38
Módulo 5 O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação Ensino a Distância COSMOLOGIA Da origem ao fim do universo 2015

Da origem ao fim do universo 2015 - renataquartieri.comrenataquartieri.com/wp-content/uploads/2015/04/modulo-5.pdf · Ilustração do quinto postulado de Euclides. ... celestes interagem

  • Upload
    vuphuc

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Cosmologia - Da origem ao fim do universo 243

Módulo 5O novo conceito de Espaço e Tempo e

a Teoria Relativística da Gravitação

Ensino a DistânciacosmologiaDa origem ao fim do universo

2015

Esta publicação é uma homenagem a Antares Cleber Crijó (1948 - 2009) que dedicou boa parte da sua carreira científica à divulgação e popularização da ciência astronômica.

Presidente da RepúblicaDilma Vana Rousseff

Ministro de Estado da Ciência, Tecnologia e InovaçãoJosé Aldo Rebelo Figueiredo

Secretário-Executivo do Ministério da Ciência, Tecnologia e InovaçãoÁlvaro Doubes Prata

Subsecretário de Coordenação de Unidades de PesquisasKayo Júlio César Pereira

Diretor do Observatório NacionalJoão Carlos Costa dos Anjos

Observatório Nacional/MCTI (Site: www.on.br)Rua General José Cristino, 77São Cristóvão, Rio de Janeiro - RJCEP: 20921-400

Criação, Produção e Desenvolvimento (Email: [email protected])

Carlos Henrique VeigaCosme Ferreira da Ponte NetoRodrigo Cassaro ResendeSilvia da Cunha LimaVanessa Araújo SantosGiselle VeríssimoCaio Siqueira da SilvaLuiz Felipe Gonçalves de Souza

© 2015 Todos os direitos reservados ao Observatório Nacional.

Equipe de realização

Conteúdo científico e textoCarlos Henrique Veiga

Projeto gráfico, editoração e capaVanessa Araújo Santos

Web DesignGiselle VeríssimoCaio Siqueira da Silva

ColaboradoresAlexandra Pardo Policastro NatalenseNey Avelino B. SeixasAlex Sandro de Souza de Oliveira

A Nebulosa do Véu ou Nebulosa Vassoura de Bruxa (NGC 6960) é uma enorme nuvem de gás (remanescente) composta por restos de uma estrela que foi destruída por uma violen-ta explosão (supernova). Foi descoberta por William Herschel em 1784. A uma distância de 1470 anos-luz do Sistema Solar, a luz da explosão da supernova provavelmente chegou à Terra há mais de 5.000 anos.

Módulo 5O novo conceito de Espaço e Tempo e

a Teoria Relativística da Gravitação

Ensino a DistânciacosmologiaDa origem ao fim do universo

2015

246 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

O QUE É GEOMETRIA?

Geometria é a parte da matemática que trata de curvas, superfícies e vo-lumes. A geometria tem uma longa história remontando a épocas até mesmo muito anteriores aos gregos. No entanto, foram os filósofos gregos os primei-ros a sistematizarem, e ampliarem, o conhecimento da geometria.

Temos uma necessidade diária de usar a geometria. Quando afirmamos que alguma coisa está distante estamos falando de comprimento e isso é ge-ometria. Se falamos sobre a área de um campo de futebol estamos usando geometria. Se dizemos que o vestido da modelo está largo estamos falando de volumes e portanto de geometria. Ela nos acompanha todo o tempo.

A geometria é um dos ramos mais antigos da matemática e, como já dis-semos, trata das regras de medição de distâncias e ângulos, regras estas que foram compiladas pelo filósofo e matemático grego Euclides por volta do ano 300 antes de Cristo.

A geometria que usamos no nosso dia-a-dia é aquela desenvolvida pelos gregos. É a geometria de Euclides, ou geometria euclidiana, que estudamos nas escolas e aprendemos a aplicar na prática. A geometria euclidiana realiza suas medidas sobre uma superfície plana.

A GEOMETRIA EUCLIDIANA

Euclides foi um dos maiores matemáticos gregos da antiguidade. Não se sabe com certeza a data do seu nascimento, talvez tenha sido por volta do ano 325 antes de Cristo. Sabe-se que ele viveu na cidade de Alexandria, no atual Egito, quase certamente durante o reinado de Ptolomeu I (323 BC–283 BC) e morreu, de causas desconhecidas, no ano 265 antes de Cristo. Por essa razão ele é citado como Euclides de Alexandria.

Euclides nos deixou um conjunto de livros de matemática, os Elemen-tos, que pode ser considerado um dos mais importantes textos na história da matemática. Nesse monumental conjunto de 13 volumes Euclides reu-niu toda a geometria conhecida em sua época, ou seja, os vários resulta-dos originalmente obtidos por outros matemáticos anteriores a ele e seus trabalhos originais. O fato importante é que Euclides apresentou esses resultados dentro de uma estrutura logicamente coerente e simples. Ele até mesmo apresentou provas de teoremas matemáticos que haviam sido perdidos.

Euclides deduzia, entre vários outros resultados, as propriedades dos ob-jetos geométricos a partir de um pequeno conjunto de axiomas. Axiomas são afirmações que não possuem prova mas são aceitas como auto-evidentes. Por esses motivos Euclides é considerado o “pai da geometria” e o fundador do chamado “método axiomático da matemática”.

O sistema geométrico apresentado por Euclides nos livros que formam os "Elementos" durante muito tempo foi considerado “a” geometria. Era a única disponível e podia ser usada na vida diária sem contradições aparentes. Os “Elementos” de Euclides foram os fundamentos do ensino de geometria prati-camente até o início do século XX.

Hoje a geometria apresentada por Euclides é chamada de “geometria Eucli-diana” para distingui-la das outras formas de geometria, chamadas “geome-trias não-Euclidianas”, que foram descobertas ao longo do século XIX.

As geometrias não-Euclidianas cresceram a partir de mais de 2000 anos de investigação sobre o quinto postulado de Euclides, um dos axio-mas mais estudados em toda a história da matemática. A maior parte dessas investigações envolveram tentativas de provar o quinto postulado,

35 O que é

geometria?

Euclides (de Alexandria) (325 a.C. - 265 a.C.)

Cosmologia - Da origem ao fim do universo 247

relativamente complexo e presumivelmente não intuitivo, usando os ou-tros quatro postulados. Se eles tivessem sido bem sucedidos teriam mos-trado que esse postulado seria na verdade um teorema. Na verdade os “Elementos” consistem de duas partes: a primeira é formada por teoremas que são provados sem o auxílio do quinto postulado e formam o que cha-mamos de “geometria absoluta”; e a segunda parte é formada por teore-mas que estão baseados no quinto postulado e que formam a “geometria Euclidiana” propriamente dita.

As imagens mostram páginas de um manuscrito grego do século XI com os “Elementos”.

Os axiomas de Euclides são os seguintes:

1. dados dois pontos há um intervalo que os une.

2. um intervalo pode ser prolongado indefinidamente.

3. um círculo pode ser construído quando seu centro e um ponto sobre ele são dados.

4. todos os ângulos retos são iguais.

5. se uma linha reta inclinada sobre duas linhas retas faz os ângulos in-teriores do mesmo lado menores do que dois ângulos retos, as duas linhas retas, se prolongadas indefinidamente, se encontram naquele lado no qual os ângulos são menores do que dois ângulos retos.

Vemos que o quinto postulado de Euclides tem um enunciado bem mais complicado que os outros. Na verdade ele pode ser colocado de uma maneira bem mais simples:

Páginas dos "Elementos" de Euclides.

Ilustração do quinto postulado de Euclides.

248 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

“Através de um ponto C, não localizado sobre uma dada linha reta AB, somente uma linha reta paralela a AB pode ser traçada, ou seja, uma linha situada no mesmo plano onde está a linha reta dada e que não a intercepta.”

ou então

“Duas linhas paralelas são equidistantes”

Por mais de 2000 anos os matemáticos têm tentado demonstrar esse pos-tulado sem sucesso.

A geometria Euclidiana é aquela que as pessoas comuns usam na sua vida diária. Nessa geometria a soma dos ângulos internos de um triângulo é igual a 180o, como vemos na figura acima.

Em uma geometria plana, ou geometria euclidiana, a distância entre dois pontos pode ser facilmente calculada. Se considerarmos somente

• uma dimensão:

a distância entre dois pontos será dada por ds

ds= dx2 - dx1

• duas dimensões:

essa distância será obtida por intermédio do chamado “teorema de Pitágoras” (o quadrado da hipotenusa de um triângulo retângulo e igual à soma dos quadrados dos catetos)

ds2 = dx2 + dy2

• três dimensões:

a distância entre os dois pontos será obtida a partir da relação:

ds2 = dx2 + dy2 + dz2

Geometria Euclidiana.A soma dos ângulos internos de um triângulo é igual a 180º.

Cosmologia - Da origem ao fim do universo 249

Essas são as expressões que nos dão a distância entre dois pontos em uma geometria Euclidiana, não importando se eles estão muito afastados ou muito próximos.

No entanto, embora o nosso mundo diário seja descrito por três dimen-sões espaciais, a matemática está ligando muito pouco para isso! Para ela um espaço pode ter um número qualquer de dimensões, até mesmo infinitas dimensões.

O CONCEITO DE ESPAÇO E TEMPO DE ISAAC NEWTON

Já vimos que a descoberta da lei que nos mostra de que maneira os corpos celestes interagem foi feita por Isaac Newton. Ele foi capaz de determinar que a força da gravidade depende diretamente do produto das massas dos corpos em interação e do inverso do quadrado da distância entre eles.

onde G é a constante gravitacional, M é a massa de um corpo, m é a massa do outro corpo, e d é a distância entre esses dois corpos.

Chama-se a atenção para o fato de que constante universal da gravitação, G, não é o mesmo que aceleração da gravidade, g. Esta última varia, por exem-plo, de acordo com o corpo celeste considerado e, portanto, não é uma cons-tante universal!

A partir da equação da gravitação mostrada acima vemos que, uma vez que a força gravitacional é diretamente proporcional ao produto das massas dos corpos que estão interagindo, variações nas massas dos corpos provocarão variações no efeito gravitacional. É claro que se as massas de ambos os obje-tos aumenta (e a distância entre eles permanece inalterada) a força de atração gravitacional entre eles também irá aumentar. Se a massa de um dos objetos é dobrada, e eles permanecem à mesma distância um do outro, a interação gra-vitacional entre eles também é dobrada. Se a massa de cada um dos objetos é dobrada então a interação gravitacional entre eles será quadruplicada, e assim por diante.

O contrário acontece quando variamos a distância entre os corpos. A equação nos mostra que a interação gravitacional é inversamente proporcio-

36 O conceito de espaço

e tempo de Isaac Newton

Conceito artístico dos estudos de Newton.

250 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

nal ao quadrado da distância entre os corpos que estão interagindo. Isso nos diz que, mantidas constantes as massas dos corpos, quanto mais afastados eles estiverem mais fraca será a interação gravitacional entre eles. Assim, à medida que dois objetos são afastados um do outro a interação gravitacional entre eles também diminui. Por exemplo, se a separação entre dois corpos é dobrada (aumentada por um fator 2) a força de atração gravitacional será diminuída por um fator quatro, uma vez que a interação gravitacional é proporcional ao inverso do quadrado da distância. Se a distância entre os corpos é triplicada ou seja, aumentada por um fator 3, a interação gravitacional irá diminuir por um fator 9 (três elevado ao quadrado).

As proporcionalidades expressas pela lei da gravitação universal de New-ton são mostradas graficamente ao lado. Observe como a interação gravitacio-nal é diretamente proporcional ao produto das duas massas e inversamente proporcional ao quadrado da distância entre elas.

Observações: • note que as forças gravitacionais entre duas partículas formam um

par ação-reação, como exigido pela terceira lei de Newton. A primeira partícula exerce uma força de atração sobre a segunda partícula e esta também exerce uma força sobre a primeira. Essas forças estão dirigi-das ao longo da linha imaginária que une os centros dessas partículas. As forças gravitacionais que as partículas exercem uma sobre a outra têm o mesmo valor numérico, mas sentidos opostos.

• é interessante sublinhar que um corpo colocado em qualquer região no interior da Terra somente sentirá a ação gravitacional gerada pela massa que está entre o centro do nosso planeta e a posição do corpo. Isso quer dizer que para cálculos de ação gravitacional somente a mas-sa interior ao raio do corpo é que importa. Por exemplo, se você está a meio caminho do centro da Terra somente a metade da massa da Terra que está “abaixo” de você é que irá gerar ação gravitacional sobre o seu corpo. A parte que está entre a sua posição e a superfície da Terra não participa desse cálculo. Assim, se você chegasse ao centro da Terra (considerando que a forma da Terra é uma esfera, o que não é verdade) a força gravitacional que atuaria sobre seu corpo seria igual a zero uma vez que não haveria massa (matéria) entre você e o próprio centro do planeta, que é onde você está. No entanto, tudo isso só aconteceria se o nosso planeta tivesse densidade constante!

