199
UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE ZOOLOGIA Estrutura de taxocenoses de lagartos em áreas de Cerrado e de Savanas Amazônicas do Brasil Daniel Oliveira Mesquita Brasília-DF 2005

Estrutura de taxocenoses de lagartos em áreas de Cerrado e de

Embed Size (px)

Citation preview

UNIVERSIDADE DE BRASÍLIA

INSTITUTO DE CIÊNCIAS BIOLÓGICAS

DEPARTAMENTO DE ZOOLOGIA

Estrutura de taxocenoses de lagartos em áreas de Cerrado e de

Savanas Amazônicas do Brasil

Daniel Oliveira Mesquita

Brasília-DF

2005

Universidade de Brasília

Instituto de Ciências Biológicas

Departamento de Zoologia

Estrutura de taxocenoses de lagartos em áreas de Cerrado e de

Savanas Amazônicas do Brasil

Orientador: Guarino Rinaldi Colli, Ph. D.

Tese apresentada ao Instituto de Ciências Biológicas

da Universidade de Brasília como parte dos

requisitos necessários para a obtenção do Título de

Doutor em Biologia Animal

Brasília-DF

2005

Trabalho realizado com o apoio financeiro da Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior (CAPES), como parte dos requisitos para a obtenção do título de Doutor

em Biologia Animal pelo Programa de Pós-graduação em Biologia Animal da Universidade

de Brasília.

APROVADO POR:

Prof. Ph. D. Guarino Rinaldi Colli

(Orientador)

Prof. Dr. Marcio Roberto Costa Martins

(Membro da Banca Examinadora)

Prof. Dr. Marcos Di-Bernardo

(Membro da Banca Examinadora)

Prof. Ph. D. Miguel Ângelo Marini

(Membro da Banca Examinadora)

Prof. Dr. Raimundo Paulo Barros Henriques

(Membro da Banca Examinadora)

Agradecimentos

Aos meus pais, tios e avós por todo apoio e incentivo.

Ao meu orientador Guarino Rinaldi Colli pelo apoio e pela oportunidade dada para a

realização deste trabalho.

A todos os meus colegas de sala Helga, Ayrton, Mariana Zatz, Gabriel, Alison,

Mariana Mira, Fred, Vívian, Reuber, Fernanda, Lilia, Maria Adelaida, Chuck, Verônica,

Paula, Gustavo, Adrian, Leonora e Ruscaia que muito contribuíram para a realização deste

trabalho.

A todos meus colegas de Norman, principalmente Adrian Garda e Don Shepard, que

fizeram de minha passagem pelos EUA algo bastante prazeroso.

Aos Profs. Laurie Vitt e Janalee Caldwell, por terem me aceitado no doutorado

sanduíche e muito contribuído para o resultado final da tese.

Às pessoas que participaram das coletas: Ajax, Fred, Cris, Gabriel, Adrian,

Alexandra, Alison, Ayrton, Joana, Laurie Vitt, Janalee Caldwell, Don Shepard, Guarino,

Kátia e Santos.

Ao Prof. Alexandre F. Bamberg de Araújo, pelas conversas e pelo incentivo.

Aos Professores Miguel Marini e Laurie Vitt, pela participação na defesa de

qualificação.

Aos Professores Miguel Marini, Marcio Martins, Marcos Di-Bernardo, Raimundo

Henriques pela participação da banca examinadora.

Aos Professores Vera Lúcia e Fernando Bauab pela atenção prestada.

À Alexandra pela paciência que teve comigo nessa correria.

Aos colegas Eddie, Girlene, Renato, José Roberto, Tati, Marcos, Darse, Darse Jr.,

Catarina, Milton, Olímpia, Socorro, Dora, Léo, Dailton (in memorian), Dí, Bonito (in

memorian), Renê, Renata, Raíssa, Sandra, Marcelo, Blue, André, Eduardo, Evandro entre

outros.

A todos os colegas da UnB.

À CAPES pela bolsa Sanduíche e de doutorado.

À FINATEC, PROBIO-MMA (“Estrutura e Dinâmica da Biota de Isolados Naturais e

Antrópicos do Cerrado”, “Paisagens e Biodiversidade: Uma Perspectiva Integrada Para

Inventário e Conservação da Serra do Cachimbo” e “Inventário da Biodiversidade do Vale e

Serra do Rio Paranã e do Sul do Tocantins”), National Geografic Society (4994-3),

Conservation International (“Proposta de Levantamento da Herpetofauna da Micro Região do

Jalapão” e “Subsídios à Conservação da Biodiversidade na Bacia do Rio Paranã”), PIE-CNPq

(“Biogeografia e Diversidade Faunística das Savanas Amazônicas”), MacArthur Foundation

(“Faunistic Survey of Brazilian Amazonia”), WWF - Fundo Mundial para Natureza (9579-

009, SR 022-94), Fundação O Boticário de Proteção à Natureza (“Herpetofauna das Savanas

Amazônicas: Subsídios Para sua Preservação”) e ao Programa de Pós-Graduação em Biologia

Animal, pelo apoio financeiro.

VITAE

PRODUÇÃO BIBLIOGRÁFICA Artigos completos publicados em periódicos * 1 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; VITT, Laurie Joseph. Ecological release in lizard assemblages of Neotropical savannas. Oikos, v. 00, n. 00, p. 00-00, submetido. * 2 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; FRANÇA, Frederico Gustavo Rodrigues; VITT, Laurie Joseph. Ecology of a Cerrado lizard assemblage in the Jalapão region of Brazil. Copeia, v. 00, n. 00, p. 00-00, submetido. * 3 VITT, Laurie Joseph; CALDWELL, Janalee Paige; COLLI, Guarino Rinaldi; MESQUITA, Daniel Oliveira; GARDA, Adrian Antônio; FRANÇA, Frederico Gustavo Rodrigues. Variation in habitat structure on small geographic scales affects structure of Cerrado lizard assemblages. Journal of Tropical Ecology, v. 00, n. 00, p. 00-00, submetido. * 4 MESQUITA, Daniel Oliveira; COSTA, Gabriel Corrêa; ZATZ, Mariana Gonzaga. Ecological aspects of the casque-headed frog Aparasphenodon brunoi (Anura, Hylidae) in a restinga habitat in southeastern Brazil. Phyllomedusa, v. 3, n. 1, p. 51-60, 2004. * 5 COLLI, Guarino Rinaldi; COSTA, Gabriel Correa; GARDA, Adrian Antônio; MESQUITA, Daniel Oliveira; KOPP, Kátia; PÉRES JR, Ayrton Klier; VALDUJO, Paula Hanna; VIEIRA, Gustavo Henrique C; WIEDERHECKER, Helga Correa. A critically endangered new species of Cnemidophorus (Squamata, Teiidae) from Cerrado enclave in southwestern Amazonia, Brazil. Herpetologica, v. 59, n. 1, p. 76-88, 2003. * 6 COLLI, G R; CALDWELL, J P; COSTA, G C; GAINSBURY, A M; GARDA, A A; MESQUITA, Daniel Oliveira; R FILHO, C M M; SOARES, A H B; SILVA, V N; VALDUJO, P H; VIEIRA, G H C; VITT, L J; WERNECK, F P; WIEDERHECKER, H C; ZATZ, M G. A new species of Cnemidophorus (Squamata, Teiidae) from the Cerrado biome in central Brazil. Occasional Papers Of The Oklahoma Museum Of Natural History, v. 14, p. 1-14, 2003. * 7 MESQUITA, Daniel Oliveira; BRITES, V L C. Aspectos taxonômicos e ecológicos da população de Bothrops alternatus DUMÉRIL, BIBRON & DUMÉRIL, 1854 (Serpentes, Viperidae) das regiões do Triângulo e Alto Paranaíba, Minas Gerais. Biologia Geral e Experimental, v. 3, n. 2, p. 33-38, 2003. * 8 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi. Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia, v. 2003, n. 2, p. 285-298, 2003. * 9 MESQUITA, Daniel Oliveira; WIEDERHECKER, H C. Influência da massa corporal e da temperatura no deslocamento e na vocalização de três espécies de anuros do Cerrado. Biologia Geral e Experimental, v. 3, n. 2, p. 21-24, 2003. * 10 MESQUITA, Daniel Oliveira; COLLI, G R. The ecology of Cnemidophorus ocellifer (Squamata, Teiidae) in a neotropical savanna. Journal of Herpetology, v. 37, n. 3, p. 498-509, 2003. * 11 COLLI, G R; MESQUITA, Daniel Oliveira; RODRIGUES, P V V; KITAYAMA, K. The ecology of the gecko Gymnodactylus geckoides amarali in a neotropical savanna. Journal of Herpetology, v. 37, n. 4, p. 694-706, 2003. * 12 VITT, Laurie Joseph; CALDWELL, Janalee Paige; COLLI, Guarino Rinaldi; GARDA, Adrian Antônio; MESQUITA, Daniel Oliveira; FRANÇA, Frederico Gustavo Rodrigues; BALBINO, Santos Fernandes. Um guia fotográfico dos répteis e anfíbios da região do Jalapão no Cerrado brasileiro. Norman, Oklahoma: Special Publications in Herpetology. San Noble Oklahoma Museum of Natural History, 2002. (Guia Fotográfico). * 13 MESQUITA, Daniel Oliveira; BRITES, Vera Lucia de Campos. Estudio de las marcas naturales de

Bothrops alternatus Duméril, Bibron & Duméril, 1854 (Serpentes, Crotalinae). Acta Zoologica Lilloana, v. 46, n. 1, p. 138-140, 2002. 14 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; PÉRES JR, Ayrton Klier; VIEIRA, Gustavo H C. Mabuya guaporicola. Natural History. Herpethological Review, v. 31, n. 4, p. 240-241, 2000. 15 VIEIRA, Gustavo H C; MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; PÉRES JR, Ayrton Klier. Micrablepharus atticolus. Natural history. Herpethological Review, v. 31, n. 4, p. 241-242, 2000. Artigos resumidos publicados em periódicos * 1 COSTA, Gabriel Corrêa; MESQUITA, Daniel Oliveira; FRANÇA, Frederico Gustavo Rodrigues. Crocodilurus amazonicus (Jacarerana). Diet. Herpetological Review, v. 00, n. 00, p. 00-00, no prelo. * 2 FRANÇA, Frederico Gustavo Rodrigues; MESQUITA, Daniel Oliveira; GARDA, Adrian Antônio. Phalotris labiomaculatus. (falsa coral). Geographic Distribution. Herpetological Review, v. 36, n. 1, p. 00-00, no prelo. 3 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi. Aspectos da ecologia de Gymnodactylus geckoides de um Cerrado no Brasil central. Publicação Extra do Museo Nacional, Montevideo-Uruguay, v. 50, p. 85-85, 1999. 4 MESQUITA, Daniel Oliveira; BRITES, Vera Lucia de Campos. Aspectos ecológicos da população de Bothrops alternatus (Serpentes, Crotalinae) da Zona Geográfica do Triângulo e Alto Paranaíba-MG. Publicação Extra do Museo Nacional, Montevideo-Uruguay, v. 50, p. 84-84, 1999. 5 MESQUITA, Daniel Oliveira; BRITES, Vera Lucia de Campos. Folidose, biometria e cromatismo da população de Bothrops alternatus (Serpentes, Crotalinae) da Zona Geográfica do Triângulo e Alto Paranaíba-MG. Publicação Extra do Museu Nacional de Historia Natural, Montevideo-Uruguay, v. 50, p. 84-84, 1999. * Trabalhos publicados durante o doutorado.

There are places I’ll remember

All my life though some have changed

Some forever not for better

Some have gone and some remain

All these places have their moments

With lovers and friends I still can recall

Some are dead and some are living

In my life I’ve loved them all

Lennon/McCartney

ÍNDICE

Introdução ....................................................................................................................................1

Materiais e métodos .....................................................................................................................5

Capítulo 1.....................................................................................................................................10

Capítulo 2.....................................................................................................................................12

Capítulo 3.....................................................................................................................................14

Capítulo 4.....................................................................................................................................16

Discussão .....................................................................................................................................18

Referências bibliográficas............................................................................................................21

Apêndice 1 ...................................................................................................................................27

Apêndice 2 ...................................................................................................................................76

Apêndice 3 ...................................................................................................................................117

Apêndice 4 ...................................................................................................................................151

1

INTRODUÇÃO

As comunidades são usualmente definidas como associações entre populações que

coexistem em determinado local. Por uma questão metodológica, um grupo de espécies

filogeneticamente relacionadas que coexistem em determinada área geográfica é chamado de

taxocenose (“assemblage”) (Ricklefs e Miller, 1999). A estrutura das taxocenoses é resultante da

área geográfica onde as populações ocorrem, das suas interações, padrões do uso de recursos e

relações evolutivas (Ricklefs e Miller, 1999). Há poucos anos, ecólogos acreditavam que fatores

locais (ecológicos) eram os principais determinantes da estrutura das taxocenoses (Dunham,

1983). Hoje em dia, fatores históricos têm recebido especial atenção em estudos sobre estrutura

das taxocenoses e se considera que, se as informações históricas forem ignoradas, pode-se chegar

a conclusões totalmente equivocadas sobre os determinantes da estrutura de uma taxocenose

(Losos, 1996).

Em uma taxocenose, divergências em algum aspecto ecológico (por exemplo, no uso de

microhábitat) entre espécies filogeneticamente aparentadas, indicam a prevalência de fatores

ecológicos sobre fatores históricos. Por outro lado, a ausência de divergências ecológicas entre

espécies próximas indica a prevalência de fatores históricos (Brooks e McLennan, 1991; Brooks

e Mclennan, 1993). Da mesma forma, padrões similares na estrutura de diferentes taxocenoses

sugerem que fatores históricos são predominantes, enquanto que a variação destes padrões entre

taxocenoses de ambientes similares indicam a prevalência de fatores ecológicos (Brooks e

McLennan, 1991; Cadle e Greene, 1993). Entretanto, deve ser tomado um cuidado especial com

o real parentesco de espécies-irmãs em uma taxocenose. Por mais próximas que pareçam ser, ao

2

se considerar a topologia que une as espécies de uma taxocenose, elas podem ser de linhagens

distintas quando se considera a filogenia do gênero (Losos, 1996).

A ausência de espécies que se alimentam de invertebrados em uma taxocenose de

serpentes na Caatinga foi considerada como resultado da competição com mamíferos insetívoros

(Vitt e Vangilder, 1983). Posteriormente, Cadle e Greene (1993), analisando dados de tamanho

do corpo, hábitat, horário de atividade e dieta de 21 taxocenoses de serpentes neotropicais,

chegaram a conclusões diferentes por verificar que as principais linhagens de serpentes que se

alimentam de invertebrados se concentram na América Central e do Norte. Assim, a ausência de

serpentes que se alimentam de invertebrados na Caatinga se deve à ausência de membros de

certas linhagens (fator histórico) e não à presença de competidores (fator ecológico).

Na ilha de Grand Cayman, na América Central, onde existia previamente Anolis

conspersus, foi introduzida A. sagrei. Comparações do uso de microhábitat antes da introdução

de A. sagrei indicaram que, em locais com vegetação aberta onde A. sagrei é abundante agora, A.

conspersus utiliza poleiros mais altos, e em áreas com vegetação fechada, onde A. sagrei não

ocorre, não foi detectada nenhuma diferença evidente na altura do poleiro utilizado (Losos et al.,

1993). Estes resultados indicam a importância das relações interespecíficas (fator ecológico),

mostrando que as mesmas podem ser importantes na estruturação das taxocenoses.

Vários trabalhos sobre taxocenoses de lagartos foram realizados recentemente na Região

Neotropical. Em uma restinga, no estado do Rio de Janeiro, foi estudada uma taxocenose de

lagartos através de dados morfométricos, de dieta e de microhábitat, sendo que a estruturação da

taxocenose através dos dados morfométricos mostrou uma separação de dois grupos dentro da

assembléia: um de espécies bromelícolas e outro de “corredoras de areia” (Araújo, 1991). Na

Caatinga, Vitt (1995) descreveu a taxocenose de lagartos utilizando dados de horário de

3

atividade, temperatura corporal, hábitat, microhábitat e padrões de utilização de recursos (dieta),

e concluiu que a filogenia tem um papel de maior importância na estruturação da taxocenose do

que as interações entre as espécies. Vitt e Carvalho (1998a) realizaram um trabalho semelhante

em uma floresta de transição na Amazônia, encontrando evidências da maior influência de

fatores históricos, principalmente na utilização de microhábitats. No Cerrado, foi estudada uma

taxocenose de lagartos na região de Alto Araguaia, estado do Mato Grosso, com apenas nove

espécies, sendo encontrada uma divergência no uso de microhábitat entre tropidurídeos e

policrotídeos, e sobreposição entre teiídeos e gymnoftalmídeos, mas a diferença de tamanho

entre os dois últimos taxóns promoveu divergência na dieta (Vitt, 1991). Araújo (1992) realizou

um estudo de estrutura morfométrica em três taxocenoses de lagartos no Cerrado e duas de

Restingas do sudeste brasileiro, tendo encontrado uma forte relação entre as interações

ecológicas entre espécies e seus atributos morfológicos, mostrando a importância da estrutura

morfométrica como instrumento para estudos de estrutura de taxocenoses de lagartos. Em uma

taxocenose de lagartos de Savana Amazônica, em Roraima, foram encontradas apenas oito

espécies, separadas em três guildas alimentares: herbívoros, forrageadores ativos e forrageadores

“senta e espera”, sendo que o principal determinante destas guildas não foi a composição da

dieta, mas a forma de aquisição das presas (Vitt e Carvalho, 1995). Entretanto, nos trabalhos

realizados no Cerrado e Savanas Amazônicas, os autores não levaram em conta a influência de

fatores históricos.

Uma explicação para a formação das Savanas Amazônicas é a “Hipótese dos Refúgios

Pleistocênicos” e um dos seus princípios básicos é que, durante períodos glaciais de precipitação

reduzida, grandes extensões da Amazônia foram cobertas por savanas, restringindo a floresta a

manchas isoladas (Ab'Sáber, 1982; Bigarella e Andrade-Lima, 1982; Eden, 1974; Huber, 1982),

4

sendo assim, as Savanas Amazônicas representariam resquícios de uma extensa savana que se

estendeu do Brasil central até as Guianas (Prance, 1978). Atualmente, as Savanas Amazônicas

ocorrem como ilhas dispersas no interior das áreas florestais da Amazônia e cobrem cerca de

150.000 Km2, cerca de 2% do território brasileiro (Pires, 1973). Eiten (1978) observou que

muitas espécies vegetais típicas do Cerrado são dominantes nas Savanas Amazônicas, porém

estas sempre apresentam baixa diversidade e endemismo. As taxocenoses de lagartos também

apresentam baixa diversidade, porém com uma grande quantidade de endêmicos ou espécies que,

na Amazônia, só ocorrem nestas áreas abertas (Ávila-Pires, 1995; Colli, 1996; Vitt e Carvalho,

1995).

Usualmente, ilhas apresentam uma diversidade menor quando comparadas com áreas

contínuas, mas geralmente suas espécies ocorrem em maiores densidades que em áreas

contínuas. Este fenômeno foi inicialmente descrito para taxocenoses de aves e chamado de

compensação da densidade (“density compensation”) (Crowell, 1962; Pianka, 1994; Ricklefs e

Miller, 1999). Nestas condições, as espécies das ilhas podem expandir seu hábitat, ocupando

hábitats normalmente ocupados por outras espécies. Este fenômeno também foi descrito

inicialmente para taxocenoses de aves e foi chamado de expansão de nicho (“niche expansion”)

(MacArthur et al., 1972; Pianka, 1994; Ricklefs e Miller, 1999). Estes dois fenômenos são

conjuntamente referidos como “liberação ecológica” (“ecological release”) (Pianka, 1994;

Ricklefs e Miller, 1999) e também já foram relatados em taxocenoses de anfíbios e répteis.

Rodda e Dean-Bradley (2002) encontraram fortes evidências de que anfíbios e répteis

(principalmente lagartos) apresentam uma maior densidade e biomassa em ilhas menores do que

em ilhas maiores e em áreas contínuas. Por outro lado, um estudo correlacionando o tamanho de

ilhas com a densidade de populações animais mostrou uma correlação positiva, sugerindo que a

5

compensação da densidade pode ser pouco comum (Connor et al., 2000). De acordo com a

hipótese de "liberação ecológica", espera-se que várias dimensões do nicho, do corpo,

microhábitat, dieta e a abundância, sejam maiores em espécies de Savanas Amazônicas quando

comparadas com espécies próximas do Cerrado.

Os objetivos deste trabalho são (1) comparar as taxocenoses de lagartos de Cerrado e

Savanas Amazônicas, para testar a hipótese de "liberação ecológica", levando-se em conta a

importância de fatores locais (ecológicos) e regionais (históricos) na estruturação dessas

taxocenoses; descrever as taxocenoses de lagartos das regiões do Cerrado no Jalapão (2) e da

Savana Amazônica em Monte Alegre (3), através da combinação de dados ecológicos e

morfológicos com a filogenia das espécies, com o objetivo de examinar a influência da história

na estrutura da mesma; e (4) determinar a relação entre a composição, diversidade de espécies

(abundância relativa) e estrutura de taxocenoses com a estrutura do hábitat em duas áreas

facilmente distinguíveis e quase contíguas na região do Jalapão.

MATERIAIS E MÉTODOS

Foram utilizados animais coletados em cinco áreas contínuas do Cerrado (GOIÁS:

Alvorada do Norte e São Domingos; TOCANTINS: Mateiros, Paranã e Dianópolis), cinco isolados

periféricos do Cerrado (RONDÔNIA: Vilhena, Pimenta Bueno e Guajará-Mirim; PARÁ: Novo

Progresso e Carajás) e cinco Savanas Amazônicas (PARÁ: Alter do Chão e Monte Alegre;

AMAZONAS: Humaitá; RORAIMA: Boa Vista; AMAPÁ: Amapá). Os animais das áreas de Cerrado

(solados e não isolados) foram coletados pelo autor da dissertação, seu orientador, o Dr. Guarino

R. Colli e a equipe do Laboratório de Herpetologia da Universidade de Brasília. Os animais

6

coletados nas áreas de Savanas Amazônicas (exceto em Monte Alegre, que foram coletados pelo

autor) foram coletados pelo Dr. Guarino R. Colli (Orientador), durante seu doutorado. Todos os

espécimes coletados estão depositados na Coleção Herpetológica da Universidade de Brasília

(CHUNB). A diferença entre Savanas Amazônicas e isolados periféricos do Cerrado foi proposta

por Eiten (1978), sendo baseada principalmente em similaridade de espécies vegetais.

Usualmente, as Savanas Amazônicas são mais pobres, quando comparadas com todos os tipos de

áreas de Cerrado (isolados e não isolados) (Eiten, 1972; Eiten, 1978). Aqui, todos os enclaves

estão sendo considerados como ilhas, para se testar a hipótese de “liberação ecológica”.

A amostragem foi feita com armadilhas de interceptação e queda, sendo 25 conjuntos em

cada área, consistindo de 4 baldes dispostos em 3 linhas de 5 m, formando ângulos de 120º a

partir de um mesmo ponto central e ligados por uma lona plástica fixada com grampos em

estacas de madeira. Também foram realizadas coletas manuais com o auxílio de uma espingarda

calibre 36. No momento da coleta foram anotados dados referentes a horário de atividade,

temperatura corporal e microhábitat.

A largura do nicho (microhábitat) foi calculada através do inverso do índice de

diversidade de Simpson (Simpson, 1949) e, para examinar a sobreposição de microhábitats foi

utilizada a equação de sobreposição de nicho, segundo Pianka (1973).

Através de um paquímetro digital foram obtidas medidas de comprimento rostro-anal,

altura e largura do corpo, comprimento, altura e largura da cabeça, e comprimento dos membros

anterior e posterior. Posteriormente, os estômagos dos animais foram removidos e seus

conteúdos analisados através de uma lupa, sendo as presas identificadas até ordem e, quando

possível, categorias inferiores. Quando as presas estavam inteiras, seu comprimento e largura

foram medidos com um paquímetro digital e seu volume estimado pela fórmula do volume de

7

um elipsóide. Também foi calculada a largura de nicho e a sobreposição da dieta entre as

espécies utilizando-se os mesmos procedimentos descritos anteriormente para o microhábitat.

Foram feitas comparações entre taxocenoses. Quando uma espécie, ou espécies próximas,

ocorreram em taxocenoses de biomas diferentes, elas tiveram aspectos da sua ecologia, como

largura do nicho de microhábitat e dieta, comparados. Nestas comparações, as diferenças entre

Cerrado e Savanas Amazônicas foram utilizadas como modelo para se testar a hipótese de

"liberação ecológica". Esta hipótese prediz que em ilhas (Savanas Amazônicas e isolados de

Cerrado), onde a diversidade é menor, as espécies tendem a expandir seu hábitat e ocorrer em

maior abundância, devido ao espaço vago que em áreas contínuas (Cerrado) estaria ocupado por

outras espécies. Portanto, espera-se que estes parâmetros ecológicos sejam maiores nas espécies

de isolados que nas espécies de Cerrado. Para comparar as comunidades através das variáveis

morfométricas, foram utilizadas as distâncias Euclidianas das variáveis transformadas para

logaritmo (para satisfazer as premissas de normalidade). Para cada taxocenose, foi calculada a

média da distância do vizinho mais próximo e estas foram comparadas. Baseando na hipótese de

"liberação ecológica", espera-se que em ilhas (Savanas Amazônicas e isolados do Cerrado), a

média das distâncias ao vizinho mais próximo seja maior que em áreas contínuas (Cerrado).

Nestas comparações, foi levada em conta a influência de fatores históricos nos padrões

encontrados. Quando as variações do meio influenciam fortemente as espécies mais aparentadas,

modificando os padrões de coexistência, espera-se que fatores locais sejam mais importantes

para a explicação dos padrões encontrados. Se as espécies aparentadas não apresentarem

divergência na ecologia, espera-se que sua ecologia seja bastante conservativa e independente de

fatores externos, sendo assim, fatores históricos seriam mais importantes para a manutenção do

8

padrão em questão (Brooks e McLennan, 1991; Brooks e Mclennan, 1993; Losos, 1994; Losos,

1996). Estes tópicos fazem parte do primeiro capítulo da dissertação.

Ainda, os dados de microhábitat, horário de atividade, temperatura corporal, tamanho do

corpo, e largura do nicho (microhábitat e dieta), foram mapeados em uma árvore filogenética das

espécies que compõem a taxocenose para realizar comparações entre as espécies. Quando

ocorrem divergências entre aspectos ecológicos e as espécies não são próximas

filogeneticamente, temos o indício da prevalência de fatores históricos sobre fatores locais e,

quando as espécies são próximas, espera-se que fatores locais sejam mais importantes para a

relação em questão (Brooks e McLennan, 1991; Cadle e Greene, 1993; Brooks e Mclennan,

1993). Se as interações em nível local forem os principais determinantes na estruturação da

taxocenose, espera-se que os aspectos ecológicos estejam mapeados aleatoriamente na filogenia

das espécies (Vitt, 1995). Para determinar a importância da história na estrutura da taxocenose,

foi utilizada uma análise de ordenação canônica filogenética (Giannini, 2003) juntamente com

permutações de Monte Carlo (9,999) no CANOCO 4.5 para Windows. Esta análise consiste de

uma ordenação canônica para identificar pontos de divergência dentro de uma matriz filogenética

reduzida que melhor explica os padrões ecológicos (Giannini, 2003). Estas análises foram feitas

para duas áreas, uma de Cerrado no estado do Tocantins (Jalapão) e uma para as Savanas

Amazônicas (Monte Alegre, PA), e fazem parte respectivamente do segundo e terceiro capítulos

da dissertação.

Na região do Jalapão, foram utilizadas armadilhas de queda (“pitfall”) para determinar a

relação entre a composição de espécies (abundância relativa) e a estrutura da taxocenose e do

hábitat em dois tipos de fitofisionomias do Cerrado, facilmente distinguíveis e contínuas, um

ambiente aberto (Cerrado Típico) e outro parcialmente fechado (Cerrado Denso). Para

9

caracterizar o hábitat, em cada transecto de armadilhas de queda (num raio de 6 m do balde

central), foram medidas as seguintes variáveis estruturais e da vegetação: 1) massa do folhiço, 2)

percentual de solo exposto, 3) percentual de cobertura de copa, 4) número de árvores (5 cm de

diâmetro) ao redor, 5) número de buracos no chão, 6) número de cupinzeiros, 7) distância da

árvore mais próxima, 8) circunferência do tronco como medida do tamanho da árvore, e 9)

número de troncos caídos. Foi realizada uma Análise de Correspondência Canônica (CCA; ver

Ter Braak, 1986), uma ordenação multivariada que associa diretamente a variação na taxocenose

(nesse caso a ocorrência dos lagartos) às características do hábitat. Foram utilizadas as variáveis

estruturais e da vegetação para caracterizar o hábitat em cada armadilha e abundância relativa

dos lagartos como medida de estrutura de taxocenose. Nestas análises foi investigado se existe

associação entre características específicas do hábitat e a ocorrência das espécies de lagartos. A

CCA foi realizada com o CANOCO 4.5 para Windows. Estes tópicos fazem parte do quarto

capítulo da dissertação.

10

CAPÍTULO 1

“Liberação ecológica” em taxocenoses de lagartos em savannas Neotropicais

Foram comparadas as taxocenoses de lagartos do Cerrado e de Savanas Amazônicas para

testar a hipótese de “liberação ecológica”, levando em conta a influência de fatores históricos. A

hipótese de “liberação ecológica” prediz que dimensões do nicho e abundância devem ser

maiores em espécies das Savanas Amazônicas e em fragmentos isolados do Cerrado, quando

comparados com áreas não isoladas do Cerrado. Foi calculada a largura de nicho de microhábitat

e dieta com dados de seis populações do Cerrado do Brasil central e 14 de fragmentos isolados

do Cerrado e de áreas de Savanas Amazônicas. Os dados morfológicos foram comparados

através da média das distâncias Euclidianas e a abundância dos lagartos foi estimada através do

número de lagartos capturados nas armadilhas de queda por um período prolongado. Não foi

encontrada evidência de “liberação ecológica” quando utilizados os dados de uso de microhábitat

nestas áreas, sugerindo que os fatores históricos são mais importantes que fatores ecológicos na

estruturação dessas taxocenoses. Entretanto, os dados dos estômagos individuais indicaram que a

“liberação ecológica” ocorre nessas áreas para Tropidurus, mas não para Ameiva ameiva, Anolis,

Cnemidophorus e Micrablepharus. Esses resultados sugerem que diferentes linhagens

respondem de maneira diferente às pressões ambientais, sendo tropidurídeos mais afetados por

fatores ecológicos que policrotídeos, teiídeos e gimnoftalmídeos. A análise dos dados

morfológicos e de abundância não evidenciaram que ocorra “liberação ecológica” nestas áreas. A

ecologia das espécies é bastante conservativa, variando pouco de taxocenose para taxocenose.

11

Entretanto, o aumento na largura de nicho de algumas espécies (Tropidurus) indicou que a

“liberação ecológica” pode ocorrer.

O presente capítulo, sintetizado no parágrafo acima foi finalizado durante o doutorado-

sanduíche, realizado em Norman, OK, USA, de março a agosto de 2004, e submetido para a

publicação na revista OIKOS em janeiro de 2005. O manuscrito intitulado “Ecological release in

lizard assemblages of Neotropical savannas”, de autoria de Daniel Oliveira Mesquita, Guarino

Rinaldi Colli e Laurie J. Vitt, está anexado no Apêndice 1.

12

CAPÍTULO 2

Ecologia de uma taxocenose de lagartos na região do Jalapão no Brasil

A taxocenose de lagartos da região do Jalapão, uma das últimas grandes regiões não

perturbadas no Cerrado, localizada no estado do Tocantins, foi descrita através da combinação de

dados ecológicos e morfológicos com a filogenia das espécies, com o objetivo de examinar a

influência da história na estrutura da mesma. A taxocenose de lagartos da região do Jalapão

contém 14 espécies. A largura de nicho de microhábitat foi baixa para todas as espécies. A

sobreposição de nicho, baseado nos dados de microhábitat, variou de praticamente nenhuma até

quase total e parece estar relacionada com a distância filogenética. A análise de

pseudocomunidades mostrou que a média da sobreposição de microhábitat e de dieta não diferiu

estatisticamente de zero, indicando a ausência de estrutura. A sobreposição de presas foi alta

entre os gimnoftalmídeos e teiídeos. O gráfico dos escores dos fatores dos dois primeiros

componentes principais mostrou os grupos correspondendo às famílias de lagartos, sugerindo

uma forte associação entre morfologia e filogenia. Uma inspeção detalhada do cladograma

mostrou similaridades entre as espécies mais aparentadas, sugerindo uma maior importância da

história na taxocenose, quando comparada com a ecologia. A ordenação filogenética canônica

não mostrou nenhum efeito filogenético no uso de microhábitat e na composição da dieta dos

lagartos. Os resultados contraditórios da ordenação filogenética canônica sugerem que os efeitos

históricos potenciais são de difícil detecção porque os táxons mais basais (famílias) são sub-

representados. Portanto, as amostragens de dados ecológicos em taxocenoses pobres em espécies

13

filogeneticamente próximas podem dificultar a detecção do efeito histórico através de análises

dos aspectos ecológicos das taxocenoses baseadas em métodos filogenéticos.

O presente capítulo, sintetizado no parágrafo acima também foi finalizado durante o

doutorado-sanduíche, realizado em Norman, OK, USA, de março a agosto de 2004, e submetido

para a publicação na revista Copeia em janeiro de 2005. O manuscrito intitulado “Ecology of a

Cerrado lizard assemblage in the Jalapão region of Brazil”, de autoria de Daniel Oliveira

Mesquita, Guarino Rinaldi Colli, Frederico Gustavo Rodrigues França e Laurie J. Vitt, está

anexado no Apêndice 2.

