54
CIRCUITO ELÉCTRICO E ELEMENTOS Capítulo 2 2013 2.0 Circuito e elementos de um circuito eléctrico Um circuito eléctrico é um caminho fechado por onde circula uma corrente eléctrica e o seu objectivo é fornecer energia eléctrica a um consumidor de energia eléctrica. A corrente eléctrica circula partindo da fonte, passando pelos elos de ligaçäo que ligam a fonte ao consumidor retornando finalmente à fonte. Qualquer circuito eléctrico é composto de elementos activos e passivos. 2.1 Elementos activos ou fontes de energia Os elementos activos säo aqueles que podem fornecer enegia eléctrica ao circuito. Estäo neste grupo as fontes de tensäo e corrente (geradores, baterias, pilhas entre outros), existindo fontes de corrente contínua ou alternada. As fontes de energia eléctrica podem ser de tensäo ou de corrente respectivamente qundo fornecem uma tensäo ou corrente eléctrica. Por outro lado, as fontes podem ser ideais ou dependentes (controladas). A fonte de tensäo é ideal ou independente quando a tensäo através de seus terminais é independente da corrente através da fonte. Analogamente, a fonte de corrente é ideal ou independente quando a corrente através da fonte é independente da tensäo. Em contrapartida, as fontes säo designadas de dependentes ou controladas quando a tensäo ou corrente através dos terminais da fonte depende dos respectivos valores de um outro elemento no circuito. Os elementos activos ou fontes são representados pelos símbolos dados nas figuras a seguir. Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 1

Capítulo 1 - Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

  • Upload
    buimien

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.0 Circuito e elementos de um circuito eléctrico

Um circuito eléctrico é um caminho fechado por onde circula uma corrente eléctrica e o seu objectivo é fornecer energia eléctrica a um consumidor de energia eléctrica. A corrente eléctrica circula partindo da fonte, passando pelos elos de ligaçäo que ligam a fonte ao consumidor retornando finalmente à fonte. Qualquer circuito eléctrico é composto de elementos activos e passivos.

2.1 Elementos activos ou fontes de energia

Os elementos activos säo aqueles que podem fornecer enegia eléctrica ao circuito. Estäo neste grupo as fontes de tensäo e corrente (geradores, baterias, pilhas entre outros), existindo fontes de corrente contínua ou alternada. As fontes de energia eléctrica podem ser de tensäo ou de corrente respectivamente qundo fornecem uma tensäo ou corrente eléctrica. Por outro lado, as fontes podem ser ideais ou dependentes (controladas). A fonte de tensäo é ideal ou independente quando a tensäo através de seus terminais é independente da corrente através da fonte. Analogamente, a fonte de corrente é ideal ou independente quando a corrente através da fonte é independente da tensäo. Em contrapartida, as fontes säo designadas de dependentes ou controladas quando a tensäo ou corrente através dos terminais da fonte depende dos respectivos valores de um outro elemento no circuito. Os elementos activos ou fontes são representados pelos símbolos dados nas figuras a seguir.

Figura .... Fontes de energia independentes

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 1

Page 2: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Figura .... Fontes de energia controladas

2.2 Elementos passivos e comportamento

Säo aqueles que absorvem a energia fornecida pelas fontes ou elementos activos. Estäo neste grupo os resistores, os indutores ou bobinas e os capacitores ou condensadores.

Um elemento de circuito eléctrico recebendo energia eléctrica pode comportar-se de cada uma das seguintes formas:

Consumir energia: O elemento de circuito é um elemento resistivo, ou simplismente Resistor puro;

Armazenar energia num campo magnético: O elemento de circuito é um elemento indutivo, ou apenas, Indutor puro;

Armazenar energia num campo eléctrico: O elemento de circuito é um elemento capacitivo ou em outras palavras, um Capacitor puro.

Na prática, os elementos passivos dos circuitos apresentam mais de uma das características acima, e, muitas vezes, todas as três, simultaneâmente, contudo predominando uma delas. Por exemplo, uma bobina pode ser projectada para apresentar elevada indutância, mas o fio com que é enrolada possui alguma resistência. Assim, a bobina apresenta as duas propriedades.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 2

Page 3: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.3 Resistor e Resistência, R

Aplicando-se uma diferença de potencia v(t) entre os terminais de um resistor puro, uma corrente i(t) proporcional àquela irá circular no elemento resistivo. A constante de proporcionalidade R é designada de resistência eléctrica sendo expressa em volts/ampère ou Ohms [Ω]. Efectivamente ela representa a oposição que o elemento oferece ao estabelecimento de uma corrente eléctrica. A relação entre a diferença de potencial e a corrente eléctrica é conhecida por Lei de Ohm que no caso do resistor é dada por:

v (t )=R i( t )

Figura - Elemento Resistivo

Não existe nenhuma restrição para v(t) e i(t). Eles podem ser constantes em relação ao tempo, nos circuitos de corrente contínua ou funções variáveis com o tempo como acontece nos circuitos de corrente alternada.

