56
Evaporação Evaporação Múltiplo Efeito

Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Embed Size (px)

Citation preview

Page 1: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Evaporação

Evaporação Múltiplo

Efeito

Page 2: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

Objetivo:Aproveitar o calor latente do vapor produzido para evaporar, em uma etapasubseqüente, uma solução que ferve a uma temperatura inferior à decondensação deste.

Alimentação

(TF, hF, xF)

Vapor de água sat. (TS, HS)

Concentrado 1º efeito

(T1, hL, xL)

Vapor (T1, HV1)

Produto Concentrado

(T2, hL2, xL2)

Vapor (T2, HV2)

T1

P1T2

P2 P1 > P2

T1 > T2

Page 3: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

• A partir de W Kg de vapor proveniente de uma caldeira, se produz noprimeiro efeito uma quantidade aproximadamente igual de vapor;

• A massa evaporada (por kg de vapor consumido) em um múltiploefeito é n vezes superior à obtida em um simples efeito;

• O consumo de vapor é n vezes menor.

Algumas conclusões...

Page 4: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

A principal vantagem do emprego de um múltiplo efeito está na redução do consumo de vapor

Page 5: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

1º efeito

Alimentação direta (fluxo dos fluidos em paralelo)

2º efeito 3º efeito

Para o condensador e sistema de vácuoAlimentação

(TF, hF, xF)

Vapor de água sat. (TS, HS)

Concentrado 1º efeito

(T1, hL, xL)

Vapor (T1, HV1)

Concentrado 2º efeito

(T2, hL2, xL2)

Produto concentrado

(T3, hL3, xL3)

Vapor (T2, HV2) Vapor (T3, HV3)

T1

P1T2

P2T3

P3

Page 6: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

Alimentação direta Vantagens:

Não necessita de bombas para deslocara solução de um estágio para outro.

Desvantagens:

Efetua todo aquecimento de carga noprimeiro efeito, de modo que aquantidade de vapor gerada pelo vaporde água de aquecimento é menor.

A solução mais concentrada estasujeita à temperatura mais baixa.

Recomendado no caso de alimentação quente e solutos termosensíveis

Page 7: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

1º efeito

Alimentação inversa (fluxo dos fluidos contra corrente)

2º efeito 3º efeito

Para o condensador e sistema de vácuo

Alimentação

(TF, hF, xF)Vapor de água sat.

(TS, HS)

Produto concentrado

(T1, hL, xL)

Vapor (T1, HV1)

Concentrado 2º efeito

(T2, hL2, xL2)

Concentrado 3º efeito

(T3, hL3, xL3)

Vapor (T2, HV2) Vapor (T3, HV3)

T1

P1T2

P2T3

P3

Page 8: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

Alimentação inversa Vantagens:

A solução mais concentrada estasujeita à temperatura mais elevada.

Desvantagens:

É necessário o uso de bombas paratransportar a solução entre os efeitos.

Menor quantidade de vapor é utilizadapara aquecer a alimentação.

Recomendado no caso de alimentação fria e produtos viscosos

Page 9: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Métodos de Operação: Múltiplo Efeito

1º efeito

Alimentação mista

2º efeito 3º efeito

Para o condensador e sistema de vácuo

Alimentação

(TF, hF, xF)

Vapor de água sat. (TS, HS)

Produto concentrado

(T1, hL, xL)

Vapor (T1, HV1)

Concentrado 2º efeito

(T2, hL2, xL2)

Concentrado 1º efeito

(T3, hL3, xL3)

Vapor (T2, HV2) Vapor (T3, HV3)

T1

P1T2

P2T3

P3

Page 10: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Diferença de temperatura em um

evaporador a três efeitos

A quantidade de calor transferido por hora no primeiro efeito pode ser dadapela seguinte expressão:

q1 = U1A1∆T1 q1 = U1A1(TS – T1)ou

∆T1 - diferença entre a temperatura do vapor deaquecimento e a temperatura de ebulição dolíquido na câmara de evaporação no 1º efeito.

Supondo que:

• a solução não sofre aumento na temperatura de ebulição

• o vapor não perde pressão ao passar de um efeito a outro

• o calor sensível utilizado para aquecer a alimentação até o ponto de ebuliçãopode ser desprezado.

o vapor que condensa no segundo efeito fornece aproximadamente a mesma quantidade de calor q1.

