299
www.famat.ufu.br Revista Científica Eletrônica da Faculdade de Matemática - FAMAT Universidade Federal de Uberlândia - UFU - MG Número 10 - Abril de 2008 f À W e-mail: [email protected] Comitê Editorial: Ednaldo Carvalho Guimarães Luis Antonio Benedetti - Famat/Ufu Marcos Antônio da Câmara - Famat/Ufu Gabriela Aparecida dos Reis - Petmat - Famat/Ufu Claiton José Santos - Petmat - Famat/Ufu - Famat/Ufu Maria Luisa Maes - DAMAT - Famat/Ufu FAMAT em Revista

FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Embed Size (px)

Citation preview

Page 1: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

www.famat.ufu.br

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008

f��

e-mail: [email protected]

Comitê Editorial: Ednaldo Carvalho GuimarãesLuis Antonio Benedetti - Famat/Ufu

Marcos Antônio da Câmara - Famat/Ufu

Gabriela Aparecida dos Reis - Petmat - Famat/Ufu

Claiton José Santos - Petmat - Famat/Ufu

- Famat/Ufu

Maria Luisa Maes - DAMAT - Famat/Ufu

FAMAT em Revista

Page 2: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

����� �� ���� ���� �������

����� � ��������

� ������� �� � ��������

������� ��������� ���������� �� ������ ����������� �� ��� !���� �" "#

$����������� ������� �� $%���&���� $�$ '

�( ��) ����(����*

������( ������+( '�� ��,�� ��������-��� "��(��( .�������� ��������

���(� "�����( �� �& ��� ��������'�%����� "/������� �(� ���� ����� � �������������(� 0(�1 ����(� ����� � �������� ���� -���� ��� ���� � ��������

�2 ��( ��"%��� �� 3���

Page 3: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Editorial

A Revista FAMAT em Revista chega a sua décima edição cumprindo a proposta de ser uma forma ágil de promover a circulação de idéias, de estimular o estudo da Matemática e despertar a curiosidade intelectual dos estudantes e de todos aqueles que se interessam pelo estudo de Matemática.

O Comitê editorial desta décima edição é composto por:

Ednaldo Carvalho Guimarães – Editor Responsável Marcos Antonio da Câmara – Tutor do PET/Matemática Luis Antonio Benedetti – Coordenador do Curso de Matemática Gabriela Aparecida dos Reis - Aluna do Pet/Matemática Claiton José Santos – Aluno do Pet/Matemática Maria Luiza Maes - Representante do DAMAT

O décimo número da revista contempla as atividades desenvolvidas no

segundo semestre de 2007 e parte do primeiro semestre de 2008. O sucesso e a aceitação da revista no meio acadêmico ficam evidenciados pelo

consistente número de artigos submetidos para a publicação, tanto na seção de trabalhos completos de iniciação científica como na seção de trabalhos desenvolvidos em sala de aula.

Convidamos o leitor a “navegar” pelas páginas desta décima edição onde encontrará 13 trabalhos na seção “Trabalhos Completos de Iniciação Científica” e 5 trabalhos na seção “Em Sala de Aula”.

As resoluções dos problemas apresentados na nona edição e quatro novos problemas proposto para a décima edição encontram-se em “Problemas e Soluções”.

Na seção “Reflexões sobre o Curso de Matemática”, o Prof. Luiz Antônio Benedetti, Coordenador de Curso de Graduação em Matemática, apresenta a segunda parte do artigo “A Beleza da Matemática”.

Em “E o Meu Futuro Profissional” temos uma interessante entrevista com José Eduardo Ferreira Lopes sobre a Estatística no Mercado de Trabalho, mostrando uma área de atuação em franco desenvolvimento para o profissional formado em Matemática e Estatística.

Nas seções, “Merece Registro”, “Iniciação Científica em Números” e “Eventos” são apresentados alguns fatos de destaque na Faculdade de Matemática, as orientações e os projetos de Iniciação Científica desenvolvidos ou em desenvolvimento, no período, e registramos também alguns importantes eventos que ocorrerão ao longo de 2008.

Esperamos que os leitores apreciem esta décima edição da FAMAT em Revista e contamos com contribuições e sugestões para edições futuras.

Comitê Editorial

Page 4: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 5: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Indice de Secoes

Secao 1: Trabalhos Completos de Iniciacao Cientıfica 7

Secao 2: Problemas e Solucoes 177

Secao 3: Eventos 183

Secao 4: Reflexoes sobre o Curso de Matematica 189

Secao 5: Em Sala de Aula 195

Secao 6: Iniciacao Cientıfica em Numeros 261

Secao 7: E o meu Futuro Profissional? 271

Secao 8: Merece Registro 277

Page 6: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 7: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

Trabalhos Completos deIniciação Científica

PBIIC-FAPEMIG-UFU - Programa de Bolsas Institucionais de Iniciação Científica da Fundação de Amparo à Pesquisa do Estado de Minas Gerais

PETMAT-UFU - Programa de Educação Tutorial da Faculdade de Matemática

PIBIC-CNPq-UFU - Programa Institucional de Bolsas de Iniciação Científica do Conselho Nacional de Desenvolvimento Científico e Tecnológico

PROMAT-UFU - Programa Institucional de Iniciação Científica e Monitoria da Faculdade de Matemática

IM-AGIMB - Instituto do Milênio - Avanço Global e Integrado da Matemática Brasileira

���

Page 8: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção Trabalhos Completos de Iniciação Científica

do Número 10 da FAMAT EM REVISTA:

Ednaldo Carvalho Guimarães (coordenador da seção) Valdair Bonfim

Marcos Antônio da Câmera

Page 9: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Instrucoes para submissao de Trabalhos

A Secao de Trabalhos de Iniciacao Cientıfica visa divulgar trabalhos que estejam as-sociados a projetos cadastrados na(o) PBIIC-FAPEMIG / PETMAT / PIBIC-CNPq /PROMAT ou IM-AGIMB e orientados por docentes da FAMAT.

Trabalhos completos em nıvel de iniciacao cientıfica dos programas acima listadossubmetidos para publicacao na Revista Eletronica “Famat em Revista” estarao sujeitosa apreciacao pelo Comite Editorial responsavel por essa secao de artigos e, se for o caso,por consultores ad hoc ligados a area ou subarea do trabalho. Caso se faca necessario,sugestoes para o aperfeicoamento do trabalho serao dirigidas aos interessados pelo ComiteEditorial.

Alem da redacao clara e concisa que todo trabalho submetido a boa qualidade devepossuir, pede-se evitar o estilo arido e extremamente tecnico caracterıstico de algumaspublicacoes matematicas, nao perdendo de vista que o publico-alvo ao qual se destina arevista e constituıdo por alunos de graduacao.

Os trabalhos submetidos ate o final de um semestre letivo serao publicados na edicaoda revista lancada no inıcio do semestre letivo subsequente.

Quanto as normas tecnicas para submissao dos trabalhos:

1) Formato do arquivo: PDF

2) Tamalho da Folha: A4

3) Margens: 2,5 cm (portanto, area impressa: 16 cm x 24,7 cm)

4) Tamanho de fonte (letra): 12 pontos (exceto tıtulos, subtıtulos, notasde rodape, etc, que ficam submetidos ao bom senso)

5) Espacamento entre linhas: Simples

6) Orientador(es), tipo de programa e orgao de fomento (se houver)devem constar no trabalho.

Envio:Por e-mail: [email protected]

Page 10: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 11: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Indice de Trabalhos

Os co-senos expressaveis com radicais reais 13

Rafael Afonso Barbosa e Antonio Carlos Nogueira

O uso do grafico de controle X e � no monitoramentodo volume de envase de refrigerante 21

Mateus Araujo Kappel e Aurelia Aparecida de Araujo Rodrigues

Aplicacao do metodo dos elementos finitos mistose hıbridos na obtencao da velocidade de Darcy - SistemaLinear resultante resolvido pelo metodo dos gradientes conjugados 32

Ernani Magno de Freitas Junior e Cesar Guilherme de Almeida

Os componentes da Analise de Variancia explicadosvia Algebra Linear 45

Marteus Bartolo Guerreiro e Edmilson Rodrigues Pinto

Um estudo de caso sobre o nıvel de conhecimento emProbabilidade e Estatıstica dos alunos concluintes do Ensino Medio 62

Denise Nunes de Melo e Edmilson Rodrigues Pinto

Analise quantitativa da relacao entre notas de tarefas e notasde provas bimestrais: estudo de caso das 5a series da ”EscolaEstadual de Uberlandia” 81

Juscelina Dias Mendonca e Ednaldo Carvalho Guimaraes

Classificacao do Coeficiente de Variacao da Unidadedo Solo em experimentacao Agrıcola 94

Franciella Marques da Costa, Juliana Maria de Oliviera, Marcelo Tavarese Ednaldo Carvalho Guimaraes

Efeito de tendencia no ajuste de Semivariogramas Esfericos 102

Alessandra Ribeiro da Silva, Marcelo Tavares e Ednaldo Carvalho Guimaraes

Page 12: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Polıgonos Regulares e Complexidade Algebrica 2 e 3: algunsproblemas de Geometria Euclidiana Plana 112

Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini

Aplicacao Normal de Gauss em Superfıcies Regulares: paraboloidesosculadores 125

Thiago Rodrigues da Silva e Edson Agustini

O Uso da Algebra Linear nas Equacoes Diferenciais 143

Letıcia Garcia Polac e Lucia Resende Pereira Bonfim

Algumas Aplicacoes da Teoria dos Grafos 155

Giselle Moraes Resende Pereira e Marcos Antonio da Camara

Novas Operacoes com Matrizes: Algumas de SuasPropriedades e Aplicacoes 167

Otoniel Nogueira da Silva e Valdair Bonfim

Page 13: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

CO-SENOS EXPRESSÁVEIS COMRADICAIS REAIS

Rafael Afonso BarbosaBolsista do programa PETMAT - Faculdade de Matemática - Universidade Federal de Uberlândia

Antonio Carlos NogueiraProfessor Doutor da Faculdade de Matemática - Universidade Federal de Uberlândia

1. OBJETIVO:

Um dos principais temas que aprendemos ao estudar trigonometria é o valor numéricodo seno e do co-seno de alguns ângulos específicos, por exemplo:

������� �������� ���

����

�� ���

��

�� ���

����

�� �������

�� ���� �� ����� ��

����

�� ��

���

�� ��

���

�� �� ���

Com isso podemos ver imediatamente que há ângulos ( ���� ��� e � ) cujo co-seno éum número racional, e ângulos ( �� e ��� ) cujo co-seno não é um número racional,mas pode se expressar partindo dos números racionais mediante alguma combinação desomas, produtos e extração de raízes reais. Seja como for, há muitos ângulos da forma

�����

para os quais não conhecemos o valor do seno ou do co-seno. Existe alguma

expressão racional para o co-seno ou o seno de ��� ou ��� ? Podemos encontrar umafórmula na qual só apareçam somas, produtos, quocientes e radicas de números racionais, para

o seno ou co-seno de qualquer ângulo do tipo �����

?

Então o objetivo principal deste trabalho é descobrir algum critério que nos diga

quando um certo ângulo � do tipo �������

com � � � �� � �� � �� ,

possui o co-seno e o seno expressos apenas por combinações de números racionais e radicais

2. ALGUMAS IDENTIDADES TRIGONOMÉTRICAS

a) �� � ������ � � � ���������� ���� ���

Page 14: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

b) �����

� ��� �������

c) �� ��

� ����������

d) ����� � �����������

e) �� �� � ��� �� ���� ��

f) ������� � ����� ������ ��� �� ��� ��

g) �� ���� � �� �� ������ ��� �� ������

� Identidade de Bézout

Se � � ��� �� � , então existem � � � � de modo que � ���� � �� .

Em particular quando � e são primos entre si, ou seja, ��� ��� � � temos quesempre existem � � � � tais que �� ��� � �� .

3. DESENVOLVIMENTO

Analisando a relação fundamental podemos perceber que �� ���������� � ,

daí vemos que se o co-seno de um ângulo qualquer pode ser expresso com números racionaise radicais o seu seno também poderá. Assim reduzimos o caso do estudo do seno ao estudo deco-seno. Vamos apresentar alguns casos particulares que ilustram tal afirmação:

1) sabendo que o ����

��

�substituindo na identidade acima teremos que,

�� �

��������

� �

, como�

é um ângulo do terceiro quadrante sabemos que

seu seno é negativo então �� �

��������

� �

���

�.

2) sabemos também que �����

��

����

substituindo novamente encontraremos

que, �� ��

�������

����

� �������

, positivo já que

��

�é ângulo do

primeiro quadrante. Podemos observar então dois casos em que o co-seno é expresso por radicais reais e

por conseguinte seu seno também é.Sabemos também que ������ � ���

�� � �� �� . logo, ������ é

expresso por radicas se, e só se o ���� o for. Podemos deduzir do �������

o

�������

�� e ����

���

�� . Mas, de maneira geral, o ����

���

poderá se expressar

Page 15: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

com racionais e radicais se, e somente se, para todos ��� , também for �������

��� .

Chegamos assim à seguinte questão, se o �������

pode ser expresso com

racionais e radicais, o que podemos dizer de ���������

?

Observando que,

���������

� ����

���

��������

� �������

�����

��������

� �� �

���

��� �

��������

Sabendo que o �������

pode ser expresso por radicais e como o �� �

���

também poderá, supomos então que para � �� o ������������

também será , então

utilizando indução matemática chegamos a conclusão que ���������

também poderá ser

expresso satisfatoriamente para todo � �� . Sendo assim o nosso estudo fica reduzido em

analisar quais casos o �������

pode ser expresso mediante números racionais e raízes

racionais.Propomos então o estudo dos casos � �� � �� �� e os casos do tipo

�������

�� quando sabemos de antemão que ����

���

e ����

���

� podem ser

expressos com radicais.

1. Estudando o caso � � :

Supondo � � �����

�� ���

��

�uma raiz quinta da unidade ��� � �

teremos que ����� ���� ������������ . � é raiz da equação������ , logo teremos que � é raiz de ����������� � � , então

vem que ����������� � � , que é equivalente a

� ��� ���������� � � � �����

��

�������

��� � � , usando a

identidade (b) temos,

�������

�������

�� �����

��

����������

� ��

��� �� � � �

����� ��

�������

��

����� , substituindo ���

���

�por � teremos a

equação �������� � . Resolvendo-a encontraremos � �

�����

, como

Page 16: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

������

��� , teremos que ���

���

��

����

.

2. Estudando o caso � � :

Supondo � � �����

�� ���

��

�uma raiz sétima da unidade ��� � �

teremos que����� ���� ������������������ . � é raiz da equação������ , logo teremos que � é raiz de ����������������� � � ,

então temos que����������������� � � que é� ��� ���� ����������� � � , realizando as somas necessárias teremos

�������

�������

�������

��

����� . Usando as identidades

trigonométricas, !���� ��

������

� ��

������

��

����� . Logo, ���

���

é raiz da equação cúbica acima.

3. Estudando o caso � � :

Supondo � � �����

�� ���

��

�uma raiz sétima da unidade ��� � �

teremos que����� ���� ���!�������������������� . � é raiz da equação������ , logo teremos que � é raiz de,��!�������������������� � � então temos que,��!�������������������� � � que é� ��� ���� ��� ������������� � � , realizando as somas necessárias

teremos �������

�������

�������

��

�������

!�

����� . Usando

novamante as identidades trigonométricas teremos

!���� ��

�������

� ��

����� . Logo, ���

���

�é raiz da equação cúbica

acima.

Ao resolvermos as equações cúbicas dos casos ������

�e ���

���

�vemos que

aparecerão radicais de números negativos e não somente radicais reais, portanto não é claroque tais co-senos possam ser expressos como queremos.

Page 17: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Observação: Usando um racicínio análogo ao realizado para os ângulos acima

podemos demonstrar que o ������

��também pode ser expresso usando apenas somas,

produtos, quocientes e radicas de números racionais.

4. Estudemos agora o caso do �������

�� em que ����

���

� e ����

���

podem

ser expressos com radicais, com � e primos entre si.

Temos então da identidade de Bézout, que sempre existem � e � inteiros tais que

������ � � , já que "#$ ��� � � . Visto que �������

�� � ����

���

���� �

�������

���� ���� � ����

�����

��

�����

usando o co-seno da soma teremos

���������

��

�����

� ����

�����

� �����

�����

��� �

�����

� ��� �

�����

. Logo, o

�������

�� será expresso com racionais e radicais se, e somente se, também são o

�������

� e o ����

���

.

Sabendo então que ������

�, ���

���

, ���

���

�e ���

���

��são

expressáveis por radicais reais façamos todas as combinações possíveis para �� com�� ����� ���� . Pensando assim construímos a tabela:

1 2 3 4

������

����

���

����

���

����

���

���

������

���

���

�����

���

���

������

����

���

���

���

���

������

�����

���

�����

���

���

������

��

������

!�

Page 18: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Como provamos que se o �������

é expressável por radicais reais o

���������

com � também será, temos então que todos os ângulos da forma:

���������

� , ����

�����

, ... , ����

�����

��� , � .

também poderão ser expressos mediante alguma combinação de somas, produtos, quocientes,raízes reais de números racionais.

Teorema: Para todo �� o ���������

pode ser expresso através de somas,

produtos, quocientes, raízes reais de números racionais.

Demonstraremos usando o princípio de indução matemática.

� � �

�������

� � ����� ���

� �

�������

� � ����

� �

��

� Assumindo agora que para � � teremos que o �������

�� poderá ser expresso

usando apenas radicais reais.

� Provemos então que para � ��� o �������

����

também poderá ser expresso da

mesma maneira. Temos então:

�������

����

� �����������

� ������������� ��

Como �������

�� pode ser expresso usando apenas radicais reais. Temos que o

�������

����

também poderá.

É fácil observar que usando este teorema podemos criar mais uma infinidade deângulos que satisfarão as condições exigidas.

Page 19: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

4. ConclusãoDurante o desenvolvimento do trabalho percebemos que encontrar todos os ânguloscujo co-seno pode ser expresso por radicais reais não é uma tarefa simples. Para isso énecessário conhecer algumas complexas técnicas matemáticas que estão fora do nossoalcance. No entanto, demonstramos aqui algumas condições interessantes que taisângulos devem satisfazer e apresentamos algumas maneiras de encontrá-los. Destaforma, conseguimos apresentar em nosso estudo uma infinidade de ângulos cujo co-seno pode se expressar partindo dos números racionais mediante alguma combinaçãode somas, produtos e extração de raízes reais como havíamos proposto.

Page 20: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 21: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O uso do gráfico de controle X e R no monitoramento do volume de envase de refrigerante

Mateus Araújo Kappel1

[email protected]

Aurélia Aparecida de Araújo Rodrigues2

[email protected]

Resumo

O monitoramento efetivo das características da qualidade de um processo de produção depende freqüentemente de ferramentas estatísticas para a detecção, identificação e análise das causas significantes responsáveis por variações que afetam o comportamento do processo de maneira imprevisível. Os gráficos de controle são ferramentas estatísticas utilizadas com sucesso no monitoramento do desempenho de diferentes processos industriais. O objetivo deste trabalho é utilizar os gráficos de controle X e R para monitorar o processo de envase de refrigerantes da Indústria de Refrigerantes Ltda (IRL) e verificar se o processo está estatisticamente em controle. A variável monitorada aqui foi o volume de envase de refrigerantes em embalagens PET de 2 litros. Utilizou-se o software Minitab para implementar o gráfico X e R.

Palavras-chave: gráficos de controle, controle estatístico de processos, gráficos X e R.

1. INTRODUÇÃOEm um processo produtivo, as características dos produtos apresentam variabilidade

(desvio em relação ao valor desejado), ou seja, nunca é possível produzir dois produtos ou itens exatamente iguais. Existem dois tipos de causas de variação que podem estar presentes em um processo de produção: as causas especiais e as causas comuns. As causas especiais podem ser localizadas e eliminadas, como por exemplo, diferenças entre máquinas, variações entre lotes de matérias-primas e diferenças entre fornecedores; já as causas comuns de variação, são intrínsecas ao processo, naturais e não podem ser eliminadas. Assim, coloca-se a questão de reconhecer quando a variabilidade observada no processo é natural ou se há causas especiais presentes.

A qualidade de um produto está relacionada com essa variabilidade, no sentido de que, quanto menor o desvio, melhor a qualidade do produto. Assim, controlar a qualidade é controlar a variabilidade. Produzir com mais qualidade e menor custo são palavras essenciais no mercado competitivo das empresas.

O controle estatístico do processo (CEP) consiste de um conjunto de técnicas estatísticas que permitem a redução sistemática da variabilidade nas características da qualidade de interesse, contribuindo para a melhoria da qualidade intrínseca, da produtividade, da confiabilidade e do custo do que está sendo produzido (Ribeiro, 2000).

A ferramenta utilizada para monitorar os processos de produção é o gráfico de controle. Em 1924, Walter A. Shewhart, da Bell Telephone Laboratories, foi quem primeiro desenvolveu e aplicou os gráficos de controle, com o objetivo de observar se a variabilidade do processo é devida às causas especiais de variação. Para sua operação, o processo é

1 Aluno de graduação em Engenharia Mecânica (UFU) e de Iniciação Científica (PROMAT). 2 Orientadora.Professora Adjunto da Faculdade de Matemática (UFU).

Page 22: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

monitorado da seguinte maneira: periodicamente, retira-se uma amostra de certo número de itens do processo, calcula-se uma ou mais estatísticas amostrais (como média e/ou amplitude ou desvio-padrão) e registram-se seus valores no(s) gráfico(s) de controle.

A figura 1 mostra um esquema ilustrativo de um gráfico de controle. A variação devida a causas especiais está sinalizada por pontos acima do limite superior de controle (LSC) ou abaixo do limite inferior de controle (LIC). As causas especiais de variação devem ser, de modo geral, localizadas e eliminadas. E, além disso, devem-se adotar medidas para evitar sua reincidência. Se nenhuma causa especial é sinalizada pelo gráfico e somente causas comuns estão agindo no processo, diz-se que o processo está em controle. Caso contrário, isto é, se alguma causa especial estiver atuando no processo, tem-se, então, um processo fora de controle.

LSC Variação devida a causas especiais

LM Variação devida a causas comuns

LIC Variação devida a causas especiais

Figura 1: Ilustração esquemática de um gráfico de controle

O modelo geral de um gráfico de controle tradicional, ou gráfico de controle de Shewhart, é, como foi visto , composto pela Linha Média (LM) e pelos limites LIC e LSC,cujos valores (coordenadas no eixo vertical) são calculados por:

LSC = w + L w (1) LM = w (2) LIC = w – L w (3)

onde w é a estatística de interesse, w e w são sua média e seu desvio-padrão na hipótese de o processo estar em controle, e L é a distância dos limites de controle em relação à linha média, expressa em unidades de desvios-padrão w. Quando os valores de w e w forem desconhecidos, esses valores deverão ser estimados a partir de amostras preliminares do processo, num período de tempo em que se acredite que ele está em controle (Montgomery, 2004)

Se a característica de qualidade de interesse for representada por variáveis contínuas (mensuráveis), como por exemplo, teor de carbono em uma liga metálica, diâmetro de um eixo, volume de saquinhos de leite ou volume de latas de refrigerante, então, os tipos de gráfico indicado para monitorar o processo são os gráficos de controle por variáveis.

Os gráficos de controle para variáveis resultam na utilização do gráfico da média ( X ), que é o mais usado para controlar a média de um processo, e do gráfico da amplitude (R) ou do gráfico do desvio-padrão (S), que controlam a variabilidade do processo. Em certas situações é recomendável e usual a implantação simultânea dos gráficos de X e R ou S para controlar a média e a variabilidade do processo.

A Indústria de Refrigerantes Ltda (IRL), que é mais conhecida como Refrigerantes Golé, foi inaugurada em 1º de Setembro de 1966. Atualmente, com sede em Uberaba - Minas Gerais, na região do Triângulo Mineiro, a IRL atende quase todo Triângulo e Alto Paranaíba,

Page 23: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

atendendo cidades como: Uberlândia, Araguari, Araxá, Nova Ponte, Conceição das Alagoas, Delta e outras.

Na IRL, a equipe responsável pelo controle de qualidade retira amostras de 2 garrafas a cada meia hora para medir a quantidade de gás carbônico e o volume de envase de refrigerante das garrafas. Além disso, ocorre também inspeção visual constante após a rotulagem, onde um funcionário inspeciona o nível do volume e a presença de alguma não conformidade da produção.

Através do monitoramento é possível observar e analisar o comportamento do volume de refrigerante no processo de envase, que deve ser mantido em níveis adequados com a finalidade de evitar tanto perdas por excesso de volume nas garrafas como apresentar um volume abaixo do seu volume nominal, ou seja, aquele volume citado no rótulo do produto, que poderá causar multas geradas pelo organismo responsável pela fiscalização, resultando insatisfação ou até perda de clientes.

Alternativamente, é possível monitorar o volume de refrigerantes no processo de envase utilizando os gráficos de controle, que é uma ferramenta estatística simples de construir e fácil de utilizar, o qual pode complementar ou substituir com vantagens o método de controle adotado pela IRL. A eficácia de um gráfico de controle é medida pela rapidez com que esse método detecta e sinaliza alterações no processo, o que permite que ações sejam tomadas para evitar que itens não conformes sejam produzidos.

O objetivo deste trabalho é utilizar o gráfico de controle X e R para monitorar o processo de produção de refrigerantes da Indústria de Refrigerantes Ltda (IRL) e verificar se o volume de envase nas embalagens PET (politereftalato de tila) de 2 litros está estatisticamente em controle.

2. MATERIAL E MÉTODOS 2.1 Coleta de dados

Para a realização do trabalho, os dados foram fornecidos pela Indústria de Refrigerantes Ltda (IRL) de Uberaba-MG, que é mais conhecida pelos consumidores, como Refrigerantes Golé, a qual produz e/ou engarrafa refrigerantes de vários sabores, água mineral, refrescos e bebida ice (mistura levemente gaseificada de vodka com suco de limão).

O Controle de Qualidade de qualquer empresa tem como objetivo acompanhar e dar suporte em todo processo de fabricação, mantendo um padrão e assegurando as características do produto final para o consumidor. Na IRL, esse controle inicia com a chegada da matéria-prima na fábrica, que passa por dois laboratórios (microbiologia e físico-química) de controle de qualidade (IRL, 2008). Após aprovação da matéria-prima pelos laboratórios, inicia-se o processo de produção, que também é acompanhado continuamente pelos técnicos do setor até obtenção do produto final. Além disso, para avaliação desse produto, os técnicos da empresa coletam periodicamente amostras (uma amostra por lote fabricado) nos mais variados pontos de venda (IRL, 2008).

Para a qualidade do refrigerante, é muito importante o acompanhamento diário e eficiente do sistema de envase. Na IRL, o processo de envase de refrigerante ocorre em um local, com acesso restrito, onde há inspeção de características como o volume de envase e a higiene. Posteriormente, as embalagens envasadas são rotuladas e codificadas (datadas e numeradas com o número do lote). Finalizado o processo de produção, as garrafas são embaladas e armazenadas.

Neste trabalho, a variável de interesse é o volume de envase de refrigerante em garrafas PET de 2 litros, cuja peça fundamental do processo é a máquina envasadora, fabricada pela KHS, vide Figura 2. A envasadora contém 28 bicos injetores independentes, a qual funciona com sistema a vácuo. Para facilitar o enchimento, a máquina envasadora é dotada de bombas que retiram o ar antes da entrada da bebida. Nestas bombas, o vácuo é

Page 24: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

obtido por colunas barométricas, equipamento que utiliza jatos de água para produzir pressão negativa numa tubulação. Nesse tipo de sistema, em geral, perde-se água, uma vez que parte da água sai junto com o ar que é expelido das garrafas.

Fonte: KHS (2008) Figura 2: Ilustração de uma máquina de envase atual -KHS

A máquina envasadora da IRL possui um número grande de bicos injetores, os quais são independentes. Neste trabalho, a fim de facilitar o processo de coleta de dados e análise, foram coletadas amostras de volumes de envase em apenas um bico. Vale ressaltar que o gráfico de controle aqui aplicado pode ser estendido para a implementação do monitoramento dos demais bicos injetores e, assim, promover um monitoramento simultâneo de todos os bicos do processo de envase.

Como não se dispunha de um histórico do volume de envase, foi durante a fase inicial, chamada fase 1, que se obteve amostras preliminares a fim de identificar os parâmetros do processo (média e desvio padrão) e determinar os limites de controle ideais dos gráficos X e R, sem a influência de causas especiais. Uma discussão sobre o planejamento do número de amostras m, do tamanho n dessas amostras e do intervalo entre cada amostra t é encontrada em Montgomery (2004).

Neste trabalho, para a fase 1 do monitoramento da produção, foram coletadas vinte amostras (m = 20) de tamanho 5 (n = 5), com intervalos de 15 minutos entre cada amostra (t = 15 min). Cada amostra foi medida através de proveta graduada e registrada na tabela 1.

Para a implementação da fase 2, que visa o monitoramento futuro da produção, foram coletadas mais quinze amostras (m = 15) de tamanho 5 (n = 5), com intervalos de 15 minutos entre cada amostra (t = 15 min). Cada amostra foi medida através de proveta graduada e registrada na tabela 2.

