88
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE BIOCIÊNCIAS DEPARTAMENTO DE ECOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA Adição de policloreto de alumínio e remoção de peixes bentívoros como técnicas de restauração de lagos rasos do semiárido brasileiro Fabiana Oliveira de Araújo Silva Orientador: Prof. Dr. José Luiz Attayde, UFRN Co-orientadora: Profa. Dra. Vanessa Becker, UFRN Natal RN 2015

Adição de policloreto de alumínio e remoção de peixes bentívoros

Embed Size (px)

Citation preview

Page 1: Adição de policloreto de alumínio e remoção de peixes bentívoros

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE BIOCIÊNCIAS

DEPARTAMENTO DE ECOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

Adição de policloreto de alumínio e remoção de

peixes bentívoros como técnicas de restauração

de lagos rasos do semiárido brasileiro

Fabiana Oliveira de Araújo Silva

Orientador: Prof. Dr. José Luiz Attayde, UFRN

Co-orientadora: Profa. Dra. Vanessa Becker, UFRN

Natal – RN

2015

Page 2: Adição de policloreto de alumínio e remoção de peixes bentívoros

2

Adição de policloreto de alumínio e remoção de

peixes bentívoros como técnica de restauração de

lagos rasos do semiárido brasileiro

Fabiana Oliveira de Araújo Silva

Tese apresentada ao Programa de Pós-graduação em

Ecologia da Universidade Federal do Rio Grande do

Norte como parte integrante dos requisitos para

obtenção do grau de Doutora em Ecologia.

Orientador: Prof. Dr. José Luiz Attayde

Co-orientadora: Profa. Dra. Vanessa Becker

Natal – RN

2015

Page 3: Adição de policloreto de alumínio e remoção de peixes bentívoros

Catalogação da Publicação na Fonte. UFRN / Biblioteca Setorial do Centro deBiociências

Silva, Fabiana Oliveira de Araújo.Adição de policloreto de alumínio e remoção de peixes bentívoros

como técnicas de restauração de lagos rasos do semiárido brasileiro /Fabiana Oliveira de Araújo Silva. – Natal, RN, 2015.

88 f.: il.

Orientador: Prof. Dr. José Luiz Attayde.Coorientadora: Profa. Dra. Vanessa Becker.

Tese (Doutorado) – Universidade Federal do Rio Grande do Norte.Centro de Biociências. Programa de Pós-Graduação em Ecologia.

1. Biomanipulação. – Tese. 2. Fósforo. – Tese. 3. Restauração. –Tese. I. Attayde, José Luiz. II. Becker, Vanessa. III. Universidade Federaldo Rio Grande do Norte. IV. Título.

RN/UF/BSE-CB CDU 574

Page 4: Adição de policloreto de alumínio e remoção de peixes bentívoros

4

Adição de policloreto de alumínio e remoção de peixes bentívoros como técnica derestauração de lagos rasos do semiárido brasileiro

Fabiana Oliveira de Araújo Silva

Orientadores: Dr. José Luiz Attayde & Dra. Vanessa Becker

Tese apresentada ao Programa de Pós-graduação em Ecologia da Universidade Federaldo Rio Grande do Norte como parte integrante dos requisitos para obtenção do grau deDoutora em Ecologia.

Aprovada por:

________________________Presidente Prof. Dr. José Luiz Attayde, UFRN

________________________Profa. Dra. Vanessa Becker, UFRN

_______________________Prof. Dr. André Megali Amado, UFRN

________________________Profa. Dra. Renata Panosso, UFRN

_______________________Prof. Dr. José Etham de Lucena Barbosa, UEPB

_______________________Prof. Dr. André Luis Calado Araújo, IFRN

Page 5: Adição de policloreto de alumínio e remoção de peixes bentívoros

5

Agradecimentos

Primeiramente gostaria de agradecer ao meu amigo e orientador Coca (Prof. JoséLuiz Attayde) pela oportunidade e aprendizado ao longo dos últimos oito anos.Agradeço imensamente pelo carinho, pela confiança, conselhos, amizade, por tudo!

Agradeço também à Profa. Vanessa Becker, uma amiga e orientadora que tive aoportunidade de conhecer pouco antes de ingressar no doutorado, que sempre meincentivou e acreditou em mim. Obrigada pelo carinho, atenção, cuidado eensinamentos. Sua força e determinação me inspiram.

Agradeço ao Programa de Pós-Graduação em Ecologia, ao Conselho Nacionalde Desenvolvimento Científico e Tecnológico (CNPq) pelo financiamento da pesquisa eà Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelaconcessão de bolsa de doutorado e ao Projeto CAPES-Universidade de Wageningenpela concessão da bolsa de estágio de doutorado no exterior.

Agradeço ao Prof. Miquel Lurling, orientador na Universidade de Wageningen,pelos ensinamentos e oportunidade concedida. Agradeço também ao amigo Frank pelaimensa ajuda e orientação com os experimentos em laboratório, sem esquecer da ajuda edo carinho da Wendy e do John. Muito obrigada!

Agradeço aos amigos brasileiros que fiz na Holanda: Marina, Felipe, Thadeu e,em especial, a Luciana Rangel. A amizade de vocês fez toda a diferença nesse períodoque morei longe da minha família e amigos. Muito obrigada pela companhia, passeios,risadas, conselhos e amizade. Lu, agradeço imensamente a Deus por ter colocado vocêem minha vida num momento tão difícil pra mim. Obrigada pelo seu carinho e amizade!

Muito obrigada aos meus queridos amigos Mariana, Marcolina, Gabi, Pablo eDanyhelton – muito obrigada pela ajuda com os experimentos, com a tese, conselhos,pelo apoio, por sempre me incentivarem, pelas reuniões na universidade ou na mesa dobar... Muito obrigada pela amizade de vocês! A batalha é grande, mas juntos somosmais fortes!

Agradeço também aos amigos do LEA (Laboratório de Ecologia Aquática):Elinez, Rosemberg, Leonardo, Alex, Bárbara, e aos amigos do LARHISA (Laboratóriode Recursos Hídricos e Saneamento Ambiental): Jurandir, Ângela, Aline, Laíssa, pelaajuda nos experimentos ou com a tese, e pela amizade.

Agradeço aos meu queridos amigos (ex)biólogos e afins: Cabeça, Ricardo,Tiego, Pan, Débora, Kívia, Mary, Fernanda e Nara. Muito obrigada pela amizade devocês!

Agradeço a minha querida amiga Esther, um anjo que Deus colocou em minhavida, pela sua amizade, carinho, cuidados, apoio, incentivo, conselhos, por me ouvir ecompartilhar bons momentos. Você é muito especial pra mim! Muito obrigada!

Quero agradecer aos Professores André Megali e Renata Panosso pelascontribuições na qualificação.

Page 6: Adição de policloreto de alumínio e remoção de peixes bentívoros

6

Agradeço também ao Professor Hélio Rodrigues pela parceria em um doscapítulos desta tese. Muito obrigada pelas contribuições e por compartilhar seuconhecimento.

Por fim, gostaria de agradecer a Deus pela minha família, meu alicerce: meuspais Josemar e Fátima, meu irmãos Janaína e Júnior, e ao meu marido Rodrigo. Muitoobrigada pelo amor, por dividir alegrias e pelo apoio nos momentos difíceis. Se chegueiaté aqui, foi graças a vocês! Agradeço também a Rodrigo pelo apoio, companheirismo,dedicação, e por abdicar de muita coisa e me acompanhar no meu estágio no exterior.Foi muito importante ter você ao meu lado durante esse período importante da minhavida.

Page 7: Adição de policloreto de alumínio e remoção de peixes bentívoros

7

Sumário

Resumo ............................................................................................................................. 8

Abstract............................................................................................................................. 9

Introdução....................................................................................................................... 10Dinâmica do Fósforo em Lagos.................................................................................. 11Restauração de Lagos Eutrofizados através de Métodos Físicos ............................... 12Restauração de Lagos Eutrofizados através de Métodos Químicos ........................... 13Restauração de Lagos Eutrofizados através da Biomanipulação ............................... 17O semiárido e a Problemática da Qualidade da Água ................................................ 18Objetivos..................................................................................................................... 20

CAPÍTULO I. Effects of polyaluminium chloride and lanthanum modified bentonite onthe growth rates of three Cylindrospermopsis raciborskii strains.................................. 22

Abstract................................................................................................................... 221. Introduction ........................................................................................................ 232. Materials and methods........................................................................................ 253. Results ................................................................................................................ 284. Discussion........................................................................................................... 295. Conclusions ....................................................................................................... 32References .............................................................................................................. 33

CAPÍTULO II. Shallow lake restoration by the combined effects of polyaluminiumchloride addition and benthivorous fish removal: a field mesocosm experiment. ......... 43

Abstract................................................................................................................... 431. Introduction ........................................................................................................ 442. Material and methods ......................................................................................... 463. Results ................................................................................................................ 474. Discussion........................................................................................................... 48Rerences.................................................................................................................. 49

CAPÍTULO III. The use of polyaluminium chloride as a restoration measure to improvewater quality in tropical shallow lakes ........................................................................... 58

Abstract................................................................................................................... 581. Introduction ........................................................................................................ 592. Material and methods ......................................................................................... 603. Results ................................................................................................................ 624. Discussion........................................................................................................... 63References .............................................................................................................. 65

Considerações Finais ...................................................................................................... 73

Referências ..................................................................................................................... 75

Page 8: Adição de policloreto de alumínio e remoção de peixes bentívoros

8

Resumo

A eutrofização cultural é a causa mais comum de deterioração da qualidade da

água no mundo. Este processo se dá pela entrada excessiva de nutrientes, especialmente

nitrogênio e fósforo, nos corpos aquáticos causando florações de algas e cianobactérias.

Em lagos rasos esses efeitos são mais acentuados devido a uma maior interação do

corpo aquático com o entorno, com o ar e o sedimento. Existem várias técnicas de

restauração de lagos eutrofizados, com uma vasta gama de resultados bem sucedidos,

mas no Brasil há apenas um único caso de restauração bem sucedida: o lago Paranoá em

Brasília. A região semiárida brasileira possui milhares de lagos artificiais,

regionalmente chamados de açudes, em sua maioria rasos e eutróficos. A eutrofização

desses corpos aquáticos é documentada e o fitoplâncton desses ambientes é

frequentemente dominado por cianobactérias potencialmente produtoras de toxinas. O

principal objetivo deste trabalho é testar diferentes técnicas de restauração da qualidade

da água que possam ser facilmente aplicadas em lagos rasos do semiárido brasileiro.

Resultados de um experimento em laboratório sugerem que a aplicação de argila

adsorvente de fósforo associada a um coagulante à base de alumínio é uma técnica

efetiva na remoção do fósforo solúvel reativo e na diminuição da taxa de crescimento da

Cylindrospermopsis raciborskii, cianobactéria potencialmente tóxica que domina nos

reservatórios do semiárido brasileiro; porém esse efeito é dependente da biomassa no

momento da aplicação da técnica. Os resultados de um experimento de campo realizado

em mesocosmos num lago raso eutrofizado demonstraram que a aplicação de

coagulante à base de alumnínio em conjunto com a da remoção de peixes bentívoros é

mais eficiente na remoção de fósforo total e clorofila-a da coluna de água do que a

aplicação isolada de apenas uma dessas técnicas. Por fim, testes de laboratório

demostraram que o coagulante à base de alumínio apresentou um bom desempenho em

remover turbidez e fósforo total em testes de bancada com água de seis reservatórios do

semiárido, sendo a eficiência reduzida com o aumento da biomassa algal e do pH. Os

resultados deste estudo mostram que é possível melhorar a qualidade da água de

reservatórios eutrofizados no semiárido através do controle da carga interna de

nutrientes seja pela precipitação e inativação do fósforo no sedimento, como também

pela inibição da liberação do fósforo no sedimento por peixes bioturbadores, e que os

resultados são aditivos quando as técnicas são aplicadas em conjunto.

Page 9: Adição de policloreto de alumínio e remoção de peixes bentívoros

9

Abstract

Eutrophication is the most common cause of water quality degradation in the

world. This process occurs by excessive nutrients inputs, nitrogen and phosphorus, to

the aquatic systems resulting in algal and cyanobacterial blooms. In shallow lakes these

effects are pronounced due to the higher interaction of the lake with watershed, air and

sediment. There are innumerous restoration techniques of eutrophied lakes with a range

of successful results but there is only one case of successful lake restoration in Brazil:

Paranoá Lake in Brasília city. The Brazilian semiarid region has many artificial lakes,

named açudes, which are mostly eutrophic and shallow lakes. The eutrophication in

these lakes is reported and the phytoplankton community is dominated by potentially

toxic cyanobacteria species, mainly Cylindrospermopsis raciborskii. The aim of this

thesis is to test techniques for water quality management which can be easily applied in

Brazilian semiarid lakes. Results from a laboratory experiment suggest that the addition

of a phosphorus sorbent clay associated with an aluminium based coagulant is an

effective technique in removing soluble reactive phosphorus and reducing C. raciborskii

growth rate – cyanobacteria potentially toxic dominant in reservoirs of Brazilian

semiarid – but this effect is dependent on the biomass in the application moment.

Results from a field experiment in mesocosm in a eutrophied lake showed that the

addition of aluminium based coagulant and removal of benthivorous fish is more

efficient in removing total phosphorus and chlorophyll-a from water column than the

isolated application of one of the techniques. Lastly, laboratory tests showed that

aluminium based coagulant exhibited good performance in removing turbidity and total

phosphorus from water of six reservoirs but the efficiency was reduced by algal biomass

and pH. The results of this study showed that the improvement in water quality of

eutrophied reservoirs in semiarid region is possible through internal loading control by

phosphorus precipitation and inactivation in sediments or inhibition of phosphorus

release by benthivorous fishes, and also that these results show are additives in water

quality improvement.

Page 10: Adição de policloreto de alumínio e remoção de peixes bentívoros

10

IntroduçãoAo longo dos anos, o crescimento da população humana, o consequente

desenvolvimento industrial e a expansão da agricultura, têm gerado uma forte tensão

sobre os ecossistemas de água doce disponíveis no mundo. O uso de fertilizantes pela

agricultura, a produção intensiva de animais e outros usos inadequados da terra têm

alterado os ciclos biogeoquímicos e acelerado a entrada de nutrientes para os sistemas

aquáticos (Vitousek et al., 1997). Além disso, os sistemas aquáticos funcionam como

receptores de água não tratada (esgotos domésticos e industriais) em muitos lugares no

mundo (Carpenter et al., 1998). A eutrofização, processo natural de enriquecimento do

sistema aquático pela entrada de nutrientes, principalmente o nitrogênio (N) e o fósforo

(P), têm sido acelerada pelas atividades antropogênicas, levando à deterioração da

qualidade das águas superficiais. A eutrofização é considerada o problema de qualidade

da água mais importante no mundo (Smith & Schindler, 2009).

Lagos eutrofizados experimentam diversos problemas que inviabilizam o seu

uso múltiplo. O enriquecimento por nitrogênio e fósforo resulta no aumento da

biomassa fitoplanctônica, levando à redução da transparência da água (Smith, 1998). A

decomposição dessa grande quantidade de matéria orgânica resulta em baixos níveis de

oxigênio dissolvido, o que pode levar à morte de peixes. Muitas vezes a eutrofização

está associada ao desenvolvimento de florações de cianobactérias potencialmente

produtoras de toxinas que são nocivas a muitos animais, inclusive ao homem (Chorus &

Bartram, 1999), representando assim uma ameaça aos recursos aquáticos e a saúde

pública (Smith & Schindler, 2009; Paerl et al., 2011). Além disso, essas florações

liberam outras substâncias químicas que causam gosto e odor na água (Chorus &

Bartram, 1999) aumentando assim os custos com o tratamento. A eutrofização resulta

na degradação da qualidade da água e na perda dos serviços que este recurso provém

(Smith, 2003), podendo esta ser a principal causa de escassez de água no mundo (UN-

Water, 2007).

O manejo e a recuperação de corpos aquáticos eutrofizados se apresenta como

urgência frente ao atual quadro de eutrofização no mundo, principalmente onde há

escassez de água. Diante da baixa disponibilidade, da má distribuição no espaço e no

tempo e da crescente demanda frente ao crescimento populacional, se faz necessário o

uso racional deste recurso para que se possa assegurar quantidade, qualidade e acesso a

toda a população. A perda deste recurso, associado à perda dos serviços por ele

Page 11: Adição de policloreto de alumínio e remoção de peixes bentívoros

11

oferecidos (Postel & Carpenter, 1997), tem levado a criação de diversas estratégias de

restauração de lagos eutrofizados ao longo dos últimos anos.

Dinâmica do Fósforo em LagosA principal medida para controle da eutrofização e as consequentes florações de

cianobactérias é a redução da carga externa de nutrientes, principalmente o fósforo, a

níveis que possam limitar a produção primária (Cooke et al., 2005; Carpenter, 2008;

Schindler et al., 2008; Schindler, 2012). As fontes pontuais de poluição, representadas

pelas descargas diretas de efluentes domésticos e industriais, são facilmente controladas

quando comparadas com as fontes difusas (Carpenter et al., 1998). Estas, por sua vez,

referem-se ao escoamento de nutrientes oriundos da agricultura, do pasto e de outros

locais na bacia de drenagem, através da lixiviação do solo e consequente destino final

no corpo aquático, e representam um desafio no que diz respeito ao monitoramento e

redução das cargas. Em muitos casos a redução da entrada externa de nutrientes para os

sistemas aquáticos resultam na redução do estado trófico e produção primária, e

aumento na transparência da água (Marsden, 1989; Jeppesen et al., 2005). No entanto,

muitos lagos rasos apresentam retardo ou falha no processo de restauração após a

redução da entrada externa de nutrientes (Marsden, 1989; Jeppesen et al., 1991; Van der

Molen & Boers, 1994; Søndergaard et al., 2000), fato que tem sido atribuído

principalmente à carga interna de fósforo (Søndergaard et al., 1999, 2003; Cooke et al.,

2005).

Quando o fósforo entra nos lagos, parte é consumida e incorporada nos

organismos e a outra parte é retida no sistema pela sedimentação (Søndergaard et al.,

2001). O fósforo incorporado pelos organismos eventualmente será sedimentado e

depositado no sedimento dos lagos. Com o tempo, a decomposição de matéria orgânica

rica em fósforo leva ao enriquecimento do sedimento. Vários processos químicos e

biológicos resultam na retenção do fósforo neste compartimento do lago. O ferro,

alumínio, cálcio, manganês, partículas de argila e matéria orgânica estão envolvidos na

retenção química e na adsorção do fósforo no sedimento (Søndergaard, 2007). A

capacidade do sedimento em reter o fósforo está diretamente relacionado à presença e

concentração desses compostos, como também das condições químicas, pH e potencial

de oxi-redução, no sedimento (Jensen & Andersen, 1992; Jensen et al., 1992;

Søndergaard et al., 2003; Søndergaard, 2007). O balanço entre o que é retido e o que é

liberado do sedimento representa a carga interna de fósforo para o sistema. Esse balanço

Page 12: Adição de policloreto de alumínio e remoção de peixes bentívoros

12

varia entre lagos e é determinado principalmente pelo histórico do lago, a composição e

a capacidade do sedimento de reter o fósforo (Pettersson, 1998). Lagos que receberam

por muito tempo uma alta carga externa de fósforo possuem sedimentos ricos em

fósforo o que permite sustentar a eutrofização por muito tempo, mesmo quando cessam

as entradas externas, o que explica o atraso na recuperação (Marsden, 1989; Jeppesen et

al., 1991; Van der Molen & Boers, 1994; Søndergaard et al., 2000).

Lagos eutrofizados que experimentam processos de estratificação tem a

liberação de fósforo do sedimento relacionada às condições de anoxia na superfície do

sedimento. Na ausência de oxigênio na interface água-sedimento, o ferro e o alumínio

tornam-se solúveis liberando assim o fosfato. Lagos rasos geralmente são bem

misturados e possuem a coluna de água bem oxigenada, e a liberação de fósforo do

sedimento ocorre em condições aeróbicas (Boström et al., 1988; Jensen & Andersen,

1992; Jeppesen et al., 1997). Neste caso, outros fatores são determinantes na liberação

do fósforo do sedimento: pH, disponibilidade de nitrato, atividade de bactérias,

processos de mineralização, ressuspensão e mistura do sedimento por eventos físicos ou

organismos bioturbadores (Søndergaard et al., 2001; Hupfer & Lewandowski, 2008).

Em lagos rasos, a liberação do P do sedimento é particularmente importante uma vez

que há uma maior interação sedimento-água quando comparados com lagos profundos

(Søndergaard et al., 2003), podendo constituir uma fonte significante deste nutriente e

ainda exceder a carga externa de P (Boers et al., 1998; Søndergaard et al., 1999).

Portanto, na restauração de lagos rasos eutrofizados é extremamente importante levar

em consideração a carga interna de fósforo. Durante as últimas décadas, estratégias

adicionais à redução da carga externa de fósforo vêm sendo desenvolvidas e testadas na

restauração de lagos rasos eutrofizados. Essas estratégias envolvem métodos físicos,

químicos e biológicos, apresentados a seguir.

Restauração de Lagos Eutrofizados através de Métodos FísicosA redução da concentração de nutrientes na água visando a limitação da

produção primária pode ser feita através da diluição ou pelo aumento da taxa de troca

(flushing) de água do lago (Welch, 1981). Em lagos estratificados, a remoção da camada

hipolimnética de água rica em nutrientes e pobre em oxigênio (Nurnberg, 1987a)

representa uma solução, sendo dependente da manutenção da termoclina (Nurnberg,

1987b). Essas técnicas apresentam resultados positivos em muitos casos (Cooke et al.,

2005). Contudo, tais técnicas necessitam de um grande volume de água com baixa

Page 13: Adição de policloreto de alumínio e remoção de peixes bentívoros

13

concentração de nutrientes para que seja possível a diluição ou a troca pela água

eutrofizada, para que o nível da água do lago permaneça relativamente constante. A

adição/remoção de água está associada à entrada de água com baixas concentrações de

nutrientes para a manutenção do nível de água do lago, sendo inviável e de elevado

custo em regiões que apresentam a escassez desse recurso. Além disso, essa técnica

apresenta problemas quanto ao descarte da água de má qualidade (baixas concentrações

de oxigênio e altas concentrações de nutrientes e metais) removida (Kumar, 2008) e

altos custos com o tratamento desta água para uso.

Outra estratégia de restauração envolve a oxigenação mecânica da camada

hipolimnética anóxica, em lagos estratificados, ou a circulação de toda camada de água

(Cooke et al., 2005), o que permite a retenção de fósforo no sedimento (Nurnberg,

1987b) e boas condições para os peixes. Ambas as técnicas tem sido empregadas com

sucesso em muito lagos (Cooke et al., 2005), mas há casos em que o aumento da

concentração de oxigênio não apresentou efeito significante na carga interna de fósforo

(Gächter & Wehrli, 1998).

A remoção do sedimento rico em nutrientes pode ser uma alternativa em lagos

que sofrem com a contínua liberação de fósforo do sedimento. Embora efetiva em

reduzir a liberação de fósforo do sedimento, esta técnica é pouco aplicada por ser cara e

apresentar problemas com a ressuspensão de partículas e matéria orgânica que

promovem aumento da turbidez e depleção de oxigênio, respectivamente (Jeppesen et

al., 2007), remoção de alimento para peixes bentívoros e habitat para organismos

bentônicos, além dos problemas com a disposição adequada para o sedimento removido

(Cooke et al., 2005). Além disso, a nova superfície do sedimento pode apresentar baixa

capacidade de retenção do fósforo (Søndergaard et al., 2007).

Restauração de Lagos Eutrofizados através de Métodos QuímicosOs métodos químicos para a restauração de lagos eutrofizados envolvem a

melhoria ou o aumento da capacidade do sistema em reter fósforo e a diminuição da

carga interna desse nutriente no lago. Este objetivo pode ser alcançado pela precipitação

de fósforo presente na água do lago e inativação do fósforo no sedimento (Cooke et al.,

2005), ou indiretamente através dos processos envolvidos na retenção do fósforo no

sedimento.

A capacidade de retenção do fósforo no sedimento poder ser aumentada pela

adição de nitrato visando o aumento da mineralização da matéria orgânica e a prevenção

Page 14: Adição de policloreto de alumínio e remoção de peixes bentívoros

14

da depleção de oxigênio no sedimento (Foy, 1986; Søndergaard, 2007; Jiang et al.,

2008). Foi observado que adição de nitrato pode inibir a liberação do fósforo de

sedimentos anóxicos e óxicos (Andersen, 1982). Contudo, tais medidas devem ser

consideradas em situações onde a liberação do fósforo do sedimento está associada às

condições de anoxia.

A adição de sais de metais (alumínio e o ferro) e outros compostos (argilas

naturais ou modificadas) adsorventes de fosfato ao lago promovem a precipitação do

fósforo presente na água e a inativação deste no sedimento. Coagulantes à base de ferro

e alumínio são comumente utilizadas no tratamento de água e efluentes (Jiang &

Graham, 1998a) e tem sido utilizada como medida de restauração de lagos eutrofizados

através da precipitação do fósforo (Cooke et al., 2005). Ao serem adicionados à água, o

ferro e alumínio reagem com o fosfato formando precipitados, pelo processo de

coagulação e floculação, que então são removidos da coluna de água pelo processo de

sedimentação. Além da remoção do fósforo dissolvido, a coagulação/floculação pelo

ferro e alumínio remove a matéria orgânica e inorgânica (Jiang et al., 1993; Jiang &

Graham, 1998b; Drikas et al., 2001; Hullebusch et al., 2002), e reduzem a concentração

de fósforo total presente nas partículas suspensas após a sedimentação dos flocos

(Reitzel et al., 2003; Auvray et al., 2006).

Coagulantes à base de ferro (sulfato férrico [Fe2(SO4)3] ou cloreto férrico

[FeCl3]) tem sido utilizado para a remoção de fósforo (Yamada et al., 1986; Deppe &

Benndorf, 2002) ou para a remoção da biomassa de cianobactérias (Chow et al., 1998)

pela precipitação dos flocos formados. Para a inativação do fósforo sedimentado, o

sedimento precisa manter-se oxidado para evitar a redução do ferro e a consequente

liberação do fósforo (Nurnberg, 1994).

Coagulantes à base de alumínio apresentam vantagem sobre os coagulantes à

base de ferro, pois a efetividade não é dependente das condições redox. Em virtude

disso, o alumínio tem sido amplamente usado na restauração de lagos (Cooke et al.,

2005). Dentre os coagulantes à base de alumínio, o sulfato de alumínio (Al2(SO4)3) é o

mais comumente utilizado e sua efetividade em remover fósforo tem sido reportada

baseada em experimentos em laboratório e em aplicações em lago inteiro (Welch &

Schrieve, 1994; Hullebusch et al., 2002; Lewandowski et al., 2003; Reitzel et al., 2003,

2005).

Quando o sulfato de alumínio e outros coagulantes são adicionados à água, uma

série de reações químicas ocorre levando a liberação de íons de hidrogênio e,

Page 15: Adição de policloreto de alumínio e remoção de peixes bentívoros

15

consequentemente, ao declínio do pH da água. Em baixos valores de pH, o alumínio

apresenta toxicidade a peixes (Baker & Schofield, 1982; Poléo et al., 1997),

macroinvertebrados (Havens, 1993) e anfíbios (Freda, 1991), o que limita a quantidade

de coagulante que pode ser adicionada. Baseado nisso, a dose de alumínio a ser aplicada

no lago pode ser determinada levando em consideração a alcalinidade da água (Cooke et

al., 2005), ou seja, quanto pode ser adicionado sem que se atinja o pH onde o alumínio

apresenta toxicidade. Contudo, essa abordagem não leva em consideração o pool de

fósforo no sedimento que poderá ser mobilizado e fazer parte da carga interna. Em lagos

com baixa ou moderada alcalinidade, este problema pode ser resolvido adicionando-se

um tampão (hidróxido de sódio, hidróxido de cálcio ou carbonato de sódio) durante a

aplicação do coagulante.

A fim de solucionar problemas com a acidificação da água após a aplicação de

coagulantes à base de alumínio, compostos pré-hidrolizados foram desenvolvidos, como

o policloreto de alumínio (PAC). Coagulantes pré-hidrolizados são feitos a partir da

hidrólise parcial do ácido em condições controladas, o que permite o não consumo de

hidroxilas (OH-), não reduzindo o pH da água após a aplicação. O policloreto de

alumínio tem recebido atenção especial por possuir uma desempenho de coagulação

superior devido a sua atuação em um amplo espectro de pH, menor sensitividade a

baixas temperaturas, necessidade de menor dose e menores concentrações de alumínio

residual (Jiang & Graham, 1998b), e vem sendo usado como uma alternativa para o

sulfato de alumínio. Estudos em laboratório e em lagos tem mostrado o desempenho do

PAC em remover fósforo e turbidez da água (Reitzel et al., 2003, 2005; Gao et al.,

2005; Lopata & Gawrońska, 2008; Chen & Luan, 2010; Julio et al., 2010; Yang et al.,

2010; Egemose et al., 2011; Jancula & Maršálek, 2012). Contudo, uma vez que

coagulação/floculação é diretamente afetada pela presença de partículas e matéria

orgânica dissolvida presentes na água (Edzwald, 1993) e também pela química da água

– pH e alcalinidade (Pernitsky & Edzwald, 2006), a performance do PAC pode

depender da turbidez e do estado trófico da água, variando de acordo com as

características da água.

Compostos naturais ou modificados como argilas capazes de adsorver e

precipitar o fósforo tem ganhado interesse nos últimos anos (Spears et al., 2013), dentre

os quais se destacam as argilas naturais ou enriquecidas com alumínio (Gibbs &

Özkundakci, 2010), ferro (Zamparas et al., 2012, 2013) e lantânio (Douglas, 2002).

Esses compostos são capazes de se ligar ao fósforo presente na água, bloqueando a

Page 16: Adição de policloreto de alumínio e remoção de peixes bentívoros

16

liberação do fósforo presente no sedimento para a água após a precipitação. O objetivo é

cobrir o sedimento e atuar como uma barreira química ativa (Jacobs & Förstner, 1999)

que inibe a liberação de fósforo do sedimento. As argilas apresentam vantagem na

aplicação em lagos, pois não levam a acidificação da água, não necessitando do uso de

tampões em lagos com baixa alcalinidade. Além disso, tem sido relatada a eficiência de

argilas na remoção por sedimentação de florações cianobactérias potencialmente

produtoras de toxinas (Pan et al., 2006a, 2006b; Verspagen et al., 2006).

Dentre esses compostos, a argila bentonita modificada com adição de lântanio

(Phoslock®) se destaca por ser bem testada com sucesso em lagos para controle do

fósforo e florações (Spears et al., 2013). O lantânio adicionado a bentonita possui uma

extrema afinidade ao fosfato dissolvido na água (Johannesson & Lyons, 1994; Liu &

Byrne, 1997) e tem sido considerado um método promissor para mitigar a eutrofização

em lagos onde a maior parte do fósforo se encontra em sua forma dissolvida (e.g.

Douglas et al., 1999; 2004; Robb et al., 2003; Ross et al., 2008; Haghseresht et al.,

2009, van Oosterhout and Lurling 2013).

Em lagos eutrofizados com elevada biomassa de algas, boa parte do fósforo

encontra-se presente nos organismos, principalmente na biomassa fitoplanctônica.

Cianobactérias como a Cylindrospermopsis raciborskii, por exemplo, possuem uma alta

capacidade de estocar fósforo (Padisák, 1997), podendo ser uma importante fonte deste

nutriente para o sistema. Esse fósforo pode então ser removido através de coagulação-

floculação. Em seguida, argilas adsorventes de fósforo podem ser aplicadas para

auxiliar no processo de sedimentação, aumentando o peso dos flocos, e capturando o

fósforo dissolvido da água. Ao atingir o fundo do lago, a argila cobre todo o sedimento

e a matéria sedimentada pelo coagulante. A combinação desses compostos tem sido

bem testada apresentando resultados positivos (Sengco & Anderson, 2004; Beaulieu et

al., 2005; Hagström & Granéli, 2005; Sengco et al., 2005; Pan et al., 2006a, 2006b,

2012; Zou et al., 2006; Wang et al., 2012) e recentemente denominada de técnica ‘Flock

and Lock’ (Lürling & van Oosterhout, 2013).

Embora a técnica ‘Flock and Lock’ pareça ser promissora em remover fosfato e

controlar florações de cianobactérias, não existem informações sobre a eficácia deste

método em controlar florações de C. raciborskii. Esta cianobactéria contêm vesículas de

gás o que permite o acúmulo dos organismos na superfície da água (Walsby, 1994),

como estratégia para evitar a sedimentação. Outro ponto desconhecido é se a eficácia do

método em reduzir o crescimento é afetado pela quantidade de biomassa presente no

Page 17: Adição de policloreto de alumínio e remoção de peixes bentívoros

17

momento da aplicação da técnica. Tem sido sugerido que a concentração celular afeta a

eficiência de remoção pelo complexo coagulante-argila uma vez que o aumento na

quantidade de partículas no sistema aumenta a taxa de floculação (Hagström & Granéli,

2005; Sengco et al., 2005).

Restauração de Lagos Eutrofizados através da BiomanipulaçãoA biomanipulação de peixes é uma técnica bastante utilizada na recuperação de

lagos eutrofizados (Meijer et al., 1994; Perrow et al., 1997; Hansson et al., 1998;

Drenner and Hambright, 1999; Meijer et al., 1999; Mehner et al., 2002; Jeppensen et al.,

2007; Jeppensen et al., 2012). O objetivo desta técnica é a redução da biomassa algal e o

aumento da transparência da água do lago. Peixes planctívoros diminuem a abundância

do zooplâncton de maior porte devido a predação sobre esses organismos, o que resulta

no aumento da biomassa de fitoplâncton (Carpenter et al., 1985). Logo, a redução da

biomassa de peixes planctívoros, através da remoção seletiva dessas espécies ou pela

introdução de espécies piscívoras, se apresenta como estratégia de restauração.

Contudo, esta teoria não aplica a lagos e reservatórios tropicais como nas regiões

temperadas devido a diferenças nas interações biológicas (Jeppesen et al., 2007). Lagos

tropicais apresentam mais onivoria (Lazzaro, 1997), com peixes pequenos e de

reprodução contínua ao longo do ano e uma comunidade zooplanctônica geralmente

dominada por organismos de pequeno tamanho (Fernando, 1994), o que dificulta a

manipulação da estrutura da teia trófica.

Peixes bentívoros, por sua vez, ressuspendem o sedimento durante a

alimentação, aumentando a turbidez da água e translocando o fósforo depositado no

sedimento para a coluna de água, aumentando assim a biomassa fitoplanctônica

(Andersson et al., 1978; Meijer et al., 1990; Breukelaar et al., 1994; Cline et al., 1994;

Lougheed et al., 1998; Schaus & Vanni, 2000; Volta et al., 2013). Dessa forma, esses

peixes afetam a qualidade da água através de mecanismos ascendentes na teia trófica,

desempenhando um papel importante em lagos rasos. No semiárido brasileiro, a

comunidade de peixes é composta por espécies de peixes nativas e introduzidas (Gurgel

& Fernando, 1994), sendo a Prochilodus brevis uma espécie bentívora, nativa e

abundante nos reservatórios nessa região (Chellappa et al., 2009; Nascimento et al.,

2014). Experimentos em escala de mesocosmo em um reservatório raso no semiárido

mostraram uma redução na concentração de fósforo total e clorofila-a na água

Page 18: Adição de policloreto de alumínio e remoção de peixes bentívoros

18

associados com a remoção de curimatã (P. brevis), ressaltando a importância dessa

espécie em manter a eutrofização nesses ambientes (Dantas, 2015).

O semiárido e a Problemática da Qualidade da ÁguaOs açudes do semiárido brasileiro são lagos rasos artificiais construídos para o

armazenamento de água para abastecimento público, como alternativa para solução de

problemas com a escassez deste recurso na região e estima-se a existência de 70.000

açudes de mais de 1.000 m² nesta região (Molle, 1994). Devido à escassez de água, os

reservatórios no semiárido apresentam vazões reduzidas e consequentemente um

elevado tempo de retenção da água, além de um balanço hídrico negativo durante a

maior parte do ano devido às altas taxas de evapotranspiração, contribuindo assim, para

o acúmulo e concentração de sais e nutrientes, tornando esses ambientes mais

vulneráveis à eutrofização (Barbosa et al., 2012). As previsões para os próximos anos

apontam o agravamento dos períodos secos (Marengo et al., 2009; Roland et al., 2012).

Muitos desses reservatórios recebem ainda uma elevada carga externa de nutrientes em

função da alta susceptibilidade dos solos à erosão, da falta de saneamento básico e de

padrões inadequados de uso e ocupação do solo. Como consequência, muito deles

sofrem com a eutrofização e as persistentes florações de cianobactérias, sendo a

Cylindrospermopsis raciborskii uma espécie importante nas florações do semiárido

brasileiro (Bouvy et al., 1999; Lazzaro et al., 2003; da Costa et al., 2006; Sant’Anna et

al., 2006; Panosso et al., 2007; Costa et al., 2009; Soares et al., 2013). A cianobactéria

C. raciborskii tem recebido uma atenção especial devido a sua potencial toxicidade e a

problemáticas florações de alta densidade em lagos e reservatórios tropicais (Bouvy et

al., 2000; McGregor & Fabbro, 2000; Soares et al., 2013). O seu sucesso tem sido

atribuído principalmente a sua capacidade de captar e estocar fósforo (Padisák, 1997;

Isvánovics et al., 2000; Posselt et al., 2009), representando assim uma importante fonte

deste nutriente para o sistema. Além disso, esta cianobactéria filamentosa possui a

habilidade de regular sua posição na coluna de água através de vacúolos de gás

(Walsby, 1994), oferecendo assim vantagens sobre as outras espécies (Reynolds et al.,

1987; Dokulil & Teubner, 2000; Burford & Davis, 2011).

A redução da entrada externa de nutrientes é, sem dúvida, de extrema

necessidade e importância na restauração de lagos eutrofizados. Contudo, em regiões

semiáridas, com nenhuma ou pouca influência de fontes pontuais de poluição, a entrada

nutrientes para o corpo aquático está relacionada ao uso e ocupação do solo na bacia de

Page 19: Adição de policloreto de alumínio e remoção de peixes bentívoros

19

drenagem. A principal fonte de nutrientes relatada para sete reservatórios inseridos em

diferentes bacias hidrográficas no semiárido potiguar é a pecuária, seguido de

agricultura (Vasconcelos, 2011). Logo, o controle da entrada de nutrientes envolve uma

complexidade de medidas sociais e econômicas que muitas vezes podem ser

consideradas inexequíveis, como por exemplo, a redução da criação de animais no

entorno dos reservatórios. Portanto, esforços devem ser voltados para estratégias de

restauração in situ.

No Brasil, um único caso de restauração de lago é reportado para o Lago

Paranoá, em Brasília/DF, onde uma massiva mortandade natural de peixes levou a

redução da biomassa fitoplanctônica e a melhoria da transparência da água (Starling et

al., 2002). As diferenças entre lagos temperados e tropicais dificultam a aplicação em

lagos tropicais de métodos de restauração que apresentam resultados positivos em lagos

temperados. Em lagos tropicais o aporte interno de nutrientes parece ser mais

importante do que em lagos temperados, onde a carga interna é relevante apenas durante

alguns meses do ano (verão) (Søndergaard et al., 2013). Além disso, a entrada difusa de

nutrientes para os lagos tropicais representa uma menor contribuição em regiões que

sofrem com a escassez de chuvas. Logo, o manejo da carga interna de nutrientes e o

controle ascendente da produção primária deve ser o foco da restauração de lagos rasos

eutrofizados em regiões tropicais (Jeppesen et al., 2007; Beklioglu et al., 2011). Diante

disto, este estudo preenche a lacuna existente sobre a eficiência de métodos de controle

da carga interna de nutrientes e de florações de cianobactérias no semiárido brasileiro.

Tem sido relatada a eficiência de argilas na remoção por sedimentação de florações de

Microcystis (Pan et al., 2006a, 2006b), e que a cepa pode afetar a eficiência da

coagulação (Verspagen et al., 2006). O caráter inovador deste trabalho se dá pela

investigação da eficiência de coagulantes e argilas em remover florações de C.

raciborskii, cianobactéria dominante na região em questão. A sedimentação de

filamentos de C. raciborskii pode ser afetada pela presença de vacúolos de gás e, até o

momento, não se sabe se a eficácia da técnica em reduzir o crescimento de C.

raciborskii é afetada pela cepa ou pela biomassa de algas no lago momento da

aplicação.

Embora a eficiência da biomanipulação e da aplicação de compostos adsorventes

de fósforo como técnica de restauração em regiões temperadas seja bem documentada,

os efeitos de ambas as técnicas combinadas se restringe a um único caso na literatura

(Jeppesen et al., 2012). Devido ao acesso ao sedimento para a alimentação, peixes

Page 20: Adição de policloreto de alumínio e remoção de peixes bentívoros

20

bentívoros podem dificultar a consolidação do sedimento (Scheffer et al., 2003) e

reduzir a efetividade da cobertura do sedimento com compostos que adsorvem o fósforo

(Lewandowski et al., 2003). Como consequência, o fósforo ligado a estes compostos

pode retornar a coluna de água e tornar-se disponível para o fitoplâncton (Jeppesen et

al., 2007). Em lagos em que o sedimento representa uma importante fonte de fósforo e

que a comunidade de peixes é dominada por espécies que possuem o hábito de

ressuspender o sedimento, contribuindo assim para aumentar a carga interna de fósforo,

verifica-se a necessidade de se investigar a combinação de técnicas de biomanipulação e

remoção de fósforo.

ObjetivosDiante deste contexto, o objetivo geral desta tese é testar diferentes técnicas de

restauração da qualidade da água que possam ser facilmente aplicadas nos açudes do

semiárido brasileiro, visando à recuperação desses corpos aquáticos em uma região que

sofre com a escassez de água de boa qualidade.

No primeiro capítulo dessa tese, objetivou-se avaliar o efeito da técnica “Flock

and Lock” na sedimentação e crescimento da cianobactéria C. raciborskii, em testes de

laboratório. Neste capítulo foi testada a hipótese de que a combinação do floculante

policloreto de alumínio (PAC) e da argila bentonita modificada com lantânio (LMB) irá

sedimentar efetivamente a C. raciborskii em tubos testes, independente da cepa

utilizada. Em seguida, foi testada a hipótese que a combinação de uma baixa dose de

PAC com a dose recomendada pelo fabricante de LMB irá inibir o crescimento da C.

raciborskii independente da biomassa e da cepa.

A partir dos resultados do capítulo um, objetivou-se aplicar esta técnica em um

lago raso eutrófico inserido na região semiárida brasileira, em escala de mesocosmos.

Contudo, em testes pilotos de bancada utilizando a água do lago, observou-se que a

eficiência do uso do coagulante sozinho em remover fosfato da água foi a mesma se

aplicado em conjunto com a argila adsorvente de fósforo. Além disso, experimentos

realizados neste mesmo lago mostraram que a ressuspensão do sedimento feita pelo

peixe bentívoro dominante, curimatã (Prochilodus brevis), aumenta a concentração de

nutrientes, estimula a produção primária, e reduz a transparência da água neste lago

(Dantas, 2015). Portanto, o objetivo do segundo capítulo desta tese foi então testar os

efeitos isolados e combinados da adição do coagulante policloreto de alumínio e da

Page 21: Adição de policloreto de alumínio e remoção de peixes bentívoros

21

remoção de peixe bentívoro sobre a qualidade da água de um lago raso tropical em

escala de mesocosmo.

Diante dos resultados da eficiência do uso do coagulante policloreto de alumínio

em mesocosmos (capítulo dois), foi testado o desempenho deste coagulante em remover

fósforo e turbidez na água de seis reservatórios do semiárido brasileiro através de testes

em laboratório. Sabendo que a coagulação pelo PAC é afetada pela presença de

partículas na água, além do pH e alcalinidade, o objetivo do último capítulo desta tese

foi avaliar a eficiência do policloreto de alumínio em melhorar a qualidade da água de

diferentes reservatórios no semiárido brasileiro.

Page 22: Adição de policloreto de alumínio e remoção de peixes bentívoros

22

CAPÍTULO I. Effects of polyaluminium chloride and

lanthanum modified bentonite on the growth rates of three

Cylindrospermopsis raciborskii strains.

Araújo, F.a, van Oosterhout, F.b, Becker, V.c, Attayde, J. L.d, Lürling, M.b,f

a Programa de Pós-Graduação em Ecologia. Universidade Federal do Rio Grande do Norte, 59078970

Natal, RN, Brazil.b Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences,

Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands.c Laboratório de Recursos Hídricos e Saneamento Ambiental, Departamento de Engenharia Civil, Centro

de Tecnologia. Universidade Federal do Rio Grande do Norte, 59078970 Natal, RN, Brazil.d Departamento de Ecologia, Centro de Biociências. Universidade Federal do Rio Grande do Norte,

59078970 Natal, RN, Brazil.f Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB

Wageningen, The Netherlands.

Abstract

In tropical and subtropical lakes, eutrophication often leads to nuisance blooms

of the filamentous cyanobacteria Cylindrospermopsis raciborskii. In this study, we

tested the combined effects of the coagulant polyaluminium chloride (PAC) and the

lanthanum modified bentonite (LMB, Phoslock®) on the sinking and growth rates of

three C. raciborskii strains in laboratory experiments. We tested the hypothesis that the

combination of PAC and LMB would (1) effectively sink C. raciborskii in a test tube

experiment and (2) impair C. raciborskii growth irrespective of the inoculum (bloom)

biomass and the strain in a 5 days growth experiment. For the test tube experiment the

strains were incubated at the biomass of 100 µg L-1 and the isolated and combined

addition of 1 mg L-1 PAC and 0.1g L-1 LMB for 20-24h. In the growth experiment each

one of the strains were incubated at four different initial biomass (40 µg L-1, 80 µg L-1,

180 µg L-1 and 380 µg L-1) in WC culture medium with and without addition of 1 mg L-

1 PAC and LMB. LMB was applied at one (LMB1) and three (LMB3) times the

recommended dose. Results show that the combined addition of PAC and LMB

enhanced sedimentation of all C. raciborskii strains. Moreover PAC and LMB1 reduced

the growth rate of all three strains but the efficacy was dependent on the biomass and

strain. The combined addition of PAC and LMB3 inhibited the growth of all three

Page 23: Adição de policloreto de alumínio e remoção de peixes bentívoros

23

strains independently of the biomass and strain. We conclude that the addition of a low

dose of PAC in combination with the recommended dose of LMB reduces C.

raciborskii blooms and that the efficiency of the technique is dependent on the bloom

biomass and intraspecific composition. Finally, a higher dose of LMB is needed to have

a more efficient control of C. raciborskii blooms.

Keywords: cyanobacteria; bloom control; Phosphorus removal; coagulant; Phoslock®.

1. Introduction

Eutrophication of lakes and reservoirs often leads to blooms of cyanobacteria

and is considered the most important water quality problem worldwide (Smith and

Schindler, 2009; Paerl et al., 2011). Due to its potential toxicity, cyanobacteria blooms

and associated surface scums render water from eutrophic freshwater ecosystems unfit

for human use (Chorus and Bartram, 1999). The filamentous cyanobacteria

Cylindrospermopsis raciborskii has received great attention because of its potential

toxicity and problematic high densities in many eutrophic warm-water lakes and

reservoirs (Bouvy et al. 2000; McGregor and Fabbro, 2000; Soares et al., 2013). The

success of C. raciborskii has been attributed to its high uptake and storage capacity of

phosphorus (Padisák, 1997, Isvánovics et al., 2000; Posselt et al., 2009; Wu et al., 2009)

among others factors. Many reservoirs in Brazil used for water supply suffer persistent

blooms of C. raciborskii (Bouvy et al., 1999, 2003; Costa et al., 2006, 2009; Panosso et

al., 2007; Soares et al., 2013). Such blooms pose a health risk to both human and life

stock for which mitigating methods are highly wanted.

Eutrophication control, hence mitigation of cyanobacteria blooms, primarily

focuses on phosphorus (P) control (Schindler et al., 2008). The reduction of the external

P loading is a prerequisite for water quality improvement (Cooke et al., 2005; Hilt et al.,

2006). However, lakes often show little signs of recovery in response to the reduction

of external P load, which is attributed to internal P loading from the P-rich sediments.

(Søndergaard et al., 1999, 2001; Cooke et al., 2005). Not dealing with this legacy P is

one of the causes of failing mitigation attempts (Gulati and van Donk, 2002).

Therefore, additional actions are often needed to reduce this internal P loading and to

accelerate lake recovery (Cooke et al., 2005; Hilt et al., 2006). Internal P-loading can be

Page 24: Adição de policloreto de alumínio e remoção de peixes bentívoros

24

reduced by removal of P rich sediments - dredging (Peterson, 1982), or by applying a P-

fixative as an in-lake treatment which is often a far cheaper option than dredging

(Cooke et al., 2005; Welch and Cooke, 2005). Aluminium-, calcium- and iron salts have

long been applied as P-fixative in lakes (Cooke et al., 2005). Recently, solid phase P

sorbents (SPB) have gained interest (Spears et al., 2013), among which are modified

clays – i.e. clays enriched with Aluminium (Gibbs et al., 2011), iron (Zamparas et al.,

2012) and lanthanum (Douglas, 2002). Among these SPB, the lanthanum modified

bentonite (LMB; Phoslock®) is the most widely used and tested (Spears et al., 2013).

The LMB is reported to remove dissolved P from the water column and block P release

from the sediment after settling onto the lake bottom (Spears et al., 2013). The LMB

contains 5% lanthanum (Haghseresht, 2005) and has extreme affinity to bind P

(Johanneson and Lyons, 1994; Liu and Byrne, 1997). Thus, whole-lake application of

the LMB is considered a promising method to mitigate eutrophication (e.g. Douglas et

al., 1999; 2004; Robb et al., 2003; Ross et al., 2008; Haghseresht et al., 2009, van

Oosterhout and Lurling 2013).

Because the LMB only targets phosphates, it does not directly affect the

phosphorus present in biota. As cyanobacteria such as C. raciborskii have a high P

uptake and storage capacity (Padisák, 1997), a bloom may prevail after the application

of the LMB. Lurling and Van Oosterhout (2013) combined the LMB with a low dose of

flocculent (polyaluminium chloride, PAC) to instantaneously achieve a durable

mitigation of persistent blooms of cyanobacteria in a Dutch lake. This ‘Flock and Lock’

treatment removes total P from the water column through flocculation, using the LMB

as both sinking weight and sediment capping P fixative (Lurling and Van Oosterhout,

2013). Cyanobacteria contain gas vesicles which provide positive buoyancy allowing

them to accumulate at the water surface (Walsby, 1994). Therefore, the added sinking

weight is quite essential as with a low dose of flocculent to effectively sink buoyancy

controlled cyanobacteria. The ‘Flock and Lock’ method yielded good flocculation and

sinking of cyanobacteria in a short term (2 hours) laboratory experiment and a whole

lake application in a 15 m deep lake (Lurling and Van Oosterhout, 2013). Although the

‘Flock and Lock’ technique seems promising in removing and controlling cyanobacteria

through P limitation there is no report on the efficacy of this method to control C.

raciborskii blooms. It has been suggested that cell concentration seems to affect the

removal efficiency by clay-flocculant once the increasing of particles in the system

increases flocculation rates (Hagstrom ang Granéli, 2005; Sengco et al., 2005).

Page 25: Adição de policloreto de alumínio e remoção de peixes bentívoros

25

However, it is unknown if the efficacy of the method to reduce growth is affected by the

amount of cyanobacterial biomass present at the moment of application. Here, we first

tested the hypothesis that the combination of PAC and LMB would effectively sink the

positive buoyant C. raciborskii to the bottom of test tubes regardless of the strain used.

We then tested the hypothesis that the combination of a low PAC dose and the

recommended LMB dose by Phoslock manufacturer would impair C. raciborskii growth

irrespective of the inoculum (bloom) biomass and the strain in a 5 days growth

experiment.

2. Materials and methods

2.1 Chemicals

The flocculent PAC (polyaluminium chloride, with the general formula

Aln(OH)mCl3n-m; Ekofix) was provided by Sachtleben Wasserchemie GmbH (Germany).

The lanthanum-modified bentonite (LMB) - Phoslock (5% La) was supplied by

Phoslock Europe GmbH (Ottersberg, Germany).

The manufacturers recommend a LMB dose of LMB (g): P (g) =100: 1. In the

growth experiment described below, the LMB is applied at one (LMB1) and three

(LMB3) times the recommended dose – as based on the filterable reactive phosphorus

(FRP) concentrations measured at the start of each experiment.

2.2 Organisms

Three clonal non-axenic strains of the cyanobacterium Cylindrospermopsis

raciborskii (Woloszynska) Seenaya and Subba Raju were used. Two originated from a

temperate area and one from the tropics. The German C. raciborskii strain G75 was

provided by Dr. Jutta Fastner (Federal Environmental Agency, Berlin, Germany). The

French (PMC 124.12) strain was obtained from the Museum National d’Histoire

Naturelle (Paris, France). The Brazilian strain CYRF1 was obtained from the

Laboratório de Ecofisiologia e Toxicologia de Cianobactérias, Federal University of Rio

de Janeiro (Brazil).

Page 26: Adição de policloreto de alumínio e remoção de peixes bentívoros

26

The strains were cultured in slightly modified WC medium (Lürling and

Beekman, 1999), in an incubator at 27°C, under constant orbital shaking of 60 rpm and

a photoperiod of 14:10 h light:dark. Day-night transitions were simulated through

gradual increase (or decrease) of the light intensity from complete darkness up to an

approximate 130 µmol photons m-2 s-1. Stock cultures were transferred to fresh sterile

medium every three-four weeks.

2.3 Sinking experiment

The experiment was done according to a complete 2 x 2 factorial design with PAC

and LMB concentrations as factors and 3 replicates per cell. Factor PAC had two levels:

no addition (control) and addition of 1 mg Al l-1. Factor LMB had two levels: no

addition (control) and addition of 0.1 g l-1 LMB. Aliquots of stock cultures of each C.

raciborskii strain were diluted in freshly prepared WC medium. This dilution aimed at

an approximate 100 µg L-1 chlorophyll-a per strain. From each of the diluted C.

raciborskii suspensions, 125 mL aliquots were distributed over 18 glass tubes. PAC was

first added in a solution to achieve the final concentrations of 1 mg Al l-1 in treatments

with PAC and then the suspensions were mixed. After this, the LMB was added by

making slurry with 5 mL water from the tube, which was then sprayed on the top of the

tube using a pipette. All tubes were incubated at room temperature (around 20° C) and

no shaking during one day (24h for CYRF and 20h for G75 and PMC124.12).

As C. raciborskii is a buoyancy controlled cyanobacteria, this experiment may

result in accumulation (e.g. scum formation) in the top of the tubes rather than in their

bottom as a result of sinking. Hence, at the end of the incubation periods chlorophyll-a

(CHL-a) concentrations and turbidity were measured in the top 10 mL and in the

bottom 10 mL samples from each tube. CHL-a was measured with the PHYTO-PAM

phytoplankton analyzer and the turbidity was determined using a Hach 2100P turbidity

meter.

2.4 Growth experiment

A five days growth experiment was done for each strain using a 4 x 3 factorial

design where 4 initial biomasses were combined with 3 “Flock and Lock” treatments

with 3 replicates per cell. The factor ‘initial biomass’ simulated different bloom

Page 27: Adição de policloreto de alumínio e remoção de peixes bentívoros

27

conditions measured as the CHL-a concentrations (µg L-1) at the beginning of the

experiment – this factor had levels CHL-a: B1 ≈ 40 µg L-1, B2 ≈ 80 µg L -1, B3 ≈ 180 µg

L-1, and B4 ≈ 380 µg L-1. Samples were taken from each diluted cultures to assess the

FRP concentration in the medium and to determine the quantity of LMB to be applied.

The levels of the factor ‘treatment’ were: control (no addition), combined addition of 1

mg L-1 PAC and 100g LMB: 1g FRP (LMB1) and combined addition of 1 mg L-1 PAC

and 300g LMB: 1g FRP (LMB3). Initial biomasses were achieved through appropriate

dilution of the stock cultures using WC medium. When applying the treatments, each

experimental unit first received the PAC in order to achieve the final concentration of 1

mg Al L-1. Then to improve flock formation, the pH was adjusted to 6.5 (±0.2) using

Hydrochloric acid (HCl 0.01N) or Sodium hydroxide (NaOH 0.01N) after the

experimental units were mixed. Finally the LMB was added by making slurry with 5

mL water from the experimental units and the experimental units were mixed again. The

experiments were done in 100 mL erlenmeyers with 100 mL of the diluted

cyanobacteria cultures. The incubation was done under the same conditions described

for the stock cultures used in the experiment.

To quantify the FRP depletion, samples were collected just before and 5 days

after the application of PAC and LMB. Filtered samples were analyzed for their FRP

concentration (Murphy and Riley, 1962) in an auto-analyzer (SKALAR SA40). The

FRP removal (%FRP) was calculated as the percentage of initial FRP removed by the

formula % FRP = 100 x ((P0 – Pt)/ P0 ), where Pt and P0 are the FRP concentration at the

end and at the start of the experiment respectively. Growth was assessed by daily CHL-

a measurement. The growth rate µ (d-1) was computed by the formula µ = (lnBt –

lnB0)/t, where Bt and B0 are the biomass at the end and at the start of the experiment

respectively, while t is the duration of the experiment (5 days). Growth rate was

estimated only for the control and LMB1 dose where the strains showed an exponential

growth. In view of it, we compare the effect of LMB3 dose in reducing biomass with

the LMB1 dose by calculating the percentage of biomass (%) reduced by treatment in

relation to control by the formula % B = 100 x ((BC – BT)/BC), where BC and BT are the

biomass concentration at the control and treatment respectively.

Page 28: Adição de policloreto de alumínio e remoção de peixes bentívoros

28

2.5 Statistics

To evaluate the isolated and combined effects of PAC and LMB on CHL-a

concentration and turbidity in the first experiment we performed a two-way ANOVA.

Likewise, we used a two-way ANOVA to evaluate the isolated and combined effects of

biomass and ‘Flock and Lock’ treatments on FRP concentration and C. raciborskii

biomass and growth rates in the second experiment. The Tukey post-hoc test was

performed when ANOVA showed significant effects of the ‘Flock and Lock’ treatments

in the second experiment. The tests were done for each strain separately.

3. Results

3.1 Sinking experiment

Before applying the treatments the mean CHL-a concentration in the tubes was

85.26 µg L-1 (± 1.01) for Brazilian strain, 102.70 µg L-1 (± 1.09) for French strain and

112.69 µg L-1 (± 0.53) for German strain, and the mean turbidity in the tubes was 31.23

NTU (± 1.56) for Brazilian strain, 34.67 NTU (± 1.76) for French strain and 4.90 NTU

(± 0.44) for German strain. After the incubation period the LMB treatment did not

reduced CHL-a concentration of the top samples (Figure 1 a-c). The PAC treatment

caused a substantial increase in CHL-a of the top samples of the Brazilian and French

strains (Figure 1 a-b) while a minor increase was observed for German strain (Figure

1c). When added in concert, PAC and LMB caused a reduction in CHL-a concentration

in the top samples and a marked increase in CHL-a concentration of the bottom samples

(Figure 1 a-c). A similar pattern was observed for turbidity. The combined addition of

PAC and LMB resulted in a decreased turbidity at the top samples and an increase in

turbidity at the bottom samples (Figure 1 d-f). However, the observed increase in

turbidity of the bottom samples occurred when LMB were added either in isolation or in

combination with PAC. The two-way ANOVA results showed a significant interaction

between LMB and PAC effects in increasing CHL-a in the bottom samples and

decreasing the turbidity in the top samples of all strains (Figure 1).

Page 29: Adição de policloreto de alumínio e remoção de peixes bentívoros

29

3.2 Growth experiment

During the experiment, we observed a reduction of 16-74% the initial FRP

concentrations in the control treatment and a reduction of more than 90% the initial FRP

concentrations in the two flock and lock treatments (Figure 2). The two-way ANOVA

results showed that PAC + LMB addition had significant effect on FRP reduction

(Table 1) and that this effect does not depend on C. raciborskii biomass. The growth

curves revealed an exponential growth of C. raciborskii in the control and LMB1

treatments during the 5 days of the experiment (Figure 3). In the LMB3 treatment, C.

raciborskii did not sustain an exponential growth until the end of the experiment (Figure

3). Therefore, the growth rate was only estimated for the control and LMB1 treatments.

The growth rates were higher in the control than in the treatment with PAC +

LMB addition, decreasing with increasing the initial biomass (Figure 4). We observed a

reduction of 22-29% for biomass B1, 30-39% for biomass B2 in all strains and 40-44%

for biomass B3 and 40-49% for biomass B4 in Brazilian and German strains. The two-

way ANOVA results showed that the initial biomass and PAC + LMB addition had

significant effects on the growth rates of all strains, and that there was a significant

interaction between these effects (Table 1). No significant difference was found in

growth rate between treatments in biomass 3 and 4 for French strain.

The LMB1 dose reduced up to 61% of biomass while LMB3 dose reduced up to

94% of biomass for all strains (Figure 5). In general, the reduction decreased with the

increasing in biomass.

4. Discussion

Our results from laboratory experiments show that the combined application of

PAC and LMB is an efficient technique to effectively sink the buoyant cyanobacteria

Cylindrospermopsis raciborskii. The clay ability in removing cells can be enhanced by

flocculant addition as a result of an increase in clay adhesiveness (Sengco and

Anderson, 2004). Some studies show that the combination of clay and flocculant can

efficiently remove marine algal cells and blooms (Anderson, 1997; Sengco et al., 2001,

2005; Hagström and Granéli, 2005) and freshwater cyanobacteria bloom (Lurling and

van Oosterhout, 2013) from water column. Clay alone had been reported to effectively

remove Microcystis cells by sinking (Pan et al., 2006a, b, 2011; Verspagen et al., 2006).

Page 30: Adição de policloreto de alumínio e remoção de peixes bentívoros

30

We did not found the same result for C. raciborskii. LMB alone did not result in a

decrease of CHL-a concentration at the top of our experimental tubes. The increasing

turbidity at the bottom of the tubes in the LMB treatment is explained by the clay

settling to the bottom, because there was no reduction in CHL-a at the top of the tubes

or increase in CHL-a at the bottom of the tubes in the LMB treatment. This reveals the

low aggregation efficiency of C. raciborskii filaments with LMB. Aggregation with

clay may depend on the cyanobacteria used due to variability in extracellular

polysaccharide (EPS) composition, as has been found for Microcystis (Verspagen et al.,

2006). In fact the colonies of Microcystis are embedded in mucilage, as a strategy for

avoid sedimentation, which is formed mainly by polysaccharide (Reynolds, 2006). It

was found the production of EPS by Raphidiopsis brookii, closely related genera to C.

raciborskii (Yunes et al., 2009), but we are not conscious of studies about EPS

production by C. raciborskii. Conversely, we observed that the addition of PAC resulted

in good flock formation as we could see by the increasing in CHL-a concentration at the

top of the tubes of PAC treatment but we did not observe sedimentation of those flocks.

Therefore our results shows that the addition of sinking weight in combination with a

low dose of flocculent is fundamental to effectively sink the filaments of the buoyancy

controlled cyanobacteria C. raciborskii.

In the growth experiment, the application of PAC in combination with the

recommended or a 3 times higher dose of LMB equally resulted in a strong reduction of

FRP concentrations as expected. However, the inhibition of C. raciborskii growth was

stronger at the LMB3 than at the LMB1 dose. As cell removal efficiency by flocculation

process increases with increasing clay concentration (Sengco et al., 2001; Pan et al.,

2006b), the higher flocculation in the LMB3 could also have contributed to the faster

growth inhibition of C. raciborskii strains in this treatment when compared to the

LMB1 treatment.

On the other hand, the C. raciborskii strains showed an exponential growth

during the 5 days of experiment in the LMB1 treatment, but growth rates decreased with

initial biomass as a result of density dependent growth (Reynolds, 2006). This is

because at higher biomass the availability of resources per individual is lower resulting

in stronger intraspecific competition for resources. The combined addition of PAC with

the recommended dose of LMB reduced C. raciborskii growth rate for all the three

strains investigated. The decrease in growth rates can be explained as a result of

phosphorus limitation caused by the binding of FRP to PAC and/or LMB. As PAC +

Page 31: Adição de policloreto de alumínio e remoção de peixes bentívoros

31

LMB addition removed more than 90% the initial FRP concentrations, we expected

growth would dramatically decrease due to P limitation. However, growth persisted but

at lower rates. This may be explained by the fact that under conditions of P limitation,

C. raciborskii can regulate its physiological response to this stress by reducing growth

rate and photosynthetic activity and an increase of extracellular phosphatase activity

(Wu et al., 2012). Moreover it is known that C. raciborskii is a P storage specialist and

it has a rapid phosphate uptake rate (Padisák, 1997, Isvánovics et al., 2000; Posselt et

al., 2009; Wu et al., 2009). Under ideal circumstances they are able to uptake

phosphorus more than is needed (Istvanovics et al., 2000) and store it. This luxury

uptake allows growth of two or three generations before this element become a limiting

factor (Reynolds, 2006). As the cultures were not submitted to P starvation before the

treatment, P might have been stored by the cells before the experiment, allowing them

to grow even at lower rates with the intracellular P after the combined addition of LMB

+ PAC. Indeed, light limitation due to increasing turbidity in water and flocculation of

filaments caused by PAC and LMB addition can also explains the reduction in growth

rate (Van Oosterhout and Lurling, 2013).

The efficacy of the method to reduce P was not affected by the biomass of C.

raciborskii present at the moment of application or the C. raciborskii strain used.

However, we found that the efficacy of this technique in reducing C. raciborskii

growth rates depends on the biomass and strain of this cyanobacterium. The effects of

PAC + LMB additions in reducing C. raciborskii growth rates increased with

increasing biomass of the Brazilian strain and to a less extent of the German strain. By

contrast, PAC + LMB additions had no effect in reducing growth at higher biomass

(B3 and B4) of the French strain. These differences in response suggest that Brazilian

strain is more sensitive to P and maybe light limitation than the others strains.

Intraspecific variation in response to resource availability has been reported to

cyanobacteria (Kaardinal et al., 2007; Briand et al., 2008; Wilson et al., 2005).

Physiological differences among C. raciborskii strains in response to temperature, light

intensity (Briand et al., 2004) and critical requirements for phosphorus and light

(Marinho et al., 2013) has been found. Also the existence of different physiological

strains or ecotypes in C. raciborskii populations was proposed (Chonudomkul et al.,

2004; Piccini et al., 2011). Therefore, the reduction of growth in response to resource

limitation may be dependent on the ability of the strains in optimize the uptake and the

critical requirements of resources.

Page 32: Adição de policloreto de alumínio e remoção de peixes bentívoros

32

Our findings have significant implications for restoration of lakes and reservoirs

dominated by C. raciborskii. The combined application of PAC with the recommended

dose of LMB can be a good management strategy to sinking and to reduce the growth of

C. raciborskii population as result of phosphorus limitation, leading to the control of

bloom in a long-term perspective, but the technique tend to be dependent of the bloom

stage and the strain. However, to have a more efficient and faster control of C.

raciborskii blooms may be necessary the use of a combined dose of PAC with a higher

dose of LMB than the recommended by the manufacturers.

5. Conclusions

The flocculent PAC or the lanthanum modified bentonite (LMB) Phoslock®

alone could not effectively sink filaments of different strains of the positive buoyant

cyanobacteria C. raciborskii;

PAC combined with LMB effectively sank the filaments of C. raciborskii

strains;

PAC combined with the recommended LMB dose reduced FRP and growth

rates of C. raciborskii strains tested;

The efficacy of PAC combined with the recommended LMB dose in reduce

growth rate depends on the cyanobacteria biomass and strain.

Acknowledgements

This research is resulted of PhD sandwich programme conducted under the auspices of

the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES/Brazil) –

WAGENINGEN (The Netherlands) Project “Cyanobacterial Blooms: A growing threat

in freshwater ecosystems” (004/2008).

Page 33: Adição de policloreto de alumínio e remoção de peixes bentívoros

33

References

Anderson, D. M., 1997. Turning back the harmful red tide. Nature 388(6642), 513-514.

Bouvy, M., Molica, R., De Oliveira, S., Marinho, M., and Beker, B., 1999. Dynamics of

a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in

the semi-arid region of northeast Brazil. Aquatic Microbial Ecology 20(3), 285-297.

Bouvy, M., Falcão, D., Marinho, M., Pagano, M., and Moura, A., 2000. Occurrence of

Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998

drought. Aquatic Microbial Ecology 23(1), 13-27.

Bouvy, M., Nascimento, S. M., Molica, R. J., Ferreira, A., Huszar, V., and Azevedo, S.

M., 2003. Limnological features in Tapacurá reservoir (northeast Brazil) during a severe

drought. Hydrobiologia 493(1-3), 115-130.

Briand, E., Escoffier, N., Straub, C., Sabart, M., Quiblier, C., & Humbert, J. F. (2008).

Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis

aeruginosa (cyanobacteria) population. ISME Journal 3(4), 419-429.

Briand, J. F., Leboulanger, C., Humbert, J. F., Bernard, C., & Dufour, P., 2004.

Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid‐latitudes: selection,

wide physiological tolerance, or global warming? Journal of Phycology, 40(2), 231-238.

Chen, J. and Luan, Z., 2010. Enhancing phosphate removal by coagulation using

polyelectrolytes and red mud. Fresenius Environmental Bulletin 19(10), 2200-2204.

Chonudomkul, D., Yongmanitchai, W., Theeragool, G., Kawachi, M., Kasai, F., Kaya,

K., & Watanabe, M. M. (2004). Morphology, genetic diversity, temperature tolerance

and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from

Thailand and Japan. FEMS Microbiology Ecology 48(3), 345-355.

Chorus, I., and Bartram, J., 1999. Toxic cyanobacteria in water: A guide to their public

health consequences, monitoring and management. Spon Press.

Page 34: Adição de policloreto de alumínio e remoção de peixes bentívoros

34

Cooke, G. D., Welch, E. B., Peterson, S., and Nichols, S. A., 2005. Restoration and

management of lakes and reservoirs. CRC press.

Costa, I. A. S., Azevedo, S. M. F., Senna, P. A. C., Bernardo, R. R., Costa, S. M., &

Chellappa, N. T., 2006. Occurrence of toxin-producing cyanobacteria blooms in a

Brazilian semiarid reservoir. Brazilian Journal of Biology 66(1B), 211-219.

Costa, I.A.S., Cunha, S.R.S., Panosso, R., Araújo, M.F.F., Melo, J.L.S., Eskinazi-

Sant’anna, E.M., 2009. Dinâmica de cianobactérias em reservatórios eutróficos do semi-

árido do Rio Grande do Norte. Oecologia Brasiliensis 13(2), 382-401.

Douglas, G.B., 2002. US Patent 6350383: Remediation Material and Remediation

Process for Sediments.

Douglas, G. B., Adeney, J. A. and Robb, M.S., 1999. A novel technique for reducing

bioavailable phosphorus in water and sediments. International Association Water

Quality Conference on Diffuse Pollution, 517–523.

Douglas, G.B., Robb, M.S., Coad, D.N., Ford, P.W., 2004. A review of solid phase

adsorbents for the removal of phosphorus from natural and waste waters. In: Valsami-

Jones, E. (Ed.), Phosphorus in Environmental Technology e Removal, Recovery,

Applications. IWA Publishing, pp. 291 - 320 (Chapter 13).

Gibbs, M. M., Hickey, C. W., and Özkundakci, D., 2011. Sustainability assessment and

comparison of efficacy of four P-inactivation agents for managing internal phosphorus

loads in lakes: sediment incubations. Hydrobiologia 658(1), 253-275.

Gulati, R. D., and Van Donk, E., 2002. Lakes in the Netherlands, their origin,

eutrophication and restoration: state-of-the-art review. In Ecological Restoration of

Aquatic and Semi-Aquatic Ecosystems in the Netherlands (NW Europe) (pp. 73-106).

Springer Netherlands.

Page 35: Adição de policloreto de alumínio e remoção de peixes bentívoros

35

Haghseresht, F., 2005. A Revolution in Phosphorous Removal. Phoslock Water

Solutions Ltd., p. 21. http://www.phoslock.com.au

Hagstrom, J.A., Graneli, E., 2005. Removal of Prymnesium parvum (Haptophyceae)

cells under different nutrient conditions by clay. Harmful Algae 4 (2), 249-260.

Hilt, S., Gross, E. M., Hupfer, M., Morscheid, H., Mählmann, J., Melzer, A., ... and Van

de Weyer, K., 2006. Restoration of submerged vegetation in shallow eutrophic lakes–A

guideline and state of the art in Germany. Limnologica-Ecology and Management of

Inland Waters 36(3), 155-171.

Isvánovics, V., Shafik, H. M., Présing, M., and Juhos, S., 2000. Growth and phosphate

uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae)

in throughflow cultures. Freshwater Biology 43(2), 257-275.

Jiang, J. Q., & Graham, N. J., 1998. Pre-polymerized inorganic coagulants and

phosphorus removal by coagulation- a review. Water Sa 24(3), 237-244.

Johannesson, K. H., & Lyons, W. B., 1994. The rare earth element geochemistry of

Mono Lake water and the importance of carbonate complexing. Limnology and

Oceanography 39(5), 1141-1154.

Kardinaal, W. E. A., Tonk, L., Janse, I., Hol, S., Slot, P., Huisman, J., & Visser, P. M.,

2007. Competition for light between toxic and nontoxic strains of the harmful

cyanobacterium Microcystis. Applied and Environmental Microbiology 73(9), 2939-

2946.

Liu, X., & Byrne, R. H., 1997. Rare earth and yttrium phosphate solubilities in aqueous

solution. Geochimica et Cosmochimica Acta 61(8), 1625-1633.

Lurling, M., Beekman, W., 2010. Anti-cyanobacterial activity of Moringa oleifera

seeds. J. Appl. Phycol. 22 (4), 503-510.

Page 36: Adição de policloreto de alumínio e remoção de peixes bentívoros

36

Marinho, M. M., Souza, M. B. G., & Lurling, M., 2013. Light and phosphate

competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is

strain dependent. Microbial Ecology 66(3), 479-488.

McGregor, G. B., and Fabbro, L. D., 2000. Dominance of Cylindrospermopsis

raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical

reservoirs: Implications for monitoring and management. Lakes and Reservoirs:

Research and Management, 5(3), 195-205.

Murphy, J. A. M. E. S., & Riley, J. P., 1962. A modified single solution method for the

determination of phosphate in natural waters. Analytica Chimica Acta 27, 31-36.

Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba

Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review

of its ecology. Archiv Für Hydrobiologie Supplementband Monographische

Beitrage, 107(4), 563-593.

Paerl, H. W., Hall, N. S., and Calandrino, E. S., 2011. Controlling harmful

cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced

change. Science of the Total Environment 409(10), 1739-1745.

Pan, G., Zhang, M. M., Chen, H., Zou, H., & Yan, H., 2006. Removal of cyanobacterial

blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the

flocculation of Microcystis aeruginosa using commercially available clays and

minerals. Environmental Pollution 141(2), 195-200.

Pan, G., Zou, H., Chen, H., & Yuan, X., 2006. Removal of harmful cyanobacterial

blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and

an in situ field experiment using chitosan-modified local soils. Environmental Pollution

141(2), 206-212.

Pan, G., Yang, B., Wang, D., Chen, H., Tian, B. H., Zhang, M. L., Yuan, X. Z., Chen,

J., 2011. In-lake algal bloom removal and submerged vegetation restoration using

modified local soils. Ecological Engineering 37(2), 302-308.

Page 37: Adição de policloreto de alumínio e remoção de peixes bentívoros

37

Panosso, R., Costa, I. S., de Souza, N. R., de Attayde, J. L., de Souza Cunha, S. R.,

Costa, F., and Gomes, F., 2007. Cianobactérias e cianotoxinas em reservatórios do

estado do Rio Grande do Norte e o potencial controle das florações pela tilápia do Nilo

(Oreochromis niloticus). Oecologia Brasiliensis 11(3), 433-449.

Peterson, S.A. (1982). Lake restoration by sediment removal. Water Res. Bull. 18, 423–

435.

Piccini, C., Aubriot, L., Fabre, A., Amaral, V., González-Piana, M., Giani, A.,

Figueredo, C., Vidal, L., Kruk, C and Bonilla, S. (2011). Genetic and eco-physiological

differences of South American Cylindrospermopsis raciborskii isolates support the

hypothesis of multiple ecotypes. Harmful Algae 10(6), 644-653.

Posselt, A. J., Burford, M. A., and Shaw, G. (2009). Pulses of phosphate promote

dominance of the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical

water reservoir. Journal of phycology 45(3), 540-546.

Reynolds, C.S., 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and

Conservation). Cambridge University Press, Cambridge.

Robb, M., Greenop, B., Goss, Z., Douglas, G., & Adeney, J., 2003. Application of

PhoslockTM, an innovative phosphorus binding clay, to two Western Australian

waterways: preliminary findings. In The Interactions between Sediments and Water (pp.

237-243). Springer Netherlands.

Ross, G., Haghseresht, F., Cloete, T.M., 2008. The effect of pH and anoxia on the

performance of Phoslock_, a phosphorus binding clay. Harmful Algae 7, 545-550.

Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson,

M. J., ... and Kasian, S. E. M., 2008. Eutrophication of lakes cannot be controlled by

reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings

of the National Academy of Sciences 105(32), 11254-11258.

Page 38: Adição de policloreto de alumínio e remoção de peixes bentívoros

38

Sengco, M.R., Anderson, D.M., 2004. Controlling harmful algal blooms through clay

flocculation. J. Eukaryot. Microbiol. 51 (2), 169-172.

Sengco, M. R., Hagström, J. A., Granéli, E., & Anderson, D. M., 2005. Removal of

Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful

Algae 4(2), 261-274.

Sengco, M. R., Li, A., Tugend, K., Kulis, D., & Anderson, D. M., 2001. Removal of

red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with

Gymnodinium breve and Aureococcus anophagefferens. Marine Ecology Progress

Series 210, 41-53.

Smith, V. H. and Schindler, D. W., 2009. Eutrophication science: where do we go from

here? Trends in Ecology and Evolution 24(4), 201-207.

Soares, M. C. S., Huszar, V. L., Miranda, M. N., Mello, M. M., Roland, F., and Lürling,

M., 2013. Cyanobacterial dominance in Brazil: distribution and environmental

preferences. Hydrobiologia 717(1), 1-12.

Søndergaard, M., Jensen, J. P., and Jeppesen, E., 1999. Internal phosphorus loading in

shallow Danish lakes. In Shallow Lakes’ 98 (pp. 145-152). Springer Netherlands.

Søndergaard, M., Jensen, P. J., and Jeppesen, E., 2001. Retention and internal loading

of phosphorus in shallow, eutrophic lakes. The Scientific World Journal, 1, 427-442.

Spears, B. M., Meis, S., Anderson, A., and Kellou, M., 2013. Comparison of

phosphorus (P) removal properties of materials proposed for the control of sediment p

release in UK lakes. Science of the Total Environment 442, 103-110.

van Oosterhout, F., & Lürling, M., 2013. The effect of phosphorus binding clay

(Phoslock®) in mitigating cyanobacterial nuisance: a laboratory study on the effects on

water quality variables and plankton. Hydrobiologia 710(1), 265-277.

Page 39: Adição de policloreto de alumínio e remoção de peixes bentívoros

39

Verspagen, J.M.H., Visser, P.M., Huisman, J., 2006. Aggregation with clay causes

sedimentation of the buoyant cyanobacterium Microcystis. Aquat. Microb. Ecol. 44,

165-174.

Walsby, A. E., 1994. Gas vesicles. Microbiological reviews, 58(1), 94.

Welch, E. B., and Cooke, G. D., 2005. Internal phosphorus loading in shallow lakes:

importance and control. Lake and reservoir management 21(2), 209-217.

Wilson, A. E., Sarnelle, O., Neilan, B. A., Salmon, T. P., Gehringer, M. M., & Hay, M.

E., 2005. Genetic variation of the bloom-forming cyanobacterium Microcystis

aeruginosa within and among lakes: implications for harmful algal blooms. Applied and

Environmental Microbiology 71(10), 6126-6133.

Wu, Z., Shi, J., and Li, R., 2009. Comparative studies on photosynthesis and phosphate

metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and

Aphanizomenon flos-aquae. Harmful Algae 8(6), 910-915.

Wu, Z., Zeng, B., Li, R., and Song, L., 2012. Physiological regulation of

Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic

phosphorus limitation. Harmful Algae 15, 53-58.

Yunes, J. S., De La Rocha, S., Giroldo, D., Silveira, S. B. D., Comin, R., Bicho, M. D.

S., Melcher, S. S., Sant’anna, C. L., and Vieira, A. A. H., 2009. Release of

carbohydrates and proteins by a subtropical strain of raphidiopsis brookii

(cyanobacteria) able to produce saxitoxin at three nitrate concentrations. Journal of

Phycology, 45(3), 585-591.

Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., Zacharias, I., 2012. Removal of

phosphate from natural waters using innovative modified bentonites. Appl. Clay Sci.

62-63, 101-106.

Page 40: Adição de policloreto de alumínio e remoção de peixes bentívoros

40

Tables and Figures

Table 1 – F-ratios and P-values of two-way ANOVA to test for the effects of

the initial biomass (B), PAC+LMB addition (D) and their interactions (B x

D) on % FRP removed from cultures and growth rates of

Cylindrospermopsis raciborskii strains. Values were considered significant

assuming P ≤ 0.05.

% FRP removed

Brazil Germany France

B F = 0.85 P = 0.48 F = 1.06 P = 0.39 F = 0.93 P = 0.44

D F = 160.43 P < 0.01 F = 139.37 P < 0.01 F = 117.87 P < 0.01

B x D F = 1.78 P = 0.15 F = 1.78 P = 0.24 F = 3.41 P = 0.01

Growth rate

Brazil Germany France

B F = 671.70 P < 0.01 F = 31.37 P < 0.01 F = 403.58 P < 0.01

D F = 599.20 P < 0.01 F = 27.58 P < 0.01 F = 760.61 P < 0.01

B x D F = 3.22 P = 0.05 F = 3.24 P = 0.05 F = 10.14 P < 0.01

Page 41: Adição de policloreto de alumínio e remoção de peixes bentívoros

41

Figure 1. Chlorophyll-a concentrations and turbidity at the end of the incubation

in the top 10 mL (white bars) and bottom 10 mL (black bars) of experimental

tubes containing 100 mL of three different Cylindrospermopsis raciborskii strains.

Control without and treatments with addition of 0.1 g L-1 LMB and 1 mg L-1PAC

in isolation (LMB, PAC) or in combination (PAC+LMB). F-ratios and P-values of

two-way ANOVA to test for the effects of PAC (P), LMB addition (L) and their

interactions (P x L). Values were considered significant assuming P ≤ 0.05.

Page 42: Adição de policloreto de alumínio e remoção de peixes bentívoros

42

Figure 2. Percentage of filterable reactive phosphorus concentration (FRP)

removed after the incubation period (5 days) of experimental cultures containing

100 mL of each of three different Cylindrospermopsis raciborskii strains.

Treatments: Control (white bars), addition of 1 mg L-1 PAC + 100g LMB: 1g FRP

(black bars) and the combination of 1 mg L-1 PAC + 300g LMB: 1g FRP (gray

bars) (LMB: lanthanum modified bentonite; PAC: polyaluminium chloride);

Initial biomass of the strains in chlorophyll-a concentration are B1 ≈ 40 µg L-1, B2

≈ 80 µg L-1, B3 ≈ 180 µg L-1, and B4 ≈ 380 µg L -1.

Page 43: Adição de policloreto de alumínio e remoção de peixes bentívoros

43

CAPÍTULO II. Shallow lake restoration by the combined

effects of polyaluminium chloride addition and benthivorous

fish removal: a field mesocosm experiment.

Araújo, F.1, Becker, V.2 and Attayde, J. L.3

1 Programa de Pós-Graduação em Ecologia. Universidade Federal do Rio Grande do Norte (UFRN),

Natal – RN – Brazil.2 Departamento de Engenharia Civil, Centro de Tecnologia. Universidade Federal do Rio Grande do

Norte (UFRN), Natal – RN – Brazil.3 Departamento de Ecologia, Centro de Biociências. Universidade Federal do Rio Grande do Norte

(UFRN), Natal – RN – Brazil.

Abstract

Internal loading can be an important source of phosphorus (P) in eutrophic shallow

lakes increasing the resilience of the turbid stable state and delaying the effects of lake

restoration by the reduction of external loading. Therefore, additional actions are often

needed to reduce internal P loading such as the addition of P-sorption agents and the

manipulation of the fish communities. Polyaluminium chloride (PAC) has been used for

P precipitation by coagulation, sedimentation and P inactivation in the lake sediment.

However, benthivorous fish may increase the flux of P from the sediment back to the

water column reducing the efficiency of PAC addition as a management tool to improve

water quality. Therefore, we hypothesized that PAC addition combined with removal of

benthivorous fish would interact synergistically to improve water quality of eutrophic

shallow lakes. To test this hypothesis, we performed a field experiment with a 2 x 2

factorial design during 53 days in 20 mesocosms (6 m³), where four treatments were

randomly allocated: combining the presence and absence of PAC (2 mg Al.l-1) with the

presence and absence of benthivorous fish (Prochilodus brevis). A two-way repeated

measure ANOVA was performed to test the effects of PAC, fish and time and their

interactions on total phosphorus and chlorophyll concentrations as well as on water

transparency. PAC addition significantly decreased total phosphorus concentrations in

water and increased water transparency. Fish removal significantly decreased total

Page 44: Adição de policloreto de alumínio e remoção de peixes bentívoros

44

phosphorus and chlorophyll a concentrations and increased water transparency. No

significant interaction was observed between the effects of PAC addition and fish

removal. In conclusion, our results suggest that the effects of PAC addition and

benthivorous fish removal are additive and that lake restoration can be better achieved

by the combination of both techniques.

Keywords: P-sorption agent; coagulant; biomanipulation; tropical lake.

1. Introduction

Eutrophication is a serious environmental problem related to degradation of water

quality worldwide. The main measure to restore eutrophic lakes is to reduce the input of

nutrients to water bodies. Although some lakes have recovered after decreasing in the

external input of nutrients, a delay or fail in recovery has been observed in many

shallow lakes (Marsden, 1989; Jeppesen et al., 1991; Van der Molen & Boers, 1994;

Søndergaard et al., 2000) and it has been attributed mainly to the phosphorus (P)

internal loading from P-rich sediments (Søndergaard et al., 1999, 2003; Cooke et al.,

2005).

The internal P loading can be reduced by adding P fixative chemicals into lake

(Welch & Cooke, 2005). Precipitation and inactivation of phosphorus by aluminium

(Al) salts (mainly as aluminium sulphate - alum) have been commonly used as a lake

restoration measure (Cooke et al., 2005; Welch & Cooke, 2005). When Al salts are

added to water, Al+3 reacts with PO4-3 and forms a precipitate, by coagulation and

flocculation process, and then the flocks can be removed after subsequent

sedimentation. Besides this, the flocculation by aluminium salts precipitates organic and

inorganic matter resulting in the improvement of water transparency (Jiang & Graham,

1998b; Hullebusch et al., 2002) and removing total phosphorus concentrations present

in suspended particles after flocks settling (Reitzel et al., 2003; Auvray et al., 2006).

Many successful cases of Al application as restoration measure have been reported

(Cooke et al., 2005). Nonetheless the P bound to the Al may return to the water column

by flocks resuspension and become available to the phytoplankton (Jeppesen et al.,

2007). In addition, the suspended flocks might have impacts on filter-feeding organisms

(Beaulieu, Sengco and Anderson, 2005).

Page 45: Adição de policloreto de alumínio e remoção de peixes bentívoros

45

Polyaluminium chloride (PAC) has been used as an alternative for alum because

it has a higher efficiency of turbidity reduction based on the same equivalent alum dose

and has a wider working pH range aside from lower coagulant cost to achieve the same

efficiency (Jiang and Graham, 1998).

Other commonly used technique for lake restoration is the removal of

planktivorous and/or benthivorous fishes (Meijer et al., 1994; Perrow et al., 1997;

Hansson et al., 1998; Drenner and Hambright, 1999; Meijer et al., 1999; Mehner et al.,

2002; Jeppensen et al., 2007; Jeppensen et al., 2012). The ultimate goal of such

biomanipulation is the reduction of algal biomass and the increasing of water

transparency. The removal of planktivorous fish increases the abundance of large

zooplankton which in turn is able to suppress phytoplankton biomass (Carpenter et al.,

1985; Meijer et al., 1994). Conversely, fish with benthic-feeding habit play an important

role in shallow lakes by disturbing the sediment, increasing turbidity and translocating P

from the sediment to the water column (Andersson et al., 1978; Meijer et al., 1990;

Breukelaar et al., 1994; Cline et al., 1994; Lougheed et al., 1998; Schaus & Vanni,

2000; Volta et al., 2013). Although attractive, the long-term effectiveness of fish

manipulation is uncertain (Jeppensen et al., 2007). Besides the resuspension of the

sediment by fishes, release of phosphorus from P-rich sediments can be affected by

temperature, pH, iron:phosphorus ratio and mineralization processes in the sediment

(Jensen & Andersen, 1992; Olila & Reddy, 1997; Pettersson, 1998; Søndergaard et al.,

1999, 2003; Jeppesen et al., 2005) and contribute with phytoplankton growth, showing

the need for additional measures in combination with biomanipulation to reduce P

internal loading (Jeppensen et al., 2012).

Although the efficiency of biomanipulation and Al application in improving

water quality are well documented, study of the effects of both techniques combined is

so far limited mainly in warm lakes (Jeppensen et al., 2012). Benthivorous fish may

prevent sediment consolidation (Scheffer et al., 2003) and sediment mixing processes

reduce the effectiveness of sediment capping with P-sorption agents (Lewandowski et

al., 2003). As a consequence the P bound to the Al return to the water column by flocks

resuspension and turn back to be available to the phytoplankton (Jeppesen et al., 2007).

Therefore, we hypothesized that aluminium is more efficient in improving water quality

when benthivorous fish is removed. The aim of this study was to test the isolated and

combined effects of Polyaluminium chloride (PAC) addition (2 mg Al.l-1) and

Page 46: Adição de policloreto de alumínio e remoção de peixes bentívoros

46

benthivorous fish (Prochilodus brevis) removal on the water quality of a tropical

shallow lake.

2. Material and methods

2.1 Study Area and experimental design

The experiment was performed in an eutrophic shallow man-made lake located

at Seridó Ecological Station, Serra Negra do Norte, Rio Grande do Norte, Brazil

(6º34’49,3” S; 37º15´20” W). The experiment was carried out in 20 mesocosm of 6 m³

(4 m² x 1.5m) placed side by side in the littoral zone of the reservoir. The mesocosms

were open to the atmosphere at the top and to the sediment at the bottom, but were

isolated from the adjacent lake water by a film of transparent plastic.

The experiment consisted of a 2 x 2 factorial design where four treatments with

five replicates were randomly allocated to the 20 mesocosms. The treatments were:

presence of fish with (+Al+Fish) or without Al addition (-Al+Fish) and absence of fish

with (+Al-Fish) or without Al addition (-Al-Fish). The fish used in the experiment,

curimatã (Prochilodus brevis), is a common benthivorous fish in the Brazilian semi-arid

region (Chellappa et al., 2009; Nascimento et al., 2014) and the most abundant fish in

the studied lake. Four fishes 352.6g (± 65.7) were collected from the studied lake and

added to each mesocosm of the two fish treatments just after initial sampling resulting

in a density of 0.67 fish m-3. This is within the range of natural densities found in the

lakes of the region. Aluminium as polyalumnium chloride (PAC; PANFLOC TE1018 –

Pan-Americana S/A) was the coagulant used at dose 2 mg Al.L-1 and was added one day

after fish stocking. The chosen dose was based on an experimental jar test in the

laboratory using the water from the lake (data not shown).

2.2 Sampling and samples analysis

Water samples were collected at 13 days intervals for eight weeks totalizing 6

samples for each variable. Sampling was performed between 06h00 and 10h00 a.m.

Water transparency was measured by a Secchi disc in each mesocosm. Water samples

were collected with a 1.5m length of 5 cm diameter PVC tube at different points in each

mesocosms and integrated in a 30L bucket. Subsamples were taken for turbidity and

nutrient analysis. Turbidity was measured with a Turbidimeter AP2000 and total

Page 47: Adição de policloreto de alumínio e remoção de peixes bentívoros

47

phosphorus (TP) concentration was measured with a spectrophotometer by the acid

ascorbic method after persulphate digestion (Valderrama, 1981; Murphy and Riley,

1962). Samples were filtered using a 1.2 µm glass fiber filter (VWR 696) and the filters

were used to determine chlorophyll-a (chla) after ethanol extraction according to

Jespersen and Christoffersen (1988). Water samples were also collected outside the

mesocosms in two different points of the lake for the analysis of the same variables. The

fishes were caught and weighed after the end of the experiment.

2.3 Statistical analysis

A two-way repeated measures ANOVA was performed to test the isolated

effects of benthivorous fish removal (F), PAC addition (Al) and time (T) on turbidity,

water transparency, total phosphorus and chlorophyll-a concentrations. The data were

log transformed to attend the assumptions of ANOVA. To compare the initial and final

weight of fish in each treatment a t test for dependent samples was used. A t test for

independent samples was used to compare the weight of fish between the treatments at

the start and end of the experiment. The significance level assumed was α = 0.05.

3. Results

Initial water conditions were equal between treatments for all variables (data not

shown). The two-way repeated measures ANOVA showed that PAC addition and

benthivorous fish removal had significant effects on the measured variables but some

effects were time dependent (Fig. 1). PAC had pronounced effect at the beginning of the

experiment while benthivorous fish had a pronounced effect latter. Overall, PAC

addition significantly decreased total phosphorus concentrations and water turbidity,

while increased water transparency (Fig. 2). Fish removal significantly decreased water

turbidity, total phosphorus and chlorophyll a concentrations, while increased water

transparency (Fig. 2). We observed no significant interaction between the effects of

PAC addition and benthivorous fish removal (Fig. 2).

The curimatã weight did not increase during the experiment within -Al+F (F =

3.76; P = 0.23) and +Al+F treatments (F = 1.65; P = 0.71). No difference was found in

the initial (t = 2.23; P = 0.09) or final (t = 0.21; P = 0.84) weight between the treatments

(Fig. 3).

Page 48: Adição de policloreto de alumínio e remoção de peixes bentívoros

48

4. Discussion

Our results show the additive effects of aluminium addition and benthivorous

fish removal to improve water quality of shallow eutrophic lakes. The addition of

aluminium in the absence of benthivorous fish showed the best improvement in water

quality. The marked reduction in turbidity make possible to see the bottom of the lake in

some mesocosms of this treatment and the Secchi-disk depth was three times higher

than the initial value. Besides, this was the only treatment in which we could observe

reductions in chlorophyll-a concentration compared to the initial values. As far as we

know, dual treatment in a lake is reported only for the shallow Kollelev Lake, Denmark

(Jeppesen et al., 2012). In this lake aluminium application resulted in a reduction of

total phosphorus concentrations but no changes were observed in water clarity. After a

biomanipulation (one year later) including cyprinid removal and perch stocking, an

immediate and strong improvement in water clarity in aluminium treated basins,

coinciding with a gradual reduction in total phosphorus concentrations (Jeppesen et al.,

2012). In agreement with the experience in Kollelev Lake, our experiment shows that

the combination of biomanipulation and chemical treatment for P inactivation is a good

way to achieved rapid and probably long-term lake restoration.

The PAC addition had marked effects in decreasing turbidity, total phosphorus

and chlorophyll-a concentration just after its addition to the water as expected. The

application of PAC in whole lake experiments has shown its efficacy in removing

phosphorus from the water column (Reitzel et al., 2005; Lopata & Gawrońska, 2008;

Egemose et al., 2011; Jancula & Maršálek, 2012). Nevertheless, the PAC effects in our

experiment may have been underestimated due to the low Al dose applied. If the

amount of the mobile P pool in lake water and in the sediment had been taken into

account to calculate the dose of Al to be applied (Rydin & Welch, 1998), the Al dose

should be higher than the used in the experiments, increasing the potential of PAC in

improve water quality.

The benthivorous fish removal also had the expected results in improving water

quality. However, our experiment shows results from a complete removal of

benthivorous fish, overestimating the effects fish removal. For whole lake treatment the

complete removal of benthivorous fish is hard to reach. It has been suggested the

reduction of 70-85% of benthivorous fish biomass (Meijer et al., 1990; Hosper &

Meijer, 1993; Perrow et al., 1997; Hansson et al., 1998) and the maintenance of their

Page 49: Adição de policloreto de alumínio e remoção de peixes bentívoros

49

population depressed (Godwin et al., 2011) in combination with the harvesting of the

small size fishes (Schaus et al., 2013) for effective results in water quality improvement

and to achieve long term results.

Although no significant difference was found between and within treatments,

there was a trend to curimatã fish decreased biomass in the treatment without PAC

addition. However in the treatment with PAC addition curimatã maintained the initial

biomass, suggesting that fish may have been favored by the organic matter precipitated

on the bottom of the mesocosms with PAC addition. This is an important assumption

that needs to be investigated with more details.

In conclusion, our results from a mesocosm scale show that the effects of PAC

addition and benthivorous fish removal are additive and that lake restoration can be

better achieved by the combination of both techniques.

Acknowledgements

We thank Maria Marcolina L. Cardoso, Pablo Rubim, Mariana R. A. Costa, Bárbara

Bezerra, Caroline G. B. de Moura, Leonardo Teixeira e Alexander Ferreira for field and

laboratory assistance. Funding was given by CNPq through the Project 562676/2010-4.

Fabiana Araújo was supported by a fellowship from CAPES.

Rerences

Andersson, G., H. Berggren, G. Cronberg, & C. Gelin, 1978. Effects of planktivorous

and benthivorous fish on organisms and water chemistry in eutrophic lakes.

Hydrobiologia 59: 9–15.

Auvray, F., E. D. van Hullebusch, V. Deluchat, & M. Baudu, 2006. Laboratory

investigation of the phosphorus removal (SRP and TP) from eutrophic lake water

treated with aluminium. Water research 40: 2713–2719.

Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. K. Breteler, & I. Tátrai, 1994. Effects

of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment

resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biology 32:

113–121.

Page 50: Adição de policloreto de alumínio e remoção de peixes bentívoros

50

Chellappa, S., R. M. X. Bueno, T. Chellappa, N. T. Chellappa, & V. M. F. Almeida e

Val, 2009. Reproductive seasonality of the fish fauna and limnoecology of semi-arid

Brazilian reservoirs. Limnologica Elsevier 39: 325–329.

Cline, J. M., T. L. East, & S. T. Threlkeld, 1994. Fish interactions with the sediment-

water interface. Hydrobiologia 275/276: 301–311.

Cooke, G. D., E. B. Welch, S. A. Peterson, & S. A. Nichols, 2005. Restoration and

Management of Lakes and Reservoirs. CRC Press.

Egemose, S., I. de Vicente, K. Reitzel, M. R. Flindt, F. Ø. Andersen, T. L. Lauridsen,

M. Søndergaard, E. Jeppesen, H. S. Jensen, & Y. Prairie, 2011. Changed cycling of P,

N, Si, and DOC in Danish Lake Nordborg after aluminum treatment. Canadian Journal

of Fisheries and Aquatic Sciences 68: 842–856.

Godwin, W., M. Coveney, E. Lowe, & L. Battoe, 2011. Improvements in water quality

following biomanipulation of gizzard shad (Dorosoma cepedianum) in Lake Denham,

Florida. Lake and Reservoir Management 27: 287–297.

Hansson, L., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E.

Luokkanen, P.-A. Nilsson, M. Søndergaard, & J. Strand, 1998. Biomanipulation as an

Application of Food-Chain Theory : Constraints, Synthesis, and Recommendations for

Temperate Lakes. Ecosystems 1: 558–574.

Hosper, H., & M. Meijer, 1993. Short Communication Biomanipulation , will it work

for your lake? A simple test for the assessment of chances for clear water, following

drastic fish-stock reduction in shallow, eutrophic lakes. Ecological Engineering 2: 63–

72.

Hullebusch, E. Van, V. Deluchat, P. M. Chazal, & M. Baudu, 2002. Environmental

impact of two successive chemical treatments in a small shallow eutrophied lake : Part I

. Case of aluminium sulphate. Environmental Pollution 120: 617–626.

Jancula, D., & B. Maršálek, 2012. Seven years from the first application of

polyaluminium chloride in the Czech Republic – effects on phytoplankton communities

in three water bodies. Chemistry and Ecology 28: 535–544.

Page 51: Adição de policloreto de alumínio e remoção de peixes bentívoros

51

Jensen, H. S., & F. Ø. Andersen, 1992. Importance of temperature, nitrate, and pH for

phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology

and Oceanography 37: 577–589.

Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen, & T.

Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus

loading of shallow eutrophic Danish lakes: duration, regulating factors and methods to

overcoming resilience. Memorie dell’Istituto Italiano di Idrobiologia Mem. Ist. Ital.

Idrobiol. 48: 127–148.

Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen,

T. L. Lauridsen, N. Mazzeo, & C. W. C. Branco, 2007. Restoration of shallow lakes by

nutrient control and biomanipulation—the successful strategy varies with lake size and

climate. Hydrobiologia 581: 269–285.

Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho,

M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt,

K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle,

B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D.

Straile, I. Tatrai, E. Willen, & M. Winder, 2005. Lake responses to reduced nutrient

loading - an analysis of contemporary long-term data from 35 case studies. Freshwater

Biology 50: 1747–1771.

Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C.

Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R.

Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus, S. Egemose, & M. Meerhoff,

2012. Chapter 6 - Biomanipulation as a Restoration Tool to Combat Eutrophication:

Recent Advances and Future Challenges. In:Global Change in Multispecies Systems

Part 2. Advances in Ecological Research Elsevier 47: 411–488.

Jiang, J.-Q., & N. J. D. Graham, 1998. Pre-polymerised inorganic coagulants and

phosphorus removal by coagulation - A review. Water SA 24: 237–244.

Page 52: Adição de policloreto de alumínio e remoção de peixes bentívoros

52

Lewandowski, J., I. Schauser, & M. Hupfer, 2003. Long term effects of phosphorus

precipitations with alum in hypereutrophic Lake S usser. Water Research 37: 3194–

3204.

Lopata, M., & H. Gawrońska, 2008. Phosphorus immobilization in Lake Głęboczek

following treatment with polyaluminum chloride. Oceanological and Hydrobiological

Studies 37: 99–105.

Lougheed, V. L., B. Crosbie, & P. Chow-Fraser, 1998. Predictions on the effect of

common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and

submergent macrophytes in a Great Lakes wetland. Canadian Journal of Fisheries and

Aquatic Sciences 55: 1189–1197.

Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the

influence of sediment phosphorus release. Freshwater Biology 21: 139–162.

Meijer, M.-L., M. W. de Haan, A. W. Breukelaar, & H. Buiteveld, 1990. Is reduction of

the benthivorous fish an important cause of high transparency following

biomanipulation in shallow lakes?. Hydrobiologia 200-201: 303–315.

Nascimento, W. S., N. H. C. Barros, A. S. Araújo, L. de L. Gurgel, B. Canan, W. F.

Molina, R. S. Rosa, & S. Chellappa, 2014. Composição da ictiofauna das bacias

hidrográficas do Rio Grande do Norte, Brasil. Biota Amazônia 4: 126–131.

Olila, O. G., & K. R. Reddy, 1997. Influence of redox potential on phosphate-uptake by

sediments in two sub-tropical eutrophic lakes. 45–57.

Perrow, M. R., M. Meijer, P. Dawidowicz, & H. Coops, 1997. Biomanipulation in

shallow lakes : state of the art. Hydrobiologia 342/343: 355–365.

Pettersson, K., 1998. Mechanisms for internal loading of phosphorus in lakes.

Hydrobiologia 21–25.

Reitzel, K., J. Hansen, F. Ø. Andersen, K. S. Hansen, & H. S. Jensen, 2005. Lake

Restoration by Dosing Aluminum Relative to Mobile Phosphorus in the Sediment.

Environmental Science & Technology 39: 4134–4140.

Page 53: Adição de policloreto de alumínio e remoção de peixes bentívoros

53

Reitzel, K., J. Hansen, H. S. Jensen, F. Ø. Andersen, & K. S. Hansen, 2003. Testing

aluminum addition as a tool for lake restoration in shallow, eutrophic Lake Sønderby,

Denmark. Hydrobiologia 506-509: 781–787.

Rydin, E., & E. B. Welch, 1998. Aluminum dose required to inactivate phosphate in

lake sediments. Water Research 32: 2969–2976.

Schaus, M. H., W. F. Godwin, L. E. Battoe, M. F. Coveney, E. F. Lowe, R. Roth, W.

W. Morris, & C. Hawkins, 2013. Effect of a size-selective biomanipulation on nutrient

release by gizzard shad in Florida (USA) lakes. Knowledge and Management of

Aquatic Ecosystems 411: 13.

Schaus, M. H., & M. J. Vanni, 2000. Effects of Gizzard shad on phytoplankton and

nutrient dynamics: role of sediment feeding and fish size. Ecology 81: 1701–1719.

Scheffer, M., R. Portielje, & L. Zambrano, 2003. Fish facilitate wave resuspension of

sediment. Limnology and Oceanography 48: 1920–1926.

Søndergaard, M., J. P. Jensen, & E. Jeppesen, 1999. Internal phosphorus loading in

shallow Danish lakes. 145–152.

Søndergaard, M., J. P. Jensen, & E. Jeppesen, 2003. Role of sediment and internal

loading of phosphorus in shallow lakes. Hydrobiologia 506-509: 135–145.

Søndergaard, M., E. Jeppesen, J. P. Jensen, & T. Lauridsen, 2000. Lake restoration in

Denmark. Lakes and Reservoirs: Research and Management 5: 151–159.

Van der Molen, D. T., & P. C. M. Boers, 1994. Influence of internal loading on

phosphorus concentration in shallow lakes before and after reduction of the external

loading In Mortensen, E., E. Jeppesen, M. Sondergaard, & L. K. Nielsen (eds), Nutrient

Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes. Springer

Netherlands.: 279–389.

Volta, P., E. Jeppesen, B. Leoni, B. Campi, P. Sala, L. Garibaldi, T. L. Lauridsen, & I.

J. Winfield, 2013. Recent invasion by a non-native cyprinid (common bream Abramis

Page 54: Adição de policloreto de alumínio e remoção de peixes bentívoros

54

brama) is followed by major changes in the ecological quality of a shallow lake in

southern Europe. Biological Invasions 15: 2065–2079.

Welch, E. B., & G. D. Cooke, 2005. Internal Phosphorus Loading in Shallow Lakes:

Importance and Control. Lake and Reservoir Management 21: 209–217.

Page 55: Adição de policloreto de alumínio e remoção de peixes bentívoros

55

Tables and Figures

Figure 1. Average values (±1 SD) of turbidity, Secchi depth, total phosphorus and

chlorophyll-a concentrations in the four treatments and in the reservoir during the

experiment. F-ratios and P-values of the two-way repeated measures ANOVA

interactions terms of time (T) with fish removal (F), PAC addition (Al) and the

interaction of the two factors (F x Al) are shown inside each graph. Values were

considered significant assuming α = 0.05.

Page 56: Adição de policloreto de alumínio e remoção de peixes bentívoros

56

Figure 2. F-ratios and P-values of the two-way repeated measures ANOVA to test

for the effects of fish removal (F), PAC addition (Al) and their interaction (F x Al)

on water turbidity, Secchi depth, total phosphorus and chlorophyll-a

concentrations. Means (dots) and standard deviation (bars) of each variable in the

treatments with (black) and without (white) PAC addition are shown in the graph.

Values were considered significant assuming α = 0.05.

Page 57: Adição de policloreto de alumínio e remoção de peixes bentívoros

57

Figure 3. Average (+ 1 SD) fish biomass at the start and end of the experiment in

treatments without (-AL+F) and with PAC addition (+Al+F).

Page 58: Adição de policloreto de alumínio e remoção de peixes bentívoros

58

CAPÍTULO III. The use of polyaluminium chloride as a

restoration measure to improve water quality in tropical

shallow lakes

Araújo, F.1, Santos, H. R.2, Becker, V.2 and Attayde, J. L.3

1 Programa de Pós-Graduação em Ecologia. Universidade Federal do Rio Grande do Norte (UFRN),

Natal – RN – Brasil.2 Departamento de Engenharia Civil, Centro de Tecnologia. Universidade Federal do Rio Grande do

Norte (UFRN), Natal – RN – Brasil.3 Departamento de Ecologia, Centro de Biociências. Universidade Federal do Rio Grande do Norte

(UFRN), Natal – RN – Brasil.

Abstract

The internal phosphorus loading is considered the major cause of delay in shallow lake

restoration after reduction of external P loading. The most common and used technique

to reduce the internal loading is the precipitation and inactivation of phosphorus by

coagulants, especially those based on aluminium. Polyaluminium chloride (PAC) has a

good coagulation performance due to its wider pH range, lower sensitivity to low water

temperature, lower doses required and lower residual Al concentrations in comparison

to non-polymerized aluminium-based coagulants. Direct application of PAC into lakes

has been proposed as a cheap tool for water quality management. The aim of this study

was to evaluate the performance of PAC in water quality improvement of six eutrophic

shallow lakes in Brazilian semiarid region through laboratory jar tests. The results

showed that PAC had a good performance in reducing total phosphorus concentrations

and turbidity, with a reduced efficiency in removing chlorophyll-a and humic

substances by sedimentation of flocks formed. Addition of PAC is a potential tool for

water quality improvement of eutrophic shallow lakes in Brazilian semiarid region but

its efficiency depends on the pH and particulate and dissolved organic matter

concentration in the lake or reservoir water.

Page 59: Adição de policloreto de alumínio e remoção de peixes bentívoros

59

Key-words: polyaluminium chloride, phosphorus removal, turbidity removal, lake

restoration, semiarid region

1. Introduction

The internal phosphorus (P) loading from P-rich sediments is considered the

major cause of delay in shallow lake restoration after reduction of external P loading

(Marsden, 1989; Jeppesen et al., 1991; Van der Molen & Boers, 1994; Søndergaard et

al., 2000, 2003). As a result, several chemical methods have been applied to control P

internal loading worldwide (Welch & Cooke, 1999; Reitzel et al., 2005; Gibbs et al.,

2011; Lürling & van Oosterhout, 2013; Spears et al., 2013). The most common and

used technique is the precipitation and inactivation of phosphorus by coagulants,

especially those based on aluminium (Al) (Cooke et al., 2005). When Al salts are added

to water, Al+3 preferable reacts with PO4-3 and forms a precipitate which can be

removed from the water column after coagulation, flocculation and subsequent

sedimentation. Besides this, coagulation and flocculation are also able to remove

inorganic and organic suspended particles (Jiang and Graham, 1998), turbidity and total

phosphorus from the water column. Among the Al-based coagulants, the aluminium

sulphate (Al2(SO4)3), or alum, is the most commonly used chemical in lake restoration.

Its effectiveness in removing phosphorus has been reported in several laboratory and

whole-lake experiments (Welch & Schrieve, 1994; Hullebusch et al., 2002;

Lewandowski et al., 2003). However alum may result in high concentration of residual

Al and is strongly affected by temperature (Van Benschoten & Edzwald, 1990) and pH.

In order to improve coagulation process pre-hydrolysed Al-based coagulants as

polyaluminium chloride (PAC) were developed. Polyaluminium coagulants are made by

the partial hydrolysis of acid aluminum chloride in controlled conditions and do not

consume the alkalinity from water. Thus, PAC has a superior coagulation performance

than alum due to its wider pH range, lower sensitivity to low water temperature, lower

doses required and lower residual Al concentrations (Jiang & Graham, 1998b). A

number of laboratory experimental studies has shown the superior performance of PAC

in both turbidity and phosphorus removal (Reitzel et al., 2003; Gao et al., 2005; Chen &

Page 60: Adição de policloreto de alumínio e remoção de peixes bentívoros

60

Luan, 2010; Julio et al., 2010; Yang et al., 2010). The application of PAC in whole lake

experiments has shown its efficacy in removing phosphorus from the water column

(Reitzel et al., 2005; Lopata & Gawrońska, 2008; Egemose et al., 2011; Jancula &

Maršálek, 2012) and turbidity even at low dose (1.5 mg Al.L-1) in shallow lakes

(Hullebusch et al., 2002), and it has been suggested as a lake restoration measure.

Coagulation-flocculation process is directly affected by the presence of particles

and dissolved organic matter present in the water (Edzwald, 1993) and also by water

chemistry (pH and alkalinity) (Pernitsky & Edzwald, 2006). PAC was developed to

depress alkalinity consumption but its efficiency is pH dependent. The effectiveness of

PAC coagulation is affected by aluminium speciation after its application in water

which in turns is determined by pH (Edzwald, 1993). At pH of 6.0-7.0 the chemical

species of hydrolyzed aluminium are highly charged and very efficient in particles and

dissolved organic matter removal (Yan et al., 2008a, 2008b). Algae also can affect

coagulation due to characteristics such as morphology, motility, surface charge and

algogenic organic matter (Henderson et al., 2008a, 2010).

In the tropical semi-arid region of Northeastern Brazil there are thousands of

eutrophic man-made lakes that are used for water supply despite of constant blooms of

toxic cyanobacteria. Direct application of PAC into these lakes have been proposed as a

cheap tool for water quality management, but no previous study have investigated the

effectiveness of PAC in removing turbidity and phosphorus in these lakes. The aim of

this study was to evaluate the performance of polyaluminium chloride in water quality

improvement of six eutrophic shallow lakes in Brazilian semiarid region through

laboratory jar tests. The performance was evaluated in terms of turbidity and

phosphorus removal and also for humic substances and chlorophyll-a.

2. Material and methods

Raw water

Water samples were collected from the pelagic region of six reservoirs in Rio

Grande do Norte State, Brazil: Gargalheiras, Passagem das Traíras, Boqueirão,

Dourados, Cruzeta and Timbaúba reservoir. The samples were kept in laboratory, at

room temperature, by up to 48h before the start of the experiments. The turbidity (NTU;

Turbidimeter AP2000), concentrations of chlorophyll-a (Jespersen & Christoffersen,

Page 61: Adição de policloreto de alumínio e remoção de peixes bentívoros

61

1988) and concentrations of total phosphorus (Valderrama, 1981; Murphy & Riley,

1962) were measured to caracterize the raw water.

Coagulant dose

The coagulant used were polyalumnium chloride (PAC; PANFLOC TE1018 –

Pan-Americana S/A), as liquid (16-18% of Al2O3). A stock solution were prepared at a

concentration of 1 g Al.L-1. Six doses were tested: 0, 2, 4, 6, 8 e 10 mg Al.L-1.

Jar Test

Standard jar test equipment (PoliControl – FlocControl III with 6 probes of two

liters capacity each) was used in a conventional assay method: rapid mixing,

flocculation and sedimentation (Table 1). Two liters of raw water were transferred to

each 2 L probes. The coagulant was dosed just after starting the rapid mixing step. All

experiments were carried out in room temperature at 24°C (±1°). After sedimentation

time, samples were collected from 7 cm below the water surface for subsequent

analysis. Turbidity, pH, temperature and total phosphorus were measured in the

collected sample. A subsample was filtrated (Whatman GF/C) to measure chlorophyll-a

and also UV254 absorbance (1 cm quartz cell; Shimadzu spectrophotometer). UV254 was

measured to indicate the content of dissolved organic matter (DOM), mainly as humic

substances (Leenheer and Croué, 2003).

Data analysis

PAC performance was evaluated in terms of removal efficiency (R.E.) by

sedimentation of flocks, as percentage reduction of chlorophyll-a and total phophorus

concentration, turbidity and UV254 absorbance. The chosen dose is the minimal dose

required to reduce in 50% the values of the variables. We evaluated correlations

between the PAC performance at the chosen dose and initial chlorophyll-a

concentration and pH using Spearman correlation test (r; α < 0.05).

Page 62: Adição de policloreto de alumínio e remoção de peixes bentívoros

62

3. Results

Initial Conditions of raw water

All reservoirs were classified as eutrophic according to Thornton and Rast

(1993) as they had chlorophyll-a concentrations > 15 µg L-1 and total phosphorus

concentration > 50 µg L-1(Table 2). Gargalheiras and Passagem das Traíras showed the

highest chlorophyll-a and total phosphorus concentrations.

PAC performance

The pH decreased as PAC dose increased with the coagulant application but

final pH was always above 6.5 (data not shown). In general, the removal efficiency

increased sharply from dose 2 to 4 mg Al.L-1, achieving higher values between the dose

4 to 6 mg Al.L-1 for all variables (Fig. 1). The increasing in the dose from 6 to 10 mg

Al.L-1 did not cause a substancial increasing in the efficiency for total phosphorus,

chlorophyll-a and turbidity removal. However, the efficiency increased continuously

with the increasing of the Al dose for UV254 removal where only the highest doses

showed an efficiency above 50%. All doses tested removed less than 50% of total

phosphorus, turbidity, UV254 and chlorophyll-a for Passagem das Traíras reservoir (Fig.

1).

For most reservoirs, the minimal dose required to reduce in at least 50% the

concentrations of the variables was 4 mg Al.L-1 (Fig. 2). This dose resulted in turbidity

values ≤ 10 NTU, total phosphorus concentration ≤ 50 µg L-1 and chlorophyll-a

concentration ≤ 15 µg L-1 for Cruzeta, Timabúba e Dourados reservoirs. Boqueirão

reservoir water achieved a turbidity of 10.3 NTU and had total phophorus concentration

reduced to values below 50 µg L-1 but clorophyll-a concentration remained above 15 µg

L-1. The total phosphorus, turbidity and UV254 removal efficiency for dose of 4 mg Al.L-

1 was significantly negatively correlated with the initial chlorophyll-a concentration and

pH (Fig. 3). The highest total phosphorus and turbidity removal were observed for

chlorophyll-a concentration range of 18.8-39.9 µg L-1 and pH range of 6.8-7.9. The

highest UV254 removal was observed for the same pH range but for even lower

chlorophyll-a concentration (18.8-27.3 µg L-1).

Page 63: Adição de policloreto de alumínio e remoção de peixes bentívoros

63

4. Discussion

In general, PAC showed good performance in removing total phosphorus

concentrations and turbidity, but its efficiency was affected by chlorophyll-a and pH.

We suggested that 4 mg Al.L-1 is the best dose (better cost-benefit) to be applied in most

of reservoirs tested. This dose changed the trophic state of water from eutrophic to

oligo-mesotrophic conditions in Cruzeta, Timabúba e Dourados reservoirs and had

intermediary effects on Boqueirão water in laboratory tests. The efficiency in total

phosphorus removal is reported for in-lake PAC application (Reitzel et al., 2005; Lopata

& Gawrońska, 2008; Egemose et al., 2011; Jancula & Maršálek, 2012). However, PAC

showed a low efficiency in improving water quality in Gargalheiras and Passagem das

Traíras reservoirs.

The evaluation of PAC performance was investigated in terms of removal

efficiency of variables after settling time of thirty minutes. Low performances indicates

problems in sedimentation which can caused by poor coagulation or flocculation. High

chlorophyll-a concentration, pH and humic substances in initial conditions probably are

the causes of the low efficiency removal of flocks formed by PAC in Gargalheiras and

Passagem das Traíras water. Our correlations showed that total phosphorus, turbidity

and UV254 removal efficiency are correlated with higher values in initial pH and

chlorophyll-a concentrations. Initial pH has been reported to affect coagulation

performance of PAC (Yang et al., 2010). In the maximal PAC performance pH was

found to be around the neutral (Hu et al., 2006; Julio et al., 2010). Coagulation is

favorable for a pH range of 6.0-7.0 due to presence of positively charged Al species

promoting flock formation (Pernitsky & Edzwald, 2006) which determines the

coagulation performance (Yan et al., 2008a). After the dose application of 4 mg Al.L-1

the pH remain above 8.0 in Gargalheiras and Passagem das Traíras water thereby

making the coagulation difficult. It has been suggested that high alkaline waters requires

a higher PAC dose to achieve pH values favorable to coagulation (Hu et al., 2006).

The coagulation process induces the formation of flocks with differents size,

charge and density, factors that influence directly in flock sedimentation. Flocks formed

by algae cells have low density making them difficult to settle (Edzwald, 1993;

Henderson et al., 2008b). Algae cells contains components that provide a density lower

than water to allow them to stay at euphotic zone. Lipid accumulation, mucilage

production, ionic regulation and gas vesicules are components of algal cell to avoid

Page 64: Adição de policloreto de alumínio e remoção de peixes bentívoros

64

sedimentation (Reynolds, 2006). Extracellular and surface-retained organic matter

produced by algae are reported to inhibit floc formation ((Henderson et al., 2008a,

2010). Lipopolysaccharide on cell surface of Microcystis aeruginosa produced by the

excess of growth exhibited inhibitory effects on PAC coagulation (Takaara et al., 2010),

which can be one important cause of the increase in coagulant demand in algae-rich

waters (Takaara et al., 2007). Also the flocculation process is negatively affected by the

presence of dissolved organic matter present in the water (Edzwald, 1993), particularly

humic susbtances. Humic substances are highly negatively charged (Yan et al., 2008a),

which increases with increasing the pH and by adsorbing onto the surfaces of natural

particles (Pernitsky & Edzwald, 2006). Maximal UV254 removal was observed to be

found around pH 6.0 (Yan et al., 2008b; Yang et al., 2010). The aquatic humic

substances form complexes with dissolved aluminium species which are removed by

adsorbing onto a solid, making the coagulation difficult in waters with both algae and

humic susbtances (Pernitsky & Edzwald, 2006).

In summary we consider PAC application a good restoration technique for

Cruzeta, Timbaúba and Dourados reservoirs. For Gargalheiras and Passagem das

Traíras reservoirs, with high pH and particulate and dissolved organic matter

concentration, we suggest PAC dose > 10 mg Al.L-1 to reduce the trophic state.

Addition of polyaluminium chloride is a potential tool for water quality

improvement of eutrophic shallow lakes in Brazilian semiarid region but its efficiency

depends on the pH and particulate and dissolved organic matter concentration in the

lake or reservoir water.

Acknowledgements

We thank the participants of the MEVEMUC/FINEP and ESEC/CNPq projects for the

provision of water from the reservoirs to the tests.

Page 65: Adição de policloreto de alumínio e remoção de peixes bentívoros

65

References

Chen, J., & Z. Luan, 2010. Enhancing phosphate removal by coagulation using

polyelectrolytes and red mud. Fresenius Environmental Bulletin 19: 2200–2204.

Cooke, G. D., E. B. Welch, S. A. Peterson, & S. A. Nichols, 2005. Restoration and

Management of Lakes and Reservoirs. CRC Press.

Edzwald, J. K., 1993. Coagulation in drinking water treatment: particles, organics and

coagulants. Water Science and Technology 27: 21–35.

Egemose, S., I. de Vicente, K. Reitzel, M. R. Flindt, F. Ø. Andersen, T. L. Lauridsen,

M. Søndergaard, E. Jeppesen, H. S. Jensen, & Y. Prairie, 2011. Changed cycling of P,

N, Si, and DOC in Danish Lake Nordborg after aluminum treatment. Canadian Journal

of Fisheries and Aquatic Sciences 68: 842–856.

Gao, B., Y. Chu, Q. Yue, B. Wang, & S. Wang, 2005. Characterization and coagulation

of a polyaluminum chloride ( PAC ) coagulant with high Al 13 content. Journal of

Environmental Management 76: 143–147.

Gibbs, M. M., C. W. Hickey, & D. Özkundakci, 2011. Sustainability assessment and

comparison of efficacy of four P-inactivation agents for managing internal phosphorus

loads in lakes: sediment incubations. Hydrobiologia 658: 253–275.

Henderson, R. K., A. Baker, S. A. Parsons, & B. Jefferson, 2008a. Characterisation of

algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water

Research 42: 3435–3445.

Henderson, R. K., S. A. Parsons, & B. Jefferson, 2010. The impact of differing cell and

algogenic organic matter (AOM) characteristics on the coagulation and flotation of

algae. Water Research 44: 3617–3624.

Henderson, R., S. A. Parsons, & B. Jefferson, 2008b. The impact of algal properties and

pre-oxidation on solid-liquid separation of algae. Water research 42: 1827–1845.

Page 66: Adição de policloreto de alumínio e remoção de peixes bentívoros

66

Hu, C., H. Liu, J. Qu, D. Wang, & J. Ru, 2006. Coagulation Behavior of Aluminum

Salts in Eutrophic Water : Significance of Al 13 Species and pH Control. Environmental

Science Technology 40: 325–331.

Hullebusch, E. Van, V. Deluchat, P. M. Chazal, & M. Baudu, 2002. Environmental

impact of two successive chemical treatments in a small shallow eutrophied lake : Part I

. Case of aluminium sulphate. Environmental Pollution 120: 617–626.

Jancula, D., & B. Maršálek, 2012. Seven years from the first application of

polyaluminium chloride in the Czech Republic – effects on phytoplankton communities

in three water bodies. Chemistry and Ecology 28: 535–544.

Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen, & T.

Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus

loading of shallow eutrophic Danish lakes: duration, regulating factors and methods to

overcoming resilience. Memorie dell’Istituto Italiano di Idrobiologia Mem. Ist. Ital.

Idrobiol. 48: 127–148.

Jiang, J.-Q., & N. J. D. Graham, 1998. Pre-polymerised inorganic coagulants and

phosphorus removal by coagulation - A review. Water SA 24: 237–244.

Julio, M., D. A. Fioravante, T. S. De Julio, F. I. Oroski, & N. J. D. Graham, 2010. A

methodology for optimising the removal of cyanobacteria cells from a brazilian

eutrophic water. Brazilian Journal of Chemical Engineering 27: 113–126.

Lewandowski, J., I. Schauser, & M. Hupfer, 2003. Long term effects of phosphorus

precipitations with alum in hypereutrophic Lake S usser. Water Research 37: 3194–

3204.

Lopata, M., & H. Gawrońska, 2008. Phosphorus immobilization in Lake Głęboczek

following treatment with polyaluminum chloride. Oceanological and Hydrobiological

Studies 37: 99–105.

Lürling, M., & F. van Oosterhout, 2013. Controlling eutrophication by combined bloom

precipitation and sediment phosphorus inactivation. Water research 47: 6527–6537.

Page 67: Adição de policloreto de alumínio e remoção de peixes bentívoros

67

Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the

influence of sediment phosphorus release. Freshwater Biology 21: 139–162.

Pernitsky, D. J., & J. K. Edzwald, 2006. Practical Paper Selection of alum and

polyaluminum coagulants : principles and applications. Journal of Water Supply:

Research and Technology - AQUA 55: 121–141.

Reitzel, K., J. Hansen, F. Ø. Andersen, K. S. Hansen, & H. S. Jensen, 2005. Lake

Restoration by Dosing Aluminum Relative to Mobile Phosphorus in the Sediment.

Environmental Science & Technology 39: 4134–4140.

Reitzel, K., J. Hansen, H. S. Jensen, F. Ø. Andersen, & K. S. Hansen, 2003. Testing

aluminum addition as a tool for lake restoration in shallow, eutrophic Lake Sønderby,

Denmark. Hydrobiologia 506-509: 781–787.

Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press 2006.

Søndergaard, M., J. P. Jensen, & E. Jeppesen, 2003. Role of sediment and internal

loading of phosphorus in shallow lakes. Hydrobiologia 506-509: 135–145.

Søndergaard, M., E. Jeppesen, J. P. Jensen, & T. Lauridsen, 2000. Lake restoration in

Denmark. Lakes and Reservoirs: Research and Management 5: 151–159.

Spears, B. M., M. Lürling, S. Yasseri, A. T. Castro-Castellon, M. Gibbs, S. Meis, C.

McDonald, J. McIntosh, D. Sleep, & F. Van Oosterhout, 2013. Lake responses

following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of

water column lanthanum data from 16 case study lakes. Water research 47: 5930–5942.

Takaara, T., D. Sano, H. Konno, & T. Omura, 2007. Cellular proteins of Microcystis

aeruginosa inhibiting coagulation with polyaluminum chloride. Water Research 41:

1653–1658.

Takaara, T., D. Sano, Y. Masago, & T. Omura, 2010. Surface-retained organic matter of

Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking

water treatment. Water Research Elsevier Ltd 44: 3781–3786.

Page 68: Adição de policloreto de alumínio e remoção de peixes bentívoros

68

Van Benschoten, J. E., & J. K. Edzwald, 1990. Chemical aspects of coagulation using

aluminum salts—II. coagulation of fulvic acid using alum and polyaluminum chloride.

Water Research 24: 1527–1535.

Van der Molen, D. T., & P. C. M. Boers, 1994. Influence of internal loading on

phosphorus concentration in shallow lakes before and after reduction of the external

loading In Mortensen, E., E. Jeppesen, M. Sondergaard, & L. K. Nielsen (eds), Nutrient

Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes. Springer

Netherlands.: 279–389.

Welch, E. B., & G. D. Cooke, 1999. Effectiveness and Longevity of Phosphorus

Inactivation with Alum. Lake and Reservoir Management 15: 5–27.

Welch, E. B., & G. D. Schrieve, 1994. Alum treatment effectiveness in and longevity in

shallow lakes In Mortensen, E., E. Jeppesen, M. Sondergaard, & L. K. Nielsen (eds),

Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes.

Springer Netherlands.: 423–431.

Yan, M., D. Wang, J. Ni, J. Qu, C. W. K. Chow, & H. Liu, 2008a. Mechanism of

natural organic matter removal by polyaluminum chloride: effect of coagulant particle

size and hydrolysis kinetics. Water research 42: 3361–3370.

Yan, M., D. Wang, J. Yu, J. Ni, M. Edwards, & J. Qu, 2008b. Enhanced coagulation

with polyaluminum chlorides: role of pH/alkalinity and speciation. Chemosphere 71:

1665–1673.

Yang, Z., B. Gao, & Q. Yue, 2010. Coagulation performance and residual aluminum

speciation of Al2(SO4)3 and polyaluminum chloride (PAC) in Yellow River water

treatment. Chemical Engineering Journal Elsevier B.V. 165: 122–132.

Page 69: Adição de policloreto de alumínio e remoção de peixes bentívoros

69

Tables and Figures

Table 1. Jar test conditions.

Table 2. pH, Turbidity, absorbance at UV 254nm, total phosphorus (TP) and chlorophyll-

a concentrations in raw water used for jar tests.

Page 70: Adição de policloreto de alumínio e remoção de peixes bentívoros

70

Figure 1. Removal efficiency (%) for total phosphorus (TP), turbidity (NTU), humic

substances (UV254) and chlorophyll-a (Chl-a) in raw water from Dourados (DOU),

Timbaúba (TIM), Cruzeta (CRU), Boqueirão (BOQ), Gargalheiras (GAR) and Passagem

das Traíras (PTR) reservoirs, after coagulation-flocculation with different concentrations

of aluminium (0, 2, 4, 6, 8 and 10 mg Al L-1) and 30 minutes of sedimentation.

Page 71: Adição de policloreto de alumínio e remoção de peixes bentívoros

71

Figure 2. Removal efficiency (%) for total phosphorus (TP), turbidity (NTU), humic

substances (UV254) and chlorophyll-a (Chl-a) in raw water from Dourados (DOU),

Timbaúba (TIM), Cruzeta (CRU), Boqueirão (BOQ), Gargalheiras (GAR) and Passagem

das Traíras (PTR) reservoirs, after coagulation-flocculation with the dose of 4 mg Al L-1

and 30 minutes of sedimentation.

Page 72: Adição de policloreto de alumínio e remoção de peixes bentívoros

72

Figure 3. Correlations between chlorophyll-a concentration and pH with total phosphorus

(TP), turbidity and UV254 removal efficiency (%) based on the dose of 4 mg Al L-1.

Page 73: Adição de policloreto de alumínio e remoção de peixes bentívoros

73

Considerações Finais

Os resultados desta tese mostraram que uma melhoria na qualidade da água dos

reservatórios da região semiárida podem ser alcançada através da precipitação do

fósforo e da remoção de peixes bentívoros, sendo os efeitos somados quando as técnicas

são combinadas.

A combinação do floculante policloreto de alumínio (PAC) e da argila bentonita

modificada com lantânio (LMB) foi efetiva em sedimentar florações de diferentes cepas

de C. raciborskii, resultado este que não foi obtido quando PAC ou LMB foi aplicado

sozinhos. Esse resultado ressalta a importância de adicionar ‘peso’ aos flocos formados

a partir de florações de cianobactérias que são capazes de regular sua flutuabilidade na

água. Em seguida, foi observado que esta técnica é capaz de controlar o crescimento

desta cianobactéria a partir da coagulação e limitação do crescimento por fósforo, mas

que esse efeito é dependente da dose, da cepa e da biomassa da cianobactéria no

momento da aplicação.

Quando aplicado em um lago raso eutrofizados (escala de mesocosmo), o PAC

apresentou resultado positivos, reduzindo a carga interna de fósforo e aumentando a

transparência da água, resultado semelhante a remoção do peixe bentívoro dominante no

lago. O experimento também mostrou que esses efeitos são aditivos e que estas técnicas

juntas apresentaram um melhor resultado.

O policloreto de alumínio é um composto químico de baixo custo e de fácil

aplicação, quando comparado a outros compostos. A remoção seletiva de peixes se

apresenta com uma técnica simples e pode ser realizado através de parcerias com

pescadores, beneficiando assim o ecossistema aquático e a economia local. A

combinação dessas técnicas aumentam as chances de sucesso, possibilitando assim a

aplicabilidade na região. A avaliação da eficiência do PAC em melhorar a qualidade da

água de outros seis reservatórios eutrofizados do semiárido mostraram que este

coagulante apresenta uma boa performance em remover turbidez e fósforo total, sendo a

eficiência reduzida com o aumento da biomassa de clorofila e pH. Contudo, o PAC

apresentou baixa eficiência em melhorar a qualidade da água em ambientes onde a

biomassa fitoplanctônica foi muito elevada. Baseado nos resultados dos experimentos

de sedimentação (capítulo 1), podemos supor que o uso de uma argila natural da região

pode ser necessário para a efetiva sedimentação dos flocos formados.

Page 74: Adição de policloreto de alumínio e remoção de peixes bentívoros

74

Os resultados desta tese foram obtidos a partir de experimentos de curta duração

em laboratório e em escala de mesocosmo. A longevidade desses resultados deve ser

investigada em experimentos com lago inteiro e numa maior escala de tempo. Outro

ponto relevante é a implementação de um plano de manejo contínuo que envolva

aplicações periódicas do coagulante associada à manutenção da população de peixes

bentívoros em baixa densidade em reservatórios eutrofizados. Com o passar do tempo,

nova matéria orgânica e inorgânica será depositada sobre a cobertura do coagulante no

sedimento, que será então degradada, liberando os nutrientes do sedimento para a água.

Além disso, novos experimentos são necessários para se determinar a densidade mínima

de peixe necessária para que os efeitos da ressuspensão de nutrientes e sedimento sejam

minimizados.

Os resultados deste estudo mostram que é possível melhorar a qualidade da água

de reservatórios eutrofizados no semiárido brasileiro através do controle da carga

interna de nutrientes, seja pela precipitação e inativação do fósforo no sedimento, como

também pela inibição da liberação do fósforo estocado no sedimento por peixes

bioturbadores, e que os resultados se somam quando as técnicas são aplicadas em

conjunto.

Page 75: Adição de policloreto de alumínio e remoção de peixes bentívoros

75

Referências

Andersen, J. M., 1982. Effect of nitrate concentration in lake water on phosphate release

from the sediment. Water Research 16: 1119–1126.

Andersson, G., H. Berggren, G. Cronberg, & C. Gelin, 1978. Effects of planktivorous

and benthivorous fish on organisms and water chemistry in eutrophic lakes.

Hydrobiologia 59: 9–15.

Auvray, F., E. D. van Hullebusch, V. Deluchat, & M. Baudu, 2006. Laboratory

investigation of the phosphorus removal (SRP and TP) from eutrophic lake water

treated with aluminium. Water research 40: 2713–2719.

Baker, J. P., & C. L. Schofield, 1982. Aluminum Toxicity to Fish in Acidic Waters In

Martin, H. C. (ed), Long-Range Transport of Airborne Pollutants. Springer Netherlands:

289–309.

Barbosa, J. E. de L., E. S. F. Medeiros, J. Brasil, R. da S. Cordeiro, M. C. B. Crispim, &

G. H. G. da Silva, 2012. Aquatic systems in semi-arid Brazil: limnology and

management. Acta Limnologica Brasiliensia 24: 103–118.

Beaulieu, S. E., M. R. Sengco, & D. M. Anderson, 2005. Using clay to control harmful

algal blooms: deposition and resuspension of clay/algal flocs. Harmful Algae 4: 123–

138.

Beklioglu, M., M. Meerhoff, M. Sondergaard, & E. Jeppesen, 2011. Eutrophication and

restoration of shallow lakes from a cold temperate to a warm mediterranean and a

(sub)tropical climate Eutrophication: causes, consequences and control. Springer

Netherlands: 91–108.

Boers, P., W. Van Raaphorst, & D. T. Van der Molen, 1998. Phosphorus retention in

sediments. Water Science and Technology International Association on Water Quality

37: 31–39.

Page 76: Adição de policloreto de alumínio e remoção de peixes bentívoros

76

Boström, B., J. M. Andersen, S. Fleischer, & M. Jansson, 1988. Exchange of

phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.

Bouvy, M., D. Falcão, M. Marinho, M. Pagano, & A. Moura, 2000. Occurrence of

Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998

drought. Aquatic Microbial Ecology 23: 13–27.

Bouvy, M., R. Molica, S. De Oliveira, M. Marinho, & B. Beker, 1999. Dynamics of a

toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in

the semi-arid region of northeast Brazil. Aquatic Microbial Ecology 20: 285–297.

Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. K. Breteler, & I. Tátrai, 1994. Effects

of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment

resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biology 32:

113–121.

Burford, M. a., & T. W. Davis, 2011. Physical and chemical processes promoting

dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chinese

Journal of Oceanology and Limnology 29: 883–891.

Carpenter, S. R., 2008. Phosphorus control is critical to mitigating eutrophication.

Proceedings of the National Academy of Sciences of the United States of America 105:

11039–11040.

Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, & V. H.

Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen.

Ecological Applications 8: 559–568.

Carpenter, S. R., J. F. Kitchell, & J. R. Hodgson, 1985. Cascading trophic interactions

and lake productivity. BioScience 35: 634–639.

Chellappa, S., R. M. X. Bueno, T. Chellappa, N. T. Chellappa, & V. M. F. Almeida e

Val, 2009. Reproductive seasonality of the fish fauna and limnoecology of semi-arid

Brazilian reservoirs. Limnologica Elsevier 39: 325–329.

Page 77: Adição de policloreto de alumínio e remoção de peixes bentívoros

77

Chen, J., & Z. Luan, 2010. Enhancing phosphate removal by coagulation using

polyelectrolytes and red mud. Fresenius Environmental Bulletin 19: 2200–2204.

Chorus, I., & J. Bartram, 1999. Toxic Cyanobacteria in Water: A guide to their public

health consequences, monitoring and management. Spon Press.

Chow, C. W. K., J. House, R. M. A. Velzeboer, M. Drikas, M. D. Burch, & D. A.

Steffensen, 1998. The effect of ferric chloride flocculation. 32: 808–814.

Cline, J. M., T. L. East, & S. T. Threlkeld, 1994. Fish interactions with the sediment-

water interface. Hydrobiologia 275/276: 301–311.

Cooke, G. D., E. B. Welch, S. A. Peterson, & S. A. Nichols, 2005. Restoration and

Management of Lakes and Reservoirs. CRC Press.

Costa, I. A. S., S. R. D. S. Cunha, R. Panosso, M. F. F. Araújo, J. L. D. S. Melo, & E.

M. Eskinazi-Sant’Anna, 2009. Dinâmica De Cianobactérias Em Reservatórios

Eutróficos Do Semi-Árido Do Rio Grande Do Norte. Oecologia Australis 13: 382–401.

Da Costa, I. A. S., S. M. F. O. Azevedo, P. A. C. Senna, R. R. Bernardo, S. M. Costa, &

N. T. Chellappa, 2006. Occurrence of toxin-producing cyanobacteria blooms in a

brazilian semiarid reservoir. Brazilian Journal of Biology 66: 211–219.

Dantas, D. D. F., 2015. Causas e consequências da onivoria de peixes em ecossistemas

aquáticos. Universidade Federal do Rio Grande do Norte.

Deppe, T., & J. Benndorf, 2002. Phosphorus reduction in a shallow hypereutrophic

reservoir by in-lake dosage of ferrous iron. Water Research 36: 4525–4534.

Dokulil, M. T., & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia

438: 1–12.

Douglas, G. B., 2002. Remediation material and remediation process for sediment.

USA.

Page 78: Adição de policloreto de alumínio e remoção de peixes bentívoros

78

Drikas, M., C. W. K. Chow, J. House, & M. D. Burch, 2001. Using coagulation,

flocculation, and settling to remove toxic cyanobacteria. Journal American Water

Works Association 93: 100–111.

Edzwald, J. K., 1993. Coagulation in drinking water treatment: particles, organics and

coagulants. Water Science and Technology 27: 21–35.

Egemose, S., I. de Vicente, K. Reitzel, M. R. Flindt, F. Ø. Andersen, T. L. Lauridsen,

M. Søndergaard, E. Jeppesen, H. S. Jensen, & Y. Prairie, 2011. Changed cycling of P,

N, Si, and DOC in Danish Lake Nordborg after aluminum treatment. Canadian Journal

of Fisheries and Aquatic Sciences 68: 842–856.

Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters.

Hydrobiologia 272: 105–123.

Foy, R. H., 1986. Suppression of phosphorus release from lake sediments by the

addition of nitrate. 20: 1345–1351.

Freda, J., 1991. The Effects of Aluminum and Other Metals on Amphibians.

Environmental Pollution 71: 305–328.

Gächter, R., & B. Wehrli, 1998. Ten Years of Artificial Mixing and Oxygenation: No

Effect on the Internal Phosphorus Loading of Two Eutrophic Lakes. Environmental

Science & Technology 32: 3659–3665.

Gao, B., Y. Chu, Q. Yue, B. Wang, & S. Wang, 2005. Characterization and coagulation

of a polyaluminum chloride ( PAC ) coagulant with high Al 13 content. Journal of

Environmental Management 76: 143–147.

Gibbs, M., & D. Özkundakci, 2010. Effects of a modified zeolite on P and N processes

and fluxes across the lake sediment–water interface using core incubations.

Hydrobiologia 661: 21–35.

Gurgel, J. J. S., & C. H. Fernando, 1994. Fisheries in Semi-Arid Northeast Brazil with

Special Reference to the Role of Tilapias. Int. Revue ges. Hydrobiol. 79: 77–94.

Page 79: Adição de policloreto de alumínio e remoção de peixes bentívoros

79

Hagström, J. a., & E. Granéli, 2005. Removal of Prymnesium parvum (Haptophyceae)

cells under different nutrient conditions by clay. Harmful Algae 4: 249–260.

Havens, K. E., 1993. Acid and aluminum effects on the survival of littoral macro-

invertebrates during acute bioassays. Environmental Pollution 80: 95–100.

Hullebusch, E. Van, V. Deluchat, P. M. Chazal, & M. Baudu, 2002. Environmental

impact of two successive chemical treatments in a small shallow eutrophied lake : Part I

. Case of aluminium sulphate. Environmental Pollution 120: 617–626.

Hupfer, M., & J. Lewandowski, 2008. Oxygen Controls the Phosphorus Release from

Lake Sediments - a Long-Lasting Paradigm in Limnology. International Review of

Hydrobiology 93: 415–432.

Isvánovics, V., H. M. Shafik, M. Présing, & S. Juhos, 2000. Growth and phosphate

uptake kinetics of the cyanobacterium , Cylindrospermopsis raciborskii (Cyanophyceae)

in throughflow cultures. Freshwater Biology 43: 257–275.

Jacobs, P. H., & U. Förstner, 1999. Concept of subaqueous capping of contaminated

sediments with active barrier systems (ABS) using natural and modified zeolites. Water

Research 33: 2083–2087.

Jancula, D., & B. Maršálek, 2012. Seven years from the first application of

polyaluminium chloride in the Czech Republic – effects on phytoplankton communities

in three water bodies. Chemistry and Ecology 28: 535–544.

Jensen, H. S., & F. Ø. Andersen, 1992. Importance of temperature, nitrate, and pH for

phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology

and Oceanography 37: 577–589.

Jensen, H. S., P. Kristensen, E. Jeppesen, & A. Skytthe, 1992. Iron:phosphorus ratio in

surface sediment as an indicator of phosphate release from aerobic sediments in shallow

lakes. Hydrobiologia 235/236: 731–743.

Page 80: Adição de policloreto de alumínio e remoção de peixes bentívoros

80

Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen, & L. Jensen,

1997. Top-down control in freshwater lakes: the role of nutrient state, submerged

macrophytes and water depth. Hydrobiologia 342/343: 151–164.

Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen, & T.

Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus

loading of shallow eutrophic Danish lakes: duration, regulating factors and methods to

overcoming resilience. Memorie dell’Istituto Italiano di Idrobiologia Mem. Ist. Ital.

Idrobiol. 48: 127–148.

Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen,

T. L. Lauridsen, N. Mazzeo, & C. W. C. Branco, 2007. Restoration of shallow lakes by

nutrient control and biomanipulation—the successful strategy varies with lake size and

climate. Hydrobiologia 581: 269–285.

Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho,

M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt,

K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle,

B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D.

Straile, I. Tatrai, E. Willen, & M. Winder, 2005. Lake responses to reduced nutrient

loading - an analysis of contemporary long-term data from 35 case studies. Freshwater

Biology 50: 1747–1771.

Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C.

Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R.

Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus, S. Egemose, & M. Meerhoff,

2012. Chapter 6 - Biomanipulation as a Restoration Tool to Combat Eutrophication:

Recent Advances and Future Challenges. In:Global Change in Multispecies Systems

Part 2. Advances in Ecological Research Elsevier 47: 411–488.

Jiang, J., & N. J. D. Graham, 1998a. Preparation and Characterisation of an Optimal

Polyferric Sulphate (PFS) as a Coagulant for Water Treatment. Journal of Chemical

Technology and Biotechnology 73: 351–358.

Page 81: Adição de policloreto de alumínio e remoção de peixes bentívoros

81

Jiang, J., N. J. D. Graham, & C. Harward, 1993. Comparison of polyferric sulphate with

other coagulants for the removal of algae and algae-derived organic matter. Water

Science and Technology 27: 221–230.

Jiang, J.-Q., & N. J. D. Graham, 1998b. Pre-polymerised inorganic coagulants and

phosphorus removal by coagulation - A review. Water SA 24: 237–244.

Jiang, X., X. Jin, Y. Yao, L. Li, & F. Wu, 2008. Effects of biological activity, light,

temperature and oxygen on phosphorus release processes at the sediment and water

interface of Taihu Lake, China. Water research 42: 2251–2259.

Johannesson, K. H., & W. B. Lyons, 1994. The rare earth element geochemistry of

Mono Lake water and the importance of carbonate complexing. Limnology and

Oceanography 39: 1141–1154.

Julio, M., D. A. Fioravante, T. S. De Julio, F. I. Oroski, & N. J. D. Graham, 2010. A

methodology for optimising the removal of cyanobacteria cells from a brazilian

eutrophic water. Brazilian Journal of Chemical Engineering 27: 113–126.

Kumar, A., 2008. Hypolimnic Withdrawal for Lake Conservation. In Sengupta, M., &

R. Dalwani (eds), Proceedings of Taal 2007: 12th World Lake Conference. : 812–818.

Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation

approachesapply to tropical lakes and reservoirs?. Verhandlungen - Internationale

Vereinigung für theoretische und angewandte Limnologie Schweizerbart 26: 719–730.

Lazzaro, X., M. Bouvy, R. a. Ribeiro-Filho, V. S. Oliviera, L. T. Sales, A. R. M.

Vasconcelos, & M. R. Mata, 2003. Do fish regulate phytoplankton in shallow eutrophic

Northeast Brazilian reservoirs?. Freshwater Biology 48: 649–668.

Lewandowski, J., I. Schauser, & M. Hupfer, 2003. Long term effects of phosphorus

precipitations with alum in hypereutrophic Lake S usser. Water Research 37: 3194–

3204.

Liu, X., & R. H. Byrne, 1997. Rare earth and yttrium phosphate solubilities in aqueous

solution. Geochimica et Cosmochimica Acta 61: 1625–1633.

Page 82: Adição de policloreto de alumínio e remoção de peixes bentívoros

82

Lopata, M., & H. Gawrońska, 2008. Phosphorus immobilization in Lake Głęboczek

following treatment with polyaluminum chloride. Oceanological and Hydrobiological

Studies 37: 99–105.

Lougheed, V. L., B. Crosbie, & P. Chow-Fraser, 1998. Predictions on the effect of

common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and

submergent macrophytes in a Great Lakes wetland. Canadian Journal of Fisheries and

Aquatic Sciences 55: 1189–1197.

Lürling, M., & F. van Oosterhout, 2013. Controlling eutrophication by combined bloom

precipitation and sediment phosphorus inactivation. Water research 47: 6527–6537.

Marengo, J. A., T. Ambrizzi, R. P. Rocha, L. M. Alves, S. V. Cuadra, M. C. Valverde,

R. R. Torres, D. C. Santos, & S. E. T. Ferraz, 2009. Future change of climate in South

America in the late twenty-first century: intercomparison of scenarios from three

regional climate models. Climate Dynamics 35: 1073–1097.

Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the

influence of sediment phosphorus release. Freshwater Biology 21: 139–162.

McGregor, G. B., & L. D. Fabbro, 2000. Dominance of Cylindrospermopsis raciborskii

(Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs:

Implications for monitoring and management. Lakes and Reservoirs: Research and

Management 5: 195–205.

Meijer, M.-L., M. W. de Haan, A. W. Breukelaar, & H. Buiteveld, 1990. Is reduction of

the benthivorous fish an important cause of high transparency following

biomanipulation in shallow lakes?. Hydrobiologia 200-201: 303–315.

Molle, F., 1994. Marcos Históricos e Reflexões sobre a açudagem e seu aproveitamento.

SUDENE, Recife, 193.

Nascimento, W. S., N. H. C. Barros, A. S. Araújo, L. de L. Gurgel, B. Canan, W. F.

Molina, R. S. Rosa, & S. Chellappa, 2014. Composição da ictiofauna das bacias

hidrográficas do Rio Grande do Norte, Brasil. Biota Amazônia 4: 126–131.

Page 83: Adição de policloreto de alumínio e remoção de peixes bentívoros

83

Nurnberg, G. K., 1987a. Hypolimnetic Withdrawal as lake restoration technique.

Journal of Environmental Engineering 113: 1006–1017.

Nurnberg, G. K., 1987b. Hypolimnetic withdrawal as lake restoration technique. Journal

of Environmental Engineering 113: 1006–1017.

Nurnberg, G. K., 1994. Phosphorus release from anoxic sediments: what we know and

how we can deal with it. Limnética 10: 1–4.

Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba

Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review

of its ecology. Archiv Für Hydrobiologie Supplementband Monographische Beitrage

107: 563–593.

Paerl, H. W., H. Xu, M. J. McCarthy, G. Zhu, B. Qin, Y. Li, & W. S. Gardner, 2011.

Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu,

China): the need for a dual nutrient (N & P) management strategy. Water research

Elsevier Ltd 45: 1973–1983.

Pan, G., L. Dai, L. Li, L. He, H. Li, L. Bi, & R. D. Gulati, 2012. Reducing the

Recruitment of Sedimented Algae and Nutrient Release into the Overlying Water Using

Modi fi ed Soil/Sand Flocculation- Capping in Eutrophic Lakes. .

Pan, G., M.-M. Zhang, H. Chen, H. Zou, & H. Yan, 2006a. Removal of cyanobacterial

blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the

flocculation of Microcystis aeruginosa using commercially available clays and minerals.

Environmental pollution (Barking, Essex : 1987) 141: 195–200.

Pan, G., H. Zou, H. Chen, & X. Yuan, 2006b. Removal of harmful cyanobacterial

blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and

an in situ field experiment using chitosan-modified local soils. Environmental pollution

(Barking, Essex : 1987) 141: 206–212.

Panosso, R., I. A. S. Costa, N. R. De Souza, J. L. Attayde, S. R. De, S. Cunha, F. Costa,

& F. Gomes, 2007. cianobactérias e cianotoxinas em reservatórios do estado do Rio

Page 84: Adição de policloreto de alumínio e remoção de peixes bentívoros

84

Grande do Norte e o potencial controle das florações pela tilápia do Nilo (Oreochromis

niloticus). Oecologia Brasiliensis 11: 433–449.

Pernitsky, D. J., & J. K. Edzwald, 2006. Practical Paper Selection of alum and

polyaluminum coagulants : principles and applications. Journal of Water Supply:

Research and Technology - AQUA 55: 121–141.

Pettersson, K., 1998. Mechanisms for internal loading of phosphorus in lakes.

Hydrobiologia 21–25.

Poléo, A. B. S., K. Ostbye, S. A. Oxnnevad, R. A. Andersen, E. Heibo, & L. A.

Vollestad, 1997. Toxicity of acid aluminium-rich water to seven freshwater fish species:

a comparative laboratory study. Environmental Pollution 96: 129–139.

Posselt, A. J., M. a. Burford, & G. Shaw, 2009. Pulses of phosphate promote dominance

of the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir.

Journal of Phycology 45: 540–546.

Postel, S., & S. R. Carpenter, 1997. Freshwater Ecosystem Services In Daily, G. C. (ed),

Nature’s services: societal dependence on natural ecosystems. Island Press,

Washington, D.C.: 195–214.

Reitzel, K., J. Hansen, F. Ø. Andersen, K. S. Hansen, & H. S. Jensen, 2005. Lake

Restoration by Dosing Aluminum Relative to Mobile Phosphorus in the Sediment.

Environmental Science & Technology 39: 4134–4140.

Reitzel, K., J. Hansen, H. S. Jensen, F. Ø. Andersen, & K. S. Hansen, 2003. Testing

aluminum addition as a tool for lake restoration in shallow, eutrophic Lake Sønderby,

Denmark. Hydrobiologia 506-509: 781–787.

Reynolds, C. S., R. L. Oliver, & A. E. Walsby, 1987. Cyanobacterial dominance: The

role of buoyancy regulation in dynamic lake environments. New Zealand Journal of

Marine and Freshwater Research 21: 379–390.

Page 85: Adição de policloreto de alumínio e remoção de peixes bentívoros

85

Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado, & J. P. H.

B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of

inland waters. Brazilian Journal of Biology 72: 709–722.

Sant’Anna, E. M., R. D. F. Panosso, J. L. Attayde, I. A. S. Costa, C. M. Santos, M. F. F.

Araújo, & J. L. de S. Melo, 2006. Águas potiguares : oásis ameaçados. Ciência Hoje 39

(233) 39: 68–71.

Schaus, M. H., & M. J. Vanni, 2000. Effects of Gizzard shad on phytoplankton and

nutrient dynamics: role of sediment feeding and fish size. Ecology 81: 1701–1719.

Scheffer, M., R. Portielje, & L. Zambrano, 2003. Fish facilitate wave resuspension of

sediment. Limnology and Oceanography 48: 1920–1926.

Schindler, D. W., 2012. The dilemma of controlling cultural eutrophication of lakes.

Proceedings. Biological sciences / The Royal Society 279: 4322–4333.

Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J.

Paterson, K. G. Beaty, M. Lyng, & S. E. M. Kasian, 2008. Eutrophication of lakes

cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem

experiment. Proceedings of the National Academy of Sciences of the United States of

America 105: 11254–11258.

Sengco, M. R., & D. M. Anderson, 2004. Controlling Harmful Algal Blooms Through

Clay Flocculation. Journal of Eukaryotic Microbiology 51: 169–172.

Sengco, M. R., J. a. Hagström, E. Granéli, & D. M. Anderson, 2005. Removal of

Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae

4: 261–274.

Smith, V. H., 1998. Cultural eutrophication of inland estuarine and coastal waters In

Pace, M. L., & P. M. Groffman (eds), Successes, limitations, and frontiers in ecosystem

science. Springer New York: 7–49.

Smith, V. H., 2003. Eutrophication of freshwater and coastal marine ecosystems a

global problem. Environmental Science and Pollution Research 10: 126–139.

Page 86: Adição de policloreto de alumínio e remoção de peixes bentívoros

86

Smith, V. H., & D. W. Schindler, 2009. Eutrophication science: where do we go from

here?. Trends in ecology & evolution 24: 201–207.

Soares, M. C. S., V. L. M. Huszar, M. N. Miranda, M. M. Mello, F. Roland, & M.

Lürling, 2013. Cyanobacterial dominance in Brazil: distribution and environmental

preferences. Hydrobiologia 717: 1–12, http://link.springer.com/10.1007/s10750-013-

1562-1.

Søndergaard, M., 2007. Nutrient dynamics in lakes – with emphasis on phosphorus,

sediment and lake restoration. Doctor’s dissertation (DSc). National Environmental

Research Institute, University of Aarhus, Denmark.

Søndergaard, M., R. Bjerring, & E. Jeppesen, 2013. Persistent internal phosphorus

loading during summer in shallow eutrophic lakes. Hydrobiologia 710: 95–107.

Søndergaard, M., J. P. Jensen, & E. Jeppesen, 1999. Internal phosphorus loading in

shallow Danish lakes. 145–152.

Søndergaard, M., J. P. Jensen, & E. Jeppesen, 2003. Role of sediment and internal

loading of phosphorus in shallow lakes. Hydrobiologia 506-509: 135–145.

Søndergaard, M., P. J. Jensen, & E. Jeppesen, 2001. Retention and internal loading of

phosphorus in shallow, eutrophic lakes. The Scientific World Journal 1: 427–442.

Søndergaard, M., E. Jeppesen, J. P. Jensen, & T. Lauridsen, 2000. Lake restoration in

Denmark. Lakes and Reservoirs: Research and Management 5: 151–159.

Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers,

E. Lammens, & R. Portielje, 2007. Lake restoration: successes, failures and long-term

effects. Journal of Applied Ecology 44: 1095–1105.

Spears, B. M., M. Lürling, S. Yasseri, A. T. Castro-Castellon, M. Gibbs, S. Meis, C.

McDonald, J. McIntosh, D. Sleep, & F. Van Oosterhout, 2013. Lake responses

following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of

water column lanthanum data from 16 case study lakes. Water research 47: 5930–5942.

Page 87: Adição de policloreto de alumínio e remoção de peixes bentívoros

87

Starling, F., X. Lazzaro, C. Cavalcanti, & R. Moreira, 2002. Contribution of

omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a

fish kill. Freshwater Biology 47: 2443–2452.

UN-Water, 2007. Coping with water scarcity: Challenge of the twenty-first century. .

Van der Molen, D. T., & P. C. M. Boers, 1994. Influence of internal loading on

phosphorus concentration in shallow lakes before and after reduction of the external

loading In Mortensen, E., E. Jeppesen, M. Sondergaard, & L. K. Nielsen (eds), Nutrient

Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes. Springer

Netherlands.: 279–389.

Vasconcelos, V. H. F., 2011. Emissões naturais e antrópicas de nitrogênio e fósforo para

os principais açudes da bacia hidrográfica do Rio Seridó, RN. Universidade Federal do

Rio Grande do Norte.

Verspagen, J. M. H., P. M. Visser, & J. Huisman, 2006. Aggregation with clay causes

sedimentation of the buoyant cyanobacteria Microcystis spp. Aquatic Microbial

Ecology 44: 165–174.

Vitousek, P. M., H. a Mooney, J. Lubchenco, & J. M. Melillo, 1997. Human

Domination of Earth ’ s Ecosystems. Science 277: 494–499.

Volta, P., E. Jeppesen, B. Leoni, B. Campi, P. Sala, L. Garibaldi, T. L. Lauridsen, & I.

J. Winfield, 2013. Recent invasion by a non-native cyprinid (common bream Abramis

brama) is followed by major changes in the ecological quality of a shallow lake in

southern Europe. Biological Invasions 15: 2065–2079.

Walsby, A. E., 1994. Gas Vesicles. Microbiological Reviews 58: 94–144.

Wang, Z., D. Li, H. Qin, & Y. Li, 2012. An integrated method for removal of harmful

cyanobacterial blooms in eutrophic lakes. Environmental Pollutionollution Elsevier Ltd

160: 34–41.

Welch, E. B., 1981. The dilution/flushing technique in lake restoration. Environmental

Protection Agency.

Page 88: Adição de policloreto de alumínio e remoção de peixes bentívoros

88

Welch, E. B., & G. D. Schrieve, 1994. Alum treatment effectiveness in and longevity in

shallow lakes In Mortensen, E., E. Jeppesen, M. Sondergaard, & L. K. Nielsen (eds),

Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes.

Springer Netherlands.: 423–431.

Yamada, H., M. Kayama, K. Saito, & M. Hara, 1986. A fundamental research on

phosphate removal by using slag. Water Research 20: 547–557.

Yang, Z., B. Gao, & Q. Yue, 2010. Coagulation performance and residual aluminum

speciation of Al2(SO4)3 and polyaluminum chloride (PAC) in Yellow River water

treatment. Chemical Engineering Journal Elsevier B.V. 165: 122–132.

Zamparas, M., M. Drosos, Y. Georgiou, Y. Deligiannakis, & I. Zacharias, 2013. A

novel bentonite-humic acid composite material BephosTM for removal of phosphate and

ammonium from eutrophic waters. Chemical Engineering Journal Elsevier B.V. 225:

43–51.

Zamparas, M., A. Gianni, P. Stathi, Y. Deligiannakis, & I. Zacharias, 2012. Removal of

phosphate from natural waters using innovative modified bentonites. Applied Clay

Science Elsevier B.V. 62-63: 101–106.

Zou, H., G. Pan, H. Chen, & X. Yuan, 2006. Removal of cyanobacterial blooms in

Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local

soils and sediments modified by chitosan. Environmental pollution (Barking, Essex :

1987) 141: 201–205.