• se fosse cavado um túnel atravessando a Terra de um lado ao outro, e passando pelo seu centro, uma partícula que caísse nele descreve-ria um movimento harmônico (se desprezarmos as forças de atrito, considerarmos a Terra com simetria esférica e com densidade unifor-me). A partícula teria um movimento que se repetiria em intervalos de tempos iguais ou seja, descreveria um movimento periódico. Esse movimento periódico poderia ser descrito matematicamente usando-se senos e cossenos, daí o chamarmos de movimento harmônico.

O QUE É UM SISTEMA DE REFERÊNCIA?

As leis de Newton são válidas em um “sistema de referência inercial”. Um sistema de referência é um sistema de coordenadas capaz de nos dar informa-ções sobre a ocorrência de um evento ou fenômeno.

Veja que, não necessariamente os eixos que nos informam os valores das coordenadas precisam ser retilíneos. O sistema de coordenadas que usamos

Cosmologia - Da origem ao fim do universo 251

mais comumente no nosso dia-a-dia é o chamado sistema de coordenadas cartesiano. Nesse sistema os eixos coordenados são linhas retas ortogonais (ou seja, perpendiculares) e as coordenadas em geral (mas não obrigatoriamente) são chamadas de (x, y, z).

No entanto, existem outros sistemas de coordenadas, tais como o sistema de coordenadas esféricas, o sistema de coordenadas cilíndricas, etc, que não usam eixos ortogonais. As imagens abaixo mostram os sistemas de coordena-das cilíndricas e esféricas, respectivamente. Em ambas as figuras as coordena-das cilíndricas e esféricas estão colocadas sobre um sistema de coordenadas cartesianas e relacionadas matematicamente a elas. Veja que o sistema de co-ordenadas cilíndricas é dado pelas variáveis (r, θ, z). As coordenadas r e θ são coordenadas polares para a projeção vertical do ponto P sobre o plano carte-siano xy. Já a coordenada z é a coordenada vertical cartesiana.

No caso do sistema de coordenadas esféricas as variáveis são (ρ, φ, θ) onde ρ é a distância do ponto P até a origem do sistema de coordenadas, φ é o ân-gulo que a semi-reta OP forma com o eixo cartesiano z positivo e θ é o mesmo ângulo usado na determinação das coordenadas cilíndricas.

Existem até mesmo sistemas de coordenadas cujos eixos são curvilíneos. Qualquer um desses sistemas de referência pode ser usado para a determina-ção, por exemplo, da posição de um objeto. É claro que ao analisarmos um problema, procuramos utilizar o sistema de referência mais adequado a ele. Por exemplo, se queremos descrever um objeto esférico usaremos o sistema de coordenadas esféricas, etc.

SISTEMAS DE REFERÊNCIA INERCIAIS

Um sistema de referência inercial, ou simplesmente referencial inercial, é um sistema de coordenadas no qual o princípio de inércia se aplica: se nenhu-ma força está atuando sobre uma partícula, ela ou permanece estacionária ou se desloca em linha reta com velocidade constante.

Portanto, sistema de referência inercial é aquele que não está acelerado. Veja que um sistema de referência inercial não necessariamente precisa es-tar em repouso. Ele pode estar se movendo em linha reta e com velocidade constante.

Qualquer sistema de coordenadas que está em movimento uniforme em relação a um referencial inercial também é um referencial inercial.

Mas, por que as leis da física deveriam ser as mesmas somente em referen-ciais inerciais? O que acontece quando um referencial está sujeito a aceleração, isto é, quando o princípio de inércia não ocorre nele?

Quando o movimento de uma partícula não é uniforme dizemos que algu-mas forças estão agindo sobre ela. Nesse caso a primeira lei de Newton, F= ma,

Sistemas de coordenadas cartesianas (x,y,z). Sistemas de coordenadas cilíndricas (r, θ, z). Sistemas de coordenadas esféricas (ρ, Φ, θ).

252 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

terá termos adicionais que chamamos de forças fictícias ou forças inerciais. Por exemplo, a tão conhecida “força centrífuga” é uma força fictícia.

Entretanto, é possível que, na verdade, nenhuma força esteja agindo sobre a partícula, mas o sistema de coordenadas a partir do qual nós a observamos seja não inercial. Por exemplo, o movimento ao longo de uma linha reta pode parecer curvo para um observador em rotação. Neste caso não podemos dizer com certeza se o sistema é inercial ou não. Como ve-remos mais tarde, essa dificuldade não é encontrada somente na mecâ-nica clássica mas também na teoria da relatividade especial. Usualmente evitamos o problema definindo um referencial aproximadamente inercial que está centrado no Sol e tem seus três eixos dirigidos na direção de três galáxias distantes.

O ESPAÇO E TEMPO DE NEWTON

O conceito de espaço absoluto defendido por Isaac Newton foi a culmi-nação de um longo processo histórico. A afirmação de Aristóteles de que “a natureza tem horror ao vácuo” dominou o pensamento dos filósofos e cien-tistas por vários séculos. Após um prolongado debate os conceitos defendidos pelos atomistas da antiguidade ganharam novamente seu lugar na ciência, principalmente após a descoberta do vácuo no século XVII, quando então eles passaram a ter cada vez mais defensores.

Newton considerou o espaço como sendo uma arena desprovida de coisas e fenômenos. Para ele o espaço era tridimensional, contínuo, estático (não variava com o tempo), infinito, uniforme e isotrópico (possuía as mesmas propriedades independentemente da direção considerada). Ele acreditava que o espaço absoluto, por sua própria natureza e em relação a qualquer coisa externa, sempre permanecia similar e imóvel.

O tempo para Newton era também absoluto e independente. Ele o con-siderava como sendo o “receptáculo de eventos” e supunha que o passar dos eventos não afetava o fluxo do tempo. O tempo era assim unidimensional, contínuo, homogêneo (possuía as mesmas propriedades em todos os locais do universo) e infinito.

A visão de Newton sobre o movimento era semelhante. Em um sistema de referência estacionário em relação ao espaço absoluto, as três leis de Newton, lei da inércia, lei do movimento e lei da ação e da reação, deve-riam ocorrer.

Um sistema de referência absoluto, fixo em relação ao espaço absoluto é um referencial inercial. Para Newton, a transição de um referencial iner-cial para outro seria realizada por intermédio de uma transformação de Galileu:

t’= t x’= x + vt

Pode ser mostrado que se você aplica as transformações de Galileu à se-gunda Lei de Newton, F= ma, ela permanece com a mesma forma. Dizemos então que a segunda lei de Newton é invariante pelas transformações de Gali-leu. Assim, todos os sistemas de referência inerciais são equivalentes e não há uma maneira de detectar o espaço absoluto.

Cosmologia - Da origem ao fim do universo 253

GENERALIZANDO A GEOMETRIA EUCLIDIANA

Vamos então generalizar as expressões que nos ensinam como medir a distância entre dois pontos, para um número qualquer de dimensões espa-ciais. Para isso é melhor substituir as coordenadas x, y, z por xn onde n é um índice que pode ser igual a qualquer número inteiro positivo. Assim x será substituído por x1, y será escrito como x2, z será x3, e assim por diante até atingirmos o número equivalente à dimensão do espaço que queremos estudar. Em geral se queremos dizer que o espaço tem um número qual-quer de dimensões escrevemos xn onde n assume os valores 1, ou 2, ou 3 ou qualquer outro valor inteiro positivo. Isso pode ser resumido escrevendo-se n = 1, 2, 3,..

Podemos então generalizar a expressão que nos dá a distância entre dois pontos em um espaço euclidiano de dimensão qualquer n escrevendo:

ds2 = dx12 + dx2

2 + dx32 + ..... + dxn

2

A expressão ds2, que é chamada de elemento de linha ou métrica, é de im-portância vital nos cálculos da teoria da relatividade. A partir desse momento sempre que nos referirmos à distância entre dois pontos em um espaço de qualquer dimensão a representaremos por ds2.

REFERENCIAIS EM MOVIMENTO

Suponha agora que você quer descrever a posição de um corpo no espa-ço. A primeira coisa a fazer é determinar um sistema de referência no qual o corpo (para simplificar o problema) esteja em repouso. Você poderá obter as coordenadas de posição desse corpo ou seja, se estiver considerando um sistema de coordenadas cartesianas, os pontos (x, y, z). A isso você adiciona a medida do tempo, t. Pronto. Você agora está descrevendo a posição e a dinâ-mica (mudanças no tempo) do corpo em estudo por meio de um conjunto de quatro variáveis, (x, y, z, t).

Suponha agora que, ainda estudando o mesmo corpo, você decide descrevê--lo em um outro sistema de coordenadas (no qual ele ainda está em repouso). Será obtido um segundo grupo de coordenadas que descreve a posição e a dinâmica desse corpo, as quais chamaremos de (x’, y’, z’, t’).

E se um dos sistemas de coordenadas estiver em movimento, deslocan-do-se em relação ao outro com velocidade constante e em linha reta? Pelas propriedades descritas acima esses referenciais ainda são inerciais e, portanto, as leis de Newton valem. Mas, como ficarão relacionadas as coordenadas do corpo em estudo nesses dois sistemas de referência?

Foi o físico holandês Hendrik Lorentz quem demonstrou (embora não tenha sido o primeiro a fazer isso!) como os dois conjuntos de coordena-das do mesmo corpo, aquelas obtidas no sistema de referência em repouso e aquelas obtidas no sistema de referência que se desloca com velocidade constante e em linha reta, estão relacionadas. Essas transformações passa-ram a ser conhecidas como transformações de Lorentz e são fundamentais para a física.

As transformações de Lorentz são mostradas nas equações a seguir. Aten-ção: as transformações de Lorentz nos mostram como estão relacionadas as coordenadas de um corpo medidas em dois referenciais diferentes: um refe-rencial está em repouso e o outro referencial se desloca em linha reta e com velocidade constante v. Note que as transformações de Lorentz, por serem de-

37 Generalizando a geometria Euclidiana

Hendrik Lorentz (1853 - 1928).

254 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

finidas para um espaço-tempo de 4 dimensões, misturam as coordenadas do espaço (x,y,z) com a de tempo (t).

Entretanto, do mesmo modo como foi feito anteriormente postulando-se que as Leis de Newton não deveriam mudar quando submetidas a uma trans-formação de Galileu, agora postulou-se que as leis físicas não deveriam mudar quando são observadas em referencias inerciais ou seja, aqueles que estão ou em repouso ou em movimento retilíneo com velocidade constante. Isso quer dizer que as leis físicas têm que ser invariantes por uma transformação de Lorentz.

Consequentemente, um “elemento de linha” de uma geometria (ou melhor, a distância entre dois pontos em uma dada geometria) tem que ser invariante por uma transformação de Lorentz.

Vimos acima o elemento de linha que descreve um espaço de três dimen-sões e como essa expressão pode ser generalizada para um número qualquer de dimensões. Então, resta-nos perguntar qual seria a forma do elemento de linha que descreve a geometria do espaço-tempo de Lorentz, o espaço-tempo da teoria da relatividade restrita.

Nossa primeira ideia é acrescentar o termo temporal ao elemento de linha que descreve a distância entre dois pontos no caso tridimensional visto acima. Ficaríamos com :

ds2 = dt2 + dx12 + dx2

2 + dx32

Mas isso está errado! Lembre-se que dx1, dx2 e dx3 são coordenadas de espaço, respectivamente dx, dy e dz, e, portanto, só podem somadas a outras coordenadas com dimensões de espaço. Como dt tem dimensão temporal, nós o multiplicamos pela velocidade da luz para que o primeiro termo do elemen-to de linha acima também fique com as dimensões de espaço (lembre-se que espaço = velocidade x tempo).

Se chamarmos o termo cdt de dx0, para mantermos a mesma forma das expressões usadas para as coordenadas do espaço, ficamos então com:

ds2 = dx02 + dx1

2 + dx22 + dx3

2

Essa seria a generalização quadri-dimensional da expressão que nos dá a distância entre dois pontos muito próximos no espaço Euclidiano.

Esse elemento de linha de um espaço-tempo com quatro dimensões está correto sob o ponto de vista de dimensões físicas (todos os termos tem dimen-sões de comprimento). No entanto, ele não é adequado para descrever o espa-ço-tempo quadri-dimensional, pois não é invariante por uma transformação de Lorentz!