Page 25: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Tabela 1: Volume de refrigerante, em ml, fase 1 Amostra Xi1 Xi2 Xi3 Xi4 Xi5 iX iR

1 2020,0 2000,0 2025,0 2010,0 2005,0 2012,0 25,02 2010,0 2010,0 2010,0 2005,0 2000,0 2007,0 10,03 2000,0 2000,0 2000,0 1980,0 2000,0 1996,0 20,04 2000,0 2000,0 2000,0 1998,0 2000,0 1999,6 2,05 2000,0 1998,0 2002,0 2000,0 2002,0 2000,4 4,06 2000,0 2002,0 2002,0 2005,0 2005,0 2002,8 5,07 2000,0 2003,0 2000,0 2002,0 1996,0 2000,2 7,08 2000,0 2004,0 2002,0 2000,0 2000,0 2001,2 4,09 2005,0 2000,0 2000,0 2005,0 2000,0 2002,0 5,0

10 1998,0 2000,0 1998,0 2000,0 2010,0 2001,2 12,011 2000,0 2002,0 2000,0 2025,0 2025,0 2010,4 25,012 2000,0 2010,0 2005,0 2010,0 2020,0 2009,0 20,013 2005,0 2000,0 2000,0 2000,0 2005,0 2002,0 5,014 2010,0 2010,0 2000,0 2005,0 2005,0 2006,0 10,015 2000,0 2000,0 1998,0 2000,0 2000,0 1999,6 2,016 1995,0 2000,0 2000,0 1993,0 1998,0 1997,2 7,017 2000,0 2005,0 2005,0 2000,0 2000,0 2002,0 5,018 2000,0 2005,0 2010,0 2010,0 2005,0 2006,0 10,019 2005,0 2000,0 2000,0 2005,0 2000,0 2002,0 5,020 2000,0 2000,0 1998,0 2000,0 1995,0 1998,6 5,0

X = 2002,8 R = 9,4

Tabela 2: Volume de refrigerante, em ml, fase 2. Amostra Xi1 Xi2 Xi3 Xi4 Xi5 iX iR

1 2000,0 2000,0 1980,0 1980,0 1995,0 1991,0 20,02 1990,0 2005,0 2000,0 1990,0 1995,0 1996,0 15,03 2010,0 2010,0 2000,0 2020,0 2000,0 2008,0 20,04 2000,0 2005,0 2000,0 2010,0 1990,0 2001,0 20,05 2000,0 2005,0 2005,0 2005,0 2005,0 2004,0 5,06 2020,0 2010,0 2010,0 2010,0 2020,0 2014,0 10,07 2005,0 2020,0 2020,0 2020,0 2010,0 2015,0 15,08 2000,0 2005,0 2005,0 2000,0 2010,0 2004,0 10,09 2000,0 2003,0 2010,0 2010,0 2010,0 2006,6 10,0

10 1990,0 2000,0 2010,0 2010,0 2000,0 2002,0 20,011 2005,0 2005,0 2000,0 2020,0 2010,0 2008,0 20,012 2010,0 2000,0 2005,0 2010,0 2025,0 2010,0 25,013 2005,0 2000,0 2010,0 2005,0 2010,0 2006,0 10,014 2010,0 2010,0 2020,0 2010,0 2000,0 2010,0 20,015 2005,0 2000,0 2010,0 2005,0 2010,0 2006,0 10,0

X = 2005,4 R = 5,3

Page 26: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2.2 Gráficos de controle para X e RNeste trabalho, será utilizado o gráfico de controle X e R, que é recomendado para

monitorar, respectivamente, a média e a variabilidade de um processo cuja variável de interesse é contínua , por exemplo volume de refrigerante (Montgomery, 2004).

O monitoramento é feito através da análise periódica de amostras: a cada intervalo de tempo h retira-se uma amostra de tamanho n para análise. Para cada amostra, é calculada a média X dos valores medidos e a amplitude amostral R, que é a diferença entre o maior e o menor valor da amostra. Os valores de X e R das várias amostras são plotados, respectivamente, nos gráficos da média e da amplitude.

Sendo a característica de qualidade X, com distribuição normal e o processo em controle, têm-se

1

n

ijj

i

XX X

n (4)

normalmente distribuída com média e variância dadas, respectivamente, por 0E X (5)

20Var X n (6)

onde Xij é o j-ésimo elemento do i-ésimo amostra, n é o tamanho das amostras. Logo, os limites de controle do gráfico de X , com os limites de 3 propostos por Shewhart, fazendo L = 3 nas equações (1) a (3) são:

LSC X = 0 03 / n (7) LM X = 0 (8) LIC X = 0 03 / n (9)

Já os limites de controle para o gráfico R, também situados usualmente a três desvios-padrão de afastamento da média, são:

LSCR = d2 0 + 3d3 0 (10) LMR = d2 0 (11) LICR = d2 0 - 3d3 0 (12)

As constantes d2 e d3 dependem apenas do tamanho da amostra n, vide quadro 1.

Quadro 1:Valores das constantes d2 e d3n 2 3 4 5 6 7 8 9 10 11 12

1,128 1,693 2,059 2,326 2,534 2,704 2,847 2,970 3,078 3,173 3,258 0,853 0,888 0,880 0,864 0,848 0,833 0,820 0,808 0,797 0,787 0,778

Fonte: Costa et al. (2004)

Segundo Costa et al. (2004), na prática, os valores de 0 e 0 não são conhecidos com exatidão absoluta, e, portanto, suas estimativas disponíveis são utilizadas em seu lugar. De um conjunto inicial de m amostras, a estimativa usual para 0 é o valor médio das médias das amostras:

m

XiX

m

i 1 (13)

onde iX é a média da i-ésima da amostra, enquanto que a estimativa para 0, em caso de se estar utilizando o gráfico de X em conjunto com um gráfico de R, é

Page 27: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2

dSdR (14)

sendo R é a média aritmética dos m valores de Ri

m

RR

m

ii

1 (15)

Aqui, Sd é adotado como estimativa do desvio-padrão do processo, por ser robusto às alterações na média do processo e por ser simples de calcular (Costa et al ,2004).

Suspeita-se que um processo esteja fora de controle quando um ponto se encontra acima do limite de controle superior ou abaixo do limite de controle inferior, ou ainda, se os pontos apresentam um padrão, como por exemplo, pontos consecutivos crescendo ou decrescendo. Outras regras que identificam indícios de processos fora de controle foram desenvolvidas e são chamadas de regras suplementares (Costa et al., 2004).

Quando for localizado um ponto fora dos limites de controle ou identificado um comportamento não aleatório dos pontos no gráfico, passa-se, então, ao processo de investigação para descobrir se, de fato, o processo está fora de controle; e se ele, de fato, estiver, as causas especiais devem ser removidas.

3. RESULTADOS E DISCUSSÕES Primeiramente, será verificado se as médias amostrais ( iX ) do volume de envase de refrigerante em garrafas PET de 2 litros, as quais serão usadas nas fases 1 e 2, seguem uma distribuição normal.

Através do gráfico de probabilidade normal e do teste de normalidade de Kolmogorov-Smirnov, mostrados na figura 3, conclui-se que as médias amostrais do volume de envase de refrigerante em garrafas PET de 2 litros, obtidas das tabelas 1 e 2, se comportam como uma distribuição aproximadamente normal.

Fase 1 Fase 2

Médias

Prob

abi

lidad

e

2020201520102005200019951990

99

95

90

80

70

60

50

40

30

20

10

5

1

Médias

Prob

abili

dade

203020202010200019901980

99

95

90

80

70

60

50

40

30

20

10

5

1

Kolmogorov-Smirnov: 0,196 p-valor: 0,045

Kolmogorov-Smirnov: 0,110 p-valor: >0,15

Figura 3: Gráfico de probabilidade normal e teste de normalidade Kolmogorov-Smirnov

3.1. Fase 1: análise retrospectiva Foi durante a fase inicial (fase 1) que se obteve amostras preliminares a fim de

identificar os parâmetros do processo (média e desvio padrão) e determinar os limites de controle ideais dos gráficos X e R, os quais não são influenciados pelas causas especiais. Abaixo, no gráfico 1, apresentam-se os gráficos X e R que foram construídos para os dados da tabela 1, utilizando no software Minitab.

Page 28: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Sample

Sam

ple

Mea

n

191715131197531

2010

2005

2000

1995

__X=2002,76

UCL=2008,18

LCL=1997,34

Sample

Sam

ple

Ran

ge

191715131197531

24

18

12

6

0

_R=9,4

UCL=19,88

LCL=0

1

1

1

1

1

1

1

1

1

Gráfico 1: Gráfico X e R para o volume de envase - Fase 1.

Interpretação do gráfico 1: os pontos referentes às amostras 1, 3, 11, 12 e 16, estão fora do limite de controle, indicando presença de causas especiais. Após investigação, constatou-se que essas observações foram influenciadas por causas especiais (má regulagem das válvulas e dos bicos de enchimento da máquina envasadora, má estocagem e utilização não sistemática das garrafas PET, vazamento e perda de pressão na tubulação, excesso de “set up” em decorrência do uso da linha para a produção de mais que um produto, falta de um controlador que atue diretamente na regulagem do sistema, troca de operadores, excesso de cuidado para não obter produtos com volume abaixo do valor nominal e sofrer penalizações do INMETRO e erros atribuídos a medição da proveta). Portanto, as observações 1, 3, 11, 12 e 16 foram eliminadas. Restaram as 15 observações que são mostradas na tabela 3.

Tabela 3: Volume de refrigerante após eliminação, em ml, fase 1 Amostra Xi1 Xi2 Xi3 Xi4 Xi5 iX Ri

1 2010,0 2010,0 2010,0 2005,0 2000,0 2007,0 10,02 2000,0 2000,0 2000,0 1998,0 2000,0 1999,6 2,03 2000,0 1998,0 2002,0 2000,0 2002,0 2000,4 4,04 2000,0 2002,0 2002,0 2005,0 2005,0 2002,8 5,05 2000,0 2003,0 2000,0 2002,0 1996,0 2000,2 7,06 2000,0 2004,0 2002,0 2000,0 2000,0 2001,2 4,07 2005,0 2000,0 2000,0 2005,0 2000,0 2002,0 5,08 1998,0 2000,0 1998,0 2000,0 2010,0 2001,2 12,09 2005,0 2000,0 2000,0 2000,0 2005,0 2002,0 5,0

10 2010,0 2010,0 2000,0 2005,0 2005,0 2006,0 10,011 2000,0 2000,0 1998,0 2000,0 2000,0 1999,6 2,012 2000,0 2005,0 2005,0 2000,0 2000,0 2002,0 5,013 2000,0 2005,0 2010,0 2010,0 2005,0 2006,0 10,014 2005,0 2000,0 2000,0 2005,0 2000,0 2002,0 5,015 2000,0 2000,0 1998,0 2000,0 1995,0 1998,6 5,0

X = 2002,04 R = 6,07

Page 29: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A seguir, no gráfico 2, apresenta-se o gráfico de controle X e R após a eliminação dos pontos influenciados por causas especiais.

Sample

Sam

ple

Mea

n

151413121110987654321

2008

2006

2004

2002

2000

__X=2002,04

UCL=2005,54

LCL=1998,54

Sample

Sam

ple

Ran

ge

151413121110987654321

12

9

6

3

0

_R=6,07

UCL=12,83

LCL=0

11

1

Gráfico 2: Gráfico X e R para o volume de envase, após eliminação, fase 1.

Interpretação do gráfico 2: os pontos referentes às amostras 1, 10 e 13 estão fora do limite de controle, indicando presença de causas especiais. Após investigação, não se constatou que essas observações foram influenciadas por causas especiais. Portanto, o conjunto das observações da tabela 3 será usado com referência para calcular os limites de controle da fase 2.

De qualquer forma, como há mais de um ponto fora dos limites, suspeita-se que o processo não esteja estável. O ideal seria voltar à etapa inicial e prolongar o período de coleta de dados até obter observações suficientes (Costa et al , 2004). Se esta recomendação fosse seguida, provavelmente a faixa entre os limites de controle seria muito “estreita”, tornando o monitoramento extremamente rigoroso, com sinais de alerta freqüentes, o que não é desejável na prática. Aqui, optou-se por faixa “larga” entre limites com o compromisso de reavaliá-los periodicamente, ou seja, a busca pelo processo ideal será feita de forma gradativa e contínua.

3.2. Fase 2: Monitoramento da produção A tabela 3 apresenta os valores de Xij , X e R das 15 amostras de tamanho 5 ( m = 15,

n = 5), sem observações influenciadas por causa especiais. Logo, utilizando a equação (13)

obtém-se 0ˆ = X = 2002,04 e utilizando a equação (14) obtém-se 0ˆ =2d

R =326,207,6 = 2,61.

Para se obter os limites de controle que serão usados no monitoramento futuro a seguir no gráfico 3, 0ˆ e 0ˆ foram substituídas nas equações (7) a (12).

No gráfico 3, observações 1 a 15 correspondem aos dados da tabela 3 e as observações de 16 a 30 correspondem aos dados do monitoramento da tabela 2,

Page 30: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Sample

Sa

mp

le M

ea

n

28252219161310741

2010

2000

1990

__X=2002,04

UC L=2005,54

LC L=1998,54

Sample

Sa

mp

le R

an

ge

28252219161310741

24

18

12

6

0

_R=6,07

UC L=12,84

LC L=0

1

1

1

1

11

11

1

1

1

111

1

1

11

1

11

1

1

Gráfico 3: Gráfico X e R para monitoramento do volume de envase, fase 2

Interpretação do gráfico 3: os pontos 16 e 17, correspondentes respectivamente às observações 1 e 2 da tabela 2, estão abaixo do limite inferior; o que indica presença de causas especiais. Após análise dos dados, observa-se que essas observações foram coletadas no início do turno, o que pode ter afetado o processo. Os pontos 18 a 30 correspondem, respectivamente, às observações 3 a 15 da tabela 2. Note que a maioria desses pontos ultrapassou os limites de controle, o que mostra que houve alteração na média e na variabilidade. O gráfico 3 sinalizou a variação na média das observações monitoradas, ou seja, a média deslocou de 2002,04 ml (fase 1) para 2005,4 ml (fase 2)

4. CONCLUSÃO Os gráficos de controle são uma das principais técnicas do controle estatístico de

processos. Seu uso é vantajoso para monitorar a variabilidade natural do processo sinalizando uma falta de controle diante da presença de uma causa especial. Além disso, estas técnicas estatísticas produzem informações através do valor de seus parâmetros e sua estabilidade sobre o tempo que permitem a estimativa da capacidade do processo. Quando fontes não comuns de variação estão presentes, pode aparecer a demarcação de pontos fora dos limites de controle ou alguma forma de seqüência e/ou tendência. Isto é um sinal que alguma investigação deve ser feita no processo com a tomada de ação corretiva para remover as fontes de variabilidade. O uso sistemático de gráficos de controle é uma excelente maneira de reduzir a variabilidade (Alves, 2003).

Neste trabalho, foi utilizado o gráfico de controle X e R para monitorar o processo de envase de refrigerantes da empresa IRL (Indústria de Refrigerantes Ltda). O gráfico de controle X e R sinalizou alterações na média e na variabilidade desse processo, identificando, portanto, que o processo de envase de refrigerantes em embalagens PET de 2 litros não apresentava estabilidade estatística. Se o monitoramento tivesse sido feito em tempo real, algumas medidas poderiam ter sido tomadas já no primeiro ponto fora dos limites de controle, a fim de evitar que produtos com a média de volume acima da que foi preestabelecida na fase 1 continuassem sendo produzidos.

Page 31: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O processo de envase de refrigerantes em embalagens PET de 2 litros, assim como qualquer outro, deve ser monitorado continuamente. Recomenda-se rever periodicamente os limites, mesmo que o processo permaneça estável. Os limites devem ser revistos quando melhorias no processo são feitas (Montgomery e Runger, 2003).

A implementação de técnicas de controle estatístico de processo, em qualquer ambiente, pode ser feita por um funcionário que possua conhecimentos de estatística básica e que tenha sido adequadamente treinado para implementar o gráfico de controle. O uso dessas técnicas promoverá um aumento na capacidade de produção, com diminuição do custo de fabricação e elevação da produtividade, sem qualquer investimento adicional em novos equipamentos e utilizando os dados que são habitualmente gerados.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ALVES, C. C. Gráficos de Controle CUSUM: um enfoque dinâmico para a análise estatística de processos. Dissertação de Mestrado, UFSC, 2003.

COSTA, A. F. B.; EPPRECHT, E. K.; CARPINETTI, L. C. R. Controle Estatístico de Qualidade. São Paulo: Editora Atlas, 2004.

IRL. Indústria de Refrigerantes Ltda (homepage internet) Disponível em <http://www.gole.com.br>. Acesso em 06/04/2008.

KHS. Indústria de Máquinas Ltda (homepage na internet) Disponível em <http://www.khs.com>. Acesso em 06/04/2008.

MONTGOMERY, D. C. Introduction to Statistical Quality Control. 5. ed. New York: John Wiley, 2004.

MONTGOMERY, D. C.; Runger G. C. , Estatística Aplicada e Probabilidade para Engenheiros.São Paulo, LTC, 2003.

RIBEIRO, J. L. D., TEN CATEN, C. S. Controle Estatístico do Processo. Série monográfica Qualidade. Apostila do programa de pós graduação em engenharia de produção – PPGEP – UFRGS, Porto Alegre, 2000

Page 32: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

APLICAÇÃO DO MÉTODO DOS ELEMENTOS FINITOS MISTOS E HÍBRIDOSNA OBTENÇÃO DA VELOCIDADE DE DARCY – SISTEMA LINEAR

RESULTANTE RESOLVIDO PELO MÉTODO DOS GRADIENTES CONJUGADOS

Ernani Magno de Freitas Júnior – [email protected] PETMAT, Universidade Federal de Uberlândia, Faculdade de MatemáticaCEP: 38408-100 – Uberlândia, MG, BrasilCésar Guilherme de Almeida – [email protected] Federal de Uberlândia, Faculdade de MatemáticaCEP: 38408-100 – Uberlândia, MG, Brasil

Resumo. O objetivo deste trabalho é apresentar uma técnica de aproximação para a soluçãode equações elípticas, utilizando espaços de Raviart-Thomas de baixa ordem. Em especial,será considerada a equação que fornece a velocidade de Darcy para escoamentos em meiosporosos, levando-se em conta malhas regulares e domínio retangular. A técnica empregada éconhecida como o método dos elementos finitos mistos e híbridos. Neste caso, a variávelprincipal do sistema linear oriundo da discretização é denominada Multiplicador deLagrange e está associada a cada uma das arestas dos elementos finitos (formulaçãohíbrida). Na formulação mista, são considerados dois espaços apropriados: um contémfunções escalares e o outro contém funções vetoriais. Assim, pode-se aproximar,simultaneamente, a pressão e o gradiente de pressão.

Palavras-chaves: Elementos finitos, Métodos numéricos, Equações diferenciais parciais

1. INTRODUÇÃO

Aplicações científicas e tecnológicas em contextos tais como recuperação terciária emreservatórios de petróleo e transporte de contaminantes em aqüíferos tem motivado pesquisasque visam o desenvolvimento de simuladores para o estudo de escoamentos de fluidosmiscíveis em meios porosos com o auxílio de métodos numéricos precisos.

O deslocamento miscível é um processo de recuperação de petróleo de alto custo, quetem atraído atenção considerável da indústria de petróleo nos últimos 40 anos. Este processoenvolve a injeção de um solvente em certos poços num reservatório de petróleo, com aintenção de deslocar o óleo residente para outros poços, chamados de produção. Este óleopode ter sido deixado para trás depois de uma produção primária, devido à pressão existenteno reservatório, e depois de uma produção secundária, por injeção de água no reservatório. Aeconomia do processo é precária, pois exige uma etapa química muito cara para separar ascomponentes da mistura (óleo mais solvente) e, ainda por cima, o sucesso do deslocamento

Page 33: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

não é garantido. Um comportamento físico complexo determinará se a recuperação depetróleo será suficientemente boa, justificando então o alto investimento do processo.

Matematicamente, o processo de recuperação terciária é descrito por uma equaçãodiferencial parcial parabólica dominada por convecção, para cada componente química nosistema. Estas equações são não-lineares e fortemente acopladas. Somando-se as equaçõescomponentes, obtém-se uma equação que determina a pressão no sistema. Esta equação não-linear é elíptica ou parabólica, dependendo se o sistema é incompressível ou compressível.Então, este problema envolve uma equação elíptica, ou parabólica, acoplada a uma equaçãoaproximadamente hiperbólica, dando origem a um sistema com comportamento não-linearcomplicado.

Este é um problema de difícil aproximação numérica e bons modelos numéricos sãoprimordiais para a indústria, pois as previsões de custo de um projeto têm como basesimulações numéricas precisas.

O primeiro passo para se iniciar simulações de um reservatório, consiste nodesenvolvimento de um bom modelo físico que descreva adequadamente, e de formasignificativa, o fenômeno de escoamento de um fluido. É a natureza do modelo físico queindicará quais os modelos matemáticos e numéricos mais convenientes. O modelo matemáticoconsiderado neste trabalho, para o processo de deslocamento miscível em um meio poroso,consiste em equações diferenciais parciais do tipo convecção-difusão, cujas soluçõesapresentam o movimento das frentes de ondas, que são bem acentuadas, porém contínuas.

O processo de convecção, ou transporte físico, dos fluidos através do meio porosoaparece tanto em deslocamento miscível, como no imiscível. Em nível macroscópico (escalade laboratório), este processo é governado pela lei de Darcy. Deve-se salientar que em nívelmicroscópico, na escala de um poro, a convecção é altamente irregular. Na verdade, a lei deDarcy foi derivada rigorosamente a partir da equação de Stokes (veja, por exemplo, Souto,2005) por um processo de médias sobre amostras de volumes. Detalhes sobre dispersãopodem ser encontrados em Russel & Wheeler (1983).

A lei descoberta, em 1856, pelo engenheiro Henry D’Arcy é comumente empregada emmodelos de regimes de escoamentos de fluidos em meios porosos. Esta lei estabelece arelação básica entre a taxa volumétrica do fluxo (Q) e o gradiente de pressão (∇p; p = p(x,y) ≡p(x)), afirmando que a taxa volumétrica é diretamente proporcional ao gradiente de pressãodo fluido e à área (A) da seção transversal normal à direção do fluxo e inversamenteproporcional à viscosidade (μ =μ(x)) do fluido. Isto permite definir o conceito depermeabilidade (K = K(x)), que quantifica a capacidade do meio poroso em transportar fluido.Desprezando-se os efeitos gravitacionais, a velocidade superficial do fluido é dada por

u = Q/A = -(K/μ)∇p, ∀ x ∈ Ω, (1)

onde Ω = [0, X] × [0, Y] ⊂ �2 é um domínio retangular.Simulações numéricas com alta resolução, envolvendo cálculos acurados da velocidade

de Darcy, Eq. (1), são essenciais para se obter uma descrição precisa de fenômenosmultiescala em escoamentos multifásicos e monofásicos em meios porosos, tais comoproblemas de contaminação de aqüíferos e processos de recuperação secundária e terciária depetróleo. Isto justifica a obtenção de métodos numéricos eficientes, de baixo custocomputacional e de rápida convergência.

As técnicas de discretização utilizadas neste trabalho são aplicadas em uma equaçãoelíptica,

∇.u = q ( q = q(x) é um termo de fonte), (2)

Page 34: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

associada ao deslocamento de dois fluidos miscíveis e incompressíveis; mas também podemser aplicadas em equações provenientes de outros tipos de escoamento em meios porosos. Ametodologia aqui apresentada será útil, por exemplo, na investigação de técnicas numéricaspara o cálculo de permeabilidades efetivas (ou equivalentes) em meios porosos heterogêneos.Um estudo sobre este assunto foi desenvolvido no artigo de Durlofsky (1991), utilizando umtensor de permeabilidade.

Seguindo a mesma técnica sugerida em Chavent e Roberts (1991), mas considerando,também, a possibilidade de se trabalhar com um tensor de permeabilidade K, ao invés deconsiderar apenas permeabilidade escalar, a discretização da equação da pressão, Eq. (2),usará elementos finitos mistos e híbridos.

Maiores informações sobre elementos finitos mistos e híbridos podem ser obtidas nosartigos de Douglas, Furtado e Pereira (1997) (escoamento imiscível), e de Almeida, Douglas ePereira (2002) (escoamento miscível).

A matriz do sistema linear proveniente da aproximação da equação elíptica, porelementos finitos, será simétrica e definida positiva. Desta forma, os métodos numéricosusuais, como o Método dos Gradientes Conjugados, poderão ser empregados na resoluçãodeste sistema. Neste trabalho, pretende-se enfatizar a técnica de pré-condicionamento.

2. FORMULAÇÃO FRACA PARA A VELOCIDADE DE DARCY

É importante salientar que a função escalar p (pressão) pertence ao espaço H1(Ω) = {f ∈L2(Ω); fx ∈ L2(Ω) e fy ∈ L2(Ω)}: espaço de Sobolev, onde f e suas derivadas parciais deprimeira ordem, fx e fy, são de quadrado integrável em Ω. Já a função u (velocidade de Darcy)pertence ao espaço H(div, Ω) = {F = (f, g) ∈ L2(Ω) × L2(Ω); ∇.F ∈ L2(Ω)}: espaço dasfunções vetoriais cujo divergente é de quadrado integrável, com funções coordenadas tambémde quadrado integrável em Ω.

Em um primeiro momento, considere a permeabilidade uma função escalar. Sendo assim,denote por a o valor de K/μ > 0, na Eq. (1). Então, o objetivo é obter uma formulação fracapara a equação: u = - a∇p. Para esta finalidade, será exibido a seguir um espaço vetorial quefornecerá aproximações para o campo de velocidades.

2.1 Espaço de Raviart-Thomas

Denote, respectivamente, nx e ny os números de subintervalos de [0, X] e [0, Y](associados ao domínio retangular Ω), e, hx = X/nx, hy = Y/ny, os comprimentos dessessubintervalos. Então, considerando-se a partição do domínio em elementos retangulares dotipo E = [xi-1, xi] × [yj-1, yj], onde xi = ihx, 1 ≤ i ≤ nx, yj = jhy, 1 ≤ j ≤ ny, x0 = 0, y0 = 0, oespaço vetorial de Raviart-Thomas, sobre tal elemento, é gerado pelas funções vetoriais:

WR =yxhh

1(x – xi-1, 0), WL =

yxhh

1(x - xi, 0); (3)

WU =yxhh

1(0, y – yj-1 ), WD =

yxhh

1(0, y - yj ). (4)

Observe que as quatro funções base são linearmente independentes, portanto, o espaçovetorial gerado por tais funções possui dimensão quatro. É este espaço que fornecerá

Page 35: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

aproximações para o campo de velocidades em E. As letras R, L, U e D são referentes àsarestas direita, esquerda, de cima e de baixo, respectivamente, do elemento E. Assim, avelocidade de Darcy, neste elemento, é aproximada por:

u = uRWR + uLWL + uUWU + uDWD ≡ Σα uα Wα, (5)

onde uα, α ∈ {R, L, U, D}, são denominadas componentes ortogonais do fluxo através dasinterfaces na direção normal exterior. Como exemplo, considere a aresta R com vetor unitário

normal exterior dado por ηR = (1, 0). Note que ��E u.ηR dx =yxhh

1 ��E uR dx dy = uR (a área de

E é igual a hx hy).

2.2 Relação entre as componentes do fluxo, os multiplicadores de Lagrange e a pressão

A forma variacional para a Eq. (1) (velocidade de Darcy) é expressa pela seguinteequação integral:

��E (1/a) u.W dx = - ��E ∇p.W dx, ∀ W ∈ H(div, E).

A formulação fraca da equação anterior é obtida considerando que: u satisfaz à Eq. (5); afunção a é constante em cada elemento E, assumindo aí o valor aE; a função p é constante emcada elemento E, com valor pE no interior, e com valores �E,β constantes em cada uma dasarestas que compõe a fronteira de E; e, finalmente, W = Wβ, β ∈ {R, L, U, D}. Desta forma,obtém-se a seguinte equação:

��E (1/a) Σα uα Wα .Wβ dx ≡ (1/aE )Σα uα ��E Wα .Wβ dx = - ��E ∇p. Wβ dx. (6)

Para facilitar as contas que surgirão no desenvolvimento da Eq. (6), use a seguinte trocade variáveis: x = xi-1 + χ hx, y = yj-1 + γ hy. Assim,

WR = (1/hy ) (χ , 0), WL = (1/hy) (χ -1, 0); (7)

WU = (1/hx ) (0, γ ), WD = (1/hx) (0, γ -1). (8)

Seja AE,βα = hx hy ��εεεε Wα .Wβ dχ dγ, onde εεεε é o quadrado [0, 1] × [0, 1]. Com o objetivode construir a matriz AE = (AE,βα), β, α ∈ {R, L, U, D}, considere as seguintes definições.

Arestas Conjugadas. Se α = L, então α* = D; se α = R, então α* = U; se α = D, entãoα* = L; se α = U, então α* = R.

Arestas Opostas. Se α = L, então α’ = R; se α = R, então α’ = L; se α = D, então α’ =U; se α = U, então α’ = D.

Arestas Transversais. Se α = R (ou α = L), então α⊥ ∈ {U, D}; se α = U (ou α = D),então α⊥ ∈ {R, L}.

Agora, observe que Wβ = (Wβ,1, Wβ,2) possui a seguinte propriedade:

Page 36: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Wβ, 2 = 0, se β ∈ {R, L} e Wβ,1 = 0, se β ∈ {U, D} (9)

Desta forma, segue-se que

AE,β β = hx hy �1

0

21,βW dχ, se β ∈ {R, L} e AE,β β = hx hy �

1

0

22,βW dγ, se β ∈ {U, D}.

Em relação às arestas transversais, vale a seguinte propriedade:

Wβ,i Wβ⊥

,i = 0, i ∈ {1, 2}. (10)

Assim, AE,β β⊥ = 0, para toda aresta β ∈ {R, L, U, D}. Já para as arestas opostas vale a seguinte

propriedade:

Wβ,2 = Wβ’,2 = 0, se β ∈ {R, L} e Wβ,1 = Wβ’,1 = 0, se β ∈ {U, D}. (11)

Logo, obtém-se que

AE,β β’ = hx hy �1

0

1,βW Wβ’,1 dχ, se β ∈ {R, L} e AE,β β’ = hx hy �1

0

2,βW Wβ’,2 dγ, se β ∈ {U, D}.

É fácil perceber que existe uma similaridade entre os elementos da matriz AE. Então,calculando-se, por exemplo, AE,RR e AE,RL, imediatamente, por analogia, obtém-se os demaiselementos da matriz. A razão r = hx/hy, ou r-1, aparece nos cálculos destes elementos.Utilizando esta notação tem-se que

AE,RR = hx hy �1

02

2

yh

χ dχ = r/3; AE,RL = hx hy �−1

02

)1(

yh

χχ dχ = -r/6.

Dos cálculos anteriores pode-se concluir que

AE =

�����

�����

−−

−−

−−

−−

3/6/00

6/3/00

003/6/

006/3/

11

11

rr

rr

rr

rr

(AE) -1 =

�����

�����

�−−

−−

rr

rr

rr

rr

4200

2400

0042

002411

11

. (12)

Nestas matrizes a primeira, a segunda, a terceira e a quarta linha correspondem às arestas R,L, U e D, respectivamente. O mesmo vale para as colunas.

Voltando a atenção para o lado direito da Eq. (6), observe que o divergente da funçãovetorial pWβ é calculado como:∇⋅(pWβ) = ∇p⋅Wβ + p∇⋅Wβ ∇p⋅Wβ = ∇⋅(pWβ) - p∇⋅Wβ.

Das Eqs. (3) e (4) segue que ∇⋅Wβ =x

W

∂∂ 1,β +

y

W

∂∂ 2,β =

yxhh

1. Lembre que a função p é

constante em cada elemento E, assumindo em seu interior o valor pE. Aplique o Teorema daDivergência no campo pWβ: ��E ∇.(pWβ) dx = �∂E pWβ.η dS, onde ∂E é a fronteira do elementoE, que possui normal exterior unitária denotada por η. Como a integral é efetuada na fronteira

Page 37: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

da região E, então a diferencial passa a ser denotada por dS. Assim, o lado direito da Eq. (6)pode ser reescrito como:

- ��E ∇p.Wβ dx = ��E p∇.Wβ dx - �∂E pWβ.η dS = pE - �∂E pWβ.η dS.

