos tendem a atribuir a cada parâmetro valores inteiros.

83

Neste caso, como em diversas situações (que se encontram assinaladas noutras

resoluções), os alunos tendem a não distinguir os conceitos de função e representação

gráfica dessa função e referem-se, na maioria das vezes, à função sempre que analisam

as alterações sofridas pela respectiva representação gráfica. Este deve, também, ser um

dos aspectos a discutir com os alunos na fase de validação de resultados.

2.2. Efeito do parâmetro a na família de funções do tipo 1

y ax

= +

De modo análogo ao anterior, pretende-se que os alunos identifiquem alguns dos

efeitos produzidos pelo parâmetro a nas representações gráficas das respectivas fun-

ções. Ainda que, nesta questão, não haja uma referência explícita ao estudo, em separa-

do, quanto ao sinal do parâmetro, as explorações anteriores podem orientar os alunos

para atenderem a esse pormenor nas análises realizadas. Nalguns casos, os alunos atri-

buem o valor 0 ao parâmetro, obtendo a função 1

yx

= como referência:

Os alunos podem ainda identificar as propriedades que se mantêm invariantes, a

partir do preenchimento da tabela fornecida no enunciado, mas também podem registá-

las em termos de conclusões, pondo em destaque a influência do parâmetro nas várias

representações das funções desta família:

84

Nesta situação, os alunos identificam a translação vertical associada às transfor-

mações sofridas pelas representações gráficas e, em vez de referirem as coordenadas do

vector associado à translação, identificam apenas o valor do deslocamento sofrido com

o valor do parâmetro a .

Noutros casos, podem também recorrer de modo mais explícito à linguagem das

transformações geométricas, para descrever o efeito provocado pela variação do parâ-

metro a , indicando as alterações registadas em função do sinal deste:

Pode também acontecer que a influência deste parâmetro seja descrita pelo

afastamento verificado nas representações gráficas, tomando como referência o eixo

Ox :

É de salientar que a conjectura formulada por estes alunos é válida quando se

consideram valores de a maiores do que zero, ou quando se refere o valor absoluto de

a .

Um dos aspectos em que os alunos podem evidenciar maiores dificuldades é na

exploração do sinal das funções desta família. De facto, os alunos podem verificar que

o sinal depende da determinação do zero da função, mas podem não descobrir de que

modo é que este está relacionado com o valor de a :

Noutros casos, os alunos podem recorrer a notações próprias para conseguir ge-

neralizar os intervalos para os quais a função é positiva ou é negativa:

85

Nestas situações, o professor deve atender às dificuldades que os alunos possam

evidenciar, promovendo a discussão com o grupo turma dos aspectos menos consegui-

dos nas suas explorações.

2.3. Efeito do parâmetro d na família de funções do tipo 1

yx d

=+

Também neste caso, é importante que os alunos realizem o estudo das transforma-

ções das representações gráficas em função do sinal positivo ou negativo do parâmetro

d . De modo análogo ao anterior, é de prever que os alunos identifiquem alguns dos

efeitos produzidos pelo parâmetro d nas representações gráficas das respectivas fun-

ções, partindo da visualização e registo das funções estudadas:

A influência do parâmetro na determinação do domínio, no estudo da variação

do sinal e nas assímptotas verticais pode ser registada com o preenchimento da tabela:

86

Os alunos podem, também, recorrer de modo mais explícito à linguagem das

transformações geométricas para descrever o efeito provocado pela variação do parâ-

metro d , indicando as alterações registadas em função do seu sinal:

Seguindo as estratégias adoptadas nas explorações anteriores, pode acontecer

que os alunos analisem o efeito do parâmetro d nas representações gráficas, tomando

como referência o respectivo afastamento em relação ao eixo das ordenadas, embora

não se torne evidente a discussão em relação ao sinal do parâmetro:

Considerações finais sobre a exploração da tarefa

Com a exploração desta tarefa os alunos podem recorrer à calculadora gráfica

para representar diferentes funções das famílias dadas, atribuindo diversos valores aos

parâmetros, e, a partir das observações efectuadas, identificar as características comuns

aos diferentes tipos de representações. Nalguns casos, os alunos podem também analisar

87

outras propriedades das funções, para além das solicitadas, que identificam ser invarian-

tes para os diferentes elementos de cada uma das famílias estudadas.

Ao longo da tarefa, os alunos podem conseguir, também, perceber qual os efei-

tos provocados nas representações gráficas pela mudança de cada um dos parâmetros

nas famílias de funções que analisaram e descrever as suas observações em linguagem

natural.

Por vezes, ao exprimirem por palavras próprias as suas conclusões, os alunos co-

locam em destaque algumas dificuldades como é o caso da análise da variação das fun-

ções (tanto na indicação da união dos intervalos de monotonia como na leitura da mono-

tonia em termos da variação das imagens da função).

Na fase de discussão, o professor deve proporcionar aos alunos a oportunidade

de confrontar diferentes conclusões e de explicar os raciocínios realizados. Este momen-

to pode também ser rentabilizado para discutir e tentar colmatar as dificuldades que os

alunos apresentam.

88

EXPLORANDO FUNÇÕES RACIONAIS

Nesta tarefa não é permitido recorrer à calculadora gráfica

1. Observe as representações gráficas apresentadas na tabela 1 e as expressões analíti-

cas das funções que figuram na tabela 2.

Tabela 1:

1. 2. 3.

4. 5. 6.

Tabela 2:

1

2y

x=

52y

x= −

12y

x= −

12y

x= +

11y

x= +

32y

x= −

1

2y

x=

32y

x= +

A partir da tabela 2, identifique a expressão analítica associada a cada uma das

representações gráficas, colocando as legendas em falta na tabela 1.

Para cada situação, apresente todos os argumentos que lhe permitem fundamen-

tar a sua opção, bem como as decisões que teve de tomar.

89

2. Na figura está uma representação gráfica da função f que é definida por uma ex-

pressão do tipo ( ) bf x a

x c= +

−.

Indique os valores correspondentes a a , b e c .

.

3. Considere a função definida por ( ) 3 1

1

xg x

x

+=+

.

3.1. Escreva a função na forma ( )1

bg x a

x= +

+.

3.2. Indique o valor dos seguintes limites:

( )limx

g x→−∞

; ( )limx

g x→+∞

; ( )1

limx

g x−→−

; ( )1

limx

g x+→−

.

3.3. Faça um esboço da representação gráfica da função g .

Apresente os argumentos que lhe permitem fundamentar as suas opções.

Apresente os argumentos que lhe permitem fundamentar as suas opções.

90

Conhecimentos prévios dos alunos

Com o trabalho desenvolvido nas aulas anteriores relativas ao estudo das carac-

terísticas das funções racionais do tipo b

y ax d

= ++

, os alunos devem ser capazes de:

� Identificar o domínio e contradomínio de uma função, a partir de uma represen-

tação gráfica;

� Identificar propriedades das funções e dos seus gráficos;

� Reconhecer transformações simples de funções e respectivos deslocamentos em

termos gráficos.

� Identificar a influência dos parâmetros a , b e d , nas representações gráficas de

funções do tipo b

y ax d

= ++

;

� Reconhecer assímptotas horizontais e verticais, a partir de uma representação

gráfica;

� Estudar o comportamento de uma função nos ramos infinitos.

Os alunos devem, ainda, recordar o algoritmo da divisão inteira de polinómios

(ou a regra de Ruffini) e a identidade da divisão, de modo a transformar uma expressão

racional, constituída pela divisão de dois polinómios de grau um, na forma

ba

c x d+

+.

Aprendizagens visadas

Com o trabalho a desenvolver na exploração da tarefa, os alunos devem ser ca-

pazes de reforçar a sua capacidade de analisar representações gráficas de funções do

tipo b

y ac x d

= ++

, identificar, sem recurso à calculadora, os efeitos provocados por

cada um dos parâmetros nas respectivas representações gráficas e estabelecer relações

entre representações gráficas e analíticas de uma mesma função.

91

Em particular os alunos devem ser capazes de:

� Identificar propriedades das funções racionais e dos seus gráficos, definidas de

modo gráfico ou analítico, nomeadamente: o domínio, contradomínio, variação,

sinal, assímptotas e comportamento nos ramos infinitos;

� Estabelecer relações entre a representação gráfica e analítica de uma mesma fun-

ção;

� Determinar a expressão analítica de uma função racional, dada a sua representa-

ção gráfica;

A realização desta tarefa pode, também, contribuir para o desenvolvimento da

capacidade de o aluno comunicar matematicamente, oralmente e por escrito, fundamen-

tar raciocínios, discutir processos e comentá-los com outros.

Orientações para o professor

1. Indicações gerais

A duração prevista para a exploração desta tarefa corresponde a um bloco de au-

la de 90 minutos.

Transformações de funções racionais

Duração prevista Exploração Apresentação e validação de resultados

1 bloco (90 min) 60 min 30 min

Numa primeira fase, os alunos deverão explorar as questões propostas (durante

cerca de 60 minutos), trabalhando em pares ou em pequenos grupos, e devem elaborar

um relatório contendo os registos dos argumentos usados e que permitem fundamentar

as suas opções e as conclusões retiradas. Na parte final da aula (durante cerca de 30

minutos), deve ser feita a apresentação de resultados e conclusões e a validação dos

mesmos.

92

2. Algumas explorações

Na exploração desta tarefa pretende-se que os alunos, sem recorrer à calculadora

gráfica, estabeleçam relações entre diferentes tipos de representações de uma mesma

função, associem as representações gráficas com as respectivas expressões analíticas e

identifiquem algumas propriedades de uma dada função racional, que se podem traduzir

em termos gráficos, a partir da sua expressão analítica. Assim, tem-se:

1. Com a exploração da primeira questão pretende-se que os alunos analisem as seis

representações gráficas das funções dadas na tabela 1 e identifiquem algumas das

suas propriedades (nomeadamente o domínio, o contradomínio, a localização dos

ramos das hipérboles representadas, as assímptotas horizontais e verticais dos gráfi-

cos das funções, a existência de zeros, a relação imagem/objecto e a maior ou menor

“abertura” dos ramos das hipérboles), de modo a estabelecer uma correspondência

entre cada uma delas e a respectiva expressão analítica, escolhida entre as oito que

são fornecidas na tabela.

Nas opções fornecidas, existem funções que têm o mesmo domínio, as mesmas as-

símptotas verticais, o mesmo contradomínio, as mesmas assímptotas horizontais e a

mesma localização dos ramos das hipérboles, tendo como referência as assímptotas

do seu gráfico.

As discussões entre os alunos, ao longo da exploração desta questão, devem cen-

trar-se na fundamentação das suas escolhas e das decisões que têm de tomar para

identificar a expressão analítica das funções cuja representação gráfica se encontra

na tabela 1.

Deste modo, os alunos devem concluir que:

1. 1

2y

x=

− 2.

32y

x= − 3.

32y

x= +

93

4. 1

2yx

= − 5. 1

2yx

= + 6. 1

2y

x=

A existência de mais expressões analíticas do que as funções que se encontram re-

presentadas cria a necessidade de os alunos reflectirem sobre todas as opções toma-

das e de, eventualmente, confrontar o comportamento de funções que tenham algu-

mas características comuns.

2. Na resolução desta questão pretende-se que os alunos identifiquem as assímptotas

horizontais e verticais do gráfico da função dada e associem os seus valores, respec-

tivamente, aos parâmetros a e c , de modo a escrever a função na forma

( ) bf x a

x c= +

−. Assim, observando que o gráfico da função admite como as-

símptota vertical a recta de equação 3x = e como assímptota horizontal a recta

1y = − , pode concluir-se que 1a = − e 3c = , ou seja, uma expressão analítica da

função será do tipo ( ) 13

bf x

x= − +

−.

Para a determinação do valor de b , pretende-se que os alunos observem a represen-

tação gráfica, identifiquem a partir desta as coordenadas de um ponto conhecido do

gráfico da função e, recorreram aos valores do par ordenado (objecto, imagem) para

resolver a correspondente condição.

Assim, pode verificar-se, por exemplo, que

a função tem um zero para 1x = , ou seja, o

par ordenado ( )01; pertence ao gráfico da

função.

94

Em alternativa podem também ser utilizados outros pares ordenados de coordenadas

inteiras, sugeridos pela representação dada, como é o caso de ( )2; 1 , ( )4; 3− ou

( )5; 2− .

Recorrendo, por exemplo, ao par ( )01; , vem:

( )1 0 1 0 21 3

bf b= ⇔ − + = ⇔ = −

−.

3. Com a exploração desta questão pretende-se que os alunos estabeleçam relações

entre a representação analítica de uma função racional e a correspondente represen-

tação gráfica, identificando algumas propriedades que lhes permitirão esboçar a re-

presentação gráfica da função. Assim:

3.1. Para resolver esta questão, os alunos devem recordar os procedimentos analíticos da

divisão de polinómios, abordados no ano curricular anterior, e determinar o quoci-

ente (que corresponde ao valor de a ) e o resto (que corresponde ao valor de b ) da

divisão inteira do polinómio que figura no numerador pelo polinómio do denomi-

nador. Deste modo, poderão escrever ( ) 23

1g x

x= −

+.

3.2. De acordo com o estabelecido na questão anterior, pretende-se agora que os alunos

conjecturem quanto ao comportamento da função nos ramos infinitos, relacionando

o valor de cada um dos limites indicados com a existência de assímptotas horizon-

tais e verticais do gráfico da função e com a localização dos ramos da hipérbole,

tomando como referência as assímptotas do seu gráfico.

Deste modo, as rectas 1x = − e 3y = devem ser identificadas como assímptotas

vertical e horizontal, respectivamente, e considerando a influência do parâmetro b ,

os ramos da hipérbole vão situar-se nos quadrantes pares, tendo como referência as

assímptotas; assim, é possível criar uma imagem mental da representação gráfica da

função, a qual permite concluir que:

( )lim 3x

g x +

→−∞= ; ( )lim 3

xg x −

→+∞= ; ( )

1lim

xg x

−→−= + ∞ ; ( )

1lim

xg x

+→−= −∞ .

3.3. Pretende-se que os alunos esbocem uma representação gráfica da função, dando

significado às conclusões retiradas com a exploração das questões anteriores.

95

Explorações de alunos

Com a exploração da primeira questão desta tarefa, os alunos devem identificar

qual a expressão analítica que define cada uma das representações gráficas apresenta-

das, sem utilizar a calculadora gráfica. A correspondência pedida pode ser assinalada no

relatório que devem realizar:

A par das correspondências estabelecidas entre as diferentes representações das

funções, os alunos devem apresentar os argumentos que julguem convenientes para a

fundamentação das suas opções. O professor deve estar atento pois podem surgir dife-

rentes tipos de argumentos para justificar as escolhas dos alunos e estes devem ser con-

frontados na fase de discussão com a turma, contribuindo deste modo para abordagens

diversificadas de relações entre a representação gráfica, a correspondente expressão

analítica e as propriedades de uma função.

1. Utilização de argumentos geométricos

Na fundamentação das suas escolhas, os alunos podem recorrer a argumentos de

natureza geométrica, recordar as transformações simples de funções, os respectivos des-

locamentos em termos gráficos e identificar a influência dos parâmetros a , b e d , nas

representações gráficas de funções do tipo b

y ax d

= ++

.

96

Assim, ao tomar como referência a função 1

yx

= , os alunos podem fundamen-

tar as suas escolhas a partir da identificação de:

1.1. simetria em relação ao eixo Ox ;

1.2. translações verticais:

Nalguns casos, os alunos podem analisar, caso a caso, o comportamento de cada

uma das representações gráficas das funções, em face da translação vertical associada,

tomando como referência a função definida por 1=yx

. No entanto, nas suas resoluções

nem sempre referem com clareza os argumentos suficientes que lhes permitiram associ-

ar cada representação gráfica à expressão analítica correspondente:

Noutros casos, podem identificar todas as funções que admitem translações ver-

ticais e, em seguida, usar outro tipo de argumentos para justificar as suas opções:

97

1.3. translações horizontais:

De modo semelhante ao anterior, os alunos podem analisar, caso a caso, o compor-

tamento de cada uma das representações gráficas das funções, em face da translação

horizontal associada e, eventualmente, complementar as suas justificações com outro

tipo de argumentos:

Neste caso, os alunos confundem a variação de sinal dos objectos com o sinal do

coeficiente de x , apesar de identificarem correctamente a localização dos ramos da hi-

pérbole, a translação associada e a assímptota vertical.

Os alunos podem, também, identificar todas as funções que admitem translações

horizontais:

98

Em seguida, podem recorrer a outro tipo de argumentos para justificar as suas

opções e confrontar as diferenças entre as correspondentes representações gráficas, so-

correndo para tal de linguagem própria para identificar o sentido das concavidades dos

ramos das hipérboles que representam as respectivas funções:

1.4. influência do parâmetro b

Para além da identificação das translações verticais e horizontais sofridas pelas di-

ferentes representações gráficas, os alunos podem analisar a influência do parâmetro b

nas representações gráficas de funções do tipo b

y ax d

= ++

, para decidir quais as

correspondências a estabelecer:

2. Utilização de argumentos analíticos

Alguns alunos podem mostrar preferência na análise das representações analíti-

cas dadas, na identificação e no estudo de algumas das suas propriedades, fundamentan-