Page 11: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Diferença de temperatura em um

evaporador a três efeitos

A quantidade de calor transferido por hora no segundo efeito pode ser dadapela seguinte expressão:

q2 = U2A2∆T2 q2 = U2A2(T1 – T2)ou

∆T2 - diferença entre a temperatura do vapor deproduzido no 1º efeito e a temperatura deebulição do líquido na câmara de evaporação no2º efeito.

Do mesmo modo...

q3 = U3A3∆T3 q3 = U3A3(T2 – T3)ou

∆T3 - diferença entre a temperatura do vapor deproduzido no 2º efeito e a temperatura deebulição do líquido na câmara de evaporação no3º efeito.

Page 12: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Diferença de temperatura em um

evaporador a três efeitos

332211 TUTUTUA

q∆=∆=∆=

q

AT

U3

3

1∆=

q

AT

U1

1

1∆=

Visto que q1 ~ q2 ~ q3:

U1A1∆T1 = U2A2∆T2 = U3A3∆T3

Geralmente, na prática as áreas em cada efeito são iguais:

q

AT

U2

2

1∆=

∆T é inversamente proporcional aos valores de U

Page 13: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Diferença de temperatura em um

evaporador a três efeitos

∑++

∆=∆321

11

/1/1/1

/1

UUU

UTT

sendo:

Podemos escrever:

3321 TTTTTT S −=∆+∆+∆=∆∑ (diferença total de temperatura)

∑++

∆=∆321

22

/1/1/1

/1

UUU

UTT

∑++

∆=∆321

33

/1/1/1

/1

UUU

UTT

Page 14: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Capacidade de um evaporador a três

efeitos

333222111321 TAUTAUTAUqqqq ∆+∆+∆=++=

∑∆= TUAq

3321 TTTTTT S −=∆+∆+∆=∆∑

O calor total pode ser dado por:

Considerando que os valores de U e de A são os mesmos em cada efeito:

Onde:

)( 321 TTTUAq ∆+∆+∆=

Mesma taxa de calor que seria obtida em um único efeito operando entre os mesmos níveis extremos de temperatura

Page 15: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Capacidade de um evaporador a três

efeitos

• A evaporação múltiplo efeito aumenta a economia de vapor masdiminui o fluxo térmico por efeito da ordem de 1/n em relação a umaoperação em um só efeito entre as mesmas temperaturas terminais;

• Não se têm aumento de capacidade em um múltiplo efeito;

• O aumento na economia do vapor deve ser equilibrado com o aumentono custo do equipamento.

• A evaporação com mais de 5 efeitos raramente é econômica.

Page 16: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Efeito da EPE

EPE reduz a capacidade do evaporador: diminuição do ∆T

sem EPE:

TUA

q∆=

∆T = Ts – T1, onde T1 � temperatura de ebulição da água

com EPE: ∆T = Ts – T1, onde T1 � temperatura de ebulição da solução

T ebulição da solução > T ebulição da água

Page 17: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Efeito da EPE

Em um múltiplo efeito no qual consideramos a EPE a diferença global detemperatura efetiva é dada por:

∑∑∑ −∆=∆ EPETTefetivo

Page 18: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Múltiplo Efeito : CálculoGeralmente desejamos saber:

• A - área de troca em cada efeito (capacidade);

• S - vazão de vapor de aquecimento necessária para se atingir o objetivo fixado;

• tLi – temperatura em cada efeito;

• VN – vazão de vapor que vai para o condensador.

Geralmente conhecemos:

• PS, tS Pressão ou temperatura na corrente de vapor de aquecimento (1º efeito);

• PN Pressão na câmara de evaporação do último efeito;

• F, xF, tF condições de alimentação;

• xN, LN Concentração final no líquido deixando o último efeito;

• Ui Propriedades físicas das correntes e coeficiente global de troca térmica emcada efeito;

Page 19: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Múltiplo Efeito : Cálculo

Considerando evaporador de 3 efeitos é possível escrever 7 equações:

• Balanço de energia para cada efeito;

• Equação de troca de calor para cada efeito;

• Balanço de massa global (quantidade de vapor produzida nos 3efeitos.

