Do Nascimento, 2015

Embed Size (px)

Citation preview

  • 8/18/2019 Do Nascimento, 2015

    1/12

    Correlations 

    between 

    subjective quality 

    and 

    physicochemicalattributes

     

    of  

    fresh 

    fruits 

    and 

    vegetables

    M. Cecilia do Nascimento Nunes*

    University of South Florida, Department of Cell Biology, Microbiology and Molecular Biology, Tampa, FL 33602, USA

    R  

    L  

    O

     Article  history:

    Received 

    November 

    2014

    Received   in  revised  form  30  April  2015Accepted  3  May 2015

    Available 

    online 

    19 

    May 2015

    Keywords:

    Quality  rating  charts

    Color

    Texture

    Weight   loss

    Anthocyanins

    Chlorophyll

    R  

    T

    Color charts and rating scales have been developed for several fresh fruits and vegetables (FFVs) but

    limited information is available regarding the correlation between subjective evaluations and

    physicochemical attributes. The objective of this work was to correlate subjective quality data with

    quantitative analytical data collected for several fruits exposed to different environmental conditions.

    Avocados, blueberries, peppers, strawberries and tomatoes were exposed to a range of different

    temperaturesandhumidity conditions forvariedperiods of time, andquality evaluated using both rating

    scales and physicochemical analysis. The strength of the relationship between variables wasmeasured

    using thePearson correlation coef cient (r ) and the coef cient of determination(r 2) and, thesignicance

    of the relationship was expressed by probability levels ( p=0.05). Overall, there was a signicant

    correlationbetweenmostof the subjectivequality attributesevaluatedand the physicochemicalanalysis

    performed. Subjectivecolorwas signicantlycorrelated with hue angle for all fruits evaluated except for

    blueberries for which subjective color had a stronger correlation with L* values. Correlations between

    subjective color and anthocyanins, ascorbic acid or chlorophyll contents were also signicant. Shriveling

    or stem freshnesswas strongly correlatedwithweightlosswhereas subjectivermnesswassignicantly

    correlated with instrumental texture. Results fromthis work showed that subjective quality evaluations

    using ratingscalescan be a reliableandsimplemethodto estimate changes in color, softening, waterloss,

    and ultimately changes in specic chemical components when FFVs are exposed to different

    environmental conditions. A color chart is proposed for the visual evaluation of strawberry quality.ã 2015 Elsevier B.V. All rights reserved.

    1. Introduction

    Visual  appearance   of   fresh  fruits  and  vegetables   (FFVs)  has  the

    greatest   impact   on  retailers  buying   decisions  and  on  consumer

    choices   and  purchases.  Attributes   such   as  appearance,  freshness

    and  color  are  considered  the  foremost  criteria  used  to  evaluate   the

    immediate  quality   of   FFVs  (Clydesdale, 1991;  Mitcham   et  al., 1996;

    Barrett  et  al.,  2010).  As  a  result,  they  are  used  as  quality  indicators

    throughout   the  supply  chain,   from  the  farm  to  the  consumer,  and

    ultimately   determine  product   acceptance   or  rejection.  Texture,taste   and  aroma  are  also  important  sensory  attributes  but  are

    mostly  related  with   subsequent  purchases  (Clydesdale,  1991;

    Barrett  et  al.,  2010). Nutrient  content   is  not  visible  or  touchable,

    and  therefore  is  often  disregarded  as  a  quality   attribute  when   it

    comes  to  food  choices  and  purchase   decisions.  However,  FFVs  are

    important  contributors   to  a  well-balanced  diet  and  to  human

    wellbeing  as  they  supply  important  macronutrients,  such  as

    carbohydrates   and  ber,  and  micronutrients  such  as  vitamins   and

    minerals   as  well   as  polyphenols.

    Subjective  quality  evaluations  are  often  used  to  rate   the

    appearance,   texture   and  avor  of   FFVs  and,  unlike  formal  sensory

    panels,  these  are  usually  performed  by  trained  individuals  but  not

    on  a  sensory  panel  setting  (e.g.,   quality  control,   and  to  estimate

    ripeness  stage  and  maturity  at  harvest).  Although   these  evalua-

    tions  are  criticized  by  some  as  being  inexact,   in  the  absence  of 

    formal  analytical   or  affective   sensory  panels  they   are  valuable   toquality   control,   and  to  determine  the  ripeness  stage  or  the  end  of 

    shelf   life  of   FFVs.  In  addition,  they  are  faster,  easier  and  less

    expensive   than   sensory  panels  or  instrumental  measurements

    which   may  require  extensive   training  and  complex   logistics,  or

    expensive   equipment  (Mitcham  et  al.,  1996;  Barrett  et  al.,  2010).

    Consequently,   many  researchers  frequently  use  somewhat   quanti-

    tative   scoring  systems   either  alone  or  combined   with   drawings   or

    photographs   to  evaluate   the  sensory  quality   of   FFVs.  For  example,

    Kader  and  Cantwell   (2006)  developed  several  color  charts   along

    with   rating   scales  and  descriptors  for  physical   damage   of   produce.*  Tel.:   +1  813  974  9307;  fax:  +1  813  905   9919.

    E-mail  address:  [email protected]  (M. C.d.N.  Nunes).

    http://dx.doi.org/10.1016/j.postharvbio.2015.05.001

    0925-5214/ã  2015  Elsevier  B.V.   All  rights  reserved.

    Postharvest  Biology  and  Technology   107  (2015)  43–54

    Contents 

    lists 

    available 

    at 

    ScienceDirect

    Postharvest 

    Biology 

    and 

    Technology

    j ou rna l homepage : www.elsev  ier .com/locate/postharvbio

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://www.sciencedirect.com/science/journal/09255214http://www.elsevier.com/locate/postharvbiohttp://www.elsevier.com/locate/postharvbiohttp://www.elsevier.com/locate/postharvbiohttp://www.elsevier.com/locate/postharvbiohttp://www.sciencedirect.com/science/journal/09255214http://dx.doi.org/10.1016/j.postharvbio.2015.05.001http://dx.doi.org/10.1016/j.postharvbio.2015.05.001mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.postharvbio.2015.05.001&domain=pdf

  • 8/18/2019 Do Nascimento, 2015

    2/12

    White   et  al.  (2005)  developed  a  color  chart  to  describe  skin  color

    and avocado  ripening. Our  group  also have developed  a  system  that

    uses  scores   and  descriptors  to  rate  individual   sensory  quality

    attributes  of   various  fruits  and  vegetables   (Laurin  et  al.,  2003;

    Nunes   et  al.,  2003a,b,c;  Nunes   et  al.,  2004,  2006,  2007,   2011,  2012,

    2013;  Proulx  et  al.,  2005;  Nunes   and  Emond,   2007;  Nunes,   2008;

    Proulx  et  al.,  2010;  Chilson  et  al.,  2011).  In  the  produce  industry,

    color  charts   are  also  frequently  used  to  assess  the  stage  of   ripeness

    (e.g.,   banana,   tomato   and  avocado  color  charts)  or  to  grade  (e.g.,

    size,  color,  and defects) or even  to decide  if  a  load of  produce  should

    be  accepted   or  rejected  based  on  visual  inspection.