A fronteira de E possui quatro arestas, denotadas por Γα, α ∈ {R, L, U, D}. Desta forma

�∂E pWβ.η dS = Σα �Γα

p Wβ.ηα dSα. Considere a notação: hL = hR = hx; hD = hU = hy. De acordo

com as expressões de Wβ, Eqs. (3) e (4), as seguintes propriedades são obtidas:

Wβ ( Γβ’) = 0, para toda aresta β; (13)

Wβ ( Γβ) =(1/hβ*)ηβ, para toda aresta β; (14)

Wβ . ηβ⊥ = 0, para toda aresta β; (15)

Assim, como p é constante na interface Γβ, com valor �E,β (chamado de multiplicador deLagrange), obtém-se que

�∂E pWβ.η dS = �Γβ

p Wβ.ηβ dSβ = �E,β (o comprimento da aresta Γβ é hβ*).

A forma matricial associada à formulação fraca, Eq. (6), da velocidade de Dacy é dadapor

AE (uE,R uE,L uE,U uE,D)T = aE {pE (1 1 1 1)T - (�E,R �E,L �E,U �E,D)T}, (16)

onde o sobrescrito T indica transposta de matriz. Observe que ficou evidenciada adependência das variáveis em relação ao elemento E. Utilizando a inversa da matriz AE,obtém-se a relação entre as componentes de fluxo, a pressão e os multiplicadores deLagrange:

(uE,R uE,L uE,U uE,D)T = aE {pE (AE)-1(1 1 1 1)T - (AE)-1(�E,R �E,L �E,U �E,D)T}. (17)

Com a finalidade de se obter uma expressão mais compacta, considere a seguinte notaçãopara a soma das linhas da matriz ÂE ≡ (AE)-1: sE,β = Σα ÂE,βα. Como a matriz é simétrica, estevalor também representa a soma das colunas de ÂE, ou seja, sE,β = Σα ÂE,αβ. Consultando aEq.(12), obtém-se que sE,β = 6rβ, onde rβ = r-1 , se β ∈ {R, L} e rβ = r, se β ∈ {U, D}. Logo,

uE,β = aE pE sE,β - aE Σα ÂE,βα �E,α, ∀ β ∈ {R, L, U, D}. (18)

2.3 Relação de continuidade do fluxo

Dado um elemento E da partição do domínio Ω escolha uma aresta β qualquer desteelemento. A notação para o elemento vizinho de E em relação à aresta β é dada por �. Porexemplo, se β = L, então � será o elemento vizinho à esquerda de E (na Fig. 1, � = Ei-1,j).

Page 38: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 1. Elemento E = Ei,j da partição do domínio Ω e seus vizinhos.

As expressões de WE,β e de W�,β são completamente análogas. De onde segue que

u�,β’ = a� p� s�,β’ - a�Σα Â�,β’α ��,α, ∀ β ∈ {R, L, U, D}. (19)

Seguindo o mesmo raciocínio da subseção anterior, é fácil mostrar que AE = A�.A continuidade do fluxo é garantida impondo-se a seguinte condição: u�,β’ + uE,β = 0.

Então, utilizando as duas equações anteriores, Eqs. (18) e (19) obtém-se que

a� p� s�,β’ + aE pE sE,β = aE Σα ÂE,βα �E,α + a�Σα Â�,β’α ��,α. (20)

3. FORMULAÇÃO FRACA PARA A EQUAÇÃO ELÍPTICA

Agora, o interesse é obter uma formulação fraca para a equação elíptica, Eq. (2),considerando-se a seguinte formulação variacional:

��E v∇.u dx = ��E vq dx, ∀ v ∈ L2(E). (21)

A formulação fraca associada à Eq. (21), leva em consideração que: u pertence ao espaçode Raviart-Thomas construído na Subseção 2.1 (veja a Eq. (5)); v e q são constantes noelemento E, assumindo aí os valores vE e qE, respectivamente. A partir daí, lembrando que odivergente de Wβ é o inverso da área de E, obtém-se Σβ uE,β ��E∇.Wβ dx = qE hx hy. Assim, aformulação fraca desejada é dada por

Σβ uE,β = qE hx hy ≡ ΦE. (22)

Utilizando as expressões das componentes de fluxo dadas na Eq. (18), a equação anteriortorna-se Σβ {aE pE sE,β - aE Σα ÂE,βα �E,α} = ΦE aE pE Σβ sE,β - aE Σβ Σα ÂE,βα �E,α = ΦE.Denote por SE o somatório Σβ sE,β e considere os comentários feitos antes da Eq. (18), paraobter:

aE pE SE - aE Σα sE,α �E,α = ΦE. (23)

EijEi-1,j Ei+1,j

Ei,j+1

Ei,j-1

Page 39: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

4. FORMULAÇÃO HÍBRIDA - ELIMINAÇÃO DA VARIÁVEL PRESSÃO

Com a finalidade de se eliminar a variável pE do sistema de equações, defina a matriz σE

= (σE,βα ), β, α ∈ {R, L, U, D}, onde σE,β α = sE,α sE,β (SE)-1. Observe que tal matriz é simétrica.Sabendo que sE,β = 6rβ (veja o parágrafo após a Eq. (17)), então SE = 12(r + r-1) = 12[(r2 +1)/r]. Assim, σE,β α = 3[r/(r2 + 1)] rα rβ , onde rα rβ = (rβ)2, se α = β , ou se α = β’, e rα rβ = 1,se α = β⊥. Desta forma, obtém-se

σE = 3[r/(r2 + 1)]

�����

�����

�−−

−−

22

22

22

22

11

11

11

11

rr

rr

rr

rr

.

Com a notação anterior, pode-se escrever a Eq. (23) da seguinte forma

aE pE sE,β = aE Σα { sE,α sE,β (SE)-1 �E,α } + ΦE sE,β (SE)-1 = aE Σα σE,β α �E,α + ΦE sE,β (SE)-1.

Seja � o elemento vizinho de E em relação a uma aresta β qualquer. Então, substituindo-se os valores de aE pE sE,β e a� p� s�,β’ na Eq. (20) (continuidade do fluxo) obtém-se

a�Σα σ�,β’α ��,α + Φ� s�,β’ (S�)-1 + aE Σα σE,βα �E,α + ΦE sE,β (SE)-1 =

= aE Σα ÂE,βα �E,α + a�Σα Â�,β’α ��,α,

ou seja,

aE Σα (ÂE,βα - σE,βα )�E,α + a�Σα (Â�,β’α - σ�,β’α )��,α = ΦE sE,β (SE)-1 + Φ� s�,β’ (S�)-1. (24)

De acordo com as definições anteriores é fácil mostrar que SE = S� e que σ� = σE.Se β for uma aresta na fronteira do domínio denominada do tipo Neumann, na qual se

conhece o fluxo uE,β – condição de fronteira do tipo Neumann –, então a equação envolvendoapenas os multiplicadores de Lagrange é obtida substituindo-se o valor de aE pE sE,β na Eq.(18). Ou seja

aE Σα (ÂE,βα - σE,βα )�E,α = ΦE sE,β (SE)-1 - uE,β. (25)

Impondo uma condição de Dirichlet na fronteira direita do domínio Ω, p = 0, porexemplo, e uma condição de fluxo nulo (uE,β = 0, se β for uma aresta do tipo Neumann) nasdemais fronteiras do domínio, obtém-se um sistema linear com matriz simétrica e definidapositiva. As incógnitas deste sistema são os multiplicadores de Lagrange, conforme as Eqs.(24) e (25).

Resolvendo-se o sistema linear, os multiplicadores de Lagrange são obtidos e a partirdeles é possível calcular, em cada Elemento E, a pressão (através da Eq. (23)) e, também, ascomponentes ortogonais de fluxo (através da Eq. (18)). Atualmente, um códigocomputacional está sendo desenvolvido para resolver este sistema linear pelo Método dosGradientes Conjugados pré-condicionado, utilizando um pré-condicionador baseado nadecomposição incompleta de Cholesky da matriz dos coeficientes (veja, por exemplo,Axelsson e Barker (1984)).

Page 40: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

5. FORMULAÇÃO HÍBRIDA USANDO UM TENSOR DE PERMEABILIDADES

Utilizando um tensor K = ���

����

22

11

kk

kksimétrico e definido positivo na Eq. (1) e seguindo

os mesmos passos desenvolvidos nas seções anteriores, obtém-se (no elemento E):

(AE) -1 = ���

����

2221

1211

BB

BB;

com blocos dois por dois dados por

B11 = (k22 r)-1 det(K)M, B22 = (k11 r-1)-1 det(K)M, B12 = B21 = -k ���

����

�−

−11

11,

onde

M = ���

����

�+−−+

κκκκ

42

24, com κ = det(K-1)k2;

σE = 3ρ ���

����

2221

1211

CC

CC; onde ρ =[r det(K-1)k22k11]/[r2k22 + k11]

e os blocos dois por dois são dados por

C11 = [(r-1det(K))/k22]2N; C22 = [(rdet(K))/k11]

2N; C12 = C21 = [det(K)]2/(k11 k22)N,

onde N = ���

����

�11

11.

As equações correspondentes à Eq. (24) e à Eq. (25) são obtidas a partir das informaçõesanteriores. Observe que, no caso de um tensor de permeabilidades, as matrizes A� e σ� deixamde coincidir com as matrizes AE e σE, pois, em geral, KE ≠ K�.

6. CONSTRUÇÃO DA MATRIZ GLOBAL DOS MULTIPLICADORES DELAGRANGE

Para se ter uma idéia da numeração das arestas correspondentes à partição do domínio emmalhas retangulares, veja o seguinte modelo:

Figura 2. Numeração da malha regular.

1 2 3

4 5 6

7 8 9

1511

12

13

1410

16

17

18

19

20

21

Page 41: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Utilizando a numeração apresentada na Fig. 2 obtém-se o seguinte modelo de matrizglobal dos Multiplicadores de Lagrange (somente a diagonal e a parte inferior são exibidas,pois a matriz é simétrica; X corresponde aos elementos não nulos da matriz, espaços embranco são elementos nulos):

Figura 3. Modelo da matriz global – parte triangular inferior.

Para efeitos computacionais, a matriz anterior é armazenada em submatrizes construídasda seguinte forma: i) Para cada tipo de aresta associa-se uma matriz que contém os elementosda matriz global – parte triangular inferior e diagonal –; as arestas são dos seguintes tipos: αL:numeração das arestas que pertencem à fronteira vertical esquerda do domínio retangular; αR:numeração das arestas verticais que estão no interior do domínio, exceto aquelascorrespondentes à última interface vertical antes da fronteira direita do domínio; αFR:numeração das arestas verticais que pertencem à última interface antes da fronteira direita dodomínio; αD: numeração das arestas que pertencem à fronteira inferior do domínio retangular;αU: numeração das arestas horizontais que estão no interior do domínio retangular; αFU:numeração das arestas horizontais que pertencem à fronteira superior do domínio retangular.ii) As submatrizes que armazenam a diagonal e a parte inferior do sistema global são: ML,MR, MFR, MD, MU, MFU. Os termos independentes são armazenados nos vetores: BL, BR,BFR, BD, BU, BFU.

Observação: Na fronteira direita do domínio é imposta a condição de Dirichlet: �R = 0 –pressão nula. Nas demais fronteiras a condição imposta é de fluxo nulo.

Considere, por exemplo, a aresta de número 8 na Fig. 2 (veja o destaque na Fig. 3); trata-se de uma aresta interna do tipo αR. Observe que esta aresta está relacionada com as seguintesarestas: 7, 8, 9, 12, 13, 16, 17, as quais pertencem aos elementos que contém a aresta 8. Afórmula de sete pontos para esta aresta, obtida da Eq. (24), é dada por:

�E,L r-1aE {2 - [3/ (r2 + 1)]} + �E,R r-1(aE + a� ) {4 - [3/ (r2 + 1)]} +��,R r-1a� {2 - [3/ (r2 + 1)]} - �E,D aE [3 r/(r2 + 1)] - �E,U aE [3 r/(r2 + 1)] -��,D a� [3 r/(r2 + 1)] - ��,U a� [3 r/(r2 + 1)] = (qE + q�)hx hy [1/2( r2 + 1)]. (25)

7. O MÉTODO DOS GRADIENTES CONJUGADOS

O método dos gradientes conjugados, aplicado a sistemas lineares, baseia-se na seguinteequivalência: p* é solução de Ap = b ⇔ p* é ponto de mínimo de J(p) = ½ (pTA p) - pTb,

Page 42: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

onde p*, p e b são vetores do �n, A é simétrica (AT = A) e definida positiva (pTA p > 0, ∀ p ∈�n, p ≠ 0 (vetor nulo), onde n é a ordem da matriz A.) e J é um funcional quadrático.As definições apresentadas a seguir serão úteis para a compreensão do método.

Definição 7.1: Sejam p e P vetores do �n. O produto interno canônico entre p e P é definidopor <p,P> = PTp.

No espaço vetorial �n, são válidas as igualdades: <P,p> = pTP = PTp = <p,P>.

Definição 7.2: Seja A uma matriz quadrada de ordem n, simétrica e definida positiva. Sejam pe P vetores do �n. A seguinte operação define um produto interno em �n: <p,P>A = PTA p =<Ap,P>.

Da simetria da matriz A, conforme a definição 7.2, segue que <p,P>A = <P,p>A, ou,equivalentemente, <Ap, P> = <p, AP>.

Definição 7.3: p e P, em �n, são ditos A-conjugados se <p,P>A = 0.

Seja um sistema linear Ap = b, onde A é matriz de ordem n, simétrica e definida positiva;o método dos gradientes conjugados consiste em obter aproximações, p(k+1), para a soluçãodo sistema linear – denotada por p* –, partindo de um vetor inicial p(0) e seguindo os passos:i) r(0) = b – Ap(0) (resíduo inicial); d(0) = r(0) (direção inicial); ii) p(k+1) = p(k) + αk d(k) ; iii) r(k+1)

= b – Ap(k+1) = r(k) - αk Ad(k); iv) d(k+1) = r(k+1) + βk d(k), onde o escalar αk minimiza o funcionalquadrático J na direção d(k), ou seja, αk é ponto de mínimo da função g(α) = J(p(k) + α d(k)),logo, p(k+1) é o ponto de mínimo de J na direção d(k); a nova direção, d(k+1), depende doparâmetro βk, que é escolhido de modo que esta direção e a anterior sejam A- conjugadas, ouseja, v) <d(k), d(k+1)>A = 0.

Com algumas manipulações algébricas chega-se a αk = (<r(k), d(k)>)(<d(k), d(k)>A)-1. Porindução finita, pode-se mostrar que <r(k), d(k)> = <r(k), r(k)>, utilizando-se os itens i e ivanteriores. Assim, vi) αk = (<r(k), r(k)>)(<d(k), d(k)>A)-1.

Dos itens iii, iv, v e vi segue que βk = (<r(k+1), r(k+1)> - <r(k+1), r(k)>)(<r(k), r(k)>)-1. Porindução finita, pode-se mostrar que <r(k+1), r(k)> = 0, utilizando-se os itens i, iii, iv, v e vianteriores. Portanto, vii) βk = (<r(k+1), r(k+1)>)(<r(k), r(k)>)-1.

O lema apresentado a seguir (sem demonstração) garantirá a convergência do método dosgradientes conjugados em n passos.

Lema 7.1: O conjunto {r(0), r(1), r(2), ..., r(k)} é ortogonal, ou seja, <r(i), r(j)> = 0, se i ≠ j; oconjunto {d(0), d(1), d(2), ..., d(k)} é A-ortogonal, ou seja, <d(i), d(j)>A = 0, se i ≠ j; para todos osvalores inteiros de i e j variando de 0 a k.

Agora é fácil ver que r(n) = 0, pois, caso contrário, {r(0), r(1), r(2), ..., r(n-1) , r(n)} seria umconjunto ortogonal de vetores não nulos em �n e, portanto, linearmente independente. Assim,o conjunto gerado por estes vetores: [r(0), r(1), r(2), ..., r(n-1) , r(n)] ⊂ �n, teria dimensão n + 1, oque seria um absurdo, já que dim(�n) = n.

7.1 Pré-condicionamento de matriz

A técnica de pré-condicionamento utiliza o seguinte procedimento. Dada uma matriz Ginvertível, os sistemas lineares Ap = b e G-1A(G-1)TGTp = G-1b são equivalentes. Chame de C

Page 43: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

a matriz G-1A(G-1)T. Se A for simétrica e definida positiva, então C terá estas mesmaspropriedades: CT = [G-1A(G-1)T]T = G-1AT(G-1)T = G-1A(G-1)T = C e, pTCp = pTG-1A(G-1)Tp=[(G-1)Tp]TA(G-1)Tp > 0, ∀ p ∈ �n, p ≠ 0 .

Agora, sejam y = GTp e B = G-1b. Aplicando-se o método dos gradientes conjugados aosistema Cy = B, obtém-se: i’) R(0) = B - Cy(0) (resíduo inicial); D(0) = R(0) (direção inicial); ii’)y(k+1) = y(k) + αk D(k) ; iii’) R(k+1) = R(k) - αk CD(k); iv’) D(k+1) = R(k+1) + βk D(k); v’) <D(k),D(k+1)>C = 0; vi’) αk = (<R(k), R(k)>)(<D(k), D(k)>C)-1; vii’) βk = <R(k+1), R(k+1)>(<R(k), R(k)>)-1.

Utilizando as definições da matriz C e dos vetores B e y e lembrando que r(k) = b – Ap(k),conclui-se que R(k) = B - Cy(k) = G-1r(k). Sejam z(k) = (GGT)-1r(k) e D(k) = GTd(k). Note que D(0) =R(0) GTd(0) = G-1r(0) d(0) = (GT)-1G-1r(0) = (GGT)-1r(0) = z(0). Assim, vi’’) αk = (<r(k),z(k)>)(<d(k), d(k)>A)-1; vii’’) βk = (<r(k+1), z(k+1)>)(<r(k), z(k)>)-1. Desta forma, obtém-se oseguinte algoritmo: A1) k = 0; r(0) = b – Ap(0); A2) enquanto r(k) ≠ 0, resolva (GGt)z(k) = r(k);A3) k = k + 1; se k = 1, d(1) = z(0); A3) senão, βk = <r(k-1), z(k-1)>/<r(k-2), z(k-2)> e d(k) = z(k-1) +βkd

(k-1); A4) αk = <r(k-1), z(k-1)> / <Ad(k), d(k)>, p(k) = p(k-1) + αkd(k), r(k) = r(k-1) - αkAp(k), fim;

A5) p = p(k).

7.2 O Pré-condicionamento de Cholesky

Se uma matriz A de ordem n é simétrica e definida positiva, então existe uma únicamatriz triangular inferior � de ordem n, com diagonal positiva, tal que A = � � t – Fatoraçãode Cholesky (veja Ruggiero & Lopes, 1997). Obtido o fator �, o sistema linear Ap = b édecomposto em dois sistemas triangulares: � y = b (triangular inferior) e � t p = y (triangular

superior), pois Ap = b ⇔ (� � t)p = b.

Observação: O código computacional que está sendo desenvolvido para resolver o sistemalinear para a pressão utiliza o método dos Gradientes Conjugados pré-condicionado, com pré-condicionador baseado na decomposição incompleta de Cholesky da matriz dos coeficientes(veja, por exemplo, Axelsson & Barker (1984)). Logo, o pré-condicionador é da forma GGT,onde a matriz G corresponde à fatoração incompleta de Cholesky da matriz A, isto é, se Aij

for diferente de zero, então Gij = � ij; caso contrário Gij = 0, onde � é o fator dadecomposição de Cholesky de A.

8. CONCLUSÃO

A formulação desenvolvida nas seções anteriores será muito útil na investigação detécnicas numéricas para o cálculo de permeabilidades efetivas (ou equivalentes) em meiosporosos heterogêneos. O desenvolvimento dos códigos computacionais, levando-se em contauma função escalar de permeabilidades e um tensor de permeabilidades, já está emandamento.

O método numérico produzido com a metodologia apresentada neste trabalho deveráapresentar boas aproximações para a velocidade de Darcy, devido a uma diferençafundamental em relação a outros métodos (Almeida, Douglas e Pereira (2002); Douglas,Furtado e Pereira (1997)): as integrais que aparecem na Eq. (6) não são aproximadas pormétodos numéricos. A regra do trapézio, por exemplo, facilita muito a resolução do sistemapara a pressão; porém, a solução do sistema sofre influência do erro de integração e, portanto,torna-se imprecisa. Utilizando a mesma malha computacional (os mesmos valores de hx e hy),o método proposto será capaz de melhorar a aproximação para esta solução, ou seja, a

Page 44: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

aproximação será melhorada sem a necessidade de se fazer refinamentos de malha(diminuições dos valores de hx e hy), que acarretariam no aumento do esforço computacional.

O método dos elementos finitos mistos e híbridos vai gerar um sistema linear, associado àequação da pressão, que possui matriz simétrica e definida positiva. Estas propriedades damatriz garantem a existência e a unicidade de solução do sistema linear, além de permitir queo método dos Gradientes Conjugados seja utilizado na resolução do mesmo.

A continuação natural deste trabalho é o desenvolvimento de um método numéricopara simular escoamentos miscíveis incompressíveis em meios porosos heterogêneos (vejaRussel e Wheeler (1983)). Para isto será preciso fazer o acoplamento da equação elíptica (quefornece a velocidade de Darcy) com uma equação diferencial do tipo convecção-difusão (vejaRussel e Wheeler (1983)). Dois tipos de problemas serão investigados: o problema linear doTraçador Passivo (Almeida (2000)) e o problema não-linear (Almeida (2000)), em que asequações diferenciais parciais que governam o escoamento não são lineares.

REFERÊNCIAS

Almeida, César Guilherme; (2000), “Escoamentos miscíveis em formações heterogêneas: novos métodosnuméricos e modelagem estocástica”, Tese de Doutorado em Matemática Aplicada, IMECC/Unicamp,Campinas.

Almeida, César Guilherme; Douglas, J. Jr. e Pereira, Felipe (2002), “A new characteristics-based numericalmethod for miscible displacement in heterogeneous formations”, Computational and Applied Mathematics,vol. 21, fascículo 2, 573-605.

Axelsson, O. e Barker, V. A. (1984), “Finite element solution of boundary value problems. Theory andcomputation”, Academic Press, Orlando, Florida.

Chavent, G. e Roberts, J. E. (1991), “A unified physical presentation of mixed, mixed-hybrid finite elementand standard finite difference aproximations for the determination of velocities in waterflow problems”, Adv.Water Resources, vol. 14, 6, 329-348.

Douglas JR., Jim; Furtado, Frederico e Pereira, Felipe (1997), “On the numerical simulation of waterflooding ofheterogeneous petroleum reservoirs”, Computational Geosciences, vol. 2, n.1, 155–190.

Durlofsky, L. J. (1991), “Numerical calculation of equivalent grid block permeability tensors for heterogeneousporous media”, Water resources research, 27 (5), 699 -708.

Ruggiero, M. A. G., Lopes, V. L. da Rocha (1997), “Cálculo Numérico: aspectos teóricos e computacionais”,MAKRON, São Paulo, segunda edição.

Russel, T. F. e Wheeler, M. F (1983), “Finite Element and finite difference methods for continuos flows inporous media”, Frontiers in applied mathematics – SIAM, The mathematics of reservoir simulation, 35 -106.

Souto, H.P. Amaral (2005) “Introdução à técnica da media volumétricas”, in I Escola em ModelagemComputacional Multiescala, M. A. Murad, F. Pereira, H. A. Souto, M. Cruz e G. Braga (ed.), Gráfica LNCC,Petrópolis.

Page 45: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 46: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 47: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 48: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 49: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 50: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 51: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 52: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 53: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 54: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 55: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 56: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 57: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 58: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 59: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 60: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 61: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 62: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

UM ESTUDO DE CASO SOBRE O NÍVEL DE CONHECIMENTO EM PROBABILIDADE E ESTATÍSTICA DOS ALUNOS CONCLUINTES DO

ENSINO MÉDIO

Denise Nunes de Melo1 Edmilson Rodrigues Pinto2

Universidade Federal de Uberlândia Universidade Federal de Uberlândia Faculdade de Matemática Faculdade de Matemática [email protected] [email protected]

RESUMO

Com os avanços da informática e da tecnologia, o ser humano passou a ter acesso a uma grande quantidade de informação, principalmente via internet. Os conceitos de estatística e de probabilidade são ferramentas essenciais na modelagem, no resumo e no entendimento dessas informações. Desde 1997, o Ministério da Educação tornou obrigatório o ensino de probabilidade e estatística nos programas das disciplinas de matemática do ensino fundamental e médio. Assim, cada vez mais, se faz necessárias pesquisas na área de educação estatística com o objetivo de fornecer subsídios, que ajudem aos professores de matemática a aprimorarem o ensino de probabilidade e estatística nas escolas. Em Minas Gerais, não se conhece nenhum estudo específico sobre o desempenho dos alunos concluintes do ensino médio nos conteúdos de probabilidade e estatística. O objetivo deste trabalho é apresentar, a nível local, o resultado de um estudo de caso, realizado com alunos regularmente matriculados no 3o ano do ensino médio, nas escolas particulares e públicas da cidade de Patrocínio-MG, a fim de saber o nível de conhecimento desses alunos em relação aos conteúdos de probabilidade e estatística. Adicionalmente, também foi feito um paralelo entre o grau de conhecimento dos alunos das escolas públicas e particulares nesses dois conteúdos.

Palavras-chave: O aprendizado de probabilidade e estatística no ensino médio, educação estatística.

1. INTRODUÇÃO

Com os avanços da informática e da tecnologia, o ser humano passou a buscar, cada vez mais, saciar suas dúvidas através de pesquisas que, freqüentemente, utilizam conceitos probabilísticos e estatísticos. E, é claro que com esse desenvolvimento todo, os cálculos pesados e gigantescos que eram feitos antigamente, hoje, os programas computacionais os resolvem de maneira fácil e rápida, sendo que um dos frutos desse avanço da ciência foi a popularização dos conceitos de probabilidade e de estatística, com a necessidade, cada vez maior, de entender a realidade. Até o início da década de 1990, se falava nesses dois conteúdos apenas na sociedade acadêmica onde sua aplicação sempre foi vasta e incentivada, onde alguns poucos detinham o saber, e as aplicações eram muito limitadas. Atualmente, o acesso a esse tipo de conhecimento

1Aluna do curso de Especialização em Matemática da Universidade Federal de Uberlândia. 2Orientador, Professor da Faculdade de Matemática da Universidade Federal de Uberlândia. .

Page 63: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

foi facilitado por computadores cada vez mais velozes e pela criação de softwares específicos para a análise probabilística e estatística. O resultado disso tudo foi a disseminação da importância e da relevância do uso das ferramentas trabalhadas nos dois conteúdos em vários campos da sociedade. Com a crescente necessidade de se ter um cidadão consciente, crítico e bem informado, capaz de compreender as informações que recebe, tomar decisões e ser apto para analisar resultados, é que foi implantado, nos conteúdos básicos do ensino de matemática, a obrigatoriedade do ensino de probabilidade e a estatística.

Os parâmetros curriculares nacionais (Brasil, 1997) destacam dois aspectos básicos no ensino da matemática: o primeiro consiste em relacionar observações do mundo real com representações (esquemas, tabelas, figuras) e o segundo consiste em relacionar essas representações com os princípios e conceitos matemáticos. Nesse processo, a comunicação tem grande importância e deve ser estimulada, levando o aluno a “falar” e a “escrever” sobre matemática; a trabalhar com representações gráficas, desenhos, construções; e a aprender como organizar e tratar conjuntos de dados. Esse artigo tem como objetivo analisar como está sendo trabalhado e o que se está tendo como resultado ao se ensinar os conteúdos de probabilidade e estatística no ensino médio, no caso particular, da cidade de Patrocínio-MG. Adicionalmente, também foi feito um paralelo entre os alunos das escolas públicas e particulares, com relação ao grau de conhecimento em probabilidade e estatística.

2. MATERIAL E MÉTODOS

O trabalho realizado constituiu-se em um estudo de caso, onde se tomou por base a cidade de Patrocínio, no estado de Minas Gerais. Os dados analisados neste trabalho foram obtidos através de uma avaliação aplicada aos alunos, do período diurno, que estavam terminando o 3° ano do ensino médio nas escolas particulares e públicas, envolvendo problemas e questões que abordavam conceitos básicos de probabilidade estatística.

O objetivo da avaliação foi verificar se os conteúdos de probabilidade e estatística, referidos nos parâmetros curriculares nacionais de 1997 (Brasil, 1997), estavam sendo trabalhados pelos professores e como estava o nível de conhecimento dos alunos nesses conteúdos.

Na época da pesquisa, dezembro de 2007, a cidade de Patrocínio contava, no período diurno, com, aproximadamente, 928 alunos cursando o 3o ano do ensino médio. Esses alunos estavam matriculados em sete escolas públicas, aproximadamente, 775 alunos e em quatro escolas particulares, aproximadamente, 153 alunos.

O tipo de amostragem considerado foi amostragem estratificada e por conglomerados. O procedimento de amostragem consistiu, em um primeiro estágio, de dividir a população de alunos em dois estratos: alunos das escolas públicas e alunos das escolas particulares. Em um segundo estágio, considerou-se uma nova estratificação, onde cada uma das escolas públicas e particulares foi considerada como um estrato. Dentro de cada estrato (escola), num terceiro estágio, considerou-se uma amostragem por conglomerados, onde tanto nas escolas públicas, quanto nas particulares, os conglomerados foram as turmas do 3o ano, ou seja, a classe onde os alunos estudavam. Nas escolas particulares, devido ao número de turmas ser pequeno, a avaliação foi aplicada a todas elas e, portanto, a todos os alunos dessas turmas, presentes no dia da avaliação. No caso das escolas públicas, realizou-se, para cada escola, um sorteio das turmas que iriam participar da pesquisa. Depois das turmas terem sido selecionadas, todos os alunos, presentes no dia avaliação, fizeram a prova. Das quatro escolas particulares, somente duas participaram da pesquisa.

Page 64: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

De acordo com o procedimento de amostragem, definido anteriormente, a avaliação foi aplicada a 49 alunos das escolas particulares e a 311 alunos das escolas públicas, num total de 360 alunos. O erro amostral foi calculado após se ter o número exato de alunos participantes da pesquisa. De posse desse valor, considerando uma confiança de 95%, o erro calculado, para a proporção de alunos que compreende os conceitos de probabilidade e estatística no ensino médio, foi de, aproximadamente, de 5%.

A avaliação foi feita de maneira individual pelos alunos e sem nenhum acesso a material de consulta. Veja, nos Apêndices 2 e 3, os gráficos, referentes aos resultados de cada questão da avaliação para as escolas públicas e particulares, respectivamente.

3. RESULTADOS E DISCUSSÃO

A avaliação, aplicada aos alunos concluintes do último ano do ensino médio, das escolas públicas e particulares de Patrocínio, constituiu de 10 questões de múltipla escolha com 5 alternativas cada, das quais uma era a resposta correta do problema; duas eram valores estratégicos, que poderiam causar confusão ao aluno; outra que negava o aprendizado que foi proposto pelo problema e uma outra que permitia ao aluno informar se ele tinha conhecimento sobre o tema da questão, mas não se lembrava como poderia ser feita sua resolução (veja Apêndice 1). A Tabela 1 fornece uma síntese dos temas abordados em cada questão.

