23
Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e Função do Sistema Auditivo

Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Embed Size (px)

Citation preview

Page 1: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Clique nas setas verdes para avançar/voltarou ESC para retornar ao menu geral

PARTE 2Neurociência Sensorial

Capítulo 8Os Sons do MundoEstrutura e Funçãodo Sistema Auditivo

Page 2: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

O som é produzido pela vibração de objetos sólidos que põem em movimento as partículas do ar circundante. Criam-se regiões de compressão e rarefação das partículas, que se

deslocam para fora como superfícies esféricas de raios crescentes.

Page 3: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Nas ondas transversais as partículas vibram em direção perpendicular à sua propagação (A), enquanto nas ondas longitudinais, vibração e propagação têm a mesma direção (B).

Page 4: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Os tons puros são ondas senoidais. Neste experimento imaginário, mede-se a densidade de partículas em um ponto fixo durante algum tempo (A). Verifica-se que a densidade naquele ponto varia no tempo de acordo com uma curva senoidal. Depois (B) mede-se a densidade em três pontos diferentes, simultaneamente. Encontram-se as mesmas curvas em todos os pontos, mas um pouco deslocadas uma em relação à outra.

Page 5: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Amplitude (A) é diferente de frequência. Enquanto a primeira permite determinar a quantidade de energia (E) contida na onda sonora em cada ponto do ciclo (A1 < A2, logo E1 < E2), a frequência representa a quantidade de ciclos que ocorrem em um certo período de tempo.

Page 6: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

As ondas sonoras interagem, somando-se algebricamente. A representa a soma de duas ondas em coincidência de fase, produzindo uma onda resultante de maior amplitude e mesma

frequência. B representa um caso de oposição de fase, em que as duas ondas iguais que interagem se anulam. C mostra a resultante da interação de três ondas diferentes. É assim

complexa a maioria dos sons que ouvimos.

Page 7: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

As curvas mostram o limiar de audibilidade para uma população de indivíduos. Os níveis de intensidade sonora que os indivíduos são capazes de ouvir ficam acima de cada curva. O

grupo de indivíduos com melhor audição (1%) está representado pela curva cinza. As demais curvas representam cada uma delas uma maior proporção de pessoas na população. A curva

cinza de cima mostra o limiar para dor provocada por intensidades sonoras muito fortes.

Page 8: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Pode-se decompor matematicamente em

ondas senoidais simples a onda complexa produzida

pelo som de um instrumento musical como

o clarinete. Neste caso, haverá uma frequência

fundamental característica de um tom (dó, ré etc.), e

uma composição deharmônicos característica

do instrumento.

Page 9: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A cóclea, órgão receptor do sistema auditivo, fica

no labirinto (A), uma estrutura membranosa

incrustada no osso temporal. O corte de

uma volta da cóclea (B) mostra que ela é

formada por canais ou escalas, e que as células

receptoras ficam situadas entre duas

membranas (tectorial e basilar). A maioria das

fibras auditivas é aferente, e seus somas

ficam no gânglio espiral. Visto de um outro ângulo

e em maior ampliação (C), o nervo auditivo

contém fibras aferentes (em verde-escuro) mas

também fibras eferentes (em roxo) que inervam

os receptores.

Page 10: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Todos os níveis do SNC apresentam

componentes do sistema auditivo. A é uma vista

dorsal do tronco encefálico, do ângulo

assinalado pela luneta no pequeno encéfalo

acima. No encéfalo estão também

representados os planos dos cortes (números

circulados) mostrados em B. Tanto em A como

em B, os neurônios auditivos estão

representados em roxo e preto (os aferentes) e

em vermelho (os eferentes).

Page 11: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A posição das áreas auditivas corticais no homem pode ser visualizada na face lateral do encéfalo (A), e mais completamente se removermos a parte superior dos hemisférios (B) para revelar o assoalho do sulco lateral (C). Através de ressonância magnética funcional a área A1 aparece (D) quando se oferece estimulação sonora a um indivíduo, que provoca o aumento do fluxo sanguíneo da região, resultante da atividade neuronal. A reconstrução por computador mostra os focos de ativação bilateral (em vermelho) no giro temporal superior de ambos os hemisférios. As vistas de C e D são indicadas pela luneta em B. W = áreade Wernicke.

Page 12: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A membrana basilar vibra a cada som que entra no ouvido (A), e vibra mais forte quando o som incidente é também mais forte (B). A cóclea está aqui representada como se estivesse desenrolada (pequeno detalhe em A). A relação de proporcionalidade entrea intensidade do som e a resposta dos axônios aferentes foi medidaexperimentalmente (C). Constatou-se que a frequência de PAs é maior(curva verde) para sons mais fortes.