    Many  color  charts   and  rating   scales  have  been  developed  for

    several  types  of   produce,  and  various  studies  have  shown  that

    correlations  exist  between  sensory  and  physical   and/or   chemical

    attributes  of   FFVs  (Ressureccion  and  Shewfelt,  1985;   Maul  et  al.,

    2000,b;  Harker  et  al.,  2002a,b;  Safner  et  al.,  2008;  Gunness  et  al.,

    2009;  Pace   et  al.,  2011;   Corollaro  et  al.,  2014).  For  example,

    rmness  and  color  of   tomatoes   were  highly   correlated  with

    sensory  attributes  (Ressureccion  and  Shewfelt,  1985) whereas

    perceived  sweetness  or  sourness  was  correlated   with  specic

    volatile  compounds   (Maul  et  al.,  2000).  Pace   et  al.,  (2011)  reported

    a  signicant  correlation  between  b*, chroma,  pH,  titratable  acidity

    and  appearance   of   fresh-cut nectarines.  In  apples,  titratable  acidity

    was  suggested  to  be  a  good  predictor   of   acid  taste  (Harker  et  al.,2002a,b)  and  texture   analysis   correlated   well  with   sensory

    perception   of   apple  texture  (Harker  et  al.,  2002a,b;  Corollaro

    et  al.,  2014). However,  these  studies  used  consumer  or  trained

    sensory  panels  and  to  our  knowledge   there  is  a  lack  of   published

    studies  showing  that  subjective  quality  data   collected  by  trained

    individuals  (not   in  a  sensory  panel  setting)   can  also  be,  in  the

    absence  of   formal  trained  sensory  panel,  a  reliable  way  the

    determined  changes   in  the  overall  quality of   FFVs.  The objectives of 

    this   work  were  to:  (1)  correlate  subjective   quality  data,  such   as

    color,  rmness  and  shriveling,   with   quantitative   analytical   data

    collected  for  different  FFVs,  and  to  show  that  in  the  absence  of   a

    formal  sensory  panel  the  use  of   color  charts   and  rating   scales  can

    be  used  by  trained  individuals  as  an  accurate   way  of   determining

    changes   in  overall   quality  of   FFVs;  and  (2)  give  an  example  of   aunique   color  chart  designed  for  the  evaluation   of   visual  quality   of 

    strawberry   based  on  correlations  between  individual   subjective

    quality  characteristics   and  physicochemical   attributes,  and  that

    was  validated   in  research  and  commercial  settings.

    2.  Material   and  methods

     2.1. 

    Sampling 

    Fresh  fruits  and  vegetables   were   harvested   twice   from

    commercial  operations  in  Florida  and  transported  to  the  laboratory

    within   minimal   delay  after  harvest  (i.e., 1  to  6 h,  depending  on  the

    distance   between  the  eld  and  the  laboratory)   (Tables  1  and  2).  All

    FFVs  were   harvested   at  the  commercial  maturity  stage,  and  cluster

    tomatoes   were   harvested  from  a  greenhouse  at  the  light-red  stage.

    Upon  arrival   to  the  laboratory,   FFVs  were   visually  selected  for

    uniformity  of   color/ripeness  stage,  size  and  freedom  of   defects.

    Sample  sizes  were   chosen  based  on  the  size  and  variability

    within   each   commodity   (i.e.,  the  smaller  the  size  of   the  fruit  the

    larger  the  number  of   fruits  per  replicates).  Thus,  three  avocados,

    three  peppers,  two  clusters  of   three   tomatoes   each,  and  three

    replicated   samples  of   15  or  20  strawberries  and  blueberries  each,

    respectively,  were used  for  initial  subjective  quality evaluation,  and

    for  instrumental  color  and  texture  analysis,  and  immediately

    frozen  to  be  later  used  for  chemical   compositional  analysis.  A  total

    of   20  avocados  or  20 peppers  (three  fruit per RH),  and  15  clusters of 

    three  tomatoes  each  (3  clusters per RH),  and  a  total of  15  clamshells

    (3  clamshells  per  RH)  containing   15  or  20  strawberries  or

    blueberries,  respectively,   were  distributed  among  the  ve  RH-

    controlled  rooms  and  reused  daily   or  every  two days  for  non-

    destructive   quality   evaluations   (i.e.,  subjective  quality  evaluations

    and  weight   loss).  For  destructive   quality  evaluations   (i.e.,  texture

    analysis   and  chemical   analysis)   and  for  non-destructive   evalua-

    tions  that   required manipulation  of   the  fruit  to an  extent   that  could

    cause  minor  bruising  (i.e.,  instrumental  color)  165  avocados  or

    peppers  (33  fruits  per  RH),  and  110clusters  of   three  tomatoes   each(22  clusters  per  RH),  and  120  or  135  clamshells  (24  clamshells  per

    RH;  27 clamshells  per  RH,  respectively)   containing   20  or  15  blue-

    berries  and  strawberries   each,  respectively   were  distributed

    among   the  ve  RH-controlled  rooms.  However,  every  day  three

    clamshells  of   these  strawberries   or  every  two days,  three   of   these

    avocados  or  peppers,  and  two  clusters  or  tomatoes,   and  three

    clamshells  of   these  blueberries  were   removed  from  their  respec-

    tive  RH  and  immediately  frozen,  to  be  later  used  for  chemical

    compositional  analysis.  Avocados  were   stored   for  20  d,  blueberries

    were  stored   for  16  d,  and  peppers  and  tomatoes   were   stored   for  22

    days  and  quality   evaluated  every  two  days.   Strawberries   were

    stored   for  nine   days  and  quality  evaluated   every  day  (Table  2).  For

    temperature  treatments   the  experimental  setup was  similar  to  that

    used  for  RH  treatments  except  that   only   avocados,   strawberriesand  tomatoes   were  used  in  this   part  of   the  experiments  (Table  1).

    Since  all  non-destructive   quality  analysis   (i.e.,  subjective  quality

    evaluations   and weight)  were   assessed  using  always  the  same  FFVs

    samples,  those  were   conducted  within   approximately   30 min  after

    the products  were  removed  from  storage,   to minimize   temperature

    uctuations   that   could  affect  the  quality.

     2.2. 

    Storage 

    conditions

    Storage   conditions   (i.e.,  temperature   and  relative   humidity

    treatments)  and  experimental  setup  used  in  this   study  were

    similar  to  those  previously  described  in  detail  by  Nunes   et  al.

     Table  1

    Optimum  storage  conditions,  cultivar,  harvest  location  and  date,  and  storage  conditions  during  the  temperature  experiments.