Tabela 1 – Área abordada e conteúdos de cada questão da avaliação ÁREA QUESTÃO TÓPICO ABORDADO

Estatística Questão 1 Conceitos básicos (definição de amostra)

Questão 2 Medidas de tendência central (Média)

Questão 3 Medidas de tendência central (Mediana e Moda)

Questão 4 Medidas de variabilidade (cálculo do desvio-padrão)

Questão 5 Conceitos básicos (Freqüência absoluta)

Questão 6 Conceitos básicos (Freqüência relativa)

Probabilidade Questão 7 Conceitos básicos de Probabilidade

Questão 8 Análise gráfica e conceitos básicos de probabilidade

Questão 9 Conceitos básicos de Probabilidade

Estatística Questão 10 Interpretação e análise gráfica

Os resultados da avaliação, feita com os 49 alunos das escolas particulares de Patrocínio-MG, são apresentados na Tabela 2. A Tabela 2 fornece uma visão geral das dificuldades dos alunos das escolas particulares em relação às questões propostas. Os conceitos de média, de interpretação gráfica e os tópicos básicos de probabilidade são os conteúdos em que os alunos obtiveram maior êxito. Nesse caso, suspeita-se que a alta porcentagem de acerto nesses conteúdos seja devido ao fato deles estarem presentes no cotidiano dos alunos. Por exemplo, o conceito de média aritmética, um dos conteúdos em que o índice de acerto foi alto (93,88 %), é usado constantemente pelos alunos para acompanhar suas notas. Outros exemplos poderiam ser, a interpretação gráfica (91,84 %), que está presente em jornais, telejornais e revistas; e os conceitos básicos de probabilidade (89,80 %), que se constituem de questões lógicas, de fácil interpretação.

Page 65: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Tabela 2 - Resultados apresentados pelas escolas particulares

PERCENTUAIS (%)

QUESTÃO TÓPICO ABORDADO Acertaram Erraram Reconhecem Desconhecem Em branco

Questão 1 Conceitos básicos (definição de amostra) 38,77% 44,90% 10,20% 6,13% 0,00%

Questão 2 Medidas de tendência central (Média) 93,88% 4,08% 2,04% 0,00% 0,00%

Questão 3 Medidas de tendência central (Mediana e Moda) 20,41% 40,82% 30,61% 4,08% 4,08%

Questão 4 Medidas de variabilidade (cálculo do desvio-padrão) 14,28% 30,61% 38,77% 16,33% 0,00%

Questão 5 Conceitos básicos (Freqüência absoluta) 71,43% 22,45% 0,00% 6,12% 0,00%

Questão 6 Conceitos básicos (Freqüência relativa) 48,98% 24,49% 10,21% 14,28% 2,04%

Questão 7 Conceitos básicos de probabilidade 89,80% 6,12% 4,08% 0,00% 0,00%

Questão 8 Análise gráfica e conceitos básicos de probabilidade 81,63% 10,20% 8,17% 0,00% 0,00%

Questão 9 Conceitos básicos de probabilidade 67,35% 20,40% 12,25% 0,00% 0,00%

Questão 10 Interpretação e análise gráfica 91,84% 6,12% 0,00% 0,00% 2,04%

Na Figura1, tem-se, em porcentagem, um levantamento em relação às questões de probabilidade, no que diz respeito às cinco opções colocadas em cada questão. Desta forma, foram considerados os seguintes casos: Acertos – representando que o aluno respondeu corretamente a questão; Erros – representando que o aluno respondeu a questão de forma errada; Reconhece – representando que o aluno não respondeu a questão, contudo reconhece o assunto, porém não se lembra como resolve-lo; Desconhece – representando que o aluno não respondeu a questão porque desconhece (não estudou) o assunto abordado e Branco – representando as questões deixadas em branco, sem a marcação de nenhum dos cinco itens.

79,59%

12,24%8,16%

0,00% 0,00%

0%

20%

40%

60%

80%

100%

Acertos Erros Reconhece Desconhece Branco

Figura 1 – Resultado percentual em relação ao conteúdo de probabilidade nas escolas particulares

Na Figura 1, também se verifica que a porcentagem de alunos que desconhece o conteúdo e que deixou é nula. Esse resultado e o fato de que houve quase 80% de acerto, permitem supor que o conteúdo de probabilidade está sendo bem assimilado pelos alunos das escolas particulares.

Em relação ao conteúdo de Estatística, nota-se que houve somente 54,23% de acertos, valor pequeno, comparado à porcentagem de acertos em probabilidade (79,59%). Observando a Figura 2 tem-se uma visão geral dos resultados para o conteúdo de estatística. Assim, pode-

Page 66: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

se supor que os alunos das escolas particulares têm mais dificuldade nos conteúdos de estatística do que nos de probabilidade.

54,23%

24,78%

13,12%6,17%

1,16%

0%

20%

40%

60%

80%

100%

Acertos Erros Reconhece Desconhece Branco

Figura 2 – Resultado percentual em relação ao conteúdo de Estatística nas escolas particulares

3.1 Resultados apresentados pelas escolas públicas

A mesma análise, realizada para os alunos das escolas particulares, é agora repetida para os alunos das escolas públicas. Os resultados, em porcentagem, são mostrados na Tabela 3.

Tabela 3 - Resultados apresentados pelas escolas públicas PERCENTUAIS (%)

QUESTÃO TÓPICO ABORDADO Acertaram Erraram Reconhecem Desconhecem Em branco

Questão 1 Conceitos básicos (definição de amostra) 57,56% 36,66% 1,93% 3,53% 0,32%Questão 2 Medidas de tendência central (Média) 64,31% 26,04% 6,43% 2,58% 0,64%Questão 3 Medidas de tendência central (Mediana e

Moda) 24,44% 42,76% 12,86% 18,98% 0,96%Questão 4 Medidas de variabilidade (desvio-padrão) 23,47% 23,47% 20,58% 31,19% 1,29%Questão 5 Conceitos básicos (Freqüência absoluta) 45,98% 37,94% 8,68% 7,40% 0,00%Questão 6 Conceitos básicos (Freqüência relativa) 41,80% 29,26% 12,54% 12,86% 3,54%Questão 7 Conceitos básicos 51,45% 33,76% 12,54% 1,29% 0,96%

Questão 8 Análise gráfica e conceitos básicos de probabilidade 56,59% 29,58% 11,25% 1,62% 0,96%

Questão 9 Conceitos básicos 30,87% 52,73% 14,48% 0,96% 0,96%Questão 10 Interpretação e análise gráfica 64,95% 27,65% 4,51% 1,93% 0,96%

Ao analisar a Tabela 3, dois fatos que chamam atenção são: a porcentagem de alunos que reconhecem os conteúdos das questões, mas não sabem como resolvê-los; e a porcentagem de alunos que desconhecem os conteúdos abordados. Na Tabela 3 também pode ser observado que não existe questão com mais de 65% de acertos, o que pode dar uma indicação de que, nas escolas públicas, os conteúdos de probabilidade e estatística não estão sendo assimilados corretamente pelos alunos.

Page 67: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Da mesma forma como foi feito para as escolas particulares, será feito um levantamento, em porcentagem, em relação às questões avaliadas de probabilidade estatística. A Figura 3 mostra o resultado obtido pelos alunos das escolas públicas no conteúdo de probabilidade. Observa-se na Figura 3 que o percentual de alunos que desconhecem ou deixaram em branco as questões propostas, dentro do conteúdo de probabilidade, é pequeno. Esse resultado permite supor que o conteúdo de probabilidade está sendo ensinado pelos professores.

46,30%

38,69%

12,76%

1,29% 0,96%

0%

20%

40%

60%

80%

100%

Acertos Erros Reconhece Desconhece Branco

Figura 3 – Resultado percentual em relação ao conteúdo de probabilidade nas escolas públicas

Com relação ao conteúdo de Estatística, na da Figura 4, nota-se que a porcentagem de alunos que desconhecem, reconhecem e que deixaram em branco as questões corresponde a um valor considerável. Na Tabela 2, nota-se que as questões que envolveram desvio padrão, medidas de tendência central e freqüência relativa foram as que mais receberam respostas desconhece ou reconhece, mas não sabe resolver.

46,06%

31,96%

9,68% 11,20%

1,10%

0%

20%

40%

60%

80%

100%

Acertos Erros Reconhece Desconhece Branco

Figura 4 – Resultado percentual em relação ao conteúdo de estatística nas escolas públicas

Na Figura 5 é apresentado, em porcentagem, um paralelo entre as escolas públicas e particulares, em relação aos tópicos: Acertos, Erros, Reconhece, Desconhece e Branco, como definidos anteriormente.

Page 68: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

46,14%

61,84%

33,99%

21,02%

10,58%11,63% 8,23%4,69%1,06%0,82%

0%

20%

40%

60%

80%

100%

Acertos Erros Reconhece Desconhece Branco

Públicas

Particulares

Figura 5 – Paralelo entre as escolas públicas e particulares, em relação às porcentagens de acertos, erros, reconhecimento do assunto sem saber resolver, desconhecimento do assunto e questões deixadas em branco.

As Figuras 6 e 7 mostram os resultados apresentados em cada questão relacionando as escolas particulares e públicas, verificando, respectivamente, os acertos e erros.

ACERTOS

57,56%

23,47%

51,45%

30,87%

93,88%

20,41%

14,29%

71,43%

48,98%

89,80%

81,63%

67,35%

91,84%

56,59%

24,44%

64,95%

45,98%

41,80%

64,31%38,77%

0% 20% 40% 60% 80% 100%

Definição deamostra

Média

Mediana e Moda

Cálculo do desvio-padrão

Freqüênciaabsoluta

Freqüênciarelativa

Conceitos básicos -Probabilidade

Análise gráfica

Conceitos básicos -Probabilidade

Interpretação eanálise gráfica

Pública Particular

Figura 6 – Paralelo entre os resultados das escolas públicas e particulares, em relação à porcentagem de acertos para cada questão.

Page 69: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

ERROS

26,04%

42,76%

37,94%

29,26%

33,76%

29,58%

52,73%

44,91%

4,08%

30,61%

22,45%

6,12%

36,66%

23,47%

27,65%

20,41%

6,12%

10,20%

24,49%

40,82%

0% 20% 40% 60% 80% 100%

Definição deamostra

Média

Mediana e Moda

Cálculo do desvio-padrão

Freqüênciaabsoluta

Freqüênciarelativa

Conceitos básicos- Probabilidade

Análise gráfica

Conceitos básicos- Probabilidade

Interpretação eanálise gráfica

Pública Particular

Figura 7 – Paralelo entre os resultados das escolas públicas e particulares, em relação à porcentagem de erros para cada questão.

4. CONSIDERAÇÕES FINAIS

Acredita-se que os conteúdos de estatística e probabilidade têm um papel essencial na formação do cidadão, uma vez que possibilitam lidar com a aleatoriedade e o acaso, permitindo uma análise de fatos complexos que, sob uma visão determinista, tornam-se impossíveis de serem tratados. Ao lidar chances e com dados estatísticos, o educando vai formando a consciência da utilização social da matemática, de sua interação com outras disciplinas e mesmo com outros tópicos da própria matemática.

Os resultados da pesquisa mostraram que os alunos, tanto da rede pública, quanto da rede particular de ensino da cidade de Patrocínio, têm um bom conhecimento dos conceitos básicos de probabilidade e estatística. Esses resultados refletem os resultados anunciados pela Agência Minas (Agência Minas, 2007) sobre o expressivo crescimento do desempenho dos alunos em Minas Gerais. Entretanto, a pesquisa também mostra que ensino em probabilidade e em estatística ainda precisa ser melhorado, tanto nas instituições públicas, quanto nas particulares.

Embora o resultado da pesquisa tenha sido satisfatório para o grau de conhecimento em probabilidade e em estatística há muito a ser feito para o aperfeiçoamento do ensino desses dois conteúdos. A elaboração de textos didáticos em probabilidade e estatística, bem como o uso de softwares para a manipulação de dados e construção de gráficos e tabelas seria de grande importância. Outro aspecto que poderia ser melhorado seria a criação de cursos de aperfeiçoamento voltados para o ensino de probabilidade e de estatística, por parte das

Page 70: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

instituições de ensino superior, e o incentivo, por parte do governo, para que os professores de matemática pudessem participar de tais programas de capacitação.

5. BIBLIOGRAFIA

Agência Minas, (2007). “Alunos da rede pública estadual de ensino melhoram desempenho”. Notícias do Governo de Minas Gerais. Publicado em 24/04/2007. Disponível em <http://www.agenciaminas.mg.gov.br/detalhe_noticia.php?cod_noticia=12150> Acesso em 15 Mar 2008

Brasil, (1997). Parâmetros Curriculares Nacionais: Matemáticas: 1º e 2º ciclos do Ensino Fundamental. Secretaria de Educação Fundamental, Ministério da Educação, Brasília, DF.

Brasil, (2001). Parâmetros Curriculares Nacionais: Matemática. 3a edição, Secretaria de Educação Fundamental, Ministério da Educação, Brasília, DF.

Echeveste, S. S., Bayer, A., (2003). “Estatística no Ensino Fundamental e Médio: Como os Professores de Matemática estão se Preparando para este desafio”. In: II Seminário Internacional de pesquisa em Educação Matemática, Santos, SP.

Page 71: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

APÊNDICE 1 - Avaliação aplicada aos alunos do ensino médio nas escolas de Patrocínio – MG.

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

CURSO DE ESPECIALIZAÇÃO EM MATEMÁTICA

AVALIAÇÃO DE PROBABILIDADE E ESTATÍSTICA

Prezado aluno: O objetivo desta avaliação é verificar o conhecimento dos alunos do 3º ano do Ensino Médio sobre Probabilidade e Estatística. É de suma importância que você resolva as questões individualmente procurando demonstrar com sinceridade o que realmente aprendeu sobre os conteúdos. Desde já agradeço a sua participação.

Orkut é uma comunidade on-line que conecta pessoas através de uma rede de amigos confiáveis proporcionando um ponto de encontro on-line com um ambiente de confraternização, onde é possível fazer novos amigos e conhecer pessoas que têm os mesmos interesses. Um grupo de 6 participantes escolhidos de uma certa comunidade no orkut tem a seguinte quantidade de amigos em sua rede:

Joana 60

amigos

Carlos80

amigos

Patrícia 50

amigos

Carla30

amigos

Gilberto80

amigos

Daniel90

amigos

QUESTÃO 4 O desvio padrão para esses dados está entre:

a) 10 e 14 b) 14 e 19 c) 20 e 25 d) Não sei o que é desvio padrão e) Já ouvi falar em desvio padrão, mas não me recordo

de como se calcula

Baseado nas informações do texto acima, marque a opção que melhor represente a resposta das questões 1, 2, 3 e 4.

QUESTÃO 1 A amostra dessa pesquisa foi de: a) 6 participantes b) 390 amigosc) A comunidade do orkut d) Não sei o que é amostra e) Já ouvi falar em amostra, mas não me lembro o que é.

A distribuição dos salários de uma empresa é dada na tabela a seguir.Com base nessa tabela, responda as questões 5 e 6

Salário (em R$) N° de funcionários 500,00 11

1 000,00 42 000,00 105 000,00 5

Total 30QUESTÃO 2 O número médio de amigos participantes desta amostra é de: a) 80 amigosb) 70 amigos c) 65 amigos d) Não sei o que é número médio. e) Já ouvi falar em médias, mas não me lembro como se

calcula.

QUESTÃO 5 A freqüência relativa dos funcionários que recebem R$ 2 000,00 ou mais é de: a) 30%b) 40%c) 50%d) Não sei o que é freqüência relativa. e) Já ouvi falar no conteúdo, mas não sei resolver.

QUESTÃO 3 A mediana e a moda do número de amigos dos 6 participantes

escolhidos nesta amostra são, respectivamente: a) 70 e 80 b) 65 e 90 c) 75 e 80 d) Não sei o que é mediana e moda e) Já ouvi falar em mediana e moda, mas não me lembro como

encontrar esses valores.

QUESTÃO 6 A freqüência absoluta dos salários de R$ 1 000,00 e R$ 2 000,00 são , respectivamente, de:

a) 4 e 10 b) 10 e 5 c) 13,3% e 46,6% d) Não sei o que é freqüência absoluta. e) Já ouvi falar em freqüência absoluta, mas não sei

resolver a questão.

Page 72: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2,3

8,910,5

13,214,0

0

3

6

9

12

15

I II III IV V

QUESTÃO 7

Um ciclo completo de um semáforo demora 120 segundos. Em cada ciclo, o semáforo está verde durante 50 segundos, no amarelo durante 10 segundos e no vermelho durante 60 segundos. Se o semáforo for visto ao acaso a probabilidade de que ele esteja no verde é de:

a) 41,66%

b) 58,33%

c) 62,41%

d) Desconheço como se resolve esse exercício.

e) Nunca ouvi falar em probabilidade

QUESTÃO 9

O resultado de uma pesquisa realizada pelo Ipesp, verificou-se que de 1000 pessoas, 17% fumam e, dentre os fumantes 44% são mulheres. Se nesse grupo de 1000 pessoas uma é escolhida ao acaso, a probabilidade de ela ser fumante e mulher é:

a) 0,044b) 0,075c) 0,0075d) Desconheço como se resolve essa atividade e) Nunca ouvi falar em probabilidade.

QUESTÃO 8 (Adaptação- ENEM-2007)

Temperatura do pescado nas peixarias ºC

Associação Brasileira de Defesa do Consumidor Uma das principais causas da degradação de peixes frescos é a

contaminação por bactérias. O gráfico apresenta resultados de um estudo acerca da temperatura de peixes frescos vendidos em cinco peixarias. O ideal é que esses peixes sejam vendidos com temperaturas entre 2°C e 4°C. Selecionando-se aleatoriamente umadas cinco peixarias pesquisadas, a probabilidade de ela vender peixes na condição ideal é igual a:

a) um meio b) um quarto c) um quinto d) Desconheço como se resolve essa atividade e) Nunca ouvi falar em probabilidade.

QUESTÃO 10 A Cultura Do Figo

O figo está entre as vinte principais frutas exportadas pelo Brasil e vem mantendo a terceira posição no ranking devolume comercializado, entre as frutas de clima temperado, com 0,9 mil toneladas. Fica atrás apenas da maçã com 153,0 mil toneladas e da uva com 28,8 mil toneladas,atingindo o patamar de US$ 2,109 milhões em 2004.

Participação da produção de figo por Unidade Federativa, Brasil, 2003.

05

101520253035404550

Rio Grand

e do Sul

Minas G

erais

São Pau

lo

Paraná

Santa

Catarin

aOutr

os

Prod

ução

(%)

Fonte:www.iea.sp.gov.br/out/verTexto.php?codTexto=2314Analisando a reportagem e o gráfico acima, podemos afirmar que a porcentagem da participação da produção de figo do Rio Grande do Sul, Minas Gerais e Paraná, juntos é de:a) 85%b) 75%c) 70%d) Não entendi o gráfico. e) Nunca analisei algo parecido.

Avaliadora: Denise Nunes de Melo. Orientador: Edmilson Rodrigues Pinto. Ano: 2007

Page 73: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Apêndice 2 - Resultado, por questão, apresentado pelas escolas públicas.Orkut é uma comunidade on-line que conecta pessoas através de

uma rede de amigos confiáveis proporcionando um ponto de encontro on-line com um ambiente de confraternização, onde é possível fazer novos amigos e conhecer pessoas que têm os mesmos interesses. Um grupo de 6 participantes escolhidos de uma certa comunidade no orkut tem a seguinte quantidade de amigos em sua rede:

Joana

60amigos

Carlos

80amigos

Patrícia

50amigos

Carla

30

amigos

Gilberto

80amigos

Daniel

90amigos

Baseado nas informações do texto acima, marque a opção que melhor represente a resposta das questões 1, 2, 3 e 4.

QUESTÃO 1 A amostra dessa pesquisa foi de:

a) 6 participantes b) 390 amigosc) A comunidade do orkut d) Não sei o que é amostra e) Já ouvi falar em amostra, mas não me lembro o que é.

179

64 50

11 60

50

100

150

200

A) B) C) D) E)

QUESTÃO 2 O número médio de amigos participantes desta amostra é de:

a) 80 amigosb) 70 amigos c) 65 amigos d) Não sei o que é número médio. e) Já ouvi falar em médias, mas não me lembro como se

calcula. 54

27

200

8 20

0

50

100

150

200

250

A) B) C) D) E)

QUESTÃO 3 A mediana e a moda do número de amigos dos 6 participantes

escolhidos nesta amostra são, respectivamente: a) 70 e 80 b) 65 e 90 c) 75 e 80 d) Não sei o que é mediana e moda e) Já ouvi falar em mediana e moda, mas não me lembro

como encontrar esses valores.

76

102

31

5940

020

406080

100120

A) B) C) D) E)

QUESTÃO 4 O desvio padrão para esses dados está entre:

a) 10 e 14 b) 14 e 19 c) 20 e 25 d) Não sei o que é desvio padrão e) Já ouvi falar em desvio padrão, mas não me recordo de

como se calcula

38 35

73

97

64

020

406080

100120

A) B) C) D) E)

Page 74: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A distribuição dos salários de uma empresa é dada na tabela a seguir.Com base nessa tabela, responda as questões 5 e 6

Salário (em R$) N° de funcionários 500,00 11

1 000,00 42 000,00 105 000,00 5

Total 30

QUESTÃO 5 A freqüência relativa dos funcionários que recebem R$ 2 000,00 ou mais é de:

a) 30%b) 40%c) 50%d) Não sei o que é freqüência relativa. e) Já ouvi falar no conteúdo,mas não sei resolver

7048

143

23 27

0

50

100

150

200

A) B) C) D) E)

QUESTÃO 6 A freqüência absoluta dos salários de R$ 1 000,00 e R$ 2 000,00 são , respectivamente, de:

a) 4 e 10 b) 10 e 5 c) 13,3% e 46,6% d) Não sei o que é freqüência absoluta. e) Já ouvi falar em freqüência absoluta, mas não sei resolver

a questão.

130

32

5940 39

020406080

100120140

A) B) C) D) E)

QUESTÃO 7

Um ciclo completo de um semáforo demora 120 segundos. Em cada ciclo, o semáforo está verde durante 50 segundos, no amarelo durante 10 segundos e no vermelho durante 60 segundos. Se o semáforo for visto ao acaso a probabilidade de que ele esteja no verde é de:

a) 41,66%

b) 58,33%

c) 62,41%

d) Desconheço como se resolve esse exercício.

e) Nunca ouvi falar em probabilidade

160

76

29 39

40

50

100

150

200

A) B) C) D) E)

Page 75: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2,3

8,910,5

13,214,0

0

3

6

9

12

15

I II III IV V

QUESTÃO 8 (Adaptação- ENEM-2007)

Temperatura do pescado nas peixarias ºC

Associação Brasileira de Defesa do Consumidor Uma das principais causas da degradação de peixes frescos é a

contaminação por bactérias. O gráfico apresenta resultados de um estudo acerca da temperatura de peixes frescos vendidos em cinco peixarias. O ideal é que esses peixes sejam vendidos com temperaturas entre 2°C e 4°C. Selecionando-se aleatoriamente umadas cinco peixarias pesquisadas, a probabilidade de ela vender peixes na condição ideal é igual a:

a) um meio b) um quarto c) um quinto d) Desconheço como se resolve essa atividade e) Nunca ouvi falar em probabilidade.

3854

176

355

0

50

100

150

200

A) B) C) D) E)

QUESTÃO 9

O resultado de uma pesquisa realizada pelo Ipesp, verificou-se que de 1000 pessoas, 17% fumam e, dentre os fumantes 44% são mulheres. Se nesse grupo de 1000 pessoas uma é escolhida ao acaso, a probabilidade de ela ser fumante e mulher é:

a) 0,044b) 0,075c) 0,0075d) Desconheço como se resolve essa atividade e) Nunca ouvi falar em probabilidade.

124

96

40 45

30

20406080

100120140

A) B) C) D) E)

Page 76: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

QUESTÃO 10

A Cultura Do Figo

O figo está entre as vinte principais frutas exportadas pelo Brasil e

vem mantendo a terceira posição no ranking de volume

comercializado, entre as frutas de clima temperado, com 0,9 mil

toneladas. Fica atrás apenas da maçã com 153,0 mil toneladas e da

uva com 28,8 mil toneladas, atingindo o patamar de US$

2,109 milhões em 2004.

Participação da produção de figo por Unidade Federativa, Brasil, 2003.

05

101520253035404550

Rio Grand

e do Sul

Minas G

erais

São Pau

lo

Paraná

Santa

Catarin

aOutr

os

Prod

ução

(%)

Fonte: www.iea.sp.gov.br/out/verTexto.php?codTexto=2314

Analisando a reportagem e o gráfico acima, podemos afirmar que a

porcentagem da participação da produção de figo do Rio Grande do

Sul, Minas Gerais e Paraná, juntos é de:

a) 85%

b) 75%

c) 70%

d) Não entendi o gráfico. e) Nunca analisei algo parecido.

37 49

202

14 60

50

100

150

200

250

A) B) C) D) E)

Page 77: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Apêndice 3: Resultado, por questão, apresentado pelas escolas particulares. Orkut é uma comunidade on-line que conecta pessoas através de

uma rede de amigos confiáveis proporcionando um ponto de encontro on-line com um ambiente de confraternização, onde é possível fazer novos amigos e conhecer pessoas que têm os mesmos interesses. Um grupo de 6 participantes escolhidos de uma certa comunidade no orkut tem a seguinte quantidade de amigos em sua rede:

Joana60 amigos

Carlos80 amigos

Patrícia50 amigos

Carla30 amigos

Gilberto80 amigos

Daniel90 amigos

Baseado nas informações do texto acima, marque a opção que melhor represente a resposta das questões 1, 2, 3 e 4.

QUESTÃO 1 A amostra dessa pesquisa foi de:

a) 6 participantes b) 390 amigosc) A comunidade do orkut d) Não sei o que é amostra e) Já ouvi falar em amostra, mas não me lembro o que é.

19 19

3 35

0

5

10

15

20

A) B) C) D) E)

QUESTÃO 2 O número médio de amigos participantes desta amostra é de:

a) 80 amigosb) 70 amigos c) 65 amigos d) Não sei o que é número médio. e) Já ouvi falar em médias, mas não me lembro como se

calcula. 1 1

46

0 10

10

20

30

40

50

A) B) C) D) E)

QUESTÃO 3 A mediana e a moda do número de amigos dos 6 participantes escolhidos nesta amostra são, respectivamente:

a) 70 e 80 b) 65 e 90 c) 75 e 80 d) Não sei o que é mediana e moda e) Já ouvi falar em mediana e moda, mas não me lembro

como encontrar esses valores.

10

18

2 2

15

0

5

10

15

20

A) B) C) D) E)

QUESTÃO 4 O desvio padrão para esses dados está entre:

a) 10 e 14 b) 14 e 19 c) 20 e 25 d) Não sei o que é desvio padrão e) Já ouvi falar em desvio padrão, mas não me recordo de

como se calcula.

5

107 8

19

0

5

10

15

20

A) B) C) D) E)

Page 78: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A distribuição dos salários de uma empresa é dada na tabela a seguir.Com base nessa tabela, responda as questões 5 e 6

Salário (em R$) N° de funcionários 500,00 11

1 000,00 42 000,00 105 000,00 5

Total 30

QUESTÃO 5 A freqüência relativa dos funcionários que recebem R$ 2 000,00 ou mais é de:

a) 30%b) 40%c) 50%d) Não sei o que é freqüência relativa. e) Já ouvi falar no conteúdo, mas não sei resolver

83

35

30

0

10

20

30

40

A) B) C) D) E)

QUESTÃO 6 A freqüência absoluta dos salários de R$ 1 000,00 e R$ 2 000,00 são , respectivamente, de:

a) 4 e 10 b) 10 e 5 c) 13,3% e 46,6% d) Não sei o que é freqüência absoluta. e) Já ouvi falar em freqüência absoluta, mas não sei resolver

a questão.

24

0

127

5

05

101520

2530

A) B) C) D) E)

QUESTÃO 7

Um ciclo completo de um semáforo demora 120 segundos. Em cada ciclo, o semáforo está verde durante 50 segundos, no amarelo durante 10 segundos e no vermelho durante 60 segundos. Se o semáforo for visto ao acaso a probabilidade de que ele esteja no verde é de:

a) 41,66%

b) 58,33%

c) 62,41%

d) Desconheço como se resolve esse exercício.

e) Nunca ouvi falar em probabilidade

44

1 2 2 00

10

20

30

40

50

A) B) C) D) E)

Page 79: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2,3

8,910,5

13,214,0

0

3

6

9

12

15

I II III IV V

QUESTÃO 8 (Adaptação- ENEM-2007)

Temperatura do pescado nas peixarias ºC

Associação Brasileira de Defesa do Consumidor Uma das principais causas da degradação de peixes frescos é a

contaminação por bactérias. O gráfico apresenta resultados de um estudo acerca da temperatura de peixes frescos vendidos em cinco peixarias. O ideal é que esses peixes sejam vendidos com temperaturas entre 2°C e 4°C. Selecionando-se aleatoriamente umadas cinco peixarias pesquisadas, a probabilidade de ela vender peixes na condição ideal é igual a:

a) um meio b) um quarto c) um quinto d) Desconheço como se resolve essa atividade e) Nunca ouvi falar em probabilidade.

2 3

40

40

0

10

20

30

40

50

A) B) C) D) E)

QUESTÃO 9

O resultado de uma pesquisa realizada pelo Ipesp, verificou-se que de 1000 pessoas, 17% fumam e, dentre os fumantes 44% são mulheres. Se nesse grupo de 1000 pessoas uma é escolhida ao acaso, a probabilidade de ela ser fumante e mulher é:

a) 0,044b) 0,075c) 0,0075d) Desconheço como se resolve essa atividade e) Nunca ouvi falar em probabilidade. 5

33

5 6

005

101520253035

A) B) C) D) E)

Page 80: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

QUESTÃO 10

A Cultura Do Figo

O figo está entre as vinte principais frutas exportadas pelo Brasil e

vem mantendo a terceira posição no ranking de volume

comercializado, entre as frutas de clima temperado, com 0,9 mil

toneladas. Fica atrás apenas da maçã com 153,0 mil toneladas e da

uva com 28,8 mil toneladas, atingindo o patamar de US$

2,109 milhões em 2004.

Participação da produção de figo por Unidade Federativa, Brasil, 2003.

05

101520253035404550

Rio Grand

e do Sul

Minas G

erais

São Pau

lo

Paraná

Santa

Catarin

aOutr

os

Prod

ução

(%)

Fonte: www.iea.sp.gov.br/out/verTexto.php?codTexto=2314

Analisando a reportagem e o gráfico acima, podemos afirmar que a

porcentagem da participação da produção de figo do Rio Grande do

Sul, Minas Gerais e Paraná, juntos é de:

a) 85%

b) 75%c) 70%d) Não entendi o gráfico. e) Nunca analisei algo parecido.