No caso de grandezas variáveis com o tempo as funções de tempo são expressas em geral com letras minúsculas. Por exemplo, (v, i, p) para designar respectivamente a tensão, corrente e potência instantâneas. As letras maíusculas ( V, I, P) designam quantidades constantes; enquanto os valores máximos ou de crista das grandezas variáveis com o tempo são indicadas por Vm, Im e Pm, respectivamente para a tensão, corrente e potência.

2.3.1 Resistividade, condutividade e condutância

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 3

Page 4: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

A resistência eléctrica de um condutor depende do material de que o mesmo é feito. A resistência do condutor é dada pela seguinte expressão:

R=ρ lA

Onde:ρ é uma constante de proporcionalidade e designa-se resistividade. Na

verdade é uma característica que mede a dificuldade com que o material de que é feito o cobdutor deixa passar a corrente eléctrica.

l é o comprimento do condutor e A a seccão transversal do condutor.

O recíproco da resistividade se chama condutividade do material e representa-se por σ . Assim, a resistência do condutor pode ser calculada a partir da fórmula:

R=1σ. lA

= lσ . A onde σ é a condutividade do material que mede a facilidade

com que o material deixa passar a corrente eléctrica.

Por outro lado, define-se como condutância de um condutor ao inverso da sua resistência eléctrica e representa-se por G . Assim,:

G= 1R

=σ . Al

A tabela a seguir mostra a resistividade de diferentes materiais

Tabela 1.4 Resistividade de diferentes materiais

Material Resistividade a 20ºC[Ω .m ]

Prata 1,64.10-8

Cobre recozido 1,72.10-8

Alumínio 2,83.10-8

Ferro 12,3.10-8

Constantan 49.10-8

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 4

Page 5: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Nicromo 100.10-8

Silício 2500

Papel 1010

Mica 5.1011

Quartzo 1017

Materiais com resistividade baixa, próxima de 10-8 [Ω .m ] são chamados de condutores. São exemplo de bons condutores a prata, cobre e alumínio e ferro. A prata apesar de ser o melhor condutor é pouco usada por ser muito cara. Os materiais condutores mais usados são o cobre e alumínio. Estes materiais são muito usados na industria electrotécnica para a produção de condutores e cabos.

Materiais com resistividade elevada, acima de 1010 [Ω .m ] são chamados de isolantes. São exemplos de bons isolantes o papel, mica e quartzo. Estes materiais têm larga aplicação na produção de materiais para isolamentos na indústria electrotécnica nomedamenet isoladores, isolamento de cabos, etc.

Materiais com resistividade entre 10-4 [Ω .m ] e 10-7 [Ω .m ] são chamados de semicondutores. Constitue exemplo o silício. Este materiais são muito usados na produção de dispositivos electrónicos como diodos, transistores, tiristores, etc.

2.3.2 Influência da temperatura na resistência

Na maioria dos materiais condutores a resistência eléctrica aumenta linearmente com a temperatura na faixa normal de operação. Entretanto, existem materiais em que a resistência diminue com a temperatura. Conhecendo-se a resistência do material a uma determinada temperatura a resistência em qualquer outra temperatura é dada por:

R2=T2−T 0T1−T 0

. R1 ,

onde:R1 é a resistência à temperatura T 1 e R2 é a resistência à temperatura T 2

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 5

Page 6: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

T 0 á temperatura em que teoricamente a resistência eléctrica do material é nula.Naturalmente esta temperatura é uma caracteristica do material condutor. A

tabela 1.5 mostra os valores de T 0 para diferentes materiais.

Tabela 2.1 Temperatura absoluta para diferentes materiais

Material Temperatura absoluta T 0[ º C ]

Tungsténio -202

Cobre -234,5

Alumínio -236

Prata -243

Constantan -125.000

A resistência em função da temperatura também pode ser calculada a partir da expressão:

R2=R1 [ 1+ αT 1 ( T 2−T 1) ]Onde αT 1 é o coeficiente de temperatura do material à temperatura T 1 .

Normamalmente T 1 é tomado igual a 20ºC. A tabela 1.7 a seguir mostra coeficientes de temperatura para diferentes materiais.