    Commodity  Optimum  temperature  (C)  Optimum  RH  (%)  Cultivar  Origin  Harvest  date  Storage   duration  (d)a

    Avocados  5–12b 85–95b ‘Choquette’  Homestead,  Florida  October  1,  2008  22

    ‘Choquette’  Homestead,  Florida  November  19,  2009   22

    Strawberries  0c 90–95c ‘Albion’ Floral  City,  Florida  December  12,  2008   10

    ‘Albion’ Floral  City,  Florida  March  9,  2009   10

    Tomatoes   7–13d 90–95d ‘Success’ Wellborn,   Florida   January  15,  2009   22

    ‘Success’ Welborn,   Florida  February  24,  2008  22

    Storage   conditions:  (A)  1.8  0.8 C;  (B)  5.2  0.2 C;  (C)  10.6  0.6 C;  (D)  15.2  0.4 C;  (E)  20.2  0.2 C;  90%  RH  in   all  ve   temperature-RH  controlled  chambers.a In  some   cases  the  experiments  were  terminated  before  the  end  of   the  storage  period,  at  the  time  when  at  least  one  of   the  visual  quality  attributes  evaluated  reached  the

    maximum  acceptable  (rating  of   3).b Woolf   et  al.  (2014);  evaluated  every  two  days.c Mitcham  (2014); evaluated  every  day.d Sargent

     

    and 

    Moretti 

    (2014); light 

    red 

    greenhouse-grown 

    tomatoes; 

    evaluated 

    every 

    two 

    days.

    44   M.C.N.  Nunes  /  Postharvest   Biology  and  Technology  107   (2015)  43–54

  • 8/18/2019 Do Nascimento, 2015

    3/12

    (2013). After  sorting,  FFVs designated  for  temperature   experiments

    (avocados,   strawberries,  tomatoes)   were  distributed  into  ve

    temperature-humidity-controlled   chambers   (Forma  Environmen-tal  Chambers  Model  3940  Series,  Thermo   Electron  Corporation,

    OH,  USA)  that  were  set  at  ve  different  temperatures  with   an

    relative   humidity   (RH)  of   approximately   90%  (Table  1).  These

    temperatures  were  chosen  because  they  cover  a  wide   range  of 

    physiological   temperatures,  between  optimum   and  ambient

    temperature,  with   an  optimum  RH.  For  the  humidity   experiments,

    temperature  of   the  chambers   containing   blueberries  and  straw-

    berries was maintained  as  close  as  possible  to  the optimum  storage

    temperature  (1.5 C)  whereas  for  avocados,   peppers  and  tomatoes,

    the  temperature   of   the  chambers   was  maintained  at  15C  in  order

    to  reduce  the  risk of   chilling  injury  (Table  2).  The  levels of   humidity

    used  were  chosen  based  on  RH  that  may  be  encountered

    throughout   the  supply  chain  (Nunes   et  al.,  2009; Lai  et  al.,  2011

    ;Pelletier  et  al.,  2011).

     2.3. 

    Temperature 

    and 

    relative 

    humidity 

    monitoring 

    The  temperature   inside  the  temperature  and  RH  controlled

    rooms  was  monitored  throughout   the  study  using  Stow  Away1

    XTI02  temperature  loggers  from  (5 C  to  +37 C)  (Onset   Computer

    Corporation,  Pocasset,  MA).  The  RH  was  monitored   with  Stow

    Away1  RH  loggers  (10  to  95%  RH)  (Onset   Computer  Corporation,

    Pocasset,  MA).

     2.4.  Subjective  quality  evaluation

    Subjective   quality evaluation  of   strawberries   was  performedevery day during nine  to10 d, depending  on  the  storage  temperature

    and RH  (Tables 1  and 2).  Subjective  quality evaluations  for avocados,

    blueberries,   peppers   and  tomatoes  were performed  every   two  days

    with  the  length of   storage depending  on  the  commodity and  storage

    regime  (Tables  1  and  2).  A  trained  individual(s)   conducted  the

    subjective  quality  evaluations  using rating scales  and  descriptors

    (Tables   3–7).  Color,   shriveling   and  stem  freshness   were  determined

    subjectively  using a  1  to 5  visual   rating  scale  and  rmness   was

    determined  based   on  the  whole   fruit  resistance   to slightly  applied

    nger  pressure   and  recorded  using a  1–5  tactile   rating A  score  of 

    3 was  considered   the  limit  of   acceptability  for  sale.  Thus,  when  fruit

    were  visibly  deteriorated  or  when  at  least  one  of   the  subjective

    quality attributes  had  attained  a  ratingof   3  or  lower,   the  treatments

    were  terminated.  Some  of   the  visual   quality  scores   and  descriptorsused  (e.g.,  shriveling   and  cluster   tomato quality scores  and

    descriptors;   Table  7) weredeveloped byour  team based  on multiple

    visual   observations  during postharvest  storage  of   FFVs   at  different

    temperatures   (Nunes,  2008)  whereas  other  scores   were used  based

    on  previously  published   works  (Tables 3–6;  see  footnotes).  The

    individual(s)   that  performed   the  visual   evaluations  were trained

    (using  FFVs   and  photographs)  to detect  minimal  changes  in  the

    appearance  and  rmness   of   the  FFVs  and  had  extensive  experience

    using the  rating scales.

     Table  2

    Optimum  storage  conditions,  cultivar,  harvest  location  and  date,  and  storage  conditions  during  the  humidity  (RH)  experiments.

    Commodity  Optimum  temperature  (C)  Optimum  RH  (%)  Cultivar  Origin  Harvest  date  Storage   duration  (d)a

    Avocados 

    5–12b 85–95b ‘Simmonds’ 

    Homestead, 

    Florida 

     July 

    17, 

    2008 

    20

    ‘Simmonds’  Homestead,  Florida  August  2,  2008  20

    Blueberries  0.5  to  0c >90c ‘ Jubilee’  Winter  Haven,   Florida  April  5,  2012  16

    ‘ Jubilee’  Winter  Haven,   Florida  April  26,  2012  16

    Pepper  7–10d 90–95d ‘Revolution’  Immokalee,  Florida  November  24,  2009   22

    ‘Revolution’  Immokalee,  Florida  December  1,  2009  22

    Strawberries   0e 90–95e ‘Strawberry   Festival’ Floral  City,   Florida  March  5,  2012  9

    ‘Strawberry   Festival’ Floral  City,   Florida  February  21,  2013   9

    Tomato   7–13f  90–95f  ‘Success’  Wellborn,   Florida   June  11, 2009  22

    ‘Success’  Wellborn,   Florida   June  27,  2009  22

    Storage   conditions:  (A)  40.1%   3.2%  RH;  (B)  62.0%  2.0%  RH;  (C)  81.0%  2.1%  RH;  (D)  87.9%  1.9%  RH;  (E)  91.6   1.4%  RH;  temperature  of   the  chambers  was  set  at  15C  for

    avocado, 

    pepper 

    and 

    tomato 

    and 

    1.5C 

    for 

    blueberry 

    and 

    strawberry.a In  some   cases  the  experiments  were   terminated  before  the  end  of   the  storage  period,  at  the  time  when  at  least  one  of   the  visual  quality  attributes  evaluated  reached  the

    maximum  acceptable  (rating  of   3).b Woolf   et  al.  (2014); evaluated  every  two  days.c Perkins-Veazie  (2014); evaluated  every  two  days.d González-Aguilar  (2014); evaluated  every  two  days.e Mitcham  (2014);  evaluated  every  day.f  Sargent  and  Moretti  (2014); evaluated  every  two  days.