Foi Minkowski quem mostrou que o “elemento de linha” invariante por uma transformação de Lorentz para um espaço-tempo com 4 dimensões de-veria ser escrito como:

ds2 = dx02 - dx1

2 - dx22 - dx3

2

ou, equivalentemente,

ds2 = - dx02 + dx1

2 + dx22 + dx3

2

Com esse elemento de linha podemos falar de uma “geometria do espa-ço-tempo” do mesmo modo como falamos da geometria do espaço somente. Essa expressão é o elemento de linha ou métrica de um espaço-tempo plano

Cosmologia - Da origem ao fim do universo 255

4-dimensional, também conhecido como espaço-tempo de Minkowski. O conjunto de sinais (+ - - -) ou (- + + +) que antecedem os termos que

formam as expressões acima é chamado de assinatura da métrica. Ambos os conjuntos de sinais são corretos. Os dois elementos de linha descritos acima, com as duas assinaturas de métrica diferentes, são válidos para descrever o espaço-tempo de Minkowski e esse espaço-tempo plano é onde definimos a teoria da relatividade restrita.

Como vimos anteriormente, podemos usar vários sistemas de coordenadas para descrever um espaço. Podemos usar as coordenadas cartesianas como feito acima, mas também podemos usar coordenadas cilíndricas e esféricas, por exemplo. Mostramos em um dos itens anteriores que as coordenadas es-féricas são representadas por (ρ, θ, φ). As relações entre as coordenadas carte-sianas (x, y, z) ou (x1, x2, x3) e as coordenadas esféricas (ρ, θ, φ) são dadas por:

x = x1 = ρ sen θ cos φ y = x2 = ρ sen θ sen φ

z = x3 = ρ cos θ

Se substituirmos isso na expressão da métrica de Minkowski, dada acima, teremos a expressão dessa métrica em coordenadas esféricas:

ds2 = c2dt2 - dr2 - r2 (dθ2 + sen2 θ dφ2)

Como dissemos antes, essa é a expressão da distância entre dois pontos em um espaço-tempo quadri-dimensional em coordenadas esféricas. Ela é inva-riante por uma transformação de Lorentz e, portanto, satisfaz às exigências da teoria da relatividade especial. Essa expressão é o elemento de linha de Minkowski ou métrica de Minkowski em coordenadas esféricas.

Um outro ponto a considerar é que se você compara a assinatura da métri-ca Euclidiana em um espaço-tempo quadri-dimensional qualquer com a mé-trica de Minkowski, nota imediatamente a diferença de sinal que existe entre elas. A métrica Euclidiana tem assinatura (+ + + +) enquanto que a métrica de Minkowski, por satisfazer às transformações de Lorentz, tem assinatura (+ - - -) ou (- + + +). A uma métrica que possui assinatura semelhante à métrica de Minkowski ou seja, com sinais diferentes em seus termos não importando se é (+ - - -) ou (- + + +), damos o nome de métrica pseudo-euclidiana.

O FATOR “GAMA”

Em quase todas as relações matemáticas obtidas por Einstein na sua teoria da relatividade restrita surge um termo bastante característico. Ele é:

onde c é a velocidade da luz e v é a velocidade de um objeto. Quando a velocidade de um objeto é muito menor do que a velocidade da

luz teremos que a divisão v/c dá um resultado pequeno demais para ser consi-derado. Neste caso, o termo GAMA é aproximadamente igual a 1 e dizemos, então, que estamos em uma situação não relativística ou seja, Newtoniana.

256 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

O CONCEITO DE ENERGIA RELATIVÍSTICA

Einstein mostrou que a expressão relativística correta para a energia total de uma partícula de massa de repouso m0 e momentum p é:

E2= p2c2 + m02c4

Essa é uma das mais importantes e interessantes equações da física relati-vística. Vamos ver isso com detalhes.

• suponha que estamos estudando uma partícula que se desloca com velocidade v diferente de zero. Nesse caso, a equação acima se aplica sem qualquer problema pois o momentum p é dado pelo produto da massa do corpo pela sua velocidade ou seja, p = mv.

• e se a partícula estiver em repouso ou seja, tiver velocidade nula? Nesse caso v = 0 e consequentemente p= mv= 0. Nesse caso o primeiro termo da equação é nulo e ela se reduz à relação:

E0= m0c2

onde E0 é a energia de repouso da partícula e m0 a massa que a partí-cula possui quando está em repouso (v= 0). Note que essa equação nos diz que, mesmo em repouso, todo objeto possui uma energia residual não nula.

• e se a partícula não tiver massa? No caso em que m= 0 a equação acima também se aplica. Só que agora o segundo termo da equação, m0

2c4, fica igual a zero. Temos então, como expressão final, que:

E= pc

O leitor atento imediatamente pode reclamar: mas p= mv e se m= 0 então o primeiro termo da equação também é nulo! Não é bem assim. No caso de partículas de massa zero o momento p não é mais dado pela expressão mv, mas sim por hν onde h é a constante de Planck e ν é a frequência de propagação da partícula sob a forma de onda.

A expressão:

E2= p2c2 + m02c4

que relaciona a energia de repouso e a energia cinética de um corpo fre-quentemente é escrita na forma:

E= mc2

relacionando a energia total e massa relativística m do corpo. Podemos então resumir as possíveis expressões de energia da seguinte

maneira:

Cosmologia - Da origem ao fim do universo 257

MASSA VELOCIDADE EQUAÇÃO DE ENERGIA

m > 0

v > 0

E2= p2c2 + m02c4

ouE= mc2

(E é a energia total, m0 é massa de repouso e m é massa relativística)

v = 0 E0= m0c2

(E0 é a energia de repouso)

m = 0 v > 0 E= pc

OS EFEITOS PECULIARES DAS VELOCIDADES RELATIVÍSTICAS

A contração do espaço Considere dois observadores, cada um deles em um laboratório de uma

espaçonave distinta. Nesses laboratórios eles possuem barras de medição. Uma das espaçonaves está se movendo em relação à outra a uma veloci-dade bem próxima à velocidade da luz. A teoria da relatividade especial nos diz que:

cada observador verá a barra de medição do outro observador mais curta do que a sua por um fator gama. A isso se dá o nome de “contração do espaço”.

A dilatação do tempo Considere dois observadores, cada um deles em um laboratório de uma

espaçonave distinta. Em cada laboratório existe relógios para a medição de tempo. Uma das espaçonaves está se movendo em relação à outra a uma velo-cidade bem próxima à velocidade da luz. A teoria da relatividade especial nos diz que:

cada observador (que se considera em repouso enquanto vê o outro se movendo) verá o relógio situado no laboratório da outra espaçonave (a que está se movendo) contando o tempo de modo mais lento do que o seu próprio relógio por um fator gama. A isso se dá o nome de “dilatação do tempo”.

258 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

AS TRANSFORMAÇÕES DE SISTEMAS DE COORDENADAS EM MOVIMENTO

Um dos mais importantes trabalhos surgidos nessa época tratavam das transformações existentes entre dois sistemas de coordenadas que estavam em movimento. Esse trabalho foi apresentado pelo físico Lorentz e sobre ele Eins-tein se baseou para estabelecer os princípios da relatividade restrita.

O ESPAÇO-TEMPO DE MINKOWSKI

Durante séculos os físicos falaram de uma geometria aplicada ao espaço somente. Isso só veio a ser mudado com os trabalhos que levaram ao surgi-mento da teoria da relatividade restrita em 1905.

As transformações de Lorentz nos dizem como podemos unir as medições de espaço com medições de tempo. Foi ele que nos mostrou como podemos estender as regras da geometria de Euclides, estabelecidas para medições espaciais apenas, de modo a incluir também medições temporais. Em 1905 Minkowski mostrou que isso podia ser feito e que era possível falar de uma “geometria do espaço-tempo” do mesmo modo como falamos da geometria do espaço somente. As transformações de Lorentz relacionam, desse modo, medições geométricas feitas por observadores inerciais diferentes.

Mas a geometria de Minkowski não é realizável na prática porque a força da gravidade proíbe a existência de observadores inerciais capazes de usar tal geometria.

Einstein, por conseguinte, teve a ideia de procurar uma “nova” geometria que, automaticamente, permitiria a existência de observadores reais sujeitos à força da gravidade.

Para muitos pode ser uma grande surpresa descobrir que não existe ape-nas uma geometria. Outras geometrias, diferentes da geometria euclidiana e coletivamente chamadas de “geometrias não euclidianas”, existem e são per-feitamente respeitáveis, sendo assuntos de estudo que apresentam estruturas lógicas bastante auto-consistentes.

Os matemáticos levaram quase dois mil anos para apreciar este fato. As geometrias não-euclidianas só emergiram durante o século XVIII. Mesmo assim, estas geometrias eram consideradas apenas como elegantes exercícios intelectuais abstratos, sem qualquer relevância para o mundo real.

Foi para estas geometrias que Einstein se voltou a fim de expressar, de manei-ra quantitativa, suas novas ideias sobre gravitação. Mas antes de descrever como Einstein usou as geometrias não-euclidianas vamos ver como essas geometrias fornecem teoremas alternativos àqueles apresentados pela geometria de Euclides.

O CONCEITO DE ESPAÇO-TEMPO

Definimos espaço-tempo como uma estrutura que combina as três dimen-sões do espaço com a dimensão única de tempo. Essa junção nos fornece uma descrição única para o espaço e tempo que identificamos com o nome de con-tinuum do espaço-tempo. É bastante claro que a estrutura do espaço-tempo é quadri-dimensional.

O tratamento do espaço e tempo como sendo duas propriedades físicas que podem ser unificadas foi uma criação do físico Hermann Minkowski logo de-pois da teoria da relatividade restrita ter sido apresentada por Poincaré e Eins-tein em 1905. Minkowski apresentou esse novo e surpreendente conceito em um trabalho publicado em 1908 no qual ele ampliava o trabalho de Einstein sobre a teoria da relatividade restrita. Foi Minkowski o primeiro a mostrar que

38 As

Transformações de sistemas de

coordenadas em movimento

Ilustração de conceito de Espaço-Tempo.

Cosmologia - Da origem ao fim do universo 259

o conceito de espaço e tempo como uma entidade única ou seja, espaço-tempo, permitia um melhor entendimento dos fenômenos relativísticos.

É importante notar que na teoria da relatividade restrita, assim como na teoria da relatividade geral, a descrição do espaço e do tempo por meio de uma única estrutura, o espaço-tempo, é absolutamente fundamental. Não é possível separar espaço e tempo quando analisamos fenômenos físicos nessas teorias, como fazíamos na teoria Galileana e Newtoniana, e um descuido pode nos levar a interpretações absolutamente erradas.

Poderíamos perguntar de que modo unificar grandezas com propriedades tão distintas. Sabemos que tempo é medido em segundos, horas, etc enquan-to que espaço ou seja, comprimento, é medido em metros, quilômetros, etc. Como fazer essa união matematicamente? Isso é feito multiplicando-se o ter-mo associado ao tempo pela velocidade da luz, o que dá uma medida de espaço uma vez que espaço= velocidade x tempo.

Para a física, o espaço-tempo é a arena onde todos os eventos físicos acon-tecem. No entanto, cabe ressaltar que existem vários tipos de espaços-tempo e fenômenos diferentes que podem ocorrer em diferentes espaços-tempo.

Tanto a teoria da relatividade restrita como a teoria da relatividade geral trabalham com um espaço-tempo que possui quatro dimensões, três espa-ciais e uma temporal. Por que é assim e não, por exemplo, duas dimensões espaciais e duas temporais? Ocorre que a nossa percepção exige que tenhamos três dimensões espaciais para descrever a posição de um corpo no espaço. O tipo de coordenadas usadas não importa, elas podem ser cartesianas, esféricas, cilíndricas, ou qualquer outra, mas o número mínimo de dimensões espaciais é sempre três. Quanto ao fato de considerarmos apenas uma dimensão tem-poral isso também se deve ao fato de que para descrevermos as equações da dinâmica ou seja, da evolução temporal dos sistemas físicos, precisamos de um único tempo. Não há qualquer processo físico que exija a definição de uma outra variável semelhante ao tempo para que possamos descrever a evolução de um sistema qualquer.

Cabe aqui ressaltar que o problema do número verdadeiro de dimen-sões no nosso Universo ainda é um assunto sob discussão. Existem teorias que nos falam de cinco dimensões (teorias de Kaluza-Klein), assim como teorias que nos falam de até mesmo 10 dimensões. No entanto, em todas essas teorias o número de dimensões superiores a quatro estão “enroladas” de tal modo que não as percebemos. Essas dimensões extras pertencem apenas às estruturas subatômicas existentes, mas são muito importantes quando tratamos dos estágios iniciais do Universo (veremos esse assunto mais tarde).

A CONFUSÃO SOBRE A “QUARTA DIMENSÃO”

É claro que um conceito tão revolucionário como a introdução de quatro dimensões para descrever os fenômenos físicos relativísticos logo despertou a curiosidade do mundo científico e dos místicos de plantão. Como sempre acontece, algumas pessoas, embora sem entender possivelmente uma única li-nha dos trabalhos de Einstein e das propostas de Minkowski sobre um assunto tão técnico, imediatamente se adiantaram e passaram a “explicar” os chama-dos “fenômenos sobrenaturais” usando o conceito de “quarta dimensão”. Era fácil justificar “fantasmas” ou qualquer outra coisa do gênero alegando que estes pertenciam a uma quarta dimensão e que a teoria da relatividade nada mais era do que a comprovação matemática de que esses fenômenos realmente existiam. O termo “quarta dimensão” foi introduzido pelo escritor inglês de ficção científica H. G. Well em 1895 na sua novela “A Máquina do Tempo”.