Page 13: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Hermann von Helmholtz (à esquerda) e Georg Von Békésy (à direita). No centro, esquema da tonotopia coclear desenhado por Békésy.

Page 14: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Experimentos de registro eletrofisiológico indicaram que as variações da frequência do potencial receptor das célulasestereociliadas da cóclea acompanham a frequência do som incidente (A). O mesmo ocorre com a frequência das salvas de PAs das fibras do nervo auditivo (B). Mas isso só é verdade para os tons graves e médios (entre 300 e 1.000 Hz). E os agudos?.

Page 15: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A tonotopia representa uma especialização da membrana basilar: os sons mais graves fazem vibrar o ápice (A), e os mais agudos movimentam a base (B). Na verdade, cada frequência faz vibrar seletivamente um local da membrana basilar. Desse modo o sistema auditivo discrimina (separa) os tons, mesmo os mais agudos que não são acompanhados pelo princípio das salvas.

Page 16: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

As curvas de sintonia das células estereociliadas da cóclea (A) e das fibras do nervo auditivo (B) revelam uma frequência característica individual (linhas tracejadas). Nessa frequência

ocorre o disparo de um PR ou de PAs, respectivamente, para um som incidente de intensidade mínima. Quando os sons incidentes se afastam dessa frequência para mais ou para menos, é preciso aumentar a intensidade para ativar a célula ou a fibra. A frequência característica da célula azul, por exemplo (em A) e da fibra laranja (em B) é de quase 1 kHz. As frequências vizinhas não são tão eficazes para elas, mas podem ativar outras, representadas em cinza.

Page 17: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A organização tonotópica aplica-se a

todo o sistema auditivo, da membrana basilar às

áreas corticais. Em todas essas regiões se

encontram mapas tonotópicos, isto é, uma

distribuição ordenada de neurônios que

respondem à série de frequências audíveis. O detalhe acima mostra o mapa tonotópico de A1.

No exemplo,a cadeia de neurônios

ativada para o som que faz vibrar a membrana

basilar (abaixo) está representada em

vermelho em todos os estágios do sistema

auditivo.

Page 18: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A eletromotilidade é possibilitada por proteínas como a prestina, que de algum modo detectam a despolarização da membrana causada pelo estímulo sonoro e contraem-se, provocando o

encurtamento da célula ciliada.

Page 19: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A. A fotomicrografia eletrônica mostra os estereocílios alinhados das células ciliadas externas. B mostra a presença de caderina (pontos verdes), uma proteína que contribui para a abertura dos

canais de potássio na ponta dos estereocílios. C representa a motilidade dessas células receptoras em função do potencial de sua membrana. Quando ocorre uma despolarização provocada pelas fibras eferentes olivococleares (à direita), a célula se contrai, “puxando” a

membrana basilar para cima e tornando mais rígido o conjunto.

Page 20: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Quando um som complexo entra no ouvido, faz vibrar ao mesmo tempo diversas partes da membrana basilar, e assim ativa – em paralelo – as regiões tonotópicas correspondentes do sistema auditivo. O desenho mostra as regiões mais ativas em vermelho, e as menos ativas em cinza ao longo do sistema.

Page 21: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

A. Um som que incide de lado atinge primeiro uma das orelhas e forma uma “sombra” atrás da cabeça. A outra orelha será atingida por reflexão da onda incidente nos objetos do ambiente próximo. B. Cada um dos neurônios do complexo olivar superior, indicados em C, apresenta disparo de PAs em maior frequência para certas diferenças de fase que resultam da diferença do tempo de chegada do som às duas orelhas.

Page 22: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Os neurônios do núcleo olivar superior lateral detectam diferenças de intensidade dos sons incidentes em cada orelha, com a intervenção de neurônios inibitórios do núcleo do corpo

trapezóide (em vermelho). Este mecanismo é mais eficiente para a localização espacial dos sons agudos.

Page 23: Clique nas setas verdes para avançar/voltar ou ESC para retornar ao menu geral PARTE 2 Neurociência Sensorial Capítulo 8 Os Sons do Mundo Estrutura e

Estudos experimentais no macaco (acima) têm permitido identificar diferentes áreas no assoalho do lobo temporal (visualizado por meio de um “corte” das regiões sobrepostas). A partir de A1, essas áreas mostraram-se fortemente interconectadas (setas vermelhas). No córtex humano (abaixo), os estudos não têm ainda precisão comparável, mas pode identificar-se a área 41 de Brodmann como a região auditiva primária (A1), 42 e 52 como o cinturão auditivo, e 22 e talvez 38 como o paracinturão.