     Table  3

    Visual  quality  scores  and  descriptors  for  avocado.

    Scores 

    and 

    description

    3a 4 

    5

    Very   poor  Poor   Acceptable  Good   Excellent

    Colorb Very   dark  skin  with  no  traces  of 

    green; 

    fruit 

    appears 

    completely

    brown  or  black

    Some   green  on  brown  or

    black; 

    approximately

    75%  colored

    Some  yellow/black  or  brown

    on 

    green; 

    approximately

    25%   colored

    Darker  lime  green  and  not  so

    glossy; 

    beginning 

    of  

    color 

    changes;

    some   yellowing

    Full  dark  lime  green

    color; 

    very 

    glossy;

    freshly   harvested

    Firmnessb Extremely 

    soft 

    on 

    touch; 

    easily

    yields  to  slight  hand  pressure

    Soft; 

    whole 

    fruit 

    deforms

    with  slight hand pressure

    Elastic; 

    slightly 

    yield 

    to

    hand  pressure

    Hard 

    but 

    less 

    resistant 

    to 

    extreme

    nger  pressure

    Extremely 

    hard; 

    does

    not  yield  to  extreme

    nger  pressure

    Shriveling  Skin  appears  extremely  dry  Serious  shriveling  Shriveling  evident,  but  not

    serious

    Minor  signs  of   shriveling  Field-fresh,  no  signs  of 

    shriveling

    a Score  of   3  was  considered  to  be   the  minimum  acceptable  quality  before  avocados  become  unmarketable.b Modied  from  White  et  al.  (2005).

    M.C.N.  Nunes  /  Postharvest   Biology  and  Technology   107   (2015)  43–54  45

  • 8/18/2019 Do Nascimento, 2015

    4/12

     2.5.  Instrumental  surface   color 

    A  total  of   two  color  measurements  per  FFVs  were  taken  on

    opposite  sides  at  the  equatorial  region.  A  hand-held   tristimulus

    reectance   colorimeter  (Model  CR-300,  Minolta  Co.,  Ltd.,  Osaka,

     Japan)  equipped  with   a  glass  light-protection   tube   (CR-A33,

    Minolta  Co.,  Ltd.,  Osaka,   Japan)  was  used.  Color  was  recorded

    using  the  CIE-L*a*b* uniform  color  space  (CIE-Lab),   L*  (lightness),

    a*  (redness)  and  b*  (yellowness)  values.  Numerical   values   of   a*  and

    b*  were  converted   into   hue  angle   and  chroma   using  the  Minolta

    Color  Management   Software   (1996–1999CyberSoft   SpectraMatch/

    QC  software   version  3.3,  CyberChrome,  Inc.,   Stone   Ridge,  N.Y.).

     2.6.  Texture   analysis

    Before  texture   was  analyzed,  FFVs  from  each   treatment  were

    conditioned  at  room  temperature  for  approximately   1 h.  Thereaf-

    ter,   rmness  of   each  individual   FFVs  was  measured  using  a  TA.XT

    plus  Texture  Analyzer  (Texture  Technologies   Corp.,  NY,  USA)

    equipped  with  a  50 kg  load  cell.

     Table  4

    Visual  quality  scores  and  descriptors  for  blueberry.

    Scores  and  description

    1   2  3a 4  5

    Very  poor  Poor   Acceptable  Good   Excellent

    Colorb Extremely  dark;

    overripe  or

    senescent

    Very  dark  blue/purplish  Fully  dark  blue   More  blue,  less

    bright

    Bright  blue   color

    Firmnessc Berry  rupture  ontouch

    Berry  surface  very  depressed  on  touchbut

     

    no 

    ruptureBerry  surface  depressed  on  touch,softer

     

    than  rmer

    Slight  depressionon

     

    touchFirm  berry,   not  yielding  to  touch

    Shriveling  Extremely  wilted

    and  dry

    Severe   shriveling  Shriveling  evident  but  not  serious  Slight  signs  of 

    shriveling

    Field-fresh,  fruit  appear  very

    fresh  and  turgid

    a Score  of   3  was  considered  to  be  the  minimum  acceptable  quality  before  blueberries  become  unmarketable.b Modied  from  Sanford  et  al.  (1991).c Modied  from  Beaudry  et  al.  (1998).

     Table  5

    Visual  quality  scores  and  descriptors  for  pepper.

    Scores  and  description

    3a 4 

    5

    Very  poor  Poor  Acceptable  Good   Excellent

    Colorb Extremely  dull

    green  or  25%

    colored

    Dull   green  or  slight  coloration  Green but  showing  loss  of   glossiness  Less  bright  dark  green  Completely  bright

    dark  green;  very

    glossy

    Firmnessb Extremely  soft  on

    touch

    Soft  on  touch,  yields  easily  to  nger

    pressure;  not  crisp;  75%  of   the  fruit  is

    soft

    Fruit  starts  to  soften  and  yield  to

    nger  pressure;  50%  of   the  fruit  is

    soft

    Firm  but  less   resistant  to  nger

    pressure;  25%  of   the  fruit  is   soft

    Very   rm,  turgid  and

    crisp

    Shriveling  Extremely

    shriveled 

    and 

    dry

    Serious  shriveling  Shriveling  evident,  but  not  serious  Slight  signs  of   shriveling  Field-fresh,  no  signs

    of  

    shriveling

    a Score  of   3  was  considered  to  be  the  minimum  acceptable  quality  before  peppers  become  unmarketable.b Modied  from  Lownds  et  al.  (1994).

     Table  6

    Visual  quality  scores  and  descriptors  for  strawberry.a

    Scores  and  description

    1   2  3b 4  5

    Very  poor  Poor   Acceptable  Good  Excellent

    Color  Very  dark  purplish-red;

    extremely  overripe  or

    senescent

    Overripe;  very  dark

    red

    Fully  red  Fully  light  red  Three-quarter  to  fully  light  red

    Firmness  Extremely  soft  and

    deteriorated

    Soft  and  leaky  Minor  signs  of   softness  Firm  but  less  turgid  Very  rm  and  turgid

    Shriveling 

    Extremely 

    wilted 

    and 

    dry 

    Severe 

    shriveling, 

    fruit

    is   shriveled  and

    calyx  is   wilted  and  dry

    Shriveling 

    evident, 

    fruit 

    and 

    calyx 

    show

    evident  signs  of   moisture  loss

    Minor 

    signs 

    of  

    shriveling,

    calyx  slightly  wilted

    Field-fresh, 

    fruit 

    and 

    calyx

    appear  very  fresh  and  turgid

    a Nunes  et  al.  (2003c).b Score  of   3  was  considered  to  be  the  minimum  acceptable  quality  before  strawberries  become  unmarketable.