H. G. Well (1866 - 1946).

260 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

Sem querer entrar no mérito da existência ou não de fantasmas, almas do outro mundo, mula sem cabeça, ou qualquer outra coisa, é bom ficar bem claro que a formulação da teoria da relatividade, restrita ou geral, em quatro dimensões é apenas um belíssimo artifício matemático usado para melhor explicar fenômenos relativísticos. Talvez você não saiba, mas outras teorias fí-sicas descrevem seus fenômenos em espaços com mais de três dimensões. Por exemplo, a teoria que trata do movimento de fluidos, chamada teoria cinética dos gases, trabalha nos chamados espaços de fase que possuem seis dimen-sões. Como dito acima a teoria de Kaluza-Klein descreve o universo em cinco dimensões. As novas teorias de superstrings precisam de mais de 10 dimensões para descrever sua estrutura matemática. Nenhuma delas traz espíritos do ou-tro mundo para o nosso. O que elas nos trazem é uma belíssima, mas muito difícil, matemática para a mesa de trabalho.

Para aqueles que acreditam nos chamados “fenômenos paranormais” certamente não será o estudo da teoria da relatividade que irá comprovar qualquer coisa nessa área. É melhor deixar a teoria relativística quieta no seu canto, tratando apenas dos fenômenos ou com velocidades próximas à da luz ou em espaços-tempo com curvatura.

OS ELEMENTOS BÁSICOS DO ESPAÇO-TEMPO

Os elementos básicos do espaço-tempo são os eventos. Um evento é qualquer fenômeno que ocorre no espaço-tempo. Uma estrela explodir em uma galáxia distante é tratado como evento no espaço-tempo. Em qualquer dado espaço-tem-po um evento ocorre em uma posição única e em um instante de tempo único.

Um evento “marca” um ponto no espaço-tempo. Se o processo físico des-crito por esse evento evolui ao longo do tempo ele será representado sob a forma de uma linha no espaço-tempo onde cada um de seus pontos representa a evolução temporal do evento ou seja, a sequência de posições e instantes de tempo que mostram como uma dada situação física evoluiu. A essa linha damos o nome de linha do universo do processo físico. Por exemplo, você está parado no ponto do ônibus (um evento), segundos depois você faz sinal para um ônibus (outro evento), você entra no ônibus (outro evento), etc. Todos esses eventos formam uma única linha do universo que descreve a evolução temporal dessa parte do seu dia.

Embora o espaço-tempo seja independente do observador para descrever um determinado fenômeno físico que ocorre em um dado instante de tempo e em uma dada região do espaço, cada observador precisa escolher um sistema de coordenadas conveniente. Isso é bastante lógico pois cada evento é descrito por quatro coordenadas, três espaciais e uma temporal.

Para estudar as propriedades do espaço-tempo precisamos definir outras de suas propriedades. Para simplificar, vamos considerar em primeiro lugar uma geometria Euclidiana ou seja, um espaço-tempo plano.

Já vimos que um espaço-tempo plano é descrito pelo elemento de linha de Minkowski. Vamos analisá-lo pois a partir dele podemos obter informações muito importantes que podem ser generalizadas para qualquer espaço-tempo.

A métrica, ou elemento de linha, do espaço-tempo de Minkowski é escrita como:

ds2 = dx02 - dx1

2 - dx22 - dx3

2

Nesse elemento de linha sabemos que dx0 representa o produto cdt assim como dx1= dx, dx2 = dy e dx3 = dz. Daí podemos escrever o elemento de linha de Minkowski como:

Evento: Um ponto no espaço-tempo.

Linha do Universo: A evolução de um evento ao longo do espaço-tempo.

Cosmologia - Da origem ao fim do universo 261

ds2 = c2dt2 - dx2 - dy2 - dz2

Vamos considerar inicialmente o caso em que c2dt2 > (dx2 + dy2 + dz2). Isso significa que ds2 vai ter um valor positivo ou seja ds2 > 0. Como a parte que envolve tempo, que chamaremos aqui de “parte temporal”, é maior do que a “parte espacial” dizemos que o elemento de linha é do tipo-tempo.

Vimos anteriormente que, num espaço tridimensional (dx2 + dy2 + dz2) corresponde ao comprimento de um vetor x qualquer. Podemos então escrever que c2dt2 > dx2, onde dx2 representa dx2 + dy2 + dz2. Consequentemente c > dx/dt. Como dx/dt nos diz de que modo a coordenada espacial varia no tempo, isso representa velocidade (lembre que espaço = velocidade x tempo e então espaço/tempo = velocidade). Daí, para um intervalo tipo-tempo, c > v. Esse importante resultado nos diz que a região do espaço-tempo onde o elemento de linha é tipo-tempo a velocidade da luz, c, é maior do que aquela desenvol-vida por qualquer outro objeto físico.

Considere agora o caso em que c2dt2 < (dx2 + dy2 + dz2). Isso significa que ds2 vai ter um valor negativo ou seja ds2 < 0. Como a parte que envolve coorde-nadas espaciais, a “parte espacial”, é maior do que a “parte temporal” dizemos que o elemento de linha é do tipo-espaço.

Considerando o que foi dito no caso anterior, temos que c2dt2 < dx2. Con-sequentemente c < dx/dt. Então, para um intervalo tipo-espaço, c < v. Esse resultado nos diz que a região do espaço-tempo, onde o elemento de linha é tipo-espaço a velocidade da luz, c, é menor do que aquela desenvolvida por qualquer corpo material. Isso viola um dos princípios da teoria da relativida-de espacial.

Finalmente vamos considerar o caso em que c2dt2 = (dx2 + dy2 + dz2). Isso significa que ds2 vai ter um valor igual a zero ou seja ds2 = 0. Nesse caso c2dt2 = dx2 e então c= dx/dt. Como consequência c = v e isso nos diz que essa situação representa todos os corpos que se movem com a velocidade da luz. A esse tipo de intervalo damos o nome de tipo-luz ou nulo.

Vemos, portanto, que o espaço-tempo possui três regiões com característi-cas bem distintas. Seria possível mostrar isso em um diagrama?

O espaço-tempo possui quatro dimensões. Sabemos que é impossível tra-çar uma figura com quatro dimensões. O que fazer? Se queremos representar o elemento de linha de Minkowski graficamente precisamos reduzir o problema de modo a obter uma figura em três dimensões. Para isso, consideraremos apenas duas dimensões espaciais e a dimensão temporal, uma vez que que-remos ver a evolução dos fenômenos físicos. A métrica de Minkowski é então escrita como:

ds2 = c2dt2 - dx2 - dy2

Para continuarmos é preciso lembrar um pouco de geometria. Essa parte da matemática nos diz que a forma geral da equação de uma hipérbole é:

Ax2 + By2 = C

onde A e B diferem em sinal.

Duas hipérboles são conjugadas quando os eixos transverso e conjugado de uma são, respectivamente, os eixos conjugado e transverso da outra. Para obtê-las basta trocar os sinais dos coeficientes de x2 e y2 na equação geral da hipérbole mostrada acima.

262 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

Sempre que, em uma das formas típicas da equação de uma hipérbole, substituirmos o termo constante por zero a nova equação nos mostrará que a figura vai se reduzir a um par de retas. Essas retas são chamadas de assíntotas da hipérbole. Assim, as assíntotas da hipérbole:

b2x2 - a2y2 = c2 (Figura A)

são as retas b2x2 - a2y2 = 0, ou seja

bx + ay = 0 (Figura B)bx - ay = 0

duas retas que passam pela origem e formam os ângulos - b/a e b/a com o eixo dos x.

Uma das propriedades das hipérboles é que seus ramos se aproximam in-definidamente de suas assíntotas ao mesmo tempo em que o ponto que des-creve a curva se afasta para o infinito. Além disso, duas hipérboles conjugadas têm as mesmas assíntotas como vemos na figura ao lado.

Uma outra propriedade é que quando os eixos de uma hipérbole são iguais ou seja, a= b, diz-se que a hipérbole é equilátera. Nesse caso suas assíntotas são retas perpendiculares.

Certamente você já notou que o gráfico da hipérbole discutido acima está situado no plano ou seja, é bidimensional. Se pensarmos na métrica de Minkowski dada em apenas duas dimensões, ou seja,

ds2 = c2dt2 - dx2

imediatamente identificamos essa equação com a de uma hipérbole. Fa-zendo c= 1 isso fica ainda mais claro

ds2 = dt2 - dx2

Essa é a equação de uma hipérbole plana equilátera (uma vez que a= b). Suas assíntotas são duas retas perpendiculares dadas por

dt - dx = 0 (Figura C)dt + dx = 0

Como representamos isso no plano? A figura ao lado mostra:

Figura A

Figura B

Figura C

Geometria de duas hipérboles conjugadas.

Hipérbole equilátera.

Assíntotas da hipérbole

Diagrama do espaço-tempo da métrica de Minkwski, em duas dimensões.

Cosmologia - Da origem ao fim do universo 263

Esse é o diagrama do espaço-tempo da métrica de Minkowski que es-tudaremos a seguir. Note que os eixos coordenados agora representam uma coordenada espacial e uma temporal.

O leitor atento está desconfiado com essa dedução: o espaço-tempo é qua-drimensional; alegando não poder fazer uma figura em quatro dimensões as reduzimos a duas coordenadas espaciais e uma temporal e agora mostramos o diagrama usando apenas duas dimensões, uma espacial e uma temporal!

A justificativa é muito simples. Obtivemos o diagrama em apenas duas di-mensões por que ele fica muito mais simples de ser visualizado. No entanto, podemos girar esta hipérbole em torno do eixo temporal e vamos obter dois cones com um vértice comum. A esse conjunto de cones damos o nome de cone de luz. Claro que você está perguntando se tudo isso pode ser demons-trado em três dimensões. É claro que sim. Existe uma parte da geometria que estuda as chamadas superfícies quádricas que possuem três dimensões. Entre elas temos as chamadas quádricas centradas cuja equação geral é do tipo:

±x2/a2 ± y2/b2 ± z2/c2 = 1

onde a, b e c são constantes. Quando dois sinais dessa equação são positi-vos e um deles é negativo a figura é chamada de hiperbolóide de uma folha (Figura D).

Quando apenas um dos sinais é positivo a figura é um hiperbolóide de duas folhas. (Figura E)

Tudo isso poderia ser demonstrado por meio de hiperbolóides mas não se-ria tão simples. Fazer a dedução acima em duas dimensões e pensar na rotação da figura em torno de um eixo vertical é muito mais acessível.

Generalizando para 4 dimensões dizemos que ds2 = 0 gera um cone no hiperespaço ou seja, um hipercone. Se a dimensão z é suprimida, por exemplo, (e passamos o estudo para três dimensões) este hipercone será apenas um cone de revolução em torno do eixo t. A esse cone damos o nome de cone de luz (Figura F).

Em geral representamos o cone de luz na forma mostrada ao lado (Figura G). O plano verde representa todos os eventos que estão ocorrendo no espaço--tempo em um determinado instante de tempo. Este é o instante presente, a reunião de todos os eventos que estão ocorrendo simultaneamente. Note que para cada evento teremos um único cone de luz que nos dá sua evolução tem-poral. Dentro do cone de luz está a linha do universo do evento, ou seja, toda a descrição de sua dinâmica.

Cada evento define um cone de luz no espaço-tempo (Figura H). A parte superior desse cone de luz, que representa o crescimento da coordenada tem-poral t, está representando o futuro desse evento. A parte de baixo do cone de luz, que nos mostra os valores da coordenada t que antecederam à posição e instante atual do evento considerado, representam o passado. A linha de universo desse evento, ou seja, a evolução dinâmica que ele tem, ficará sempre contida no interior desse cone indo do passado para o futuro.

Figura F

Figura D Figura E

Figura G

Figura H

Hipérbole de uma folha. Hipérbole de duas folhas. Cone de luz.

264 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

Na Figura I vemos também que o cone de luz divide em duas regiões a vizi-nhança infinitesimal do espaço tempo em torno de um ponto O de coordena-das x = 0, y = 0, z = 0, t = 0. A parte interior do cone contém linhas que passam por O e são chamadas de linhas tipo-tempo. A região exterior do cone contém linhas tipo-espaço. As linhas que passam pelo ponto O e estão localizadas sobre o hipercone têm ds2 = 0 e correspondem a pontos que se movem com a velocidade da luz tais como os fótons. Essas são as chamadas linhas nulas.