Tabela 2.2 Coeficientes de temperatura para diferentes materiais

Material Coeficiente de Temperatura αT 1 a 20ºC

[ 1ºC ]Tungsténio 0,0045

Cobre 0,00393

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 6

Page 7: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Alumínio 0,00391

Prata 0,0038

Constantan 0,000008

Carbono -0,0005

O coeficiente de temperatura de um material a qualquer temperatura pode ser também determinado através da expressão:

α 1=1

T 1−T 0

2.3.3 Consumo de potência no resistor

Uma característica muito importante de um resistor é a sua capacidade de dissipação de potência eléctrica ou potência máxima. Esta depende da sua capacidade de isolamento, isto é, voltagem máxima suportada e corrente máxima permissível. O consumo real de potência depende da voltagem aplicada aos seus terminais e da corrente que o atravessa e é dada pela expressão:

P=V . I=(R . I ) . I = I 2R=V .(VR )=V 2

R

2.3.4 Valores nominais, tolerâncias e código de cores

Os resistores são fabricados com determinados valores que obedecem a determinadas séries normalizadas. Os valores são impressos no corpo de cada elemento na forma numérica ou usando um código de cores. Estes valores são chamados de nominais. O valor verdadeiro da resistência varia percentualmente dentro de uma faixa à qual se chama de tolerância. Os resistores mais comuns de carbono possuem tolerâncias de 20, 10 e 5%. Portanto os valores verdadeiros variam em torno dos valores nominais em faixas de ±20%, ±10%, e ±5%.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 7

Page 8: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

O código de cores compreende 3 a 4 faixas impressas no corpo de cada elemento. Cada cor corresponde a um valor numérico determinado, de acordo com a tabela a seguir. A cor da 1ª faixa corresponde ao primeiro dígito do valor nominal da resistência, enquanto a 2ª faixa ao 2º dígito. Como o 1º dígito nunca é nulo, a 1ª faixa nunca é preta. A cor da 3ª faixa , com excepção de prata e ouro, corresponde ao número de zeros que seguem os dois primeiros dígitos Uma 3ª faixa na cor preta significa que o número formado pelos dois primeiros dígitos deve ser multiplicado por 10-2 enquanto que na cor de ouro este deve ser multiplicado por 10-1. A 4ª faixa indica a tolerância do valor nominal. A cor de ouro significa uma tolerância de ±5%, prata de ±10%, e incolor para 20%.

Figura ( ) Codificação de um resistor tubular

Tabela 2.3 Código de cores de resistores

Cor Número Cor Número

Preto 0 Azul 6

Marron 1 Violeta 7

Vermelho 2 Cinza 8

Laranja 3 Branco 9

Amarelo 4 Ouro 0,1

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 8

Page 9: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Verde 5 Prata 0,01

2.3.5 Circuito aberto e curto-circuito

Por definição, um circuito aberto é aquele que possui uma resistência infinita. Portanto, não circula corrente nele quando aplicada uma voltagem finita aos seus terminais. Diagramaticamente ele é representado por dois terminais não ligados.

Pelo contrário, um curto-circuito possui uma queda de tensão nula, qualquer que seja a corrente finita nele circulando. Diagramaticamenet é representado por um condutor ideal, isto é, com resistência nula. Os terminais ficam conectados sem resistência alguma. A figura a seguir apresenta os dois casos.

Figura ( ) Circuito aberto e curto-circuito

Nem o curto-circuito, nem o circuito aberto são desejáveis. A sua ocorrência indica um defeito ou mau funcionamento do circuito.

2.3.6 Resistência interna de uma fonte

Qualquer fonte de energia real possui uma determinada resistência correspondente aos processos intrínsecos de funcionamento. A esta resistência intrinseca se chama de

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 9

Page 10: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

resistência interna da fonte. Ela interfere no funcionamento da fonte. Para qualquer carga a ela ligada, excepto circuito abeto, esta resistência é responsável por uma perda de tensão que faz com que a tensão disponível aos terminais da carga seja menor que a produzida internamente pela fonte. À tensão produzida internamente também se chama de força electromotriz (f.e.m.) da fonte, enquanto à tensão disponível aos terminais se chama de voltagem da fonte.Na prática, a resistência interna de uma fonte de tensão possui o mesmo efeito de um resistor ligado em série ( componentes em série têm a mesma corrente sobre eles) com uma fonte de tensão ideal. A resistência interna de uma fonte de corrente tem o efeto prático de um resistor ligado paralelamente (componentes em paralelo têm a mesma tensão sobre eles). Por isso as fontes de energia reais são representadas como na figura a seguir.

Figuar (). Representação de fontes de energia reais.

2.4 Associação de resistores

2.4.1 Ligaçäo de Resistores em série

Dois ou mais elementos de um circuito estäo ligados em série quando estäo ligados em

cadeia e portanto, transportam a mesma corrente e näo meramente correntes de igual

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 10

Page 11: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

valor. A resistência equivalente de uma associaçäo de n resistores ligados em série

pode ser encontrada a partir do esquema da figura a seguir.