    46  M.C.N.  Nunes  /  Postharvest   Biology  and  Technology  107   (2015)  43–54

  • 8/18/2019 Do Nascimento, 2015

    5/12

    For avocado,  the  instrument was tted  with  a 76.2  mm diameter

    stainless  compression  plate  and  rmness  was  measured  on  two

    cheeks  of   each  non-pealed  fruit.  The  probe  was  then  driven   with   a

    crosshead  speed  of   2 mm  s1,  and  the  compression  force  was

    recorded   at  3.0 mm  deformation  ( Jeong  et  al.,  2002).  For  blueberry,

    three  replicated  samples  of   30 g  each  were   placed  into  three-

    100 mL   plastic  beakers  and  the  fruit  was  compressed  to  a  depth  of 

    30 mm  using  a  38 mm  diameter  and  20 mm  high   acrylic  cylinder

    probe.  The  probe   was  then  driven   with   a  crosshead  speed  of 

    1 mm  s1,  and  the  compression  force  was  recorded   after  the  probe

    had  compressed  the  fruit  by  30 mm  (Sanford  et  al., 1991). Peppers

    were  rst  cut  transversely,   approximately   three-quarter  way  from

    the  shoulder  end  and  then  placed,  with  the  cut  end  down,  on  the

    at 

    platform 

    of  

    the 

    texture 

    analyzer. 

    7.95 

    mm 

    stainless 

    convexprobe  was  centered   on  a  shoulder  lobe  with   two  measurements

    being  taken  on  opposite  lobes.  The  probe  was  then  driven   with   a

    crosshead  speed  of   1 mm  s1,  and  the  compression  force  was

    recorded   at  5.0 mm  deformation  (Nunes   et  al.,  2012).  Strawberryrmness  was  measured  at  the  equatorial  part  of   the  fruit  using  a

    7.95 mm  stainless  convex  probe.  The  probe  was  then   driven  with  a

    crosshead  speed  of   1 mm  s1,  and  the  compression  force  was

    recorded   at  3.0 mm  deformation  (Whitaker  et  al.,  2012).  Tomato

    was  placed  on  the  at  surface  of   the  texture   analyzer  with  stem-

    end  down,   so  the  pressure  was  applied  on  the  blossom-end  part  of 

    the  fruit.  The  instrument  was  tted  with  a  76.2 mm  diameter

    stainless  compression  plate  and  the  probe  was  then   driven   with  a

    crosshead  speed  of   1 mm  s1,  and  the  compression  force  was

    recorded 

    at 

    10.0 

    mm 

    deformation 

    (Chilson 

    et 

    al., 

    2011).

     2.7. 

    Weight  

    loss

    Weight  loss of   each  individual   avocado, pepper or  tomato  and of 

    each   individual   triplicated  clamshell  containing   20  blueberries  or

    15  strawberries   each  was  calculated   from  the  initial  weight   and

    after  every  day  or  every  twodays  during  ve to  22  d,  depending  on

    the  fruit  and  on  the  temperature  or  RH  regimes. Concentrations   of 

    chemical   constituents  were  expressed  in  terms   of   dry  weight   in

    order  to  show  the  differences  between  temperatures   or  RHs  that

    might  be  obscured  by  differences  in  water  content.   The  following

    formula  was  used  for  water  loss  corrections:  [chemical   compo-

    nents   (fresh  weight)   100 g/average   dry  weight   (avocado = 12.9 g;

    blueberry = 13.2 g;  pepper = 6.1 g;  strawberry  = 9.4 g;  tomato = 5.5

    g) + weight   loss  during   storage   (g)].   The  dry  weight  was  deter-

    mined  by  drying  three  weighed   aliquots  of   homogenized   fruit

    tissue  at  80 C,  until  weight  stabilized.

     2.8.  Total  anthocyanins   content 

    Three   replicated  samples  of   blueberry  or  strawberry   fruit  were

    homogenized   in  a  laboratory   blender  (Waring  Products   Div.

    Dynamics   Corp.  of   America,   New  Hartford,  CO)  at  high   speed  for

    2 min.  The  homogenate   (2 g)  was  mixed  with   28 mL   of   0.5%  (v/v)

    HCl  in methanol   and  held   for  1 h  at  4 C  for  pigment   extraction.   The

    occulate  was  removed  by  ltering  the  extract   through   a  single

    layer  of   facial  tissue,  and  absorbance  of   the  resulting  liquid

    containing 

    the 

    pigments 

    was 

    measured 

    at 

    520 

    nm 

    (maximumabsorbance   for  anthocyanins)   using  a  BioTek   microplate   reader

    (BioTek  Instruments,  Inc.,   Highland   Park,  Vermont,  USA).   Pigment

    content   was  calculated   using  the  following  formula:  A520 

    dilution  factor   [molecular  weight   (MW)   of   PGN/molar  extinction

    coef cient]  where   MW  of   PGN = 433.2  and  the  molar  extinction

    coef cient = 2.908  10,000.   The  amount  of   total   anthocyanins   was

    expressed  in  terms  of   dry  weight   (g kg1)  to  compensate   for  water

    loss  during   storage.

     2.9.  Total  chlorophylls  content 

    Chlorophyll   content   of   avocado  puree  was  extracted   in  the  dark

    with   N ,N -dimethylformamide   and  absorbance   of   the  ltrate

    measured 

    at 

    625, 

    647 

    and 

    664nm 

    using 

    BioTek 

    microplatereader  (BioTek  Instruments,  Inc.,   Highland  Park,  Vermont,  USA).

    Total   chlorophylls   content   was  calculated  according   to  Moran

    (1982)   and  the  results  expressed  in  terms  of   dry  weight   (g kg1)  to

    compensate   for  water  loss  during  storage.

     2.10. 

    Total 

    ascorbic  

    acid

    Total  ascorbic  acid   was  quantied  by  mixing  2 g  of   strawberry,

    pepper  or  tomato  homogenates   with   20 mL   metaphosphoric  acid

    mixture  (6%  HPO3  containing  2 N  acetic  acid).   Samples  were   then

    ltered   (0.22 mm)  prior  to  HPLC  analysis.  Ascorbic  acid   analysis

    was  conducted   using  a  Hitachi  LaChromUltra  UHPLC  system with   a

    diode  array  detector   and  a  LaChromUltra   C18  2 mm  column

    (2  50 mm)  (Hitachi,  Ltd.,  Tokyo,   Japan).  The  analysis   was

     Table  7

    Visual  quality  scores  and  descriptors  for  greenhouse-grown  cluster  tomato.