3 0

45

0 00

10

20

30

40

50

A) B) C) D) E)

Page 81: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

ANÁLISE QUANTITATIVA DA RELAÇÃO ENTRE NOTAS DE TAREFAS E NOTA DE PROVAS BIMESTRAIS: ESTUDO DE CASO DAS 5ª SÉRIES DA

“ESCOLA ESTADUAL DE UBERLÂNDIA”1.

JUSCELIA DIAS MENDONÇA2, EDNALDO CARVALHO GUIMARÃES3

RESUMO

A escolha de um método de avaliação que se adeque a certa turma e a certa série é algo

que sempre deixa o professor em dúvida, principalmente na disciplina de Matemática na

qual, em geral, os alunos apresentam baixo rendimento. Este trabalho tem por objetivo

analisar estatisticamente a eficácia da avaliação contínua das tarefas feitas pelos alunos

das 5ª séries da Escola Estadual de Uberlândia. Durante o ano letivo de 2007, foi feita a

coleta de dados dessa pesquisa; a professora verificou periodicamente (por meio de

visto nos cadernos) as atividades feita pelos alunos, atribuindo determinada nota para a

quantidade e qualidade de tarefas feitas por cada aluno. Fundamentalmente esta

pesquisa verifica a relação das notas obtidas pelos alunos com a realização das tarefas e

as notas obtidas por eles nas provas bimestrais. Para a verificação estatística dos dados

foram utilizados o teste qui-quadrado e análise de regressão. Os resultados

comprovaram que houve relação entre as notas dos vistos e as notas da prova, pois, eles

sempre aumentavam de forma diretamente proporcional e que, a verificação periódica

das atividades feitas pelos alunos é mais uma ferramenta que o professor pode utilizar

em suas aulas.

Palavras-Chave: metodologia de ensino, análise estatística, eficácia de metodologia de

ensino.

1 Monografia apresentada à Faculdade de matemática, da Universidade Federal de Uberlândia para a obtenção do grau de especialista em Matemática ( VIII Curso de Especialização em Matemática). 2 Aluna do Curso de Especialização em Matemática - Av. João Naves de Ávila, 2160, Bairro Santa Mônica, Uberlândia –MG, CEP: 38400-900- [email protected] Prof. Orientador – FAMAT/UFU – Av. João Naves de Ávila, 2160, Bairro Santa Mônica, Uberlândia – MG, CEP: 38400-900 – [email protected]

Page 82: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

1. INTRODUÇÃO

A 5ª série é, para alunos novatos algo novo e desafiador, pois os alunos que

anteriormente só tinham a professora regente, que ministrava todas as matérias, passam

agora a ter um professor para cada matéria, o que para muitos é motivo de temor, visto

que cada professor tem suas regras e seu modo de ensinar e os alunos terão que se

adaptar a cada um deles.

Um elemento relevante é o fato que muitos pais acham que, por seus filhos

estarem cursando a 5ª série, estes já são amadurecidos e possuem responsabilidade para

prosseguirem na escola sem que os pais tenham que acompanhar de perto os estudos de

seus filhos.

Quando os pais tomam conhecimento das notas de seus filhos, procuram a escola

e seus professores para saber o que está acontecendo e se assustam ao saber que eles,

que antes eram alunos dedicados, agora não fazem mais tarefas, não copiam matérias

em sala e muitas vezes até estão “matando” aulas.

Autores como Helene (2008) afirmam que a grande utilidade de um sistema de

avaliação é permitir o estabelecimento de políticas que venham a corrigir os problemas

detectados. Segundo o autor, infelizmente, não é esse o caso do Brasil. Para Gris (2003)

citado por Santos (2006), a prática deixa muito a desejar. Faz-se necessário questionar

os valores e princípios que fundamentam essa prática educativa ineficiente e

responsável pelo fracasso escolar tão arraigada nos Estabelecimentos de Ensino. Os

professores, apesar de tantas informações a respeito do sistema de avaliação, ainda

permanecem com posicionamentos seculares, construindo o contexto avaliativo à sua

revelia.

Por esses e outros motivos citados anteriormente é que vários professores,

principalmente, das 5ª séries utilizam-se dos “vistos” nos cadernos com o objetivo de

ajudar os alunos que ficam atordoados e com os modos diferentes de trabalhar. Estes

“vistos” também ajudam a suprir a falta de acompanhamento de alguns pais e, além de

tudo, estimulam o hábito de estudo contínuo.

Este trabalho tem como objetivo analisar estatisticamente a relação entre a nota

obtida pelos alunos com os “vistos” nos cadernos e suas respectivas notas nas provas.

Page 83: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2. MATERIAL E MÉTODOS

Para a realização da presente pesquisa, foram coletados dados durante todo ano

letivo de 2007 dos alunos das 5ª séries A, B, C e D da Escola Estadual de Uberlândia.

O ano escolar na referida escola é constituído de 4 bimestres sendo que, os dois

primeiros valem 20 pontos cada e, os dois últimos valem 30 pontos cada. A professora

combinou com os alunos que, dos 20 pontos que valem os 1º e 2º bimestres, 5 seriam

distribuídos em vistos nos cadernos e 8 seriam distribuídos através de uma prova

bimestral. Já nos 3º e 4º bimestres, devido a uma mudança da distribuição de notas da

escola, dos 30 pontos iniciais, 2 foram distribuídos em vistos nos cadernos e 15 na

prova bimestral, os demais pontos dos referidos bimestres foram distribuídos em outras

atividades.

Os vistos citados referem-se a uma verificação da professora de tarefas feitas,

tanto em casa como em sala, a professora utilizando-se de uma ficha marcava mais, para

tarefas totalmente feitas, mais ou menos, para tarefas parcialmente feitas e menos para

tarefas não feitas, esta verificação era feita esporadicamente, mas era feita

continuamente de forma que, durante as cinco aulas semanais, em pelo menos 2 aulas

aconteciam os vistos.

É válido ressaltar que durante os “vistos”, a professora não verificava se as

tarefas estavam ou não corretas, seu objetivo era verificar se elas estavam ou não feitas.

A professora só dava “visto” em tarefas com cópia de enunciados, pois, vários alunos

tinham problemas sérios de caligrafia e interpretação de textos.

Através do programa Excell, foi obtido o gráfico de dispersão dos dados, em

seguida foi adicionada uma linha de tendência e sua respectiva equação e o valor do

coeficiente de determinação, os ajustes foram feitos usando-se uma confiança de

estimativa de 95%. Foi aplicado também o teste qui-quadrado, no qual as notas dos

vistos e das avaliações de cada aluno foi transformada em conceitos seguindo a regra:

Muito Crítico ( MC), se a nota fosse menor ou igual a 50%; bom (B) se a nota estivesse

entre 50 e 80% e ótima (OT), se a nota fosse superior a 80 %. Para esta análise não foi

considerada a turma do aluno, ou seja, para cada bimestre avaliaram-se todos os alunos

independentemente de qual turma pertenciam.

Aplicou-se o teste de qui-quadrado ( 2) para verificar a dependência (relação)

entre o conceito obtido pelo aluno nos vistos e o conceito obtido nas avaliações. A

estatística de 2 é calculada por:

Page 84: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

k

i i

iife

)fefo(1

22

em que: foi é a freqüência observada na classe i; fei é a frequência esperada na classe i

supondo independência; k é o número de classes.

A significância do teste é verificada por meio da distribuição de 2 com graus

de liberdade igual ao produto do número de linhas menos um e o número de colunas

menos um da tabela de contingência.

Foi avaliado também o coeficiente de contingência para verificar o grau de

associação entre a nota obtida no visto e a nota obtida na avaliação. O coeficiente de

contingência máximo é obtido em função do número de linhas e colunas da tabela de

contingência (Spiegel, 1993). As equações de C e de Cmax são:

NC 2

2

L)L(Cmax

1

em que: 2 é a estatística calculada pelo teste; N é o número de observações e L é o

número de linhas e/ou colunas da tabela de contingência.

Os testes de 2 e os coeficientes de contingências (C) foram obtidos, utilizando-

se o programa computacional BIOESTAT 4.0 (Ayres et al, 2005).

As análises estatísticas foram realizadas, utilizando metodologias descritas em

Spiegel (1993) e Hoffman e Vieira (1987).

3. RESULTADOS E DISCUSSÃO

3.1. ANÁLISE DE REGRESSÃO

Na Figura 1 é apresentado o gráfico de desempenhos ideais para o 1ºe 2º

Bimestres e para o 3º e 4º Bimestres, respectivamente.

É importante ressaltar que o gráfico ideal seria o gráfico em que um aluno que

tirasse zero nos “vistos”, obtivesse zero também na prova e da mesma forma, um aluno

que tirasse nota máxima nos “vistos”, também tirasse nota máxima na prova.

Page 85: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Gráfico Ideal 1º e 2º Bimestres y = 1,6xR2 = 1

0,01,02,03,04,05,06,07,08,09,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Nota dos vistos

Nota

da

Prov

aGráfico Ideal 3º e 4º Bimestres y = 7,5x

R2 = 1

02468

10121416

0 0,5 1 1,5 2 2,5

Nota dos Vistos

Nota

da

Prov

a

Figura 1 - Desempenho ideal dos alunos, com relação à nota dos vistos e da prova no: a) 1º e 2º bimestres b) 3º e 4º bimestres .

Como no 1º e 2º bimestres, a nota dos vistos foi 5,0 pontos e a nota da prova 8,0

e nos 3º e 4º bimestres a nota dos vistos foi 2,0 e da prova 15,0, observamos que a

equação da reta do ajuste linear do 1º e 2º bimestres é y = 1,6x ,ou seja, para cada ponto

obtido no visto espera-se 1,6 pontos na prova . Já a equação da reta do ajuste do 3º e 4º

bimestres é y=7,5x, ou seja, para cada ponto obtido nos vistos esperamos 7,5 pontos

obtidos na prova, em condições ideais.

A análise do desempenho real da 5ª série turma A, ao longo do 1º, 2º, 3º e 4º

bimestres, é apresentado na Figura 2.

Observando os gráficos e seus ajustes, verificamos que os valores do Coeficiente

de Determinação (R2) são significativos, o que nos mostra que o ajuste linear está dentro

do esperado, considerando uma confiança de estimativa de 95%.

Gráfico 1º Bimestre 5ª A y = 0,8331x + 0,5503R2 = 0,1407

0,01,02,03,04,05,06,07,08,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Nota dos Vistos

Not

a da

Pro

va

Gráfico2º Bimestre 5ª Ay = 1,1278x + 0,6458

R2 = 0,5498

0,01,02,03,04,05,06,07,08,09,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Nota dos Vistos

Not

a da

Pro

va

Gráfico 3º Bimestre 5ª A y = 3,0938x + 4,5862R2 = 0,2819

0,02,04,06,08,0

10,012,014,016,0

0,0 0,5 1,0 1,5 2,0 2,5

Nota dos Vistos

Nota

da

Prov

a

Gráfico 5ª A 4º Bimestrey = 4,2797x + 3,5046

R2 = 0,2425

0,02,04,06,08,0

10,012,014,016,0

0,0 0,5 1,0 1,5 2,0 2,5

Nota dos Vistos

Nota

da

Prov

a

Figura 2-Desempenho dos alunos da 5ªA, com relação à nota dos vistos e da prova no: a) 1º bimestre b) 2° bimestre c)3° bimestre d) 4° bimestre

Page 86: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A análise do desempenho real da 5º série turma B e da 5º série turma C , ao

longo do 1º, 2º, 3º e 4º bimestres é apresentado, respectivamente, nas Figura 3 e 4.

Gráfico 5ª B 1º Bimestre y = 0,6478x + 1,3049R2 = 0,1627

0,01,02,03,04,05,06,07,08,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Nota dos Vistos

Nota

da

Prov

a

Gráfico 2º Bimestre 5ª B y = 0,6355x + 2,7372R2 = 0,2146

0,01,02,03,04,05,06,07,08,09,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

Nota dos vistos

Nota

da

Prov

a

Grafico 3º Bimestre 5ª B y = 0,0407x + 7,3583R2 = 0,0157

0,02,04,06,08,0

10,012,014,016,0

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0

Nota dos Vistos

Nota

da

Prov

a

Gráfico 4º Bimestre 5ª B y = 1,3395x + 6,8058R2 = 0,0253

0,02,04,06,08,0

10,012,014,016,0

0,0 0,5 1,0 1,5 2,0 2,5

Nota dos Vistos

Nota

da

Prov

a

Figura 3-Desempenho dos alunos da 5ªB, com relação à nota dos vistos e da prova no: a) 1° bimestre b) 2° bimestre c) 3° bimestre d) 4° bimestre

Gráfico 5ª C 1º Bimestre y = 0,8878x - 0,034R2 = 0,3811

-1,0

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Nota do Visto

Not

a da

Pro

va

Gráfico 5ª C 2º Bimestre y = 0,9686x + 1,2289R2 = 0,3277

0,01,02,03,04,05,06,07,08,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Notas do Visto

Nota

da

prov

a

Gráfico 5ª C 3º Bimestre y = 2,7192x + 4,8691R2 = 0,2777

0,02,04,06,08,0

10,012,014,016,0

0,0 0,5 1,0 1,5 2,0 2,5

Notas dos Vistos

Nota

da

Prov

a

Gráfico 5ª C 4º Bimestre y = 3,2318x + 5,594R2 = 0,1702

0,02,04,06,08,0

10,012,014,016,0

0,0 0,5 1,0 1,5 2,0 2,5

Notas dos Vistos

Nota

da

Prov

a

Figura 4-Desempenho dos alunos da 5ªC, com relação à nota dos vistos e da prova no: a) 1º bimestre b) 2° bimestre c) 3° bimestre d) 4° bimestre

Page 87: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Pode-se observar que na 5ª B, nos 3º e 4º bimestres, o Coeficiente de

Determinação (R2) foi não significativo, o que mostra que o ajuste não foi adequado. Já

para a 5ª C, o valor do R2 foi significativo para todos os bimestres.

A análise do desempenho real da 5º série turma D, ao longo do 1º, 2º, 3º e 4º

bimestres é apresentado na Figura 5.

Gráfico 5ª D 1º Bimestre y = 0,9904x - 0,2475R2 = 0,3845

0,01,02,03,04,05,06,07,08,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Nota dos Vistos

Nota

da

Prov

a

Gráfico 5ª D 2º Bimestrey = 0,6681x + 2,1779

R2 = 0,2081

0,01,02,03,04,05,06,07,08,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

Nota dos Vistos

Nota

da

Prov

a

Gráfico 5ª D 3º Bimestre y = 2,9399x + 4,2713R2 = 0,5404

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

0,0 0,5 1,0 1,5 2,0 2,5

Nota dos Vistos

Nota

da

Prov

a

Gráfico 5ª D 4º Bimestre y = 1,9767x + 5,3653R2 = 0,1164

0,02,04,06,08,0

10,012,014,016,0

0,0 0,5 1,0 1,5 2,0 2,5

Nota dos Vistos

Nota

da

Prov

a

Figura 5-Desempenho dos alunos da 5ªD, com relação à nota dos vistos e da prova no: a) 1º bimestre b) 2° bimestre c) 3° bimestre d) 4/ bimestre

Na 5ª série D, o valor de R2 foi significativo para o 1º,2º e 3º bimestres e não foi

significativo para o 4º bimestre.

Em todos os bimestres verificou-se que as retas dos ajustes lineares sempre

foram crescentes, ou seja, as notas dos “vistos” e as notas das provas aumentaram de

forma diretamente proporcional; quanto maior a nota obtida no “visto”, maior a nota

obtida na prova.

Os coeficientes angular e linear das retas de todos os bimestres se diferenciaram

entre sí, essa variação justifica-se pelos seguintes fatos: i) no 1º bimestre os alunos não

estão habituados a fazer as tarefas, nem à verificação contínua das tarefas. Muitos só se

conscientizam de que a realização das tarefas é um item importante, tanto para sua

aprendizagem quanto na nota obtida por elas através dos “vistos”, depois de obterem

desempenho abaixo da média (“vermelho”) no 1º bimestre; ii) no 2º bimestre os alunos

já estão habituados aos vistos e nota-se uma maior freqüência nas atividades feitas em

todas as salas, pois, o coeficiente angular das retas de todos os ajustes aumentou

Page 88: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

consideravelmente em relação ao 1º bimestre, assim como os valores dos coeficientes

de determinação; iii) no 3º bimestre devido às normas da escola, a nota do “visto” que

antes representava 25% da nota do bimestre passou a representar 6,6% da nota do

bimestre. É claro que esse fato afetou o interesse dos alunos pela nota obtida através dos

“vistos”, talvez por isso o valor do coeficiente de determinação diminuiu em todas as

salas. Esse é um dos fatores que podem explicar o fato de que na 5ª B o coeficiente de

determinação ficou menor que 0,05 no 3º e 4º bimestres; iv) No 4º bimestre observamos

que o coeficiente de determinação de todas as turmas diminuiu com relação aos

coeficientes do 3º bimestre, tal fato se justifica pelo desinteresse de alguns alunos que já

não acreditavam que fossem concluir a 5ª série naquele ano.

É importante ressaltar que todas as salas eram muito heterogêneas, isto é, havia

alunos em diferentes níveis de aprendizagem, muitos alunos eram analfabetos

funcionais e por tal motivo, mesmo fazendo as atividades, não conseguiam tirar nota na

prova por falta de pré-requisitos básicos para aprenderem as matérias. Além disso, a 5ª

B foi a única sala em que os coeficientes de determinação foram inferiores a 0,05; essa

sala era considerada por todos os professores a sala com alunos com piores níveis de

aprendizado, tal fato pode ser comprovados pelas reuniões de Conselho de Classe.

As taxas de aprovação das turmas foram:

5ªA: 55%; 5ªB: 48%; 5ªC: 63%; 5ªD: 57,15%

Verifica-se que a menor taxa de aprovação ocorreu para a 5º B , associando este

resultado com os das figuras da regressão, observa-se que nessa turma foram obtidos,

por duas vezes, coeficientes não significativos.

3.2. COEFICIENTES ANGULARES E LINEARES DE CADA SÉRIE:

Nas Tabelas de 1 a 4 são apresentados os valores dos coeficientes linear e

angular dos modelos de regressão com os respectivos intervalos de confiança.

Tabela 1 – Coeficientes lineares e angulares dos modelos de regressão com os respectivos intervalos de confiança para a 5ªA.

Bimestre a(Coef. Linear) Lim. Inf Lim. Sup. b(Coef. Ang) Lim. Inf. Lim.Sup. 1º 0,550283175 -2,08387 3,184431 0,83309815 0,078813 1,5873837752º 1,113608024 -0,3031 2,530314 1,01479005 0,614577 1,415003183º 4,586153905 1,86967 7,302638 3,09377635 1,218504 4,9690484624ª 3,50456126 -1,02074 8,029867 4,27970955 1,351307 7,20811173

Page 89: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Tabela 2 – Coeficientes lineares e angulares dos modelos de regressão com os respectivos intervalos de confiança para a 5ªB. Bimestre a(Coef. Linear) Lim. Inf Lim. Sup. b(Coef. Ang) Lim. Inf. Lim.Sup.

1º 1,304874 -0,47703 3,086779 0,647809 0,12741 1,1682082º 2,737238 1,282873 4,191604 0,635513 0,197713 1,0733123º 4,150714 1,567618 6,73381 2,897298 1,132742 4,6618544ª 6,805833 2,153984 11,45768 1,339501 -1,75786 4,436864

Tabela 3 – Coeficientes lineares e angulares dos modelos de regressão com os respectivos intervalos de confiança para a 5ªC. Bimestre a(Coef. Linear) Lim. Inf Lim. Sup. b(Coef. Ang) Lim. Inf. Lim.Sup.

1º -0,03399 -1,66119 1,593215 0,887758 0,480381 1,2951352º 1,228888 -0,57252 3,030296 0,968637 0,441663 1,4956113º 4,869109 2,200888 7,537329 2,71921 0,951168 4,4872524ª 5,594039 1,190181 9,997897 3,231771 0,292234 6,171307

Tabela 4 – Coeficientes lineares e angulares dos modelos de regressão com os respectivos intervalos de confiança para a 5ªD.

Bimestre a(Coef. Linear) Lim. Inf Lim. Sup. b(Coef. Ang) Lim. Inf. Lim.Sup.1º -0,24746 -1,99953 1,504618 0,990383 0,5314 1,4493652º 2,177935 0,36516 3,990709 0,668056 0,173052 1,1630593º 4,271346 2,899326 5,643366 2,939876 1,846997 4,0327564ª 5,36533 1,954125 8,776535 1,976714 -0,26662 4,220044

A analise dos resultados acima, permite inferir que com relação ao coeficiente

linear e angular não houve diferença significativa, pois ao comparar os intervalos do 1º

com o 2º bimestre e, da mesma forma, os intervalos do 3º com o 4º bimestres, observa-

se que houve uma sobreposição de intervalos. Além disso, verifica-se que os

coeficientes angulares foram significativos para os bimestres analisados, exceto para o

4º bimestre da 5ª D e para os 3º e 4º bimestres 5ª B.

3.3 TESTE QUI-QUADRADO

A relação entre os conceitos de vistos e os conceitos de avaliação, para as turmas

de 5a série, em cada bimestre são apresentadas nas Tabelas 5 a 8.

Page 90: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Tabela 5. Tabela de contingência para os conceitos de vistos e de avaliação dos alunos de 5a série no primeiro bimestre e estatística 2 e coeficiente de contingência (C e Cmax).

Avaliação – 1 Bim Visto – 1 Bim B MC OT Total

18 40 1 59 B13.3% 29.6% 0.7% 43.7%

6 23 0 29 MC4.4% 17.0% 0.0% 21.5%

26 15 6 47 OT19.3% 11.1% 4.4% 34.8%

50 78 7 135 Total37.0% 57.8% 5.2% 100.0%

2 = 23,905 (p = 0,000) C= 0,388 Cmax = 0,816

Tabela 6. Tabela de contingência para os conceitos de vistos e de avaliação dos alunos de 5a série no segundo bimestre e estatística 2 e coefeciente de contingência (C e Cmax).

Avaliação – 2 Bim Visto – 2 Bim B MC OT Total

22 20 6 48 B17.3% 15.7% 4.7% 37.8%

10 29 5 44 MC7.9% 22.8% 3.9% 34.6%

17 4 14 35 OT13.4% 3.1% 11.0% 27.6%

49 53 25 127 Total38.6% 41.7% 19.7% 100.0%

2 = 28.435 (p =0,0000) C= 0,428 Cmax =0,819

Tabela 7. Tabela de contingência para os conceitos de vistos e de avaliação dos alunos de 5a série no terceiro bimestre e estatística 2 e coeficiente de contingência (C e Cmax).

Avaliação – 3 Bim Visto – 3 Bim B MC OT Total

17 14 2 33 B14.0% 11.6% 1.7% 27.3%

11 28 0 39 MC9.1% 23.1% 0.0% 32.2%

30 10 9 49 OT24.8% 8.3% 7.4% 40.5%

58 52 11 121 Total47.9% 43.0% 9.1% 100.0%

2 = 26,924 (p =0,0000) C=0,427 Cmax = 0,819

Page 91: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Tabela 8. Tabela de contingência para os conceitos de vistos e de avaliação dos alunos de 5a série no quarto bimestre e estatística 2 e coeficiente de contingência (C e Cmax).

Avaliação – 4 Bim Visto – 4 Bim B MC OT Total

22 12 12 46 B18.8% 10.3% 10.3% 39.3%

7 16 2 25 MC6.0% 13.7% 1.7% 21.4%

15 12 19 46 OT12.8% 10.3% 16.2% 39.3%

44 40 33 117 Total37.6% 34.2% 28.2% 100.0%

2 = 16,952 (p =0,002) C= 0,356 Cmax = 0,819

Verifica-se que, no primeiro bimestre, apenas 21,5% dos alunos obtiveram MC

nos “vistos”. Já, na avaliação, 57,8% deles obtiveram MC. Nota-se também que um

grande número de alunos que obtiveram B nos “vistos” não mantiveram o desempenho

na avaliação. Isto pode estar associado ao fato de que como a professora não verificava

se as tarefas estavam ou não feitas corretamente, muitos alunos tentavam “enganar” a

professora, colocando respostas incorretas só para ganhar a nota do “visto” ou, até

mesmo, copiavam dos colegas.

Nos demais bimestres observa-se que o número de alunos que obtiveram B em

vistos e MC em avaliação reduziu, ou seja, devido às notas baixas obtidas nas provas,

muitos repensaram suas atitudes com relação às tarefas diárias.

O teste de qui-quadrado mostrou-se altamente significativo para todos os

bimestres, indicando que existe uma relação (associação) entre as notas obtidas no visto

e a nota obtida na avaliação. O menor grau de associação foi verificado no quarto

bimestre com valor de C= 0,356 sendo que o máximo a ser atingido seria de 0,819,

portanto existe uma relação de aproximadamente 43% entre as notas de visto e de

avaliação. Este valor se assemelhou ao do primeiro bimestre com C= 0,388, ou seja,

47% de associação entre visto e avaliação. Para o segundo e terceiro bimestre obteve-se

também valores parecidos de C representando aproximadamente 52% de associação.

Nota-se que, no geral, a associação entre conceitos de vistos e avaliações são

consideradas médias, entretanto altamente significativas.

Além disso, podemos perceber claramente 4 grupos de alunos;

Page 92: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Grupo que faz as tarefas de qualquer forma, só para ganhar o “visto” ou que mesmo

fez a tarefa incorretamente e não entendeu a matéria com a correção. Este é o grupo

dos alunos que tiraram OT no visto e MC na prova.

1º B 11,1%; 2º B 3,1 % ; 3º B 8,3 %; 4º B 10,3 %

Grupo que não faz as tarefas e mesmo assim tira nota boa na prova. Este é o grupo

dos alunos que tiraram MC no visto e OT na prova .

1º B 0%; 2º B 3,9 %; 3º B 0 %; 4º B 1,7 %

Grupo que faz verdadeiramente as tarefas e tira nota boa na prova. Este é o grupo

dos alunos que tiraram OT no visto e OT na prova .

1º B 4,4%; 2º B 11 %; 3º B 7,4 %; 4º B 16,2 %

Grupo que não faz as tarefas e não consegue boas notas nas provas. Este é o grupo

dos alunos que tiraram MC no visto e MC na prova .

1º B 17%; 2º B 22,8%; 3º B 23,1 %; 4º B 13,7 %

4. CONCLUSÃO

Verifica-se que os alunos que fazem continuamente as tarefas obtêm maiores

notas e por isso o visto contínuo dos cadernos é uma grande ferramenta do professor,

pois incentiva o hábito de estudo nos alunos.

Pouquíssimos alunos conseguem aprender a matéria apenas assistindo às aulas e

é grande a porcentagem dos alunos que não fazem as atividades e tiram notas ruins nas

prova

5. REFERÊNCIAS BIBLIOGRAFIA

AYRES, M.; AYRES Jr, M.;AYRES,D. L.; SANTOS, A. S. dos. BioEstat 4.0:

Aplicações estatísticas nas áreas das ciências biológicas e médicas. Belém: Sociedade

Civil Mamirauá; Brasília: CNPa, 2005,324 p.

HELENE, O. A. Avaliação do ensino e compromisso social. Disponível em:

http://www.andifes.org.br/entrevistas/Otaviano.php. Acessado em: 24 demarço de 2008

Page 93: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

SANTOS, T. R. Desempenho dos alunos de 5a a 8a series na prova de estudos

independentes. Monografia (Especialização em Estatística Aplicada). FAMAT/UFU.

Uberlândia, 2006, 24 p.

SPIEGEL, M. R. Estatística. 3 ed. São Paulo: Makron Books, 1993, 643 p.

HOFFMANN, R.; VIEIRA, S. Análise de Regressão: Uma Introdução à Econometria.

2 ed. São Paulo: Hucitec, 1987, 379 p.

Page 94: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

CLASSIFICAÇÃO DO COEFICIENTE DE VARIAÇÃO DA UMIDADE DO SOLO EM EXPERIMENTAÇÃO AGRÍCOLA1

FRANCIELLA MARQUES DA COSTA2; JULIANA MARIA DE OLIVEIRA3; EDNALDO

CARVALHO GUIMARÃES4; MARCELO TAVARES5

RESUMO A variabilidade de dados relacionados a atributos de solos com aplicação na área

agronômica é uma preocupação dos pesquisadores que atuam nesta área. Contudo,

geralmente os pesquisadores têm dificuldades em definir limites de variabilidade por

meio do coeficiente de variação. Este trabalho teve o objetivo de realizar um estudo

sobre o comportamento de coeficientes de variação da umidade do solo e de propor

limites para a classificação da variabilidade desse atributo tendo como base a

distribuição de probabilidades dos coeficientes de variação. Foram levantadas

informações de coeficientes de variação publicadas em periódicos nacionais. A

normalidade dos coeficientes de variação dos atributos foi avaliada por meio do teste

de Lilliefors. A classificação dos coeficientes de variação em graus de variabilidade

foi feita utilizando-se a mediana e os pesudo-sigmas (pseudos desvios padrões).

Verificou-se que os coeficientes de variação para a umidade do solo não

apresentaram distribuição normal e as faixas de variabilidade foram propostas com

base na metodologia não paramétrica. As faixas de graus de variabilidade do

atributo umidade do solo proposta neste trabalho não coincide com as faixas usuais

da literatura.

PALAVRAS-CHAVE: coeficiente de variação, grau de variabilidade, umidade do

solo

1 Projeto de Iniciação Científica desenvolvido no PROMAT?FAMAT – março/07 a fev/08 2 Acadêmica do Curso de Graduação em Matemática – UFU/FAMAT – Campus Santa Mônica – CEP: 38400-902 – Uberlândia – MG - [email protected] 3 Acadêmica do Curso de Graduação em Matemática – UFU/FAMAT – Campus Santa Mônica – CEP: 38400-902 - [email protected] 4 Prof. Orientador – FAMAT/UFU – [email protected] 5 Prof. Colaborador – FAMAT/UFU – [email protected]

Page 95: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

1. INTRODUÇÃO

A umidade do solo é um atributo de grande importância na experimentação

agrícola e está relacionada com outros atributos que caracterizam o solo agrícola e

as condições de cultivo. Este é um atributo muito utilizado em projetos de irrigação,

pois a decisão do momento de irrigar está associada à quantidade de água presente

no solo.

Também pode-se verificar que atributos como a densidade do solo,

resistência do solo a penetração, entre outros, apresentam relações com a umidade

do solo.

Na pesquisa agronômica, a interpretação da análise estatística de variáveis

de determinados experimentos gera incertezas no momento de avaliar a precisão

com que esses estudos foram conduzidos; sobretudo quando tal precisão é

expressa por medidas que, geralmente, não tem referencial ou que necessitam de

ser avaliada comparativamente, como é o caso do coeficiente de variação.

O coeficiente de variação é definido na estatística como o desvio padrão em

relação a média (Triola, 1999) e é utilizado frequentemente para inferir sobre o grau

de variabilidade do atributo ou sobre a precisão experimental.