Um ponto importante na análise dos cones de luz diz respeito à questão da causalidade. Sabemos que todo efeito tem uma causa e isso possui uma estrutura temporal que exige que a causa anteceda ao efeito. O princípio da causalidade exige que a causa (por exemplo, jogar na loteria) seja realizada antes do efeito (ganhar na loteria). Dizemos então que os eventos causalmente relacionados estão dentro do cone de luz na região do futuro. Isso nos diz que um evento para ocorrer na natureza precisa ser tipo-tempo. Dito de outra forma, pontos cuja separação é tipo-tempo estão em comunicação. Os eventos A e B que estão sobre a linha de universo azul da Figura J estão causalmente relacionados: veja que o evento A ocorre antes do evento B.

Isso não acontece para pontos que são tipo-espaço. Nesse caso o princí-pio da causalidade é rompido: na região tipo-espaço você pode encontrar dois fenômenos (causa e efeito) ocorrendo no mesmo instante de tempo t, como mostra a figura ao lado.

Nela os pontos A e B, situados sobre o eixo X, ocorrem no mesmo instante de tempo pois sua coordenada t é a mesma. Isso quer dizer que as informações emitidas por A, por exemplo, atingem B instantaneamente (velocidade infini-ta) violando o princípio relativístico de que a maior velocidade em que uma informação pode ser transportada é a velocidade da luz. Dizemos então que se dois pontos x e y são separados por um intervalo tipo-espaço nada que acon-tece em x pode ter qualquer influência causal direta sobre o que acontece em y.

Um outro ponto muito importante é aquele que diz respeito à classificação de geodésicas ou melhor, as linhas mais curtas entre dois pontos. Linhas do universo de partículas ou objetos que se deslocam em velocidade constante são geodésicas. Dizemos que uma geodésica é tipo-tempo, nula, ou tipo-espa-ço se o vetor tangente a ela em algum ponto é classificado dessa maneira. Isso é muito importante pois as trajetórias das partículas materiais, assim como do fóton, no espaço-tempo sempre são representadas por geodésicas. As partí-culas materiais são representadas por geodésicas tipo-tempo enquanto que os fótons são representados por geodésicas nulas (ou tipo-luz).

Na teoria relativística da gravitação sempre procuramos estudar o conti-nuum do espaço-tempo que possui alguma forma de simetria. A razão para isso é o fato de que a matemática envolvida nesse estudo é muito complexa e difícil de tratar, exceto quando essas simetrias aparecem. É por essa razão que comumente estudamos espaços-tempo ou com simetria axial (um cilindro por exemplo) ou com simetria esférica (uma esfera), bem mais fáceis de lidar do que espaços-tempo sem simetria.

Outros tipos de espaços-tempo comumente considerados, pela simpli-ficação que introduzem nos problemas, são os espaço-tempo estáticos e estacionários.

Como veremos mais tarde, no espaço-tempo estático as componentes do tensor métrico gμν podem ser escolhidas de modo a nenhuma delas depender do tempo e ter iguais a zero as componentes que envolvem as coordenada tem-po e espaço misturadas (goi = 0, onde “o” equivale a t e “i” equivale a x, y ou z por exemplo, em coordenadas cartesianas). Em um espaço-tempo estacionário esses termos não são, em geral, iguais a zero. Todo espaço-tempo estático é estacionário mas o inverso não é verdade.

Figura I

Figura J

Interpretações do cone de luz.

Cosmologia - Da origem ao fim do universo 265

POR QUE O ESPAÇO-TEMPO POSSUI ESSAS CARACTERÍSTICAS?

Uma questão que sempre surge é porque o espaço-tempo teria as caracterís-ticas que descrevemos: três dimensões espaciais bidirecionais e uma dimensão temporal unidirecional. Por que não poderia ser “um pouco diferente disso”?

Falamos muito ligeiramente sobre isso anteriormente, mas vamos discutir esses pontos com um pouco mais de detalhes agora.

A resposta mais simples a essas questões seria declarar que isso aconteceu por acaso ou que isso é uma pergunta que não tem significado nem físico nem mate-mático. Ocorre que alguns cientistas se preocuparam em analisar com detalhes essas questões e chegaram à conclusão de que, ao contrário do que afirmamos acima, nenhuma das duas sugestões de respostas está correta. Eles mostraram que todos os outros possíveis números de dimensões tanto temporais como espa-ciais conduzem a uma ou mais das seguintes situações problemáticas:

• o passado não determina o futuro. Isso quer dizer que as leis da física são impossíveis e os fenômenos naturais imprevisíveis. Isso ocorre em todos os casos onde tanto o número de dimensões espaciais como de temporais é superior a dois.

• a gravitação não produz órbitas estáveis e o eletromagnetismo não produz átomos e moléculas estáveis. Os prótons e os elétrons têm meias-vidas curtas.

• dos nove casos possíveis com não mais do que duas dimensões espa-ciais e duas temporais, os três casos que são estáveis e previsíveis não permitem a existência de matéria com qualquer complexidade tais como seres vivos com sistema nervoso.

• com duas exceções, todos os casos com mais de uma dimensão tem-poral são instáveis ou imprevisíveis. Uma exceção não permite com-plexidade. A outra exceção, o caso de três dimensões temporais e uma dimensão espacial, exige que toda a matéria tenha uma velocidade que excede a velocidade da luz no vácuo.

Parece que complexidade, vida e processamento de informação somente são possíveis em um universo sujeito ao espaço-tempo que definimos ou seja, com três dimensões espaciais e uma dimensão temporal. Esse fato é um exem-plo de raciocínio antrópico. Teorias que propõem que o universo tem mais de três dimensões espaciais, tais como a teoria de Kaluza-Klein ou a teoria de cordas, não aniquilam o estado privilegiado do espaço-tempo, porque as dimensões espaciais acima de três somente importam para comprimentos da ordem do diâmetro de partículas subatômicas.

Immanuel Kant imaginou que o espaço tinha três dimensões porque a lei da gravitação universal entre dois objetos é proporcional ao inverso do quadrado da distância que os separa. O argumento de Kant é historicamente importante mas põe o carro na frente dos bois. A lei da gravitação resulta da dimensionalidade do espaço. De modo mais geral, em um espaço com N dimensões, a intensidade da atração gravitacional entre dois corpos separados por uma distância d é inversamente proporcional a dN-1.

Paul Ehrenfest mostrou em 1917 (Annalen der Physik, 61, 440) que se o número de dimensões espaciais é superior a três, as órbitas de um planeta qualquer em torno de sua estrela não pode permanecer estável. O mesmo ocorre para a órbita da estrela em torno do centro da galáxia à qual a estrela pertence. Do mesmo modo, elétrons não podem ter órbitas estáveis em torno

266 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

de um núcleo: eles ou caem na direção do núcleo ou se dispersam. Ehrenfest também notou que se o espaço tem um número par de dimensões, então as partes diferentes de um impulso de onda se deslocarão a velocidades diferen-tes. Se o número de dimensões é ímpar e maior do que três, os impulsos de onda se tornarão distorcidos. Somente com três dimensões ambos os proble-mas são evitados.

Tegmak em 1977 (Classical and Quantum Gravity, 14, L69-L75) fez o se-guinte argumento antrópico. Se o número de dimensões temporais diferisse de 1, o comportamento dos sistemas físicos não poderia ser previsto com con-fiança a partir do conhecimento das equações diferenciais parciais relevantes. Em tal universo vida inteligente capaz de manipular tecnologia não poderia surgir. Se o espaço tivesse mais do que três dimensões, os átomos tais como nós os conhecemos (e, provavelmente, também estruturas mais complexas) não poderiam existir. Se o espaço tivesse menos do que três dimensões a gra-vitação de qualquer tipo se tornaria problemática e o universo seria simples demais para conter observadores.

Um outro ponto importante é o fato de que existem afirmações geométri-cas cuja verdade ou falsidade é conhecida para qualquer número de dimensões espaciais exceto três. Curiosamente o espaço tridimensional parece ser o mais rico matematicamente.

A GEOMETRIA DO ESPAÇO-TEMPO

Veremos em um dos próximos itens que a teoria da relatividade geral nos conduz a uma equação onde o lado esquerdo descreve a geometria do espaço-tempo e o lado direito o seu conteúdo de matéria.

É fácil entendermos porque a equação acima precisa de um termo para descrever o conteúdo de matéria do espaço-tempo. Afinal, vimos no módulo anterior que o Universo possui uma inacreditável fauna de objetos, galáxias, aglomerados de galáxias, superaglomerados de galáxias, tudo isso distribu-ído segundo uma hierarquia que precisa ser explicada. Qualquer teoria que tenha a intenção de descrever o universo tem que levar em conta o que existe dentro dele.

No entanto, poderíamos imediatamente questionar porque o lado esquer-do da equação exige uma geometria. Por que geometria? Existe mais de uma geometria? A geometria do espaço-tempo é a mesma que usamos na nossa vida diária? Se não é, por que razão ela é diferente?

Para explicar a necessidade de descrever o espaço-tempo por meio de uma geometria devemos primeiro entender o que ela significa. Vamos, então, apre-sentar a matemática que descreve o espaço-tempo.

A GEOMETRIA DOS ESPAÇOS CURVOS OU GEOMETRIA NÃO-EUCLIDIANA

Vimos que a geometria Euclidiana funcionava muito bem em superfícies planas, o que era de se esperar. Afinal, a geometria Euclidiana é uma geome-tria plana.

Então, como podemos definir situações geométricas sobre uma superfí-cie curva? Certamente a geometria Euclidiana não é satisfatória como será mostrado.

39 A Geometria do Espaço-Tempo

geometria do espaço-tempo = conteúdo de matéria-energia do espaço

Os leitores interessados em ler mais sobre esse assunto devem procurar os dois livros

abaixo:

• John D. Barrow e Frank J. Tipler The Anthropic Cosmological Principle

(1986)• John D. Barrow The Constants of

Nature (2002)

Cosmologia - Da origem ao fim do universo 267

Vimos que na geometria Euclidiana a soma dos ângulos internos de um triângulo dá sempre o valor de 180o. Quando traçamos o mesmo ângulo sobre uma superfície curva isso já não é mais verdade. Era preciso então estabelecer uma nova geometria que pudesse resolver essas questões.

Surge então a seguinte pergunta: a Terra é uma (quase) esfera, a geometria de Euclides funciona na Terra, então porque a geometria de Euclides não pode explicar uma geometria curva? Ocorre que, localmente, podemos considerar que estamos trabalhando em um plano. Entretanto, quando precisamos con-siderar grandes distâncias sobre a superfície da Terra a geometria de Euclides também não funciona. Isso é visto em navegação de longo curso, onde a cur-vatura da Terra não pode ser desprezada.

Para desenvolver uma geometria de espaços curvos foi necessária a cola-boração de pesquisadores que marcaram a história da matemática. Entre esses nomes estavam Gauss, Bolyai, Lobachevski e Riemann. Só que o preço pago por alguns desses matemáticos foi absurdamente alto. A hostilidade desper-tada a essas ideias fez com que esses matemáticos, com exceção de Gauss e Riemann, fossem duramente rejeitados por seus colegas e pelo público.

Johann Carl Friedrich Gauss Este foi o maior matemático de sua época. Já aos sete anos de idade, ainda

na escola elementar, Gauss mostrou seu potencial matemático ao demonstrar, quase imediatamente, a seus professores a soma dos números inteiros de 1 a 100 notando que isso representava a soma de 50 pares de números e que a soma dos números de cada par dava sempre o resultado 101.

Desde o início dos anos de 1800 Gauss começou a se interessar pela ques-tão da possível existência de geometrias não-Euclidianas. Sabemos a partir dos seus livros de anotações que Gauss desenvolveu partes de uma nova ge-ometria, não Euclidiana, já nos anos de 1820. No entanto, Gauss sabia que a existência de uma geometria não Euclidiana faria uma perturbação imensa na matemática. Mais ainda, ele notou que a reação de seus colegas a essa des-coberta, e a qualquer um que a apoiasse publicamente, seria extremamente dura. Desse modo, Gauss preferiu manter seu status social e não divulgou os resultados de sua pesquisa. Deve ficar claro, entretanto, que Gauss não se acovardou cientificamente. Ele manteve correspondência sobre o assunto com vários matemáticos de sua época, embora sem adaptar seu extenso trabalho para a forma de artigo científico.

Gauss também demonstrou grande interesse na chamada geometria diferen-cial. Ele publicou vários artigos sobre esse assunto e em 1828 apresentou um dos seus mais importantes artigos onde estava contido o famoso “teorema egregium”, além de importantes ideias geométricas tais como a “curvatura Gaussiana”.

János Bolyai János Bolyai foi uma criança prodígio. Filho do matemático Farkas Bolyai,

ele teve toda a sua infância voltada para o aprendizado da matemática. Tendo seu pai como professor, aos treze anos János Bolyai já dominava todo o cálculo e várias formas de mecânica analítica.

Em 1832, após cinco anos de estudos, Bolyai publicou os resultados de sua pesquisa sobre geometrias não-Euclidianas como um apêndice a um trabalho volumoso de seu pai, o matemático Farkas Bolyai.