    Scores  and  description

    1  2  3a 4  5

    Very   poor  Poor   Acceptable  Good  Excellent

    Color  Very   dark  red,  overripe  Dark  red;  dull  color  Vivid  red;  loss  of   glossiness  Light  red  but  less  glossy  Light  red  with   no  trace  of 

    green;  very  glossy

    Firmness  Extra-soft,  overripe,  fruit  yields

    very  readily  to  slight  pressure

    Soft,  fruit  yields  readily

    to  slight  pressure

    Firm,  fruit  yields  slightly  to

    moderate   pressure

    Hard,  fruit  yields  only   slightly

    to  considerable  pressure

    Extra  hard,  fruit  does  not  yield

    to  considerable  pressure

    Shriveling  Extremely  shriveled  and  dry;  fruit

    appears  old  and  deteriorated

    Severe   shriveling  Shriveling  evident,  but  not

    serious

    Slight  signs  of   shriveling  Field-fresh,  no  signs  of 

    shriveling

    Stem  freshness   Stem  is   completely  dry

    and  dark  brownish-

    green

    Stem  is   dry,  wilted  and

    brownish-green

    Signs  of   dryness  are  evident

    but  not  objectionable

    Stem  appears  slightly  less

    green  and  less  turgid

    Stem  is

    very

    bright

    green  and

    turgid

    a Score  of   3  was  considered  to  be   the  minimum  acceptable  quality  before  cluster  tomatoes   become  unmarketable.

    M.C.N.  Nunes  /  Postharvest   Biology  and  Technology   107   (2015)  43–54  47

  • 8/18/2019 Do Nascimento, 2015

    6/12

    performed  under  isocratic mode   at  a  ow  rate  of   0.5 mL/min with  a

    detection  of   254 nm.  Sample  injection  volume   was  5 mL,  each  with

    duplicate  HPLC  injections.  Mobile  phase  was  buffered  potassium

    phosphate   monobasic  (KH2PO4,  0.5%,  w/v)   at  pH  2.5  with

    metaphosphoric  acid   (HPO3,  0.1%,   w/v).   The  retention   time  of 

    the  ascorbic  acid  peak  was  2.5 min.  After  comparison  of   retention

    time   with   the  ascorbic  acid   standard,  the  peak  was  identied.  The

    amount   of   total   ascorbic  acid  content  in  strawberry   was  quantied

    using  calibration  curves   obtained   from  different  concentrations

    (0.01 g  L 1,  0.02  g  L 1,  0.03  g  L 1,  0.05 g L 1,  0.10g  L 1,   0.15 g L 1,

    0.20 g L 1 and  0.30  g  L 1)  of   ascorbic  acid  standards.  Total  ascorbic

    acid  content  was  expressed  in  terms  of   dry  weight   (g kg1)  to

    compensate   for  water  loss  during  storage.

     2.11. Statistical  analysis

    The  SigmaPlot  Version  12.0  (Systat  Sotware,   San   Jose  CA)  was

    used  for  the  analysis   of   the  data.  Since  there  were   no  signicant

    differences  between  harvests   in  respect  to  the  strength   and

    signicance  of   the  relationships,  data   from  the  two  harvests  was

    combined.   The  strength  of   the  relationship  between  variables   (i.e.,

    subjective   versus  quantitative)   was  measured  using  the  Pearson

    correlation  coef cient  (r ).  The  coef cient  of   determination  (r 2)  and

    the  signicance   of   the  relationship  between  variables   was

    expressed  by  probability  levels  ( p = 0.05).   A  linear  regression

    model  was  applied  to  the  data  collected  and  was  used  to  describe

    the  relationship  between  variables.

    3.  Results  and  discussion

     3.1.   Correlation  between  subjective  color   and  L *,  hue  angle,

    anthocyanins,   chlorophyll   and  ascorbic   acid  contents

    Subjective  color  was  signicantly   correlated  to  L*  values   for  all

    the  FFVs  evaluated,  regardless  of   the  storage   conditions,  except  for

    strawberry   stored  under  different  RH  regimes  (Table  8;  Fig.  1). In

    general,   as  color  ratings   decreased,  L*  values   also  decreased,

    meaning   that   the  surface  color  of   the  FFVs  became   darker.

    Similarly,   with   the  exception   of   blueberry,   there  was  a  signicant

    correlation  between  color  ratings   and  hue  angle  for  all  the  fruit

    evaluated   (Table  8;  Fig.  1).  As  color  ratings   decreased,  hue  angle

    values   also  decreased;  for  avocado  and  pepper,   decreased  in  hue

    angle   corresponded  to  changes   in  color  from bright  dark   lime  green

    to  a  brownish-green   color  (Tables  3  and  5; Fig.  1).  In  pepper,

    decreased  in  hue  angle   corresponded  to  changes   in  color  from

    bright  dark-green   to dull  green  (Table 3).In   strawberry  and  tomato,

    decreased  in  hue  angles   corresponded  to  changes   in  the  surface

    color  from bright   light-red  to  a deep dull  red  (Tables 6  and 7; Fig.1).

     Table  8

    Pearson  correlation  coef cient  (r ),  coef cient  of   determination  (r 2),  linear  regression   equation,  and  signicance  of   the  relationship  ( p)  between  subjective  color  and:

    instrumental  color  coordinates  (L*  value  and hue  angle),  anthocyanins,  chlorophyll   and  ascorbic  acid  content  contents  for  avocado,  blueberry,  pepper,   strawberry  and  tomato

    stored   at  different  temperature  or  humidity  regimes.

    Commodity  (treatment)  Color  vs   L*  value  Color  vs  hue  angle  Color

    vs   anthocyanins

    (g kg1)

    Color

    vs  chlorophyll

    (g kg1)

    Color  vs   ascorbic  acid

    (g kg1)

    Avocado 

    (RH)  r  = 0.602  r  = 0.906  NM   p > 0.05  (NS)  NM

    r 2 = 0.363  r 2= 0.821

     y = 4.409 x + 68.321   y  =13.870 x + 56.882

     p 

  • 8/18/2019 Do Nascimento, 2015

    7/12

    Nunes  et  al.  (2013)   also  showed   that   there  was  a  highly  positive

    correlation  between  banana   visual  color  and  hue  angle   values   and

    suggested  that   color  can  be  a  reliable  way  to  estimate   visual  color

    changes.  Visual  evaluation   of   browning   in  fresh-cut  nectarines was

    also  found  to  be  highly   correlated  to  color  parameters,  particularly

    with   b*  and  chroma   (Pace  et  al.,  2011).  In  addition,  color  changes

    have  also  been  shown   to  be  strongly   correlated  with   sugar  content

    in  banana   (Nunes   et  al.,  2013). Therefore,  the  use  of   color  charts

    (e.g.,  banana   industry)  when   used  by  trained  individual(s)  can  be

    an  easy  and  fast  way  to  estimate   FFVs  quality  attributes  that  are

    associated  with  changes   in  surface  color.

    Color  ratings   were   also  signicantly   correlated  with   anthocya-

    nin  contents,  particularly   in  strawberry   (Table  8;  Fig.   2).  As  color

    ratings   decreased,  anthocyanin   content  also  decreased,  meaning

    that  fruit  with   a  deep  purplish-blue  or  purplish-red  color  had

    lower  anthocyanin   contents   than   fruit  showing   a  bright   light  blue

    or  red  color.  Although   in  avocado  the  relationship  between  color

    and  chlorophyll  content  was  not  very  strong,  there  was  a

    signicant  correlation  between  color  ratings  and  chlorophyll

    content   in  avocado  stored  at  different  temperatures  (Table  8).