Se as áreas de troca de calor forem iguais nos 3 efeitos,haverá, nestas 7 equações, 7 incógnitas:

S – vazão do vapor de aquecimento do primeiro efeito;

V1, V2, V3 – vazões de vapor produzido em cada efeito;

tL1, tL2 - temperaturas no primeiro e segundo efeitos; e

A – Área de troca de calor em cada efeito, assumidas iguais.

Page 20: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

1º passo:

A partir dos dados da pressão na câmara de evaporação no último efeito e daconcentração final da solução determine a temperatura de ebulição no últimoefeito (levar em consideração a EPE caso exista)

2º passo:

Determine a quantidade total de vapor evaporado por meio de um balanço demassa global;

Como primeira tentativa, considere que as quantidades de vapor evaporado emcada efeito são iguais: V1 = V2 = V3;

Aplique o balanço de massa global em cada efeito de modo a obter L1, L2 e L3.

Calcule a concentração de sólido em cada efeito por meio de um balanço demassa para o sólido.

Page 21: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

3º passo:

Estime as diferenças de temperatura ∆T1, ∆T2 e ∆T3 para cada efeito utilizandoas equações:

∑++

∆=∆321

11

/1/1/1

/1

UUU

UTT efetivo ∑

++∆=∆

321

22

/1/1/1

/1

UUU

UTT efetivo

∑++

∆=∆321

33

/1/1/1

/1

UUU

UTT efetivo

∑∑∑ −∆=∆ EPETTefetivo

Onde:

No caso da existência de uma EPE, estimar as pressões no 1º e 2º efeito edetermine a EPE para todos os efeitos.

Calcule a temperatura de ebulição em cada efeito.

Page 22: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

4º passo:

Aplique um balanço de energia e massa em cada efeito e calcule a quantidadede vapor vaporizada e o fluxo de líquido em cada efeito. Se as quantidades devapor obtidas diferir apreciavelmente das assumidas no passo 2, os passos 2, 3e 4 devem ser repetidos usando as novas quantidades de vapor obtidas.

5º passo:

Calcule a taxa de calor transferida em cada efeito.

Aplicando a equação da taxa para cada efeito calcular as áreas A1, A2 e A3.Calcule em seguida uma área média Am:

Se as áreas são próximas, o cálculo esta completo. Caso as áreas sejamdiferentes uma segunda tentativa deve ser realizada segundo metodologiadescrita nos passos 6, 7 e 8.

Page 23: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

mA

ATT 111 '

∆=∆

mA

ATT 222 '

∆=∆

6º passo:

Para iniciar os novos cálculos use os valores de L1, L2, L3, V1, V2 e V3 calculadosno passo 4 e calcule as novas concentrações de sólido em cada efeito por meiode um balanço de massa.

7º passo:

Obtenha novos valores de ∆T1’, ∆T2’ e ∆T3’ a partir das seguintes relações:

mA

ATT 333 '

∆=∆

A soma ∆T1’ + ∆T2’ + ∆T3’ deve ser igual ao ∑∆Tefetivo , caso contrário, reajustartodos os valores proporcionalmente de modo que esta igualdade sejarespeitada. Calcule o ponto de ebulição em cada efeito.

Use as novas concentrações obtidas no passo 6 e calcule os novos valores paraa EPE e calcule o ∑∆Tefetivo.

Page 24: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

8º passo:

Usando os novos valores de ∆T’ obtidos no passo 7, repita os cálculos a partirdo passo 4.

O cálculo é concluído desde que obtenhamos áreas equivalentes para cada efeito

Page 25: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Um evaporador a triplo efeito com alimentação direta esta sendo usadopara concentrar uma solução de açúcar a 10 % obtendo uma soluçãocom 50 % de sólidos. A elevação no ponto de ebulição desta solução(EPE) pode ser estimado (independente da pressão) pela expressãoEPE (ºC) = 1,78x + 6,22x2, onde x é a fração mássica de açúcar nasolução. Vapor saturado a 205,5 kPa e 121,1 ºC está sendo utilizado. Apressão na câmara de vaporização do terceiro efeito é 13,4 kPa. Avazão da alimentação é de 22680 kg/h a 26,7 ºC. A capacidadecalorífica das soluções líquidas é dada por cp = 4,19 – 2,35x (kJ/kg.K).Os coeficientes globais de transferência de calor foram estimados, U1 =3123 W/m2.K, U2 = 1987 W/m2.K e U3 = 1136 W/m2.K. Considerandoque cada efeito tem a mesma área de troca, calcule:

a) A área de troca térmica;

b) A vazão de vapor necessária;

c) A economia de vapor.