Figura ( ) Resistores associados em série

Com efeito, partindo da figura ( ) vem:

{V 1=I R1 ¿ {V 2=I R2 ¿ {V 3=I R3 ¿ {. .. ¿ ¿¿¿Por outro lado,

V T=V 1+V 2+V 3+ . .. +V n=I (R1+R2+R3+ . .. +Rn)=I Reqs

Onde Req é o valor da resistência do resistor que substitui o conjunto de todos os

resistores da associaçäo.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 11

Page 12: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Pela lei de Ohm, vem:

Reqs=V T

I=R1+R2+R3+ .. . +Rn

Generalizando, a resistência equivalente de uma associaçäao de n Resistores associados em série é dada pela seguinte fórmula:

Reqs=∑n=1

N

Rn

A queda de tensäo sobre cada elemento do grupo pode ser encontrada a partir de:

V n=I Rn=V T

ReqsRn=

Rn

ReqsV T=

Rn

R1+R2+R3+ . .. +RnV T

À relaçäo entre a queda de tensäo sobre cada elemento e a tensäo total aplicada ao

conjunto

V n=Rn

∑n=1

N

Rn

V T

é conhecida como Lei ou Regra do Divisor de Tensäo.

2.4.2 Ligaçäo de Resistores em Paralelo

Dois ou mais elementos de um circuito estäo ligados em paralelo quando estäo ligados

em ponte e, portanto, a tensäo aplicada sobre eles é exactamente a mesma e näo

meramente tensöes de igual valor. A resistência equivalente de uma associaçäo de n

resistores ligados em paralelo pode ser encontrada a partir do esquema da figura a

seguir.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 12

Page 13: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Figura ( ) Associaçäo de resistores em paralelo

Com efeito, partindo da figura ( ) vem:

I 1=VR1

I 2=VR2

I3=VR3

. .. . I n=VRn

Por outro lado,

IT=I 1+ I 2+ I 3+ . . . + In=VR1

+ VR2

+ VR3

+. . .+ VRn

Ou,

IT=V ( 1R1+1R2

+1R3

+. . .+ 1Rn )=

VReqP

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 13

Page 14: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Onde Req p é o valor da resistência do resistor que substitui o conjunto de todos os

resistores da associaçäo.

Pela lei de Ohm, vem:

1Req P

= 1R1

+ 1R2

+ 1R3

+. ..+ 1Rn

Ou

Req P=1

1R1

+ 1R2

+ 1R3

+ .. .+ 1Rn

No caso particular de dois resitores em paralelo a respectiva resistência equivalente será dada por:

Reqp 2=R1R2R1+R2

A corrente transportada por cada elemento do grupo de resistores em paralelo pode ser encontrada a partir de:

I n=ReqP

RnIT=

Π (Rn)excepto Rn

∑n=1

N

( Π (Rn ))excepto Rn

I T

À esta relaçäo entre a corrente total do combinado paralelo e a corrente que atravessa cada elemento da associaçäo é conhecida como Lei ou Regra do Divisor de Corrente.

No caso particular de dois resistores em paralelo:

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 14

Page 15: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

{I2=IT .R1R1+R2

¿ ¿¿¿

2.5 Indutor (Bobina) e Indutância, L

A circulação de uma corrente num condutor cria um fluxo magnético em volta do mesmo. Se a corrente variar no tempo, também o fluxo magnético envolvente irá variar no tempo. A variação de fluxo provoca a indução de uma f.e.m. no circuito. A f.e.m. induzida é proporcional à taxa de variação da corrente em relação ao tempo, desde que a permeabilidade do meio envolvente seja constante. À constante de proporcionalidade è chamada de coeficiente de auto-indução, auto-indutância, indutância-própria ou simplismente indutância do elemento indutivo ou indutor. Fisicamente ela representa a oposição que o elemento oferece à variação do fluxo. A relação entre a tensão induzida e a taxa de variação da corrente que a provoca é dada por:

v (t )=L d idt

Ou ainda,

i ( t )= 1L ∫ v dt

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 15

Page 16: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Figura - Elemento Indutor

Sendo v expresso em volts; di/dt em àmperes/segundo; L será expresso em Volt-segundo/àmpere, ou Henrys. Isto é, a auto-indutância de um circuito é 1 henry ( 1 H) se a f.e.m. nele induzida for de 1 volt, quando a corrente que o percorre varia à razão de 1 ampère por segundo.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 16

Page 17: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.5.1 Ligaçäo de Indutores em série

Considere-se o conjunto de indutores ligados em série dados na figura a seguir.