    Therefore,  as  color  ratings   decreased  (color   changed   from  green  to

    brown)  chlorophyll   content   also decreased. Proulx et  al.  (2010)   also

    1.0 

    1.5 

    2.0 

    2.5 

    3.0 

    3.5 

    4.0 

    4.5 

    5.0

       L   *  v  a

       l  u  e

    30

    35

    40

    45

    50

    55

    60

    65

    70

     Avocado (RH)

    Tomato (RH)

    1.0 

    1.5 

    2.0 

    2.5 

    3.0 

    3.5 

    4.0 

    4.5 

    5.0

       H  u  e  a  n  g

       l  e

    60

    80

    100

    120

    140

    160

     Avocado (RH)

     Avocado (T)

    Pepper (RH)

    Color rating (1-5)

    1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0

       H  u  e  a  n  g

       l  e

    0

    20

    40

    60

    80

    100

    120

    Strawberry (RH)

    Strawberry (T)

    Fig.   1.  Scatter  plots  and  linear  regression   lines  showing  the  relationship  between

    subjective  color  (1 = very  poor;  5 = excellent)   and  L*  value  for  avocado  and  cluster

    tomato   and  the  relationship  between  subjective  color  and  hue  angle  for  avocado,

    pepper  and  strawberry  stored   at  different  temperature  and  RH  regimes.  RH =

    relative  humidity;  T  =  temperature.

    1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0

       T  o

       t  a   l  a  n

       t   h  o  c  y  a  n

       i  n  s

       (  g   k  g

      -   1   )

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Strawberry (RH)

    Strawberry (T)

    Blueberry (RH)

    Color rating (1-5)

    1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0

       T  o

       t  a   l  a  s  c  o

      r   b   i  c  a  c

       i   d   (  g   k  g

      -   1   )

    0

    2

    4

    6

    8

    10

    12

    14

    Strawberry (RH)

    Strawberry (T)

    Pepper (RH)

    Fig.   2.  Scatter  plots  and  linear  regression   lines  showing  the  relationship  between

    subjective  color  (1 = very  poor;  5 = excellent)   and  total  anthocyanins  content  for

    strawberry   and  blueberry  and  the  relatioship  between  subjective  color  and  total

    ascorbic acid  content  for  strawberry and pepper  stored   at different  temperature and

    RH 

    regimes. 

    RH 

    relative 

    humidity; 

    T  

    temperature.

    M.C.N.  Nunes  /  Postharvest   Biology  and  Technology   107   (2015)  43–54  49

  • 8/18/2019 Do Nascimento, 2015

    8/12

    showed   that   in  snap  beans  there  was  a  signicant  correlation

    between  visual  color  scores  and  chlorophyll   content,   that  is,

    chlorophyll   content  decreased  as  the  color  turned  from  bright

    green  to  yellowish-green.   In  avocado,  the  reason  for  the  weak

    relationship  between  visual  color  and  chlorophyll   content  might

    be  related  to  the  fact   that   color  ratings   were  based  on  the  color  of 

    the  avocado  skin whereas  chlorophyll   content  was measured  in  the

    pulp  of   the  fruit.

    Ascorbic  acid   content  was  signicantly   correlated  with  color

    ratings   particularly  for  pepper  and  strawberry   (Table  8; Fig.  2).

    Therefore,  as  color  ratings  decreased,  ascorbic  acid  content   also

    decreased.  After  harvest,   decline  in  ascorbic  acid  content   of   FFVs

    usually  occurs  rapidly  and  it  normally   parallels  the  increase   in

    water  loss,  particularly  when   FFVs  are  exposed  to  adverse

    environmental   conditions.  Excessive   loss  of   water  causes  tissue

    damage   and  results  in  deterioration  of   the  overall  quality;  with   cell

    wall  disruption  promoting   the  release  of   ascorbate  oxidase  and

    subsequent  oxidation  of   ascorbic  acid  (Proulx  et  al.,  2010).

     3.2.  Correlation  between  subjective  shriveling   and  weight   loss

    For  avocado,   blueberry,   pepper  and  strawberry,   shriveling   was

    negatively   correlated  with   weight   loss  whereas   in  tomato  weight

    loss  was  negatively   correlated  with  shriveling   and  particularly

    with   stem  freshness,  regardless  of   the  storage   conditions   (Table  9;

    Figs.  3  and  4). Therefore,  as  ratings   for  shriveling   or  stem  freshness

    decreased  weight   loss  signicantly   increased.  Nunes   and  Emond

    (2007)   evaluated   several  fruits  and  vegetables   and  also  found  a

    highly   signicant  correlation  between  weight  loss  and  subjective

    color,  rmness  and  shriveling/wilting.   Thus,  as  weight   loss

    increased  during  storage,   rmness  decreased,  and  wilting,

    shriveling   or  browning   increased.  Lownds  et  al.  (1994)  also

    reported  that  accidity   in  peppers  appeared  to  be  directly

    associated  with   water  loss  whereas   color  ratings   paralleled

    differences  in  water loss  rates   suggesting  a  direct  relationship

    between  these  variables.

     3.3. 

    Correlation 

    between 

    subjective 

     rmness 

    and 

    instrumental 

    texture

    Subjective  rmness  was  signicantly   correlated  with   instru-

    mental   texture,   regardless of   the  fruit  and  the  storage   regimes used

    (Table  9;  Fig.  5).  As  subjective  rmness  ratings  decreased,  values

    for  quantitative   texture   also  decreased.  In  a  previous  study,  a

    signicant  correlation  was  found  between  banana   subjective

    rmness  (1–5  rating   scale)  and  analytical   texture,   suggesting  that

    rmness  on  touch   can  be  used  to  estimate  softening  (Nunes   et  al.,

    2013).  White   et  al.  (2005)  produced  softening  curves  for  avocado

    based  on  hand  rmness  scores   versus  quantitative   texture

     Table  9

    Pearson  correlation  coef cient  (r ),  coef cient  of   determination  (r 2),  linear  regression  equation,  and  signicance  of   the  relationship  ( p)  between

    subjective  shriveling  or  steam  freshness   and  weight  loss  and  between  subjective  rmness  and  instrumental  texture  for  avocado,  blueberry,  pepper,

    strawberry  and  tomato   stored   at  different  temperature  or  humidity  regimes.

    Commodity  (treatment)  Shriveling/stem  freshnessavs   weight  loss  (%)  Firmness  vs   texture  (N )

    Avocado  (RH)  r  = 0.938  r  = 0.725

    r 2= 0.880  r 2= 0.523

     y= 3.807 x + 21.751   y = 28.002 x  48.454

     p 

  • 8/18/2019 Do Nascimento, 2015

    9/12

    measured  with  a  penetrometer.   The  curves   showed   that  as  hand

    rmness  decreases  from  very  hard  (rating   of   0)  to  very  soft  (rating

    of   7)  the  force  required  to  puncture  the  fruit  also  decreased.