Page 26: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

hF = ?

xF = 0,1

S = ?

TS1 = 121,1 ºC

PS = 205,5 kPa

HS = ?

L1 = ?

T1 = ?

hL1 = ?

xL1 = ?

V1 = 22680 – L1T1 = ?

HV1 = ?

T1

P1T2

P2T3

P3

TS2 TS3TS1

V2 = L1 – L2T2 = ?

HV2 = ?

V3 = L2 – L3T3 = ?

HV3 = ?

P3 = 13,7 kPa

L2 = ?

T2 = ?

hL2 = ?

xL2 = ?

L3 = ?

T3 = ?

hL3 = ?

xL3 = 0,5

Page 27: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º passo:

A partir dos dados da pressão na câmara de evaporação no último efeito e daconcentração final da solução determine a temperatura de ebulição noúltimo efeito (levar em consideração a EPE caso exista)

Page 28: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Último efeito: P3 = 13,4 kPa

Pelas tabelas de vapor saturado obtemos para a água Teb = 51,67 ºC

A EPE para x = 0,5 é calculada como segue:

EPE (ºC) = 1,78x + 6,22x2 EPE (ºC) = 1,78 . 0,5 + 6,22 . (0,5)2

EPE (ºC) = 2,45 ºC

Logo:

T3 = Teb + EPE � T3 = 51,67 + 2,45

T3 = 54,12 ºC

Page 29: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

hF = ?

xF = 0,1

S = ?

TS1 = 121,1 ºC

PS = 205,5 kPa

HS = ?

L1 = ?

T1 = ?

hL1 = ?

xL1 = ?

V1 = 22680 – L1T1 = ?

HV1 = ?

T1

P1T2

P2T3

P3

TS2 TS3TS1

V2 = L1 – L2T2 = ?

HV2 = ?

V3 = L2 – L3T3 = 54,12 ºC

HV3 = ?

P3 = 13,7 kPa

L2 = ?

T2 = ?

hL2 = ?

xL2 = ?

L3 = ?

T3 = 54,12 ºC

hL3 = ?

xL3 = 0,5

Page 30: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

2º passo:

Determine a quantidade total de vapor evaporado por meio de um balanço demassa global;

Como primeira tentativa, considere que as quantidades de vapor evaporado emcada efeito são iguais: V1 = V2 = V3;

Aplique o balanço de massa global em cada efeito de modo a obter L1, L2 e L3;

Calcule a concentração de sólido em cada efeito por meio de um balanço demassa para o sólido.

Page 31: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

)( 3213 VVVLF +++=

33 LF xLFx =

Quantidade total de vapor evaporado: Balanço de massa global

Para o sólido:

5,01,022680 3 ⋅=⋅ L kg/h 45363 =L

)(453622680 321 VVV +++=

kg/h 18144321 =++ VVV

Global:

Assumindo quantidades iguais evaporadas em cada efeito:

V1 = V2 = V3 = 6048 kg/h

Page 32: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

hF = ?

xF = 0,1

S = ?

TS1 = 121,1 ºC

PS = 205,5 kPa

HS = ?

L1 = ?

T1 = ?

hL1 = ?

xL1 = ?

V1 = 6048

T1 = ?

HV1 = ?

T1

P1T2

P2T3

P3

TS2 TS3TS1

V2 = 6048

T2 = ?

HV2 = ?

V3 = 6048

T3 = 54,12 ºC

HV3 = ?

P3 = 13,7 kPa

L2 = ?

T2 = ?

hL2 = ?

xL2 = ?

L3 = 4536

T3 = 54,12 ºC

hL3 = ?

xL3 = 0,5

Page 33: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Balanço de massa global em cada efeito de modo a obter L1, L2 e L3:

F = L1 + V1 � 22680 = L1 + 6048 � L1 = 16632 kg/h

L1 = L2 + V2 � 16632 = L2 + 6048 � L2 = 10584 kg/h

L2 = L3 + V3 � 10584 = L3 + 6048 � L3 = 4536 kg/h

1º efeito

2º efeito

3º efeito

Page 34: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

hF = ?

xF = 0,1

S = ?