Bolyai teve uma vida dura. Ele morreu em 1860 e a cerimônia de seu en-terro parecia um ritual de esquecimento. Apenas três pessoas estiveram pre-sentes para ver seus restos mortais serem colocados em um túmulo coletivo sem lápide. O registro de sua morte na igreja dizia apenas: “Sua vida passou inutilmente”.

Johann Carl Friedrich Gauss (1777 - 1855).

János Bolyai (1802 - 1860).

268 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

Curiosamente, Bolyai nunca publicou seus trabalhos, exceto algumas pou-cas páginas no apêndice do livro de seu pai. No entanto, ele deixou mais de 2000 páginas de manuscritos de trabalhos sobre matemática desenvolvidos por ele até a sua morte.

A imagem de Bolyai mostrada anteriormente foi tirada de um selo postal usado na Hungria. Alguns historiadores não acreditam que ela seja autêntica. Possivelmente não existem imagens do grande matemático János Bolyai.

Nicolai Ivanovich Lobachevski Lobachevski era um dos três filhos de uma família russa muito pobre. Em

1800, quando Lobachevski tinha apenas sete anos de idade, seu pai faleceu e sua mãe mudou-se para a cidade de Kazan, próxima à fronteira com a Sibéria. Lá, Lobachevski começou seus estudos, sempre financiado por bolsas escola-res devido à pobreza de sua família.

Em 1804 o Czar Alexander I da Rússia reformou a Universidade de Kazan e convidou vários professores estrangeiros, principalmente da Alemanha, para ensinarem na Universidade. Um desses professores era Martin Bartels (1769 - 1833) que ocupou o cargo de professor de matemática. Bartels era muito amigo de Gauss e os dois se correspondiam sobre assuntos científicos com bastante frequência. Foi Bartels que fez com que Lobachevski, inicial-mente interessado em estudar medicina, se apaixonasse pela matemática.

O principal trabalho de Lobachevski foi “Geometriya” terminado em 1823 mas somente no dia 23 de fevereiro de 1826 é que ele fez sua famosa apresenta-ção “Sobre os Fundamentos da Geometria” em uma sessão do Conselho Cien-tífico do Departamento de Física e Matemática da Universidade de Kazan. Esse trabalho foi publicado em 1829.

O interesse de Lobachevski na geometria não-Euclidiana fez com que ele fosse visto na Rússia como uma “pessoa excêntrica”, para usarmos um termo delicado. Ele foi atacado em um artigo humilhante e ignorante publicado no periódico “O Filho da Pátria” ao mesmo tempo em que membros distintos da comunidade de matemáticos russos faziam zombarias e publicavam rudes comentários sobre ele. Todos os estudantes de Lobatchevski o abandonaram e no seu funeral, quando era comum serem realizados discursos enaltecendo a obra do defunto, nada foi dito sobre o assunto que foi a principal investigação de sua vida: a geometria não-Euclidiana.

POR QUE PRECISAMOS DE GEOMETRIAS NÃO-EUCLIDIANAS?

Que tipo de argumento científico poderia ter chamado a atenção de ma-temáticos tão ilustres como Nikolai Lobachevski, János Bolyai, Carl Gauss e Bernhard Riemann para que dedicassem parte de sua vida a estabelecer uma geometria que ia contra o senso comum, a vida diária?

Basicamente o que esses pesquisadores investigavam era o que ocorreria se eles desprezassem o quinto postulado de Euclides e considerassem exatamente o oposto ou seja, que através de um ponto C não situado sobre uma dada linha reta AB, pudéssemos traçar não uma mas duas, e consequentemente um nú-mero infinito, de linhas paralelas a AB.

A tarefa agora passava a ser construir uma geometria baseada nesse novo axioma. A ideia subjacente a isso era que se o quinto postulado era realmente um teorema, então, mais cedo ou mais tarde, a nova geometria conteria con-tradições lógicas, o que significaria que a suposição inicial estava errada e o quinto postulado estaria então provado.

Nikolai Ivannovich Lobachevsky (1792 - 1856).

Cosmologia - Da origem ao fim do universo 269

Só que, após construir essa nova geometria, os matemáticos não encon-traram contradições. Mais ainda, eles descobriram que tinham uma nova e elegante geometria com várias características interessantes e únicas.

Por exemplo, nessa nova geometria a soma dos ângulos internos de um triângulo era menor do que 180o e de fato dependia das dimensões lineares do triângulo.

Essa nova geometria era bastante particular. Em uma região bastante pe-quena do espaço essa nova geometria era praticamente Euclidiana mas em grandes regiões as duas eram essencialmente diferentes.

É importante notar que tanto Lobachevski como Gauss não se limitaram aos aspectos matemáticos dessa importante descoberta. Eles imediatamente começaram a pensar como essa nova geometria poderia estar relacionada com o mundo físico. Eles queriam saber qual das duas geometrias, a Eucli-diana ou a não-Euclidiana recém descoberta, descrevia realmente o espaço. Tentando responder a essa questão, Gauss tentou medir a soma dos ângulos de um triângulo formado por três montanhas. Lobachevski tentou fazer a mesma medida só que usando um triângulo bem maior formado por duas posições da Terra em sua órbita e uma estrela distante de paralaxe conheci-da. Infelizmente nenhum dos dois foi bem sucedido, pois, naquela época eles não dispunham de equipamentos capazes de fornecer a precisão necessária para essas medidas.

Vamos explicar melhor o que é uma geometria não-Euclidiana. Suponha que a Terra é perfeitamente esférica e que ela é habitada por “seres

planos”, criaturas absolutamente sem graça que têm apenas duas dimensões e que não percebem o sentido de “altura”. Lembre-se que estas criaturas se deslocam se arrastando sobre a superfície terrestre.

O método usado por estas criaturas para identificar “linhas retas” como sendo as linhas de mais curta distância entre dois pontos consiste em esten-der linhas através da superfície conectando dois pontos quaisquer. Para essas criaturas, essa linha parece ser uma reta à medida que elas se movem ao longo delas, uma vez que as direções de chegada ou de partida dessas criaturas em qualquer ponto sobre a linha tem ângulo zero entre elas.

Com esta definição, os “seres planos” encontram que todas as linhas retas se interceptam e que movendo-se ao longo de qualquer linha reta eles final-mente retornam ao seu ponto de partida (lembre-se que os “seres planos” estão vivendo sobre a superfície de uma esfera). Eles também descobrem que a soma dos três ângulos internos de qualquer triângulo que eles desenham sobre a Terra não dá mais como resultado o valor correspondente a dois ângulos retos como ocorre na geometria de Euclides. Em vez disso, a soma desses três ân-gulos internos sempre excede dois ângulos retos. A figura ao lado mostra uma situação onde a soma é igual a três ângulos retos.

Ao contrário da geometria Euclidiana, as geometrias que estamos agora apresentando são definidas sobre a superfície de uma esfera ou de um hiper-bolóide (algo parecido com a sela de um cavalo)

As imagens a seguir mostram essas duas geometrias. Dizemos que uma superfície esférica tem uma curvatura positiva enquanto que a superfície de um hiperbolóide tem curvatura negativa.

Vemos que em uma superfície com curvatura positiva a soma dos ângulos internos de um triângulo traçado nessa superfície é maior que 180 graus. No caso de uma superfície com curvatura negativa a soma desses ângulos inter-nos será menor que 180 graus.

Neste caso, a soma dos ângulos internos do triângulo é igual a 270°.

270 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

Como a Teoria da Gravitação de Einstein prevê, a existência de curvatura no espaço-tempo necessariamente terá que utilizar as geometrias não-Euclidianas.

Existe um número muito grande de espaços possíveis e cada um deles tem sua própria geometria. Todos eles são igualmente válidos e auto-consistentes. O espaço Euclidiano, por exemplo, é uniforme. Ele é homogêneo e isotrópico.

Por homogêneo queremos dizer que suas propriedades são as mesmas em qualquer local definido sobre ele.

Ser isotrópico significa que suas propriedades não dependem da direção em que são consideradas.

Além disso, o espaço Euclidiano tem uma geometria de congruência. Isso quer dizer que nele todas as formas espaciais são invariantes sob translação e/ou rotação. De todos os possíveis espaços não-Euclidianos existem somente dois que também são uniformes (ou seja, homogêneos e isotrópicos) do mes-mo modo que o espaço Euclidiano. Ambos foram descobertos no século XIX.

O primeiro tem uma geometria hiperbólica e foi descoberto a partir dos trabalhos do matemático alemão Johann Carl Friedrich Gauss, do matemático russo Nicolai Ivanovich Lobachevski e do matemático húngaro János Bolyai.

O segundo tem a geometria esférica e foi descoberto pelo matemático ale-mão Georg Friedrich Bernhard Riemann.

O trabalho de Riemann O passo seguinte no desenvolvimento da geometria não-Euclidiana foi fei-

to pelo matemático alemão Georg Friedrich Bernhard Riemann. Para obter uma posição de professor assistente na Universidade de Göttingen, Riemann tinha que fazer uma palestra que serviria como teste. Seguindo o procedimen-to existente ele apresentou ao departamento três tópicos para que fosse esco-lhido o seu assunto de palestra. Dois desses tópicos versavam sobre problemas correntes entre os matemáticos da época enquanto que o terceiro estava vol-tado para os fundamentos da geometria. Embora esse último assunto fosse o menos preparado por Riemann, Gauss o escolheu querendo saber como um jovem matemático trataria tema tão difícil.

Riemann deu sua palestra sobre esse tema, que mais tarde foi publicada com o título de “Sobre as Hipóteses subjacentes aos fundamentos da Geome-tria”, com sucesso absoluto. Após o término da palestra, Gauss permaneceu em silêncio e então levou Riemann aos céus, algo bastante raro de ser feito por ele.

Gauss ficou impressionado pela abordagem feita por Riemann para a geometria não-Euclidiana, pelo fato de que ela era bem diferente daquelas apresentadas por seus antecessores. Aparentemente, Riemann não sabia nada sobre os trabalhos de Lobachevski e Bolyai e tinha somente uma vaga ideia do interesse de Gauss pelo assunto. O sucesso de Riemann se deve ao fato dele ter incorporado em seu estudo duas ideias extremamente férteis: o aparato matemático de Gauss para descrever a geometria de superfícies curvas bidi-mensionais e seu próprio novo conceito de variedade multidimensional, ou seja, objetos geométricos com múltiplas dimensões.

Uma superfície é uma variedade bidimensional, um espaço é uma varieda-de tridimensional, etc. Como essa é a única diferença entre elas, todas as ideias e métodos usados para descrever superfícies bidimensionais podem ser agora diretamente aplicados a espaços curvos tridimensionais. Entre as noções usa-das, a mais importante é aquela de métrica, ou seja, a forma quadrática para as diferenças entre coordenadas que descreve o comprimento do intervalo entre dois pontos vizinhos em uma variedade curva.

Superfície esférica.

Superfície de um hiperbolóide.

Georg Friedrich Bernard Riemann (1826 - 1866).

Cosmologia - Da origem ao fim do universo 271

Esta bem sucedida integração de ideias permitiu que Riemann avançasse ao construir tanto casos particulares de espaços não-Euclidianos como uma teoria de espaços arbitrariamente curvos.

Em primeiro lugar, Riemann descobriu uma geometria esférica que era oposta à geometria hiperbólica de Lobachevski. Deste modo, ele foi o primeiro a indicar a possibilidade de existir um espaço geométrico finito. A ideia logo se firmou e trouxe a questão de que o nosso espaço físico era finito. Além disso, Riemann teve a coragem de construir geometrias muito mais gerais do que a de Euclides e mesmo as aproximadamente não-Euclidianas conhecidas.

A geometria Riemanniana é uma geometria não-Euclidiana de espaços de curvatura constante positiva. A propriedade essencial desse espaço tridimen-sional é que seu volume é finito de modo que se um ponto se move sobre ela na mesma direção, ele pode certamente retornar ao ponto de partida.

Como vemos ao lado, em vez das linhas retas da geometria Euclidiana, na geometria esférica Riemanniana temos geodésicas, ou seja, os arcos dos grandes círculos que podem ser traçados sobre a esfera.

A partir de uma ilustração bidimensional da geometria sobre a esfera, mostrada ao lado, é claro que a noção de linhas paralelas como dada pelo quinto postulado de Euclides não tem qualquer sentido, pois qualquer arco de um grande círculo que passa através de um ponto C, não situado sobre AB, necessariamente irá interceptar AB e até mesmo em dois pontos. A figura também mostra que a soma dos ângulos de um triângulo formado por três arcos que se interceptam de três grandes círculos é sempre maior do que 180o.