     3.4.  Data   tting 

    A  linear  regression  model  was  applied  to  all  datasets,  and  thus

    the  following  equation  was  used  to  summarize  the  relationship

    between variables:  [ y =  ax +  b]; where   y = quantitative   attribute  and

     x =  subjective   quality  attribute  score  (1–5)  (Tables  8  and  9). Graphic

    representations were   shown only  for  those  relationships  in which   r 

    or  r 2 0.6  and   p 

  • 8/18/2019 Do Nascimento, 2015

    10/12

    Fig.   6.  Color  chart  for  strawberry  showing  photographs  of   visual  quality  deterioration  with  subjective  quality  ratings  (1 = very  poor;  3 = acceptable;  5 = excellent)   and

    correspondent  descriptors.

    52  M.C.N.  Nunes  /  Postharvest   Biology  and  Technology  107   (2015)  43–54

  • 8/18/2019 Do Nascimento, 2015

    11/12

    http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0135http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0135http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0135http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0130http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0130http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0130http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0125http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0125http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0125http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0120http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0120http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0120http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0115http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0115http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0115http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0110http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0110http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0110http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0105http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0105http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0100http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0100http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0100http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0095http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0095http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0090http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0090http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0085http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0085http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0085http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0085http://ucce.ucdavis.edu/files/datastore/234-49.pdfhttp://ucce.ucdavis.edu/files/datastore/234-49.pdfhttp://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0075http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0075http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0075http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0070http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0070http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0065http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0065http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0060http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0060http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0060http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0055http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0055http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0055http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0050http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0050http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0050http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0040http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0040http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0040http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0035http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0035http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0035http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0030http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0030http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0030http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0030http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0025http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0025http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0025http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0025http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0020http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0015http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0015http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0015http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0010http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0010http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0010http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0005http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0005http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0005http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0005

  • 8/18/2019 Do Nascimento, 2015

    12/12

    Nunes,   M.C.N.,  Delgado,  A.,  Emond,    J.P.,  2012.  Quality  curves  for  green  bell  pepper(Capsicum  annum  L.)  stored   at  low  and  recommended  relative  humidity  levels.Acta  Hort.  945,  71–78.

    Nunes,   M.C.N.,  Yagiz,   Y.,  Emond,  J.P.,  2013.  Inuence  of   environmental  conditions  onthe  quality  attributes  and  shelf   life   of   ‘Goldnger’  bananas.  Postharvest  Biol.Technol.   86,  309–320.

    Nunes,   M.C.N.,  2008.  Color  Atlas  of   Postharvest  Quality  of   Fruits  and  Vegetables.Blackwell  Publishing,  Iowa,   USA.

    Pace, 

    B., 

    Cefola, 

    M., Renna, 

    F., 

    Attolico, 

    G., 

    2011. 

    Relationship 

    between 

    visualappearance  and  browning  as  evaluated  by  image   analysis  and  chemical  traits  infresh-cut  nectarines.  Postharvest  Biol.  Technol.   61,  178–183.

    Pelletier, 

    W., 

    Brecht, 

     J.K., 

    Nunes, 

    M.C.N., 

    Emond, 

     J.P., 

    2011. 

    Quality 

    of  

    strawberriesshipped  by  truck  from  California  to  Florida  as   inuenced  by  postharvesttemperature

     

    management 

    practices. 

    HortTechnology 

    21 

    (4), 

    482–493.Perkins-Veazie,  P.,  2014. Blueberry.   In:  Gross,  K.C.,  Wang,   C.Y.,  Saltveit, M.  (Eds.),  The

    Commercial  Storage   of   Fruits,  Vegetables,  and  Florist  and  Nursery  Stocks.Agriculture   Handbook  66.   USDA-ARS  http://www.ba.ars.usda.gov/hb66/blueberry.pdf   (accessed  01.29.15.).

    Proulx, 

    E., 

    Nunes, 

    M.C.N., 

    Emond, 

     J.P., 

    Brecht, 

     J.K., 

    2005. 

    Quality 

    attributes 

    limitingpapaya  postharvest  life  at  chilling  and  non-chilling  temperatures.  Proc.  Fla.State  Hort.  Soc.  118,  389–395.

    Proulx,  E.,  Yagiz,   Y., Nunes, M.C.N.,  Emond,  J.P.,  2010.  Quality attributes  limiting  snapbean  (Phaseolus  vulgaris  L.)  postharvest  life  at  chilling  and  non-chillingtemperatures.  HortScience  45,  1238–1249.

    Ressureccion,  A.V.A.,  Shewfelt,  R.L., 1985.   Relationships  between  sensory  attributesand  objective  measurements  of   postharvest  quality  of   tomatoes.  J.  Food   Sci.  50,1242–1245.

    Safner,  R.,  Polashock,  J.,  Ehlenfeldt,  M.,  Vinyard,   B.,  2008.  Instrumental  and  sensoryquality  characteristics  of   blueberry  fruit  from  twelve  cultivars.  Postharvest Biol.Technol.   49,   19–26.

    Sanford,  K.A.,  Lidster,   P.D.,  McRae,  K.B.,   Jackson,  E.D.,  Lawrence,  R.A.,  Stark,  R.,Prange,  R.K.,  1991.  Lowbush  blueberry  quality  changes  in  response  tomechanical

     

    damage 

    and 

    storage 

    temperature. 

     J. 

    Am. Soc. 

    Hort. 

    Sci. 

    116, 

    47–51.Sargent,  S.A.,  Moretti,  C.L.,  2014.  Tomato.   In:  Gross,   K.C.,  Wang,  C.Y.,  Saltveit,  M.

    (Eds.),  The  Commercial  Storage  of   Fruits,  Vegetables,  and  Florist  and  Nursery

    Stocks. 

    Agriculture 

    Handbook 

    66. 

    USDA-ARS 

    http://www.ba.ars.usda.gov/hb66/tomato.pdf   (accessed  01.29.15.).

    Whitaker, 

    V.M., 

    Chandler, 

    C.K., 

    Santos, 

    B.M., 

    Peres, 

    N., 

    Nunes, 

    M.C.N., 

    Plotto, 

    A., 

    Sims,C.A.,   2012.   Florida  MedallionTM (‘FL   05-1070)  Strawberry.   HortScience  47,296–298.

    White, A., Woolf,  A.,  Ofman,  P., Arpaia, M.L., 2005. The  International Avocado QualityManual,  HortResearch,  The  Horticultural  and  Food  Research  Institute  of   NewZealand

     

    Limited. 

    Auckland, 

    New 

    Zealand.Woolf,  A.B.,  White,  A.,  Arpaia,  M.L.,  Gross,   K.C.,  2014.  Avocado.  In:  Gross,   K.C.,  Wang,

    C.Y.,  Saltveit, M.  (Eds.),  The  Commercial  Storage   of   Fruits, Vegetables,  and  Floristand  Nursery  Stocks.  Agriculture  Handbook  66.   USDA-ARS  http://www.ba.ars.usda.gov/hb66/avocado.pdf   (accessed  01.29.15.).

    54  M.C.N.  Nunes  /  Postharvest   Biology  and  Technology  107   (2015)  43–54

    http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0140http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0145http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0150http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0155http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0160http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0165http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0170http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0175http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S0925-5214(15)30011-9/sbref0180http://refhub.elsevier.com/S