TS1 = 121,1 ºC

PS = 205,5 kPa

HS = ?

L1 = 16632

T1 = ?

hL1 = ?

xL1 = ?

V1 = 6048

T1 = ?

HV1 = ?

T1

P1T2

P2T3

P3

TS2 TS3TS1

V2 = 6048

T2 = ?

HV2 = ?

V3 = 6048

T3 = 54,12 ºC

HV3 = ?

P3 = 13,7 kPa

L2 = 10584

T2 = ?

hL2 = ?

xL2 = ?

L3 = 4536

T3 = 54,12 ºC

hL3 = ?

xL3 = 0,5

Page 35: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Balanço para o sólido:

FxF = L1xL1 � 22680 . 0.1 = 16632 . xL1 � xL1 = 0.136

1º efeito

2º efeito

3º efeito

L1xL1 = L2xL2 � 16632 . 0.136 = 10584 . xL2 � xL2 = 0.214

L2xL2 = L3xL3 � 10584 . 0.214 = 4536 . xL3 � xL3 = 0.500

Page 36: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

hF = ?

xF = 0,1

S = ?

TS1 = 121,1 ºC

PS = 205,5 kPa

HS = ?

L1 = 16632

T1 = ?

hL1 = ?

xL1 = 0.136

V1 = 6048

T1 = ?

HV1 = ?

T1

P1T2

P2T3

P3

TS2 TS3TS1

V2 = 6048

T2 = ?

HV2 = ?

V3 = 6048

T3 = 54,12 ºC

HV3 = ?

P3 = 13,7 kPa

L2 = 10584

T2 = ?

hL2 = ?

xL2 = 0.214

L3 = 4536

T3 = 54,12 ºC

hL3 = ?

xL3 = 0,5

Page 37: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

3º passo:

Estime as diferenças de temperatura ∆T1, ∆T2 e ∆T3 para cada efeito utilizandoas equações:

∑++

∆=∆321

11

/1/1/1

/1

UUU

UTT efetivo ∑

++∆=∆

321

22

/1/1/1

/1

UUU

UTT efetivo

∑++

∆=∆321

33

/1/1/1

/1

UUU

UTT efetivo

∑∑∑ −∆=∆ EPETTefetivo

Onde:

No caso da existência de uma EPE, estimar as pressões no 1º e 2º efeito edetermine a EPE para todos os efeitos.

Calcule a temperatura de ebulição em cada efeito.

Page 38: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Calculo da EPE em cada efeito:

EPE1 (ºC) = 1,78x + 6,22x2 EPE (ºC) = 1,78 . 0,136 + 6,22 . (0,136)2

EPE1 (ºC) = 0.36 ºC

EPE2 (ºC) = 1,78x + 6,22x2 EPE (ºC) = 1,78 . 0,214 + 6,22 . (0,214)2

EPE2 (ºC) = 0.65 ºC

EPE3 (ºC) = 1,78x + 6,22x2 EPE (ºC) = 1,78 . 0,5 + 6,22 . (0,5)2

EPE3 (ºC) = 2,45 ºC

1º efeito: xL1 = 0.136

2º efeito: xL2 = 0.214

3º efeito: xL3 = 0.500

Page 39: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

)45.265.036.0(67.511.121 31 ++−−=∆→−−=∆ ∑∑∑ efetivoSefetivo TEPETTT

Calculo das diferenças de temperatura ∆T1, ∆T2 e ∆T3 para cada efeito :

∑∑∑ −∆=∆ EPETTefetivo

Calculo do ∆Tefetivo :

Cº 97.65 ∑ =∆ efetivoT

Page 40: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1136/11987/13132/1

3123/197.65

/1/1/1

/1

321

11

++=

++∆=∆ ∑

UUU

UTT efetivo

Cº 50.192 =∆T

Calculo das diferenças de temperatura ∆T1, ∆T2 e ∆T3 para cada efeito :

Cº 40.121 =∆T

No entanto, como a alimentação entra fria, aumentaremos ∆T1 e diminuiremos∆T2 e ∆T3 como primeira estimativa:

Cº 07.343 =∆T

Cº 34.182 =∆TCº 56.151 =∆T Cº 07.323 =∆T

Page 41: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Cº 1.1211 =ST

Cº 18.105 36.04.105 22112 =→−=→−= SSS TTEPETT

Cº 19.86 65.084.86 33223 =→−=→−= SSS TTEPETT

Temperatura de ebulição em cada efeito:

1º efeito

2º efeito

3º efeito

Cº 54.105 56.151.121 11111 =→−=→−=∆ TTTTT S

Cº 84.86 34.1818.105 22222 =→−=→−=∆ TTTTT S

Cº 12.54 07.3219.86 33333 =→−=→−=∆ TTTTT S

Page 42: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

hF = ?

xF = 0,1

S = ?