COMPARANDO AS GEOMETRIAS NÃO-EUCLIDIANAS

Uma maneira prática pela qual podemos distinguir entre essas três geome-trias é o seguinte: pegue uma folha de papel e coloque-a sobre uma superfície plana. O papel irá cobrir a superfície suavemente. Tente agora com uma folha de papel do mesmo tamanho cobrir uma superfície esférica. Você agora verá que para cobri-la terá que permitir que vincos surjam no papel. Isso indica que próximo a qualquer ponto dado sobre a superfície da esfera a área do papel é maior do que a área que você está tentando cobrir. Quando você tenta cobrir a superfície de uma sela com a mesma folha de papel, verá que o inverso acon-tece: a área do papel passa a ser insuficiente para cobrir a superfície próxima a qualquer ponto sobre ele e o papel se rasga.

COMPARANDOS OS TRÊS ESPAÇOS UNIFORMES

espaço euclidiano

através de um ponto dado podemos traçar somente uma paralela a uma linha reta.

a soma dos ângulos interiores de um triângulo é igual a dois ângulos retos.

a circunferência de um círculo é igual a π vezes o seu diâmetro.

espaço esférico

através de um ponto dado não podemos traçar nenhuma paralela a um ponto dado.

a soma dos ângulos interiores de um triângulo é maior do que dois ângulos retos.

a circunferência de um círculo é menor do que π vezes o seu diâmetro.

espaço hiperbólico

através de um ponto dado podemos traçar mais de uma paralela a uma linha reta.

a soma dos ângulos interiores de um triângulo é menor do que dois ângulos retos.

a circunferência de um círculo é maior do que π vezes o seu diâmetro.

Ilustração bidimensional da geometria sobre a esfera.

272 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

GEODÉSICAS

A teoria relativística da gravitação trata, em geral, com espaços-tempo curvos. Em um espaço-tempo desse tipo os movimentos das partículas assim como o da luz são curvos. Entretanto, essas curvas têm uma característica comum com as linhas retas.

Do mesmo modo que as linhas retas são as trajetórias mais curtas conec-tando dois pontos de um espaço plano, os movimentos nos espaços-tempo curvos percorrem as linhas curvas mais curtas entre dois pontos. Tais curvas são chamadas geodésicas. Por exemplo, sobre a superfície de uma esfera pode-mos traçar somente curvas e não linhas retas. De todas as curvas que conec-tam dois pontos a mais curta é o arco de um grande círculo. Por conseguinte, as geodésicas sobre a superfície de uma esfera são os arcos de grandes círculos.

A luz segue curvas geodésicas. Dizemos que a luz não se move uniforme-mente ao longo de linhas retas, não porque ela está sujeita a alguma força mas por que o espaço-tempo é curvo. Isso é muito importante por que mostra que o conceito de força foi substituído pelo conceito geométrico de curvatura do espaço-tempo.

A teoria da relatividade geral trata, em geral, com espaços-tempo curvos. Nesses espaços-tempo os movimentos das partículas materiais, assim como da luz, são descritos por linhas curvas.

GEOMETRIA E COSMOLOGIA

A geometria do espaço é de grande importância para a cosmologia, uma vez que a teoria relativística da gravitação se apoia inteiramente na ideia de que a geometria do espaço em qualquer local no Universo está diretamente relacio-nada com a intensidade do campo gravitacional naquele local. Quanto mais intenso é o campo gravitacional mais forte será a curvatura correspondente.

Poderíamos dizer, de uma maneira bastante livre e baseado exclusivamente nas questões de geometria discutidas acima, que em um contexto cosmológico os três tipos de curvaturas podem nos dar:

• o universo de curvatura positiva corresponde a um universo que se expandirá até uma certa separação entre as galáxias e então contrairá de volta até um espaço zero. Este é o chamado universo fechado.

• o universo de curvatura zero corresponde a um universo que se ex-pande para sempre, diminuindo sua velocidade à medida que faz isso. Este é o chamado universo espacialmente plano.

• o universo de curvatura negativa corresponde a um universo que se expandirá para sempre. Este é o chamado universo aberto.

O QUE É A TEORIA DA RELATIVIDADE GERAL?

No século passado surgiram na física várias teorias muito importantes. A “Teoria da Relatividade Restrita”, a “Teoria Quântica” e a “Teoria da Re-latividade Geral” transformaram radicalmente nosso entendimento sobre a natureza que nos cerca.

Dentre essas teorias, certamente a Teoria da Relatividade Geral de Albert Einstein é a que mais tem despertado a curiosidade e o interesse do público não profissional em ciências físicas. Talvez pelo carisma de seu descobridor, talvez por estar mais intimamente ligada às nossas fantasias de aventuras espaciais, com seus buracos negros e viagens no tempo, a teoria da Relatividade Geral,

40 O que é a Teoria da Relatividade

Geral?

Isaac Newton.

Cosmologia - Da origem ao fim do universo 273

que é uma teoria da gravitação, tem sido constantemente citada na mídia, na maioria das vezes não de uma maneira direta mas em função de resultados que podemos extrair dela.

“Uma teoria complicada demais para mim”

Inúmeras vezes ouvimos a frase citada acima sendo dita até mesmo por pessoas que mantém contato periódico com a ciência. Será que a teoria da gra-vitação de Einstein é realmente tão complicada que somente alguns cérebros bem dotados são capazes de entendê-la? Bem, seria tolice dizer que a teoria da gravitação de Einstein é simples, que qualquer um pode entendê-la. Isso não é verdade. Essa teoria é realmente complicada, está envolvida por uma matemá-tica bastante sofisticada, introduz conceitos que não fazem parte da nossa vida diária e apresenta conclusões que até hoje confundem os físicos.

Existem várias formas de apresentar a teoria da gravitação de Einstein sem que tenhamos que falar em geometria riemanniana, variedades diferenciais, cálculo tensorial, espaços fibrados, espaços de Hausdorff, topologia, etc.

Tentaremos aqui mostrar como a teoria da gravitação de Einstein é interes-sante, fazer com que você entenda alguns de seus princípios.

A evolução do conhecimento sobre gravitação Ao contrário do que muitos declaram, a teoria relativística da gravitação

não surgiu do nada. Sua elaboração é uma longa história de erros e acertos que se alternaram até que, em um determinado momento, cientistas conseguiram estabelecer a forma correta final que ela deveria ter. Como qualquer outra teo-ria descoberta na física, a construção da teoria da relatividade geral se apoiou em conhecimentos previamente estabelecidos ou, como disse muito bem Isaac Newton, ela foi criada “sobre os ombros de gigantes”. Isso de modo algum é uma tentativa de tirar o mérito científico de Albert Einstein, mas é preciso desmistificar a história e aceitar que muitos outros grandes nomes da física participaram do problema e contribuíram para a sua solução.

A TEORIA DA GRAVITAÇÃO DE EINSTEIN

Apesar do grande sucesso da teoria da relatividade restrita apresentada por Einstein em 1905, existiam algumas questões básicas que não eram respondi-das por essa teoria. Por exemplo, a teoria da relatividade restrita nos diz que “as leis da natureza são as mesmas em todos os sistemas de referência inerciais”.

Einstein notou imediatamente a fraqueza da teoria da relatividade restri-ta e propôs em 1916 a teoria da relatividade geral, que generaliza o princípio da relatividade estabelecendo que “as leis da natureza são as mesmas em dois referenciais que se movem de qualquer maneira possível um em relação ao outro”.

A teoria da gravitação proposta por Albert Einstein e David Hilbert ficou sendo mais conhecida como Teoria da Relatividade Geral (TRG), como Teoria Relativística da Gravitação (TRG) ou como Teoria da Gravitação de Einstein (TGE). Usaremos todos esses termos de modo indiscriminado embora o nome “teoria da gravitação” seja considerado bem mais representativo sobre o que a teoria descreve.

A Teoria da Gravitação de Einstein descreve os fenômenos de interação gravitacional entre quaisquer corpos existentes no universo.

Para Einstein a gravidade não é uma força, no sentido tradicional que da-mos a este termo na física. Segundo ele:

41 A Teoria da

Gravitação de Einstein

Albert Einstein (1879 - 1955).

274 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

• a gravidade é uma manifestação da curvatura do espaço-tempo

• a curvatura do espaço-tempo é produzida pela massa-energia contida nele

Isso pode ser representado esquematicamente pela relação abaixo, que ocorre em ambos os sentidos:

Esta relação entre energia-momentum e a curvatura do espaço-tempo é go-vernada por um conjunto de equações que são as famosas “equações de campo de Einstein”.

Na verdade, o estudo das interações gravitacionais deveria ser chamado de Geometrodinâmica. Esse nome foi proposto pelo físico norte-americano John Archibald Wheeler tendo em vista que a teoria da relatividade geral ge-ometriza a gravitação.

O ESPAÇO-TEMPO DA RELATIVIDADE GERAL

A Teoria da Gravitação Universal proposta por Isaac Newton utiliza os conceitos de espaço e tempo. Isso foi mudado com o surgimento da Teoria da Relatividade Restrita, proposta por Einstein em 1905. Nessa época foi in-troduzido o conceito de espaço-tempo como uma única entidade, ao con-trário do espaço e tempo separados da física Newtoniana. Isso foi proposto pelo físico alemão Hermann Minkowski ao realizar estudos sobre a teoria da relatividade restrita. No entanto, o conceito de espaço-tempo definido na Teoria da Relatividade Especial não pode ser simplesmente transferido para a relatividade geral.

Na teoria relativística da gravitação o espaço-tempo possui características não usuais. Por exemplo, ele é:

• curvo:dizemos que o espaço-tempo da relatividade geral tem uma geometria não-Euclidiana. Na relatividade restrita o espaço-tempo é plano.

• Lorentziano:as métricas do espaço-tempo devem ter uma assinatura métrica mista. Isto é herdado da relatividade especial.

• quadri-dimensional:isso é necessário para poder cobrir as três dimensões espaciais e o tem-po. Isto também é herdado da relatividade especial.

Os princípios fundamentais da Teoria da Gravitação de Einstein

A Teoria da Gravitação de Einstein está baseada em um conjunto de prin-cípios fundamentais que guiaram o seu desenvolvimento. Esses princípios foram sendo criados ao longo do desenvolvimento da própria teoria.

• princípio geral da relatividade:as leis da física devem ser as mesmas para todos os observadores, este-jam eles acelerados ou não.

matéria ou energia <=> efeito gravitacional <=> espaço-tempo curvo

Cosmologia - Da origem ao fim do universo 275

• princípio da covariância geral:as leis da física devem ter a mesma forma em todos os sistemas de coordenadas.

• o movimento inercial é movimento geodésico:as linhas de universo de partículas não afetadas por forças físicas são geodésicas tipo-tempo ou nulas do espaço-tempo.

• princípio da invariância de Lorentz local:as leis da relatividade especial se aplicam localmente para todos os ob-servadores inerciais.

• o espaço-tempo é curvo:isso permite que os efeitos gravitacionais, como por exemplo a queda livre, sejam descritos como uma forma de movimento inercial.

• a curvatura do espaço-tempo é criada pelo momento-energia conti-do no espaço-tempo:isso é descrito na teoria relativística da gravitação pelas “equações de campo de Einstein”.

Todos os termos acima citados serão explicados ao longo do texto.

As equações de campo de Einstein: o trabalho do físico relativista

A Teoria da Gravitação de Einstein não somente nos diz que o espaço-tempo é curvo mas também especifica quanto é a sua curvatura. Mais especi-ficamente, ela nos dá um conjunto de equações que relacionam a curvatura do espaço-tempo com a distribuição de energia-matéria no espaço.

As equações propostas por Einstein são chamadas de “equações de campo” porque elas descrevem o comportamento e as propriedades do campo gravita-cional. Elas têm a forma:

Gμν = - k Tμν

onde k é dado por:

k = 8 π G/ c4

Nesta última expressão G é a constante gravitacional.

Vamos explicar melhor o que essa equação nos diz. O lado esquerdo dela, Gμν, é o chamado “tensor de Einstein”. Ele depende das funções gμν e de suas primeiras e segundas derivadas. Essa parte da equação de campo de Einstein está associada com a estrutura geométrica do espaço-tempo.

O lado direito da equação de campo de Einstein apresenta o “tensor ener-gia-momentum” Tμν. Ele depende da distribuição de energia e matéria no universo.

Veja então que a equação de campo de Einstein nos diz que a curvatura do espaço-tempo (lado esquerdo) é produzida pela distribuição de massa-energia no espaço-tempo (lado direito).

curvatura do espaço-tempo (Gμν) = conteúdo de matéria-energia do espaço (Tμν)

276 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

Poderíamos escrever as equações de campo de Einstein de modo mais de-talhado. O tensor de Einstein, Gμν, na verdade é dado por:

Gμν = Rμν -1/2 gμν R

Deste modo, as equações do campo gravitacional são dadas por:

Rμν -1/2 gμν R = - k Tμν

ou então:

O termo R é chamado de escalar de curvatura e o termo Rμν é o tensor de Ricci. Na verdade esses dois tensores são calculados a partir de um tensor bem mais geral, Rλ

ανμ, chamado tensor de curvatura ou tensor de Riemann-Christoffel. Sua expressão é bastante complicada e envolve os chamados sím-bolos de Christoffel. Os matemáticos provaram que o tensor mais simples que pode ser construído a partir das componentes do tensor métrico e de suas primeiras e segundas derivadas é um tensor de ordem 4, ou seja, com quatro índices. Por esta razão o tensor de curvatura da teoria da gravitação de Eins-tein é dado por Rλ

ανμ. Em resumo, dada uma métrica ds2 que descreve um determinado espaço-

tempo, o físico relativista calcula todos os potenciais gravitacionais gμν dife-rentes de zero.

Com o auxílio dos potenciais gravitacionais temos que calcular os símbo-los de Christoffel:

por meio da expressão:

de posse de todos os símbolos de Christoffel já podemos calcular o tensor de curvatura Rλ

ανμ. Ele é dado por:

Como estamos trabalhando em um espaço-tempo quadri-dimensional, cada um dos índices desses tensores varia de 0 a 3. Isso faz com que tenha-mos um conjunto de 256 componentes do tensor de Riemann-Christoffel para

Cosmologia - Da origem ao fim do universo 277

calcular. Felizmente este tensor possui simetrias que reduzem bastante esse número. No final, após utilizarmos os recursos dessas simetrias, ficamos com apenas 20 componentes independentes para calcular.

Conhecendo as componentes do tensor d e Riemann-Christoffel, é fácil calcular o Tensor de Ricci, Rαμ = Rλ

αλμ. Esse tensor é dado por:

Depois disso só falta calcular o escala de curvatura R = Rαμ gαμ

Agora é só substituir esses termos organizadamente, montando os siste-mas de equações de campo de Einstein. Bastante difícil não acha? Brincadeira! Antigamente você tinha que fazer isso na ponta do lápis e um pequeno erro no início dos cálculos se propagava em cascata, uma vez que todos os termos seguintes, por estarem vinculados pelo cálculo, possivelmente também esta-vam errados. Era apagar e começar tudo de novo. Hoje existem programas de computador que fazem todos esses cálculos em apenas alguns segundos, desde que você saiba montar os sistemas de equações. Moleza!

Tudo isso dito acima é apenas a preparação para o verdadeiro trabalho do pesquisador que começa após terem sido montadas as equações de campo.

Ocorre que essas são equações diferenciais parciais de segunda ordem não lineares elíptica-hiperbólica acopladas e isso pode ser traduzido como “são muito difíceis de resolver”! Mesmo assim, o trabalho tem que ser feito e o físico relativista se debruça sobre elas procurando alcançar o seu objetivo final que é resolver este sistema de equações diferenciais para uma métrica dada que descreve um determinado espaço-tempo.

AS EQUAÇÕES DE CAMPO DE EINSTEIN E O PRINCÍPIO DE MACH

As equações de campo de Einstein constituem uma aplicação especial do chamado “princípio de Mach”. De acordo com esse princípio, as propriedades inerciais da matéria são produzidas pela distribuição da matéria existente no resto do Universo.

Ernst Mach (1838-1916) foi um filósofo e cientista austríaco do século XIX que, em 1893, postulou esse princípio.

A observação básica feita por Ernst Mach era que a velocidade e a acelera-ção de uma partícula não teriam significado se a partícula estivesse sozinha no Universo. Somente podemos falar de acelerações em relação a outros corpos do mesmo modo que falamos de velocidades em relação a outros corpos. O conceito de velocidade relativa conduziu à relatividade restrita. O conceito de aceleração relativa é o importante ingrediente do princípio de Mach que levou Einstein a desenvolver sua teoria geral da relatividade.

Vamos tomar como exemplo a rotação da Terra em torno do seu eixo. A Terra gira, não em relação a qualquer espaço absoluto, mas em relação às estre-las distantes no Universo. Se a Terra fosse completamente coberta por nuvens espessas ainda seríamos capazes de descobrir sua rotação usando o pêndulo de Foucault. Um pêndulo no pólo norte da Terra gira seu plano gradualmente, em relação à Terra, uma vez que seu plano é mantido fixo em relação às estre-las distantes. Se nenhum outro corpo celeste existisse no Universo, além da Terra, de acordo com o princípio de Mach o plano do pêndulo permaneceria constante em relação à Terra. Por conseguinte, de algum modo, a presença

Ernst Mach (1838 - 1916).

278 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

de matéria distante no Universo produz consequências que dizem respeito ao comportamento da matéria em torno de nós. Einstein tentou incorporar este princípio em sua teoria da relatividade geral.

O princípio de Mach e sua implicação de que a inércia não é uma propriedade intrínseca da matéria, mas é devida ao fundo de estrelas distantes, recebeu uma recepção mista no mundo da física teórica. Alguns físicos tomaram as ideias com certas restrições argumentando que elas estão todas baseadas em uma coincidên-cia de observações. Outros físicos, incluindo Einstein, ficaram impressionados pelo princípio de Mach e tentaram incorporá-lo no resto da física.

Einstein tinha esperança que sua teoria da relatividade geral incorporasse o princípio de Mach. Estabelecendo uma íntima conexão entre a geometria do espaço-tempo e as propriedades físicas da matéria e energia, Einstein obteve o que pareceu ser um passo preliminar na direção dos conceitos Machianos. Entretanto, investigações posteriores provaram o contrário.

Uma explícita demonstração de que a relatividade geral não incorpora o princípio de Mach foi mostrada pelo físico alemão Kurt Gödel em 1949. A partir das equações de Einstein ele construiu um modelo do Universo no qual o referencial inercial local não era o mesmo que o referencial da matéria dis-tante que não está em rotação. O modelo de Gödel de um Universo em rotação obtido a partir das equações de Einstein mostram que o princípio de Mach não está inteiramente incorporado na teoria da relatividade geral.

AS SOLUÇÕES DAS EQUAÇÕES DE CAMPO DE EINSTEIN

Se o tensor energia-matéria Tμν das equações de campo de Einstein é igual a zero em todos os lugares ou seja, se não há matéria no universo, estas equações são escritas como:

Gμν = 0

Uma das possíveis soluções desta equação é o espaço-tempo “plano” de Minkowski. Isso não é surpresa, pois se é a matéria que provoca a curvatura do espaço-tempo e, no caso considerado não existe matéria, a curvatura só pode ser zero. Isto obriga que o tensor de Einstein Gμν que está no lado esquerdo das equações de campo seja nulo.

Uma outra solução relativamente simples das equações de campo de Eins-tein é aquela que diz respeito a um corpo esférico em um espaço vazio. Se considerarmos o Sol como um corpo esférico e que o espaço é vazio em torno dele, as equações de campo de Einstein nos dão a curvatura do espaço-tempo naquele local.

O tensor métrico em volta do Sol é chamado de “métrica de Schwarzs-child”, resultado obtido em 1916, e corresponde a um elemento de linha que em coordenadas esféricas é:

Esta “métrica de Schwarzschild” ou “elemento de linha de Schwarzschild” é que nos trouxe o conceito de buraco negro. O termo 1 - 2GM/c2r tem um comportamento estranho quando 2GM/c2 = r pois, neste caso, ele é igual a zero. Como este termo está no denominador de uma fração ficamos com 1

Cosmologia - Da origem ao fim do universo 279

dividido por zero que sabemos tender para infinito. Vemos então que há um limite em 2GM/c2 = r. Esse limite é o chamado “raio de Schwzarzschild” e marca o chamado de “horizonte de eventos” de um buraco negro.

O CONTEÚDO DE MATÉRIA DO UNIVERSO

Vimos que a equação fundamental da teoria relativística da gravitação é

(geometria do espaço-tempo) = (conteúdo de energia do espaço-tempo)

Vimos que o Universo possui um complexo conjunto de objetos que vão hierarquicamente desde estruturas bem pequenas, tais como os asteroides, até estruturas gigantescas como os superaglomerados de galáxias. Como a cos-mologia trata essa matéria?

A equação da gravitação relativística vale em qualquer tipo de sistema de coordenadas sendo, portanto, uma equação escrita na forma tensorial. O lado esquerdo é o chamado tensor de Einstein, que envolve a estrutura geométrica do espaço-tempo, enquanto que o lado direito é dado por uma expressão geral, tensorial, que chamamos de tensor energia-momentum.

Por que tensor energia-momentum? Na teoria relativística não podemos falar simplesmente de densidade de matéria no espaço. Precisamos incluir a densidade de energia na nossa expressão, uma vez que Einstein nos mostrou que existe uma íntima relação entre massa e energia. Foi ele quem deduziu a famosa equação:

E2 = p2c2 + m02c4

onde m0 representa a massa de uma partícula em repouso e p representa o seu momentum linear. O momentum linear, ou simplesmente momentum, é dado pela expressão p = mv onde m é a massa da partícula e v sua velocidade.

A expressão para energia apresentada acima também pode ser escrita como E = mc2, onde m é a massa relativística da partícula. Ela nos mostra que matéria e energia são indistinguíveis no que diz respeito às suas propriedades inerciais.

Como consequência disso, tanto podemos falar de massa como de energia, o que justifica parcialmente o nome do tensor energia-momentum. Por outro lado, os corpos no universo estão em movimento e, portanto, possuem uma dinâmica que pode ser caracterizada pelo seu momentum, uma vez que esse conceito está associado à velocidade dos corpos.

Além disso, devemos ter em mente que ao tratarmos com o espaço que não está vazio temos que reunir todo o conteúdo de energia do espaço. Isso nos obriga a considerar todas as possíveis formas de energia ou seja, matéria, ener-gia radiante, energia elástica, etc., no tensor energia-momentum. No entanto,

(geometria do espaço-tempo) = (conteúdo de energia do espaço-tempo)

geometria do espaço-tempo (tensor de Einstein) = conteúdo de energia-matéria (tensor energia-momentum)

42 O Conteúdo

de matéria do Universo

280 Módulo 5 · O novo conceito de Espaço e Tempo e a Teoria Relativística da Gravitação

este tensor não inclui a energia gravitacional. Lembre-se que ela é a respon-sável pela curvatura do espaço-tempo e, portanto, está sendo considerada no lado esquerdo da equação de Einstein.

A expressão do tensor energia-momentum é dada pela teoria da relativi-dade especial. Para isso, imaginamos que o universo está preenchido por um fluido de partículas. Cada uma dessa partículas é um aglomerado de galáxias.

Para tratarmos com um problema tão complicado é necessário fazer algu-mas simplificações. No caso do tensor de energia-momentum vamos supor que as partículas que compõem esse fluido não interagem. Isso quer dizer que não há colisões entre elas, o que simplifica enormemente nosso trabalho. A um fluido com essa característica damos o nome de fluido perfeito.

Cada uma dessas partículas desloca-se no espaço ao longo do tempo com uma velocidade característica. Como estamos trabalhando no espaço-tempo descrito por quatro dimensões, nossa velocidade também será uma grandeza quadri-dimensional que representaremos por uμ. É claro que o índice μ varia de 0 a 3 pois estamos tratando com um espaço quadri-dimensional. Nova-mente, chama-se a atenção para o fato de que μ é apenas um índice e seus “va-lores” 0,1,2,3 estão associados às correspondentes coordenadas que estamos usando. Temos então um vetor velocidade descrito pelas coordenadas uμ = (uo, u1, u2, u3) onde uo é a componente da velocidade ao longo do eixo temporal e u1, u2, u3 são as componentes espaciais da velocidade.

Se estamos pensando no conteúdo de matéria do universo como um fluido, temos que levar em conta as grandezas que os descrevem. Um fluido possui den-sidade e então definimos que o fluido que permeia o Universo tem uma densida-de ρ. Note que essa densidade será medida em cada ponto do espaço-tempo. Ela é medida em um sistema de coordenadas tal que, no ponto que está sendo consi-derado, a matéria está em repouso. A isso damos o nome de densidade própria.

Além de densidade, um fluido possui pressão e essa propriedade também deve aparecer na expressão geral do tensor energia-momentum.

Após a análise desses fatos, os físicos chegaram à conclusão que se descre-vermos o conteúdo de matéria existente no universo por meio de um fluido perfeito, ou seja, considerando que os aglomerados de galáxias são partículas que não interagem, o tensor energia-momento será dado por:

Tμν = (ρ + p/c2) uμ uν - (p/c2) gμν

Essa é a expressão do tensor energia-momentum para um fluido perfeito, ou melhor, um meio em que qualquer ponto é caracterizado por uma pressão escalar p, uma densidade ρ e uma velocidade u. Esse fluido perfeito pode ser, por exemplo, uma nuvem de poeira, um gás molecular, um gás de fótons, etc. No nosso caso, cosmologia, as partículas que formam o fluido perfeito são os aglomerados de galáxias. Estamos considerando os aglomerados de galáxias como sendo as moléculas de um gás que preenche o espaço. Isso não é estra-nho! Lembramos que qualquer aglomerado de galáxias é muitíssimo menor que o tamanho do universo! Veremos mais tarde que na época em que as galá-xias não existiam, quando o universo era muito condensado, ele era preenchi-do por um gás de fótons, que também se comporta como um fluido perfeito.