Em periódicos da área agrícola é comum observar referências sobre

variabilidade alta ou variabilidade baixa, contudo, é raro ter estabelecido, na área, os

limites considerados altos ou baixos para o coeficiente de variação, sendo estas

inferências feitas apenas visualmente e a critério do observador ou, então, com base

em limites fixos e únicos.

O coeficiente de variação que recebe a classificação de alto ou baixo para

determinada variável, não necessariamente precisará receber a classificação de alto

ou baixo para outra variável analisada.

Mead & Curnow, (1983) argumentam que o CV é uma medida relativa, desta

forma ele possuirá valores muito semelhantes em um grande grupo de experimentos

se, em cada um desses, o desvio padrão for diretamente proporcional à média

individual.

Nas pesquisas relacionadas à atributos de solos utiliza-se, com freqüência, a

proposta de Pimentel Gomes (1990) como referencial do grau de variabilidade do

atributos. Esse autor classifica a variabilidade como sendo baixa se o CV for inferior

a 10%, media se estiver entre 10 e 20%, alta entre 20 e 30% e muito alta para CV

Page 96: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

acima de 30%. Contudo, verifica-se que os atributos apresentam variabilidades

distintas na área de solos e esses limites de graus de variabilidade podem não

expressar adequadamente a variabilidade do atributo.

Para algumas características das culturas de eucaliptos Garcia (1989) propôs

tabelas de classificação do CV e utilizou para este fim a relação entre as médias e

desvios padrões de CV de vários experimentos.. Seguindo a linha proposta por

Garcia (1989), Scapim et al. (1995) fizeram a classificação para atributos

relacionados à cultura do milho, Clemente e Muniz (1998) para forrageiras, Amaral

et al (1997) com citros, Judice et al (1999) com experimentação com suínos, dentre

outros autores.

A proposta de Garcia (1989) considera a distribuição dos CV como sendo

normal. Entretanto, Costa et al. (2002) trabalhando com dados da cultura do arroz de

terras altas verificaram que para alguns atributos a condição de normalidade dos Cv

não era observada. Estes autores sugeriram um método alternativo de classificação

dos coeficientes de variação que pode ser aplicado independentemente da

distribuição de probabilidade dos valores de CV. Este método baseou-se no uso da

mediana (Md) e do pseudo-sigma (PS), medidas estas, segundo o autor, mais

resistentes que a média e o desvio-padrão.

Diante do exposto, este trabalho teve o objetivo de propor graus de

variabilidade para a umidade do solo, utilizando o coeficiente de variação e a

metodologia proposta por Costa et al (2002).

2. MATERIAL E MÉTODOS

O trabalho foi desenvolvido aproveitando-se valores de coeficientes de

variação (CV) da umidade do solo de artigos científicos que foram publicados em

períodos com abordagem agrícola e com solos brasileiros. Foram utilizados 61

valores de umidade do solo.

No presente trabalho, não foi especificado os delineamentos experimentais,

considerando a conclusão de Estefanel et al. (1987), segundo a qual, tais aspectos

não influenciaram significativamente os valores de CV, pressupondo-se que a forma

de disposição do experimento visa, em princípio, atenuar a possibilidade do erro

Page 97: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

experimental. Também não se fez a especificação de profundidade de amostragem

e de determinação dessa umidade.

Os dados de Coeficiente de variação (CV) obtidos nos artigos científicos

foram dispostos em bancos de dados para se proceder à análise estatística. A

primeira análise realizada foi a visualização da distribuição dos CV utilizando-se o

histograma, acompanhado do teste de normalidade dos CV por meio do método de

Kolmogorov-Smirnov, modificado por Lilliefors (1967).

O teste de normalidade pode ser utilizado para a seleção da metodologia a

ser empregada na classificação do CV, ou seja, se os dados apresentarem Cv com

distribuição normal pode-se aplicar a proposta de feita por Garcia (1989) e caso não

seja normal aplica-se a proposta de Costa et al (2002). Por ser uma metodologia de

distribuição livre, neste trabalho, adotou-se a metodologia de Costa et al (2002).

Portanto, o histograma e o teste de normalidade tiveram a função de análise

descritiva neste trabalho.

A metodologia proposta por Costa et al (2002) se baseia mediana (Md) e nos

pseudo-sigmas (PS), definidos por: Md = (Q1 + Q3)/2 é a mediana dos coeficientes

de variação, Q1 e Q3 são o primeiro e terceiro quartil respectivamente, os quais

delimitam 25% de cada extremidade da distribuição dos CV e, PS = IQR/1,35 é o

pseudo-sigma, sendo IQR a amplitude interquartílica (Q3 – Q1), que é uma medida

resistente que indica o quanto os dados estão distanciados da mediana.

Os limites de classificação dos CV são definidos conforme Tabela 1.

Tabela 1. Limites de classificação dos Coeficientes de Variação de acordo com a

proposta de Costa et al (2002)

CLASSIFICAÇÃO INTERVALO

BAIXO CV (Md – PS)

MÉDIO (Md – PS) CV (Md + PS)

ALTO Md + PS) CV (Md + 2PS)

MUITO ALTO CV > (Md + 2PS)

Costa el al (2002) argumenta que o pseudo-sigma corresponderia ao desvio

padrão que uma distribuição normal precisaria ter para produzir a mesma distância

interquartílica com os dados utilizados e daí vem o fator 1,35 apresentado na

Page 98: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

fórmula do IQR. Os autores argumentam ainda que se os dados não apresentarem

distribuição normal o uso do pseu-sigma é uma medida de dispersão mais resistente

que o desvio padrão, já para distribuição normal tem-se que desvio padrão e

pseudo-sigma são aproximadamente iguais.

3. RESULTADOS E DISCUSSÃO

A Figura 1 mostra a distribuição de freqüências da umidade do solo com o

respectivo teste de Lilliefors para a normalidade.

Figura 1. Histograma dos coeficientes de variação da umidade do solo com o teste

de normalidade.

A distribuição de freqüências e o teste de normalidade revelaram que os

coeficientes de variação da umidade do solo se afastaram da distribuição normal.

Este fato não permite o uso da metodologia descrita em Garcia (1989) para a

classificação da variabilidade desse atributo baseado nos coeficientes de variação.

Entretanto, pode-se utilizar a metodologia proposta por Costa et al (2002) que

independente da distribuição de probabilidade desses coeficientes.

Page 99: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Na Tabela 2 são apresentadas as estatísticas do coeficiente de variação do

atributo resistência do solo a penetração, utilizadas na determinação dos limites dos

graus de variabilidade.

Tabela 2. Estatísticas dos coeficientes de variação da umidade do solo utilizadas

para a determinação de limites de graus de variabilidade.

Estatísticas Umidade

Q3 16,70

Q1 7,62

IQR 9,08

Mediana (Q2) 10,77

n 61,00

média do CV 12,56

pseudo sigma 6,73

maior valor 34,00

menor valor 3,88

amplitude 30,12

Analisando os quartis (Q1, Q2 e Q3) e adotando a classificação de Pimentel

Gomes (1990) a variabilidade do atributo seria classificada como média ou alta para

pelo menos 50% dos dados avaliados, ou seja, dos artigos publicados. O menor

coeficiente de variação encontrado na literatura para esse atributos foi de 3,88% e o

maior de 34,00% que, de acordo com o mesmo autor, teria a classificação de baixa

e de alta magnitude, respectivamente. Pode-se verificar por estes resultados que a

classificação de variabilidade sugerida por esse autor não se aplica adequadamente

à umidade do solo. Deve-se ressaltar que a classificação de Pimentel Gomes (1990)

foi proposta baseando-se em experimentos com delineamentos experimentais e

para atributos agrícolas com relativa estabilidade e que, portanto, não deve ser

generalizada.

Considerando que os coeficientes de variação para a umidade do solo

apresentaram distribuição de probabilidade que se afastou da normal, adotou-se a

metodologia de classificação dos coeficientes de variação proposta por Costa el al

(2002).

Page 100: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Os resultados da classificação dos coeficientes de variação são apresentados

na Tabela 3.

Tabela 3. Classificação dos coeficientes de variação da umidade do solo de acordo

com o grau de variabilidade experimental.

Coeficiente de Variação (CV%)

Baixo Médio Alto Muito Alto

Umidade CV < 4,04 4,04 < CV < 17,50 17,50 < CV < 24,22 CV > 24,22

Verifica-se que a classificação do grau de variabilidade utilizando-se a

proposta de classificação feita por Costa et al (2002) difere daquela classificação

geralmente utilizada em trabalhos científicos que utiliza limites fixos qualquer que

seja a variável analisada.

A variabilidade é considerada baixa para o caso da umidade do solo se o

coeficiente de variação for inferior a 4,04 e é considerada muito alta para CV

maiores que 24,22. Já na classificação de Pimentel Gomes (1990) tem-se que estes

limites são de 10% e de 30%, respectivamente, mostrando que este atributo do solo

apresenta maior estabilidade que aqueles estudados pelo referido autor.

4. CONCLUSÃO

A classificação do grau de variabilidade de experimentos agrícolas que

envolvam o atributo umidade do solo não deve seguir os parâmetros fixos propostos

na literatura de experimentação agrícola.

O grau de variabilidade desse atributo e de outros atributos na

experimentação agrícola deve ser classificado utilizando a proposta de Costa et al

(2002) e ser adaptada para cada atributo avaliado.

5. REFERÊNCIAS:

AMARAL, A.M., MUNIZ, J.A., SOUZA, M. Avaliação do coeficiente de variação como

medida da precisão na experimentação com citros. Pesq. Agropec. Bras., Brasília,

vol.32, n.12, p.1221-1225, 1997.

Page 101: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

CLEMENTE, A. L.; MUNIZ, J. A. Avaliação da precisão de experimentos com

plantas forrageiras. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UFLA, 11.

Resumos... Lavras, UFLA, 1998, p. 141.

COSTA, N.H.A.D., SERAPHIN, J.C., ZIMMERMANN, F.J.P. Novo método de

classificação de coeficientes de variação para a cultura do arroz de terras altas.

Pesq. Agropec. Bras., vol.37, n.3, p.243-249, 2002.

ESTEFANEL, V.; PIGNATARO, I.A.B.; STORCK, L. Avaliação do coeficiente de

variação de experimentos com algumas culturas agrícolas. In: SIMPÓSIO DE

ESTATÍSTICA APLICADA À EXPERIMENTAÇÃO AGRONÔMICA, 2., 1987,

Londrina. Anais... Londrina: Univ. Estadual de Londrina / Região Brasileira da

Sociedade Internacional de Biometria, 1987. p.115-131.

GARCIA, C.H. Tabelas para classificação do coeficiente de variação. Piracicaba:

IPEF, 1989. 12p. (Circular técnica, 171).

JUDICE, M. G., MINIZ, J. A., CARVALHEIRO, R. Avaliação do coeficiente de

variação na experimentação com suínos. Ciênc. e Agrotec., vol. 23, n.1, p.170-173,

1999.

LILLIEFORS, H. W. On the Kolmogorov-Smirnov test for normality with mean and

variance unknown. J. Am. Stat. Assoc., Washington, vol.62, p.399-402, 1967.

MEAD, R.; CURNOW, R.N. Statistical methods in agriculture and experimental biology. New York: Chapman and Hall, 1983. 335p.

PIMENTEL GOMES, F. Curso de Estatística Experimental. 12.ed. Piracicaba:

Nobel, 1990. 467p.

SCAPIM, C.A.; CARVALHO, C.G.P. de; CRUZ, C.D. Uma proposta de classificação

dos coeficientes de variação para a cultura do milho. . Pesq. Agropec. Bras.,Brasília, v.30, p.683-686, 1995.

TRIOLA, M. F. Introdução a estatística. LTC: 7 edição. 1999.

Page 102: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

EFEITO DE TENDÊNCIA NO AJUSTE DE SEMIVARIOGRAMAS ESFÉRICOS

EFFECT OF TREND IN THE ADJUSTMENT OF SPHERICAL SEMIVARIOGRAM

Alessandra Ribeiro da Silva1, Ednaldo Carvalho Guimarães2, Marcelo Tavares3

Universidade Federal de Uberlândia - Faculdade de Matemática Av. João Naves de Ávila,2160 – Campus Santa Mônica

CEP: 38400-902 – Uberlândia – MG – Brasil 1Aluna do Curso de Matemática – UFU –

Bolsista: PET-SESu\MEC – e-mail: [email protected] 2Professor Orientador – e-mail: [email protected]

3Professor Colaborador – e-mail: [email protected]

ABSTRACT

The study and the determination of the spatial or temporal dependence of regionalized aleatory

variables can be carried out through the semivariogram that permits determinate the range of the

spatial dependence of the variable in the study and also defines the structure of the spatial

behavior. The presence of a trend in the evaluated data makes it difficult the adjustment of

adequate models to the spatial behavior of the variable. The aim of this study was to show,

through graphic analyses, the behavior alteration of spherical semiovariogram when sampling

data presents different types of trends. It was taken data of bulk density with spherical behavior

described by the spherical semivariogram model, after that it was added to the data, polynomial

and cyclical trends. The semivariogram was again adjusted and it was verified that a polynomial

trend caused semivariogram model without a defined platform and the cyclical trend caused

semivariogram also cyclical or periodical. As a conclusion it could be noticed that the presence

of a trend, in the analyzed variable, can induce adjustments of spatial dependence in a different

way of the real model.

Key-words: geostatistics, spherical semivariogram, trend

RESUMO

O estudo e a determinação da dependência espacial ou temporal de variáveis aleatórias

regionalizadas podem ser realizados através do semivariograma que permite a determinação da

amplitude da dependência espacial da variável em estudo e também define a estrutura do

comportamento espacial. A presença de tendência nos dados avaliados dificulta o ajuste de

modelos adequados ao comportamento espacial da variável. Este trabalho teve o objetivo de

mostrar, por meio de análise gráfica, a alteração no comportamento de semivariogramas

esféricos quando os dados amostrais apresentarem diferentes tipos de tendências. Foram

Page 103: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

utilizados dados de densidade do solo com comportamento espacial descrito pelo modelo de

semivariograma esférico, em seguida, foram adicionadas a estes dados tendências polinomiais e

cíclicas. O semivariograma foi novamente ajustado e verificou-se que a tendência polinomial

acarretou modelos de semivariogramas sem patamar definido e que a tendência cíclica acarretou

semivariogramas também cíclicos ou periódicos. Concluiu-se que a presença de tendência, na

variável analisada, pode induzir ajustes de modelos de dependência espacial diferente do

modelo real.

Palavras-chave: geoestatística, semivariograma esférico, tendência.

1. INTRODUÇÃO

O estudo e a determinação da dependência espacial ou temporal de variáveis aleatórias

regionalizadas podem ser realizados utilizando a metodologia geoestatística. Uma das mais

importantes ferramentas dessa metodologia é o semivariograma que permite a determinação da

amplitude da dependência espacial da variável e também define a estrutura do comportamento

espacial.

Vieira (1997) argumenta que as duas principais ferramentas de análise da dependência

espacial são o autocorrelograma e o semivariograma, tendo o segundo a vantagem de ser menos

restritivo que o primeiro e, portanto, o preferido entre os pesquisadores.

Basicamente o semivariograma mede o grau de semelhança entre amostras vizinhas,

esperando-se que quanto mais próximas, espacialmente ou temporalmente, forem selecionadas

as amostras, maior será a semelhança entre elas e, portanto, menor será a variância e quanto

mais afastada menor será a semelhança, até que estas diferenças sejam atribuídas tão somente

ao acaso.

O semivariograma tem aplicação imediata na realização de estimativas por meio da

krigagem e estas são utilizadas para mapear as variáveis.

Um dos problemas na determinação do semivariograma é a presença de tendência nos

dados avaliados, ou seja, a não estacionaridade da variável, dificultando o ajuste de modelos

adequados ao comportamento espacial da variável Vieira (1997) e Guimarães (2004). É comum

entre os usuários da metodologia geoestatística surgir à dúvida de qual modelo de tendência

deve ser utilizado para a variável em estudo e para uma melhor definição do semivariograma,

principalmente entre usuários de áreas aplicadas.

Page 104: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Estas tendências influenciam diretamente no ajuste de semivariogramas e produzem

efeitos diferenciados nos modelos. Vieira et al (1983) argumentam que quando a variável

apresentar tendência esta deve ser removida antes do ajuste do semivariograma e sugerem o uso

de superfície de tendência para a remoção.

Espera-se, com este trabalho, mostrar padrões de comportamento de semivariogramas

quando submetidos a diferentes tipos de tendência.

2. METODOLOGIA DE EXECUÇÃO

Os dados experimentais desse estudo se referem às densidades de um solo agrícola

levantados por Guimarães (1993) e apresentam dependência espacial com modelo esférico. A

partir dos dados originais de densidade foram criadas novas variáveis adicionando-se as

tendências polinomiais e cíclicas.

O cálculo da semivariância foi feito por meio da Equação 1.

)(2

)]()([)(

2)(

1

hN

hxZxZh

hN

iii

(1)

em que: )(h é a semivariância para uma distância h; Z(xi) e Z(xi+h) são observaçaões da

variável Z nas posições xi e xi+h; N(h) é o número de pares obtidos para a distância h.

A partir dos valores de )(h e de h constroi-se o semivariograma.

A fórmula e a representação gráfica do modelo esférico podem ser visualizadas na

Equação 2 e Figura 1.

30 1

0 1

[1,5( / ) 0,5( / ) ]( )

C C h a h ah

C C

0 h ah a (2)

onde C0: efeito pepita; C0+C1: patamar; a: alcance do semivariograma; h: distância de

separação entre as observações.

Page 105: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 1: Semivariogramas esféricos: (A) sem efeito pepita e (B) com efeito pepita.

Utilizou-se, portanto uma variável regionalizada Z(x, y) e variáveis Z*(x, y),

respectivamente, sem e com a presença de tendência.

Os dados foram gerados em uma malha com 63 pontos amostrais separados entre si de

20m e dispostos em uma malha retangular de 9 linhas e 7 colunas.

A análise exploratória da variável Z, com tendências e sem a tendência, foi realizada

para verificar o efeito de diferentes tendências na análise descritiva. Na análise geoestatística

foram determinados os semivariogramas para as diferentes situações do estudo.

Os procedimentos da análise geoestatística foram realizados de acordo com Vieira et

al (1983) e as análises foram feitas no programa GS+ Versão 7 (Gamma Design Software,

2004).

As tendências polinomiais e cíclicas foram feitas de acordo com as equações gerais

(Equação 3 e Equação 4).

Polinomial:

y = a+bx+cy+dxy+ex2+... (3)

Cíclica:

y = a+sen(x) +... (4)

3. RESULTADOS E DISCUSSÃO.

Na Figura 2 é apresentado o comportamento dos dados de densidade do solo.

Page 106: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 2: Comportamento da densidade do solo.

Nota-se um comportamento errático da variável com valores altos e baixos de

densidade distribuídos por toda superfície, conseqüentemente, impossibilitando o ajuste de

modelos determinísticos (matemáticos) para explicar a variável.

Na Figura 3 observa-se o comportamento dos dados quando adicionamos a tendência

linear do tipo (Equação: 5).

f (x, y) = 0,3+0,002x (5)

Figura 3: Comportamento da densidade do solo com tendência linear.

Nota-se que, neste caso, foi adicionada a tendência linear apenas na direção X e

percebe-se o efeito desta tendência nesta direção (Figura 3). Os valores mais baixos

concentram-se na parte inferior da figura.

Page 107: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Na Figura 4 observa-se o comportamento dos dados quando adicionamos a tendência

quadrática do tipo (Equação: 6).

f (x, y) = 0,000005x2+0,00001xy+0,000005 y2+0,2 (6)

Figura 4: Comportamento da densidade do solo com tendência quadrática.

Na Figura 4 foi adicionada uma superfície quadrática aos dados de densidade e como

se pode notar o efeito ocorre tanto na direção X quanto na direção Y e de forma não linear.

Na Figura 5 observa-se o comportamento dos dados quando adicionamos a tendência

cíclica do tipo (Equação: 7).

f (x, y) = 0,3+0,2sen(x)+0,4sen(y) (7)

Figura 5: Comportamento da densidade do solo com tendência cíclica.

Page 108: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A Figura 5 mostra o efeito de uma função cíclica.A tendência cíclica promove a

formação de picos e vales na superfície dos dados quando representados espacialmente.

Considerando as observações feitas nas representações espaciais dos dados (Figuras 2

a 5) percebe-se que este tipo de análise descritiva pode ser utilizada como uma pré-análise para

verificar se a variável analisada esta ou não sob a influência de tendência.

Na Tabela 1 são apresentadas as estatísticas dos dados originais de densidade do solo e

as estatísticas dos dados com tendência.

Tabela 1-Estatísticas da densidade do solo (g/cm3) para

os dados originais e dados com tendência.

Estatísticas DensidadeLinearQuadrático Seno

Média 1,15 1,65 1,53 1,55

Mediana 1,15 1,66 1,52 1,57

Desvio padrão 0,07 0,13 0,13 0,32

Coef. Variação 6,15 8,18 8,57 20,54

Curtose 1,54 0,46 0,33 -0,97

Assimetria -0,07 -0,02 0,01 -0,27

Mínimo 0,93 1,27 1,14 0,93

Máximo 1,35 2,01 1,81 2,12

Contagem 63 63 63 63

A Tabela 1 mostra que a tendência tem influência sobre a variabilidade dos dados,

pois esta geralmente provoca um aumento no coeficiente de variação. Verificou-se também que

a tendência cíclica (função seno) aumentou a assimetria dos dados. Sabe-se que o coeficiente de

variação alto e o coeficiente de assimetria e de curtose que se afastam do valor zero podem ser

um indicativo da presença de tendência nos dados e este fato dificulta a determinação de

modelos de semivariogramas com patamar definido.

Contruiu-se, a partir dos dados da densidade do solo, o semivariograma esférico que

pode ser visto na Figura 6.

Page 109: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 6: Semivariograma esférico para a densidade do solo.

Ajustou-se o modelo de dependência espacial esférico com alcance de 100,800000m,

patamar de 0,004970m e efeito pepita de 0,002480m conforme mostrou a Figura 3.

Esta figura mostra o comportamento geral da distribuição espacial com o modelo

esférico. Esse modelo mostrou que até uma distância de separação entre as amostras de 100,8m

existe a dependência espacial e que a partir dessa distância não ocorre mais a dependência.

Adicionou-se aos dados de densidade tendências polinomiais expressas pelas

Equações 5 e 6 e obteve-se os seguintes semivariogramas ( Figuras 7 e 8) :

Figura 7: Semivariograma com tendência linear.

Page 110: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 8: Semivariograma com tendência quadrática.

Percebe-se que nos semivariogramas com tendência linear e quadrática (Figuras 5 e 7)

não foi possível determinar o alcance da dependência, isso ocorreu devido a adição da

tendência, ou seja, em dados experimentais quando não se consegue detectar o patamar do

semivariograma, deve-se investigar a presença de tendência e conforme recomenda Vieira et

al (1983) deve-se ajustar superfícies de tendência polinomiais e fazer a extração dessa

tendência dos dados. O semivariograma deve ser ajustado com os resíduos, posterior a

tendência deve novamente ser adicionada.

Verificou-se que na presença da tendência linear e quadrática não ocorreu patamar

neste tipo de semivariograma e esperava-se que o gráfico tridimensional caracterizasse bem o

modelo de tendência.

Adicionou-se também aos dados de densidade tendência cíclica expressa pela Equação

5 e obteve-se o seguinte semivariograma (Figura 9).

Figura 9: Semivariograma com tendência cíclica (seno).

A análise desta figura mostrou que a determinação do patamar não é clara e as

semivariâncias flutuam ao redor da variância, portanto, na presença da função seno verifica-se

Page 111: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

que os dados do semivariograma experimental apresentam uma certa periodicidade e esta é

refletida no modelo de semivariograma.

Portanto, verificou-se que a tendência polinomial acarretou modelos de

semivariogramas sem patamar definido e que a tendência cíclica apresentou semivariogramas

também cíclicos ou periódicos.

4. CONCLUSÕES

Concluiu-se que a presença de tendência, na variável analisada, pode induzir ajustes de

modelos de dependência espacial diferente do modelo real.

5. REFERÊNCIAS BIBLIOGRÁFICAS

[1] GAMMA DESIGN SOFTWARE. GS+: Geostatistics for the Enviromental Sciences, 2004.

[2] GUIMARÃES, E. C. Geoestatistica Básica e aplicada, 77p, 2004. Disponível em:

www.famat.ufu.br/ednaldo/ednaldo.htm Acessado em 10/08/2004.

[3] GUIMARÃES, E. C. Variabilidade espada} da umidade e da densidade do solo em um

Latossolo Roxo. Campinas, SP, 1993. 135 p. Dissertação (Mestrado em Engenharia Agrícola -

Área de concentração: Água e Solo) - Faculdade de Engenharia Agrícola, Universidade

Estadual de Campinas.

[4] VIEIRA, S. R.. Variabilidade espacial de argila, silte e atributos químicos em parcela

experimental de um Latossolo Roxo de Campinas (SP). Bragantia, 56(1), p. 181-190, 1997.

[5] VIEIRA, S. R.; HATFIELD, J. L.; NIELSEN, D. R.; BIGGAR, J. W. Geostatistical theory

and application to variability of some agronomical properties. Hilgardia, 31(3), 75 p, 1983.

Page 112: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Polıgonos Regulares e ComplexidadeAlgebrica 2 e 3: alguns problemas de

geometria euclidiana plana

Luciana Yoshie Tsuchiya∗ Gabriela Aparecida dos Reis†

Edson Agustini‡

Faculdade de Matematica - Famat

Universidade Federal de Uberlandia - Ufu - MG

Abril de 2008

Resumo

Este trabalho de iniciacao cientıfica esta baseado na dissertacao de mestrado “Com-plexidade em Geometria Plana Euclidiana”, de S. M. R. Lopes, ref. [2].

O conceito de complexidade algebrica em demonstracoes de geometria euclidianaplana esta associado ao grau de dificuldade que tal demonstracao apresenta. Nostrabalhos [3] e [4], introduzimos o conceito de complexidade algebrica e analisamosalguns teoremas importantes de geometria a luz desse conceito. Neste trabalho,retomamos a complexidade algebrica sob um ponto de vista mais didatico, tra-balhando com polıgonos regulares. Problemas associados ao estudo de polıgonosregulares de 3, 4, 5, 6 ou 10 lados em geometria plana sao resolvidos analitica-mente por expressoes quadraticas, ou seja, possuem complexidade algebrica 2. Noentanto, e facil dar exemplos de problemas geometricos ingenuos e difıceis onde fig-uram angulos multiplos de 20o e 50o. Alguns desses problemas estao relacionadosas expressoes algebricas cubicas associadas aos polıgonos regulares de 9 e 18 lados,ou seja, possuem complexidade algebrica 3. Neste trabalho introduzimos o estudode algumas propriedades e configuracoes geometricas associadas a polıgonos regu-lares de 5, 9 e 18 lados e apresentamos ferramentas que facilitam a resolucao deproblemas geometricos de complexidade algebrica 2 e 3.Palavras-chave: complexidade algebrica, polıgonos, trigonometria.

1 Polıgonos regulares com 3, 4, 5, 6 e 10 lados: com-

plexidade algebrica 2

Os problemas de Geometria Euclidiana Plana do Ensino Medio geralmente envolvemapenas angulos de 30o, 45o, 60o e 90o, nos quais as funcoes trigonometricas possuemos valores memorizados pelos alunos. Esses angulos estao relacionados aos polıgonosregulares de 3, 4 e 6 lados, que nos sao mais familiares, e o estudo desses polıgonos se

[email protected] - Pet - Programa de Educacao Tutorial - Famat - Ufu.†[email protected] - Pet - Programa de Educacao Tutorial - Famat - Ufu.‡[email protected] Professor orientador.

Page 113: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

faz essencialmente com expressoes quadraticas. No triangulo equilatero abaixo, obtemos,utilizando o Teorema de Pitagoras, a seguinte equacao quadratica:

a

a

2

h

60º

30º

a2 =(a

2

)2

+ h2 ⇒ h2 = a2 −a2

4⇒

h2 =3

4a2 ⇒ h = a

√3

2

Daı tiramos

cos (30o) = sen (60o) =h

a=

√3

2e sen (30o) = cos (60o) =

a2

a=

1

2.

No quadrado, tambem utilizando o Teorema de Pitagoras, obtemos a equacao:

a

a

a 2

45º

45º

h2 = a2 + a2 ⇒ h =√

2a

Donde tiramos

cos (45o) =a√2a

=

√2

2e sen (45o) =

a√2a

=

√2

2.

Para o hexagono fica evidente que seu estudo se faz por meio de equacoes quadraticas, jaque podemos decompo-lo em seis triangulos equilateros.

Embora nao tao estudado no Ensino Medio, ao pentagono e ao decagono tambem podemosassociar equacoes quadraticas, o que nos permite trabalharmos com angulos de 18o, 36o

e 72◦. De fato, para 36o, consideremos a figura:

Page 114: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O C A

B

rl

10

36º 72º 72º

36º

36º

Por semelhanca de triangulos temos

OB

BA=

BA

AC=⇒ r

l10

=l10

r − l10

.

Sem perda de generalidade podemos supor r = 1.

Logo,

(l10)2

= 1 − l10 ⇒ (l10)2+ l10 − 1 = 0 ⇒ l10 =

√5 − 1

2.

Utilizando a Lei dos Senos, temos

√5−12

sen (36o)=

1

sen (72o)=⇒

sen (72o)

(√5 − 1

2

)= sen (36o) =⇒(√

5 − 1

2

)sen (2 (36o)) − sen (36o) = 0 =⇒(√

5 − 1

2

)2 cos (36o) sen (36o) − sen (36o) = 0 =⇒

sen (36o)[(√

5 − 1)

cos (36o) − 1]

= 0

Mas sen (36o) �= 0, entao(√5 − 1

)cos (36o) − 1 = 0 =⇒ cos (36o) =

1√5 − 1

.

Por envolverem expressoes quadraticas, os problemas associados ao estudo de polıgonoscom 3, 4, 5, 6 e 10 lados tem o que chamamos de Grau de Complexidade Algebrica 2.

Vejamos dois problemas com grau de complexidade algebrica 2.

Page 115: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

1.1 Construcao geometrica de uma tabela exata de senos e cossenosde angulos multiplos de 3o

Nesta subsecao vamos, de uma forma distinta da apresentada anteriormente, estudaras relacoes entre os lados e as diagonais do pentagono para calcular o valor de cossenode 18o. Utilizando esse valor e valores ja conhecidos do cosseno, alem de identidadestrigonometricas, montaremos uma tabela trigonometrica exata com todos os senos ecossenos de angulos multiplos inteiros de 3o.

Seja ABCDE um pentagono regular de lado medindo 1 e P o ponto de interseccao dasdiagonais AD e BE, conforme figura.