14

CAPÍTULO 3

Ecologia de uma taxocenose de lagartos de Savanas Amazônicas na região de Monte Alegre,

Pará, Brasil

Foi descrita a taxocenose de lagartos de uma Savana Amazônica na região de Monte

Alegre, estado do Pará, através de dados ecológicos, morfológicos e de história de vida,

avaliando a importância da filogenia na taxocenose. A taxocenose amostrada contém sete

espécies. A largura de nicho de microhábitat foi baixa para todas as espécies e a sobreposição de

nicho, baseado no uso de microhábitat, variou de quase nenhuma até quase completa, sendo os

menores valores entre espécies mais distantes filogeneticamente e entre os teiídeos. A atividade

dos lagartos ocorreu das 9:00 h até as 17:00 h e, geralmente, os forrageadores ativos foram mais

comumente observados durantes as horas mais quentes do dia, enquanto os forrageadores senta e

espera foram mais comuns no entardecer. O teste de Tukey nas temperaturas corporais

identificou dois grupos estatisticamente homogêneos, um com os teiídeos e outro com as outras

espécies. A análise de pseudocomunidades mostrou que a média de sobreposição de uso de

microhábitat pelos lagartos não foi diferente de zero, indicando ausência de estrutura. Os maiores

índices de sobreposição de dieta ocorreram entre os teiídeos. A análise de pseudocomunidades

mostrou que a média de sobreposição de composição de dieta não foi diferente de zero,

indicando ausência de estrutura. O gráfico com as médias dos escores por espécie dos dois

primeiros componentes principais mostrou clusters correspondentes às famílias de lagartos. Uma

inspeção detalhada das variáveis ecológicas mapeadas na filogenia das espécies e comparações

15

com espécies próximas que ocorrem em outros biomas, indicaram que a história das espécies é

extremamente importante para a manutenção do padrão encontrado na taxocenose de Monte

Alegre, principalmente em Teioidea, o que foi corroborado pelos resultados da ordenação

filogenética canônica.

O presente capítulo, sintetizado no parágrafo acima, foi finalizado em janeiro de 2005 e

submetido para a publicação na revista Biotropica em fevereiro de 2005. O manuscrito intitulado

“Ecology of an Amazonian Savanna lizard assemblage in Monte Alegre, Brazil”, de autoria de

Daniel Oliveira Mesquita, Gabriel Corrêa Costa e Guarino Rinaldi Colli, está anexado no

Apêndice 3.

16

CAPÍTULO 4

Riqueza e diversidade de lagartos determinadas pelas características do hábitat em uma escala

microgeográfica: implicações para conservação no Cerrado brasileiro

Foram utilizadas armadilhas de queda para determinar a relação entre a composição,

diversidade de espécies e estrutura de taxocenoses com a estrutura do hábitat em dois fragmentos

facilmente distinguíveis e quase contíguos na região do Jalapão, estado do Tocantins no Cerrado

brasileiro. Um hábitat era relativamente aberto (Cerrado Típico) e o outro era parcialmente

fechado (Cerrado Denso); eles diferiram significativamente em cinco das nove variáveis de

hábitat e o hábitat mais aberto manteve durante o dia as temperaturas dos diversos microhábitats

mais altas que as do hábitat mais fechado. A análise de componentes principais mostrou que o

hábitat mais fechado apresentou uma combinação de mais troncos caídos, buracos e folhiço que

o hábitat mais aberto. Um total de 531 indivíduos de 12 espécies de lagartos foi amostrado. As

curvas de acumulação de espécies mostraram que após 23 dias de amostragem contínua o

número assintótico de espécies foi de 10 para o hábitat mais aberto e 12 para o mais fechado. A

estrutura de taxocenose dos lagartos também foi diferente entre hábitats. Uma análise de

correspondência canônica (CCA) comparando as variáveis do hábitat em cada ponto de

armadilhas com as espécies amostradas mostrou que as espécies são extremamente relacionadas

com características do microhábitat. Os resultados indicaram que a estrutura do microhábitat

pode causar um forte impacto na composição de espécies de lagartos, na diversidade e na

17

estrutura de taxocenoses. Portanto, os programas de conservação que visam à manutenção da

biodiversidade deveriam considerar os microhábitats que as espécies utilizam.

O presente capítulo, sintetizado no parágrafo acima também foi finalizado durante o

doutorado-sanduíche, realizado em Norman, OK, USA, de março a agosto de 2004, e submetido

para a publicação na revista Journal of Tropical Ecology em outubro de 2004. O manuscrito

intitulado “Lizard species richness and diversity are determined by habitat characteristics at a

microgeographic scale: implications for conservation in the Brazilian Cerrado”, de autoria de

Laurie J. Vitt, Guarino Rinaldi Colli, Janalee P. Caldwell, Daniel Oliveira Mesquita, Adrian

Antônio Garda e Frederico Gustavo Rodrigues França, está anexado no Apêndice 4.

18

DISCUSSÃO

A hipótese de “liberação ecológica” prediz que em ilhas, onde a diversidade de espécies é

menor, as espécies devem ser mais generalistas (maior largura de nicho) que em áreas

continentais, onde a diversidade é maior (Crowell, 1962; Ricklefs e Miller, 1999; Pianka, 1994).

Esta hipótese decorre da teoria da competição. Em locais com reduzida competição

interespecífica, as espécies devem expandir seu nicho (microhábitat, dieta e morfologia) em

resposta ao reduzido número de competidores (Crowell, 1962; Losos e Queiroz, 1997). A

hipótese de “liberação ecológica” foi inicialmente desenvolvida em comparações entre

continente e ilhas. O modelo “áreas não isoladas do Cerrado vs. áreas isoladas e Savanas

Amazônicas” foi utilizado para testar a hipótese. As predições foram que, se a “liberação

ecológica” ocorre, a largura de nicho (dieta e microhábitat) e aspectos da morfologia dos lagartos

das ilhas deveriam ser maiores que nas áreas contínuas do Cerrado. Não foram encontradas

diferenças na largura de nicho de microhábitat das espécies entre os enclaves e o Cerrado.

Entretanto, baseando-se na dieta (estômagos individuais) das espécies, os resultados

parcialmente suportam a hipótese, sendo que a teoria de “liberação ecológica” parece ser

aplicável para Tropidurus, mas não para Ameiva ameiva, Anolis, Cnemidophorus, e

Micrablepharus.

A compensação da densidade é um fenômeno usualmente definido como um aumento na

densidade das espécies de ilhas em resposta ao reduzido número de espécies, quando

comparados com as populações de áreas continentais (MacArthur et al., 1972; Pianka, 1994;

Ricklefs e Miller, 1999). A hipótese da compensação da densidade também é derivada da teoria

da competição e a maioria das explicações parte da premissa de que em taxocenoses mais

19

simples (ilhas) os recursos são mais abundantes, resultando em reduzida competição quando

comparado com áreas continentais, permitindo que as espécies ocorram em altas densidades

(Crowell, 1962; MacArthur et al., 1972). Os dados não suportaram esta hipótese. As espécies não

são mais abundantes nas áreas isoladas que nas áreas não isoladas.

Os fatores ecológicos (e.g., competição e predação) têm sido considerados como os mais

importantes fatores afetando as relações entre as espécies nas taxocenoses (Wiens, 1977;

Diamond, 1978; Wilbur, 1972; Dunham, 1983). Mais recentemente, a história tem sido

identificada como um fator que muito contribui para a estrutura das taxocenoses e, se ignorada,

conclusões completamente equivocadas podem ser adotadas (Losos, 1994; Losos, 1996; Brooks

e McLennan, 1991; Cadle e Greene, 1993). Embora exita dúvida que a competição e predação

influenciam a estrutura das taxocenoses (Losos et al., 1993; Spiller e Schoener, 1989; Case e

Bolger, 1991), a origem das diferenças ecológicas parece ter raízes muito antigas na história

evolutiva das espécies (Losos, 1996; Losos, 1995; Vitt et al., 2003; Vitt et al., 1999; Webb et al.,

2002). A hipótese de “liberação ecológica” prediz que os fatores ecológicos devam ser mais

importantes que os históricos na determinação da estrutura das taxocenoses, e isso seria

perceptível com o aumento da densidade nas áreas isoladas juntamente com expansão de nicho.

Entretanto, as espécies têm a ecologia bastante conservativa, e isso é refletido na pouca variação

de largura de nicho, morfologia e abundância entre as populações (ver Mesquita e Colli, 2003;

Vitt e Colli, 1994; Vitt et al., 1998), enfatizando a importância da história evolutiva das espécies

na estrutura das taxocenoses. As pressões ambientais parecem promover respostas diferenciadas

entre táxons diferentes. Os resultados indicaram que Ameiva ameiva, Cnemidophorus (Teiidae),

Anolis (Polychrotidae) e Micrablepharus (Gymnophthalmidae) apresentam aspectos da dieta

mais conservados, e lagartos do gênero Tropidurus (Tropiduridae) são mais afetados pelos

20

fatores ecológicos, corroborando resultados prévios (ver Vitt et al., 1997a; Vitt, 1993; Vitt et al.,

1997b; Mesquita e Colli, 2003). A ecologia e abundância das espécies são bastante

conservativas, variando pouco de taxocenose para taxocenose, evidenciando a importância da

história das espécies. Entretanto, diferenças na dieta em tropidurídeos sugerem que os fatores

ecológicos também são importantes para a manutenção da estrutura das taxocensoses.

A influência da história também fica evidenciada quando são feitas comparações em uma

única taxocenose. Uma análise detalhada nos dados ecológicos com uma perspectiva histórica

sugere que os lagartos da região do Jalapão são fortemente influenciados pela história

filogenética. Se a interação entre as espécies determina os aspectos ecológicos dos lagartos do

Jalapão, esses traços deveriam estar mapeados aleatoriamente na filogenia das espécies e este

não é o caso. Mesmo com os resultados contraditórios da ordenação filogenética canônica (ver

capítulo 2), foram demonstradas inúmeras evidências de que a história das espécies desempenha

um importante papel nas estrutura das taxocenoses. Além disso, a aplicação de métodos

filogenéticos para interpretação de relações entre espécies em uma taxocenose ainda são

incipientes (e.g.,Webb et al., 2002). Ainda, os resultados encontrados na análise da taxocenose

de Savana Amazônica de Monte Alegre, PA, corroboram estes resultados. Finalmente, várias

análises em nível local (e.g., Vitt e Zani, 1996; Vitt e Zani, 1998b; Vitt et al., 2000; Giannini,

2003) e uma em nível global (Vitt et al., 2003) indicaram que várias porções da estrutura de

taxocenoses de lagartos têm base histórica.

Levando-se em conta outro aspecto da estrutura das taxocenoses, os resultados

apresentam uma ampla implicação para a biologia da conservação em geral, mais

especificamente para a conservação e manejo do Cerrado. Primeiro, como qualquer ser vivo, os

lagartos são importantes componentes dos ecossistemas naturais. Segundo, eles são excelentes

21

modelos para se examinar os padrões de ocorrência e abundância relativa em escalas

microgeográficas, porque eles são facilmente coletados, identificados e monitorados. Finalmente,

como mostrado aqui (Capítulo 4), muitas espécies dependem de aspectos específicos da

vegetação e do hábitat onde vivem. A habilidade de se identificar as características do

microhábitat, essencial para a presença de várias espécies, nos providencia informações

necessárias para desenvolver estratégias para conservação e manejo dos ecossistemas. Neste

exemplo, a remoção de árvores, folhiço, trocos caídos, e cupinzeiros pode ter um impacto

imediato na diversidade de lagartos e na estrutura das taxocenoses. Como mostrado aqui, as

espécies animais não estão distribuídas uniformemente no Cerrado, sendo que variações

microgeográficas na estrutura do microhábitat afetam a composição e a abundância relativa das

espécies. Consequentemente, as taxocenoses são fortemente afetadas pela modificação do

hábitat, mesmo aquelas controladas pelas agências de proteção ambiental, como o corte seletivo

de madeira e subseqüente replantio.

REFERÊNCIAS BIBLIOGRÁFICAS

AB'SÁBER, A. N. 1982. The paleoclimate and paleoecology of Brazilian Amazonia, p. 41-59. In:

Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press,

New York.

ARAÚJO, A. F. B. 1991. Structure of a white sand-dune lizard community of coastal Brazil.

Revta. Brasil. Biol. 51:857-865.

—. 1992. Estrutura morfométrica de comunidades de lagartos de áreas abertas do litoral sudeste

e Brasil central, p. 191. Universidade de Campinas, Campinas.

22

ÁVILA-PIRES, T. C. S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische

Verhandelingen, Leiden. 1995:3-706.

BIGARELLA, J. J., e D. ANDRADE-LIMA. 1982. Paleoenvironmental changes in Brazil, p. 27-40.

In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University

Press, New York.

BOURNE, G. R., A. C. COLLINS, A. M. HOLDER, e C. L. MCCARTHY. 2001. Vocal communication

and reproductive behavior of the frog Colostethus beebei in Guyana. J. Herpetol. 35:272-

281.

BROOKS, D. R., e D. A. MCLENNAN. 1991. Phylogeny, Ecology, and Behavior, a Research

Program in Comparative Biology. The University of Chicago Press, Chicago.

BROOKS, D. R., e D. A. MCLENNAN. 1993. Historical ecology: examining phylogenetic

components of community evolution, p. 267-280. In: Species Diversity in Ecological

Communities, Historical and Geographical Perspectives. R. E. Ricklefs e D. Schluter

(eds.). The University of Chicago Press, Chicago, Illinois.

CADLE, J. E., e H. W. GREENE. 1993. Phylogenetic patterns, biogeography, and the ecological

structure of Neotropical snake assemblages, p. 281-293. In: Species Diversity in

Ecological Communities: Historical and Geographical Perspectives. R. E. Ricklefs e D.

Schluter (eds.). University of Chicago Press, Chicagi.

CASE, T. J., e D. T. BOLGER. 1991. The role of interspecific competition in the biogeography of

island lizards. TREE. 6:135-139.

COLLI, G. R. 1996. Amazonian savanna lizards and the historical biogeography of Amazonia, p.

137. University of California, Los Angeles.

23

CONNOR, E. F., A. C. COURTNEY, e J. M. YODER. 2000. Individuals-area relationships: the

relationship between animal population density and area. Ecology. 81:734-748.

CROWELL, K. L. 1962. Reduced interspecific competition among the birds of Bermuda. Ecology.

43:75-88.

DIAMOND, J. M. 1978. Niche shifts and the rediscovery of interspecific competition. Am. Sci.

66:322-331.

DUNHAM, A. E. 1983. Realized niche overlap, resource abundance, and interespecific

competition, p. 261-280. In: Lizard Ecology: Studies of a Model Organism. R. B. Huey,

E. R. Pianka, e T. H. Schoener (eds.). Harvard University Press, Cambridge,

Massachusetts.

EDEN, M. J. 1974. Paleoclimatic influences and the development of savanna in Southern

Venezuela. J. Biogeogr. 1:95-109.

EITEN, G. 1972. The Cerrado vegetation of Brazil. Bot. Rev. 38:201-341.

—. 1978. Delimitation of the Cerrado concept. Vegetatio. 36:169-178.

GIANNINI, N. P. 2003. Canonical phylogenetic ordination. Syst. Biol. 52:684-695.

HUBER, O. 1982. Significance of savanna vegetation in the Amazon Territory of Venezuela, p.

221-244. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia

University Press, New York.

LOSOS, J. B. 1994. Historical contingency and lizard community ecology, p. 319-333. In: Lizard

Ecology: Historical and Experimental Perspectives. L. J. Vitt e E. R. Pianka (eds.).

Princeton University Press, Princeton, New Jersey.

—. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns and

experimental tests. Phil. Trans. R. Soc. London B. 349:69-75.

24

—. 1996. Phylogenetic perspectives on community ecology. Ecology. 77:1344-1354.

LOSOS, J. B., J. C. MARKS, e T. W. SCHOENER. 1993. Habitat use and ecological interactions of an

introduced and a native species of Anolis lizard on Grand Cayman, with a review of the

outcomes of anole introductions. Oecologia. 95:525-532.

LOSOS, J. B., e K. QUEIROZ. 1997. Evolutionary consequences of ecological relaease in

Caribbean Anolis lizards. Biol. J. Linn. Soc. 61:459-483.

MACARTHUR, R. H., J. M. DIAMOND, e J. R. KARR. 1972. Density compensation in island faunas.

Ecology. 53:330-342.

MESQUITA, D. O., e G. R. COLLI. 2003. Geographical variation in the ecology of populations of

some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia. 2003:285-298.

PIANKA, E. R. 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4:53-74.

—. 1994. Evolutionary Ecology. HarperCollins College Publishers, New York, NY.

PIRES, J. M. 1973. Tipos de vegetação da Amazônia. Publ. Av. Mus. Par. Em. Goel. 20:179-202.

PRANCE, G. T. 1978. The origin and evolution of the Amazon flora. Interciencia. 3:207-222.

RICKLEFS, R. E., e G. L. MILLER. 1999. Ecology. Freeman, W H and Company, New York, NY.

RODDA, G. H., e K. DEAN-BRADLEY. 2002. Excess density compensation of island herpetofaunal

assemblages. J. Biogeogr. 29:623-632.

SIMPSON, E. H. 1949. Measurement of diversity. Nature. 163:688.

SPILLER, D. A., e T. W. SCHOENER. 1989. Effect of a major predator on grouping of an orb-

weaving spider. J. An. Eco. 58:509-523.

TER BRAAK, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for

multivariate direct gradient analysis. Ecology. 76:1167–1179.

VITT, L. J. 1991. An introduction to the ecology of Cerrado lizards. J. Herpetol. 25:79-90.

25

—. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in Amazonian

lowland rain forest. Can. J. Zool. 71:2370-2390.

—. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. Occ. Pap.

Oklahoma Mus. Nat. Hist. 1:1-29.

VITT, L. J., J. P. CALDWELL, P. A. ZANI, e T. A. TITUS. 1997a. The role of habitat shift in the

evolution of lizard morphology: evidence from tropical Tropidurus. Proceedings of the

National Academy of Sciences of the United States of America. 94:3828-3832.

VITT, L. J., e C. M. CARVALHO. 1995. Niche partitioning in a tropical wet season: lizards in the

Lavrado area of Northern Brazil. Copeia. 1995:305-329.

VITT, L. J., e G. R. COLLI. 1994. Geographical ecology of a neotropical lizard: Ameiva ameiva

(Teiidae) in Brazil. Can. J. Zool. 72:1986-2008.

VITT, L. J., E. R. PIANKA, W. E. COOPER, JR., e K. SCHWENK. 2003. History and the global

ecology of squamate reptiles. Am. Nat. 162:44-60.

VITT, L. J., S. S. SARTORIUS, T. C. S. ÁVILA-PIRES, M. C. ESPÓSITO, e D. B. MILES. 2000. Niche

segregation among sympatric Amazonian teiid lizards. Oecologia. 122:410-420.

VITT, L. J., e L. D. VANGILDER. 1983. Ecology of a snake community in northeastern Brazil.

Amphibia-Reptilia. 4:273-296.

VITT, L. J., e P. A. ZANI. 1996. Organization of a taxonomically diverse lizard assemblage in

Amazonian Ecuador. Can. J. Zool. 74:1313-1335.

—. 1998a. Ecological relationships among sympatric lizards in a transitional forest in the

Northern Amazon of Brazil. J. Trop. Ecol. 14:63-86.

—. 1998b. Prey use among sympatric lizard species in lowland rain forest of Nicaragua. J. Trop.

Ecol. 14:537-559.

26

VITT, L. J., P. A. ZANI, T. C. S. ÁVILA-PIRES, e M. C. ESPOSITO. 1998. Geographical ecology of

the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon rainforest. Can. J. Zool.

76:1671-1680.

VITT, L. J., P. A. ZANI, J. P. CALDWELL, M. C. D. ARAUJO, e W. E. MAGNUSSON. 1997b. Ecology

of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. Copeia. 1997:745-

757.

VITT, L. J., P. A. ZANI, e M. C. ESPOSITO. 1999. Historical ecology of Amazonian lizards:

implications for community ecology. Oikos. 87:286-294.

WEBB, C. O., D. D. ACKERLEY, M. A. MCPEEK, e M. J. DONOGHUE. 2002. Phylogenies and

community ecology. Annu. Rev. Ecol. Syst. 33:475-505.

WIENS, J. A. 1977. On competition and variable environments. Am. Sci. 65:590-597.

WILBUR, H. M. 1972. Competition, predation, and the structure of the Ambystoma-Rana sylvatica

community. Ecology. 53:3-21.

27

APÊNDICE 1- manuscrito submetido para a publicação na revista OIKOS em fevereiro de 2005.

Ecological release in lizard assemblages of Neotropical savannas

Daniel Oliveira Mesquita1, Guarino Rinaldi Colli1 and Laurie J. Vitt2

1Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-

900 Brasília - DF, Brazil, Tel/fax: 55-61-307-2265 ext: 21, email: [email protected]

2Sam Noble Oklahoma Museum of Natural History and Zoology Department, University of

Oklahoma, Norman, OK 73072 USA

28

We compare lizard assemblages of Cerrado and Amazon savannas testing the ecological

release hypothesis, accounting for historical factors. The ecological release hypothesis predicts

that niche dimensions and abundance should be greater in species from Amazon savannas and

isolated Cerrado patches when compared with non isolated areas in central Cerrado. We

calculated microhabitat and diet niche breadths with data from six central Cerrado populations

and 14 from isolated Cerrado patches and Amazon savanna areas. Morphological data were

compared using average Euclidean distances and lizard abundance was estimated using the

number of lizards captured in pitfall traps over an extended time period. We found no evidence

of ecological release with respect to microhabitat use, suggesting that historical factors are more

important than ecological factors. However, data from individual stomachs indicate that

ecological release occurs in these areas for Tropidurus but not for Ameiva ameiva, Anolis,

Cnemidophorus, and Micrablepharus. These results suggest that different lineages respond

differently to environmental pressures, with tropidurids being more affected by ecological factors

than polychrotids, teiids, and gymnophthalmids. We found no evidence that ecological release

occurs in these areas using morphological data. Based on abundance data, our results indicate

that the ecological release (density compensation) hypothesis is not supported: lizard species are

not more abundant in isolated areas than in non isolated areas. The ecology of species is highly

conservative, varying little from assemblage to assemblage. Nevertheless, increases in niche

breadth for some species indicate that ecological release occurs as well.

29

Introduction

Communities are usually defined as associations among populations that coexist in an

easily defined place. Most community studies focus on assemblages, groups of phylogenetically

related species that coexist in a specific geographic area (Ricklefs and Miller 1999). Primary

determinants of assemblage structure are species interactions, resource use patterns, and

historical relationships among taxa comprising the assemblage (Begon, et al. 1990, Pianka 1994,

Ricklefs and Miller 1999). Historically, ecological factors have received the most attention from

ecologists who argued that competition and predation were the main causes of assemblage

organization (Wiens 1977, Mitchell 1979, Dunham 1983). More recently, historical factors have

received special attention (Losos 1994, 1996, Vitt, et al. 1999, Webb, et al. 2002). Evidence of

historical factors includes lack of divergence in ecological traits (e. g., microhabitat use, diet)

among closely related species independent of the assemblage in which they reside. Divergence in

ecological traits among closely related species is viewed as evidence of the importance of

ecological factors (Brooks and McLennan 1991, Losos 1996). Clearly, both historical and

ecological factors contribute to structure in present-day animal assemblages (Brooks and

McLennan 1991, Cadle and Greene 1993, Losos 1994, 1996, Vitt 1995).

Islands generally contain fewer species compared with continental areas, but often,

species are more abundant on islands. This phenomenon was described initially for bird

assemblages and called “density compensation” (Crowell 1962, Pianka 1994, Ricklefs and Miller

1999). In addition, island species often expand their habitat niche breadth in response to a lower

number of competitors, occupying habitats that are occupied by other species in continental

areas, a phenomenon known as “niche expansion” (MacArthur, et al. 1972, Pianka 1994,

30

Ricklefs and Miller 1999). In combination, both processes (density compensation and niche

expansion) are referred to as “ecological release” (Pianka 1994, Ricklefs and Miller 1999).

Ecological release has been documented for amphibian and reptile assemblages. Rodda and

Dean-Bradley (2002) found strong evidence that amphibians and reptiles (mainly lizards) have

higher biomass and density in small islands than in continental areas. Conversely, a study

correlating island size with density of animal populations suggested that density compensation

might be less common than previously thought (Connor, et al. 2000). A study on Anolis lizards

in the Antilles tested the hypothesis that lizards from small islands (few species) should exhibit a

generalized morphology and greater microhabitat niche breadth compared with lizards from

large islands (more species). However, results did not confirm these predictions. Lizards on

small islands did not have a generalized morphology and did not have greater microhabitat niche

breadth (Losos and Queiroz 1997).

We set out to test the ecological release hypothesis using lizard assemblages from the

Cerrados of Brazil. Cerrado lizard assemblages are ideal for testing this hypothesis because the

Cerrado contains a vast core area (the “mainland”) and numerous variously sized enclaves

(“islands”) embedded in Amazon rainforest.

We compare lizard assemblages of Cerrado and Amazon enclaves testing the ecological

release hypothesis, considering both ecological and historical factors. Based on the ecological

release hypothesis, we predict that niche dimensions (e. g., microhabitat, diet and morphology)

should be greater and abundance should be higher in species of Amazon isolated enclaves when

compared with species in non isolated areas in the central Cerrado.

31

Materials and methods

Study sites

The Cerrado covers about 2,000,000 km2, about 25% of Brazil and is located in the

central region of Brazil, with some isolated patches in northern Brazil (Oliveira and Marquis

2002). The region receives annually 1,500-2,000 mm of highly predictable and strongly seasonal

precipitation, from October to April. Monthly temperatures average 20 to 22 C (Nimer 1989).

The Cerrado biome harbors forests, where arboreal species predominate; savannas, with trees

and shrubs dispersed in an herbaceous stratum; and grasslands, with herbaceous species and

some shrubs. Tree trunks are tortuous, with thick corky barks and hard, coriaceous leaves

(Ribeiro and Walter 1998). We sampled several isolated and non isolated Cerrado areas. Among

the non isolated areas, we sampled in a gradient of sandy Cerrado and rocky field in Alvorada do

Norte, Goias State (14º 36’ S, 46º 24’ W) in August 2003 and March 2004, Dianópolis,

Tocantins State (11º 42’ S, 46º 48’ W) in September 2003, Mateiros, Tocantins State (10º 11’ S,

46º 40’ W) in February 2002, Paranã, Tocantins State (12º 54’ S, 47º 42’) in September 2003 and

April 2004; in a dry forest in São Domingos, Goias State (13º 24’ S, 46º 19’ W) in August and

December 2003; and in a latosoil Cerrado in Paracatu, Minas Gerais State (17º 24’ S, 47º 18’ W)

in October-December 2001. Among the isolated Cerrado areas, we sampled in a gradient of

sandy Cerrado and rocky field in Serra do Cachimbo, Novo Progresso, Pará State (8º 42’ N, 55º

20’ W) in July 2002, in two different habitats in Guajará-Mirim, Rondônia State (10º 48’ S, 65º

22’ W), a rocky field and a sandy Cerrado, in December 2000-January 2001, in two diferrent

areas in Vilhena, Rondônia State (12º 43’ S, 60º 07’ W), a sandy Cerrado and a latosoil Cerrado,

in in August 1998 and September–October 1999, and in three different areas in Pimenta Bueno,

32

Rondônia State (12º 30’ S, 60º 49’ W), a latosoil Cerrado, a transitional forest, and a sandy

Cerrado, in July-August 2000.

Amazon savannas occur like scattered islands inside the Amazon Forest and cover about

150,000 km2, or 2% of Brazil (Pires 1973). The precipitation is highly seasonal and annual

precipitation averages 1,700 mm (Eidt 1968). Vegetation is dominated by typical species of the

Cerrado, but diversity is usually lower (Eiten 1978). Among the Amazon savannas, we sampled

in two different areas with sandy soils, in Macapá (0º 02’ N, 51º 03’ W) and Tartarugalzinho (1º

26’ N, 1º 04’ W), in Amapá State, in September-October 1991, which we considered as a single

assemblage because of the similarity in vegetation structure and composition of the lizard fauna,

a rocky field in Serra dos Carajás, Paraupebas, Pará State (6º 10’ N, 51º 20’ W) in July-August

1992, a latosoil area in Humaitá, Amazonas State (7º 31’ S, 63º 02’ W), in October-November

1991 and June-July 2003, in a sandy soil area in in Alter do Chão, Pará State (7º 40’ S, 39º 12’

W), in August 1992, in a gradient of sandy soils and rocky fields in Monte Alegre, Pará State (2º

6’ S, 54º 20’ W), in December 2002, and in sandy soil area in Boa Vista, Roraima State (2º 49’

N, 60º 40’ W), in September 1992. The separation between Amazonian savannas and isolated

Cerrado areas was proposed by Eiten (1978), and is based mainly on plant species similarities.

Usually, the Amazonian savannas are poorest when compared with all kind of Cerrado areas

(isolated and noon isolated) (Eiten 1972, 1978). Here, we are considering all enclaves as islands,

to test the ecological release hypothesis.

All specimens examined are deposited in the Coleção Herpetológica da Universidade de

Brasília (CHUNB). Collecting sites are indicated in Fig. 1.

33

Species composition and microhabitat

We captured lizards with drift fences, by hand, or using a shotgun. In the lab, we

humanely killed live lizards with an injection of Tiopental® and fixed them with 10% formalin.

We recorded microhabitat for each lizard collected. We used the following microhabitat

categories: clear ground, grass, hole, inside termite nest, leaf, leaf litter, log, rock, shrub, stick,

tree trunk, under leaf, under leaf litter, under log, under manure, under rock, tree bark, under tree

bark, and wall. We computed microhabitat niche breadths (B) using the inverse of Simpson's

(1949) diversity index:

B =1

pi2

i =1

n

∑,

where p is the proportion of microhabitat category i and n is the number of categories.

We made comparisons among assemblages using differences among isolated and non isolated

areas as a model to test the ecological release hypothesis. We compared average microhabitat

niche breadth of species among assemblages. If ecological release occurs in isolated areas, we

expect average niche breadth to be higher than in non isolated areas

Diet composition

We analyzed stomach contents under a stereoscopic microscope, identifying prey items to

ordinal level. We recorded length and width (0.01 mm) of intact items with Mitutoyo® electronic

calipers, and estimated prey volume (V) as an ellipsoid:

V =43

πw2

⎛ ⎝

⎞ ⎠

2 l2

⎛ ⎝

⎞ ⎠ ,

34

where w is prey width and l is prey length. We calculated numeric and volumetric percentages of

each prey category for pooled and individual stomachs. From these percentages, we computed

niche breadths (B) for pooled and individual stomachs, using the inverse of Simpson's diversity

index (Simpson 1949), as described above. We excluded from the volumetric analyses prey

items that were too fragmented to allow a reliable estimation of their volumes. Average niche

breadths of all species from each assemblage were compared between isolated and non isolated

areas, as a test of the ecological release hypothesis. We also made comparisons with just closely

related species, to minimize the effect of history. Because analyses with pooled stomachs

provided only a single diet niche breadth value for each species, we made comparisons among

closely related species of different assemblages with data generated for individual stomach

means. We used averages of numeric and volumetric niche breadths for both individual and

pooled stomachs. This balances the cost of acquiring prey (energy expended capturing each prey

item) with energy gains associated with individual prey types. Throughout the text, this average

is referred as diet niche breadth.

Morphometry

Using Mitutoyo® electronic calipers, we recorded morphometric variables to the nearest

0.01 mm, including: snout-vent length (SVL), body width (at its broadest point), body height (at

its highest point), head width (at its broadest point), head height (at its highest point), head length

(from the tip of the snout to the commissure of the mouth), hindlimb length, forelimb length, and

tail length (from the cloaca to the tip of the tail). To maximize the availability of data, we

estimated intact tail length of lizards with broken or regenerated tails using a regression equation

35

relating tail length to SVL, calculated from lizards with intact tails, separately for populations

and species. When the regression was not statistically significant, we used the average of intact

tails. We log-transformed (base 10) all morphometric variables prior to analyses to meet

requirements of normality (Zar 1998).

To compare the assemblages using morphometry, we calculated a matrix of Euclidean

distance among all pairs of species at each locality using the following formula:

( )2

19

1

2⎥⎦

⎤⎢⎣

⎡−= ∑

=kjkikij XXD ,

where Dij is the Euclidean distance between species i and j, and Xik and Xjk are averages of log-

transformed morphometric variables k for species i and j. From the matrix of distances for each

assemblage, we calculated the average neighbor distance and compared them between isolated

and versus isolated areas. Based on the ecological release hypothesis, we expected average

neighbor distance to be greater in isolated than in non isolated areas.

Abundance

We used pitfall traps with drift fences to estimate abundance of lizards. Each trap consists

of four buckets, with one in the center and the others in the extremities, connected with plastic, at

angles of 120° from each other. In most areas, 100 buckets were used in each sampled area.

When more than 100 buckets were used in an area, we corrected abundance data by dividing the

original data by one plus the additional proportion of buckets.

Our density estimates consisted of the average number of lizards per species per day

collected in the buckets. We compared abundances among assemblages, ignoring species. We

36

then used data from the four most widely distributed genera (Ameiva, Cnemidophorus, Anolis,

and Micrablepharus) to make comparisons among sampled areas. Next, we performed

regressions, on a species by species basis, to determine the relationship between lizard

abundance and number of species in the assemblages. The ecological release hypothesis predicts

that in isolated areas, where diversity is lower, species should occur at higher densities (density

compensation).We expect that, if ecological release occurs in these areas, species in isolated

areas should be more abundant than in non isolated areas, having expanded their niches to

include microhabitats used by lizard species that are missing.

Statistical analysis

We carried out statistical analyses using SYSTAT 11.0 and SAS 8.1 for Windows, with a

significance level of 5% to reject null hypotheses. Throughout the text, means appear ± 1 SD.

Results

Species composition and microhabitat

We collected 51 lizard species in the 20 study sites (Appendix 1). Lizards in non isolated

areas were significantly richer than isolated areas (Table 1). Isolated areas richness varied from

11 species in Vilhena to two species in the rock field at Guajará-Mirim (Appendix 1). Among

non isolated areas, richness was greatest in dry forest at São Domingos and in latosoil cerrado in

Paracatu-MG, with 16 lizard species. The lowest richness was in the gradient of sandy cerrado

and rocky field in Alvorada do Norte, with eight species (Appendix 1). The most diverse lizard

37

clade was Teiidae, with 11 open vegetational species and three typical forest species, followed

by Gymnophthalmidae (8/4), Tropiduridae (7/0), Gekkonidae (6/1), Polychrotidae (5/1), and

Scincidae (5/0) (Appendix 1).

Microhabitat niche breadths were generally low, ranging from 1.00, in several species to

5.04 in Gymnodactylus geckoides from São Domingos (Appendix 2). Average niche breadth

among species in each assemblage varied from 1.32 in the sand Cerrado in Jalapão to 2.74 in the

rock field of Guajará-Mirim-RO (Appendix 2). No differences were detected in average niche

breadths between isolated vs. non isolated areas (Table 1). Further, there was no significant

association between average niche breadth and number of species in each assemblage (R = 0.311,

F1,11 = 0.178, P = 0.301) (Fig. 2). To minimize historical effects, we conducted separate analyses

on populations of closely related species of the four most widely widespread genera (Ameiva,

Cnemidophorus, Anolis and Tropidurus). No differences were detected in average microhabitat

niche breadths of isolated vs. non isolated areas considering only these four genera (Table 1).

Likewise, there was no significant relationship between microhabitat niche breadths and number

of species in each assemblage for these genera, except for Ameiva ameiva (Fig. 2). Even if the

results for Ameiva are significant, the comparisons between average microhabitat niche breadths

of isolated vs. non isolated are not, leading us to believe that ecological release does not occur,

considering this species. These results indicate that ecological release in microhabitat use does

not occur in the studied assemblages.

38

Diet composition

We analyzed the contents of 3,583 lizard stomachs and recognized 38 prey categories.

Based on pooled stomachs, Mabuya nigropunctata from the transitional forest in Pimenta

Bueno-RO and Kentropyx paulensis from the latosoil Cerrado in Paracatu had the smallest diet

niche breadth and Kentropyx striata from Roraima had the greatest niche breadth (Appendix 3).

Based on individual stomachs, the smallest diet niche breadth was observed in Mabuya

nigropunctata from the transitional forest in Pimenta Bueno-RO and in Kentropyx paulensis

from the latosoil Cerrado in Paracatu-MG; and the greatest niche breadth was observed in

Ameiva ameiva from the sandy Cerrado in Vilhena-RO (Appendix 3).

Based on pooled stomachs, there was no difference in average niche breadths between

isolated vs. non isolated areas (Table 1) and the relationship between dietary niche breadths and

number of species in the assemblage was not significant (Fig. 3). Considering only the five most

widespread genera (Ameiva, Cnemidophorus, Micrablepharus, Anolis and Tropidurus), there

was no evidence of ecological release (Table 2), and there was no relationship between diet niche

breadths and number of species of each assemblage for these five genera (Fig. 3).These results

indicate that, based on pooled stomachs, ecological release do not occur in these areas.

Based on individual stomachs niche breadths was higher in isolated relative to non

isolated areas (Table 1), and there was also a significant relationship between dietary niche

breadths and number of species in the assemblage (R = 0.471, F1,18 = 5.128, P = 0.036) (Fig. 4).

Considering the five most widely widespread genera (Ameiva, Cnemidophorus, Micrablepharus,

Anolis and Tropidurus), we did not find statistical differences in diet niche breadths on isolated

vs. non isolated areas, except for Tropidurus (Table 2). Linear regression analyses failed to

detected significant relationship between diet niche breadths and number of species of each

39

assemblage for these four genera (Fig. 4). These results indicate that, based on individual

stomachs of all species, ecological release should occur, and that among the four most widely

widespread genera, it occurs only in Tropidurus.

Morphometry

We found significant differences in average nearest neighbor Euclidean distance among

populations (ANOVA F19,640 = 6.877, P < 0.0001). The smallest average distance was in in the

rock field assemblage at Guajará Mirim ( x = 0.66 ± 0.00) and the sandy Cerrado in Amapá ( x =

0.66 ± 0.29). The largest was in the lizard assemblage in transitional forest in Pimenta Bueno ( x

= 1.95 ± 1.15). We found no significant differences in average nearest neighbor Euclidean

distance of lizard assemblages between isolated and non isolated areas (Table 1), and no

significant relationship between nearest neighbor Euclidean distance and number of species in

each assemblage (R = 0.169, F1,18 = 0.526, P = 0.447) (Fig. 5). These results indicate that

ecological release does not occur in these areas.

Abundance

Based on all assemblages combined, the rarest lizard species were Enyalius cf bilineatus,

Kentropyx paulensis, and Bachia cacerensis, and the most abundant species were

Cnemidophorus cf ocellifer, Tropidurus cf oreadicus, and Ameiva ameiva. Based on each

assemblage, the rarest lizards were Enyalius cf bilineatus and Kentropyx paulensis, from

Paracatu-MG, and Bachia cacerensis, from the sandy Cerrado in Vilhena, and the most abundant

40

lizards were Cnemidophorus cryptus, from Monte Alegre, and Cnemidophorus cf ocellifer, from

Paranã (Appendix 4). The assemblage with lowest lizard abundance was Humaitá-AM, and those

with the highest abundances were Paranã and Monte Alegre. Based on abundance relative to

number of species in each assemblage, lizards were less abundant in Paracatu and Humaitá and

more abundant in Alvorada do Norte, the sandy cerrado in Pimenta Bueno, Dianópolis, Paranã,

and Monte Alegre (Appendix 4).

There was no significant difference in lizard abundance between isolated and non isolated

areas (Table 1). Because richer assemblages have higher probabilities than poorer assemblages to

exhibit higher lizard abundances, we repeated the analyses with number of species in each

assemblage as a covariate. Likewise, we did not find a significant difference in abundance of

lizards between isolated and non isolated areas (ANCOVA F1,9 = 0.312, P = 0.590).

To further refine our analyses, we compared the abundances of Ameiva, Anolis,

Cnemidophorus and Micrablepharus, but in no genus there was a significant difference in lizard

abundance between isolated and non isolated habitats (Table 1). A significant negative

correlation existed between number of species in assemblages and abundance of Micrablepharus

(P = 0.039, r = 0.834) (Fig. 6). Our results indicate that the density compensation hypothesis

appears not to be applicable to Cerrado lizard assemblages, with lizard species being equally

abundant in isolated and non isolated areas.

41

Discussion

Species composition and microhabitat

The ecological release hypothesis predicts that on islands, where species diversity is

lower, species should be more generalized (have wider niche breadths) than in continental areas

where diversity is higher (Crowell 1962, Pianka 1994, Ricklefs and Miller 1999). The ecological

release hypothesis is a consequence of competition theory. In places with reduced interspecific

competition, species should expand their use of microhabitats in response to fewer competitors

(Crowell 1962, Losos and Queiroz 1997). The ecological release hypothesis was initially

developed based on island-continent comparisons. We applied the model to non isolated Cerrado

areas (“mainland”) vs. isolated enclaves (“islands”) to test the hypothesis. Our prediction was

that, if ecological release occurs in these areas, microhabitat niche breadths of lizards from

isolated areas should be higher than in non isolated areas. However, our results do not support

these predictions. We found no difference in average microhabitat niche breadth between

isolated vs. non isolated areas both considering all species or the most widespread genera

(Ameiva, Cnemidophorus, Anolis and Tropidurus). Moreover, there was no significant

correlation between microhabitat niche breadth and number of species in assemblages. Our

results showed that ecological release in microhabitat niche breadth did not occur in these areas.

Ecological factors (e. g., competition and predation) have been considered the most

important factors affecting relationships among species in assemblages (Wilbur 1972, Wiens

1977, Diamond 1978, Dunham 1983). More recently, history has been identified as a factor

contributing to community structure and if ignored, erroneous conclusions can result (Brooks

and McLennan 1991, Cadle and Greene 1993, Losos 1994, 1996). Although we have no doubt

42

that competition and predation influence assemblage structure (Spiller and Schoener 1989, Case

and Bolger 1991, Losos, et al. 1993), origins of some ecological differences in assemblages have

their roots deep in the evolutionary history of species (Losos 1995, 1996, Vitt, et al. 1999, 2003,

Webb, et al. 2002). The ecological release hypothesis maintains that ecological factors should be

more important than history in determining assemblage structure, and this should be detectable

as increases in density in isolated areas along with niche expansion. We were unable to support

this. Lizard species are highly conservative in their ecological traits, and this is reflected in low

variation among populations in niche breadth (see Vitt and Colli 1994, Vitt, et al. 1998, Mesquita

and Colli 2003), emphasizing the importance of the evolutionary history of species in

assemblage structure.

Diet composition

Food has been considered a primary niche axis in studies of coexistence of sympatric

species (Pianka 1973, 1986) and the center of attention in studies of species interactions

(Schoener 1968, Dunham 1983, Spiller and Schoener 1994). Considering the ecological release

hypothesis, the low number of species in isolated areas should promote reduced competition and

consequently allow the species to eat a larger spectrum of prey resulting in larger diet niche

breadths (MacArthur, et al. 1972, Pianka 1994, Ricklefs and Miller 1999). Our results partially

support this hypothesis. The results based on pooled stomachs indicate that ecological release

does not occur in these areas. However, based on individual stomachs, the ecological release

hypothesis appears to be applicable for Tropidurus, but not Ameiva ameiva, Anolis,

Cnemidophorus, and Micrablepharus. In the analyses of the pooled stomachs, we used the sum

43

of all items of all individuals of same species in an assemblage. In analyses of individual

stomachs, we have one value of niche breadth per individual, permitting us to calculate the mean

and standart deviation for each individual and posteriorly for all individuals in the assemblage.

Thus we believe that results from individual stomachs are more appropriated for these

comparisons.

Environmental pressures appear to promote differential evolutionary responses among

different taxa. Our results indicate that Ameiva ameiva, Cnemidophorus (Teiidae), Anolis

(Polychrotidae) and Micrablepharus (Gymnophthalmidae) are more conservative in diets.

Comparisons among several populations from different assemblages, with different numbers of

syntopic lizard species and differences in potential competitors and predators, show that diets of

these lizards do not vary considerably. Consequently, historical effects are stronger than

ecological factors (e. g. Brooks and McLennan 1991, Miles and Dunham 1993, Losos 1994,

1996). Apparently, teiids, gymnophthalmids and polychrotids are more conservative in diets than

tropidurids. Teiids occur from Argentina through the United States, gymnophthalmids occur

throughout South America extending north through most of Central America and polychrotids

occur from southeastern United States through Central America and most of South America

(Pough, et al. 1998, Zug, et al. 2001). Despite this wide distribution, ecological traits among

species are conservative (see Pianka 1970, Vitt, et al. 1997, 1998, Mesquita and Colli 2003). For

example, studies on the South American teiids Ameiva ameiva and lizards of genus

Cnemidophorus reveal striking similarities in ecological traits among sites in different biomes

(Vitt and Colli 1994, Mesquita and Colli 2003). Similar results were found for the

gymnophthalmid Neusticurus ecpleopus, which has a wide distribution in Amazon rainforest

(Vitt, et al. 1998) and for Anolis nitens tandai in Amazon forest (Vitt, et al. 2001).

44

On the contrary, tropidurids appear much more variable in their ecological traits. Closely

related tropidurids from several populations in Brazil differ in diets and morphology in response

to use of different microhabitats (Vitt 1981, 1993, Vitt, et al. 1997). Our results suggest that

different lineages show differential responses to environmental pressures; tropidurids were more

affected by ecological factors than teiids, polychrotids and gymnophthalmids, corroborating

previous results (see Vitt 1993, Vitt, et al. 1997a, 1997b, Mesquita and Colli 2003). In addition,

our results suggest that both historical and ecological factors are important for maintenance of

assemblage structure.

Morphometry

The first attempt to use morphological analyses to assess ecological relationships was

described by Hutchinson (1959). Subsequent studies used birds (Schoener 1965, Ricklefs and

Travis 1980), lizards (Ricklefs, et al. 1981, Pianka 1986, Pounds 1988), snakes (Vitt and

Vangilder 1983), and other taxa (Findley 1973, 1976, Gatz Jr. 1979). The advantage of

morphological analyses is that they are easily comparable with other studies (Ricklefs and Miller

1999). Conversely, morphology is relatively fixed and might render it difficult to detect subtle

aspects of ecological variation (Pianka 1994, Ricklefs and Miller 1999). Nevertheless, individual

taxa respond differently to evolutionary pressures (Vitt 1981, Losos, et al. 1993, Losos 1995,

Vitt, et al. 1997). Several recent studies reveal strong associations between morphology and

ecology (Ricklefs, et al. 1981, Vitt 1981, Vitt and Vangilder 1983, Pounds 1988, Losos, et al.

1993, Losos 1994), indicating that morphological analyses are a powerful tool, particularly when

used in conjunction with other data. On islands, rapid morphological evolution resulting from

45

habitat change occurs in Anolis lizards (Pounds 1988, Losos, et al. 1993, Losos 1995), indicating

that under the right circumstances, rapid evolutionary response can occur.

The ecological release hypothesis predicts that in isolated areas, due to habitat expansion

(see Crowell 1962, MacArthur, et al. 1972), morphology of lizards should be more generalized

than in non isolated areas, and this should be reflected as higher average neighbor Euclidean

distance in isolated areas than in non isolated areas. However, in spite of differences in average

neighbor Euclidean distance among assemblages, there were no differences between isolated and

non isolated areas. Morphological data do not support the ecological release hypothesis. These

conclusions are consistent with conclusions based on studied of Anolis lizards on Caribbean

Islands (Losos and Queiroz 1997). Our results suggest that morphology of lizards is very

conservative among assemblages, being little affected by ecological factors, emphasizing the

importance of history of species.

Abundance

Density compensation is a phenomenon usually defined as increased density of island

species in response to a reduction in the number of species compared with mainland populations

(MacArthur, et al. 1972, Pianka 1994, Ricklefs and Miller 1999). This phenomenon was

described initially for birds (Crowell 1962, MacArthur, et al. 1972, Case, et al. 1979), but was

also described for other taxa, like lizards (Case 1975, Wright 1979, Rodda and Dean-Bradley

2002), small mammals (Webb 1965), bats (Stevens and Willig 2000) and invertebrates (Janzen

1973, Dean and Ricklefs 1979, Faeth and Simberloff 1981, Faeth 1984). When density

compensation occurs, abundance of island species can be extremely exaggerated. For example,

46

the tiny leaf litter gecko Sphaerodactylus macrolepis reaches densities greater than 50,000 per

hectare in coccoloba forest in the Virgin Islands, a density substantially higher than that reported

for any mainland lizard (Rodda, et al. 2001).

The density compensation hypothesis is derived from competition theory and most

explanations rest on the premise that, in simple assemblages, resources are more abundant

resulting in less competition when compared with mainland areas, permitting species to occur at

higher densities (Crowell 1962, MacArthur, et al. 1972). Several explanations not based in

competition theory have been provided to explain the occurrence of density compensation in

islands. The increase of animal populations could be related to predation and parasitism, which

may be reduced in islands (Grant 1966, MacArthur, et al. 1972, Case 1975, Rodda and Dean-

Bradley 2002). Gene flow, which is restricted between islands and mainland, could promote high

levels of local adaptations, and consequently higher densities (Emlem 1978, 1979). Climate

tends to be more moderate on islands also, affecting population size by increased survivorship

(Case 1975). Another explanation proposed to explain density compensation is the “fence”

effect. Population density may be higher on islands because isolating mechanisms obstruct

escape of individuals that would otherwise emigrate (Krebs, et al. 1969, MacArthur, et al. 1972,

Emlem 1979).

Our density data do not support the density compensation hypothesis for lizards in the

Cerrado and in Amazon savannas. Species are not more abundant in isolated areas than in non

isolated areas. Until recently, ecological factors have been focused as the most important factors

affecting assemblage structure (Wilbur 1972, Wiens 1977, Diamond 1978). Nowadays, special

attention has been given to history of the species (Brooks and McLennan 1991, Losos 1996,

Webb, et al. 2002). Although we have no doubt that ecological factors exert influence in

47

assemblage structure, most ecological differences appear to be originated long ago in history of

species (Spiller and Schoener 1989, Case and Bolger 1991, Losos, et al. 1993, Losos 1995, Vitt,

et al. 1999, 2003). The density compensation hypothesis maintains that ecological factors should

be more important than history in determining assemblage structure, and this should be

detectable as increases in density in isolated areas. However, lizard abundance was similar in

isolated and non isolated areas, showing that the low number of competitors and predators on

islands (the number of competitors and predators should decrease proportionally with the number

of species) do not promote density compensation, emphasizing the importance of the

evolutionary history of species in assemblage structure.

Our results suggest that both historical and ecological factors are important for the

maintenance of assemblage structure, and that different lineages respond differently to

environmental pressures, with tropidurids being more affected by ecological factors than teiids,

polychrotids and gymnophthalmids. Further, the ecology and abundance of many species in

Neotropical savannas is highly conservative, with little inter-assemblage variation, evidencing

the importance of lineage history. In addition, dietary differences among tropidurids suggest that

ecological factors (e. g. predation and competition) are also important for the maintenance of

assemblage structure.

Acknowledgements - We thank Alison Gainsbury, Adrian Garda, Ayrton Péres Jr., Cristiane

Batista, Daniel Diniz, Frederico França, Gabriel Costa, Gustavo Vieira, Helga Wiederhecker,

Janalee Caldwell, Kátia Colli, Mariana Zatz and S. Balbino for help with the fieldwork. This

work was supported by a doctorate’s fellowship from Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior – CAPES to DOM, a research fellowship from Conselho Nacional de

48

Desenvolvimento Científico e Tecnológico - CNPq to GRC (# 302343/88-1). Programa Nacional

de Diversidade Biológica-PRONABIO (project “Estrutura e dinâmica de isolados naturais e

antrópicos de Cerrado: lições para biologia da conservação”), Fundação o Boticário de Proteção

à Natureza (project “Herpetofauna das savanas amazônicas: subsídios para sua preservação”) and

Conservation International do Brasil (project “Proposta de levantamento da herpetofauna da

micro-região do Jalapão”) funded the research.

References

Begon, M., Harper, J. L. and Townsend, C. R. 1990. Ecology: Individuals, Populations and

Communities. - Blackwell Sci. Publ.

Brooks, D. R. and McLennan, D. A. 1991. Phylogeny, Ecology, and Behavior, a Research

Program in Comparative Biology. – Univ. Chicago Press.

Cadle, J. E. and Greene, H. W. 1993. Phylogenetic patterns, biogeography, and the ecological

structure of Neotropical snake assemblages. - In: Ricklefs, R. E. and Schluter, D. (eds.),

Species Diversity in Ecological Communities: Historical and Geographical Perspectives.

Univ. Chicago Press, pp. 281-293.

Case, T. J. 1975. Species numbers, density compensation, and colonization ability of lizards on

islands in the Gulf of California. - Ecology 56: 3-18.

Case, T. J. and Bolger, D. T. 1991. The role of interspecific competition in the biogeography of

island lizards. - TREE 6: 135-139.

Case, T. J., Gilpin, N. E. and Diamond, J. M. 1979. Overexploitation, interference competition,

and excess density compensation in insular faunas. - Am. Nat. 113: 843-854.

49

Connor, E. F., Courtney, A. C. and Yoder, J. M. 2000. Individuals-area relationships: the

relationship between animal population density and area. - Ecology 81: 734-748.

Crowell, K. L. 1962. Reduced interspecific competition among the birds of Bermuda. - Ecology

43: 75-88.

Dean, J. M. and Ricklefs, R. E. 1979. Do parasites of lepidoptera larvae compete for hosts? No! -

Am. Nat. 113: 302-306.

Diamond, J. M. 1978. Niche shifts and the rediscovery of interspecific competition. - Am. Sci.

66: 322-331.

Dunham, A. E. 1983. Realized niche overlap, resource abundance, and interespecific

competition. - In: Huey, R. B., Pianka, E. R. and Schoener, T. H. (eds.), Lizard Ecology:

Studies of a Model Organism. Harvard Univ. Press, pp. 261-280.

Eidt, R. C. 1968. The climatology of South America. - In: Fitkau, E. J., Illies, J., Klinge, H.,

Schwabe, G. H. and Sioli, H. (eds.), Biogeography and Ecology in South America. Dr.

W. Junk N. V. Publishers, pp. 54-81.

Eiten, G. 1972. The Cerrado vegetation of Brazil. - Bot. Rev. 38: 201-341.

Eiten, G. 1978. Delimitation of the Cerrado concept. - Vegetatio 36: 169-178.

Emlem, J. T. 1978. Density anomalies and regulatory mechanisms in the land bird populations

on the Florida peninsula. - Am. Nat. 112: 265-286.

Emlem, J. T. 1979. Land bird densities on Baja California islands. - Auk 96: 152-167.

Faeth, S. H. 1984. Density compensation in vertebrates and invertebrates: a review and an

experiment. - In: Strong Jr., D. R., Simberloff, D., Abele, L. G. and Thistle, A. B. (eds.),

Ecological Communities: Conceptual Issues and the Evidence. Princeton Univ. Press, pp.

491-509.

50

Faeth, S. H. and Simberloff, D. 1981. Experimental isolation of oak host plants: effects on

mortality, survivorship, and abundances of leaf-mining insects. - Ecology 62: 625-635.

Findley, J. S. 1073. Phenetic packing as a measure of faunal diversity. - Am. Nat. 107: 580-584.

Findley, J. S. 1976. The structure of bat communities. - Am. Nat. 110: 129-139.

Gatz Jr., A. J. 1979. Community organization in fishes as indicated by morphological features. -

Ecology 60: 711-718.

Grant, P. R. 1966. The density of land birds on Tres Marias Islands in Mexico. I. Numbers and

biomass. - Can. J. Zool. 44: 805-815.

Hutchinson, G. H. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? -

Am. Nat. 95: 145-159.

Janzen, D. H. 1973. Sweep samples of tropical foliage insects: effects of seasons, vegetation

types, elevation, time of day, and insularity. - Ecology 54: 687-708.

Krebs, C. J., Keller, B. L. and Tamarin, R. H. 1969. Microtus population biology: demographic

changes in fluctuating populations of M. ochrogaster and M. pennsylvanicus in southern

Indiana. - Ecology 50: 587-607.

Losos, J. B. 1994. Historical contingency and lizard community ecology. - In: Vitt, L. J. and

Pianka, E. R. (eds.), Lizard Ecology: Historical and Experimental Perspectives. Princeton

Univ. Press, pp. 319-333.

Losos, J. B. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns

and experimental tests. - Phil. Trans. R. Soc. London B 349: 69-75.

Losos, J. B. 1996. Phylogenetic perspectives on community ecology. - Ecology 77: 1344-1354.

51

Losos, J. B., Marks, J. C. and Schoener, T. W. 1993. Habitat use and ecological interactions of

an introduced and a native species of Anolis lizard on Grand Cayman, with a review of

the outcomes of anole introductions. - Oecologia 95: 525-532.

Losos, J. B. and Queiroz, K. 1997. Evolutionary consequences of ecological relaease in

Caribbean Anolis lizards. - Biol. J. Linn. Soc. 61: 459-483.

MacArthur, R. H., Diamond, J. M. and Karr, J. R. 1972. Density compensation in island faunas. -

Ecology 53: 330-342.

Mesquita, D. O. and Colli, G. R. 2003. Geographical variation in the ecology of populations of

some Brazilian species of Cnemidophorus (Squamata, Teiidae). - Copeia 2003: 285-298.

Miles, D. B. and Dunham, A. E. 1993. Historical perspectives in ecology and evolutionary

biology: the use of phylogenetic comparative analyses. - Annu. Rev. Ecol. Syst. 24: 587-

619.

Mitchell, J. C. 1979. Ecology of Southeastern Arizona whiptail lizards (Cnemidophorus:

Teiidae): population densities, resource partitioning, and niche overlap. - Can. J. Zool.

57: 1487-1499.

Nimer, E. 1989. Climatologia da região centro-oeste. - In: Climatologia do Brasil. Fundação

Instituto Brasileiro de Geografia e Estatística - IBGE, pp. 393-421.

Oliveira, P. S. and Marquis, R. J. 2002. The Cerrados of Brazil: Ecology and Natural History of a

Neotropical Savanna. - Columbia Univ. Press.

Pianka, E. R. 1970. Comparative autecology of the lizard Cnemidophorus tigris in different parts

of its geographic range. - Ecology 51: 703-720.

Pianka, E. R. 1973. The structure of lizard communities. - Annu. Rev. Ecol. Syst. 4: 53-74.

52

Pianka, E. R. 1986. Ecology and Natural History of Desert Lizards: Analyses of the Ecological

Niche and Community Structure. - Princeton Univ. Press.

Pianka, E. R. 1994. Evolutionary Ecology. - HarperCollins College. Publ.

Pires, J. M. 1973. Tipos de vegetação da Amazônia. - Publ. Av. Mus. Par. Em. Goel. 20: 179-

202.

Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H. and Wells, K. D.

1998. Herpetology. - Prentice Hall.

Pounds, J. A. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in a

tropical mainland Anolis community. - Ecol. Monog. 58: 299-320.

Ribeiro, J. F. and Walter, B. M. T. 1998. Fitofisionomias do bioma Cerrado. - In: Sano, S. M.

and Almeida, S. P. (eds.), Cerrado: Ambiente e Flora. EMBRAPA-CPAC, pp. 89-166.

Ricklefs, R. E., Cochran, D. and Pianka, E. R. 1981. A morphological analysis of the structure of

communities of lizards in desert habitats. - Ecology 62: 1474-1483.

Ricklefs, R. E. and Miller, G. L. 1999. Ecology. - Freeman, W H and Company.

Ricklefs, R. E. and Travis, J. 1980. A morphological approach to the study of avian community

organization. - Auk 97: 321-338.

Rodda, G. H., Campbell, E. W. and Fritts, T. H. 2001. A high validity sensus technique for

herpetofaunal assemblages. - Herpetol. Rev. 32: 24-30.

Rodda, G. H. and Dean-Bradley, K. 2002. Excess density compensation of island herpetofaunal

assemblages. - J. Biogeogr. 29: 623-632.

Schoener, T. W. 1965. The evolution of bill size differences among sympatric congeneric species

of birds. - Evolution 19: 189-213.

53

Schoener, T. W. 1968. The Anolis lizards of Bimini: resourse partitioning in a complex fauna. -

Ecology 49: 704-726.

Simpson, E. H. 1949. Measurement of diversity. - Nature 163: 688.

Spiller, D. A. and Schoener, T. W. 1989. Effect of a major predator on grouping of an orb-

weaving spider. - J. An. Eco. 58: 509-523.

Spiller, D. A. and Schoener, T. W. 1994. Effects of top and intermediate predators in a terrestrial

food web. - Ecology 75: 182-196.

Stevens, R. D. and Willig, M. R. 2000. Density compensation in new world bat communities. -

Oikos 89: 367-377.

Vitt, L. J. 1981. Lizard reproduction: habitat specificity and constraints on relative clutch mass. -

Am. Nat. 117: 506-514.

Vitt, L. J. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in

Amazonian lowland rain forest. - Can. J. Zool. 71: 2370-2390.

Vitt, L. J. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. - Occ. Pap.

Oklahoma Mus. Nat. Hist. 1: 1-29.

Vitt, L. J., Caldwell, J. P., Zani, P. A. and Titus, T. A. 1997a. The role of habitat shift in the

evolution of lizard morphology: evidence from tropical Tropidurus. - Proc. Natl. Acad.

Sci. 94: 3828-3832.

Vitt, L. J. and Colli, G. R. 1994. Geographical ecology of a neotropical lizard: Ameiva ameiva

(Teiidae) in Brazil. - Can. J. Zool. 72: 1986-2008.

Vitt, L. J., Pianka, E. R., Cooper, W. E., Jr. and Schwenk, K. 2003. History and the global

ecology of squamate reptiles. - Am. Nat. 162: 44-60.

54

Vitt, L. J., Sartorius, S. S., Ávila-Pires, T. C. S. and Esposito, M. C. 2001. Life on the leaf litter:

The ecology of Anolis nitens tandai in the Brazilian Amazon. - Copeia 2001: 401-412.

Vitt, L. J. and Vangilder, L. D. 1983. Ecology of a snake community in northeastern Brazil. -

Amphibia-Reptilia 4: 273-296.

Vitt, L. J., Zani, P. A., Ávila-Pires, T. C. S. and Esposito, M. C. 1998. Geographical ecology of

the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon rainforest. - Can. J.

Zool. 76: 1671-1680.

Vitt, L. J., Zani, P. A., Caldwell, J. P., Araujo, M. C. D. and Magnusson, W. E. 1997b. Ecology

of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. - Copeia 1997: 745-

757.

Vitt, L. J., Zani, P. A. and Esposito, M. C. 1999. Historical ecology of Amazonian lizards:

implications for community ecology. - Oikos 87: 286-294.

Webb, C. O., Ackerley, D. D., McPeek, M. A. and Donoghue, M. J. 2002. Phylogenies and

community ecology. - Annu. Rev. Ecol. Syst. 33: 475-505.

Webb, W. L. 1965. Small mammal populations on islands. - Ecology 46: 479-488.

Wiens, J. A. 1977. On competition and variable environments. - Am. Sci. 65: 590-597.

Wilbur, H. M. 1972. Competition, predation, and the structure of the Ambystoma-Rana sylvatica

community. - Ecology 53: 3-21.

Wright, S. J. 1979. Competition between insectivorous lizards and birds in Central Panamá. -

Am. Zool. 19: 1145-1156.

Zar, J. H. 1998. Biostatistical Analysis. - Prentice-Hall, Inc.

Zug, G. R., Vitt, L. J. and Caldwell, J. P. 2001. Herpetology: An Introductory Biology of

Amphibians and Reptiles. - Academic Press.

55

Table 1. Summary of ecological traits of lizard assemblages from 20 isolated and non isolated

open vegetation areas from Brazil. Sample sizes are in parentheses.

Variable Isolated Non isolated Comparisons All species richness 5.786 ± 2.778

(6) 12.000 ± 3.847

(14) F1,18 = 16.744

P = 0.001 Microhabitat niche breadth 1.959 ± 0.428

(9) 1.879 ± 0.463

(4) F1,11 = 0.093

P = 0.766 Diet niche breadth (pooled) 3.386 ± 1.057

(14) 2.722 ± 0.561

(6) F1,18 = 2.072

P = 0.167 Diet niche breadth (individual) 1.503 ± 0.267

(14) 1.233 ± 0.135

(6) F1,18 = 5.422

P = 0.032 Nearest neighbor Euclidean distance 1.151 ± 0.395

(14) 1.119 ± 0.224

(6) F1,18 = 0.032

P = 0.859 Abundance of shared species 4.744 ± 5.328

(7) 7.905 ± 3.083

(5) F1,10 = 1.399

P = 0.264 Ameiva ameiva Microhabitat niche breadth 2.194 ± 0.626

(9) 1.643 ± 0.593

(4) F1,11 = 2.206

P = 0.166 Abundance 1.406 ± 1.699

(7) 0.541 ± 0.398

(4) F1,10 = 1.215

P = 0.296 Cnemidophorus Microhabitat niche breadth 1.974 ± 0.367

(5) 1.442 ± 0.565

(4) F1,7 = 2.949 P = 0.130

Abundance 3.130 ± 3.492 (2)

2.525 ± 2.583 (5)

F1,5 = 0.067 P = 0.806

Anolis Microhabitat niche breadth 2.286 ± 1.818

(2) 1.823 ± 1.164

(2) F1,2 = 0.092 P = 0.790

Abundance 1.568 ± 1.820 (3)

1.374 ± 1.693 (2)

F1,3 = 0.014 P = 0.913

Tropidurus Microhabitat niche breadth 2.446 ± 0.823

(5) 2.812 ± 0.862

(4) F1,7 = 0.422 P = 0.537

Micrablepharus Abundance 1.610 ± 0.787

(2) 1.054 ± 0.839

(4) F1,4 = 0.605 P = 0.480

56

Table 2. Comparisons of diet niche breadths based on individual stomach means of five lizard

genera from Cerrado assemblages. Bold face indicates statically significant differences, upper

values are based on pooled means of stomachs and lower values are based on individual

stomachs, and sample sizes are in parentheses.

Genera x isolated x non isolated Comparisons

Ameiva ameiva 4.324 ± 1.731 (14)

1.632 ± 0.258 (14)

3.707 ± 1.958 (6)

1.605 ± 0.208 (6)

F1,18 = 0.496, P = 0.490

F1,18 = 0.049, P = 0.827

Cnemidophorus 4.006 ± 1.149 (5)

1.606 ± 0.285 (5)

2.540 ± 0.808 (5)

1.226 ± 0.243 (5)

F1,8 = 5.444, P = 0.048

F1,8 = 5.141, P = 0.053

Micrablepharus 2.398 ± 0.855 (4)

1.142 ± 0.148 (4)

3.162 ± 0.837 (5)

0.990 ± 0.263 (5)

F1,7 = 1.821, P = 0.219

F1,7 = 1.050, P = 0.340

Anolis 3.419 ± 1.765 (7)

1.290 ± 0.364 (7)

4.053 ± 1.053 (3)

1.014 ± 0.194 (3)

F1,8 = 0.324, P = 0.585

F1,8 = 1.472, P = 0.260

Tropidurus 3.818 ± 0.829 (5)

1.662 ± 0.278 (5)

3.360 ± 0.949 (6)

1.333 ± 0.107 (6)

F1,9 = 0.421, P = 0.421

F1,9 = 7.223, P = 0.025

57

Figure Legends

Figure 1. Collecting localities in savannas of Brazil. 1- Paracatu - MG, 2- Alvorada do Norte –

GO, 3- São Domingos – GO, 4- Dianópolis - TO, 5- Mateiros - TO, 6- Paranã - TO, 7- Vilhena -

RO, 8- Pimenta Bueno - RO, 9- Guajará – Mirim - RO, 10- Humaitá - AM, 11- Cachimbo – PA,

12- Paraupebas - PA, 13- Alter do Chão - PA, 14- Monte Alegre - PA, 15- Macapá - AP, 16-

Tartarugalzinho - AP, and 17- Boa Vista. Adapted from “Mapa de Vegetação do Brasil” by

Instituto Brasileiro de Geografia e Estatística (IBGE).

Figure 2. Relationship between average microhabitat niche breadths and number of species of

lizards from Cerrado-like open vegetation habitats in Brazil. Circle = isolated and triangle = non

isolated.

Figure 3. Relationship between average diet niche breadths based on pooled stomachs and

number of species of Ameiva ameiva, Cnemidophorus, Micrabepharus, Anolis, Tropidurus and

all species combined from Cerrado-like open vegetation habitats in Brazil. Circle = isolated and

triangle = non isolated.

Figure 4. Relationship between average diet niche breadths based on individual stomachs and

number of species of Ameiva ameiva, Cnemidophorus, Micrabepharus, Anolis, Tropidurus and

all species combined from Cerrado-like open vegetation habitats in Brazil. Circle = isolated and

triangle = non isolated.

58

Figure 5. Relationship between average nearest neighbor Euclidean distance of log transformed

morphometrical data of lizards from 20 Cerrado-like open vegetation habitats in Brazil and

number of species of each assemblage.

Figure 6. Relationship between abundance (individuals per day) of lizards in the genera Anolis,

Micrablepharus, Ameiva, and Cnemidophorus and number of species in each assemblage

collected in 100 pitfall traps in several Cerrado-like open vegetation habitats in Brazil.

59

60

61

62

63

64

65

Appendix 1. Composition of lizard assemblages and number of individuals in 20 Cerrado like open vegetation enclaves from Brazil. dr = dry forest, lc = latosoil cerrado, rf = rocky field, sc = sandy cerrado, and tf = transitional forest. 1- Alter do Chão, 2- Alvorada, 3- Amapá, 4- Cachimbo, 5- Carajás, 6- Dianópolis, 7- Guajará-Mirim, 8- Humaitá, 9- Jalapão, 10- Monte Alegre, 11- Paracatu, 12- Paranã, 13- Pimenta Bueno, 14- Roraima, 15- São Domingos, and 16- Vilhena.

Lizard Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sc sc-rf sc sc-rf rf sc-rf rf lc sc sc-rf sc-rf lc sc-rf lc tf sc sc df lc scGekkonidae Briba brasiliana b - - - - - 5 - - - 8 - - - - - - - - - - Coleodactylus meridionalis - - - - - 14 - - - - - - 7 - - - - 25 - - Gonatodes humeralis a - - - - - - - - - - 3 - - - - - - - - - Gymnodactylus geckoides - - - - - 1 - - - 107 - - 85 - - - - 75 - - Hemidactylus palaichthus - - - - - - - - - - - - - - - - 2 - - - Lygodactylus klugei b - - - - - - - - - - - - - - - - - 8 - - Phyllopezus pollicaris - - - - - - - - - - - - 19 - - - - 19 - -

Gymnophthalmidae Bachia bresslaui - - - - - - - - - - - 12 - - - - - - - - Bachia cacerensis - - - - - - - - - - - - - - - - - - - 2 Bachia dorbignyi a - - - - - - - - 1 - - - - - - - - - - - Cercosaura ocellata - - - - - - - 8 - - - 11 - 21 79 2 - - 7 - Colobosaura modesta - 12 - 1 2 - - - - 20 - 14 - - - - - 6 - - Gymnophthalmidae sp a - - - - - - - - - - - - - 1 - 1 - - - - Gymnophthalmus leucomystax - - - - - - - - - - - - - - - - 3 - - - Gymnophthalmus underwoodi 1 - - - - - - - - - 14 - - - - - - - - - Iphisa elegans a - - - - - - - - - - - - - - 3 - - - 3 - Micrablepharus atticolus - - - - - - - - - - - 13 - - - 110 - - - 69Micrablepharus maximiliani - 27 - 3 - - - - 6 48 - - 19 - - - - 14 - - Prionodactylus eigenmanni a - - - - - - - - - - - - - - 9 - - - 2 - Vanzosaura rubricauda - - - - - 4 - - - 33 - - - - - - - - - -

Leiosauridae Enyalius cf bilineatus - - - - - - - - - - - 6 - - - - - - - -

Polychrotidae

66

Anolis auratus 10 - 180 - - - - - - - 56 - - - - - 55 - - - Anolis meridionalis - - - - - - - - - - - 53 - - - - - - 6 48Anolis nitens - - - - 20 - - - - 5 - - 2 - - - - 191 - - Anolis ortonii a - - - - - - - - - - - - - - 1 - - - - - Iguana iguana - 2 - 1 - - - - - 14 3 - 1 - - - 1 6 - - Polychrus acutirostris - - - 2 - - - - - 1 - 1 - - - - - 8 1 2

Scincidae Mabuya dorsivittata - - - - - - - - - - - 7 - - - - - - - - Mabuya frenata - - - - - - - - - - - 21 - - - - - - 13 1 Mabuya guaporicola - 5 - 2 - 1 - - - - - 1 10 - - - - - - - Mabuya cf heathi b - - - - - - - - - 20 - - - - - - - - - - Mabuya nigropunctata - - - - - - - - - 6 10 1 9 - 1 - - 7 1 - Mabuya sp. - - - - - - - - - - - - - - - - - 35 - -

Teiidae Ameiva ameiva 43 19 102 115 34 5 104 166 40 47 80 61 27 90 10 71 116 6 33 77Cnemidophorus cryptus - - 81 - - - - - - - 85 - - - - - - - - - Cnemidophorus lemniscatus 54 - - - - - - - - - - - - - - - 125 - - - Cnemidophorus mumbuca - - - - - 27 - - - 193 - - - - - - - - - - Cnemidophorus cf ocellifer - 77 - - - - - - - - - 22 162 - - - - 1 - - Cnemidophorus parecis - - - - - - - - - -- - - - - - - - - - 99Kentropyx altamazonica a - - - - - - - - 2 - - - - 9 45 - - - 23 7 Kentropyx calcarata a - - - - - - - - - - - - - - - - - - 2 - Kentropyx paulensis - - - - - - - - - - - 4 - - - - - - - - Kentropyx striata 32 - 43 - - - - - - - 9 - - - - - 146 - - - Kentropyx vanzoi - - - - - - - - - - - - - - - - - - - 69Tupinambis merianae - 2c - - 3 - - 2 - - - - 1 1c 1 1c - 3 1c 2 Tupinambis quadrilineatus - - - - - - - - - 2 - - - - - - - 1 - - Tupinambis teguixin a - - - 2 - - - 2 - - 3 - 4 - - - 13 - - -

Tropiduridae - Stenocercus sp. - - - - - - - - - - - - - 9 - - - - 2 - Tropidurus sp. - - - - - - 126 - - - - - - - - - - - - -

67

Tropidurus cf hispidus - - - - - - - - - - 44 - - - - - 130 - - - Tropidurus insulanus - - - 73 - - - - - - - - - - - - - - - - Tropidurus itambere - - - - - - - - - - - 154 - - - - - - - - Tropidurus cf oreadicus - 41 - - 72 48 - - - 165 - - 51 - - - - 26 - -

Total species richness 5 8 5 8 5 8 2 4 4 13 10 16 12 6 8 5 9 16 11 10Isolated X X X X X X X X X X X X X XTotal No. 140 183 471 217 132 105 230 271 49 668 307 397 426 129 149 183 591 439 92 376

a Forest species. b Caatinga species c Species sighted but not captured.

68

Appendix 2. Microhabitat niche breadths of lizard assemblages in 13 Cerrado like open vegetation from Brazil. DF = dry forest, LC =

latosoil Cerrado, RF = rocky field, SC = sandy Cerrado, and TF = transitional forest. Collecting sites numbers are in Appendix 1.

Lizard Species 1 2 3 4 5 7 9 10 12 14 15 16 SC SC-RF SC SC-RF RF RF SC-RF SC-RF SC-RF SC DF LC SC Gekkonidae

Coleodactylus meridionalis - - - - - - - - 1.00 - 3.00 - - Gonatodes humeralis - - - - - - - 2.00 - - - - - Gymnodactylus geckoides - - - - - - 1.05 - 4.37 - 5.04 - - Hemidactylus palaichthus - - - - - - - - - 2.00 - - - Phylopezus policaris - - - - - - - - 2.00 - 1.47 - -

Gymnophthalmidae Cercosaura ocellata - - - - - - - - - - - 2.00 - Colobosaura modesta - 1.00 - - 1.00 - - - - - 3.00 - - Gymnophthalmus leucomystax - - - - - - - - - 1.80 - - - Gymnophthalmus underwoodi 1.00 - - - - - - - - - - - - Micrablepharus atticolus - - - - - - - - - - - - 1.00Micrablepharus maximiliani - 2.67 - - - - 1.00 - 1.00 - 4.83 - -

Polychrotidae Anolis auratus 1.00 - 1.58 - - - - 2.27 - 1.91 - - - Anolis meridionalis - - - - - - - - - - - - 3.57Anolis nitens - - - - 1.00 - - - 1.00 - 2.65 - - Iguana iguana - 1.00 - 1.00 - - 2.00 - - 1.00 1.00 - - Polychrus acutirostris - - - 1.00 - - - - - - 2.00 - 1.00

Scincidae Mabuya frenata - - - - - - - - - - - 2.00 1.00Mabuya guaporicola - 1.00 - - - - - - 1.00 - - - - Mabuya nigropunctata - - - - - - 1.00 2.00 - - 3.00 1.00 - Mabuya sp. - - - - - - - - - - 4.21 - -

Teiidae

69

Ameiva ameiva 2.26 2.00 2.56 2.89 2.44 2.67 1.30 1.14 2.27 2.67 1.00 1.35 1.77Cnemidophorus cryptus - - 2.31 - - - - 1.49 - - - - - Cnemidophorus lemniscatus 1.68 - - - - - - - - 2.22 - - - Cnemidophorus mumbuca - - - - - - 1.00 - - - - - - Cnemidophorus cf ocellifer - 1.59 - - - - - - 2.18 - 1.00 - - Cnemidophorus parecis - - - - - - - - - - - - 2.18Kentropyx altamazonica - - - - - - - - - - - 1.69 - Kentropyx striata 2.50 - 3.56 - - - - 2.00 - 3.29 - - - Kentropyx vanzoi - - - - - - - - - - - - 2.08Tupinambis merianae - - - - 1.80 - - - - - 1.00 - 1.00Tupinambis quadrilineatus - - - - - - 1.00 - - - 1.00 - - Tupinambis teguixin - - - 1.00 - - - - - 2.16 - - -

Tropiduridae Tropidurus sp. - - - - - 2.81 - - - - - - - Tropidurus cf hispidus - - - - - - - 1.16 - 3.35 - - - Tropidurus insulanus - - - 2.21 - - - - - - - - - Tropidurus cf oreadicus - 3.85 - - 2.69 - 2.22 - 1.99 - 3.18 - -

Isolated X X X X X X X X X Average niche breadths 1.69 1.87 2.50 1.62 1.79 2.74 1.32 1.72 1.87 2.27 2.46 1.61 1.69

70

Appendix 3. Diet niche breadths based on individual (upper) and pooled (down) stomachs of lizard assemblages in 20 Cerrado like open vegetation from Brazil. df = dry forest, lc = latosoil cerrado, rf = rocky field, sc = sandy cerrado, and tf = transitional forest. Collecting sites numbers are in Appendix 1.

Lizard Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sc sc sc sc-

rf rf sc rf sc lc sc-

rf sc-rf

lc sc-rf

lc tf sc sc df lc sc

Gekkonidae Briba brasiliana - - - - - 0.94

1.31- - - 1.33

3.53 - - - - - - - - - -

Coleodactylus meridionalis - - - - - 0.951.13

- - - - - - - - - - - 1.003.16

- -

Gonatodes humeralis - - - - - - - - - - - - - - - - - - - - Gymnodactylus geckoides - - - - - - - - - 1.18

2.38 - - 1.06

1.21- - - - 0.93

2.28- -

Hemidactylus palaichthus - - - - - - - - - - - - - - - - - - - - Lygodactylus klugei - - - - - - - - - - - - - - - - - 0.88

2.77- -

Phyllopezus pollicaris - - - - - - - - - - - - - - - - - 0.934.04

- -

Gymnophthalmidae Bachia bresslaui - - - - - - - - - - - 0.81

2.75- - - - - - - -

Bachia cacerensis - - - - - - - - - - - - - - - - - - - - Bachia dorbignyi - - - - - - - - - - - - - - - - - - - - Cercosaura ocellata - - - - - - - - 0.88

3.50 - - 0.75

1.46- 1.18

3.811.275.30

1.001.00

- - 0.691.52

-

Colobosaura modesta - 1.001.56

- - - - - - - 1.09 2.55

- 0.742.53

- - - - - 0.861.34

- -

Gymnophthalmidae sp - - - - - - - - - - - - - - - - - - - - Gymnophthalmus leucomystax - - - - - - - - - - - - - - - - - - - - Gymnophthalmus underwoodi - - - - - - - - - - 0.86 - - - - - - - - -

71

1.78Iphisa elegans - - - - - - - - - - - - - - - - - - 1.00

1.00-

Micrablepharus atticolus - - - - - - - - - - - 0.782.56

- - - 1.002.89

- - - 1.073.17

Micrablepharus maximiliani - 0.943.10

- 1.151.24

- - - 1.342.29

- 1.45 4.45

- - 0.882.31

- - - - 0.913.39

- -

Prionodactylus eigenmanni - - - - - - - - - - - - - - 1.201.99

- - - 1.002.00

-

Vanzosaura rubricauda - - - - - 0.671.30

- - - 1.28 3.26

- - - - - - - - - -

Leiosauridae Enyalius cf bilineatus - - - - - - - - - - - - - - - - - - - -

Polychrotidae Anolis auratus 1.35

2.54- 1.28

4.57- - - - - - - 1.01

2.14- - - - - 1.92

6.80- - -

Anolis meridionalis - - - - - - - - - - - 1.043.20

- - - - - - 1.342.24

1.403.66

Anolis nitens - - - - 0.741.98

- - - - 0.81 3.73

- - - - - - - 1.195.23

- -

Anolis ortonii - - - - - - - - - - - - - - - - - - - - Iguana iguana - - - - - - - - - - - - - - - - - - - - Polychrus acutirostris - - - - - - - - - - - - - - - - - 1.27

2.93- -

Scincidae Mabuya dorsivittata - - - - - - - - - - - 1.15

3.46- - - - - - - -

Mabuya frenata - - - - - - - - - - - 0.973.71

- - - - - - 1.283.79

-

Mabuya guaporicola - 1.292.53

- - - - - - - - - 1.001.00

1.503.16

- - - - - - -

72

Mabuya cf heathi - - - - - - - - - 1.55 6.27

- - - - - - - - - -

Mabuya nigropunctata - - - - - - - - - 1.12 2.02

1.352.91

- - - 0.500.50

- - 1.222.62

- -

Mabuya sp. - - - - - - - - - - - - - - - - - 1.023.28

- -

Teiidae Ameiva ameiva 1.39

2.591.342.41

1.552.82

1.585.55

1.571.97

1.663.55

1.995.66

1.976.19

1.60 3.41

1.91 4.81

1.303.09

1.727.11

1.412.16

1.593.80

1.352.19

1.344.09

1.927.32

1.592.20

1.625.99

2.075.87

Cnemidophorus cryptus - - 1.725.17

- - - - - - - 1.273.20

- - - - - - - - -

Cnemidophorus lemniscatus 1.543.73

- - - - - - - - - - - - - - - 2.035.23

- - -

Cnemidophorus mumbuca - - - - - 1.362.08

- - - 1.59 3.62

- - - - - - - - - -

Cnemidophorus cf ocellifer - 1.131.48

- - - - - - - - - 1.012.68

1.052.84

- - - - - - -

Cnemidophorus parecis - - - - - - - - - - - - - - - - - - - 1.482.70

Kentropyx altamazonica - - - - - - - 1.422.83

- - - - - 1.362.52

0.983.89

- - - 1.293.34

1.001.00

Kentropyx calcarata - - - - - - - 1.661.66

- - - - - - - - - - - -

Kentropyx paulensis - - - - - - - - - - - 0.500.50

- - - - - - - -

Kentropyx striata 1.254.50

- 1.164.93

- - - - - - - 1.012.93

- - - - - 1.738.93

- - -

Kentropyx vanzoi - - - - - - - - - - - - - - - - - - - 1.235.40

Tupinambis merianae - - - - 0.671.00

- - - 1.51 1.68

- - - - - - - - - - -

73

Tupinambis quadrilineatus - - - - - - - - - 1.64 1.89

- - - - - - - - - -

Tupinambis teguixin - - - - - - - - 1.01 1.01

- - - - - - - 1.663.06

- - -

Tropiduridae - Stenocercus sp. - - - - - - - - - - - - - - - - - - - - Tropidurus sp. - - - - - - 1.94

3.87- - - - - - - - - - - - -

Tropidurus cf hispidus - - - - - - - - - - 1.483.33

- - - - - 1.955.24

- - -

Tropidurus insulanus - - - 1.613.32

- - - - - - - - - - - - - - - -

Tropidurus itambere - - - - - - - - - - - 1.264.13

- - - - - - - -

Tropidurus cf oreadicus - 1.374.18

- - 1.323.33

1.332.51

- - - 1.53 4.33

- - 1.242.27

- - - - 1.272.74

- -

Total species richness 5 8 5 8 5 8 2 4 4 13 10 16 12 6 8 5 9 16 11 10 Isolated X X X X X X X X X X X X X X

74

Appendix 4. Abundance of lizards (number of lizards/day) from 13 Cerrado like open vegetation from Brazil. DR = dry forest, LC =

latosoil Cerrado, RF = rocky field, SC = sandy Cerrado, and TF = transitional forest. Collecting sites numbers are in Appendix 1.

Lizard Species 2 6 8 9 10 11 12 13 15 16 SC SC LC SC-

RF SC-RF

LC SC-RF

LC TF SC DF LC SC

Gekkonidae Briba brasiliana - 0.20 - 0.04 - - - - - - - - - Coleodactylus meridionalis - - - - - - 0.21 - - - 0.13 - - Gonatodes humeralis - - - - 0.13 - - - - - - - - Gymnodactylus geckoides - - - 0.32 - - 2.71 - - - 0.63 - - Lygodactylus klugei - - - - - - - - - - 0.38 - - Phylopezus policaris - - - - - - - - - - 0.13 - -

Gymnophthalmidae Bachia bresslaui - - - - - 0.04 - - - - - - - Bachia cacerensis - - - - - - - - - - - - 0.02 Cercosaura ocellata - - 0.35 - - 0.04 - 0.50 1.73 0.04 - 0.36 - Colobosaura modesta 0.62 - - 0.28 - 0.04 - - - - 0.63 - - Gymnophthalmidae sp - - - - - - - 0.02 - 0.02 - - - Gymnophthalmus underwoodi - - - - 0.87 - - - - - - - - Iphisa elegans - - - - - - - - 0.02 - - 0.12 - Micrablepharus atticolus - - - - - 0.05 - - - 2.25 - - 1.05 Micrablepharus maximiliani 1.63 - - 0.65 - - 1.86 - - - 0.63 - - Prionodactylus eigenmanni - - - - - - - - 0.20 - - - - Vanzosaura rubricauda - 0.30 - 0.57 - - - - - - - - -

Leiosauridae Enyalius cf bilineatus - - - - - 0.01 - - - - - - -

Polychrotidae Anolis auratus - - - - 3.67 - - - - - - - - Anolis meridionalis - - - - - 0.18 - - - - - 0.48 0.68

75

Anolis nitens - - - 0.03 - - 0.07 - - - 2.25 - - Polychrus acutirostris - - - - - 0.01 - - - - - 0.04 -

Scincidae Mabuya dorsivittata - - - - - 0.08 - - - - - - - Mabuya frenata - - - - - 0.38 - - - - - 0.36 - Mabuya guaporicola 0.19 - - - - 0.02 0.50 - - - - - - Mabuya cf heathi - - - 0.28 - - - - - - - - - Mabuya nigropunctata - - - - 0.67 - - - 0.02 - - - - Mabuya sp. - - - - - - - - - - 0.63 - -

Teiidae Ameiva ameiva 1.19 0.30 0.35 0.45 5.00 0.15 0.42 1.89 0.18 1.44 - 0.28 0.96 Cnemidophorus cryptus - - - - 5.60 - - - - - - - - Cnemidophorus mumbuca - 2.20 - 2.71 - - - - - - - - - Cnemidophorus cf ocellifer 0.81 - - - - 0.07 6.71 - - - - - - Cnemidophorus parecis - - - - - - - - - - - - 0.66 Kentropyx altamazonica - - - - - - - 0.20 0.98 - - 0.68 - Kentropyx paulensis - - - - - 0.01 - - - - - - - Kentropyx striata - - - - 0.6 - - - - - - - - Kentropyx vanzoi - - - - - - - - - - - - 1.09

Tropiduridae - Stenocercus sp. - - - - - - - 0.16 - - - 0.08 - Tropidurus itambere - - - - - 0.49 - - - - - - - Tropidurus cf oreadicus 1.38 4.80 - 1.95 - - 0.13 - - - 0.13 - -

Total abundance 5.81 7.80 0.71 7.27 16.53 1.21 13.14 2.80 3.16 3.83 5.50 2.40 4.48 Relative abundance (total abundance/richness)

0.73 0.98 0.12 0.56 1.65 0.09 1.10 0.47 0.40 0.77 0.34 0.22 0.45

76

APÊNDICE 2- manuscrito submetido para a publicação na revista Copeia em janeiro de

2005.

Ecology of a Cerrado lizard assemblage in the Jalapão region of Brazil

Daniel O. Mesquita1, Guarino R. Colli1, Frederico G. R. França1 and Laurie J. Vitt2

1Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília,

70910-900 Brasília, Distrito Federal, Brazil, Tel/fax: 55-61-307-2092, email:

[email protected]

2Sam Noble Oklahoma Museum of Natural History and Zoology Department, University

of Oklahoma, 2401 Chautauqua Ave., Norman, OK 73072 USA, email: [email protected]

Corresponding author: Daniel Oliveira Mesquita

Manuscript type: major article

Running title: Jalapão lizard assemblage

Key words: assemblage structure, community ecology, historical factors

77

A lizard assemblage from one of the last remaining large expanses of undisturbed

Cerrado is described combining ecological and morphometric data with phylogenetic data

to examine the role of history in structuring it. The lizard assemblage contains 14 species.

Niche breadth for microhabitat was low for all species in the assemblage. Microhabitat

niche overlaps varied from none to almost complete and appears associated with

phylogenetic distance. A pseudocommunity analysis revealed that mean microhabitat and

diet overlap among lizard species did not differ statistically from random, indicating lack

of structure. Prey overlaps were high within gymnophthalmids and teiids. A plot of factor

scores for the first two principal components reveals clusters corresponding to lizard

families, suggesting a strong association between morphology and phylogeny. A detailed

inspection of the phylogenetic cladogram reveals similarities among closely related

species suggesting the role of history in the assemblage. Canonical Phylogenetic

Ordination revealed no significant phylogenetic effect on microhabitats used or dietary

composition of the lizards. Contradictory results from Canonical Phylogenetic Ordination

suggest that potential historical effects are undetectable because higher taxa (families) are

underrepresented.

78

Introduction

Structure of animal assemblages is defined by the geographic area where species

live, their ecological interactions, resource use patterns, and evolutionary relationships

among species (Ricklefs and Miller, 1999). Ecological factors (competition and predation

in particular) were deemed the primary determinants of assemblage structure until

recently (Wiens, 1977; Diamond, 1978; Semlitsch, 1987). Although community-level

processes may influence structure of some assemblages (e.g., Spiller and Schoener, 1990;

Spiller and Schoener, 1989; Case and Bolger, 1991), it is becoming increasingly clear

that some ecological differences among syntopic species have their origins deep in the

evolutionary history of clades comprising present-day assemblages (Losos, 1996; Losos,

1994; Vitt et al., 2003).

Several recent studies have demonstrated structure in Neotropical lizard

assemblages. In a lizard assemblage of a Restinga area in the Brazilian state of Rio de

Janeiro, morphometric data distinguished two groups: one of bromeliad lizards and

another of “sandy runners” (Araújo, 1991). In a Caatinga lizard assemblage, similarities

among closely related species suggested that phylogeny contributed to observed structure

(Vitt, 1995). Vitt & Zani (1998a) reached the same conclusion in describing the structure

of a lizard assemblage in a transitional forest in Amazonia. Gainsbury & Colli (2003)

used a null model analyses to assess structure in lizard assemblages from open vegetation

enclaves in the Brazilian state of Rondônia and suggested lack of organization in the

assemblages. In a lizard assemblage in Amazonian Savanna (in Roraima), eight species

sorted into three foraging guilds: herbivores, active foragers, and sit-and-wait foragers

(Vitt and Carvalho, 1995). A Cerrado lizard assemblage near Alto Araguaia, in Mato

79

Grosso State with only nine species contained some species that diverged in microhabitat

use (Tropiduridae and Polychrotidae) and others that appeared to converge in

microhabitat use (Teiidae and Gymnophthalmidae) (Vitt, 1991). However, in Cerrado

and Amazonian Savanna lizard assemblage studies, historical factors were not

considered.

The Cerrado harbors a diverse herpetofauna with numerous endemic species

(Colli et al., 2002) and covers about 2,000,000 km2, 25% of Brazil (Oliveira and Marquis,

2002). It is considered among the most threatened biomes in the world as the result of

anthropogenic activities (Alho and Martins, 1995). Monthly temperatures average 20 to

22°C 1,500-2,000 mm of highly predictable and strongly seasonal precipitation falls

annually, mostly from October to April (Nimer, 1989). The biome includes: forests,

where arboreal species predominate; savannas, with trees and shrubs dispersed in an

herbaceous stratum; and grasslands, with herbaceous species and some shrubs. Tree

trunks are tortuous, with thick corky barks and hard, coriaceous leaves (Ribeiro and

Walter, 1998).

Considering that the Cerrado covers 25% of Brazil, the largest country in South

America, it is surprising that so few studies have focused on lizard assemblages. Lizards

have been shown to be model organisms for ecological research, particularly studies

aimed at understanding patterns of community structure (Huey et al., 1983; Vitt and

Pianka, 1994). The most relevant study on lizard assemblages from the Cerrado was

carried out in Alto Araguaia, Mato Grosso State and the lizard assemblage was

considered depauperate compared with those of other Neotropical biomes (Vitt, 1991).

80

More recent studies have shown that many Cerrado lizard assemblages are nearly as

diverse as Amazonian lizard assemblages (Colli et al., 2002).

Herein, we describe the lizard assemblage from the Jalapão region, one of the last

remaining large expanses of undisturbed Cerrado. We combine ecological and

morphometric data with phylogenetic data to examine the role of history (e. g., Brooks

and McLennan, 1991; Losos, 1996) in structure of this assemblage. Because the Cerrado

is one of the most threatened biomes in world, these data should also be useful in

developing conservation and management strategies for the Cerrado.

Materials and methods

Study site.- Field work was conducted from 13 February to 10 March 2002 in a Cerrado

area in the Jalapão region near the city of Mateiros (10º 32' 46.69'' S, 46º 25' 13.20'' W) in

eastern Tocantins state, Brazil. The Jalapão covers approximately 53,340.90 km2. The

region is characterized by an open and low Cerrado on sandy soils with strong influence

of the Caatinga biome from northeastern Brazil. It has one of the lowest demographic

densities in Brazil, with 1.21 inhabitants per km2, but anthropic pressures are increasing

mainly due to tourism.

Microhabitat and activity, and temperatures.- We captured lizards with pitfall traps with

drift fences, by hand or using a shotgun. In the lab, we killed live lizards with an injection

of Tiopental®, in accordance with approved protocols, and fixed them with 10% formalin.

When we captured lizards by hand or shot gun, we took cloacal, substrate, and air

temperatures (at 5 cm and 1.5 m above ground) to the nearest 0.2 C, with a Miller &

81

Weber® cloacal thermometer at the time of capture. We also recorded microhabitat and

hour of capture. We recorded microhabitats in which lizards were first observed using the

following microhabitat categories: grass, open ground, termite nests, tree trunks, and

rocks. We computed microhabitat niche breadths (B) using the inverse of Simpson's

diversity index (Simpson, 1949):

B =1

pi2

i =1

n

∑,

where p is the proportion of microhabitat category i and n is the number of categories.

Values vary from 1.0 (exclusive use of a single microhabitat) to 5.0 (equal use of all five

microhabitats). We also calculated microhabitat use overlap with the equation:

φij =pij pik

i =1

n

pij2 pik

2

i =1

n

∑i=1

n

∑,

where p represents the proportion of microhabitat category i, n is the number of

categories, and j and k represent the species being compared (Pianka, 1973). Øij varies

from 0 (no overlap) to 1 (complete overlap). To investigate presence of non-random

patterns in microhabitat niche overlap, we used the Niche Overlap Module of EcoSim

(Gotelli and Entsminger, 2003). Data for such analysis consists of a matrix in which each

species is a row and each microhabitat category is a column. The matrix is reshuffled to

produce random patterns that would be expected in the absence of underlying structure.

We used the options “Pianka’s niche overlap index” and “randomization algorithm two”

in EcoSim. Randomization algorithm two substitutes the microhabitat category in the

82

original matrix with a random uniform number between zero and one, but retains the zero

structure in the matrix (Winemiller and Pianka, 1990).

Diet.- We analyzed stomach contents under a stereoscopic microscope, identifying prey

items to level of order, with the exception of ants (Formicidae), which were considered as

a separate prey category. We recorded the length and width (0.01 mm) of intact items

with Mitutoyo® electronic calipers, and estimated prey volume (V) as an ellipsoid:

V =43

πw2

⎛ ⎝

⎞ ⎠

2 l2

⎛ ⎝

⎞ ⎠ ,

where w is prey width and l is prey length. We calculated the numeric and volumetric

percentages of each prey category for pooled stomachs. From these percentages, we

computed niche breadths (B) using the inverse of Simpson's diversity index (Simpson,

1949), as described above except that values for diet niche breadth can vary from 1.0 to

30 (30 prey categories were recognized). Throughout the text we used the average

between numeric and volumetric niche breadths, referred to as diet niche breadth. We

also calculated the percentage of occurrence of each prey category (number of stomachs

containing prey category i, divided by the total number of stomachs). We excluded from

the volumetric analyses prey items that were too fragmented to allow a reliable estimate

of their volumes. To determine relative contribution of each prey category, we calculated

the importance index for pooled stomachs using the following equation:

I =F% + N% + V%

3,

where F% is the percentage of occurrence, N% is the numeric percentage, and V% is the

volumetric percentage.

83

We calculated dietary overlap using the overlap equation as described above for

microhabitat (Pianka, 1973). To investigate presence of non-random patterns in

microhabitat niche overlap, we used “Niche Overlap Module” of EcoSim (Gotelli and

Entsminger, 2003) as described above for microhabitat.

Morphometry.- Using Mitutoyo® electronic calipers, were recorded the following

morphometric variables to the nearest 0.01 mm: snout-vent length (SVL), body width (at

its broadest point); body height (at its highest point), head width (at its broadest point),

head height (at its highest point), head length (from the tip of the snout to the commissure

of the mouth), hind limb length, forelimb length, and tail length (from the cloaca to the

tip of the tail). To maximize availability of data, we estimated intact tail length of lizards

with broken or regenerated tails using a regression equation relating tail length to SVL,

calculated from lizards with intact tails, separately for populations and sexes. We log-

transformed (base 10) all morphometric variables prior to analyses to meet requirements

of normality (Zar, 1998). To partition total morphometric variation between size and

shape variation, we defined body size as an isometric size variable (Rohlf and Bookstein,

1987) following the procedure described by Somers (1986). We calculated an isometric

eigenvector, defined a priori with values equal to p-0.5, where p is the number of variables

(Jolicoeur, 1963). Next, we obtained scores from this eigenvector, hereafter called body

size, by post-multiplying the n by p matrix of log-transformed data, where n is the

number of observations, by the p by 1 isometric eigenvector. To remove the effects of

body size from the log-transformed variables, we used residuals of regression between

body size and each variable. The resultant residuals were used in a principal component

84

analysis to examine size-free morphological variation and to identify the taxonomic level

at which ecological variation among species occurred.

Statistical analysis.- We used SYSTAT 11.0 and SAS 8.1 for Windows, with a

significance level of 5% to reject null hypotheses for statistical hypothesis testing.

Throughout the text, means appear ± 1 SD.

To assess the role of history in structuring the assemblage, we used Canonical

Phylogenetic Ordination (Giannini, 2003) coupled with Monte Carlo permutations

(9,999) in CANOCO 4.5 for Windows. The analysis consists of canonical ordination to

identify divergence points within a reduced tree matrix that best explain ecological

patterns (Giannini, 2003). Because of differences in completeness of data for

microhabitat use and diets, we used two different trees, defined in Figure 1.

Results

Species composition, microhabitat, activity, and body temperatures.- The lizard

assemblage in Jalapão contains 14 species; one iguanid (Iguana iguana), two

polychrotids (Anolis nitens and Polychrus acutirostris), one tropidurid (Tropidurus

“oreadicus”), two gekkonids (Briba brasiliana and Gymnodactylus geckoides), three

teiids (Ameiva ameiva, Cnemidophorus mumbuca and Tupinambis quadrilineatus), three

gymnophthalmids (Colobosaura modesta, Micrablepharus maximiliani and Vanzosaura

rubricauda) and two scincids (Mabuya heathi and Mabuya nigropunctata). Almost all

species are diurnal, with exception of the gekkonids B. brasiliana, which is strictly

nocturnal, and G. geckoides, which is active both during the day and at night. Although

85

we did not find G. geckoides during searches at night, they were abundant in drift fences

that were monitored early in the morning suggesting that they were active outside of

termite nests early in the evening the night before, at night, or early in the morning. A

majority of the lizard fauna occurs in open areas, but a small portion was restricted to

gallery forest. The teiids, gymnophthalmids and scincids are primarily terrestrial, the

iguanid and polychrotids are both terrestrial and arboreal, and the tropidurid is ubiquitous

(Fig. 2).

Ameiva ameiva occurs primarily in open ground and grass microhabitats (Fig. 2),

similar to the other teiids Cnemidophorus mumbuca and Tupinambis quadrilineatus, but

T. quadrilineatus lives only inside gallery forests. Briba brasiliana was observed active

at night. A few individuals were found inactive during the day under loose bark on tree

trunks. Gymnodactylus geckoides was found almost exclusively inside termite nests (Fig.

2). Iguana iguana occurs on the ground and in trees (Fig. 2), in open and forested

habitats, closely associated with watercourses. Mabuya nigropunctata was observed in

open and forested areas, occurring in the open ground microhabitat (Fig. 2).

Micrablepharus maximiliani was collected inside of termite nests (Fig. 2) and in drift

fences, indicating that the termite nests are important to these lizards. Individuals move

on open ground, especially in areas with leaf litter. Tropidurus "oreadicus" was found in

most microhabitats (Fig. 2). Anolis nitens was associated with forested habitats, where it

used the ground and low perches on trees. Polychrus acutirostris lives in trees in open

habitats but descends to the ground to disperse. Because of their cryptic coloration and

behavior, they are difficult to observe. Colobosaura modesta is associated with forested

86

habitats, but also occurs in open areas, on the ground. Vanzosaura rubricauda and M.

heathi were observed in open ground in open areas of Cerrado.

Niche breadth for microhabitat was low for all species in the assemblage. T.

"oreadicus" had the largest (2.22) and C. mumbuca, T. quadrilineatus, M. maximiliani

and M. nigropunctata had the smallest (1.00) niche breath values.

Microhabitat niche overlap varied from none to almost complete (Table 1). The

lowest results for niche overlap were found between species most distant

phylogenetically. I. iguana had intermediate values for niche overlap with most other

species, but probably does not interact with other species because it is more often found

in gallery forests whereas other species are usually found in open Cerrado. The sit-and-

wait forager T. “oreadicus” also had intermediate values of overlap with most other

species, but not M. maximiliani and G. geckoides, which were found nearly exclusively

inside termite nests. However, both of these were also common in drift fences, suggesting

that they frequently move about outside termite nests. Microhabitat overlaps among

active foragers tended to be high for all species combinations.

Lizard activity occurred from 7:00 h to 22:00 h and varied among species.

Usually, sit-and-wait lizards tended to be active earlier than active foragers. For example,

the first active T. “oreadicus” was observed near 8:00 h, whereas the first active A.

ameiva and C. mumbuca were not observed until nearly 10:00 h. Activity of diurnal

lizards ended around 18:00 h and nocturnal lizards initiated activity around 18:00 h. The

latest record was 22:00 h for the gecko B. brasiliana. Because we did not search for

lizards after 22:00 h, their activity period may be longer. The diurnal lizard M.

maximiliani was common in pitfall traps indicating that most activity was during the day.

87

Several found between 18:00 h and 20:00 h were inside termite nests and probably not

active.

Mean body temperatures ranged from 29.1°C in M. maximiliani to 40.0°C in I.

iguana. Because of a high association between body and air temperature (R2 = 0.66, F3,102

= 66.04, P < 0.0001), we removed the effect of air temperature by calculating residuals of

a regression between body and air temperatures and then performed an ANOVA on the

residuals followed by a post-hoc Tukey test. The ANOVA detected significant

differences among species (F4,98 = 11.32, P < 0.0001) and a post-hoc Tukey test

identified two statistically homogeneous groups, one with the teiids A. ameiva and C.

mumbuca and another with G. geckoides, M. maximiliani and T. “oreadicus.”

The pseudocommunity analysis showed that mean microhabitat overlap among

lizard species did not differ statistically from random (P = 0.09), indicating lack of

structure with respect to microhabitat.

Diet composition.- We analyzed contents of 557 stomachs and recognized 30 prey

categories. The percentage of empty stomachs was 8.26% (46). Based on all lizard

species, orthopterans were the most important prey type followed by termites and spiders

(Table 2). The most important prey for A. ameiva were termites (38.78%) and insect

larvae (11.02%); for C. mumbuca, termites (30.96%) and orthopterans (24.51%); for T.

quadrilineatus, plant material (60.42%), mainly fruits, and vertebrates (19.39%), a single

individual of the toad, Bufo granulosus; for T. “oreadicus,” mainly ants (42.29%); for B.

brasiliana, millipedes (42.15%) and mole crickets (34.09%); for G. geckoides, termites

(55.8%); for C. modesta, spiders (33.34%); for M. maximiliani, spiders (21.65%) and

88

homopterans (20.71%); for V. rubricauda, grasshoppers (45.52%) and spiders (34.73%);

for M. heathi, grasshoppers (23.42%) and insect larvae (18.53%); for M. nigropunctata,

termites (50.93%) and spiders (24.69%); and for A. nitens, grasshoppers (43.07%) and

insect larvae (30.73%) (Table 2).

Diet niche breadths calculated from the average between numeric and volumetric

percentages of prey were usually low, with lowest values for T. quadrilineatus (1.89) and

M. nigropunctata (1.99) and the largest values for M. heathi (6.32), A. ameiva (4.81),

Tropidurus oreadicus (4.50) and Micrablepharus maximiliani (4.46).

Prey overlap varied from 0 (B. brasiliana vs. A. nitens, C. modesta, T.

quadrilineatus and V. rubricauda) to 0.991 (V. rubricauda vs. C. modesta) (Table 1).

Tupinambis quadrilineatus had low overlaps with all species, the greatest of which was

with A. ameiva (0.144) (Table 1). Overlaps were high among the gymnophthalmids, the

lowest of which was between M. maximiliani and C. modesta (0.889) and the greatest

between C. modesta and V. rubricauda (0.991) (Table 1). With the exception of T.

quadrilineatus, teiid lizards had high overlaps (Table 1).

A pseudocommunity analysis with all original prey categories showed that mean

diet overlap among lizard species did not differ statistically from random (P = 0.06),

indicating lack of structure.

Morphometry.- The principal component analyses of size-free morphological variables

revealed two factors accounting for 58.5% of the variation (Table 3). The first factor

(33.39%) described a gradient of increasing SVL, as leg length, forelimb length and head

height decrease (Table 3). The second factor (25.11%) describes a gradient of increasing

89

head width and body width and a tail length decreases. The third factor an increasing

head length and a decreasing forelimb length (Table 3). A plot of the average of factor

scores per species for the first two principal components reveals clusters corresponding to

lizard families (Fig. 3).

Historical effects.- A detailed inspection of the cladogram (Fig. 4) reveals several

patterns suggesting the role of history in the Jalapão lizard assemblage. Microhabitats

used by teiids, gymnophthalmids, and scincids were similar, suggesting that at least a

portion of microhabitat use patterns reflect general traits of scleroglossan lizards. The

same occurs with the polychrotids, with species using similar microhabitats. Activity is

very similar among all species except the gekkonids, one of which is nocturnal and the

other crepuscular/nocturnal. Body temperature data indicate that teiid lizards are active at

very similar body temperatures. The teiids also have similar microhabitat niche breadth

values. The two scincids differ in diet niche breadths values.

Monte Carlo permutations (based on 9999 permutations) revealed no significant

phylogenetic effect on microhabitats used or dietary composition of the lizards (Table 4).

Gekkonids (23.72%) and teiids (18.76%) contributed most to dietary variation (Fig. 1),

but even their contributions were not significant (P = 0.199 and 0.240, respectively). For

microhabitat, taxonomic groups that best explained variation were the basal separation

between Iguania and Scleroglossa (Fig. 1), accounting 32.65%, and teid lizards. Neither

of these was significant (P = 0.054 and 0.213 respectively) (Table 4).

90

Discussion

Species composition, microhabitat, activity, and body temperatures.- The first known

survey in a Cerrado area was in Pirassununga municipality, São Paulo State, where only

seven lizard species were found (Vanzolini, 1948). In a Cerrado area near Alto Araguaia,

Mato Grosso State, only nine species were found, leading Vitt (1991) to consider it

depauperate when compared with other South American biomes. The Jalapão site has 14

species. This appears low when compared with other South American biomes like

Amazon forest, which typically has about 25 species (Vitt, 1996; Vitt and Zani, 1996).

When compared with other South American open formations, lizard species richness is

similar or greater, like in Caatinga, Exu municipality area, Pernambuco State, with 18

species (Vitt, 1995) and in an Amazonian savanna, in state of Roraima, with only eight

species (Vitt and Carvalho, 1995). Well-sampled localities in Cerrado average 14 – 25

species (Colli et al., 2002). Most estimates of lizard species diversity in South America

are based on data from numerous sites. Lizard species diversity for the entire Jalapão

region is greater than the 14 species that we report, but this serves well as an estimate of

lizard species diversity at a single site. A preliminary survey recorded 18 species for the

region (Vitt et al., 2002) and recently, more have been added to the list, including a

Cnemidophorus species that is currently being described (unpublished data), enhancing

the importance of the Jalapão region and Cerrado biome based on their biodiversity.

Additional species with secretive habits will undoubtedly be found with additional

surveys.

Difference in time of activity among diurnal species was small. Tropidurid lizards

were active somewhat earlier in the day than teiid lizards, a pattern that appears common

91

in other South American lizard assemblages. For example, various species of Tropidurus

tend to be more active in morning and late afternoon avoiding the hottest hours of the day

(Vitt, 1993; Van Sluys, 1992; Rocha and Bergalo, 1990), whereas teiid lizards tend to be

active primarily during warmer periods near mid-day (Mesquita and Colli, 2003b;

Mesquita and Colli, 2003a; Vitt et al., 1997c). Activity body temperature data are

consistent with differences in activity. Not only do the teiids have higher body

temperatures than the tropidurid in this study, they have higher body temperatures than

all other species in the assemblage. The post-hoc Tukey test on body temperatures

grouped A. ameiva and C. mumbuca together. In all Neotropical lizard assemblages

studied, teiid lizards had the highest body temperatures suggesting that high body

temperatures and associated high activity levels have an historical basis.

With few exceptions, microhabitat niche overlaps in the Jalapão lizard

assemblage tended to be highest among closely related species. Thus, at least some

ecological traits can be traced to ancestors within the phylogeny, suggesting that ongoing

interactions among species do not sufficiently explain observed patterns of resource use

(Losos, 1996; Brooks and McLennan, 1991). Historical effects have been detected in

several Neotropical lizard assemblages, including Amazon forest (Vitt and Zani, 1996;

Vitt and Zani, 1998a) and Caatinga (Vitt, 1995). However, very few studies have been

conducted on lizard assemblages in Neotropical open formations. Lack of structure in

microhabitat overlaps among Jalapão lizards, although unusual (e. g., Winemiller and

Pianka, 1990; Vitt and Carvalho, 1995; Pianka, 1986), may suggest lack of competition

for space; microhabitats may not be limited for these lizards (Connor and Simberloff,

1979). One possible explanation for this finding is that lizard populations are maintained

92

well below carrying capacity by predators. Alternatively, failure to detect microhabitat

structure may result from sampling problems. Microhabitat data for several species were

poor, and additional data might reveal different patterns of microhabitat use. Although

lizards can be easily trapped in Cerrado habitats, they are very difficult to observe while

active making it difficult to accurately quantify microhabitat use.

Diet composition.- With exception of Vanzosaura rubricauda, which ate mainly

grasshoppers and spiders in Jalapão but thysanurans and dermapterans in Caatinga (Vitt,

1995), most species from Jalapão had diets similar to those of different populations or

closely related species from other Neotropical lizard assemblages. These include Ameiva

ameiva (termites and insect larvae) (Vitt and Colli, 1994), Cnemidophorus mumbuca

(termites and orthopterans) (Mesquita and Colli, 2003a; Eifler and Eifler, 1998; Mesquita

and Colli, 2003b), T. quadrilineatus (plant material and vertebrates) (Colli et al., 1998),

Tropidurus “oreadicus” (ants) (Van Sluys, 1993; Van Sluys, 1995; Vitt et al., 1997b),

Gymnodactylus geckoides (termites) (Colli et al., 2003), M. maximiliani (spiders and

homopterans) (Vieira et al., 2000), M. heathi (grasshoppers and insect larvae) (Vitt,

1995), M. nigropunctata (termites and spiders) (Vitt and Blackburn, 1991) and A. nitens

(grasshoppers and insect larvae) (Vitt et al., 2001). These results suggest a historical

origin for diets of the majority of Jalapão lizards. The diet of these lizards appears

conservative with little detectable variation among populations from different places.

Phylogenetic inertia appears more important than ecological interactions in determining

diets of Jalapão lizards (e. g., Brooks and McLennan, 1991; Losos, 1996).

93

The highest dietary overlaps were found within gymnophthalmids, teiids, except

for T. quadrilineatus, and between teiids, the gecko G. geckoides, and the skink M.

nigropunctata. The primary contributor to these high overlaps was the high consumption

of termites in these species. These lizards do not necessarily capture termites in the same

places or at the same times. For example, teiid lizards dig and break into materials

containing termites whereas gymnophthalmids do not. Gymnodactylus geckoides likely

capture termites within the termite nests where they live. Similar differences in temporal

or spatial acquisition of similar prey have been reported by Pianka (1986). High dietary

overlap among closely related species suggests that phylogenetic inertia accounts for a

large portion of dietary similarity among closely related species (Brooks and McLennan,

1991; Losos, 1996). A similar pattern was reported for an assemblage of Neotropical

lizards in central Amazon of Brazil (Vitt et al., 1999). Dietary overlap between M.

nigropunctata and M. heathi was low, suggesting that ecological factors are more

important that historical factors in these species. Because the antiquity of the relationship

between these skinks remains unknown, phylogenetic information will be necessary to

determine the historical basis for the differences (Losos, 1996). Low overlap between T.

quadrilineatus and the other teiids may simply reflect the small sample size for T.

quadrilineatus. However, the large body size of these lizards compared to other teiids and

other species in the assemblage likely contributes to actual differences in diet

(Magnusson and Silva, 1993; Vitt and Zani, 1998a).

Lack of structure found with the pseudocommunity analysis could indicate a lack

of detectable competition among species suggesting that resources are effectively non-

limiting (Connor and Simberloff, 1979). A previous study on fat storage cycles in

94

Amazonia Savanna and Cerrado lizards showed that most species accumulate fat during

dry season when insect availability is low, suggesting that food is not a limiting factor

(Colli et al., 1997). Considering the range of body sizes of lizards in the Jalapão

assemblage, structure may be more affected by prey size than prey type (Vitt and Zani,

1998a). For example, the difference between T. quadrilineatus and other teiids may

simply reflect the difference in the influence of body size on prey size.

Morphometry.- Use of morphological analyses to assess ecological relationships was first

described by Hutchinson (1959). Early attempts to analyze morphological differentiation

in an ecological context were applied to bird assemblages in temperate and subtropical

forests (Schoener, 1965). Morphological analyses are independent of habitat and easily

comparable with other studies (Ricklefs and Miller, 1999). On the other hand,

morphology is relatively fixed (historical) such that morphological analyses might not be

sensitive enough to detect ecological differences when they do exist (Ricklefs and Miller,

1999). Nevertheless, a study carried out on lizards in three different deserts revealed a

reasonable association between morphological and ecological attributes, confirming

patterns revealed by previous ecological studies (Ricklefs et al., 1981). Use of

morphological analyses as a complementary analysis can be particularly useful when

other kinds of data (e.g., microhabitat use data as in this study) are difficult to obtain.

Our data suggest a strong association between morphology and phylogeny, with

closely related species clustered in morphological space. The best evidence for cause and

effect has been among closely related species or populations when habitat shifts have

resulted in morphological change. Closely related tropidurids have differentiated

95

morphologically in response to shifts from a variety of microhabitats in open areas to

rock surfaces surrounded by rainforest (Vitt, 1981; Vitt et al., 1997a). Likewise Anolis

have responded morphologically to microhabitat shifts (Pounds, 1988; Losos et al., 1993;

Losos, 1995). Iguanian lizards in the Jalapão assemblage are not closely related.

Morphological differences among these species evolved in distant ancestors under

different ecological conditions. Anolis nitens and T. “oreadicus,” for example, are quite

similar morphologically and ecologically to their close relatives in other habitats,

suggesting that pre-existing morphological and ecological traits have allowed them to

coexist in the Jalapão lizard assemblage. Gekkonid lizards vary greatly in morphology

(Zug et al., 2001). Geckos in the Jalapão assemblage occupied similar positions in

morphological space, suggesting a strong association between morphology and

phylogeny. Teiids and gymnophthalmids are conservative in body shape but differ

considerably in body size, most likely a consequence of intraguild interactions. Even

though the bauplan appears to be affected very little by ecological interactions, body size

may determine to some extent which species can coexist (Vitt et al., 1998; Vitt and Zani,

1996; Vitt et al., 2000). Most tropical New World skinks of genus Mabuya are

conservative morphologically. Until recently, only a few species had been described.

Recent descriptions of new species indicate that diversity of Mabuya is much greater than

previously thought (Rodrigues, 2000; Rebouças-Spieker, 1981; Ávila-Pires, 1995).

Morphological similarity among Mabuya species also suggests that historical factors may

be more important than local interactions in determining the ecology of these lizards.

96

Historical effects.- An examination of the ecological data with an historical perspective

suggests that phylogenetic history of lizards in the Jalapão area influences assemblage

structure (Fig. 4). Several patterns emerged by plotting ecological traits on the

cladogram. Even that the lack of data on microhabitat use for several species in this

assemblage limits some of our conclusions, the niche breadth and the microhabitat used

by teiids, gymnophthalmids and scincids appear to be similar within families, differing

little among families, suggesting that historical factors may determine patterns of

microhabitat use. In addition, several studies comparing closely related species among

drastically different habitats show that ecological traits of lizards are highly conservative

(Vitt and Colli, 1994; Vitt et al., 1998; Mesquita and Colli, 2003b). For example, four

geographically separated populations of the gymnophthalmid Neusticurus ecpleopus are

nearly identical ecologically even though they differ considerably from other species in

their respective assemblages (Vitt et al., 1998). The same is true for polychrotids with

respect to microhabitats. Among teiid lizards, high body temperatures and activity levels

have a historic origin (see Pianka and Vitt, 2003). Regardless of locality or species, teiid

lizards exhibit similar body temperatures and all are highly active (Vitt et al., 1997c; Vitt

and Colli, 1994; Mesquita and Colli, 2003b).

Diet niche breadth values for the gekkonids and some gymnophytalmids and

teiids also suggest the importance of history. Body size differences among teiids accounts

for some variation in dietary niche data (Vitt et al., 2000). The two scincids had

completely different diet niche breadth values. However, additional phylogenetic data for

the genus will be necessary to confirm whether ecological divergence is historical or the

result of species interactions. Even though the lack of data for several species limit some

97

of our conclusions, data we present are the best for any studied Cerrado lizard

assemblage. The Cerrado biome harbors a diverse saurofauna, but some species are very

difficult to observe while active making it difficult to quantify some ecological aspects.

Some species, like most gymnophthalmids, are commonly collected in drift fences, but

difficult to observe, making it difficult to acquire microhabitat use data. Others, like

Briba brasiliana and some species of Mabuya are difficult to collect even using traps,

biasing dietary data. Finally, the lack of data for some species reflects to a certain extent,

differences in local abundance.

Comparisons of ecological traits of lizards within the Jalapão assemblage and

with closely related species in different assemblages revealed that history played an

important role in most ecological traits of Jalapão lizards. If species interactions

determine ecological traits of Jalapão lizards, then ecological traits should map randomly

on their phylogeny, but this is not the case. This appears contradictory to our results from

the Canonical Phylogenetic Ordination, which detected no significant phylogenetic effect

(although the P value for the node A/F was marginally significant. 0.0541). We offer two

possible explanations for this apparent inconsistency, one of which may have broad

implications.

First, sample size for microhabitat data was either too small or completely

nonexistent for four of the 14 species rendering a portion of the results unreliable. Small

sample sizes for calculation of niche breadth values effectively results in low estimates

potentially falsely creating specialists (see Pianka, 1986). Because of this, overlap values

between these species and others with large sample sizes could be misleading. Even

concluding that data for a species with small sample size might be a reasonable estimate

98

because close relatives in other habitats have similar ecological traits is inherently

circular logic.

Secondly, and more importantly, ecological data sets on depauperate lizard

assemblages may suffer from taxon sampling deficiencies such that real historical effects

are undetectable because major taxa are underrepresented. Only a single species pair, M.

heathi and M. nigropunctata, is represented by more than one species in a genus, and in

this case, the two species are highly divergent ecologically. Mabuya nigropunctata is

widespread in Amazon rainforest entering the Cerrado in gallery forests (Vitt and

Blackburn, 1991; Vitt, 1996). Mabuya heathi is known only from open areas, Caatinga in

particular (Vitt, 1995). Lack of structure in the Jalapão lizard assemblage and the

inability to detect a phylogenetic effect using Canonical Phylogenetic Ordination may

result from a data deficiency in the phylogenetically based ecological analysis.

Phylogenetic effects detected in an Amazonian lizard assemblage by Vitt et al. (1999)

and Giannini (2003) using different analyses was facilitated by a rich lizard fauna and

one that contained several pairs of relatively closely related species. One of the primary

phylogenetic effects found was in tropidurid lizards, in which two closely related species

(Plica plica and P. umbra) were ant specialists. In assemblages with greater numbers of

closely related species, differences in ecological traits should be more easily detectable

even if a portion of those differences is historical. Studies showing rapid ecological and

morphological evolution in closely related Anolis species in the Caribbean suggest this

(Losos et al., 1993; Losos, 1995).

Application of phylogenetic analyses to interpretations of underlying causes of

community organization is in its infancy (e.g.,Webb et al., 2002). Nevertheless, several

99

analyses at the local (e.g., Vitt and Zani, 1998b; Vitt et al., 2000; Giannini, 2003) and one

at the global (Vitt et al., 2003) level indicate that portions of lizard community structure

have an historical base. Because some of the ecological differences among lizard clades

are deeply rooted in evolutionary history, evolutionary and ecological responses of

individual species to changes in assemblage structure and resource abundance and

diversity should vary in a manner predictable to some degree on how closely related

species in different habitats and assemblages respond to such change. Finally,

phylogenetic analyses in which species from different assemblages are combined are

essential to understand the relative importance of ecological and historical factors in

determining structure in lizard assemblages because the probability of detecting historical

effects may be inversely related to the number of species in each major clade.

Acknowledgements

We thank J. P. Caldwell, A. A. Garda and S. F. Balbino for help with the

fieldwork. This work was supported by a doctorate fellowship from Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – CAPES to DOM and a research

fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico -

CNPq to GRC (# 302343/88-1). Conservation International of Brazil and the Division of

Herpetology of the Sam Noble Oklahoma Museum of Natural History funded the field

research.

100

Literature Cited

ALHO, C. J. R., and E. S. MARTINS. 1995. De Grão em Grão, o Cerrado Perde Espaço.

WWF-Fundo Mundial para a Natureza, Brasília.

ARAÚJO, A. F. B. 1991. Structure of a white sand-dune lizard community of coastal

Brazil. Revta. Brasil. Biol. 51:857-865.

ÁVILA-PIRES, T. C. S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata).

Zoologische Verhandelingen, Leiden. 1995:3-706.

BROOKS, D. R., and D. A. MCLENNAN. 1991. Phylogeny, Ecology, and Behavior, a

Research Program in Comparative Biology. The University of Chicago Press,

Chicago.

CASE, T. J., and D. T. BOLGER. 1991. The role of interspecific competition in the

biogeography of island lizards. TREE. 6:135-139.

COLLI, G. R., R. P. BASTOS, and A. F. B. ARAÚJO. 2002. The character and dynamics of

the Cerrado herpetofauna, p. 223-241. In: The Cerrados of Brazil: Ecology and

Natural History of a Neotropical Savanna. P. S. Oliveira and R. J. Marquis (eds.).

Columbia University Press, New York, NY.

COLLI, G. R., D. O. MESQUITA, P. V. V. RODRIGUES, and K. KITAYAMA. 2003. The

ecology of the gecko Gymnodactylus geckoides amarali in a neotropical savanna.

J. Herpetol. 37:694-706.

COLLI, G. R., A. K. PÉRES, JR., and H. J. CUNHA. 1998. A new species of Tupinambis

(Squamata: Teiidae) from central Brazil, with analysis of morphological and

genetic variation in the genus. Herpetologica. 54:477-492.

101

COLLI, G. R., A. K. PÉRES, JR., and M. G. ZATZ. 1997. Foraging mode and reproductive

seasonality in tropical lizards. J. Herpetol. 31:490-499.

CONNOR, E. F., and D. SIMBERLOFF. 1979. The assembly of species communities: chance

or competition? Ecology. 60:1132-1140.

DIAMOND, J. M. 1978. Niche shifts and the rediscovery of interspecific competition.

American Scientist. 66:322-331.

EIFLER, D. A., and M. A. EIFLER. 1998. Foraging behavior and spacing patterns of the

lizard Cnemidophorus uniparens. J. Herpetol. 32:24-33.

ESTES, R., K. DE QUEIROZ, and J. GAUTHIER. 1988. Phylogenetic relationships within

Squamata, p. 119-281. In: Phylogenetic Relationships of the Lizard Families.

Essays Commemorating Charles L. Camp. R. Estes and G. Pregill (eds.). Stanford

University Press, Stanford, California.

GAINSBURY, A. M., and G. R. COLLI. 2003. Lizard assemblages from natural Cerrado

enclaves in southwestern Amazonia: the role of stochastic extinctions and

isolation. Biotropica. 35:503-519.

GIANNINI, N. P. 2003. Canonical phylogenetic ordination. Syst. Biol. 52:684-695.

GOTELLI, N. J., and G. L. ENTSMINGER. 2003. EcoSim: Null models software for ecology.

In: Acquired Intelligence Inc. & Kesey-Bear.

http://homepages.together.net/~gentsmin/ecosim.htm, Burlington, VT. 05465.

HUEY, R. B., E. R. PIANKA, and A. SCHOENER. 1983. Lizard Ecology: Studies of a Model

Organism. Harvard University Press, Cambridge, Mass.

HUTCHINSON, G. H. 1959. Homage to Santa Rosalia or why are there so many kinds of

animals? Am. Nat. 95:145-159.

102

JOLICOEUR, P. 1963. The multivariate generalization of the allometry equation.

Biometrics. 19:497-499.

LOSOS, J. B. 1994. Historical contingency and lizard community ecology, p. 319-333. In:

Lizard Ecology: Historical and Experimental Perspectives. L. J. Vitt and E. R.

Pianka (eds.). Princeton University Press, Princeton, New Jersey.

—. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns

and experimental tests. Phil. Trans. R. Soc. London B. 349:69-75.

—. 1996. Phylogenetic perspectives on community ecology. Ecology. 77:1344-1354.

LOSOS, J. B., J. C. MARKS, and T. W. SCHOENER. 1993. Habitat use and ecological

interactions of an introduced and a native species of Anolis lizard on Grand

Cayman, with a review of the outcomes of anole introductions. Oecologia.

95:525-532.

MAGNUSSON, W. E., and E. V. SILVA. 1993. Relative effects of size, season and species

on the diets of some amazonian Savanna lizards. J. Herpetol. 27:380-385.

MESQUITA, D. O., and G. R. COLLI. 2003a. The ecology of Cnemidophorus ocellifer

(Squamata, Teiidae) in a neotropical savanna. J. Herpetol. 37:498-509.

—. 2003b. Geographical variation in the ecology of populations of some Brazilian

species of Cnemidophorus (Squamata, Teiidae). Copeia. 2003:285-298.

NIMER, E. 1989. Climatologia da região centro-oeste, p. 393-421. In: Climatologia do

Brasil. Fundação Instituto Brasileiro de Geografia e Estatística - IBGE, Rio de

Janeiro, Brazil.

OLIVEIRA, P. S., and R. J. MARQUIS. 2002. The Cerrados of Brazil: Ecology and Natural

History of a Neotropical Savanna. Columbia University Press, New York, NY.

103

PIANKA, E. R. 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4:53-74.

—. 1986. Ecology and Natural History of Desert Lizards: Analyses of the Ecological

Niche and Community Structure. Princeton Univ. Press, Princeton, New Jersey.

PIANKA, E. R., and L. J. VITT. 2003. Lizards: Windonws of the Evolution of Diversity.

University of California Press, Los Angeles, CA.

POUNDS, J. A. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in

a tropical mainland Anolis community. Ecol. Monog. 58:299-320.

REBOUÇAS-SPIEKER, R. 1981. Sobre uma nova espécie de Mabuya da Amazônia

brasileira (Sauria, Scincidae). Papéis Avulsos de Zoologia, São Paulo. 34:161-

163.

RIBEIRO, J. F., and B. M. T. WALTER. 1998. Fitofisionomias do bioma Cerrado, p. 89-166.

In: Cerrado: Ambiente e Flora. S. M. Sano and S. P. Almeida (eds.). EMBRAPA-

CPAC, Planaltina, DF.

RICKLEFS, R. E., D. COCHRAN, and E. R. PIANKA. 1981. A morphological analysis of the

structure of communities of lizards in desert habitats. Ecology. 62:1474-1483.

RICKLEFS, R. E., and G. L. MILLER. 1999. Ecology. Freeman, New York, NY.

ROCHA, C. F. D., and H. G. BERGALO. 1990. Thermal biology and flight distance of

Tropidurus oreadicus (Sauria: Iguanidae) in an area of amazonian Brazil. Eth.

Eco. Evo. 2:263-268.

RODRIGUES, M. T. 2000. A new species of Mabuya (Squamata: Scincidae) from the

semiarid Caatingas of Northeastern Brazil. Papéis Avulsos de Zoologia, São

Paulo. 41:313-328.

104

ROHLF, F. J., and F. L. BOOKSTEIN. 1987. A comment on shearing as a method for "size

correction". Syst. Zool. 36:356-367.

SCHOENER, T. W. 1965. The evolution of bill size differences among sympatric

congeneric species of birds. Evolution. 19:189-213.

SEMLITSCH, R. D. 1987. Relationship of pond drying to the reproductive success of the

salamander Ambystoma talpoideum. Copeia. 1987:61-69.

SIMPSON, E. H. 1949. Measurement of diversity. Nature. 163:688.

SOMERS, K. M. 1986. Multivariate allometry and removal of size with principal

component analysis. Syst. Zool. 35:359-368.

SPILLER, D. A., and T. W. SCHOENER. 1989. Effect of a major predator on grouping of an

orb-weaving spider. J. An. Eco. 58:509-523.

—. 1990. A terrestrial field experiment showing the impact of eliminating top predators

on foliage damage. Nature. 347:469-472.

VAN SLUYS, M. 1992. Aspectos da ecologia do lagarto Tropidurus itambere

(Tropiduridae), em uma área do sudeste do Brasil. Revta. Brasil. Biol. 52:181-

185.

—. 1993. Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern

Brazil. J. Herpetol. 27:347-351.

—. 1995. Seasonal variation in prey choice by the lizard Tropidurus itambere

(Tropiduridae) in Southeastern Brazil. Ciência e Cultura. 47:61-65.

VANZOLINI, P. E. 1948. Notas sobre os ofídios e lagartos da Cachoeira de Emas, no

município de Pirassununga, estado de São Paulo. Revta. Brasil. Biol. 8:377-400.

105

VANZOLINI, P. E., A. M. M. RAMOS-COSTA, and L. J. VITT. 1980. Répteis das Caatingas.

Academia Brasileira de Ciências, Rio de Janeiro, Brasil.

VIEIRA, G. H. C., D. O. MESQUITA, A. K. P. JR, K. KITAYAMA, and G. R. COLLI. 2000.

Natural History: Micrablepharus atticolus. Herpetol. Rev. 31:241-242.

VITT, L. J. 1981. Lizard reproduction: habitat specificity and constraints on relative clutch

mass. Am. Nat. 117:506-514.

—. 1991. An introduction to the ecology of Cerrado lizards. J. Herpetol. 25:79-90.

—. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in

Amazonian lowland rain forest. Can. J. Zool. 71:2370-2390.

—. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. Occ. Pap.

Oklahoma Mus. Nat. Hist. 1:1-29.

—. 1996. Biodiversity of Amazonian lizards, p. 89-108. In: Neotropical Biodiversity and

Conservation. A. C. Gibson (ed.). Occasional Publication of the Mildred E.

Mathias Botanical Garden 1, Los Angeles.

VITT, L. J., and D. G. BLACKBURN. 1991. Ecology and life history of the viviparous lizard

Mabuya bistriata (Scincidae) in the Brazilian Amazon. Copeia. 1991:916-927.

VITT, L. J., and J. P. CALDWELL. 1993. Ecological observations on Cerrado lizards in

Rondônia, Brazil. J. Herpetol. 27:46-52.

VITT, L. J., J. P. CALDWELL, G. R. COLLI, A. A. GARDA, D. O. MESQUITA, F. G. R.

FRANÇA, and S. F. BALBINO. 2002. Um guia fotográfico dos répteis e anfíbios da

região do Jalapão no Cerrado brasileiro. Spec. Pub. Herp. 1:1-17.

VITT, L. J., J. P. CALDWELL, P. A. ZANI, and T. A. TITUS. 1997a. The role of habitat shift

in the evolution of lizard morphology: evidence from tropical Tropidurus.

106

Proceedings of the National Academy of Sciences of the United States of

America. 94:3828-3832.

VITT, L. J., and C. M. CARVALHO. 1995. Niche partitioning in a tropical wet season:

lizards in the Lavrado area of Northern Brazil. Copeia. 1995:305-329.

VITT, L. J., and G. R. COLLI. 1994. Geographical ecology of a neotropical lizard: Ameiva

ameiva (Teiidae) in Brazil. Can. J. Zool. 72:1986-2008.

VITT, L. J., and E. R. PIANKA. 1994. Lizard Ecology. Princeton University Press,

Princeton.

VITT, L. J., E. R. PIANKA, W. E. COOPER, JR., and K. SCHWENK. 2003. History and the

global ecology of squamate reptiles. Am. Nat. 162:44-60.

VITT, L. J., S. S. SARTORIUS, T. C. S. ÁVILA-PIRES, and E. C. ESPOSITO. 2001. Life on the

leaf litter: The ecology of Anolis nitens tandai in the brazilian Amazon. Copeia.

2001:401-412.

VITT, L. J., S. S. SARTORIUS, T. C. S. ÁVILA-PIRES, M. C. ESPÓSITO, and D. B. MILES.

2000. Niche segregation among sympatric Amazonian teiid lizards. Oecologia.

122:410-420.

VITT, L. J., and P. A. ZANI. 1996. Organization of a taxonomically diverse lizard

assemblage in Amazonian Ecuador. Can. J. Zool. 74:1313-1335.

—. 1998a. Ecological relationships among sympatric lizards in a transitional forest in the

Northern Amazon of Brazil. J. Trop. Ecol. 14:63-86.

—. 1998b. Prey use among sympatric lizard species in lowland rain forest of Nicaragua.

J. Trop. Ecol. 14:537-559.

107

VITT, L. J., P. A. ZANI, and T. C. S. ÁVILA-PIRES. 1997b. Ecology of the arboreal

tropidurid lizard Tropidurus (= Plica) umbra in the Amazon region. Can. J. Zool.

75:1876-1882.

VITT, L. J., P. A. ZANI, T. C. S. ÁVILA-PIRES, and M. C. ESPOSITO. 1998. Geographical

ecology of the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon

rainforest. Can. J. Zool. 76:1671-1680.

VITT, L. J., P. A. ZANI, J. P. CALDWELL, M. C. D. ARAUJO, and W. E. MAGNUSSON.

1997c. Ecology of whiptail lizards (Cnemidophorus) in the amazon region of

Brazil. Copeia. 1997:745-757.

VITT, L. J., P. A. ZANI, and M. C. ESPOSITO. 1999. Historical ecology of Amazonian

lizards: implications for community ecology. Oikos. 87:286-294.

WEBB, C. O., D. D. ACKERLEY, M. A. MCPEEK, and M. J. DONOGHUE. 2002. Phylogenies

and community ecology. Annu. Rev. Ecol. Syst. 33:475-505.

WIENS, J. A. 1977. On competition and variable environments. American Scientist.

65:590-597.

WINEMILLER, K. O., and E. R. PIANKA. 1990. Organization in natural assemblages of

desert lizards and tropical fishes. Ecol. Monog. 60:27-55.

ZAR, J. H. 1998. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New

Jersey.

ZUG, G. R., L. J. VITT, and J. P. CALDWELL. 2001. Herpetology: An Introductory Biology

of Amphibians and Reptiles. Academic Press, San Diego, California.

108

Table 1- Overlap in microhabitat (boldface) and diet for Jalapão lizards.

I. i. A. n. T. o. B. b. G. g. A. a. C. m. T. q. C. mo. M. m. V. r. M. h. M. n.

I. i. - - - - - - - - - - - -

A. n. - 0.282 0.000 0.208 0.277 0.559 0.097 0.611 0.754 0.646 0.856 0.168

T. o. 0.585 - 0.106 0.468 0.337 0.469 0.049 0.292 0.319 0.300 0.361 0.262

B. b. - - - 0.393 0.448 0.302 0.000 0.000 0.081 0.000 0.034 0.348

G. g. 0.000 - 0.000 - 0.928 0.874 0.019 0.216 0.401 0.217 0.298 0.881

A. a. 0.699 - 0.736 - 0.003 0.883 0.144 0.263 0.427 0.263 0.431 0.872

C. m. 0.707 - 0.745 - 0.000 0.989 0.068 0.611 0.719 0.610 0.667 0.801

T. q. 0.707 - 0.745 - 0.000 0.988 1.000 0.081 0.077 0.090 0.129 0.058

C. mo. - - - - - - - - 0.889 0.991 0.71 0.344

M. m. 0.000 - 0.000 - 0.999 0.000 0.000 0.000 - 0.902 0.784 0.552

V. r. - - - - - - - - - - 0.72 0.352

M. h. - - - - - - - - - - - 0.323

M. n. 0.707 - 0.745 - 0.000 0.988 1.000 1.000 - 0.000 - -

Note: I. i.- Iguana iguana, A. n.- Anolis nitens, T. o.- Tropidurus oreadicus, B. b.- Briba brasiliana, G. g.- Gymnodactylus geckoides, A. a.- Ameiva ameiva, C. m.- Cnemidophorus mumbuca, T. q.- Tupinambis quadrilineatus, C. mo.- Colobosaura modesta, M. m.- Micrablepharus maximiliani, V. r.- Vanzosaura rubricauda, M. h.- Mabuya heathi, M. n.- Mabuya nigropunctata.

109

Table 2. Importance index of prey categories in the diet of 12 lizard species from Jalapão. Prey Type A. a. C. m. T. q. T. o. B. b. G. g. C. mo. M. m. V. r. M. h. M. n. A. n. Annelida - - - - - 0.55 - - - - - - Aranae 7.00 9.07 8.57 2.47 - 3.16 33.34 21.65 34.73 9.49 24.69 - Blattaria 5.73 2.86 - 1.30 - 2.22 4.63 4.71 - 4.76 5.75 - Coleoptera 6.49 4.54 - 11.05 - 3.78 - - - 10.25 - - Dermaptera 0.47 - - - - - - - - - - - Diplopoda 0.92 0.49 - 1.27 42.15 1.07 - - - - - - Diptera - 0.28 - - - - - 3.77 - - - - Egg (insects) 0.95 - - 0.16 - - - - - - - - Formicidae 0.45 4.45 - 42.29 - 11.76 3.67 0.91 3.79 - - - Gastropoda 0.45 - - - - 0.38 - - - - - - Gryllidae 0.84 1.87 - - - 1.40 - - - - - - Gryllotalpidae 5.78 - - - 34.09 - - - - - - - Hemiptera 5.11 1.36 - 2.45 - - - - - - - - Homoptera - 2.89 - 5.47 - 3.06 4.08 20.71 7.13 11.19 13.15 26.20 Hymenoptera (non ants) - 0.14 - - - - - - - - - - Insect larvae 11.02 8.69 11.61 6.03 - 3.73 - 2.99 2.38 18.53 - 30.73 Isoptera 38.78 30.96 - 10.29 23.75 55.80 - 9.25 - 3.20 50.93 - Lepidoptera 0.52 - - - - - - - - - - - Mantoidea - 1.81 - 0.44 - - 4.34 1.85 - 7.27 - - Neuroptera 0.57 0.63 - 0.15 - - - - - 6.83 - - Odonata 0.58 0.86 - - - - - - - - - - Opilionida - 0.30 - - - - - - - - - - Orthoptera 8.69 24.51 - 11.07 - 12.25 45.27 32.68 45.52 23.42 5.49 43.07 Phasmida - 0.48 - 0.18 - - - - - - - - Plant material 3.36 - 60.42 0.87 - - - - - - - - Pseudoscorpionida - 0.13 - 0.43 - - - - - - - - Chilopoda 0.93 0.55 - 0.21 - 0.84 - - - - - - Scorpionida - - - 0.15 - - - - - - - - Solifuga - 3.13 - 3.70 - - 4.68 1.49 6.46 5.06 - - Vertebrate 1.34 - 19.39 - - - - - - - - - N 37 167 2 142 3 73 13 33 23 12 4 2 Numeric niche breadth 1.47 2.28 1.18 2.21 3.00 1.66 3.13 4.34 2.95 7.86 1.30 3.00 Volumetric niche breadth 8.14 5.48 2.60 6.84 2.06 2.98 2.55 4.58 2.74 4.96 2.68 2.12 Note: Species abbreviations are the same as in Table 1.

110

Table 3. Principal component analysis of size-free morphological data from Jalapão lizards.

Factor I Factor II Factor III

Adjusted-SVL 0.837 -0.080 0.226

Adjusted-TL 0.195 -0.700 0.140

Adjusted-HW 0.025 0.897 0.191

Adjusted-HL 0.024 0.136 0.948

Adjusted-HH -0.607 0.511 0.247

Adjusted-BW 0.456 0.617 -0.197

Adjusted-BH 0.678 0.303 -0.309

Adjusted-LL -0.810 -0.311 0.008

Adjusted-FL -0.757 0.331 -0.280

Eigenvalues 3.005 2.260 1.278

Percent of variance explained 33.393 25.108 14.198

Note: SVL- snout-vent length, TL- tail length, HW- head width, HL- head length, HH- head

height, BW- body width, BH- body height, LL- leg length, and FL- forelimb length.

111

Table 4. Historical effects on the ecology of Cerrado lizards. Results of Monte Carlo permutation

tests of individual groups (defined in Fig. 1) for the Y matrices of diet and microhabitat.

Percentage of the variation explained (relative to total unconstrained variation), and F and P

values for each variable are given (9999 permutations were used) for each main matrix. Note that

no groups used for selection of variables yielded individual P ≤ 0.05.

Group(s) Variation Variation % F P

Diet

B 0.268 23.717 1.759 0.1994

G 0.212 18.761 1.345 0.2404

F 0.194 17.168 1.214 0.3043

I 0.170 15.044 1.046 0.4077

H 0.126 11.150 0.753 0.8633

E 0.118 10.442 0.707 0.5250

D 0.116 10.265 0.693 0.5429

A/J 0.101 8.938 0.596 0.6945

C 0.090 7.965 0.530 0.7882

Microhabitat

A/F 0.461 32.649 1.986 0.0541

C 0.359 25.425 1.441 0.2130

E 0.296 20.963 1.138 0.4991

B 0.218 15.439 0.800 0.5654

D 0.149 10.552 0.525 0.6534

112

FIGURE LEGENDS

Figure 1. Individual groups used in canonical phylogenetic ordination for microhabitat and diet data.

Phylogeny based in Estes et al. (1988).

Figure 2. Frequency distribution of individuals according to microhabitat categories for Jalapão

lizards. Sample sizes are indicated at the top of the bars.

Figure 3. Plot of the average per species of the first two principal components derived from size-free

morphological data for Jalapão lizards.

Figure 4. Phylogeny of Jalapão lizards showing the topology of ecological characteristics.

Abbreviations for habitat are: C = Cerrado, GF = gallery forest, R = rocky field. Abbreviations

for microhabitat are: A = arboreal, OG = open ground, B = bushes, LD = litter-dwelling, S =

saxicolous, TN = termite nest. Abbreviations for activity are: D = diurnal, N = nocturnal, CN =

crepuscular/nocturnal. Note: general microhabitat categories are based on data from this work

and from Vieira et al. (2000), Vitt (1991), Vitt and Caldwell (1993), Vanzolini et al. (1980) and

Ávila-Pires (1995).

113

114

115

116

117

APÊNDICE 3- manuscrito submetido para a publicação na revista Biotropica em fevereiro de

2005.

Ecology of an Amazonian savanna lizard assemblage in Monte Alegre, Pará State, Brazil

Daniel O. Mesquita, Gabriel C. Costa, and Guarino R. Colli

Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-

900 Brasília, Distrito Federal, Brazil, Tel/fax: 55-61-307-2265 r. 21, email: [email protected]

Corresponding author: Daniel Oliveira Mesquita

Manuscript type: major article

Running title: Amazonian savanna lizard assemblage

Key words: assemblage structure, community ecology, historical factors

118

We describe the lizard assemblage from an Amazonian savanna in the region of Monte

Alegre, Pará, Brazil, using ecological, morphological, and life history data, examining the role of

history in the assemblage. The lizard assemblage in Monte Alegre contained seven species.

Microhabitat niche breadth was low for all species in the assemblage and niche overlap varied

from none to almost complete. The least overlap in microhabitat occurred among more distantly

related species and the greatest overlap occurred among teiids. Lizards were active between 9:00

h to 17:00 h. “Active foraging” lizards tended to be active during the hottest hours of day,

whereas “sit and wait foraging” lizards were more commonly observed later in the day, when

temperatures were lower. Analysis of body temperatures identified two statistically

homogeneous groups, one with teiids and another with the remaining species. Dietary overlap

was highest among teiids. Pseudocommunity analyses showed that neither mean dietary overlap

nor mean microhabitat overlap differed statistically from random, indicating lack of structure.

Factor scores of morphological variables per species reveals clusters corresponding to lizard

families. An examination of ecological traits mapped onto a tree depicting phylogenetic

relationships among species and comparisons with related species from other biomes clearly

indicated the role of history in the Monte Alegre lizard assemblage. This result was corroborated

by Canonical Phylogenetic Ordination analysis.

119

Introduction

An assemblage is a group of closely related species that coexist in a defined area and

assemblage structure may be the result of several factors (Begon et al. 1990, Pianka 1994,

Ricklefs & Miller 1999). Ecologists have traditionally considered that ecological relationships

among taxa were the primary factors in structuring assemblages (Roughgarden & Diamond

1986, Werner 1986, Yodzis 1986); recently, however, more attention has been given to the

importance of historical factors, since ignoring the role of phylogenetic history may result in

equivocal conclusions about the determinants of assemblage structure (Losos 1994, Losos 1996,

Webb et al. 2002).

Divergence along niche axes (e.g., food, time, or microhabitats) among closely related

species is usually viewed as evidence of ecological factors prevailing over historical factors (e.g.,

Pianka 1973). On the other hand, lack of divergence among closely related species suggests that

historical factors prevail over ecological factors (Brooks & McLennan 1991, Losos 1996, Vitt

1995). Likewise, similar patterns of structure in different assemblages suggest that historical

factors predominate, whereas variation in patterns among assemblages indicates the prevalence

of ecological factors (Brooks & McLennan 1991, Cadle & Greene 1993).

Recently, several studies were performed in Neotropical open formations. In Caatinga,

the lizard assemblage was described throughout activity, body temperatures, habitat,

microhabitat and diet data and phylogeny influenced lizard assemblage structure more than

present-day ecological relationships among species (Vitt 1995). In Cerrado, a lizard assemblage

showed microhabitat divergence between tropidurids and polychrotids and overlap between

teiids and gymnophytalmids, but differences in body size promoted divergence in diet (Vitt

1991). In Amazonian Savanna, eight species were grouped into three alimentary guilds:

120

herbivores, active, and sit-and-wait foragers, and the main determinant of guilds was not diet

composition, but prey acquisition mode (Vitt & Carvalho 1995). However, in the Cerrado and

Amazonian Savanna studies, authors failed to consider the influence of historical factors.

During Pleistocene glacial periods, great expanses of the Amazon basin were covered by

savannas, with forest restricted to isolated patches (Ab'Sáber 1982, Bigarella & Andrade-Lima

1982, Eden 1974, Huber 1982). Presumably, Amazonian savannas represent vestiges of a large

savanna that once extended from central Brazil through Guianas (Prance 1978) and now persist

as islands embedded in the Amazon forest (Pires 1973). Eiten (1978) found that Amazonian

savannas were dominated by several common Cerrado plant species, but had low levels of

species diversity and endemism. Amazonian savanna lizard assemblages also show low

diversity, but instead, have high endemism (Ávila-Pires 1995, Colli 1996, Vitt & Carvalho

1995). In addition, Amazonian savannas are still poorly known, are highly threatened by

agricultural expansion, mining, cattle ranching, and fire (Machado et al. 2004, Mesquita 2003),

and are under-represented in conservation units (Cavalcanti 1995). Herein, we describe the lizard

assemblage of an Amazonian savanna, from Monte Alegre region, Pará State, using ecological,

morphological, and life history data and we examine the role of phylogenetic history in

assemblage structure (e. g., Brooks & McLennan 1991, Giannini 2003, Losos 1996).

Materials and methods

Study site.-We conducted field work from 27 November to 18 December 2002 in an Amazonian

savanna near Monte Alegre, northern Pará, Brazil (2º 00' S, 44º 20' W). The region is

characterized by open and low Cerrado-like vegetation (Amazonian savanna) on sandy soil with

rocky areas. Amazonian savannas occur like scattered islands inside the Amazon Forest and

121

cover about 150,000 km2, or 2% of Brazil (Pires 1973). The climate (Aw) is highly seasonal and

annual precipitation averages 1,700 mm (Eidt 1968). The vegetation is dominated by species

typical of the Cerrado, but diversity is lower (Eiten 1978).

Microhabitat and activity, and temperatures.-We captured lizards using drift fences with pitfall

traps, by hand, or using a shotgun. In the lab, we killed live lizards with an injection of

Thiopental® in accordance with approved protocols and preserved them in 10% formalin. When

we captured lizards by hand or gun, we took cloacal, substrate, and air temperatures (at 5 cm and

1.5 m above ground) at the time of capture to the nearest 0.2 C with a Miller & Weber® cloacal

thermometer. We also recorded microhabitat where the lizard was first observed (grass, open

ground, termite nests, tree trunks, or rocks) and the time of capture. We computed microhabitat

niche breadths (B) using the inverse of Simpson's diversity index (Simpson 1949):

B =1

pi2

i =1

n

∑,

where p is the proportion of microhabitat category i and n is the number of categories. Values

vary from 1.0 (exclusive use of a single microhabitat) to 5.0 (equal use of all five microhabitats).

We also calculated microhabitat use overlap with the equation:

φij =pij pik

i =1

n

pij2 pik

2

i =1

n

∑i=1

n

∑,

where p represents the proportion of microhabitat category i, n is the number of categories, and j

and k represent the species being compared (Pianka 1973). Øij varies from 0 (no overlap) to 1

(complete overlap). To investigate the presence of non-random patterns in microhabitat niche

122

overlap, we used the Niche Overlap Module of EcoSim (Gotelli & Entsminger 2003). Data for

such analysis consist of a matrix in which each species is a row and each microhabitat category

is a column. The matrix is reshuffled to produce random patterns that would be expected in the

absence of underlying structure. We used the options “Pianka’s niche overlap index” and

“randomization algorithm two” in EcoSim. Randomization algorithm two substitutes the

microhabitat category in the original matrix with a random uniform number between zero and

one, but retains the zero structure in the matrix (Winemiller & Pianka 1990).

Diet.-We analyzed stomach contents under a stereoscope, identifying prey items to the level of

order, with the exception that ants (Formicidae) were considered a separate category. We

recorded the length and width (to the nearest 0.01 mm) of intact items with Mitutoyo® electronic

calipers and estimated prey volume (V) as an ellipsoid:

V =43

πw2

⎛ ⎝

⎞ ⎠

2 l2

⎛ ⎝

⎞ ⎠ ,

where w is prey width and l is prey length. We calculated the numeric and volumetric

percentages of each prey category for pooled stomachs. From these percentages, we computed

niche breadths (B) using the inverse of Simpson's diversity index (Simpson 1949), as described

above except that values for diet niche breadth can vary from 1.0 to 25 (25 prey categories were

recognized). Throughout the text, we refer to diet niche breadth, which is the average between

numeric and volumetric niche breadths. We also calculated the percent occurrence of each prey

category (number of stomachs containing prey category i divided by the total number of

stomachs). We excluded prey items that were too fragmented to allow a reliable estimate of their

volumes from volumetric analyses. To determine the relative contribution of each prey category,

we calculated an importance index for pooled stomachs using the equation:

123

I =F% + N% + V%

3,

where F% is the percentage of occurrence, N% is the numeric percentage, and V% is the

volumetric percentage.

We calculated dietary overlap using the equation for microhabitat overlap above (Pianka

1973). To investigate the presence of non-random patterns in microhabitat niche overlap, we

used “Niche Overlap Module” of EcoSim (Gotelli & Entsminger 2003) in the same manner

described for microhabitat above.

Morphometry.-Using Mitutoyo® electronic calipers, we recorded the following morphometric

variables to the nearest 0.01 mm: snout-vent length (SVL), body width (at its broadest point),

body height (at its highest point), head width (at its broadest point), head height (at its highest

point), head length (from the tip of the snout to the commissure of the mouth), hind limb length,

forelimb length, and tail length (from the cloaca to the tip of the tail). To maximize availability

of data, we estimated tail length of lizards with broken or regenerated tails using a regression

equation relating tail length to SVL, calculated from lizards with intact tails. We calculated

separate regression equations for sexes. Prior to analysis, we log10-transformed all morphometric

variables to meet requirements of normality (Zar 1998). The transformed morphometric variables

were used in a principal component analysis to examine the morphological variation and to

identify the taxonomic level at which ecological variation among species occurred.

To conduct statistical analyses we used SYSTAT 11.0 and SAS 8.1 for Windows, with a

significance level of 0.05 to reject null hypotheses. Throughout the text, means appear ± 1 SD.

To assess the role of history in assemblage structure, we used Canonical Phylogenetic Ordination

(Giannini 2003) coupled with Monte Carlo permutations (9,999) in CANOCO 4.5 for Windows.

124

The analysis consists of canonical ordination to identify divergence points within a reduced tree

matrix that best explains ecological patterns (Giannini 2003). Because of differences in

completeness of data for microhabitat use and diets, we used two different trees (Figure 1). For

diet, we used the average of the importance index based on individual stomach means and pooled

data.

Results

Species composition, microhabitat, activity, and body temperatures.-The lizard assemblage in

Monte Alegre contained 7 species; one polychrotid (Anolis auratus), one tropidurid (Tropidurus

hispidus), three teiids (Ameiva ameiva, Cnemidophorus cryptus and Kentropyx striata), one

gymnophthalmid (Gymnophthalmus underwoodi) and one scincid (Mabuya nigropunctata). In

the study region, we documented more lizard species, like the forest-dweller gekkonids

Gonatodes humeralis and Thecadactylus rapicauda (pers. comm. Jossehan Frota), the teiid

Tupinambis teguixin, and the iguanid Iguana iguana; however, in this paper, we consider only

the species that occurred in the area of the pitfall traps.

All species in the assemblage are diurnal and typical of open areas, except M.

nigropunctata that also occurs in the forest. The teiid Ameiva ameiva occurred mainly in open

ground and grass microhabitats, like the other teiids Cnemidophorus cryptus and Kentropyx

striata and the scincid Mabuya nigropunctata. Tropidurus hispidus was found almost exclusively

in saxicolous microhabitats. Anolis auratus occurred on the ground and low perches on trees

(Fig. 2).

Niche breadth for microhabitat was low for all species in the assemblage. Anolis auratus

had the largest (2.27) and A. ameiva and T. hispidus had the smallest (1.14 and 1.16,

125

respectively) niche breath values (Fig. 3). Microhabitat niche overlap varied from none to almost

complete (Table 1). The lowest results for niche overlap were found between species most

distant phylogenetically (e.g., between T. hispidus and A. ameiva and between M. nigropunctata

and A. auratus) whereas the greatest overlap occurred among teiids (Table 1). The

pseudocommunity analysis showed that mean microhabitat overlap among lizard species did not

differ statistically from random (P=0.31), indicating lack of assemblage structure with respect to

microhabitat.

Lizards were active from 9:00 h to 17:00 h, but activity times varied among species.

Usually, “active forager” lizards tended to be active during the hottest hours of day. For example,

most teiids and scincids were active between 9:30 h and 13:30 h, whereas the “sit and wait

forager” T. hispidus was active from 10:30 h until 17:00 h.

Mean body temperatures ranged from 28.2°C in Anolis auratus to 41.8°C in Ameiva

ameiva. Because of a high association between body and substrate temperature (R2 = 0.53, F1,93

=102.45, P < 0.0001), we removed the effect of substrate temperature by calculating residuals of

a regression between body and substrate temperatures and then performed an ANOVA on the

residuals followed by post-hoc Tukey tests. The ANOVA detected significant differences among

species (F5,88 = 7.642, P < 0.0001) and post-hoc Tukey tests identified two statistically

homogeneous groups, one containing the teiids and another consisting of the other species (A.

auratus, M. nigropunctata, and T. hispidus).

Diet composition.-We analyzed the contents of 245 stomachs and recognized 25 prey categories.

The percentage of empty stomachs was 6.94 % (n = 17). Based on all lizard species, termites

were the most important prey type followed by orthopterans and spiders. The results based on

126

data from individual and pooled stomachs were similar. The most important prey for A. ameiva

and C. cryptus were termites and spiders; for K. striata, spiders and orthopterans; for T. hispidus,

mainly ants; for M. nigropunctata, orthopterans and beetles; for G. underwoodi, spiders; and for

A. auratus, termites (Table 2).

Diet niche breadths calculated from the average between numeric and volumetric

percentages of prey were usually low, with lowest values for G. underwoodi and A. auratus and

the largest values for A. ameiva and C. cryptus (Table 2). Prey overlap varied from 0.125 (G.

underwoodi vs. T. hispidus) to 0.951 (A. ameiva vs. C. cryptus) (Table 1). Tropidurus hispidus

had low overlap with all other species, with the greatest overlap with C. cryptus (0.422) (Table

1). Overlaps were high among teiids, with the lowest between K. striata and A. ameiva (0.686)

(Table 1). A pseudocommunity analysis with all original prey categories showed that mean diet

overlap among lizard species did not differ statistically from random (P=0.98), indicating lack of

structure.

Morphometry.-The first two factors of the principal component analysis of morphological

variables accounted for 97.46% of the variation (Table 3). The first factor (56.06%) described a

gradient of increasing hind limb length, forelimb length and tail length and decreasing head

height and head length (Table 3). The second factor (41.40%) described a gradient of increasing

body height and body width (Table 3). A plot of the average of factor scores by species for the

first two principal components revealed clusters corresponding to lizard families (Fig. 4).

Historical effects.-A detailed inspection of the cladogram (Fig. 3) reveals several patterns

indicating a role of history in the Monte Alegre lizard assemblage, mainly among Teioidea

127

lizards. Microhabitats, body temperatures, and diet niche breadths of teiids and

gymnophthalmids were similar, suggesting that history plays an important role in determining

the observed pattern. Some differences occurred in niche breadth (diet and microhabitat),

microhabitat use, and body temperature of A. auratus and T. hispidus; however, these species are

not closely related even though they were placed together in the cladogram, which suggests that

differences are not promoted by ecological factors.

Monte Carlo permutations (based on 9,999 permutations) revealed a significant

phylogenetic effect on dietary composition of Teioidea, which accounted for 33.6% of the

dietary variation (Table 4). No significant phylogenetic effects on microhabitats use or dietary

composition were detected in any other clades (Table 4).

Discussion

Species composition, microhabitat, activity, and body temperatures.- Data available on species

richness for Amazonian savannas and isolated Cerrado areas in the Amazon show a great

disparity, varying from two species in Guajará-Mirim, Rondônia State (Gainsbury & Colli 2003),

five in Carajás, Pará State (Cunha et al. 1985), eight in Boa Vista, Roraima State (Vitt &

Carvalho 1995), to nine in Vilhena, Rondônia State (Gainsbury & Colli 2003). Considering all

open-vegetation species collected in Monte Alegre region (9 species), the area harbors one of the

richest lizard faunas from open areas in the Amazon region. The reason for this variation is still

unclear, however, it has been suggested that time of isolation may be a determining factor

(Gainsbury & Colli 2003).

Activity times were similar among species, except for T. hispidus, which was active later

in the day compared to teiid lizards. This pattern appears to be common in other species of

128

Tropidurus, which avoid the hottest hours of the day and are more active early in the morning

and late afternoon (Bergallo & Rocha 1993, Rocha & Bergalo 1990, Vitt et al. 1996). On the

other hand, teiid lizards commonly concentrate their activity during warmer periods near mid-

day (Mesquita & Colli 2003a, Vitt & Colli 1994, Vitt et al. 1993). Furthermore, teiids

maintained higher body temperatures than all other species and temperatures were similar among

them. In most Neotropical lizard assemblages studied previously (see Vieira & Alves 1975, Vitt

1991, Vitt 1995, Vitt & Carvalho 1995), teiid lizards had the highest body temperatures,

suggesting that phylogenetic history plays an important role in the thermal ecology and activity

cycles of these lizards.

In most cases, microhabitat niche overlaps in Monte Alegre lizards were highest among

closely related species, especially teiids. Several other studies also detected a historical effect in

ecological traits, such as microhabitat (Vitt 1995, Vitt & Zani 1996, Vitt et al. 1999).

Additionally, previous studies where ecological traits were mapped on the phylogeny revealed

that present-day interactions cannot explain observed patterns of resource use (Brooks &

McLennan 1991, Losos 1994, Losos 1996). Although structure in microhabitat use was found in

several assemblages (e. g., Pianka 1986, Vitt 1995, Vitt & Carvalho 1995, Winemiller & Pianka

1990), we did not find such structure in Monte Alegre, which indicates a lack of competition for

space. Therefore, microhabitat may not be a limiting for these lizards (see Connor & Simberloff

1979). Because some species were difficult to observe (e.g., gymnophthalmids), microhabitat

data for some species were poor, which may have influenced the results. Additional data could

reveal different patterns of microhabitat use.

129

Diet composition.- Most species from the Monte Alegre lizard assemblage showed similar diet

composition when compared with other conspecific populations, e.g., C. cryptus from

Amazonian savanna area in Amapá State (Mesquita & Colli 2003b), K. striata from Amazonian

savanna area in Roraima (Vitt & Carvalho 1995), M. nigropunctata from Brazilian Amazonia

(Vitt & Blackburn 1991), Tropidurus sp. from open vegetation areas in Rondônia (Vitt 1993),

Gymnophthalmus spp. from Roraima (Vitt & Carvalho 1995), and A. ameiva range wide (Vitt &

Colli 1994). These results emphasize the importance of history in the diet of Monte Alegre

lizards, which regardless of differences in prey availability among localities, ingested similar

prey. One exception to this was A. auratus, which differed in diet composition compared to other

localities (Magnusson et al. 1985, Vitt & Carvalho 1995). In Monte Alegre, A. auratus had a

high proportion of termites in the diet, which is unusual among Anolis (Vitt et al. 2003a, Vitt et

al. 2002, Vitt et al. 2003b, Vitt et al. 2001) and even for iguanian lizards (Vitt et al. 2003c). This

result suggests an important role of ecological factors influencing the diet of this species in

Monte Alegre. Several explanations are possible, including local prey availability, inter-specific

interactions and/or seasonality effects; however, more work is necessary to elucidate this issue.

Overall, when examining diet composition, the Monte Alegre lizard assemblage appears to be

more shaped by phylogenetic inertia than ecological interactions.

The highest dietary overlaps were found within teiids, mainly due to high consumption of

termites, spiders and orthopterans. Arthropod abundance may not be a limiting resource (e. g.,

Colli et al. 1997) and/or differences in foraging mode and home range between these species

allow partitioning of food resources (Pianka 1973, Pianka 1986). Nevertheless, high dietary

overlap among closely related species suggests the influence of phylogeny (Brooks & McLennan

1991, Losos 1996). On the other hand, low dietary overlap among distantly related species, such

130

as T. hispidus vs. K. striata, G. underwoodi vs. T. hispidus, and A. auratus vs. K. striata, cannot

be interpreted as evidence of competition or local scale effects (see Brooks & McLennan 1993,

Harvey & Pagel 1991, Losos 1996). Furthermore, lack of structure found in the

pseudocommunity analysis suggests absence of competition among species (i.e., the resources

may not be limiting) (Connor & Simberloff 1979). Indeed, a previous study on fat storage cycles

in Amazonian Savanna and Cerrado lizards showed that most species accumulate fat bodies

during the dry season when insect availability is lowest, which supports that food is not a

limiting factor (Colli et al. 1997).

Morphometry.- Morphological approaches for assessing ecological relationships have been used

for many years and have several advantages (Ricklefs et al. 1981, Ricklefs & Travis 1980,

Schoener 1965). Although morphology is relatively fixed and consequently not suitable to detect

delicate aspects of the ecology, it is easily comparable with other studies and is useful when

combined with other kinds of data (Ricklefs & Miller 1999).

Our data suggest a strong association between morphology and ecology, with closely

related species grouping together in morphological space, especially teiid lizards. Traditionally,

tropidurids and polychrotids (both iguanians) have a high association between morphology and

ecology, typically evidenced when habitat shifts promote changes in morphology (Losos 1992,

Losos et al. 1994, Pounds 1988, Vitt 1981). Several studies have shown adaptive morphological

differentiation in response to habitat shifts in closely related tropidurids (Vitt 1981, Vitt et al.

1997a) and in Anolis lizards (Losos 1995, Losos et al. 1993, Pounds 1988). The iguanians from

Monte Alegre did not cluster together in morphological space and this could be interpreted as

evidence of morphological differentiation in response to interactions between these lizards.

131

However, iguanians from Monte Alegre are not closely related and this likely explains the

morphological differentiation. Tropidurus hispidus and Anolis auratus are morphologically

similar to their close relatives in other habitats (see Magnusson & Silva 1993, Vitt 1993, Vitt &

Carvalho 1995), suggesting that differences originated long ago in the history of these species.

The morphological similarity among teiid lizards suggests a major influence of history,

whereas the gymnophthalmid plotted far from teiids in morphological space. Teiids and

gymnophthalmids are characterized by a strong similarity in body shape, but differ in body size.

These morphological differences are likely a historical consequence of intraguild interactions

rather than more recent ecological interactions (Vitt et al. 2000, Vitt & Zani 1996, Vitt et al.

1998).

Historical effects.-Like most lizard assemblages from Neotropical savannas, Monte Alegre is

depauperate of closely related species (Vitt 1991, Vitt 1995, Vitt & Carvalho 1995). With the

exception of teiids, species belonged to different families, complicating comparisons to access

the role of historical and local factors on assemblage structure. Nevertheless, the conservative

ecology of most species when examined across different habitats is strong evidence for historical

influence (Brooks & McLennan 1991, Brooks & McLennan 1993, Losos 1996). Among all

Monte Alegre lizards, only Anolis auratus differed in an ecological trait (diet composition)

compared to other populations (Magnusson et al. 1985, Magnusson & Silva 1993, Vitt &

Carvalho 1995), showing that local factors are also important. Anoles have been shown to

respond quickly, even in morphology, to changes in ecological conditions (Losos 1995, Losos et

al. 1993, Pounds 1988). Conversely, scleroglossan lizards tend to have more conservative

ecological traits (Vitt et al. 2003c).

132

An examination of ecological traits mapped on the current phylogenetic hypothesis

clearly shows the role of history in the Monte Alegre lizard assemblage (Fig. 3). This is

particularly evident for Teiioidea (teiids and gymnophthalmids), which showed high similarity in

most ecological traits examined. Studies with these lizards from drastically different habitats

have shown that their ecology is little influenced by local differences, such as environmental and

species interactions, further emphasizing the influence of history in their ecology (Mesquita &

Colli 2003b, Vitt & Colli 1994, Vitt et al. 1998, Vitt et al. 1997b). If present-day interactions

exert more influence on the Monte Alegre lizard assemblage than the history of species, we

would expect ecological traits to map randomly on the phylogeny (see Vitt 1995). The

cladogram, however, revealed the opposite pattern, especially in Teioidea. Canonical

Phylogenetic Ordination detected significant phylogenetic effects in Teioidea when considering

the diet data. However, we found no phylogenetic effect for any other taxa in the assemblage for

diet and no effect in any species when considering microhabitat.

Some caution should be used when interpreting our results. Microhabitat data may be

biased by differences in local abundance. Although most lizard species from Amazonian

savannas are abundant and easy to observe, some did not occur in high abundance or were more

difficult to capture (e.g., gymnophthalmids). On the other hand, assemblages from Amazonian

savannas are depauperate of closely related species. In the Monte Alegre assemblage, historical

effects could be undetectable because major taxa are underrepresented. In more complex

assemblages, with greater numbers of closely related species, historic effects may be more easily

detected. In Amazon forest, a significant phylogenetic effect was detected, primarily in

tropidurid lizards, which are represented by two closely related species, Plica plica and P. umbra

133

(Giannini 2003, Vitt et al. 1999). Finally, the lack of a phylogenetic effect may have resulted

from a data deficiency in the Canonical Phylogenetic Ordination analysis.

Although there are some analyses of niche structure to examine the influences of

historical factors on species interactions, the use of phylogenetically based analyses is not well

established and the nature of forces acting on assemblages remains unclear (see Webb et al.

2002). Previous studies have suggested that ecological differences originated long ago in the

history of species (Losos 1996, Vitt et al. 1999, Webb et al. 2002). In addition, observations on

ecological characteristics of sympatric, closely related species and comparisons among different

assemblages with phylogenetically based analyses are essential to elucidate the relative

importance of ecological and historical factors in structuring assemblages.

Acknowledgments

We thank D. B. Shepard and Tony Gamble for review of a previous version of the

manuscript. This work was supported by a doctorate fellowship from Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – CAPES to DOM and a research fellowship

from Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq to GRC (#

302343/88-1). Fundação O Boticário de Proteção à Natureza funded the field research.

Literature Cited

AB'SÁBER, A. N. 1982. The paleoclimate and paleoecology of Brazilian Amazonia, p. 41-59. In:

Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press,

New York.

134

ÁVILA-PIRES, T. C. S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische

Verhandelingen, Leiden. 1995:3-706.

BEGON, M., HARPER, J. L. & TOWNSEND, C. R. 1990. Ecology: Individuals, Populations and

Communities. Blackwell Scientific Publications, Cambridge, Massachusetts.

BERGALLO, H. G. & ROCHA, C. F. D. 1993. Activity patterns and body temperatures of two

sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different

foraging tactics in Southeastern Brazil. Amphibia-Reptilia. 14:312-315.

BIGARELLA, J. J. & ANDRADE-LIMA, D. 1982. Paleoenvironmental changes in Brazil, p. 27-40.

In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University

Press, New York.

BROOKS, D. R. & MCLENNAN, D. A. 1991. Phylogeny, Ecology, and Behavior, a Research

Program in Comparative Biology. The University of Chicago Press, Chicago.

BROOKS, D. R. & MCLENNAN, D. A. 1993. Historical ecology: examining phylogenetic

components of community evolution, p. 267-280. In: Species Diversity in Ecological

Communities, Historical and Geographical Perspectives. R. E. Ricklefs & D. Schluter

(eds.). The University of Chicago Press, Chicago, Illinois.

CADLE, J. E. & GREENE, H. W. 1993. Phylogenetic patterns, biogeography, and the ecological

structure of Neotropical snake assemblages, p. 281-293. In: Species Diversity in

Ecological Communities: Historical and Geographical Perspectives. R. E. Ricklefs & D.

Schluter (eds.). University of Chicago Press, Chicagi.

CAVALCANTI, R. B. 1995. Subsídios para o zoneamento ecológico econômico do Amapá: uma

análise das unidades de conservação biológica, http://www.bdt.org.br/amapa/irda/.

135

COLLI, G. R. 1996. Amazonian savanna lizards and the historical biogeography of Amazonia, p.

137. University of California, Los Angeles.

COLLI, G. R., PÉRES, A. K., JR. & ZATZ, M. G. 1997. Foraging mode and reproductive seasonality

in tropical lizards. Journal of Herpetology. 31:490-499.

CONNOR, E. F. & SIMBERLOFF, D. 1979. The assembly of species communities: chance or

competition? Ecology. 60:1132-1140.

CUNHA, O. R., NASCIMENTO, F. P. & ÁVILA-PIRES, T. C. S. 1985. Os répteis da área de Carajás,

Pará, Brasil (Testudines e Squamata). Publicações Avulsas do Museu Paraense Emílio

Goeldi. 40:9-92.

EDEN, M. J. 1974. Paleoclimatic influences and the development of savanna in Southern

Venezuela. Journal of Biogeography. 1:95-109.

EIDT, R. C. 1968. The climatology of South America, p. 54-81. In: Biogeography and Ecology in

South America. Vol. 1. E. J. Fitkau, J. Illies, H. Klinge, G. H. Schwabe & H. Sioli (eds.).

Dr. W. Junk N. V. Publishers, The Hague, Netherlands.

EITEN, G. 1978. Delimitation of the Cerrado concept. Vegetatio. 36:169-178.

ESTES, R., DE QUEIROZ, K. & GAUTHIER, J. 1988. Phylogenetic relationships within Squamata, p.

119-281. In: Phylogenetic Relationships of the Lizard Families. Essays Commemorating

Charles L. Camp. R. Estes & G. Pregill (eds.). Stanford University Press, Stanford,

California.

GAINSBURY, A. M. & COLLI, G. R. 2003. Lizard assemblages from natural Cerrado enclaves in

southwestern Amazonia: the role of stochastic extinctions and isolation. Biotropica.

35:503-519.

GIANNINI, N. P. 2003. Canonical phylogenetic ordination. Systematic Biology. 52:684-695.

136

GOTELLI, N. J. & ENTSMINGER, G. L. 2003. EcoSim: Null models software for ecology. In:

Acquired Intelligence Inc. & Kesey-Bear.

http://homepages.together.net/~gentsmin/ecosim.htm, Burlington, VT. 05465.

HARVEY, P. H. & PAGEL, M. D. 1991. The Comparative Method in Evolutionary Biology.

Oxford Univ. Press, New York.

HUBER, O. 1982. Significance of savanna vegetation in the Amazon Territory of Venezuela, p.

221-244. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia

University Press, New York.

LOSOS, J. B. 1992. The evolution of convergent structure in Caribbean Anolis communities.

Systematic Biology. 41:403-420.

LOSOS, J. B. 1994. Historical contingency and lizard community ecology, p. 319-333. In: Lizard

Ecology: Historical and Experimental Perspectives. L. J. Vitt & E. R. Pianka (eds.).

Princeton University Press, Princeton, New Jersey.

LOSOS, J. B. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns

and experimental tests. Philosophical Transactions of the Royal Society of London B.

349:69-75.

LOSOS, J. B. 1996. Phylogenetic perspectives on community ecology. Ecology. 77:1344-1354.

LOSOS, J. B., IRSCHICK, D. J. & SCHOENER, T. W. 1994. Adaptation and constraint in the

evolution of specialization of Bahamian Anolis lizards. Evolution. 48:1786-1798.

LOSOS, J. B., MARKS, J. C. & SCHOENER, T. W. 1993. Habitat use and ecological interactions of

an introduced and a native species of Anolis lizard on Grand Cayman, with a review of

the outcomes of anole introductions. Oecologia. 95:525-532.

137

MACHADO, R. B., RAMOS NETO, M. B., PEREIRA, P. G. P., CALDAS, E. F., GONÇALVES, D. A.,

SANTOS, N. S., TABOR, K. & STEININGER, M. 2004. Estimativas de perda de área do

Cerrado brasileiro, p. 1-23. Conservation International, Brasília, DF.

MAGNUSSON, W. E., PAIVA, L. J. D., ROCHA, R. M. D., FRANKE, C. R., KASPER, L. A. & LIMA, A.

P. 1985. The correlates of foraging mode in a community of Brazilian lizards.

Herpetologica. 41:324-332.

MAGNUSSON, W. E. & SILVA, E. V. 1993. Relative effects of size, season and species on the diets

of some amazonian Savanna lizards. Journal of Herpetology. 27:380-385.

MESQUITA, D. O. 2003. Herpetofauna das Savanas Amazônicas: subsídios para sua preservação,

http://www.unb.br/ib/zoo/grcolli/alunos/daniel/paginaprincipal.html.

MESQUITA, D. O. & COLLI, G. R. 2003a. The ecology of Cnemidophorus ocellifer (Squamata,

Teiidae) in a neotropical savanna. Journal of Herpetology. 37:498-509.

MESQUITA, D. O. & COLLI, G. R. 2003b. Geographical variation in the ecology of populations of

some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia. 2003:285-298.

PIANKA, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and

Systematics. 4:53-74.

PIANKA, E. R. 1986. Ecology and Natural History of Desert Lizards: Analyses of the Ecological

Niche and Community Structure. Princeton Univ. Press, Princeton, New Jersey.

PIANKA, E. R. 1994. Evolutionary Ecology. HarperCollins College Publishers, New York, NY.

PIRES, J. M. 1973. Tipos de vegetação da Amazônia. Publicações Avulsas do Museu Paraense

Emílio Goeldi. 20:179-202.

POUNDS, J. A. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in a

tropical mainland Anolis community. Ecological Monographs. 58:299-320.

138

PRANCE, G. T. 1978. The origin and evolution of the Amazon flora. Interciencia. 3:207-222.

REEDER, T. W., COLE, C. J. & DESSAUER, H. C. 2002. Phylogenetic relationships of Whiptail

lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly,

reevaluation of karyotypic evolution, and review of hybrid origins. American Museum

Novitates. 3365:1-61.

RICKLEFS, R. E., COCHRAN, D. & PIANKA, E. R. 1981. A morphological analysis of the structure

of communities of lizards in desert habitats. Ecology. 62:1474-1483.

RICKLEFS, R. E. & MILLER, G. L. 1999. Ecology. Freeman, W H and Company, New York, NY.

RICKLEFS, R. E. & TRAVIS, J. 1980. A morphological approach to the study of avian community

organization. The Auk. 97:321-338.

ROCHA, C. F. D. & BERGALO, H. G. 1990. Thermal biology and flight distance of Tropidurus

oreadicus (Sauria: Iguanidae) in an area of amazonian Brazil. Ethology, Ecology and

Evolution. 2:263-268.

ROUGHGARDEN, J. & DIAMOND, J. M. 1986. Overview: The role of species interactions in

community ecology, p. 333-343. In: Community Ecology. J. Diamond & T. J. Case

(eds.). Harper & Row, Publishers, Inc., New York, NY.

SCHOENER, T. W. 1965. The evolution of bill size differences among sympatric congeneric

species of birds. Evolution. 19:189-213.

SIMPSON, E. H. 1949. Measurement of diversity. Nature. 163:688.

VANZOLINI, P. E., RAMOS-COSTA, A. M. M. & VITT, L. J. 1980. Répteis das Caatingas. Academia

Brasileira de Ciências, Rio de Janeiro, Brasil.

VIEIRA, G. H. C., MESQUITA, D. O., JR, A. K. P., KITAYAMA, K. & COLLI, G. R. 2000. Natural

History: Micrablepharus atticolus. Herpetological Review. 31:241-242.

139

VIEIRA, M. I. & ALVES, M. L. M. 1975. Estudo revisivo de Bothrops neuwiedi pubescens (Cope

1869). Serpentes, Viperidae. Iheringia. 48:57-74.

VITT, L. J. 1981. Lizard reproduction: habitat specificity and constraints on relative clutch mass.

The American Naturalist. 117:506-514.

VITT, L. J. 1991. An introduction to the ecology of Cerrado lizards. Journal of Herpetology.

25:79-90.

VITT, L. J. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in

Amazonian lowland rain forest. Canadian Journal of Zoology. 71:2370-2390.

VITT, L. J. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. Occasional

Papers of the Oklahoma Museum of Natural History. 1:1-29.

VITT, L. J., AVILA-PIRES, T. C. S., ESPÓSITO, M. C., SARTORIUS, S. S. & ZANI, P. A. 2003a.

Sharing amazonian rain-forest trees: ecology of Anolis punctatus and Anolis transversalis

(Squamata: Polychrotidae). Journal of Herpetology. 37:276-285.

VITT, L. J., ÁVILA-PIRES, T. C. S., ZANI, P. A. & ESPOSITO, E. C. 2002. Life in the shade: the

ecology of Anolis trachyderma (Squamata: Polychrotidae) in amazonian Ecuador and

Brazil, with comparisons to ecologically similar anoles. Copeia. 2002:275-286.

VITT, L. J., AVILA-PIRES, T. C. S., ZANI, P. A., SARTORIUS, S. S. & ESPÓSITO, M. C. 2003b. Life

above ground: ecology of Anolis fuscoauratus in the Amazon rain forest, and

comparisons with its nearest relatives. Canadian Journal of Zoology. 81:142-156.

VITT, L. J. & BLACKBURN, D. G. 1991. Ecology and life history of the viviparous lizard Mabuya

bistriata (Scincidae) in the Brazilian Amazon. Copeia. 1991:916-927.

VITT, L. J. & CALDWELL, J. P. 1993. Ecological observations on Cerrado lizards in Rondônia,

Brazil. Journal of Herpetology. 27:46-52.

140

VITT, L. J., CALDWELL, J. P., ZANI, P. A. & TITUS, T. A. 1997a. The role of habitat shift in the

evolution of lizard morphology: evidence from tropical Tropidurus. Proceedings of the

National Academy of Sciences of the United States of America. 94:3828-3832.

VITT, L. J. & CARVALHO, C. M. 1995. Niche partitioning in a tropical wet season: lizards in the

Lavrado area of Northern Brazil. Copeia. 1995:305-329.

VITT, L. J. & COLLI, G. R. 1994. Geographical ecology of a neotropical lizard: Ameiva ameiva

(Teiidae) in Brazil. Canadian Journal of Zoology. 72:1986-2008.

VITT, L. J., PIANKA, E. R., COOPER, W. E., JR. & SCHWENK, K. 2003c. History and the global

ecology of squamate reptiles. The American Naturalist. 162:44-60.

VITT, L. J., SARTORIUS, S. S., ÁVILA-PIRES, T. C. S. & ESPOSITO, M. C. 2001. Life on the leaf

litter: The ecology of Anolis nitens tandai in the Brazilian Amazon. Copeia. 2001:401-

412.

VITT, L. J., SARTORIUS, S. S., ÁVILA-PIRES, T. C. S., ESPÓSITO, M. C. & MILES, D. B. 2000.

Niche segregation among sympatric Amazonian teiid lizards. Oecologia. 122:410-420.

VITT, L. J. & ZANI, P. A. 1996. Organization of a taxonomically diverse lizard assemblage in

Amazonian Ecuador. Canadian Journal of Zoology. 74:1313-1335.

VITT, L. J., ZANI, P. A., ÁVILA-PIRES, T. C. S. & ESPOSITO, M. C. 1998. Geographical ecology of

the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon rainforest. Canadian

Journal of Zoology. 76:1671-1680.

VITT, L. J., ZANI, P. A. & CALDWELL, J. P. 1996. Behavioural ecology of Tropidurus hispidus on

isolated rock outcrops in Amazonia. Journal of Tropical Ecology. 12:81-101.

141

VITT, L. J., ZANI, P. A., CALDWELL, J. P., ARAUJO, M. C. D. & MAGNUSSON, W. E. 1997b.

Ecology of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. Copeia.

1997:745-757.

VITT, L. J., ZANI, P. A., CALDWELL, J. P. & DURTSCHE, R. D. 1993. Ecology of the whiptail lizard

Cnemidophorus deppii on a tropical beach. Canadian Journal of Zoology. 71:2391-2400.

VITT, L. J., ZANI, P. A. & ESPOSITO, M. C. 1999. Historical ecology of Amazonian lizards:

implications for community ecology. Oikos. 87:286-294.

WEBB, C. O., ACKERLEY, D. D., MCPEEK, M. A. & DONOGHUE, M. J. 2002. Phylogenies and

community ecology. Annual Review of Ecology and Systematics. 33:475-505.

WERNER, E. E. 1986. Species interactions in freshwater fish communities, p. 344-357. In:

Community Ecology. J. Diamond & T. J. Case (eds.). Harper & Row, Publishers, Inc.,

New York, NY.

WINEMILLER, K. O. & PIANKA, E. R. 1990. Organization in natural assemblages of desert lizards

and tropical fishes. Ecological Monographs. 60:27-55.

YODZIS, P. 1986. Competition, mortality, and community structure, p. 480-491. In: Community

Ecology. J. Diamond & T. J. Case (eds.). Harper & Row, Publishers, Inc., New York,

NY.

ZAR, J. H. 1998. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

142

Table 1- Overlap in microhabitat (lower half of matrix) and diet (upper half) for Monte Alegre lizards.

A. ameiva C. cryptus K. striata T. hispidus M. nigropunctata G. underwoodi A. auratus

A. ameiva 0.951 0.686 0.226 0.579 0.683 0.748

C. cryptus 0.993 0.709 0.422 0.513 0.716 0.799

K. striata 0.756 0.807 0.132 0.512 0.730 0.193

T. hispidus 0.027 0.105 0.019 0.312 0.125 0.487

M. nigropunctata 0.705 0.696 0.500 0.019 0.187 0.312

G. underwoodi - - - - - 0.286

A. auratus 0.365 0.439 0.853 0.008 0.213 -

143

Table 2. Importance index, based on individual stomach means and pooled data (in parenthesis), of prey categories in the diet of seven lizard species from Monte Alegre. Prey Type A. ameiva C. cryptus K. striata T. hispidus M. nigropunctata G. underwoodi A. auratus Annelida - 0.52 (0.52) - - - - - Aranae 21.19 (13.99) 22.68 (21.37) 38.83 (41.37) 5.17 (4.85) 8.53 (8.40) 38.10 (20.68) 5.67 (5.48) Blattaria 8.67 (8.66) 3.77 (4.41) 2.78 (3.03) 4.82 (5.44) 8.33 (4.17) 14.29 (8.87) - Coleoptera 6.18 (4.50) 5.62 (4.03) - 18.53 (15.12) 12.50 (6.41) - 9.00 (15.12)Diplopoda - 0.43 (0.07) - 1.59 (1.14) - - - Diptera - - - 3.62 (3.16) - - - Formicidae 1.61 (0.81) 9.71 (9.14) - 64.82 (65.86) 8.01 (12.42) - 18.58 (13.70)Gastropoda - - - 1.09 (1.02) - - - Hemiptera/Homoptera 3.44 (2.43) 2.96 (2.69) - 5.84 (5.16) - 14.29 (6.88) - Hymenoptera (non ants) - 2.02 (1.83) - 6.68 (7.16) - - - Insect larvae 4.50 (3.37) 3.73 (2.74) 16.67 (12.27) 5.41 (9.51) - - - Isoptera 25.27 (42.42) 21.86 (34.23) - 3.27 (1.40) - 9.38 (48.45) 40.61 (60.69)Isopoda 0.45 (0.46) - - - - - - Lizard skin - - - - - - 0.83 (0.31) Mantodea - 0.69 (0.67) - - - - 5.00 (4.95) Neuroptera 1.92 (1.62) 1.03 (0.76) - - - - - Non identified 2.09 (0.13) 3.70 (0.91) 5.56 (3.03) - - 0.14 (0.83) 2.64 (0.94) Orthoptera 18.03 (20.62) 13.33 (17.74) 19.51 (34.74) 6.04 (8.28) 48.40 (59.58) - 10.00 (9.17)Ooteca 0.65 (0.67) - - - - - - Plant material 2.16 (2.21) - 4.50 (3.94) 1.76 (1.75) - - - Pseudoscorpionida - - - - 5.91 (6.65) - - Chilopoda 4.44 (4.29) 1.93 (2.32) - 1.98 (1.96) - - - Scorpionida 2.44 (2.03) - - 2.63 (2.29) 12.48 (14.88) - - Solifuga 0.85 (0.49) 1.97 (1.28) - - - - - Vertebrate 1.13 (6.08) - - 0.07 (0.11) - - - N 72 77 6 38 8 7 20 Numeric niche breadth 1.52 (1.29) 1.54 (2.15) 1.30 (3.46) 1.44 (1.53) 1.53 (4.00) 1.01 (1.53) 1.20 (1.88) Volumetric niche breadth 1.54 (4.89) 1.32 (4.25) 1.09 (2.40) 1.57 (5.12) 1.54 (1.82) 1.00 (2.03) 1.08 (2.39)

144

Table 3. Principal component analysis of log transformed morphological data from Monte

Alegre lizards.

Factor I Factor II Factor III

Snout-vent length 0.373 0.263 0.434

Tail length 0.419 0.160 0.367

Head width -0.226 0.441 -0.039

Head length -0.352 0.307 -0.151

Head height -0.354 0.307 0.012

Body width 0.087 0.494 0.353

Body height 0.048 0.510 0.193

Leg length 0.434 0.089 -0.126

Forelimb length 0.432 0.105 -0.213

Eigenvalues 5.045 3.726 0.0896

Percent of variance explained 56.059 41.405 0.991

145

Table 4. Historical effects on the ecology of Cerrado lizards. Results of Monte Carlo permutation

tests of individual groups (defined in Fig. 1) for diet and microhabitat matrices. Percentage of

variation explained (relative to total unconstrained variation), and F and P values for each

variable are given (9,999 permutations were used) for each main matrix.

Group(s) Variation Variation % F P

Diet

D 0.223 33.635 1.458 0.0426

A/E 0.190 28.658 1.187 0.1899

C 0.162 24.434 0.979 0.4961

B 0.114 17.195 0.650 0.9626

Microhabitat

A/D 0.427 47.870 1.509 0.2031

C 0.301 33.744 0.956 0.6549

B 0.136 15.247 0.382 0.9803

146

FIGURE LEGENDS

Figure 1. Individual groups used in canonical phylogenetic ordination for microhabitat and diet data.

Phylogeny based in Estes et al. (1988) and Reeder et al. (2002).

Figure 2. Frequency distribution of individuals according to microhabitat categories for Monte

Alegre lizards. Sample sizes are indicated at the top of bars.

Figure 3. Phylogeny of Monte Alegre lizards showing the mapping of ecological characteristics.

Abbreviations for habitat are: C = cerrado, GF = gallery forest, R = rocky field. Abbreviations

for microhabitat are: A = arboreal, OG = open ground, B = bushes, LD = litter-dwelling, S =

saxicolous, TN = termite nest. Abbreviations for activity are: D = diurnal, N = nocturnal, CN =

crepuscular/nocturnal. Note: general microhabitat categories are based on data from this work

and from Vieira et al. (2000), Vitt (1991), Vitt and Caldwell (1993), Vanzolini et al. (1980) and

Ávila-Pires (1995).

Figure 4. Plot of species means on first two principal components derived from log-transformed

morphological data for Monte Alegre lizards.

147

148

149

150

151

APÊNDICE 4- manuscrito submetido para a publicação na revista Journal of Tropical Ecology em

outubro de 2004.

Lizard species richness and diversity are determined by habitat characteristics at a

microgeographic scale: implications for conservation in the Brazilian Cerrado

Laurie J. Vitt,* Guarino R. Colli,‡ Janalee P. Caldwell,* Daniel O. Mesquita,‡ Adrian A. Garda,*

and Frederico G. R. França‡

*Sam Noble Oklahoma Museum of Natural History, 2401 Chautauqua Ave., Norman, OK

73072-7029, USA

‡ Departamento de Zoologia, Universidade de Brasília, 70910-900 Brasília, DF Brasil

Running head: Habitat structure and lizard diversity

Key words: Brazil, Cerrado, community, conservation, scale, lizard, tropical.

152

We used a pitfall-trap system to determine the relationship of species composition,

species diversity (relative abundance), and community structure to habitat structure in two easily

distinguished and nearly contiguous habitat patches in the Brazilian Cerrado. One habitat patch

was relatively open (no canopy) and the other was relatively closed (partial canopy); they

differed significantly in 5 of 9 habitat variables and the more open habitat maintained higher

microhabitat temperatures throughout the day than did the closed habitat. A PCA on habitat

variables revealed that the closed habitat contained a combination of more fallen logs, burrows,

and leaf litter than the open habitat. A total of 531 individuals of twelve lizard species were

sampled. Species accumulation curves show that after 23 continuous days of sampling, species

numbers asymptote at 10 in the open habitat and 12 in the closed habitat. Lizard community

structure also differs between habitats. A CCA comparing habitat variables at each array with

lizards sampled within the array shows that lizard species are tied to particular microhabitat

characteristics. Our results indicate that variation in habitat structure at small scales can impact

lizard species composition, diversity, and community structure. Moreover, conservation

programs aimed at maintaining natural diversity will by necessity need to consider microhabitats

that individual species use.

153

INTRODUCTION

Identification and protection of areas with high biodiversity require surveys and inventories of

existing flora and fauna. Unfortunately, many large regions, for example, the Brazilian Cerrado

Biome, were transformed from natural habitat to agriculture prior to biotic surveys (see below).

Only patches of undisturbed Cerrado remain today (e.g., Ratter et al. 1997), and it is

undetermined whether intensive surveys of these patches will paint an accurate picture of the

biodiversity that was lost during development. The scale at which plant and animal distributions

are examined can influence conclusions on distributions because habitat structure affects species

distributions at several scales (Hamer & Hill 2000; Levin 2000; Gering et al. 2002; Johnson et

al. 2003). It is well known, for example, that mammals (Lindenmayer et al. 1999), birds (Renjifo

1999; MacFaden & Capen 2002; Rodewald & Yahner 2002; Bennett et al. 2004), reptiles (Rocha

& Bergallo 1997; Bini et al. 2000; Fisher et al. 2002; Marchand & Litvaitis 2004a, b),

amphibians (Welsh & Lind 2002; Guerry & Hunter 2002; Lowe & Bolger 2002) and terrestrial

invertebrates (Bestelmeyer & Wiens 2001; Chust et al. 2003; Summerville et al. 2003) respond

to variation in habitat structure at various scales in a wide variety of environments throughout the

world. We first comment on the threatened nature of the Cerrado Biome, then introduce a study

designed to examine lizard diversity and community structure at a small spatial scale.

Largely because of the Amazon rainforest, the Atlantic rainforest, and the Cerrado, Brazil

shares the lead with Indonesia as one of the top two “megadiversity” countries in the world

(Mittermeier et al. 1997). The Amazon rainforest has received considerable attention and threats

to its biodiversity are well known (Adis & Ribeiro 1989; Hecht & Cockburn 1989; Myers 1980,

1990; Sayer & Whitmore 1991; Skole & Tucker 1993). In contrast, the Cerrado has only

recently become the focus of conservation efforts, yet its biodiversity is more threatened than

154

that of the Amazon or Atlantic rainforest because of rapid and uncontrolled development for

agriculture and large scale hydroelectric projects (Ratter et al. 1997; Myers et al. 2000; Oliveira

& Marquis 2002; Cavalcanti & Joly 2002).

The Cerrado Biome is a savanna-like grassland with varying vegetative structure

(Oliveira-Filho & Ratter 2003) that covered approximately 2 million km2 prior to development.

Vegetative structure and physiognomy of the Cerrado have only been described since the mid-

1970s (Oliveira & Marquis 2002). Soils and water availability vary geographically at large and

small scales and influence vegetative structure. Cerrado with rich soils maintains mesophytic

forests, streams maintain gallery forests, and some well-drained areas have no forest. Like

African savannas, Cerrado grasslands are deciduous. Unlike African savannas, Cerrado trees are

evergreen due to a high water table during the extended dry season. Biodiversity of the Cerrado

remains poorly documented, but 1992 estimates suggested that at least 160,000 species of plants,

animals, and fungi were represented (Dias 1992; see also Ratter et al. 1992). Many previously

unknown species have been added to the Cerrado faunal and floral lists, indicating that much of

the diversity remains undiscovered (e.g., Mendonça et al. 1998; Oliveira-Filho & Ratter 2002;

Brown & Gifford 2002; Colli et al. 2002; Macedo 2002; Marinho-Filho et al. 2002).

Habitat diversity varies across the Cerrado, but several habitat types are easily

recognizable. Much of the Cerrado is open, savanna-like grassland. Open areas that lack trees are

referred to as campos limpos (a Portuguese term literally meaning, “clean fields”). Widespread

grasslands, with characteristic “buriti” (Mauritia flexuosa) palm trees, saturated with water year-

round are referred to as veredas. Extensive areas of mesotropic forests including a dense and tall

stand referred to as cerradão, and semi-deciduous and deciduous forests occur in many areas.

The Cerrado is intersected by gallery forest along rivers, tributaries, and small streams. These

155

waters drain into the Amazon Basin (e.g., Rio Araguaia, Rio Tocantins, Rio Xingu, Rio

Tapajós), the Pantanal (e.g., Rio Cuiabá, Rio Taquari), the western drainages of the Rio

Paranaíba, or the Rio São Francisco. Scattered throughout the Cerrado are sandstone and

limestone rock outcrops that contain vegetation and faunal elements similar to those of the semi-

arid Caatinga to the northeast. Similar rock outcrops are scattered across the northern and

southern Amazon.

Estimates of habitat loss vary for the Cerrado. As early as 1994, Dias (1994) reported that

41% of Cerrado was used for cattle grazing and 37% had been converted to agriculture; thus, the

only patches of undisturbed Cerrado comprised about 22% of its original area. Satellite imagery

from 1993 indicated that 67% of Cerrado was either highly modified or disturbed (Mantovani &

Pereira 1998). Development for cattle grazing usually involves clearing natural vegetation and

planting non-native grasses, which has an impact similar to clearing and planting crops. The

most recent estimate is that about 80% of the Cerrado has been impacted by humans, resulting in

its inclusion as one of the world’s 25 principal “hotspots” (Myers et al. 2000; Cavalcanti & Joly

2002). “Hotspots” are defined by Myers et al. (2000) based on two primary criteria: endemism

and degree of threat. According to these authors, only 20% (356,630 km2) of the Cerrado

remains as primary vegetation and only 6.2% (22,000 km2) is protected.

Several integrated analyses organized by federal agencies in Brazil have painted a much

more dismal view of what remains of this once vast habitat (e.g., Santos & Câmara 2000,

Rambaldi & Oliveira 2003). Scattered across a virtual sea of agriculture (e.g., soy, corn, and

cotton) and pasture (e.g., cattle, goats) are relictual patches of natural Cerrado vegetation. Major

rivers have been dammed resulting in total loss of gallery forest in many areas. Two large dams

on the Rio Tocantins, the Serra da Mesa (1800 km2) and the Luis Eduardo Magalhães (600 km2)

156

hydroelectric facilities, have been constructed in the last six years, and three others are planned

for the next decade (Secretaria do Planejamento e Meio Ambiente, 1999). The Rio São Francisco

may be redirected due to a highly controversial development program currently under

consideration (Mamede et al. 2002). The region is already known to contain endangered bird

species (Braz et al. 2003), and changes in drainage will undoubtedly adversely affect many

species that rely on gallery forest as dispersal corridors. We know from recent surveys that 1) the

herpetofauna varies from site to site and 2) each site contains undescribed frogs, lizards, and

snakes, all of which are endemic to the Cerrado (e.g., see Colli et al. 2002, 2003a, b).

Consequently, endemism is much greater than previously indicated.

Because the Cerrado contains a mosaic of habitats, it offers an ideal opportunity to

examine the effect of habitat structure on vertebrate assemblages. Lizards, which have proven to

be excellent models for ecological research (Milstead 1967; Huey et al. 1983; Vitt & Pianka

1994), are abundant but often difficult to observe in the Cerrado (Vitt 1991). We designed a

study to test the hypothesis that lizard assemblages vary on a microgeographic scale and that

their distribution on such a scale is predictable based on habitat structure. Our results show that

lizard assemblages in the Cerrado vary on a microgeographic scale and, because most species are

tied to specific microhabitat characteristics, species distributions within the structural habitat

mosaic that the Cerrado offers is predictable based on that structure. However, we know little

about community structure or microhabitat requirements of individual species. Nevertheless, our

results suggest that poorly planned development projects may have drastic effects on cerrado

lizard assemblages.

157

METHODS

The Jalapão site

We conducted the study from 13 February to 10 March 2002 near “Escola D. Isabel

Barreira de Oliveira” (10° 15’ 46” S, 46° 33’ 56’’ W), ca. 35 km NW from the city of Mateiros,

Tocantins state, Brazil, in a region known as Jalapão. Located in the eastern part of the state of

Tocantins, with portions in southern Maranhão and Piauí, and western Bahia, the Jalapão region

covers approximately 53,340 km2 of relatively undisturbed Brazilian Cerrado (Fig. 1). This is the

largest remaining undisturbed patch of Cerrado and among the least populated regions of Brazil.

Much of it has recently been designated as national and state reserves, including the Área de

Proteção Ambiental da Serra de Tabatinga (61,000 ha), Estação Ecológica Serra Geral do

Tocantins (716,306 ha), Parque Estadual do Jalapão (158,885.5 ha), and Parque Nacional das

Nascentes do Rio Parnaíba (729,813.55 ha). These contiguous reserves form the largest protected

tract of Cerrado in Brazil. The habitat is relatively open, with gallery forests associated with

streams and large as yet unexplored buttes harboring quite different vegetation than surrounding

flatlands.

Field methods

We selected two adjacent habitat patches that we could visually distinguish based on

vegetation structure. The first was open grassland with sparse stunted trees (Fig. 2A). The

second, which was approximately 100 m from the first site, was grassland with higher density of

trees, a partial canopy, and leaf litter (Fig. 2B). Soils were sandy in both. We established linear

158

pitfall trap arrays in each habitat. Each array consisted of a central 20-liter plastic bucket sunk

into the ground with the top flush with the surface, three 5-m drift fences at angles of 120° from

each other, and a terminal 20-liter bucket also sunk flush with the ground surface. Thus each

array had four bucket traps. Array 1 (open habitat) contained 38 pitfall trap arrays evenly spaced

along a 1,437 m transect; Array 2 (closed habitat) contained 37 arrays evenly spaced along a

1,257 m transect. Traps were monitored 4 times per day (early morning, late morning, early

afternoon, and late afternoon) to minimize mortality resulting from thermal stress during 23

consecutive days in the field. Considering each day as a trap day and each bucket as a trap, we

completed 6,900 trap days.

When we monitored traps, we identified each lizard to species and recorded time of day

and the number of the array. We removed all lizards captured, humanely killed them following

standard approved protocols (Anonymous 1987), gave each individual an unique numbered tag,

took tissue samples that were frozen in liquid nitrogen, took a series of morphological

measurements, and preserved them. Later, we removed stomachs and identified all prey items for

other studies. Thus our sampling protocol was a total removal one. This protocol allowed us to

examine the effect of continual sampling on a local population as well. We used linear regression

with day as the independent variable and number of lizards collected as the dependent variable to

determine whether trapping success was a function of time.

To examine success rate in terms of species sampling, we assembled matrices for each

habitat type that contained species as rows and day of collection as columns. Entries in the

matrices were the number of lizards of each species collected that day. We then calculated

species accumulation curves using EstimateS (Colwell & Coddington 1994; Colwell 1997).

Shape of species accumulation curves based strictly on empirical data is determined by the order

159

in which samples are added. EstimateS randomizes sample order to generate smooth species

accumulation curves. The Abundance-base Coverage Estimator (ACE) was used to estimate

completeness of sampling (see Colwell 1997).

In each array, we measured the following vegetative and structural habitat variables: 1)

leaf litter mass, 2) percent open ground, 3) percent of surface open to the sky, 4) number of plant

stem contacts, 5) number of burrows in ground, 6) number of termite nests within 6 meters, 7)

distance to nearest tree, 8) trunk circumference as a measure of tree size, and 9) total number of

fallen logs. To do this, we constructed a 0.5-m square from wooden dowels and placed strings

across at 0.1 meter intervals to form 25 equal-size squares. In each area delineated by drift fences

within each array, the square was thrown over the researcher’s shoulder and its landing point was

used as our random sample site. We counted squares represented by more than 50% open

ground, squares not under canopy (open to sky), and picked up all leaf litter under it and weighed

it. At the center of the spot where the square landed, we placed a vertical stake with a 1-m

horizontal dowel 20 cm above ground and rotated the stick 360°. We counted the number of

plant stem contacts with the horizontal stick. We then measured the distance to nearest tree from

center of square. This procedure gave three independent measurements for each variable in each

array. We used means for each array for analysis. From 1 m beyond end of wings (6 m from

center of array), we counted all burrows, all termite nests, and the total number of fallen logs in

the array.

In addition to collecting data on the vegetative and structural characteristics of the

habitats, we used TidBit electronic temperature recording devices (made by Onset Computer,

http://www.onsetcomp.com/) to examine thermal characteristics of the arrays at ground level

(where lizards live). These devices have been shown to estimate lizard operative temperatures

160

(Vitt & Sartorius 1999; Shine & Kearney 2001). However, we used them specifically to test for

thermal differences in microhabitats within arrays, making no assumptions about thermal

preferences of lizards using the habitats. The four microhabitats that we sampled were 1) under

grass clump, 2) under small shrub, 3) in leaf litter, and 4) on open ground (exposed to sun). Nine

replicates for each microhabitat were run in each habitat type. Each replicate sampled

temperature at 5-min intervals over a 48-hr period. These data were collected during an 8-day

period from 22 February through 29 February. We calculated means and SD for all replicates for

each microhabitat for each of the two habitats to provide a 24 h representation of temperature

changes throughout the day with data from all days combined.

We used two different approaches to examine relationship of lizard species to habitat

characteristics. In the first, we simply considered the two sets of arrays as representing distinct

habitat patches. We performed a Principal Components Analysis (PCA) on vegetative and

structural habitat characteristics to compare the two patches. We log10 transformed all variables.

For several variables that contained zero entries (number of stems, burrows, termite nests, and

fallen logs) we added 1 to each value prior to log transformation because there is no log of zero

(Tabachnick & Fidell 2001). We then compared frequencies of collection records for lizards

between the patches. This method provided a descriptive assessment of the association between

relative lizard abundances and habitat type. For the second analysis, we performed a Canonical

Correspondence Analysis (CCA; Ter Braak 1986), a multivariate ordination procedure that

directly associates variation in communities (lizards in this case) to habitat characteristics. We

used vegetation and structural habitat variables to characterize the habitat within individual

arrays and lizard species identities and relative abundance as a measure of lizard community

structure within individual arrays. Thus, in this analysis, we were asking if an association exists

161

between specific habitat characteristics and abundance of particular lizard species. CCA was

performed with CANOCO (Ter Braak & Smilauer 1998).

RESULTS

The Jalapão lizard fauna

A total of 531 lizards of 12 species were sampled with pitfall arrays, including

representatives from the three major lizard clades: Iguania, Gekkota, and Autarchoglossa (Fig.

3). Mean body size (SVL) varied from 31.5 ± 0.3 mm in Vanzosaura rubricauda to 98.5 ± 4.5 in

Ameiva ameiva (Fig. 4). Five additional species were collected in the area, but not on our plots.

They were Iguana iguana, an arboreal iguanid lizard distributed primarily along gallery forest,

Tipinambis quadrilineatus, a large teiid also distributed in gallery forests in Cerrado, and three

species of subterranean amphisbaenians, Leposternon polystegum, Amphisbaena alba, and

Bronia kraoh. We do not consider these further. Although we had collected all 12 species in the

arrays by day 11, the simulated species accumulation curve for all arrays combined shows that

about 23 days are required to reliably sample the lizard fauna at these sites (Fig. 5). Trapping

success was greatest during the first 10 days, dropping off considerably by the 23rd day (Fig. 6).

The reduction in trapping success was significant (rs = –0.8, P = 0.0002).

Habitat type comparison

Our qualitative descriptions of the two pitfall trap arrays as “open” versus “closed” were

confirmed but slightly different based on single variable comparisons (Table 1) versus the PCA

(Fig. 7). Based on single variable comparisons, the “open habitat” had greater sun exposure, less

162

open ground (denser grass stands), less leaf litter, fewer fallen logs, and the nearest trees were

farther away. In the PCA, factor I described a gradient based on the number of fallen logs and

burrow and total leaf litter mass (Table 2). Factor II described a gradient based on number of

termite nests and the number of plant stems (negative loading). Scores for factor I were

significantly different between open and closed Cerrado (ANOVA F1, 73 = 20.2, P < 0.0001). The

two habitats did not differ in respect to Factor II (ANOVA F1, 73 = 0.2, P = 0.6668).

Microhabitat temperatures were significantly higher (all P values < 0.0001 based on

ANOVA) in the open Cerrado habitat than in the closed Cerrado habitat (Fig. 8). Daily

fluctuations of microhabitat temperatures indicate that temperatures in microhabitats of open

Cerrado were higher than those in closed Cerrado during the time period in which lizard activity

occurs, with the exception of the open ground microhabitat. Open ground microhabitats

remained lower in temperature in closed Cerrado habitat until about 1130 hr, at which time open

ground microhabitats exceeded those in open Cerrado (Fig. 9).

Structure of the lizard assemblages differed considerably between open and closed

Cerrado sites (Fig. 10). Two species, Cnemidophorus mumbuca and Tropidurus oreadicus,

dominated the lizard fauna in open Cerrado, with all but one other (Vanzosaura rubricauda)

being relatively rare. Cnemidophorus mumbuca and T. oreadicus were less abundant in closed

Cerrado where six other species were moderately abundant.

Analysis by array

Based on 1000 permutations of a Monte Carlo test, and the first canonical axis, there was

a significant association between habitat structure within arrays and lizards found there

(eigenvalue = 0.335, F = 12.73, P = 0.001). In addition, all canonical axes were significant (trace

163

= 0.543, F = 2.611, P = 0.001). Vanzosaura rubricauda, Tropidurus oreadicus, and

Cnemidophorus mumbuca were associated with open sky (Fig. 11). Briba brasiliana was

associated with the nearest tree. Mabuya heathi was associated with fallen logs. Mabuya

nigropunctata, Colobosaura modesta, and Gymnodactylus geckoides were associated with leaf

litter.

DISCUSSION

Pitfall trap arrays are highly successful for censusing reptiles and amphibians and crucial

for sampling lizards in habitats where they are difficult to observe and collect (Jones 1986;

Gibbons 2004). In our arrays, we were able to determine species composition and relative

abundance in a relatively short period of time. However, number of lizards collected dropped off

significantly (rs = 0.0002) with time (Fig. 5) indicating that either 1) linear trapping and removal

reduced density along the linear transect or 2) real changes had occurred in lizard populations

during the study. We believe that both occurred. During the first 14 days of sampling, number of

lizards collected per day remained stable and no significant effect was evident (rs = 0.0569).

However, numbers of lizards trapped dropped off by the 15th day, when a significant effect of

time became detectable (rs = 0.0297). Coincident with the drop-off in trapping success was a

transition from the end of the wet season to the beginning of the dry season. A portion of the

drop-off in lizard numbers may have resulted from reduced lizard activity associated with a

seasonal resource shortage.

Open Cerrado habitat contained 10 species and was dominated by two species, C.

mumbuca and T. oreadicus; one species, V. rubricauda, was moderately abundant. Closed

Cerrado not only contained more species (12), but many of them were moderately abundant. The

164

closed Cerrado habitat was structurally more complex than the open Cerrado habitat, had a more

moderate thermal landscape, and contained a greater density of microhabitats that might harbor

lizards (fallen logs, termite nests, leaf litter, tree trunks). These results are not surprising because

lizard diversity is generally associated with structural diversity of the habitat (e.g., Pianka 1966a,

b; Schall & Pianka 1978). Increased midday temperatures in open patches within the closed

Cerrado habitat relative to the open Cerrado appear counterintuitive. However, in open Cerrado,

most of the ground was covered with grass whereas open patches (the open ground microhabitat)

in closed Cerrado tended to not contain as much grass. Consequently, during midday when the

sun angle is highest, open patches in the closed Cerrado habitat receive direct sunlight and are

not as well buffered from temperature change as similar microhabitats in the grassier open

Cerrado. However, closed Cerrado does provide numerous refuges from extreme temperatures in

leaf litter, trees, termite nests, and fallen logs.

The CCA shows that lizard species are tied to specific vegetative and physical

characteristics of Cerrado habitats on a microgeographic level. Absence of leaf litter, open sky

(as in Cerrado with a closed canopy), or fallen logs, for example, would result in absence, or at

best, rarity of some species. Lizard species are often associated with particular microhabitats, not

only in Cerrado, but in habitats as different as Amazonian rainforest (Vitt & Zani 1996) and

Australian deserts (Pianka 1973, 1986) on a global level (Vitt et al. 2003). Similar to our results,

studies of birds in northern temperate habitats, identified microhabitat as the most important

contributor to bird distributions at several scales based on a CCA (MacFadden & Capen 2002).

Our results have broad implications for conservation biology in general, and in particular,

for conservation and management of the Jalapão region. First, lizards are important components

of natural ecosystems, particularly in arid and tropical lands where their species diversity and

165

abundance is greatest (e.g., Pianka 1973, 1986; Duellman 1978, 1987; Lieberman 1986). Second,

they are excellent models for examining patterns of occurrence and relative abundance on

microgeographic scales, because they can be easily trapped, identified, and monitored. Finally,

as we have shown, many species depend on specific vegetative or structural aspects of the

habitats in which they live. The ability to identify microhabitat characteristics essential to

presence of individual species provides necessary information to develop conservation and

management plans for ecosystems. In this example, removal of trees, leaf litter, fallen logs, and

termite nests from relatively closed Cerrado sites would have immediate and measurable effects

on lizard diversity and community structure. Hydroelectric projects will flood or otherwise

impact gallery forest, which is well known to provide a link between Amazon and Atlantic

rainforest (Costa 2003; da Silva 1996). Loss of these habitats is likely to interfere with gene flow

for those species using gallery forests for dispersion. As we’ve shown, animal species are not

distributed uniformly across the Cerrado. Rather, microgeographic variation in habitat structure

affects species composition and relative abundance such that species assemblages will easily be

changed by habitat modification.

ACKNOWLEDGMENTS

This research was conducted under the project “Proposta de levantamento da

herpetofauna da micro-região do Jalapão,” funded by Conservation International do Brasil,

Universidade de Brasília, and the Sam Noble Oklahoma Museum of Natural History. Portions of

the project were conducted under the auspices of NSF grant DEB-0415430 to LJV and JPC.

Santos F. Balbino and Graziela Biaviati assisted in fieldwork. Daniel Mesquita, Frederico

França, and Adrian Garda were supported by graduate student fellowships from Coordenação de

166

Aperfeiçoamento de Pessoal de Nível Superior - CAPES. Guarino Colli was supported by a

research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico–

CNPq (# 302343/88-1).

LITERATURE CITED

ADIS, J., & RIBEIRO, M. de N. J. 1989. Impact of deforestation on soil invertebrates from

central Amazonian inundation forests and their survival strategies to long-term flooding.

Water Quality Bulletin 14:88-98.

ANONYMOUS. 1987. Guidelines for the use of live amphibians and reptiles in field research.

Publication of the American Society of Ichthyologists and Herpetologists, the

Herpetologists’ League, and the Society for the Study of Amphibians and Reptiles. 14 pp.

BENNETT, A. F., HINSLEY, S. A., BELLAMY, P. E., SWETNAM, R. D. & MACNALLY, R.

2004. Do regional gradients in land-use influence richness, composition and turnover of

bird assemblages in small woods? Biological Conservation 119:191-206.

BESTELMEYER, B. T., & WIENS, J. A. 2001. Local and regional-scale responses of ant

diversity to a semiarid biome transition. Ecography 24:381-392.

BINI, L. M., DINIZ-FILHO, J. A. F., BONFIM, F. & BASTOS, R. P. 2000. Local and regional

species richness relationships in viperid snake assemblages from South America:

unsaturated patterns at three different spatial scales. Copeia 2000:799-205.

BRAZ, V. S., ABREU, T. L. S., LOPES, L. E., LEITE, L. O., FRANÇA, F. G. R.,

VASCONCELLOS, M. M. & BALBINO, S. F. 2003. Brazilian merganser Mergus

octosetaceus discovered in Jalapão State Park, Tocantins, Brazil. Cotinga 20:68-71.

167

BROWN, K. S., JR. & GIFFORD, D. R. 2002. Lepidoptera in the Cerrado landscape and the

conservation of vegetation, soil, and topographic mosaics. Pp. 201-222 in Oliveira, P. S.,

& Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University Press, New York.

398 pp.

CAVALCANTI, R. B. & JOLY, C. A. 2002. Biodiversity and conservation priorities in the

Cerrado region. Pp. 351-367 in Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of

Brazil. Columbia University Press, New York. 398 pp.

CHAO, A. & LEE, S.-M. 1992 Estimating the number of classes via sample coverage. Journal of

the American Statistical Association 87:210-217.

CHUST, G., PRETUS, J. L., DUCROT, D., BEDÒS, A. & DEHARVENG, L. 2003. Response

of soil fauna to landscape heterogeneity: determining optimal scales for biodiversity

modeling. Conservation Biology 17:1712-1723.

COLLI, G. R., BASTOS, R. P. & ARAUJO, A. F. B. 2002. The character and dynamics of the

Cerrado herpetofauna. Pp. 223-241 in Oliveira, P. S., & Marquis, R. J. (eds). The

Cerrados of Brazil. Columbia University Press, New York. 398 pp.

COLLI, G. R., COSTA, G. C., GARDA, A. A., KOPP, K. A., MESQUITA, D. O., PÉRES, A.

K. JR., VALDUJO, P. H., VIEIRA, G. H. C. & WIEDERHECKER, H. C. AND ZATZ,

M. G. 2003a. A critically endangered new species of Cnemidophorus (Squamata,

Teiidae) from a Cerrado enclave in southwestern Amazonia, Brazil. Herpetologica 59:76-

88.

COLLI, G. R., PÉRES, A. K. & CUNHA, H. J. 1998. A new species of Tupinambis (Squamata:

Teiidae) from central Brazil, with an analysis of morphological and genetic variation in

the genus. Herpetologica 54:477-492.

168

COLLI, G. R., CALDWELL, J. P., COSTA, G. C., GAINSBURY, A. M., GARDA, A. A.,

MESQUITA, D. O., FILHO, C. M. M. R., SOARES, A. H. B., SILVA, V. N.,

VALDUJO, P. H., VIEIRA, G. H. C., VITT, L. J., WERNECK, F. P.,

WIEDERHECKER, H. C. & ZATZ, M. G. 2003b. A new species of Cnemidophorus

(Squamata, Teiidae) from the Cerrado Biome in central Brazil. Occasional Papers of the

Sam Noble Oklahoma Museum of Natural History 14:1-14.

COLWELL, R. K. 1997. EstimateS: Statistical estimation of species richness and shared species

from samples. Version 5. User's Guide and application published at:

http://viceroy.eeb.uconn.edu/estimates.

COLWELL, R. K., & CODDINGTON, J. A. 1994. Estimating terrestrial biodiversity through

extrapolation. Philosophical Transactions of the Royal Society (Series B) 345:101-118.

COOPER, W. E., JR., & VITT, L. J. 2002. Distribution, extent, and evolution of plant

consumption by lizards. Journal of Zoology, London 257:487-517.

COSTA, L. P. 2003. The historical bridge between the Amazon and Atlantic Forest of Brazil: a

study of molecular phylogeography with small mammals. Journal of Biogeography

30:71-86.

DA SILVA, J. M. C. 1996. Distribution of Amazonian and Atlantic birds in gallery forests of the

Cerrado region, South America. Ornitologia Neotropical 7:1-18.

DIAS, B. F. S. 1992. Cerrados: uma caracterização. Pp. 11-25 in Dias, B. F. S. (ed). Alternativas

de desenvolvimento dos cerrados: Manejo e conservação dos recursos naturais

renováveis. Fundação PróNatureza, Brasília.

DIAS, B. F. S. 1994. Conservação da natureza do cerrado brasileiro. Pp. 607-663 in Pinto, M.

N. (ed). Cerrado: caracterização, ocupação e perspectivas. Brasília, Editoria da

169

Universidade de Brasília e Secretaria do Meio Ambiente, Ciência e Tecnologia do

Distrito Federal.

FISHER, R. N., SUAREZ, A. V. & CASE, T. J. 2002. Spatial patterns in the abundance of the

coastal horned lizard. Conservation Biology 16:205-215.

FROST, D. R., ETHERIDGE, R., JANIES, D. & TITUS, T. A. 2001. Total evidence, sequence

alignment, evolution of polychrotid lizards, and a reclassification of the Iguania

(Squamata: Iguania). American Museum Novitates 3343:1-38.

GERING, J. C., CRIST, T. O. & VEECH, J. A. 2002. Additive partitioning of species diversity

across multiple spatial scales: implications for regional conservation of biodiversity.

Conservation Biology 17:488-499.

GUERRY, A. D., & HUNTER, M., JR. 2002. Amphibian distributions in a landscape of forests

and agriculture: an examination of landscape composition and configuration.

Conservation Biology 16:745-754.

HAMER, K. C., & HILL, J. K. 2000. Scale-dependent effects of habitat disturbance on species

richness in tropical forests. Conservation Biology 14:1435-1440.

JOHNSON, M. P., FROST, N. J., MOSLEY, M. W. J., ROBERTS, M. E. & HAWKINS, S. J.

2003. The area-independent effects of habitat complexity on biodiversity vary between

regions. Ecology Letters 6:126-132.

JONES, K. B. 1986. Amphibians and reptiles. Pp. 267-290 in Cooperrider, A. Y. Boyd, R. J.

and Stuart, H. R. (eds). Inventory and monitoring of wildlife habitat. U. S. Department of

the Interior. Bureau of Land Management, Denver, CO.

Hecht, S., & Cockburn, A. 1989. The fate of the forest: developers, destroyers, and defenders of

the Amazon. Verso, New York.

170

HUEY, R. B., PIANKA, E. R. & SCHOENER, T. W. (eds.) 1983. Lizard ecology: studies of a

model organism. Harvard University Press, Cambridge, Massachussetts.

LEVIN, S. A. 2000. Multiple scales and the maintenance of biodiversity. Ecosystems 3:498-506.

LIEBERMAN, S. S. 1986. Ecology of the leaf litter herpetofauna of a neotropical rain forest: La

Selva, Costa Rica. Acta Zoologica Mexicana 15:1-72.

LINDENMAYER, D. B., CUNNINGHAM, R. B. & POPE, M. L. 1999. A large-scale

“experiment” to examine the effects of landscape context and habitat fragmentation on

mammals. Biological Conservation 88:387-403.

LOWE, W. H., & BOLGER, D. T. 2002. Local and landscape-scale predictors of salamander

abundance in New Hampshire headwater streams. Conservation Biology 16:183-193.

MACEDO, R. H. F. 2002. The avifauna: ecology, biogeography, and behavior Pp. 242-265 in

Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University

Press, New York. 398 pp.

MACFADEN, S. W., & CAPEN, D. E. 2002. Avian habitat relationships at multiple scales in a

New England forest. Forest Science 48:243-253.

MAMEDE F., GARCIA, P. Q., & SOUZA, W. C. 2002. Análise de Viabilidade sócio-

econômico-ambiental da transposição de águas da bacia do rio Tocantins para o rio São

Francisco, região do Jalapão/TO. Caderno de Política Ambiental, 1. Brasília:

Conservation Strategy Fund/Conservation International do Brasil/ Instituto Internacional

de Educação do Brasil.

MANTOVANI, J. E., & PEREIRA, L. A. 1998. Estimativa da integridade da cobertura vegetal

do Cerrado/Pantanal através de dados TM/Landstat. Relatório apresentado no Workshop

171

“Ações Prioritárias para a Conservação do Cerrado e Pantanal,” Brasília, Brasil.

Funatura, Conservation International, Universidade de Brasília, Fundação Biodiversitas.

MARCHAND, M. N., & LITVAITIS, J. A. 2004a. Effects of habitat features and landscape

composition on the population structure of a common aquatic turtle in a region

undergoing rapid development. Conservation Biology 18:758-767.

MARCHAND, M. N., & LITVAITIS, J. A. 2004b. Effects of landscape composition, habitat

features, and nest distribution on predation rates of simulated turtle nests. Biological

Conservation 117:243-251.

MARINHO-FILHO, J., RODRIGUES, F. H. G. & JAUREZ, K. M. The Cerrado mammals:

diversity, ecology, and natural history. Pp. 266-284 in Oliveira, P. S., & Marquis, R. J.

(eds). The Cerrados of Brazil. Columbia University Press, New York. 398 pp.

MENDONÇA, R. C., FELFLI, J. M., WALTER, B. M. T., SILVA-JÚNIOR, M.C., REZENDE,

A. V., SANO, S. M. & ALMEIDA, S. P. (eds). 1998. Flora vascular do cerrado. Pp. 289-

556 in Sao, S. M. & Almeida, S. P. (eds). Cerrado: ambiente e flora. Empresa Brasileira

de Pesquisa Agropecuaria, Brasília.

MILSTEAD, W. W. (ed). 1967. Lizard ecology: a symposium. University of Missouri Press,

Columbia, Missouri.

MITTERMEIER, R. A., MYERS, N. & MITTERMEIER, C. G. 2000. Hotspots: Earth’s

biologically richest and most endangered terrestrial ecoregions. CEMEX, Conservation

International.

MYERS, N. 1980. Conversion of tropical moist forests. National Academy of Sciences,

Washington, D. C. 430 pp.

172

MYERS, N. 1990. The biodiversity challenge: expanded hot-spots analysis. The

Environmentalist 10:243-256.

MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., FONSECA, G. A. B. DA &

KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858.

OLIVEIRA, P. S., & MARQUIS, R. J. 2002. The Cerrados of Brazil. Columbia University

Press, New York. 398 pp.

OLIVEIRA-FILHO, A. T., & RATTER. J. A. 2002. Vegetation physiognomies and woody flora

of the Cerrado Biome. Pp. 91-120 in Oliveira, P. S., & Marquis, R. J. (eds). The

Cerrados of Brazil. Columbia University Press, New York. 398 pp.

PELLEGRINO, K. C. M., RODRIGUES, M. T., YONENAGA-YASSUDA, Y. & SITES, J. W.

2001. A molecular perspective on the evolution of microteiid lizards (Squamata,

Gymnophthalmidae), and a new classification for the family. Biological Journal of the

Linnean Society 74:315-338.

PIANKA, E. R. 1966a. Latitudinal gradients in species diversity: a review of concepts. American

Naturalist 100:33–46.

PIANKA, E. R. 1966b. Convexity, desert lizards and spatial heterogeneity. Ecology 47:1055-

1059.

PIANKA, E. R., & VITT, L. J. 2003. Lizards: windows to the evolution of diversity. University

of California Press, Berkeley. 333 pp.

PRESCH, W. 1974. Evolutionary relationships and biogeography of the macroteiid lizards

(Family Teiidae, Subfamily Teiinae). Bulletin of the Southern California Academy of

Science 73:23-32.

173

PRESCH, W. 1983. The lizard family Teiidae: is it a monophyletic group. Zoological Journal of

the Linnean Society 77:189-197.

RAMBALDI, D. M., & OLIVEIRA, D. A. S. 2003. Fragmentação de ecossitemas: causas,

efeitos sobre a biodiversidade e recomendações de políticas públicas. Brasília, Ministério

do Meio Ambiente, Secretaria de Biodiversidade e Florestas.

RATTER, J. A., RIBEIRO, J. F. & BRIDGEWATER, S. 1997. The Brazilian cerrado vegetation

and threats to its biodiversity. Annals of Botany 80:223–230.

RENJIFO, L. M. 1999. Composition changes in a subandean avifauna after long-term forest

fragmentation. Conservation Biology 13:1124-1139.

ROCHA, C. F. D., & BERGALLO, H. G. 1997. Intercommunity variation in the distribution of

abundance of dominant lizard species in restinga habitats. Ciência e Cultura 49:269-274.

RODEWALD, A. D., & YAHNER, R. H. 2002. Influence of landscape composition on avian

community structure and associated mechanisms. Ecology 82:3493-3502.

SANTOS, T. C. C., & CÂMARA, J. B. D. 2002. GEO Brazil 2002—Environmental outlooks in

Brazil. Brasília, IBAMA Editions.

SAYER, J. A., & WHITMORE, T. C. 1991. Tropical moist forests: destruction and species

extinction. Biological Conservation 55:199-213.

SCHALL, J. J., & PIANKA, E. R. 1978. Geographical trends in numbers of species. Science

201:679-686.

SECRETARIA DO PLANEJAMENTO E MEIO AMBIENTE. 1999. Atlas do Tocantins:

subsídios ao planejamento de gestão territorial. Secretaria do Planejamento e Meio

Ambiente, Diretoria de Zoneamento Ecológico-Econômico-DZE: Palmas.

174

SHINE, R., & KEARNEY, M. 2001. Field studies of reptilian thermoregulation: how well do

physical models predict operative temperatures? Functional Ecology 15:282–288.

SKOLE, D., & TUCKER, C. 1993. Tropical deforestation and habitat fragmentation in the

Amazon: satellite data from 1978-1988. Science 260:1905-1910.

SUMMERVILLE, K. S., BOULWARE, M. J., VEECH, J. A. & CRIST, T. O. 2003. Spatial

variation in species diversity and composition of forest Lepidoptera in eastern deciduous

forests of North America. Conservation Biology 17:1045-1047.

TABACHNICK, B. G., & FIDELL, L. S. 2001. Multivariate Statistics, Fourth Edition. Allyn &

Bacon, Needham Heights, Mass.

TER BRAAK, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique

for multivariate direct gradient analysis. Ecology 67: 1167–1179.

TER BRAAK, C. J. F., & SMILAUER, P. 1998. CANOCO reference manual and user's guide to

Canoco for Windows: software for canonical community ordination (version 4).

Microcomputer Power. Ithaca, New York.

VITT, L. J. 1991. An introduction to the ecology of cerrado lizards. Journal of Herpetology

25:79-90.

VITT, L. J., & PIANKA, E. R. (eds.) 1994. Lizard ecology: historical and experimental

perspectives. Princeton University Press, Princeton, New Jersey.

VITT, L. J., & SARTORIUS, S. S. 1999. HOBO's, Tidbits and lizard models: the utility of

electronic devices in field studies of ectotherm thermoregulation. Functional Ecology

13:670-674.

VITT, L. J., & ZANI, P. A. 1996. Organization of a taxonomically diverse lizard assemblage in

Amazonian Ecuador. Canadian Journal of Zoology 74:1313-1335.

175

VITT, L. J., PIANKA, E. R., COOPER, W. E., JR., & SCHWENK, K. 2003. History and the

global ecology of squamate reptiles. American Naturalist 162:44-60.

WELSH, H. H., & LIND, A. J. 2002. Multiscale habitat relationships of stream amphibians in

the Klamath-Siskiyou region of California and Oregon. Journal of Wildlife Management

66:581-602.

176

Table 1. Vegetative and structural habitat characteristics of open and closed Cerrado patches. Means ± SE

are shown for actual measured values with min – max values in parentheses. ANOVA results are based on

comparisons of log10 transformed variables. DF for F tests are 1, 73.

________________________________________________________________________ Habitat characteristic Open habitat Closed habitat F value P value ________________________________________________________________________ leaf litter mass 53.56 ± 4.19 343.65 ± 34.89 207.1 <0.0001

(11.67–133.33) (96.67–965.00)

squares open ground 14.92 ± 0.69 19.79 ± 0.56 25.7 <0.0001

(5.00–22.00) (11.67–25.00)

squares open to sky 24.51 ± 0.22 19.90 ± 0.70 29.6 <0.0001

(19.00–25.00) (8.33–26.00)

plant stem contacts 4.07 ± 0.48 3.47 ± 0.34 0.4 0.5301

(0.33–14.00) (0.00–9.33)

burrows 0.03 ± 0.03 0.11 ± 0.05 1.8 0.1791

(0–1) (0–1)

termite nests 1.05 ± 0.32 0.74 ± 0.16 0.2 0.6663

(0–10) (0–3)

nearest tree (m) 2.32 ± 0.23 1.56 ± 0.12 5.5 0.0220

(0.32–5.85) (0.38–3.88)

trunk circumference (m) 0.23 ± 0.02 0.22 ± 0.03 2.7 0.1044

(0.10–0.50) (0.05–1.04)

number of fallen logs 0.87 ± 0.17 2.63 ± 0.29 34.5 <0.0001

(0.00–4.00) (0.00–9.00)

________________________________________________________________________

177

Table 2. Results of PCA on vegetative characteristics of open and closed Cerrado patches in the

Jalapão region of Tocantins, Brazil.

________________________________________________________________________

Variable Factor 1 Factor 2 Factor 3 Factor 4 ________________________________________________________________________ log leaf litter mass 0.501 -0.103 -0.133 0.625

log squares open Ground 0.079 0.303 -0.021 0.770

log squares open Sky < 0.001 0.225 < 0.001 -0.792

log number of plant stems -0.100 -0.627 -0.198 -0.088

log number of burrows 0.624 0.552 0.199 -0.183

log number of termite nests -0.153 0.681 -0.221 -0.050

log trunk circumference -0.106 0.242 0.810 0.092

log number of fallen logs 0.770 -0.023 0.008 0.233

log distance to nearest tree 0.199 -0.085 0.794 -0.212

Eigenvectors 2.462 1.623 1.255 0.918

Percent of variation 0.274 0.180 0.139 0.102

________________________________________________________________________

178

Figure Legends

Figure 1. Map showing location of the study site in eastern Tocantins state, Brazil. Shaded area

is Cerrado and the study site is situated near the center of the Jalapão area.

Figure 2. Habitats in which pitfall trap arrays were placed; A. Open Cerrado, B. Closed Cerrado.

Figure 3. Phylogenetic relationships among lizard species observed near the Jalapão site. Species

in bold text were not observed on the pitfall array sites. Relationships of lizards based on

Pellegrino et al. (2001) for gymnophthalmids, Presch (1974, 1983) for teiids, and Frost et

al. (2001) for iguanians, The three iguanians shown are in different families. They are,

from left to right, Iguanidae, Polychrotidae, and Tropiduridae.

Figure 4. Body sizes of Jalapão lizards ranked from largest to smallest (mean values). Size for T.

quadrilineatus is based on data from Colli et al. (1998). Mean values are biased by

varying proportions of juveniles collected. Rank order of size based on maximum SVL is,

from largest to smallest: T. quadrilineatus, A. ameiva, M. nigropunctatus, T. oreadicus, M.

heathi, A. nitens, C. mumbuca, G. geckoides, B. brasiliana, C. modesta, M. maximiliani,

and V. rubricauda.

Figure 5. Species accumulation curve for all arrays combined (open and closed Cerrado) based

on 1000 randomizations from empirical data using EstimateS. Crosses show means ± SD

for empirical data simulations and shaded triangles show the “abundance-base coverage

estimator” (see Chao and Lee 1994; Colwell and Coddington 1994). Singletons are species

for which only a single individual was observed. Doubletons are species for which just

two individuals were observed. Uniques represent species for which all individuals were

collected on a single day.

Figure 6. Relationship between trapping success (number of lizards captured) and time in days.

179

Figure 7. Plot of the first two factors from a Principal Components Analysis on vegetative and

structural habitat characteristics for open and closed Cerrado sites.

Figure 8. Mean temperatures ± SE for microhabitats sampled within trap arrays in open and

closed Cerrado sites based on nine replicates for each microhabitat. SE of means are

shown.

Figure 9. Daily patterns of temperature change for microhabitats sampled within trap arrays in

open and closed Cerrado sites. Symbols show hourly means ± SE. Note that SE values

are so small in most instances that they are hidden by symbols. All sampling days were

combined for this analysis and nine replicates were made for each microhabitat.

Figure 10. Structure of lizard assemblages in open and closed Cerrado sites based on numbers of

individuals collected during a 23-day period.

Figure 11. Plot of Canonical Correspondence Analysis comparing matrices of structural habitat

characteristics with lizard sampling data.

180

181

182

183

184

185

186

187

188

189

190