TS1 = 121,1 ºC

PS = 205,5 kPa

HS = ?

L1 = 16632

T1 = 105.54 ºC

hL1 = ?

xL1 = 0.136

V1 = 6048

T1 = 105.54 ºC

HV1 = ?

T1

P1T2

P2T3

P3

TS2 TS3 = 86.19 ºCTS1

V2 = 6048

T2 = 86.84 ºC

HV2 = ?

V3 = 6048

T3 = 54,12 ºC

HV3 = ?

P3 = 13,7 kPa

L2 = 10584

T2 = 86.84 ºC

hL2 = ?

xL2 = 0.214

L3 = 4536

T3 = 54,12 ºC

hL3 = ?

xL3 = 0,5

Page 43: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

4º passo:

Aplique um balanço de energia e massa em cada efeito e calcule a quantidadede vapor vaporizada e o fluxo de líquido em cada efeito. Se as quantidades devapor obtidas diferir apreciavelmente das assumidas no passo 2, os passos 2, 3e 4 devem ser repetidos usando as novas quantidades de vapor obtidas.

Page 44: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Entalpias das correntes de vapor:

1º efeito T1 = 105.54 ºC, TS1 = 121.1 ºC , TS2 =105.18 ºC, EPE1 = 0.36

CpH2O = 1,884 kJ/kg.K (a 121,1ºC e 205,5 kPa).

H1 = HS2 (vapor saturado a TS2) + 1.884 . 0.36 (EPE1)

H1 = 2684 + 1.884 . 0.36 � H1 = 2685 kJ/kg

λS1 = HS1 (vapor saturado) – hS1 (liquido saturado)

λS1 = 2708 – 508 � λS1 = 2200 kJ/kg

H1

S

Page 45: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Entalpias das correntes de vapor:

2º efeito T2 = 86.84 ºC, TS3 = 86.19 ºC , EPE2 = 0.65

H2 = HS3 (vapor saturado a TS3) + 1.884 . 0.65 (EPE2)

H2 = 2654 + 1.884 . 0.65 � H2 = 2655 kJ/kg

λS2 = H1 (vapor superaquecido) – hS2 (liquido saturado)

λS1 = 2685 – 441 � λS1 = 2244 kJ/kg

H2

S2

Page 46: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Entalpias das correntes de vapor:

3º efeito T3 = 54.12 ºC, TS4 = 51.67 ºC , EPE3 = 2.45

H3 = HS4 (vapor saturado a TS4) + 1.884 . 2.45 (EPE3)

H3 = 2595 + 1.884 . 2.45 � H3 = 2600 kJ/kg

λS3 = H2 (vapor superaquecido) – hS3 (liquido saturado)

λS3 = 2655 – 361 � λS3 = 2294 kJ/kg

H3

S3

Page 47: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

hF = ?

xF = 0,1

S = ?

TS1 = 121,1 ºC

PS = 205,5 kPa

λS1 = 2200 kJ/kg

L1 = 16632

T1 = 105.54 ºC

hL1 = ?

xL1 = 0.136

V1 = 6048

T1 = 105.54 ºC

HV1 = 2685 kJ/kg

T1

P1T2

P2T3

P3

TS2 TS3 = 86.19 ºCTS1

V2 = 6048

T2 = 86.84 ºC

HV2 = 2655 kJ/kg

V3 = 6048

T3 = 54,12 ºC

HV3 = 2600 kJ/kg

P3 = 13,7 kPa

L2 = 10584

T2 = 86.84 ºC

hL2 = ?

xL2 = 0.214

L3 = 4536

T3 = 54,12 ºC

hL3 = ?

xL3 = 0,5

Page 48: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Capacidade calorífica das correntes liquidas em cada efeito:

xcp 35.219.4 −=

F (xF = 0.1) � cp = 3.955 kJ/kg.K

L1 (xL1 = 0.136) � cp = 3.869 kJ/kg.K

L2 (xL2 = 0.214) � cp = 3.684 kJ/kg.K

L3 (xL3 = 0.500) � cp = 3.015 kJ/kg.K

Page 49: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

Os valores de V1, V2, V3, L1 e L2 calculados anteriormente não devem serutilizados nesta etapa.