Como já foi referido, para elementos ligados em série vale:

{iT=i1=i2=in ¿¿¿¿

Donde:

Leq

diTdt

=L1di1dt

+L2di2dt

+ .. .+Ln

dindt

=(L1+L2+. ..+Ln ) .(diTdt )⇒ Leq=(L1+L2+. . .+ Ln)

Ou, de forma compacta:

Leq=∑i=1

N

Li

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 17

Page 18: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.5.2 Ligaçäo de Indutores em paralelo

Considere-se o conjunto de indutores ligados em paralelo dados na figura a seguir.

Como já foi referido, para elementos ligados em paralelo vale:

{vT=v1=v2=vn ¿ ¿¿¿

Donde:

1Leq

dvTdt

=1L1

dv1dt

+1L2

dv 2

dt+. . .+1

Ln

dvndt

=(1C1 +1C2

+. ..+1Cn ) .(diTdt )

⇒1Leq

=1L1

+1L2

+ .. .+1Ln

Ou, de forma compacta:

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 18

Page 19: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

1Leq

=∑i=1

N 1Li

Leq=1

∑i=1

N 1Li

2.6 Capacitor ( Condensador) e Capacitância

Foi já referido que um capacitor é um elemento que armazena energia eléctrica num

campo eléctrico. Esta energia apresenta-se na forma de uma carga entre dois pontos

com potenciais diferentes, sendo que a diferença de potencial, v, entre os terminais do

capacitor é proporcional à carga eléctrica, q, armazenada. A constante de

proporcionalidade C é designada de capacitância do capacitor. Ela mede a

capacidade do capacitor armazenar cargas nos condutores entre os quais tem-se uma

diferença de potencial. A relação entre a carga e a tensão é:

q ( t )=C v (t )

Sendo,

i ( t )=dq( t )dt

Vem,

i( t )=C dv ( t )dt

Ou ainda,

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 19

Page 20: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

v (t )= 1C ∫ i dt

Figura - Elemento Capacitivo

Com coulombs; v em volts, C é expresso em coulombs/volt ou Farads [ F ]. Assim, um

capacitor terá a capacitância de 1 F se adquirir a carga de 1 Coulomb para cada volt de

diferença de potencial aplicada entre os seus terminais. São submúltiplos convenientes

do Farad:

1 μF = 1 microfarad = 10−6 F 1 pF = 1 picofarad = 10 −12 F

2.6.1 Ligaçäo de Capacitores em série

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 20

Page 21: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Considere-se o conjunto de capacitores ligados em série dados na figura a seguir.

Como já foi referido, para elementos ligados em série vale:

{iT=i1=i2=in ¿¿¿¿

Donde:

1Ceq

diTdt

=1C1

di1dt

+1C2

di2dt

+. ..+1Cn

dindt

=(1C1 +1C2

+. . .+1Cn ) .(diTdt )

⇒1C eq

=1C1

+1C2

+ .. .+1Cn

Ou, de forma compacta:

1Ceq

=∑i=1

N 1C i

Ceq=1

∑i=1

N 1Ci

2.6.2 Ligaçäo de Capacitores em paralelo

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 21

Page 22: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Considere-se o conjunto de indutores ligados em paralelo dados na figura a seguir.

Como já foi referido, para elementos ligados em paralelo vale:

{vT=v1=v2=vn ¿ ¿¿¿

Donde:

Ceq

dvTdt

=C1dv1dt

+C2dv2dt

+. ..+Cn

dvndt

=(C1+C2+. . .+Cn ) .(dvTdt )⇒Ceq=(C1+C2+. . .+Cn )

Ou, de forma compacta:

Ceq=∑i=1

N

Ci

2.7 ProblemasAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013

Notas Do Regente Página 22

Page 23: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.1 A figura a seguir mostra o diagrama de um circuito com uma fonte de

tensão de V volts conectada a uma fonte de corrente de I Amperes.

2.7.2 Determina o valor da potência absorvida pela fonte de tensão para:

a) V= 2 V; I= 4 A.

b) V=3 V; I= -2 A.

c) V=-6 V; I= -8 A.

2.7.3 A figura a seguir mostra o diagrama de um circuito de uma fonte de

corrente I A ligada a uma fonte independente de tensão de 8 V e uma fonte

de tensão controlada por corrente que fornece uma tensão em volts iguala

a duas vezes a corrente em Amperes que flui através dela.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 23

Page 24: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

Determina a potência P1 absorvida pela fonte de tensão independente e a

potência P2 absorvida pela fonte de tensão dependente, para:

a) I = 4 A;

b) I= 5 mA;

c) I= -3 A.

2.7.4 Calcula a potência absorvida por cada elemento do circuito da figura a

seguir.

2.7.5 Um forno de 240 V possui um resistor de 24 Ω. Determina o menor valor de

corrente do fusível que deve ser usado na linha para proteger o elemento

aquecedor.