A B

C

D

E

P

dH

1

1

2�

18º

36º

36º

36º

Observemos que os triangulos AED e BAE sao isosceles, entao, como os angulos internosdo pentagono medem 108o, temos EDA = 36o e AEP = 36o. Assim, DEP = AED −

AEP = 72o e, consequentemente, EPD = 72o e o triangulo PDE e isosceles. Entao, temosDE = DP = 1.

Determinando que AP =1

λ, temos que o comprimento da diagonal do pentagono e dado

por

d = 1 +1

λ.

No triangulo PBA obtemos, pela soma dos angulos internos do triangulo, que PAB = 72o,

pois ABE = 36o e APB = 72o (angulo oposto de EPD). Logo, temos EAP = 108o−PAB =

36o e, portanto, o triangulo APE tambem e isosceles e, consequentemente, EP = AP =1

λ.

Do triangulo isosceles EDP obtemos o triangulo retangulo EDH, em que H e o ponto emque a altura encontra o lado EP, de onde tiramos

sen (18o) =12λ

1.

Observemos que os triangulos ABD e PDE sao semelhantes, entao podemos obter aseguinte relacao:

11λ

=d

1.

Como d = 1 +1

λ, chegamos a equacao quadratica

λ2 − λ − 1 = 0 ,

Page 116: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

de onde obtemos

λ =1 +

√5

2.

Assim,

sen (18o) =1

2(

1+√

52

) =

√5 − 1

4

e, usando a identidade trigonometrica sen2 (18o) + cos2 (18o) = 1, obtemos

cos (18o) =

√10 + 2

√5

4.

Com o cosseno de 45o e 30o podemos encontrar o valor do cosseno de 15o usando aidentidade trigonometrica da diferenca de angulos:

cos (15o) = cos (45o − 30o)

= cos (45o) cos (30o) + sen (45o) sen (30o)

=

√2

2

√3

2+

√2

2

1

2

=

√2(√

3 + 1)

4.

Usando a mesma identidade para os angulos de 15o e 18o encontramos o cosseno de 3o:

cos (3o) = cos (18o − 15o) = cos (18o) cos (15o) + sen (18o) sen (15o)

=

√10 + 2

√5

4

√2(√

3 + 1)

4+

√5 − 1

4

8 − 4√

3

16

=

(1 −

√3)√

20 + 4√

5 +(1 +

√3)(√

10 −√

2)

16.

e, a partir daı, usando a identidade trigonometrica para a soma dos angulos encontramos as

Page 117: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

funcoes trigonometricas para os angulos multiplos inteiros de 3o, conforme tabela abaixo.

α sen (α) cos (α)

3o (1−√

3)√

20+4√

5+(1+√

3)(√

10−√

2)16

(1+√

3)√

20+4√

5−(1−√

3)(√

10−√

2)16

6o√

5+18

+

√3(

√5−1)

√10+2

√5

16

√3√

5+18

+(√

5−1)√

10+2√

5

16

9o

√2(

√5+1)

8−

√2(

√5−1)

√10+2

√5

16

√2(

√5+1)

8+

√2(

√5−1)

√10+2

√5

16

12o

√10+2

√5−

√3(

√5−1)

8

√3√

10+2√

5+√

5−1

8

15o

√2(1−

√3)

4

√2(1+

√3)

4

18o√

5−14

√10+2

√5

4

21o

√2(1−

√3)(

√5+1)

16−

√2(1+

√3)(1−

√5)√

10+2√

5

32

√2(1+

√3)(

√5+1)

16+

√2(1−

√3)(1−

√5)√

10+2√

5

32

24o

√3(1+

√5)

8+

(1−√

5)√

10+2√

5

16

(1+√

5)8

+

√5(−1+

√5)√

10+2√

5

16

27o

√2

(√10+2

√5−

√5+1

)8

√2

(√10+2

√5+

√5−1

)8

30o 12

√3

2

33o

√2(

√3−1)

√10+2

√5+

√2(

√3+1)(

√5−1)

16

√2(

√3+1)

√10+2

√5−

√2(

√3−1)(

√5−1)

16

36o (√

5−1)√

10+2√

5

18

√5+14

39o

√2(

√3+1)(

√5+1)

16−

√2(

√3−1)(

√5−1)

√10+2

√5

32

√2(

√3−1)(

√5+1)

16+

√2(

√3+1)(

√5−1)

√10+2

√5

32

42o√

3√

10+2√

5−√

5+1

8

√10+2

√5+

√3(

√5−1)

8

45o√

22

√2

2

1.2 Uma consequencia: senos e cossenos de sucessivos arcosmetade

Por meio das identidades trigonometricas podemos obter muitos resultados interessantes,como por exemplo, os senos e cossenos dos sucessivos arcos metade dos angulos de 45o,

15o e 18o.

Consideremos

cos2 (θ) =1 + cos (2θ)

2⇒ cos (θ) =

√2 + 2 cos (2θ)

2.

Fazendo θ =α

2temos

cos(α

2

)=

√2 + 2 cos (α)

2=

√8 + 8 cos (α)

4.

Aplicando o arco metade deα

2na formula obtemos

cos

( α2

2

)= cos

( α

22

)=

√2 + 2 cos

(α2

)2

=

√2 + 2

√2+2cos(α)

2

2=

√2 +

√2 + 2 cos (α)

2.

Page 118: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Assim, aplicando sucessivamente o arco metade deα

2n−1na formula obtemos

cos

⎛⎝ α

2n−1

2n

⎞⎠ = cos( α

2n

)=

√2 +

√2 + · · · +√

2 + 2 cos (α)

2.

que tera n raızes quadradas.

Para o seno dos sucessivos arcos metade, consideremos

sen(α

2

)=

√2 − 2 cos (α)

2=

√8 − 8 cos (α)

4,

Temos

sen( α

2n

)=

√2 −

√2 − · · · −√

2 − 2 cos (α)

2,

com n raızes quadradas.Entao, para os cossenos e senos dos sucessivos arcos metades de 45o, 15o e 18o temos⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos

(45o

2n

)=

√√√√2 +

√2 + · · · +

√2 + 2

(√2

2

)2

=

√2 +

√2 + · · · +

√2 +

√2

2

sen

(45o

2n

)=

√√√√2 −

√2 − · · · −

√2 − 2

(√2

2

)2

=

√2 −

√2 − · · · −

√2 −

√2

2

,

ambos com n + 1 raızes quadradas,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(

15o

2n

)=

√√√√√2 +

√√√√2 + · · · +√

2 + 2

(√2(

√3+1)

4

)2

=

√2 +

√2 + · · · +

√2 +

√2(

√3+1)

2

2

sen(

15o

2n

)=

√√√√√2 −

√√√√2 − · · · −√

2 − 2

(√2(

√3−1)

4

)2

=

√2 −

√2 − · · · −

√2 −

√2(

√3−1)

2

2

,

ambos com n + 1 raızes quadradas e⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(

18o

2n

)=

√√√√√8 +

√√√√8 + · · · +√

8

(√10+2

√5

4

)4

=

√8 +

√8 + · · · +

√2√

10 + 2√

5

4

sen(

18o

2n

)=

√√√√√8 −

√√√√8 − · · · −√

8

(√10+2

√5

4

)4

=

√8 −

√8 − · · · −

√2√

10 + 2√

5

4

,

ambos com n + 2 raızes quadradas.

Page 119: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2 Polıgonos regulares com 9 e 18 lados: complexi-

dade algebrica 3

Problemas geometricos que nao costumam aparecer no Ensino Medio sao os que en-volvem os angulos de 20o e 100o, que apresentam grau de complexidade algebrica 3, porestarem associados as expressoes cubicas como, por exemplo, a que relaciona cos (20◦)

com cos (60o) =1

2.

Vejamos: no caso particular de multiplicacao de numeros complexos em que todos osfatores sao iguais e de modulo unitario, obtemos a chamada Formula de Moivre:

(cos (θ) + i sen (θ))n

= cos(nθ) + i sen(nθ), ∀n ∈ Z.

Para n = 3, temos

cos(3θ) + i sen(3θ) = (cos (θ) + i sen (θ))3

= cos3 (θ) + 3 cos2 (θ) (i sen (θ)) − 3 cos (θ) sen2 (θ) − i sen3 (θ)

=(cos3 (θ) − 3 cos (θ) sen2 (θ)

)+(3 cos2 (θ) sen (θ) − sen3 (θ)

)i,

Logo, {cos (3θ) = cos3 (θ) − 3 cos (θ) sen2 (θ)

sen (3θ) = 3 cos2 (θ) sen (θ) − sen3 (θ).

Entao, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cos(3 (20o)) = cos (60o) =1

2= cos3 (20o) − 3 cos (20o) sen2 (20o)

sen(3 (20o)) = sen (60o) =

√3

2= 3 cos2 (20o) sen (20o) − sen3 (20o)

.

Daı ja podemos perceber que o grau de dificuldade de se trabalhar com esses angulos emproblemas e maior, e isso tambem se deve ao fato de esses angulos estarem relacionadosaos polıgonos regulares de 9 e 18 lados que nos sao menos familiares.

Dois desses problemas envolvendo triangulos e considerados difıceis no Ensino Medio porterem grau de complexidade algebrica 3 sao os que apresentamos abaixo.

Problema 1: Seja ABC um triangulo isosceles de angulo principal A = 100o. Marque oponto D na reta AB tal que AD = BC. Encontre o valor do angulo α = BCD.

100º

A

BC

D

Page 120: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Problema 2: Seja ABC um triangulo isosceles de angulo principal A = 20o. Considereo ponto P e Q nos lados AB e AC, respectivamente, tais que BCP = 50o e CBP = 60o.

Encontre o valor de β = BQP.

B

C

Q

P

A

50º

60º

20º

Resolvemos esses dois problemas usando propriedades dos lados e diagonais do eneagonoe octadecagono regulares. Para tanto, consideremos os lemas seguintes.

Lema 1: Dado um eneagono regular, denotemos por 1 o comprimento do lado do

eneagono, e por 2 e 4 os comprimentos das diagonais que subentendem, respectiva-

mente, dois e quatro lados do eneagono. Entao, 1 + 2 = 4 .

2

1

4

Demonstracao.

Consideremos a figura a seguir, na qual o octadecagono circunscreve o eneagono.

Assim, AB e o diametro do octadecagono e I e o ponto de interseccao entre AB e adiagonal CE. Por simetria, a diagonal FD tambem intersecta AB em I. Notemos que asdiagonais CF, DE e CE tem comprimentos 1 , 2 e 4 , respectivamente.

Page 121: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Sabendo-se que o angulo central do eneagono mede 40o temos FDC = 20o, pois FDC e

metade do angulo central. Temos tambem ECD = 40o, pois este e metade do arco�

ED

que mede 80o.

Pelo teorema dos angulos externos de um triangulo temos, ICD + IDC = FIC = DIE,ouseja, FIC = 40o + 20◦ = 60o.

Alem disso, pela simetria da figura, temos CI = IF e DI = IE,logo os triangulos FIC eEID sao isosceles de angulo principal 60◦,o que significa que eles sao equilateros.

Portanto, CF + DE = CE, ou seja, 1 + 2 = 4 , como querıamos . �

Resolucao do Problema 1.

Como o triangulo ABC e isosceles de angulo principal A = 100o, temos que ABC podeser inscrito em um eneagono regular. De fato, consideremos a figura abaixo.

P

A

D

E

C

100º

140º

140º

�B

Consideremos E o vertice entre A e C e P um ponto em BC tal que BP = BD.Usando asdenotacoes do Lema 1, AB = AC = 2 e AD = BC = 4 .Logo, pelo Lema 1,podemos esvrever,

BP = BD = AD − AB = 4 − C = 1 .

Alem disso temos o angulo DBP = 140o, pois DBP e um angulo externo de ABC.Assim, otriangulo DBP e isosceles de lados BD = BP = 1 e angulo principal 140◦ e portanto con-

gruente ao triangulo AEC pelo caso LAL.Disso tiramos que PD = AC = 2 . Novamente,utlizando o Lema 1, temos

PC = BC − PB = 4 − 1 = 2 = PD.

Logo, DCP e isosceles com angulo principal DPC = 160o, de onde podemos concluir queα = 10o. �

Lema 2: O octadecagono regular tem quatro diagonais nao diametrais que se intersectamem um unico ponto sobre um diametro.

Demonstracao.

Consideremos no plano complexo o octadecagono regular de vertices 1, w, w2, ..., w17 ew18 = 1, conforme figura.

Page 122: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

I

w2

w

w4

w6

w -19

=

w12

w14

w16

1 w=18

w17

Mostremos que as diagonais que unem w a w12, w2 a w14, w4 a w16 e w6 a w17

intersectam-se em um unico ponto I. Para isto, basta mostrar que as diagonais de w

a w12 e de w2 a w14 intersectam-se em um unico ponto. As demais seguem por simetria.Escrevendo as duas retas que contem as diagonais mencionadas na forma parametricatemos

t �−→ w + t(w12 − w), t ∈ R e s �−→ w2 + s(w14 − w2), s ∈ R.

Queremos mostrar que existem unicos s e t tais que

w + t(w12 − w) = w2 + s(w14 − w2).

Conjugando os dois lados desta equacao:

w + t(w12 − w) = w2 + s(w14 − w2) ⇒ w + t(w12 − w) = w2 + s(w14 − w2).

Mas, observando que w1 = w17, w12 = w6, w2 = w16 e w14 = w4 temos

w17 + t(w6 − w17) = w16 + s(w4 − w16

).

Entao, devemos mostrar que o sistema linear:{ (w12 − w

)t +

(w2 − w14

)s = w2 − w(

w6 − w17)t +

(w16 − w4

)s = w16 − w17

possui uma unica solucao.Calculando o determinante da matriz dos coeficientes, temos∣∣∣∣ w12 − w w2 − w14

w6 − w17 w16 − w4

∣∣∣∣ =(w12 − w

) (w16 − w4

)−(w2 − w14

) (w6 − w17

)= w28 − w16 − w17 + w5 − w8 + w19 + w20 − w31

= w10 − w16 − w17 + w5 − w8 + w + w2 − w13

= −w + w7 − w17 + w5 + w17 + w + w2 + w4

= w2 + w4 + w5 + w7

�= 0.

Page 123: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Logo o sistema de fato possui uma unica solucao.Resta mostrar agora que o ponto I pertence ao diametro que une w9 = −1 a w18 = +1

sobre o eixo real.Pela regra de Cramer, temos

s =

∣∣∣∣ w12 − w w2 − w

w6 − w17 w16 − w17

∣∣∣∣∣∣∣∣ w12 − w w2 − w14

w6 − w17 w16 − w4

∣∣∣∣ =w2 + w7

w2 + w4 + w5 + w7.

No entanto,

w2 + w7 =

(cos

(4π

18

)+ i sen

(4π

18

))+

(cos

(14π

18

)+ i sen

(14π

18

))e

w2 + w4 + w5 + w7 =

(cos

(4π

18

)+ i sen

(4π

18

))+

(cos

(8π

18

)+ i sen

(8π

18

))+

+

(cos

(10π

18

)+ i sen

(10π

18

))+

(cos

(14π

18

)+ i sen

(14π

18

))Mas, ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩cos

(4π

18

)= − cos

(14π

18

)

cos

(8π

18

)= − cos

(10π

18

) .

Daı,

s =sen

(4π18

)+ sen

(14π18

)sen

(4π18

)+ sen

(8π18

)+ sen

(10π18

)+ sen

(14π18

) .Ou seja, s e real.Logo,

I = w2 + s(w14 − w2

)= w2 +

(w2 + w17

w2 + w4 + w5 + w7

)(w14 − w2

)=

w3 + w6

w2 + w4 + w5 + w7

=w15 + w12

w16 + w14 + w13 + w11

= I.

Mas sabemos que um numero complexo e igual ao seu conjugado, apenas se estiver sobreo eixo real, ou seja I e um numeo real e portanto pertence ao diametro que une −1 a +1,

como querıamos. �

Resolucao do Problema 2.

Consideremos o triangulo inicial ABC inscrito em um octadecagono e os vertices D, E, F,

G, H, X e Y, conforme figura.

Page 124: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

I

E

F

G

Y

H

BC

XQ

P

AD

50º

60º

20º

Obesrve que ABC = 80◦,pois ele e metade do angulo central do arco AC = 160◦.Assim QBA = ABC − QBC = 80o − 60o = 20◦

Portanto, o triangulo ABQ e isosceles com AQ = BQ.

Pelo Lema 2, as diagonais EB, FC, GD e HA encontram-se no ponto I no diametro XY

e, alem disso pelo teorema dos angulos alternos internos AH // DB e AC // EB, dondetiramos que o quadrilatero AQBI e um losango.Daı, os triangulos AIP e AQP sao congruentes (criterio LAL) e o angulo PBI = QBP =

20o, daı, BIP = 30o.

Mas os triangulos BIP e BQI tambem sao congruentes (criterio LAL), de onde concluımosque α = 30o. �

3 Referencias Bibliograficas

[1] Avila, G. Variaveis Complexas e Aplicacoes. Rio de Janeiro: LTC - Livros Tecnicose Cientıficos Editora. 1990.

[2] Lopes, S. M. R. Complexidade em Geometria Plana Euclidiana. (Dissertacao deMestrado). Rio de Janeiro: PUC - Pontifıcia Universidade Catolica. 2002.

[3] Reis, G. A., Tsuchiya, L. Y. & Agustini, E. “Complexidade Algebrica emDemonstracoes de Geometria Euclidiana Plana:o Teorema de Napoleao e Propriedades”.FAMAT em Revista. N. 09, out. 2007, pp. 231-258.

[4] Tsuchiya, L. Y., Reis, G. A. & Agustini, E. “O Teorema de Barlotti”. FAMATem Revista. N. 09, out. 2007, pp. 147-174.

Page 125: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Aplicacao Normal de Gauss em SuperfıciesRegulares: paraboloides osculadores

Thiago Rodrigues da Silva∗ Edson Agustini†

Faculdade de Matematica - Famat

Universidade Federal de Uberlandia - Ufu - MG

Abril de 2008

1 Introducao

Um dos objetivos deste trabalho e realizar um estudo do quao rapido uma superfıcieregular S bidimensional se afasta do seu plano tangente em um ponto p ∈ S. Isto equivalea estudar a “velocidade” com que a direcao de um vetor normal e unitario a S em p variaem uma vizinhanca V de p em S.

Considerando S como sendo uma superfıcie regular orientavel, e possıvel considerar umcampo diferenciavel de vetores normais unitarios em S, o que equivale dizer que umaorientacao em S foi fixada. Este estudo remete-nos a uma aplicacao de S em S

2 que surgede maneira natural: a Aplicacao Normal de Gauss, N : S → S

2, que associa a cada pontop ∈ S o vetor normal e unitario a S, N (p) ∈ S

2.

Doravante trabalharemos com superfıcies S nas hipoteses dos paragrafos acima.

Pelo fato de estarmos trabalhando com um campo diferenciavel de vetores temos, comoconsequencia imediata, que N e diferenciavel. Logo, podemos tomar a diferencial de N

em p, dNp : TpS → TN(p)S2. Como TpS e TN(p)S

2 sao planos paralelos, podemos fazer aidentificacao TpS ≡ TN(p)S

2. Assim dNp : TpS → TpS.

Vamos explorar alguns aspectos geometricos de dNp e, para isso, tomemos uma curvaα : I ⊂

abR → S parametrizada em S tal que 0 ∈ I e α (0) = p. Logo, N (α (t)) , t ∈ I

e uma curva em S2. O vetor tangente a α em p e α′ (0) ∈ TpS. Logo, dNp (α′ (0)) pode

ser pensada como a taxa de variacao dos vetores normais restritos a curva α em umavizinhanca de p.

Como α e uma curva arbitraria passando por p, temos que dNp mede a taxa de variacaodos vetores normais a S em uma vizinhanca de p, ou seja, o quao rapido S se afasta deTpS em uma vizinhanca de p.

∗thiago [email protected] - Promat - Programa Institicional de Iniciacao Cientıfica e Moni-toria da Faculdade de Matematica - Famat - Ufu.

[email protected] Professor orientador.

Page 126: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2 Preliminares da Aplicacao Normal de Gauss

Antes de explorarmos algumas propriedades de N, precisamos da seguinte definicao:

Definicao. Dizemos que uma operador linear L : V → V, sendo V espaco vetorial munidode produto interno, e auto-adjunto quando 〈L (v) , w〉 = 〈v, L (w)〉 , ∀v,w ∈ V.

Com respeito a N temos a seguinte proposicao.

Proposicao. Sejam S uma superfıcie regular orientavel com orientacao fixada, ou seja,com N : S → S

2 Aplicacao Normal de Gauss definida e p ∈ S. Entao, a diferencial de N

em p, dNp : TpS → TpS, e um operador linear auto-adjunto.

Demonstracao:

A diferencial dNp e linear, logo, basta tomarmos uma base B = {e1, e2} de TpS e mostrar-mos que 〈dNp (e1) , e2〉 = 〈e1, dNp (e2)〉 .

Seja

X : U ⊂ab

R2 −→ X (U) ⊂ S ⊂ R

3

(u, v) �−→ (x (u, v) , y (u, v) , z (u, v))

uma parametrizacao local de S em p. Seja q ∈ U tal que X(q) = p. Desta forma, osvetores Xu (q) e Xv (q) formam um base para TpS.

Assim, basta mostrar que 〈dNp (Xu (q)) ,Xv (q)〉 = 〈Xu (q) , dNp (Xv (q))〉 .

Sejam ε > 0, I = (−ε, ε) ⊂ R e C curva regular em S parametrizada por α : I → S talque α(0) = p. Assim, definindo

β : I −→ U

t �−→ X−1 (α (t)) = (u (t) , v (t)),

temos α (t) = X (u (t) , v (t)) e (u (0) , v (0)) = X−1 (α (0)) = X−1 (p) = q.

Desta maneira,

α(t) = X(u(t), v(t)) ⇒α′ (t) = Xu (u (t) , v (t)) u′ (t) + Xv (u (t) , v (t)) v′ (t) ⇒α′ (0) = Xu (u (0) , v (0))u′ (0) + Xv (u (0) , v (0)) v′ (0) ⇒α′ (0) = Xu (q)u′ (0) + Xv (q) v′ (0) ,

ou seja, α′ (0) = (u′ (0) , v′ (0)) na base {Xu (q) ,Xv (q)} de TpS.

Seja a Aplicacao Normal de Gauss

N : S −→ S2

(x, y, z) �−→ N (X (u, v)) = N (u, v).

Page 127: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Fazendo N restrita a α temos

N (α (t)) = N (u (t) , v (t)) ⇒N′ (α (t)) = N′ (u (t) , v (t)) ⇒

dNα(t) (α′ (t)) = Nu (u (t) , v (t))u′ (t) + Nv (u (t) , v (t)) v′ (t) ⇒dNα(0) (α′ (0)) = Nu (u (0) , v (0))u′ (0) + Nv (u (0) , v (0)) v′ (0) ⇒

dNp (Xu (q) u′ (0) + Xv (q) v′ (0)) = Nu (q) u′ (0) + Nv (q) v′ (0) ⇒dNp (Xu (q))u′ (0) + dNp (Xv (q)) v′ (0) = Nu (q) u′ (0) + Nv (q) v′ (0) ⇒(

dNp (Xu (q)) − Nu (q))

u′ (0) =(Nv (q) − dNp (Xv (q))

)v′ (0) .

Notemos que, como a curva α regular passando por p e arbitraria e u′ (0) e v′ (0) sao ascoordenadas do vetor velocidade α′ (0) na base {Xu (q) ,Xv (q)} de TpS (que nao dependede α), entao a unica maneira da ultima equacao acima ficar satisfeita e quando os vetores

dNp (Xu (q)) − Nu (q) e Nv (q) − dNp (Xv (q)) (que nao dependem de α) forem nulos.Logo: {

dNp (Xu (q)) = Nu (q)

dNp (Xv (q)) = Nv (q).

Desta forma, para mostrar que dNp e auto-adjunta, basta mostrar que⟨Nu (q) ,Xv (q)

⟩=⟨

Xu (q) , Nv (q)⟩

.

Temos que⟨N(q),Xu (q)

⟩= 0 e

⟨N(q),Xv (q)

⟩= 0 (pois ambos sao ortogonais em p).

Derivando em relacao a v e a u, respectivamente, temos⎧⎨⎩⟨Nv(q),Xu (q)

⟩+⟨N(q),Xuv (q)

⟩= 0⟨

Nu(q),Xv (q)⟩

+⟨N(q),Xvu (q)

⟩= 0

.

Como Xuv = Xvu, pois X e diferenciavel, temos⟨Nu(q),Xv (q)

⟩=⟨Nv(q),Xu (q)

⟩=⟨Xu (q) , Nv (q)

⟩,

como querıamos. �

Antes de avancarmos mais nas propriedades da Aplicacao Normal de Gauss, e convenienteter em vista alguns resultados de algebra linear.O fato de dNp ser um operador linear auto-adjunto permite-nos associar a dNp a formabilinear

B : TpS × TpS −→ R

(u,v) �−→ 〈dNp(u),v〉 .

Podemos checar facilmente que B(u,v) = B(u,v) e, assim, concluımos que B e uma formabilinear simetrica.Podemos tambem associar a B a forma quadratica

Q : TpS −→ R

v �−→ B(v,v) = 〈dNp(v),v〉 .

Page 128: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

De posse destes resultados, temos os seguintes lema, proposicao e teorema.

Lema. SeT : S

1 −→ R

(x, y) �−→ ax2 + 2bxy + cy2

possui um ponto crıtico de maximo em (1, 0) , entao b = 0.

Demonstracao:

Em uma vizinhanca V de (1, 0) em S1 podemos expressar x em funcao de y, ou seja,

x = x (y) . Assim, se derivarmos T (x (y) , y) em relacao a y em V, temos

T ′ (y) = 2a.x (y) .x′ (y) + 2b.x (y) + 2by.x′ (y) + 2cy. (1)

Como em V, x (y) =√

1 − y2, temos

x′ (y) = −y

x (y). (2)

Substituindo (2) em (1) temos

T ′ (y) = −2ay + 2b.x (y) − 2by2

x (y)+ 2cy.

No ponto (1, 0) , temosT ′ (0) = 2b.

Mas pela hipotese, temos que (1, 0) e ponto de maximo de T. Logo,

T ′ (0) = 0 ⇒ 2b = 0 ⇒ b = 0,

como querıamos. �

Proposicao. Dada a diferencial da Aplicacao Normal de Gauss: dNp : TpS → TpS (econsequentemente a forma bilinear simetrica B e a forma quadratica Q associada a dNp),entao existe B = {e1, e2} , base de TpS composta por vetores unitarios e ortogonais talque se v ∈ TpS, v = xe1 + ye2, entao Q (v) = λ1x

2 + λ2y2, para algum λ1, λ2 ∈ R. Alem

disso, λ1 e λ2 sao valores maximo e mınimo de Q em S1 ⊂ TpS.

Demonstracao:

Devido ao fato de Q ser contınua e S1 ⊂ TpS ser compacto, temos que Q possui maximo

e mınimo em S1. Sejam λ1 um valor maximo de Q em S

1 e e1 um ponto de maximo de Q

em S1. Logo, Q (e1) = λ1.

Seja e2 um vetor unitario ortogonal a e1 e seja Q (e2) = λ2. Mostremos que B = {e1, e2}

satisfaz ao enunciado.

Seja v ∈ TpS, v = xe1 + ye2. Logo,

Q(v) = B (v,v)

= B (xe1 + ye2, xe1 + ye2)

= x2B (e1, e1) + 2xyB (e1, e2) + y2B (e2, e2) .

Page 129: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Como e1 e escrito com coordenadas (1, 0) na base B = {e1, e2} e e ponto de maximo deQ em S

1, temos, pelo lema anterior, que B(e1, e2) = 0. Logo,

Q (v) = Q (e1) x2 + Q (e2) y2

= λ1x2 + λ2y

2.

Resta mostrar que λ2 e valor mınimo de Q em S1. Mas λ1 ≥ λ2, assim, para qualquer

v = xe1 + ye2, v ∈ TpS:

Q (v) = λ1x2 + λ2y

2

≥ λ2x2 + λ2y

2

= λ2(x2 + y2)

= λ2 (pois x2 + y2 = 1),

o que conclui a demonstracao. �

Teorema. Seja dNp : TpS → TpS a diferencial da Aplicacao Normal de Gauss. Entaoexiste uma base B = {e1, e2} de TpS constituıda de vetores unitarios ortogonais tais quedNp(e1) = λ1e1 e dNp(e2) = λ2e2, sendo λ1 ≥ λ2 valores maximo e mınimo da formaquadratica Q associada a dNp em S

1 ⊂ TpS.

Demonstracao:

Obs.: e1 e e2 sao autovetores e λ1 e λ2 sao autovalores de dNp.

Com base na proposicao anterior, existe B = {e1, e2} , base de TpS constituıda de vetoresunitarios ortogonais tais que {

Q (e1) = λ1

Q (e2) = λ2,

sendo λ1 ≤ λ2 valores maximo e mınimo de Q em S1.

Precisamos, portanto, mostrar que dNp (e1) = λ1e1 e dNp (e2) = λ2e2.

Ainda pela proposicao anterior temos

〈dNp (e1) , e2〉 = B (e1, e2) = 0,

o que implica dNp(e1) = 0 ou dNp(e1) e paralelo a e1, ou seja,

dNp (e1) = βe1

e, neste caso, λ1 = B (e1, e1) = 〈dNp(e1), e1〉 = 〈βe1, e1〉 = β, o que resulta

dNp(e1) = λ1e1.

No caso dNp (e1) = 0, basta fazer λ1 = 0.

Para concluir que dNp (e2) = λ2e2, basta observar que B (e2, e1) = B (e1, e2) e aplicar omesmo raciocınio acima.Notemos tambem que a matriz de dNp em relacao a base B = {e1, e2} e diagonal, com osvalores λ1 e λ2 na diagonal. �

Page 130: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Resumindo: o fato de dNp : TpS → TpS ser auto-adjunto, podemos associar a dNp aforma quadratica

IIp : TpS −→ R

v �−→ − 〈dNp (v) , v〉(aqui estamos tomando IIp = −Q pois veremos que isto sera conveniente e, alem disso,nao altera o desenvolvimento da teoria que fizemos ate entao).IIp e chamada de Segunda Forma Quadratica ou Segunda Forma Fundamental de S emp.

Seja C uma curva regular em S tal que p ∈ C. Suponhamos que em p, C possua curvaturak(p).

Indiquemos por n (p) o vetor normal unitario a C em p.

Obs.: se C esta parametrizada por α (t) , α (0) = p, temos k (p) =|α′ (0) × α′′ (0)|

|α′ (0)|. Se

a parametrizacao for pelo comprimento de arco, entao k (p) = |α′′ (0)| . Quanto ao vetor

normal: n (p) =α′′ (0)

|α′′ (0)|.

Assim, temos um angulo θ ∈ [0, π] entre N (p) (vetor normal e unitario a S em p) en (p) , que e dado por cos (θ) = 〈n (p) ,N (p)〉 .

Definicao. O numero kn(p) = k(p) cos (θ) e chamado de curvatura normal de C em p.