1º efeito

Fcp(TF – 0) + SλS1 = L1cp(T1 – 0) + V1H1

V1 = 22680 – L1 V2 = L1 – L2 V3 = L2 - 4536

Balanço de energia para cada efeito:

T = 0 ºC como temperatura de referência

22680 . 3.955 . (26.7 – 0) + S . 2200 = L1 . 3.869 . (105.54 – 0) + (22680 – L1) . 2685 (1)

Page 50: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito

22680 . 3.955 . (26.7 – 0) + S . 2200 = L1 . 3.869 . (105.54 – 0) + (22680 – L1) . 2685 (1)

2º efeito

L1cp(T1 – 0) + V1λS2 = L2cp(T2 – 0) + V2H2

L1 . 3.869 . (105.54 – 0) + (22680 – L1) . 2244 = L2 . 3.684 . (86.84 – 0) + (L1 – L2) . 2655 (2)

3º efeito

L2cp(T2 – 0) + V2λS3 = L3cp(T3 – 0) + V3H3

L2 . 3.684 . (86.84 – 0) + (L1 – L2) . 2294 = 4536 . 3.015 . (54.12 – 0) + (L2 – 4536) . 2600 (3)

Resolve (2) e (3) para L1 e L2 e substitui em (1) para achar S

Page 51: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

L1= 17078 kg/h L2 = 11068 kg/h L3 = 4536 kg/h

V1= 5602 kg/h V2 = 6010 kg/h V3 = 6535 kg/h

Realizando as operações anteriores obtemos:

S = 8936 kg/h

V1, V2 e V3 são próximos dos valores assumidos inicialmente(diferença de 10 % com relação ao valor médio é aceitável),portanto, os passos 2, 3 e 4 não necessitam ser refeitos.

Page 52: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Exemplo de cálculo

1º efeito 2º efeito 3º efeito

F = 22680

TF = 26,7 ºC

xF = 0,1

S = 8936

TS1 = 121,1 ºC

PS = 205,5 kPa

λS1 = 2200 kJ/kg

L1 = 17078

T1 = 105.54 ºC

xL1 = 0.136

V1 = 5602

T1 = 105.54 ºC

HV1 = 2685 kJ/kg

T1

P1T2

P2T3

P3

TS2 TS3 = 86.19 ºCTS1

V2 = 6010

T2 = 86.84 ºC

HV2 = 2655 kJ/kg

V3 = 6535

T3 = 54,12 ºC

HV3 = 2600 kJ/kg

P3 = 13,7 kPa

L2 = 11068

T2 = 86.84 ºC

xL2 = 0.214

L3 = 4536

T3 = 54,12 ºC

xL3 = 0,5

Page 53: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

5º passo:

Calcule a taxa de calor transferida em cada efeito.

Aplicando a equação da taxa para cada efeito calcular as áreas A1, A2 e A3.Calcule em seguida uma área média Am:

Se as áreas são próximas, o cálculo esta completo. Caso as áreas sejamdiferentes uma segunda tentativa deve ser realizada segundo metodologiadescrita nos passos 6, 7 e 8.

Page 54: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

Taxa de calor transferida em cada efeito:

q1 = SλS1 � q1 = 5.460 x 106 W

q2 = V1λS2 � q2 = 3.492 x 106 W

q3 = V2λS3 � q3 = 3.830 x 106 W

Page 55: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

11

11

TU

qA

∆=

22

22

TU

qA

∆=

A1 = 112.4 m2

Áreas A1, A2 e A3 e Am (média) para cada efeito:

A2 = 95.8 m2

A3 = 105.1 m2

33

33

TU

qA

∆=

Am = 104.4 m2. As áreas obtidas diferem pouco em relação amédia (diferença de 10 % com relação ao valor médio éaceitável).

Page 56: Evaporação Múltiplo Efeito Teoria e Exemplo [Modo de Compatibilidade]

Metodologia de cálculo

025.2321 =++

S

VVV

Economia de vapor: