30
Biossíntese e deposição de hemicelulose nas paredes celulares Elisson Romanel Departamento de Biotecnologia Escola de Engenharia de Lorena Universidade de São Paulo Lorena, SP

Biossíntese e deposição de hemicelulose nas paredes celulares³p. Esp.: Formação... · Paper Chemistry and Technology Vol 1: Wood Chemistry and Wood Biotechnology. Edited by

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Biossíntese e deposição de hemicelulose nas paredes celulares Elisson Romanel Departamento de Biotecnologia Escola de Engenharia de Lorena Universidade de São Paulo Lorena, SP

Outline  -­‐   Revisando  sobre  a  estrutura  das    hemiceluloses  

-­‐  Síntese  no  complexo  de  Golgi  

-­‐    Enzimas  envolvidas  na  síntese  

-­‐  Glucurono(arabino)xylan  Synthase  Complex  (discussão  de  1  arBgo  sobre  o  assunto  -­‐  seminário  de  aluno  )  

Ref. básicas: 1. Anita Teleman. Hemicelluloses and Pectin, item 5.3 In: Pulp and Paper Chemistry and Technology Vol 1: Wood Chemistry and Wood Biotechnology. Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson , 2009 2. Emilie A Rennie and Henrik Vibe Scheller. Xylan biosynthesis. Current Opinion in Biotechnology 2014, 26:100–107 3. Wei Zeng et al. A Glucurono(arabino)xylan Synthase Complex from Wheat Contains Members of the GT43, GT47, and GT75 Families and Functions Cooperatively. Plant Physiology 154:78–97, 2010.

Fonte:  Rubin,  2008  –  Nature;  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol.  

Parede  celular  e  a  Hemicelulose  

compared to that of teosinte. Some of the most rapid increases haveoccurred in the past 40 years, both from advances in agronomicpractices and, importantly, from the application of modern genetics.The optimization of bioenergy crops as feedstocks for transportationfuels is in its infancy, but already genomic information and resourcesare being developed that will be essential for accelerating theirdomestication. Many of the traits targeted for optimization in poten-tial cellulosic energy crops are those that would improve growth onpoor agricultural lands, to minimize competition with food cropsover land use.

Populus trichocarpa (poplar), the first tree and potential bioenergycrop to have its genome sequenced (Table 1)9, illustrates some of theissues and potential of applying genomics to the challenge of optim-izing energy crops. The traits for which the genetic underpinningswill be sought in the genomes of bioenergy-relevant plants, such aspoplar, include those affecting growth rates, response to competitionfor light, branching habit, stem thickness and cell wall chemistry.Significant effort will go into maximizing biomass yield per unit landarea, because this more than any other factor will minimize theimpact on overall land use. One can imagine trees optimized to haveshort stature to increase light access and enable dense growth, largestem diameter, and reduced branch count to maximize energy den-sity for transport and processing. Trees have evolved with highly rigidand stable cell walls due to heavy selective pressure for long life and anupright habit. Plants domesticated for energy production, with a

crop cycle time of only a few years, would have less need for a rigidcell wall than wild plants with lifetimes of a hundred years or more.Alterations in the ratios and structures of the various macromole-cules forming the cell wall are a major target in energy crop domest-ication to facilitate post-harvest deconstruction at the cost of a lessrigid plant.

Already, by comparing several of the presently available plant gen-omes (poplar9, rice10,11, Arabidopsis12; see Table 1) coupled with large-scale plant gene function and expression studies, a number of can-didate genes for domestication traits have been identified13,14. Theseinclude many genes involved in cellulose and hemicellulose synthesisas well as those believed to influence various morphological growthcharacteristics such as height, branch number and stem thickness15.In addition to homology-based strategies, other genome-enabledstrategies for identifying domestication candidate genes are beingused. These include quantitative trait analysis of natural variationand genome-wide mutagenesis coupled with phenotypic screensfor traits such as recalcitrance to sugar release, acid digestibilityand general cell wall composition. The availability of high-through-put transgenesis in several plant systems16 will facilitate functionalstudies to determine the in vivo activities of the large number ofdomestication candidate genes. Using these strategies, genes affectingfeatures such as plant height, stem elongation and trunk radialgrowth, drought tolerance, and cell wall stability are but a few ofthe features that are likely to be identified as targets for domestication

OH

Macrofibril

Plant cell

Plant

Cellwall

Lignin

Lignin

Hemicellulose

Pentose

Crystallinecellulose

HydrogenbondCellodextrin

n-3

n-3

n-3

n-3

n-3

Glucose

Hexose

10–20 nm

Macrofibril

OH

OH

OH

OH

p-Coumaryl alcohol Coniferyl alcohol Sinapyl alcohol

OH

O

H G S

OO

Figure 2 | Structure of lignocellulose. The main component oflignocellulose is cellulose, a b(1–4)-linked chain of glucose molecules.Hydrogen bonds between different layers of the polysaccharides contributeto the resistance of crystalline cellulose to degradation. Hemicellulose, thesecond most abundant component of lignocellulose, is composed of various5- and 6-carbon sugars such as arabinose, galactose, glucose, mannose andxylose. Lignin is composed of three major phenolic components, namely

p-coumaryl alcohol (H), coniferyl alcohol (G) and sinapyl alcohol (S). Ligninis synthesized by polymerization of these components and their ratio withinthe polymer varies between different plants, wood tissues and cell wall layers.Cellulose, hemicellulose and lignin form structures called microfibrils,which are organized into macrofibrils that mediate structural stability in theplant cell wall.

NATUREjVol 454j14 August 2008 REVIEWS

843 ©2008 Macmillan Publishers Limited. All rights reserved

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol.  

Definição  de  Hemicelulose  

Fonte:  Sarkar  et  al.,  2009  -­‐    Journal  of  Experimental  Botany  

Componentes  e  Estruturas  da  Hemicelulose  

nature ‘invented’ the protective properties of cell walls morethan once, coming up with vastly different solutions toa common problem. It is widely believed that the cell walldesigns in the two prokaryotic domains have evolved

independently from a common wall-less ancestor, whereascell walls in eukaryotes have evolved by lateral gene transferfrom previously established cell wall-producing organismsduring primary or secondary endosymbiosis (Niklas, 2004).

Fig. 1. Chemical structure of the predominant building blocks of plant cell walls. Left panel: monomers. Right panel: subunit of therespective polymers.

Towards an understanding of plant cell walls | 3617

at FMRP/U

SP/BIBLIOTECA

CENTRA

L on September 19, 2013

http://jxb.oxfordjournals.org/D

ownloaded from

nature ‘invented’ the protective properties of cell walls morethan once, coming up with vastly different solutions toa common problem. It is widely believed that the cell walldesigns in the two prokaryotic domains have evolved

independently from a common wall-less ancestor, whereascell walls in eukaryotes have evolved by lateral gene transferfrom previously established cell wall-producing organismsduring primary or secondary endosymbiosis (Niklas, 2004).

Fig. 1. Chemical structure of the predominant building blocks of plant cell walls. Left panel: monomers. Right panel: subunit of therespective polymers.

Towards an understanding of plant cell walls | 3617

at FMRP/U

SP/BIBLIOTECA

CENTRA

L on September 19, 2013

http://jxb.oxfordjournals.org/D

ownloaded from

nature ‘invented’ the protective properties of cell walls morethan once, coming up with vastly different solutions toa common problem. It is widely believed that the cell walldesigns in the two prokaryotic domains have evolved

independently from a common wall-less ancestor, whereascell walls in eukaryotes have evolved by lateral gene transferfrom previously established cell wall-producing organismsduring primary or secondary endosymbiosis (Niklas, 2004).

Fig. 1. Chemical structure of the predominant building blocks of plant cell walls. Left panel: monomers. Right panel: subunit of therespective polymers.

Towards an understanding of plant cell walls | 3617

at FMRP/U

SP/BIBLIOTECA

CENTRA

L on September 19, 2013

http://jxb.oxfordjournals.org/D

ownloaded from

nature ‘invented’ the protective properties of cell walls morethan once, coming up with vastly different solutions toa common problem. It is widely believed that the cell walldesigns in the two prokaryotic domains have evolved

independently from a common wall-less ancestor, whereascell walls in eukaryotes have evolved by lateral gene transferfrom previously established cell wall-producing organismsduring primary or secondary endosymbiosis (Niklas, 2004).

Fig. 1. Chemical structure of the predominant building blocks of plant cell walls. Left panel: monomers. Right panel: subunit of therespective polymers.

Towards an understanding of plant cell walls | 3617

at FMRP/U

SP/BIBLIOTECA

CENTRA

L on September 19, 2013

http://jxb.oxfordjournals.org/D

ownloaded from

Fonte:  Pauly  e  Keegstra,  2008  –  Plant  Journal  

Legenda  

Estrutura  dos  Polissacarídeos  Hemicelulósicos  

Fonte:  Pauly  e  Keegstra,  2008  –  Plant  Journal;  Pauly  et  al.,  2013  -­‐  Planta  

Mananas  

Mananas  

Glucomananas  

Galactomananas  

Galactoglucomananas  (GGM)  

Xiloglucano  (XyG)  

Fucogalactoxyloglucano   Arabinogalactoxyloglucano  

Fonte:  Pauly  e  Keegstra,  2008  –  Plant  Journal;  Pauly  et  al.,  2013  -­‐  Planta  

Xilanos  

Fonte:  Pauly  e  Keegstra,  2008  –  Plant  Journal;  Pauly  et  al.,  2013  -­‐  Planta  

Glucuronoxilano  (GX)  

Glucuronoarabinoxilano  (GAX)  

Arabinoxilanos  (AX)  

Xilanos  

Glucano  de  Cadeia  Mista  

Fonte:  Pauly  e  Keegstra,  2008  –  Plant  Journal;  Pauly  et  al.,  2013  -­‐  Planta  

Origem  EvoluBva  das  Hemiceluloses  

Fonte:  Popper,  2008  –  Curr.  Op.  Plant  Biology  

Mananas  

Xiloglucanos  

Xilano  

Manose  Glicose  

Galactose  

Xilose  Glicose  

Galactose  Fucose  

Xilose  Arabinose  

Ácido  glucurônico  Ramnose  

Fonte:  Pauly  e  Keegstra,  2008  –  Plant  Journal  

Ocorrência  dos  Polissacarídeos  Hemicelulósicos  no  Vegetais  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol.  

Ocorrência  da  Hemicelulose  na  Parede  Primária  e  Secundária  

Fonte:  Scheible  e  Pauly,  2004  –  Curr.  Op.  Plant  Biology  

Biossíntese  de  Polissacarídeos  

Fonte:  Mizrachi,  et  al.,  2012  –  New  Phytologist  

Biossíntese  de  Hemicelulose  

NSE  

GT  

Enzimas  de  interconversão  açúcar-­‐nucleoideo  

Glicosiltransferase  

Funções  adicionais  

Figure 1. Genes of the nucleotide-sugar interconversion pathways. A, Schematic of pathways for plant nucleotide-sugarinterconversion. The committed step to synthesis of uronic acids and pentoses is catalyzed by UDP-Glc dehydrogenase (UGD);isoforms exhibit different catalytic activities that indicate varied functions (Karkonen et al., 2005). The function of the UDP-GlcAdecarboxylase (carboxyl-lyase) was established for the UXS family in barley (Zhang et al., 2005), with homology to the SUD/AUD group proposed for Arabidopsis (Reiter and Vanzin, 2001). Apiose, the essential monosaccharide in the boron didiestercross-linking of RG II, is synthesized by enzymes encoded by members of the AXS group, which converts irreversibly UDP-GlcAto a mixture of UDP-apiose and UDP-Xyl. A reduction in the levels of these synthases results in an RG II deficiency and cell wallabnormalities (Ahn et al., 2006). Although pectins are a minor component of the walls of grasses, an apiose-containing RG II withonly slightly modified side groups is present (Thomas et al., 1989). B, These evolutionarily distinct families are combined forconvenience into one dendrogram; evolutionary relationships are relevant only within a single family. Three groups of C-4epimerases have been annotated: the UDP-Glc 4-epimerases (UGEs), including REB1, that interconvert UDP-Glc and UDP-Gal(Seifert et al., 2002; Nguema-Ona et al., 2006); the UDP-GlcA 4-epimerases (GAEs) that interconvert UDP-GlcA and UDP-GalA

Penning et al.

1708 Plant Physiol. Vol. 151, 2009

Via  de  Interconversão  Açúcar-­‐Nucleoideo  

Fonte:  Penning  et  al.,  2009  –  Plant  physiology    

Fonte:  Yin  et  al.,  2011  –  Plos  One  

Via  de  Interconversão  Açúcar-­‐Nucleoideo  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol.  

Glicosiltransferase  

Biossíntese  das  Mananas  GDP-­‐glicose  

-­‐  Primeira  β-­‐manana  sintase  (ManS)  =  CSLA9  (GT2)  -­‐  AtCSLA7  tem  aBvidade  galactomanana.  Aceita  apenas  GDP-­‐man  -­‐  AtCSLA3  –  síntese  de  glucomanana  –  aceita  GDP-­‐manose  e  GDP-­‐glicose  

-­‐  AtCSLA9  –  domínio  catalíBco  voltado  para  o  lumen  do  Golgi  –  ABvidade  GlucoManS  

?  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

Galactoglucomanana  

Biossíntese  das  Mananas  

-­‐  CSLD  (AtCSLD2,  3  e  5)  –  biossíntese  de  manana  

GDP-­‐glicose  

?  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  AtMRS  (DUF246)  –  localização  Golgi.  Em  Arabidopsis,  co-­‐expressão  com  ManS  (CSLA)  -­‐  atmrs  –  redução  de  glucomanano  e  aBvidade  ManS  -­‐  MRS  –  síntese  de  iniciador?  -­‐  GMGT  –  galactosiltransferase  (GalT)  e  AtTBL25/26  –  O-­‐aceBltransferase  

Galactomanana  

Biossíntese  das  Xiloglucana  

-­‐  Gene  CSLC4  (GT2)  –  produz  glucano  β-­‐1-­‐4  apenas  na  presença  de  XyG:  XylT  (complexo)  e  na  ausência  de  UDP-­‐xilose  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  AtCSLC4  localização  Golgi  -­‐  HvCSLC2  localização  da  MP  –  Não  parBcipa  da  biossíntese  de  XyG    -­‐  Cadeia  de  glucano  nascente  –  CSLC  voltada  para  Lumen  do  Golgi  –  Atua  como  XylTs  -­‐  Genes  GT34  –  XyG:XylT  (AtXXT1,  AtXXT2  e  AtXXT4).  Usa  UDP-­‐xilose  

Fucogalactoxiloglucana  

Biossíntese  das  Xiloglucana  

-­‐  AtMUR3  e  AtXLT2  (GT47)  –  β-­‐1,2  galactosiltransferase  (XyG:GalT)    

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  AtXUT1  (GT47)  –  necessário  para  a  presença  de  ácido  galacturônico  -­‐  GT47  –  responsável  pela  diversidade  da  decoração      -­‐  AtFUT1/MUR2  (GT37)  –  adição  de  grupo  fucosil  em  resíduo  galactosil  ou  galacturonosil  -­‐  AtAXY4  (TBL)  –  O-­‐aceBlação  de  XyG  em  resíduos  galactosil    

Fucogalactoxiloglucana  

-­‐  Não  há  evidências  de  CSL  na  biossíntese  de  xilano  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  ABvidade  XylS  reduzida  nos  mutantes  irx9,  irx14  (GT43)  e  irx10,  irx10-­‐L  (GT47)  -­‐  ABvidade  XylT  –  Co-­‐expressão  de  IRX9  e  IRX14  em  álamo  -­‐  Ausência  de  oligossacarídeo  de  extremidade  reduzida  (Xyl-­‐Rha-­‐GalA-­‐Xyl)  nos  mutantes  irx7  (GT47),  irx8  (GT8),  parvus  (GT8).  Mantem  aBvidade  de  alongamento  da  cadeia  primária.  

Biossíntese  das  Xilanas  

Glucuronoxilano  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol.  

Oligossacarídeo  ou  Tetrassacarídeo  de  Xilana  

bones [9!,15–17]. Two non-CSL genes (IRX9 and IRX14)have been implicated in xylan backbone biosynthesis[14!!,18!,19,20]. Nevertheless, the possibility that CSLgenes also have a direct role in this process cannot bediscounted.

Glucuronoxylan has typically been viewed as a polysac-charide whose synthesis would require a xylan synthasefor backbone formation and one or two glycosyltrans-ferases for the addition of GlcA and 4-O-Me GlcAside chains. This perspective changed when Pena et al.[14!!] demonstrated that Arabidopsis GX contains! 4)-b-D-Xylp-(1! 3)-a-L-Rhap-(1! 2)-a-D-GalpA-(1! 4)-D-Xylp (sequence 1, see Figure 1b) at its reducing end

and that this sequence is required for normal GX syn-thesis in secondary walls. At least three glycosyltrans-ferases are required to form this sequence. At least onemore glycosyltransferase is required if this sequence linksxylan to another polymer [14!!].

To date five genes (FRA8 [At2g28110], IRX8 [At5g54690],IRX9 [At2g37090], PARVUS [At1g19300], and IRX14[At4g36890]) that are likely to have a role in GX synthesishave been identified in Arabidopsis [14!!,19, 21–23]. Thesegenes encode putative glycosyltransferases that may have arole in forming reducing end sequence 1 (FRA8, familyGT47; IRX8, family GT8; PARVUS, family GT8) and inxylan backbone synthesis (IRX9 and IRX14, family GT43).

Biochemical control of xylan biosynthesis York and O’Neill 259

Figure 1

Diversity of xylan structures in land plants. (a) The glucuronoxylans produced by dicots and gymnosperms. (b) Sequence 1 present at thereducing end of dicot and gymnosperm glucuronoxylan. (c) Feruloylated arabinoxylans produced by grasses. (d) Glucuronoarabinoxylanspresent in the secondary walls of soft woods.

www.sciencedirect.com Current Opinion in Plant Biology 2008, 11:258–265

-­‐  Modelo  para  síntese  com  Xyl-­‐Rha-­‐GalA-­‐Xyl:  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  IRX7  (GT47)  transfere  xilose  para  formar  unidade  ligação  β  Xyl-­‐Rha  ou  transferir  ramnose  para  formar  unidade  ligação  α  Rha-­‐GalA  -­‐  IRX8  é  homologo  de  GAUT1  (GalA  transferase)  –  faz  ligação  GalA-­‐Xyl  -­‐  PARVUS  localização  ER  e  Golgi.  Cataliza  a  iniciação  da  extremidade  redutora  

Biossíntese  das  Xilanas  

Glucuronoxilano  

IRX7?  

IRX7?  

IRX8  

Fonte:  York  e  O`Neill,  2008  –  Curr.  Op.  Plant  Biology  

Modelo  de  Síntese  Glucuranoxilano  (GX)    -­‐  Modelo  para  síntese  com  Xyl-­‐Rha-­‐GalA-­‐Xyl:  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  Tetrassacarídeo  não  encontrado  em  monocoBledôneas  

Terminador  de  cadeia   Iniciador  de  cadeia  

-­‐  AtGUX1,  2  e  3  –  adição  de  GlcA  e  MeGlcA  de  forma  disBnta  (cada  enzima)  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  XAX1  (GT61)  cevada  –  transfere  arabinofuranosil  para  xilano  

-­‐  OsXAX1  (GT61)  –  aBvidade  xilosiltransferase    -­‐  ?  (GT75)  –  aBvidade  GAX:GlcAT  -­‐  AtGXMT  (DUF579)  (IRX15)  –  transfere  grupo  meBl  para  resíduos  glucuronosil  

Biossíntese  das  Xilanas  

Glucuronoxilano  

Biossíntese  de  Xilanos  no  Golgi  

Fonte:  Rennie  e  Scheller,  2014  –  Curr.  Op.  Biotecnology    

GT43  -­‐  IRX9/IRX14  GT47  -­‐  IRX10  

GT8  -­‐  GUX   DUF579  –  GXMT1  

DUF231  –  RWA  

BAHD  

GT61  –  XAX1  

Biossíntese  das  Glucanas  de  Cadeia  Mista  

-­‐  OsCSLF2  e  OsCSLF4  expressos  em  Arabidopsis  –  presença  de  MLG  

Fonte:  Scheller  e  Ulvskov,  2010  –  Annu.  Rev.  Plant  Biol;  Yin  et  al.,  2011  –  Plos  One;  Pauly  et  al.,  2013  -­‐  Planta  

-­‐  Mutantes  oscslf6  teve  97%  de  redução  de  MLG  -­‐    HvCSLH1  expresso  em  Arabidopsis  –  presença  de  MLG  -­‐  CSLF  e  CSLH  localizados  no  Golgi  -­‐  Modelo:  CSLF  ou  CSLH  fazem  a  ligação  β  1-­‐3,  após  a  ligação  β  1-­‐4    

Gramíneas  

Fonte:  Mizrachi,  et  al.,  2012  –  New  Phytologist  

Biossíntese  de  Hemicelulose  

NSE  

GT  

Enzimas  de  interconversão  açúcar-­‐nucleoideo  

Glicosiltransferase  

Funções  adicionais