2.7.6 Qual a resistência de um ferro de soldar que solicita uma corrente de 0,8333 a

120 V ?

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 24

Page 25: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.7 Uma torradeira com um resistor de 8,27 Ω opera com uma corrente de 13,9 A.

Encontre o valor da tensão aplicada.

2.7.8 Qual a conductância de um reisistor de 560 kΩ ?

2.7.9 Qual a conductância de um amperímetro que indica 20 A quando uma tensão de

0,01 V é aplicada sobre ele ?

2.7.10 Determina a reistência a 20º C de uma barra de cobre recozido de m de

comprimento e 0,5 cm por 3 cm de secção recta rectangular.

2.7.11 Determina a resistência a 20º C de um condutor de secção recta circular de

alumínio cujo comprimento é de 1000 m e o diâmetro é de 1,626 mm.

2.7.12 A resistência de um certo codutor de secção recta circular é de 15 Ω. Outro

condutor do mesmo material e à mesma temperatura possui 1/3 do diâmetro e o

dobro do comprimento. Encontre a resistência do segundo condutor.

2.7.13 Qual a resistvidade da platina se um cubo com 1 cm de lado possui uma

resistência de 10 μΩ entre faces opostas.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 25

Page 26: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.14 Um cabo com 20 m de comprimento e área de secção recta de 2,1 mm2 possui

uma resistência de 1,7 Ω a 20º C. De que material esse cabo é feito ?

2.7.15 Qual o comprimento de um condutor de nicromo cuja secção recta é de 0,08127

mm2 utilizado na fabricação de um resistor de 24 Ω a 20º C.

2.7.16 Um certo condutor de alumínio possui uma resistência de 5 Ω a 20º C. Qual o

comprimento de um condutor de cobre recozido de mesmo tamanho e mesma

temperatura ?

2.7.17 Um condutor com 50 m de comprimento de 2 mm2 de área de secção recta

possui uma resistência de 0,56 Ω. Um outro condutor, de mesmo material e de

100 m de comprimento, possui uma resistência de 2 Ω à mesma temperatura.

Determina o diâmetro desse condutor.

2.7.18 Um resistor é feito de um fio de constantam de 0,2 mm de diâmetro enrolado

sobre um cilindro de 1 cm de diâmetro. Quantas voltas desse fio são

necessárias para uma resistência de 50 Ω a 20º C?

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 26

Page 27: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.19 Um condutor de cobre recozido possui uma secção recta de 2,1 mm2 e uma

resistência de 8,5 mΩ/m a 25º C. Qual a resistência de 150 m de um condutor

de mesmo material com a secção recta de 13 mm2 à mesma temperatura ?

2.7.16 A condutância de um determinado condutor é de 0,5 S. Outro condutor de

mesmo material e à mesma temperatura possui o diâmetro duas vezes maior e o

comprimento três vezes maior. Determina a condutância do segundo condutor.

2.7.20 Encontre a condutância de 30 m de um condutor de ferro cujo diâmetro é de 1,6

mm. A temperatura é de 20º C.

2.7.21 Numa linha aérea um cabo de cobre possui uma resistência de 100 Ω a uma

temperatura de 20º C. Qual a resistência desse cabo quando aquecido pelo sol

até uma temperatura de 38º C ?

2.7.22 Quando 120 V são aplicados a uma lâmpada, uma corrente de 0,5 A circula

fazendo com que o filamento de tungstêncio atinja uma temperatura de 2600º C.

Qual a resistência do filamento dessa lâmpada a uma resistência de 20º C ?

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 27

Page 28: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.23 Um certo condutor de cobre de um tranformador desenergizado possui uma

resistência de 30 Ω a 20º C. Quando em operação, entretanto,esta resistência

atinge 35 Ω. Determina a temperatura do condutor para esta situação.

2.7.24 Numa linha aérea um cabo de alumínio possui uma resistência de 150 Ω a uma

temperatura de 20º C. Determina a resistência desse cabo quando aquecido

pelo sol a uma temperatura de 42º C.

2.7.25 Determina a resistência a 35º C de um cabo de alumínio de comprimento 200 m

e diâmetro 1 mm.

2.7.26 Encontre a fórmula para calcular o coeficiente de temperatura da resistência a

partir da temperatura T1 de um material, sendo T0 a temperatura inferida para

resistência zero.

2.7.27 Calcula o coeficiente de temperatura da resistência de alumínio a 30º C e use

esse valor para encontrar a resistência de um cabo de alumínio a 70º C, sendo

que esse condutor possui uma resistência de 40 Ω a 30º C.

