28
5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade administrativa, etc. Diferem entre si em respeito a: isolamento de domínios de colisão camada em que operam Diferentes de roteadores “plug and play” não provêem roteamento ótimo de pacotes IP

5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

Embed Size (px)

Citation preview

Page 1: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-1

Hubs, Pontes e Comutadores

Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade administrativa, etc.

Diferem entre si em respeito a: isolamento de domínios de colisão camada em que operam

Diferentes de roteadores “plug and play” não provêem roteamento ótimo de pacotes IP

Page 2: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-2

Hubs

Dispositivos da camada física: basicamente são repetidores operando ao nível de bit: repete os bits recebidos numa interface para as demais interfaces

Hubs podem ser dispostos numa hierarquia (ou projeto de múltiplos níveis), com um hub backbone na raíz

Page 3: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-3

Hubs (cont)

Cada rede local ligado é chamada de segmento de rede local

Hubs não isolam domínios de colisão: um nó pode colidir com qualquer outro nó residindo em qualquer segmento da rede local

Vantagens de Hubs: Dispositivos simples, baratos Configuração em múltiplos níveis provê degradação

paulatina: porções da rede local continuam a operar se um dos hubs parar de funcionar

Estende a distância máxima entre pares de nós (100m por Hub)

Page 4: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-4

Hubs (cont)

Limitações de Hubs: Domínio de colisão único resulta em nenhum

aumento na vazão máxima; a vazão no caso de múltiplos níveis é igual à do segmento único

Restrições em redes locais individuais põe limites no número de nós no mesmo domínio de colisão (portanto, por Hub ou coleção de Hubs); e na cobertura geográfica total permitida

Não se pode misturar tipos diferentes de Ethernet (p.ex., 10BaseT and 100BaseT)

Page 5: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-5

Pontes (“Bridges”)

Dispositivos da camada de enlace: operam em quadros Ethernet, examinando o cabeçalho do quadro, e reencaminhando selectivamente um quadro com base no seu endereço de destino

Ponte isola domínios de colisão pois ela armazena e re-encaminha os quadros

Quando se quer re-encaminhar um quadro num segmento, a ponte usa CSMA/CD para fazer acesso ao segmento e transmitir

Page 6: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-6

Pontes (cont)

Vantagens de pontes: Isola domínios de colisões, o que resulta em

aumento de vazão máxima total, e não limita nem o número de nós e nem a cobertura geográfica

Pode interligar tipos diferentes de Ethernet pois é um dispositivo “armazena e re-encaminha”

Transparente: não requer nenhuma modificação aos adaptadores dos nós da rede local

Page 7: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-7

Ponte como Backbone

Page 8: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-8

Interconexão sem Backbone

Não recomendada por duas razões:- Ponto único de falha no hub de Computer Science- Todo tráfego entre EE e SE deve passar pelo segmento CS

Page 9: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-9

Filtragem em Pontes

Pontes aprendem quais nós são alcançáveis através de quais interfaces, e mantêm tabelas de filtragem

Uma entrada numa tabela de filtragem:(Endereço MAC do Nó, Interface da Ponte, Selo do Tempo)

Procedimento de filtragem:se destino estiver na rede local pela qual o quadro foi

recebidoentão descarta o quadrosenão { faz pesquisa na tabela de filtragem se foi encontrada a entrada para o destino

então re-encaminha o quadro na interface indicada;senão faz inundação; /* re-encaminha em todas

as interfaces exceto naquela por onde chegou*/}

Page 10: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-10

Aprendizagem por Pontes

Quando um quadro é recebido, a ponte “aprende” o seu endereço de origem e atualiza a tabela de filtragem:

<Endereço MAC do Nó, Interface da Ponte, Selo do Tempo>

Entradas expiradas na tabela de filtragem são descartadas (TTL pode ser de 60 minutos)

Page 11: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-11

Árvore Geradora de uma Rede

Para aumento de disponibilidade, é desejável possuir redundância, com caminhos alternativos de uma origem a um destino

Porém, com múltiplos caminhos simultâneos, existem ciclos nos quais pontes podem multiplicar e re-encaminhar um quadro para sempre

Uma solução é organizar o conjunto de pontes numa árvore geradora desabilitando algumas das interfaces das pontes:

Disabled

Page 12: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-12

Pontes X Roteadores

Ambos são dispositivos “armazena e re-encaminha”, porém Roteadores são dispositivos da Camada de Rede (examinam cabeçalhos da camada de rede) enquanto Pontes são dispositivos da Camada de Enlace

Roteadores mantêm tabelas de rotas e implementam algoritmos de roteamento; pontes mantêm tabelas de filtragem e implementam filtragem, aprendizagem e algoritmos de árvore geradora

Page 13: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-13

Pontes X Roteadores (cont)

Pontes: prós e contras

+ Operação de uma Ponte é mais simples requerendo menor capacidade de processamento

- Topologias são restritas com pontes: uma árvore geradora deve ser construída para evitar ciclos

- Pontes não oferecem proteção contra tempestades de difusão (“broadcast storms”): difusão contínua feita por um nó será espalhada por uma ponte

Page 14: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-14

Pontes X Roteadores (cont)

Roteadores: prós e contras+ São suportadas topologias arbitrárias, ciclos são

limitados por contadores TTL (e bons protocolos de roteamento)

+ Provêem proteção “parede corta-fogo” contra tempestades de difusão

- Requerem configuração de endereços IP (não são “plug and play”)

- Requerem maior capacidade de processamento

Pontes são melhores em redes pequenas (algumas centenas de nós) enquanto roteadores são necessários em grendes redes (milhares de nós)

Page 15: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-15

Comutadores Ethernet

Um comutador Ethernet (“Ethernet switch”) é um dispositivo que estende funções normais de ponte para incluir “conexões dedicadas” ponto-a-ponto

Uma estação ligada a um comutador através de uma conexão dedicada ponto-a-ponto sempre deteta que o meio está ocioso: não haverá colisões nunca!

Comutadores Ethernet provêem combinações de conexões compartilhadas/dedicadas, a 10/100/1000 Mbps

Page 16: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-16

Comutadores Ethernet (cont)

Alguns comutadores E-net supportam comutação “cut-through”: o quadro é re-encaminhado imediatamente ao destino, sem esperar a montagem do quadro inteiro no buffer do comutador; há uma pequena redução em latência

Comutadores Ethernet variam em tamanho, e os mais rápidos incorporam uma rede de interconexão de alta capacidade

Page 17: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-17

Ethernet Switches (cont)

Dedicated

Shared

Page 18: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-18

Rede Local de Rádio IEEE 802.11

Redes locais de rádio estão se tornando populares: => acesso Internet por estações móveis

Aplicações: acesso Internet nômade, computação portátil, redes “ad hoc” (com múltiplos enlaces)

Padrões IEEE 802.11 definem protocolo MAC; bandas do espectro de freqüência sem licença: 900MHz, 2,4GHz

Conj. de Estações (BSS)+ Pontos de Acesso (AP) => Sistema de Distribuição

Como rede usando pontes(endereços MAC “flat”)

Page 19: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-19

Redes Ad Hoc

Estações IEEE 802.11 podem constituir um grupo dinamicamente, sem precisar de um AP

Rede Ad Hoc: sem infra-estrutura pré-existente Aplicações: reunião de “laptops” numa sala de

conferências, carro, aeroporto; interconexão de dispositivos “pessoais” (vide bluetooth.com); teatro de guerra; computação pervasiva (espaços inteligentes)

IETF tem o GT MANET (Mobile Ad hoc Networks)

Nota-se: tb. pode usar 802.11 paraconstruir um enlace ponto a ponto

Page 20: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-20

Protocolo MAC IEEE 802.11Protocolo CSMA:- deteta canal ocioso durante intervalo DIFS (Distributed

Inter Frame Space) - transmite quadro (sem Deteção de Colisão) - receptor responde com ACK depois de intervalo SIFS

(Short Inter Frame Space)-se canal detetado ocupado

então afastamento binário

NAV: Network Allocation Vector (tempo mín. de adiamento)

Page 21: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-21

Efeito de Terminal Oculto

CSMA ineficiente na presença de terminais ocultos

Terminais ocultos: A e B não conseguem ouvir um ao outro por causa de obstáculos ou atenuação do sinal; logo, seus pacotes colidem em B

Solução? CSMA/CA (CA = Collision Avoidance) - objetivo é evitar colisões

Page 22: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-22

Evitando Colisões: troca RTS-CTS• estação querendo transmitir envia RTS - Ready to Send; receptor responde com CTS - Clear to Send

• CTS “congela” estações dentro do alcance do receptor (mas possivelmente escondido do transmissor); isto impede colisões por estação oculta durante transmissão dos dados

• RTS e CTS são muito curtas: colisões durante a fase de dados são, portanto, muito pouco prováveis (o resultado final é semelhante à Deteção de Colisões)

• Nota-se que IEEE 802.11 inclui CSMA, CSMA/CA e “polling” pelo AP

Page 23: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-23

Protocolo Ponto-a-Ponto (PPP)

Enlace de dados por cabo, ponto a ponto, mais fácil para gerenciar do que enlace por difusão: não precisa de Controle de Acesso ao Meio (MAC)

Existem vários protocolos de enlace de dados: PPP, HDLC, SDLC, protocolo de Bit Alternado, etc

PPP (Point to Point Protocol) é muito popular: usado em conexões discadas entre sistema doméstico e provedor; tb. em conexões SONET/SDH, etc

PPP é extremamente simples (o mais simplesdos protocolos de enlace de dados) e muito otimizado

Page 24: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-24

Requisitos PPP

Enquadramento: encapsulamento de pacotes transparência de bits: deve poder carregar qq.

padrão de bits no campo de dados deteção de erros (porém, sem sua correção) suporte para múltiplos protocolos da camada

de rede manter conexão “viva” negociação do Endereço da Camada de Rede:

estações/nós através do enlace devem aprender/configurar um do outro seus endereços de rede

Page 25: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-25

Não são providos por PPP

correção/recuperação de erros controle de fluxo sequenciamento enlaces multiponto (p.ex., polling)

Page 26: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-26

Quadro de Dados do PPP

Flag: delimitador (enquadramento) Endereço: não faz nada (apenas um destino

possível) Controle: não faz nada; no futuro possivelmente

haverá múltiplos campos de controle Protocolo: camada superior para qual quadro

deve ser entregue (p.ex, PPP-LCP, IP, IPCP, etc)

Page 27: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-27

Transparência de Dados (RFC 1662)

Para “transparência dos dados”, o campo de dados deve poder incluir o padrão 0x7e = < 01111110 > ; ié, ele não deve ser interpretado como um flag

Em enlaces síncronos orientados a bit, usa-se “bit stuffing”: depois de uma seqüência de 5 bits ‘1’, o transmissor insere um bit ‘0’; quando o receptor receber a seqüência ‘111110’, o bit ‘0’ final é suprimido.

Em enlaces assíncronos ou síncronos orientados a byte, o transmissor insere um caractere de “escape”, 0x7d = < 01111101 >, usado em combinação com outro caractere, obtido do original por inversão do bit 5 (XOR com 0x20); o receptor faz a transformação inversa. Exemplos: 0x7e = < 01111110 > 0x7d, 0x5e = < 01111101 01011110 > 0x7d = < 01111101 > 0x7d, 0x5d = < 01111101 01011101 > 0x11 = < 00010001 > 0x7d, 0x31 = < 01111101 00110001 >

(exemplo de código de controle ASCII: 0x00 a 0x1f, 0x80 a 0x9f )

Page 28: 5: Camada de Enlace 5c-1 Hubs, Pontes e Comutadores Usados para estender as característcias das redes locais: cobertura geográfica, número de nós, funcionalidade

5: Camada de Enlace 5c-28

PPP-LCP: Protocolo de Controle do Enlace

PPP-LCP estabelece/libera a conexão PPP; negocia as opções

Inicia no estado DEAD Opções: compr. máx. do quadro; prot. de autenticação Uma vez estabelecido enlace PPP, IPCP (Control

Protocol, por cima do PPP) começa a configurar endereços IP, etc.