2.7.28 Determina a resistência de um aquecedor eléctrico que absorve 2400 W quando

ligado a uma rede de 120 V.Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013

Notas Do Regente Página 28

Page 29: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.29 Determina a resistência interna de um aquecedor de água de 2 kW que opera

com uma corrente de 8,33 A.

2.7.30 Qual a maior tensão que pode ser aplicada sobre um resistor de 0,125 W/ 2,7

MΩ, se causar sobreaquecimento ?

2.7.31 Se um resistor não linear possui a relação tensão x corrente dada por V=3I2+4,

que corrente circulará por ele quando alimentado por uma resistência de 61 V ?

Nessa condição, que potência será absorvida ?

2.7.32 A uma temperatura de 20º C, uma junção pn de um diodo de silício possui uma

relação tensão x corrente I=10-14 (e40 V-1). Qual é tensão do díodo quando a

corrente é de 50 mA ?

2.7.33 Qual a faixa de resistência para.

a) Um resistor 470 Ω ± 10%;

b) Um resistor de 2,7 MΩ ± 20%.

2.7.34 Uma tensão de 110 V é aplicada sobre um resistor de 20 kΩ, 5%. Determina o

valor da corrente que pode circular sobre ele.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 29

Page 30: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.35 Quais as cores das faixas de um resistor de 5,6 Ω, 10% ?

2.7.36 Determina as faixas de um resistor de 2,7 MΩ, 20%.

2.7.38 Qual o valor nominal e a tolerância de um resistor com as faixas na ordem

verde/azul/amarelo/prata ?

2.7.39 Encontre a resistência que corresponde às faixas de cores na ordem

vemelho/amarelo/preto/ouro.

2.7.40 Se uma bateria de 12 V possui uma resistência interna de 0,04 Ω, qual é a

tensão nos terminais dessa bateria quando ela está fornecendo uma corrente de

40 A ?

2.37 Se uma bateria de carro de tensão 12 V possui uma resistência interna de 0,1 Ω,

qual a tensão aplicada nos terminais da bateria que faz fluir uma corrente de 4 A

em direcção ao terminal positivo ?

2.7.41 Se uma fonte de corrente de 10 A possui uma resistência interna de 100 Ω, qual

a corrente fornecida por essa fonte quando a tensão em seus terminais é 200 V?

2.7.42 Determina a resistência equivalente de 30 resistores de 6 Ω ligados em série.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 30

Page 31: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.43 Detrmina a conductância total dos resistores de 4, 10, 16, 20 e 24 ligados em

série.

2.7.44 Um enfeite para árvores de Natal (gambiarra) possui 8 lâmpadas de 6 W/15 V

ligadas em série. Qual a corrente que circula por ele quando ligado a uma

tensão de 120 V ?

2.7.45 Uma lâmpada de um flash é especificada para 3 V/ 300 mA, e é alimentada por

uma tensão de 120 V. Determina a resistência do resistor que deve ser ligado

em série com a lâmpada para limitar a corrente.

2.7.46 Deseja-se colocar um transistor de 20 W, de um rádio de carro alimentado por

uma bateria de 6 V, no rádio de um outro carro alimentado por uma bateria de

12 V. Determina o valor da resistência do resistor a ligar em série com o

transistor para limitar a corrente e a mínima corrente que o resistor deverá

suportar.

2.7.47 Um resistor em série com um resistor de 8 Ω consome uma potência de 100 W

quando é aplicada a ambos uma tensão de 60 V. Determina o valor da

resistência R do resistor desconhecido.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 31

Page 32: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.48 No circuito da figura a seguir, é aplicada uma tensão constante de 45 V.

Determinar a corrente, queda de tensão e a potência em cada resistor.

2.7.49 Uma corrente IT divide-se entre dois ramos paralelos de resistências R2 e R1,

respectivamente, como mostra a figura a seguir. Deduzir as expressões para as

correntes I1 e I2 nos ramos paralelos.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 32

Page 33: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.50 Três resistores R1, R2 e R3 estão em paralelo, como indica a figura a seguir.

Deduzir uma expressão para a resistência equivalente Re da estrutura.

2.7.51 Encontre a resistência equivalente do circuito dado na figura a seguir.

2.7.52 Determina a corrente e as tensões desconhecidas no circuito da figura a seguir.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 33

Page 34: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.53 Usa a regra de divisor de tensão para determinar as tensões V4 e V5 do circuito

da figura anterior.

2.7.54 Determina a tensão Vab sobre o circuito aberto da figura a seguir.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 34

Page 35: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.55 No circuito da figura a seguir a corrente no resistor de 5 Ω é i(t)=6 senωt A.

a) Determinar a corrente nos resistores de 15 Ω e 10 Ω e as tensões entre a e b e

entre b e c;

b) Calcular a tensão instantânea e a potência média consumida em cada resistor.

2.7.56 Determina a tensão induzida em uma bobina de 50 espiras.

a) A partir de um fluxo constante de 104 Wb;

b) A partir de uma variação de fluxo de 3 Wb/s.

2.7.57 Qual a taxa de variação de fluxo envolvendo uma bobina de 200 voltas quando

50 V estão sobre esta bobina.

2.7.58 Determina o número de espiras de uma bobina para o qual uma variação de

enlance de fluxo de 0,4 Wb/s induz uma tensão de 20 V.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 35

Page 36: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.59 Determiana a inductância de um indutor de 100 voltas que é envolvido por 3.10-

4 Wb quando uma corrente de 20 mA circula sobre ele.

2.7.60 Determina a inductância de uma bobina de uma única camada que possui 300

espiras sobre um cilindro de plástico com 12 cm de comprimento e 0,5 cm de

diâmetro.

2.7.61 Determina a inductância aproximada de uma bobina de uma única camada que

possui 50 espiras sobre um cilindro de material ferromagnético com 1,5 cm de

comprimento e 1,5 mm de diâmetro. O material ferromagnético possui uma

permeabilidade relativa de 7000.

2.7.62 Um inductor de 3 H possui 2000 voltas, Quantas voltas deverão ser adicionadas

para aumentar a inductância para 5 H ?

2.7.63 Determina a tensão induzida em uma bobina de 150 mH quando percorrida por

uma corrente de 4 A. Determina também a tensão para uma corrente variando à

taxa de 4 A/s.

2.7.64 Determina a tensão induzida numa bobina de 200 mH em t= 3 ms se a corrente

aumenta uniformemente de 30 mA em t=2 s para 90 mA em t=5 s.Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013

Notas Do Regente Página 36

Page 37: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.65 Qual a inductância de uma bobina se uma corrente crescendo uniformemente de

30 mA até 80 mA em 100 μs induz nela uma tensão de 50 mV ?

2.7.66 Determina a inductância equivalente de três inductores em paralelo com

inductâncias de 45, 60 e 75 mH.

2.7.67 Determina a inductância do inductor que quando ligado em paralelo com outro

de 40 mH produz uma inductência equivalente de 10 mH.

2.7.68 Determina a inductância total LT do circuito mostrado na figura a seguir.

2.7.69 Determina a energia armazenada num inductor de 200 mH que possui sobre ele uma tensão de 10 V.

2.7.70 Uma corrente i=0,32 t A circula por um inductor de 150 mH. Encontre a energia armazenada em t=4 s.

2.7.71 Determina a capacitância de um capacitor inicialmente descarregado para o qual o movimento de 3.1015 electrões de uma placa para a outra produz uma tensão de 200 V.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 37

Page 38: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

2.7.72 Qual a carga armazenada num capacitor de 2 μF com uma tensão de 10 V sobre ele ?

2.7.73 Determina a capacitância de um capacitor de placas paralelas se a dimensão de cada placa rectangular é 1 x 0,5 cm, a distância entre as placas é 0,1 mm e o dieléctrico é ar. Depois encontre a capacitância quando o dieléctrico é mica.

2.7.74 Determine a capacitância entre as placas de um capacitor de 0,01 μF de placas paralelas, se a área de cada placa é 0,07 m2 e o dieléctrico é vidro.

2.7.75 Um capacitor possui como dieléctrico um disco feito de cerâmica com 0,5 cm de diâmetro e 0,521 mm de espessura. Esse disco é revestido dos dois lados com prata, sendo esse revestimento as placas. Determina a capacitância.

2.7.76 Quais os diferentes valores de capacitância que se podem obter com a associação de um capacitor de 1 μF com um de 3 μF ?

2.7.77 Determina a capacitância equivalente do circuito mostrado na figura a seguir.

2.7.78 Três capacitores de 4, 6 e 8 μF estão em paralelo com uma fonte de tensão de 300 V. Determina:

a) A capacitância total,

b) A carga armazenada em cada capacitor,Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013

Notas Do Regente Página 38

Page 39: Capítulo 1 -    Web viewAnálise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013. Notas Do Regente Página 31

CIRCUITO ELÉCTRICO E ELEMENTOS

Capítulo 2

2013

c) A energia total armazenada.

2.7.79 Repita o problema anterior para os capacitores en série em ves de em paralelo,

mas encontre a tensão em cada capacitor em vez da carga armazenada.

2.7.80 Determina a tensão em cada capacitor do circuito da figura a seguir.

2.7.81 Determiana a tensão em cada capacitor do circuito da figura a seguir.

Análise De Circuitos Eléctricos para o curso de Engenharia Informática: - Fevereiro-Junho 2013 Notas Do Regente Página 39