Agora, consideremos C parametrizada pelo comprimento de arco e indiquemos por N (t) =

N (α (t)) a restricao da Aplicacao Normal de Gauss a α e n(t) = n (α (t)) o vetor normala C em α(t).

Logo, N′(t) = dNα(t) (α′ (t)) , ou seja, N

′(0) = dNp (α′ (0)) .

Deste modo, ⟨N(t), α′(t)

⟩= 0 ⇒⟨

N′(t), α′(t)

⟩+⟨N (t) , α′′ (t)

⟩= 0 ⇒⟨

N(t), α′′ (t)⟩

= −⟨N

′(t), α′(t)

⟩ ⇒⟨N(0), α′′ (0)

⟩= −

⟨N

′(0), α′(0)

⟩ ⇒⟨N(0), α′′ (0)

⟩= − 〈dNp (α′ (0)) , α′(0)〉 .

Assim,

IIp (α′ (0)) = − 〈dNp (α′ (0)), α′ (0))〉= −

⟨N (0) , α′′ (0)

⟩=⟨N (0) , |α′′ (0)| n (0)

⟩= |α′′ (0)|

⟨N (0) , n (0)

⟩= k(p) cos (θ)

= kn(p).

Page 131: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

e aqui entra a justificativa de trabalharmos com −Q e nao com Q.

Logo, a Segunda Forma Quadratica em um vetor unitario v ∈ TpS fornece-nos a curvaturanormal de uma curva regular C qualquer em S passando por p e que possua v comovetor tangente. Particularmente, esta curva C pode ser uma curva parametrizada pelocomprimento de arco obtida da interseccao de S com um plano normal a S em p paraleloa v. Daı a justificativa de chamarmos kn(p) de curvatura normal. Podemos, desta forma,falar de curvatura normal de S em p segundo uma direcao.

Ainda pelo que vimos acima, o fato de dNp ser auto-adjunto garante-nos a existencia devetores e1, e2 ∈ TpS unitarios ortogonais tais que

dNp (e1) = −k1e1

e

dNp (e2) = −k2e2,

sendo k2 ≥ k1 valores maximo e mınimo de IIp(v) quando v percorre S1 ⊂ TpS, o que

equivale dizer que as curvaturas normais maxima e mınima de S em p sao os autovalores dedNp, ou seja, os valores da diagonal de [dNp] . Finalmente, observamos que as curvaturasnormais maxima e mınima de S em p ocorrem em direcoes ortogonais.

Chamamos as curvaturas normais maxima e mınima de S em p de curvaturas principaisde S em p e as direcoes dadas pelos vetores e1 e e2 de direcoes principais de S em p.

3 Visualizacao Geometrica das Curvaturas Principais

Nesta secao visualizaremos geometricamente o fato das curvaturas principais de S emum ponto p ocorrerem em direcoes ortogonais. Para isto, aproximaremos a superfıcieS em p por uma quadrica tangente a S em tal ponto (que chamaremos de paraboloideosculador), obtida do seu Polinomio de Taylor de segunda ordem (e claro que precisaremosparametrizar S localmente em p). Veremos que as direcoes principais da quadrica em psao as mesmas que as de S em p.

Tomemosf : U ⊂

abR

2 −→ R, (3)

funcao diferenciavel tal que (0, 0) ∈ U, f (0, 0) = 0, p = (0, 0, 0) , grafico de f contido emS e os vetores normais a S em p possuindo a mesma direcao do eixo Oz de R

3. Logo,(0, 0) e ponto crıtico de f. Assim,

fu (0, 0) = 0

e

fv (0, 0) = 0.

Assim, aproximando S em p por seu Polinomio de Taylor de ordem dois, temos

f (u, v) = f (0, 0) + fu (0, 0) (u − 0) + fv (0, 0) (v − 0)

+1

2

(fuu (0, 0) (u − 0)

2+ 2fuv (0, 0) (u − 0) (v − 0) + fvv (0, 0) (v − 0)

2)

+ R (u, v)

Page 132: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

sendo

lim(u,v)→(0,0)

R (u, v)

|(u, v)|2

= 0.

Assim,

f (u, v) ∼=1

2fuu (0, 0) u2 + fuv (0, 0)uv +

1

2fvv (0, 0) v2 em U.

Definicao. Denotamos o grafico P de

g : U ⊂ab

R2 −→ R

(u, v) �−→ 1

2fuu (0, 0) u2 + fuv (0, 0) uv +

1

2fvv (0, 0) v2

(4)

por paraboloide osculador de S em p, sendo f a aplicacao (3).

3.1 Uma Expressao para dNp

Nesta subsecao acharemos uma expressao para dNp em funcao de uma parametrizacaolocal de S em p.

SejaX : U ⊂

abR

2 −→ X (U) ⊂ab

S(u, v) �−→ X (u, v)

uma parametrizacao local em p ∈ S. Sejam q ∈ U tal que X (q) = p e

α (t) = X (u (t) , v (t))

uma curva regular parametrizada em S tal que α(0) = p. Desta forma, o vetor tangentea α em p e

α′ (0) = Xu (q) u′ (0) + Xv (q) v′ (0) .

Assim,dNp (α′ (0)) = N′ (u (0) , v (0)) = Nu (q) u′ (0) + Nv (q) v′ (0) .

Mas, Nu (q) e Nv (q) sao vetores de TpS e como Xu (q) e Xv (q) formam uma base paraTpS, temos que existem reais aij tais que{

Nu (q) = a11Xu (q) + a21Xv (q)

Nv (q) = a21Xu (q) + a22Xv (q)(5)

Desta maneira,

dNp (α′ (0)) = (a11Xu (q) + a21Xv (q))u′ (0) + (a21Xu (q) + a22Xv (q)) v′ (0)

= (a11u′ (0) + a12v

′ (0))Xu (q) + (a21u′ (0) + a22v

′ (0))Xv (q) .

Logo,

[dNp]

[u′ (0)

v′ (0)

]=

[a11 a12

a21 a22

] [u′ (0)

v′ (0)

]na base B = {Xu (q) ,Xv (q)} .

Page 133: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Uma expressao para IIp (α′ (0)) e dada por

IIp(α′(0)) = − 〈dNp (α′ (0)) , α′ (0)〉

= −⟨Nu (q)u′ (0) + Nv (q) v′ (0) ,Xu (q) u′ (0) + Xv (q) v′ (0)

⟩= e (q)u′ (0)

2+ 2f (q)u′ (0) v′ (0) + g (q) v′ (0)

2,

sendo ⎧⎪⎪⎪⎨⎪⎪⎪⎩

e (q) = −⟨Nu (q) ,Xu (q)

⟩=⟨N (q) ,Xuu (q)

⟩f (q) = −

⟨Nv (q) ,Xu (q)

⟩=⟨N (q) ,Xuv (q)

⟩g (q) = −

⟨Nv (q) ,Xv (q)

⟩=⟨N (q) ,Xvv (q)

⟩ (6)

os chamados coeficientes da Segunda Forma Quadratica de S em p.

Utilizando (5) e (6), obtemos as seguintes relacoes:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−f (q) =⟨Nu (q) ,Xv (q)

⟩= a11F (q) + a21G (q)

−f (q) =⟨Nv (q) ,Xu (q)

⟩= a12E (q) + a22F (q)

−e (q) =⟨Nu (q) ,Xu (q)

⟩= a11E (q) + a21F (q)

−g (q) =⟨Nv (q) ,Xv (q)

⟩= a12F (q) + a22G (q)

(7)

sendo ⎧⎨⎩

E (q) = 〈Xu (q) ,Xu (q)〉F (q) = 〈Xu (q) ,Xv (q)〉G (q) = 〈Xv (q) ,Xv (q)〉

os coeficientes da Primeira Forma Quadratica.

As relacoes (7) podem ser escritas como:

[e (q) f (q)

f (q) g (q)

]=

[a11 a12

a21 a22

] [E (q) F (q)

F (q) G (q)

],

de onde deduzimos

[a11 a12

a21 a22

]= −

[e (q) f (q)

f (q) g (q)

] [E (q) F (q)

F (q) G (q)

]−1

. (8)

Mas [E (q) F (q)

F (q) G (q)

]−1

=1

E (q) G (q) − F (q)2

[G (q) −F (q)

−F (q) E (q)

]. (9)

Page 134: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

De (8) e (9) concluimos que⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 =f (q) F (q) − e (q) G (q)

E (q) G (q) − F (q)2

a12 =g (q) F (q) − f (q) G (q)

E (q) G (q) − F (q)2

a21 =e (q) Fv − f (q) E (q)

E (q) G (q) − F (q)2

a22 =f (q) F (q) − g (q) E (q)

E (q)G (q) − F (q)2

Desta forma,

[dNp] =

⎡⎣ fF−eGEG−F2 (q) gF−fG

EG−F2 (q)

eF−fEEG−F2 (q) fF−gE

EG−F2 (q)

⎤⎦ .

3.2 Classificacao de pontos sobre SLocalmente, toda superfıcie regular e grafico de uma funcao diferenciavel f de duasvariaveis reais. Logo, podemos tomar a parametrizacao

X : U ⊂ab

R2 −→ X (U) ⊂

abS

(u, v) �−→ (u, v, f (u, v))(10)

tal que X (q) = p e f e dada por (3).Podemos tomar X tal que |Xu (q)| = |Xv (q)| = 1 e Xu (q) ⊥ Xv (q) .

Logo, E (q) = 1, F (q) = 0 e G (q) = 1.

Fixemos um vetor unitario v = (a, b) ∈ TpS, (TpS com a base formada pelos vetoresXu (q) e Xv (q)). Logo, a curvatura normal de S em p segundo a direcao dada por v e

II(S)p (v) = − 〈dNp (v) ,v〉

= −

⟨(fF − eG

EG − F2(q) a +

gF − fG

EG − F2(q)b,

eF − fE

EG − F2(q) a +

fF − gE

EG − F2(q)b

), (a, b)

⟩= − 〈(−e (q) a − f (q) b,−f (q) a − g (q) b) , (a, b)〉= e (q) a2 + 2f (q) ab + g (q) b2

sendo ⎧⎪⎪⎪⎨⎪⎪⎪⎩

e (q) =⟨N (q) ,Xuu (q)

⟩= 〈(0, 0, 1) , (0, 0, fuu (q))〉 = fuu (q)

f (q) =⟨N (q) ,Xuv (q)

⟩= 〈(0, 0, 1) , (0, 0, fuv (q))〉 = fuv (q)

g (q) =⟨N (q) ,Xvv (q)

⟩= 〈(0, 0, 1) , (0, 0, fvv (q))〉 = fvv (q)

O paraboloide P osculador a S em p, esta parametrizado por

Y : U ⊂ab

R2 −→ Y (U) ⊂

abP

(u, v) �−→ (u, v, g (u, v))

Page 135: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

sendo g dada em (4).

A curvatura normal do paraboloide osculador P em p segundo a direcao dada por v edada por

II(P)p (v) = e (q)a2 + 2f (q)ab + g (q) b2,

sendo ⎧⎪⎪⎪⎨⎪⎪⎪⎩

e (q) =⟨N (q) ,Yuu (q)

⟩= 〈(0, 0, 1) , (0, 0, guu (q))〉 = fuu (q) = e (q)

f (q) =⟨N (q) ,Yuv (q)

⟩= 〈(0, 0, 1) , (0, 0, guv (q))〉 = fuv (q) = f (q)

g (q) =⟨N (q) ,Yvv (q)

⟩= 〈(0, 0, 1) , (0, 0, gvv (q))〉 = fvv (q) = g (q)

.

Conclusao:

II(S)p (v) = II(P)

p (v) ,

ou seja, as curvaturas normais de S em p e de P em p sao as mesmas. Particularmente,as curvaturas principais sao as mesmas.

A vantagem de se trabalhar com o paraboloide osculador e nao com a superfıcie S estana facilidade dos calculos das curvaturas no paraboloide.

Notemos tambem que na parametrizacao (10):

[dNp] =

[−fuu (q) −fuv (q)

−fuv (q) −fvv (q)

]=

[−guu (q) −guv (q)

−guv (q) −gvv (q)

].

Definicoes.

Seja P o paraboloide osculador de S em p.

(i) Se P e um paraboloide elıptico, dizemos que p e um ponto elıptico de S.

(equivalentemente, det [dNp] > 0)

(ii) Se P e um paraboloide hiperbolico, dizemos que p e um ponto hiperbolico de S.

(equivalentemente, det [dNp] < 0)

(iii) Se P e um paraboloide cilındrico (tipo “calha”), dizemos que p e um ponto parabolicode S.

(equivalentemente, det [dNp] = 0, mas dNp �= 0)

(iv) Se P e um plano, dizemos que p e um ponto planar de S.

(equivalentemente, det [dNp] = 0 e dNp = 0)

3.3 Classificacao de pontos do toro

Classificaremos os pontos do toro, segundo a definicao acima, utilizando o paraboloideosculador.

Page 136: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

3.3.1 Ponto Parabolico

Tomemos a aplicacao

f : A ⊂ab

R2 −→ R

(x, y) �−→√

1 −

(√(x − 2)

2+ y2 − 2

)2

− 1,

sendo A ={

B3 (2, 0) − B1 (2, 0)}

. (Br (q) a bola aberta de centro q e raio r, Br (q) a

bola fechada de centro q e raio r)Logo, S = {(x, y, f (x, y)) : (x, y) ∈ A} e a “metade superior de um toro deitado” e aorigem do Sistema de Coordenadas Cartesianas Ortogonais e um ponto situado sobre o“cırculo superior do toro deitado” (figura a esquerda).

Visualmente, o “meio toro” acima fica melhor se o gerarmos como superfıcie de rotacao(figura a direita):

X : (0, 2π) × (−3, 3) −→ R3

(t, y) �−→ (−y cos (t) + 2, y sen (t) ,

√1 − (y − 2)

2− 1

)O paraboloide osculador P no ponto p = (0, 0, 0) e dado por

Y : R2 −→ R

3

(x, y) �−→ (x, y, g (x, y))

sendog : R

2 −→ R

(x, y) �−→ −x2

2

Page 137: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Visualizando o toro e o paraboloide juntos, temos:

Temos [dN(0,0,0)

]=

[−gxx (0, 0, 0) −gxy (0, 0, 0)

−gxy (0, 0, 0) −gyy (0, 0, 0)

]=

[1 0

0 0

].

Logo, a curvatura normal mınima de S ou P em (0, 0, 0) e k1 = −1 ( k1 = − autovalora11) e ocorre na direcao do autovetor e1 = (1, 0). A curvatura normal maxima e k2 = 0

(k2 = − auto-valor a22) e ocorre na direcao do autovetor e2 = (0, 1).

Abaixo vemos curvas originadas dos cortes do plano normal a S e P em (0, 0, 0) segundoas direcoes de e1 e e2.

Observando as curvas de nıvel de S, P e dos graficos de g e f juntas temos:

3.3.2 Ponto elıptico

Tomemos a aplicacao

f : [−1, 1] × [−3, 3] −→ R

(x, y) �−→ √1 − y2

(√

1−x2+2)2

(√1 − x2 + 2

)− 3

Page 138: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

S = {(x, y, f(x, y)) : (x, y) ∈ (−1, 1) × (−3, 3)} e a “metade inferior externa de um toro‘em pe’ ” e a origem do Sistema de Coordenadas Cartesianas Ortogonais e um pontosituado sobre o “cırculo maximo do toro” (figura a esquerda).

Visualmente, o grafico acima fica melhor se o gerarmos como superfıcie de rotacao (figuraa direita):

X : (−1, 1) × (π, 2π) −→ R3

(x, t) �−→ (x,(√

1 − x2 + 2)

cos (t) , −(√

1 − x2 + 2)

sen (t) − 3)

O paraboloide osculador no ponto p = (0, 0, 0) e dado por

Y : R2 −→ R

3

(x, y) �−→ (x, y, g (x, y))

sendog : R

2 −→ R

(x, y) �−→ −x2

2− y2

6

Visualizando o toro e o paraboloide juntos, temos:

Page 139: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Temos [dN(0,0,0)

]=

[−gxx (0, 0, 0) −gxy (0, 0, 0)

−gxy (0, 0, 0) −gyy (0, 0, 0)

]=

[1 0

0 13

].

Logo a curvatura normal mınima de S ou P em (0, 0, 0) e −1 e ocorre na direcao do

autovetor e1 = (1, 0). A curvatura normal maxima e1

3e ocorre na direcao do autovetor

e2 = (0, 1) .

Abaixo vemos curvas originadas dos cortes do plano normal a S e P em (0, 0, 0) segundoas direcoes de e1 e e2.

Observando as curvas de nıvel de G, P e de G e P juntas temos:

3.3.3 Ponto hiperbolico

Tomemos a aplicacao

f : (−1, 1) × (−2, 2) −→ R

(x, y) �−→ −

√1 − y2

(−√

1−x2+2)2

(−√

1 − x2 + 2)

+ 1

S = {(x, y, f (x, y)) : (x, y) ∈ (−1, 1) × (−2, 2)} e a “metade inferior interna de um toro‘em pe’ ” e a origem do Sistema de Coordenadas Cartesianas Ortogonais e um pontosituado sobre o “cırculo minimo do toro” (figura a esquerda).

Page 140: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Visualmente, o grafico acima fica melhor se o gerarmos como superfıcie de rotacao (figuraa direita):

X : (−1, 1) × (π, 2π) −→ R3

(x, t) �−→ (x,(−√

1 − x2 + 2)

cos (t) ,(−√

1 − x2 + 2)

sen (t) + 1)

O paraboloide osculador no ponto p = (0, 0, 0) e dado por

Y : R2 −→ R

3

(x, y) �−→ (x, y, g (x, y))

sendog : R

2 −→ R

(x, y) �−→ −x2+y2

2

Visualizando o toro e o paraboloide juntos, temos:

Temos [dN(0,0,0)

]=

[−gxx (0, 0, 0) −gxy (0, 0, 0)

−gxy (0, 0, 0) −gyy (0, 0, 0)

]=

[1 0

0 −1

].

Logo a curvatura normal mınima de S ou P em (0, 0, 0) e −1 e ocorre na direcao doautovetor e1 = (1, 0). A curvatura normal maxima e 1 e ocorre na direcao do autovetore2 = (0, 1) .

Abaixo vemos curvas originadas dos cortes do plano normal a S e P em (0, 0, 0) segundoas direcoes de e1 e e2.

Page 141: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Observando as curvas de nıvel de S, P e dos graficos de g e f juntas temos:

3.4 Um exemplo nao trivial de ponto planar

Tomemos a funcaof : R

2 −→ R

(x, y) �−→ −(x2 + y2

)2

S ={(x, y, f (x, y)) : (x, y) ∈ R

2}

e a superfıcie da figura a esquerda e a origem do Sistemade Coordenadas Cartesianas Ortogonais e o “vertice” da superfıcie.

Visualmente, o grafico acima fica melhor se o gerarmos como superfıcie de rotacao (figuraa direita):

X : R × (0, π) −→ R3

(x, t) �−→ (x cos (t) , x sen (t) , −x4

)O paraboloide osculador no ponto p = (0, 0, 0) e dado por

Y : R2 −→ R

3

(x, y) �−→ (x, y, g (x, y))

sendog : R

2 −→ R

(x, y) �−→ 0

Page 142: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Visualizando a superfıcie e o paraboloide juntos, temos:

Temos [dN(0,0,0)

]=

[−gxx (0, 0, 0) −gxy (0, 0, 0)

−gxy (0, 0, 0) −gyy (0, 0, 0)

]=

[0 0

0 0

].

Logo, as curvaturas normais maxima e mınima de S ou P em (0, 0, 0) sao nulas, ou seja,em (0, 0, 0) temos curvaturas normais constantes em qualquer direcao pois qualquer vetornao nulo e autovetor de dNp.

Abaixo vemos curvas originadas dos cortes do plano normal a S e P em (0, 0, 0) segundoas direcoes de e1 = (1, 0) e e2 = (0, 1) .

Observando as curvas de nıvel de S, P e dos graficos de g e f juntas temos:

4 Bibliografia

Carmo, M. P. Geometria Diferencial de Curvas e Superfıcies. Rio de Janeiro: SBM -Sociedade Brasileira de Matematica. (Colecao Textos Universitarios). 2005.

Tenemblat, K. Introducao a Geometria Diferencial. Brasılia: Editora da UnB. 1988.

Pogorelov, A. Geometry. Moscow: Mir Publishers. 1987.

Page 143: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O Uso da Álgebra Linear nas Equações Diferenciais

Letícia Garcia Polac1 Lúcia Resende Pereira Bonfim2

Faculdade de Matemática – FAMAT Universidade Federal de Uberlândia – UFU

38408 -100, Uberlândia Abril de 2008

ResumoÁlgebra Linear é um suporte matemático para muitas áreas da ciência. Veremos

como alguns de seus resultados podem ser utilizados na resolução de sistemas lineares

de equações diferenciais.

Palavras chaves: Sistemas lineares de equações diferenciais; matriz diagonalizável; exponencial de matrizes.

1 – Introdução.

Sistemas de equações diferenciais ordinárias aparecem frequentemente na modelagem matemática de diversos fenômenos. Tal é o caso, por exemplo, do modelo para a competição entre duas espécies x e y que convivem num mesmo ecossistema competindo pelo mesmo suprimento alimentar. Se denotarmos por )(tx e )(ty as populações destas espécies no instante t, então teremos

(1)xyyty

yxxtx

222

111

.)(.)(

,

onde 222111 ,,,,, são constantes positivas. Trata-se de um sistema não-linear uma vez que aparecem os termos 2

1x ,xy1 , 2

2 y e xy2 . Como não é possível, em geral, resolver explicitamente os sistemas não-lineares, é comum considerar uma aproximação linear do mesmo e, estudando-se o sistema linearizado, tirar conclusões qualitativas do sistema original, ver 1 . Neste artigo consideraremos os sistemas lineares de equações diferenciais e veremos como os resultados da Álgebra Linear poderão nos ajudar neste objetivo. Estes resultados da Álgebra Linear serão assumidos sem demonstração, uma vez que o propósito aqui é motivar o estudo destes tópicos através de aplicações interessantes em outras áreas.

1 Bolsista do PIBEG – E-mail :[email protected] Professora Orientadora. E-mail: [email protected]

Page 144: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

2 – Sistemas Lineares de Equações Diferenciais Ordinárias

Nosso objetivo é procurar soluções )(,,)(1 txtxt n para o sistema

(2)

)()()()(

)()()()()()()()(

2211

2221212

12121111

txatxatxatx

txatxatxatxtxatxatxatx

nnnnnn

nnn

nn

em que jia são constantes reais, para todos nji ,,2,1, . O sistema (2) pode ser escrito na forma matricial )(.)( tzAtz , onde

)(

)()(

1

tx

txtz

n

e

nnn

n

aa

aaA

1

111

.

1º caso: A é uma matriz diagonal.

Quando A é uma matriz diagonal, isto é, 0ija para todo ji , o sistema consiste de n equações.

)()(,,)()( 1111 txatxtxatx nnnn ,

cuja solução é imediata pelo fato destas equações estarem desacopladas uma da outra:

)0(.)(,,)0(.)( 1111

nta

nta xetxxetx nn .

2º caso: A é uma matriz diagonalizável.

Quando A é diagonalizável, isto é, quando existe uma base nvvv ,,, 21 de Rn

composta de autovetores de A, podemos formar uma matriz P quadrada de ordem ncujas colunas são as coordenadas destes autovetores. Veremos na proposição seguinte que esta matriz tem uma propriedade muito interessante, a qual permitirá fazer uma mudança de variável que desacoplará o sistema de equações diferenciais ordinárias (2).

Proposição 1: P é inversível e DPAP ..1 , onde

n

D0

01

é a matriz

diagonal cujos elementos da diagonal principal são os autovalores de A, isto é, iii vvA .. .

Prova:

Page 145: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Suponha que a matriz A seja diagonalizável, isto é, que existem n autovetores linearmente independentes de A: nvvv ,...,, 21 .

Digamos:

nn

n

n

n p

pv

p

pv

1

1

11

1 ,...,

e n,...,, 21 , sejam os autovalores correspondentes. Seja P uma matriz quadrada de ordem n, cujas colunas são as coordenadas

destes autovetores. Então:

nnn

n

pp

ppP

1

111

Temos:

n

nnnnnnnnnn

nnnnnn

nnn

n

nnn

n

vAvA

papapapa

papapapa

pp

pp

aa

aaPA

..

..........

............

1

111111

1111111111

1

111

1

111

Mas, nivvA iii ,...,2,1,.. .

Consequentemente:

DPpp

pp

pp

ppPA

nnnn

n

nnnn

nn

.0

0.

..

1

1

111

11

1111

Logo, concluímos que:

DPAPDPPA .... 1

Assim P é a matriz quadrada de ordem n cujas colunas é formada pelos autovetores de A, e DPAP ..1 é a matriz diagonal cujos os elementos da diagonal principal são os autovalores da matriz A. Como queríamos provar.

Seja Q a inversa de P, ou seja, 1PQ , onde P é a matriz cujas colunas são formadas pelos autovetores de A.

A mudança de variável mencionada acima que desacopla o sistema é a seguinte:

(3) )(.)( tzQtw .

De fato, sendo Q uma matriz constante e )(.)( tzQtw , então

Page 146: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

(4) )(.)(...)(...)(..)(.)( 11 twDtwPAPtwQAQtzAQtzQtw .

Logo,

tnn

t nectwectw .)(,,.)( 111 ,

e consequentemente a solução )(tz para o sistema original será dada por:

(5)t

n

t

nec

ecPtwPtwQtz

.

..)(.)(.)(

11

1 .

Exemplo: No sistema linear

(6)212

211

.3)(.3)(

xxtxxxtx

.

temos 1331

A , cujo polinômio característico é )2).(4()(p .

Os autovalores de A são, portanto, 41 e 22 . Calculando autovetores 1v e 2v associados a 1 e 2 , respectivamente, encontramos:

11

1v e11

2v ,

e portanto

21

21

21

21

e1111 1PP

Assim, como vimos acima, a mudança de variável

(7)212

211

21

21

21

21

xxw

xxw

renderá o sistema desacoplado

Page 147: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

)(.2)()(.4)(

22

11

twtwtwtw

,

cuja solução geral é

(8) tt ectwectw 222

411 .)(,.)( .

Invertendo o sistema (7) encontramos

212

211

wwxwwx

,

e usando (8) chegamos à solução geral do sistema (6):

(9)tt

tt

ececxececx

22

412

22

411

. ,

Se pretendemos determinar a solução específica )()(

2

1

txtx

que satisfaz à condição

inicial ba

xx

)0()0(

2

1 , basta fazer 0t em (9) e resolver o sistema linear

bccacc

21

21

nas variáveis 1c e 2c , obtendo

21bac e

22bac .

Logo, esta solução específica será

tt

tt

ebaeabx

ebaebatx

242

241

22

22)(

,

que pode ser escrita ainda na forma matricial.

Page 148: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

(10) )0(

)0(

21

21

21

21

21

21

21

21

)(

)(

2

1

2424

2424

2

1

x

x

eeee

eeee

tx

tx

tttt

tttt

.

Observe que a fórmula (10) dá a solução específica diretamente em função da

condição inicial )0()0(

2

1

xx

.

O terceiro e último caso, no qual A não é necessariamente diagonalizável, será considerado na seção 4, após introduzirmos o conceito de exponencial de matrizes.

3 – Exponencial de Matrizes.

Já sabemos que a equação diferencial ordinária )(.)( txatx tem como solução a função )0(.xeat . Nada mais natural, portanto, conjecturar que a solução do sistema

)(.)( txAtx seja dada por )0(.xetA . Veremos que isso é verdade desde que definamos a exponencial de matrizes de modo adequado. Lembrando que

xxn

xxxe nx ,!

1!3

1!2

11 32 R ,

isso sugere a seguinte definição de exponencial de matrizes:

Definição: Dada uma matriz quadrada M de ordem n, definimos

nM Mn

MMMIe!

1!3

1!2

1 32 ,

em que I é a matriz identidade.

É possível provar que a série acima converge para uma matriz, recém batizada de Me , qualquer que seja a norma considerada no espaço das matrizes quadradas de ordem n. Não vamos nos ocupar deste fato agora, que pertence mais à Análise e à Topologia, pois como já dissemos o nosso foco neste trabalho está centrado na utilização das técnicas da Álgebra Linear na resolução dos sistemas lineares de equações diferenciais. Vamos agora provar, de forma pouco rigorosa, algumas propriedades interessantes da exponencial de matrizes.

Propriedade 1: e 0 = I .

Prova: Imediata.

Page 149: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Propriedade 2: Se P é inversível, então 1.. ..1

PePe APAP .

Prova: Esta propriedade segue do fato que 11 .... PAPPAP kk , para todo número natural k. De fato,

0

1.. ..!

11

k

kPAP PAPk

e 11

00

1 ...!

1...!

1 PePPAk

PPAPk

A

k

k

k

k .

Propriedade 3: Chamando AtetX )( então )(.)( tXAtX para todo número real t.

Prova ( negligenciando detalhes importantes, tais como a questão da convergência e da derivação termo a termo ):

kk

AktAtAtAtI

dtdtX

!!3!2.)( 3

32

2

kk

AktAtAtA

)!1(!2.

13

22

)(..)!1(!2

.. 11

22

tXAeAAktAtAtIA tAk

k

.

Observação: Como o resultado vale para toda matriz A, então AtAt eAe . .

Propriedade 4: Ate é inversível t , e AtAt ee 1 . Em particular, AA ee 1

Prova: Utilizando a Regra de Leibinitz para um produto de matrizes obtemos

AtAtAtAtAtAt eAeeeAeedtd .)(.... .

Como a matriz A comuta com toda potência natural de A, então A comuta com Ate , de onde segue que

0..... AtAtAtAtAtAt eeAeeAeedtd .

Logo Ieeee AAAtAt .0.0 .. , como queríamos provar.

Page 150: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Propriedade 5: Dada uma matriz quadrada A de ordem n existe somente uma matriz quadrada )(tY de ordem n satisfazendo IYtYAtY )0(,)(.)( .

Prova: A propriedade 3 mostra a existência, pois AtAt eAe . e Ie A.0 .Resta mostrar a unicidade. Para isso, seja )(tY tal que )(.)( tYAtY e IY )0( . Então

)(..)(..)(.)(..)(. tYAetYeAtYetYeAtYedtd AtAttAAtAt ,

e como A comuta com Ate obtemos ainda que

0)(..)(..)(. tYeAtYeAtYedtd AtAtAt .

Logo IYetYe AAt )0(.)(. .0 , e consequentemente AtetY )( .

Propriedade 6: Dadas matrizes quadradas A e B de ordem n temos: ABBA .. tBtAtBA eee .)( , para todo número real t.

Em particular, ABBA .. BABA eee . .

Prova: Seja BtAt eetX .)( . Então BtAtBtAt eBeeeAtX ....)( . Como B comuta com A por hipótese, então B comuta com todas as potências naturais de A, e portanto comuta com Ate . Logo, )(.)(..)(....)( tXBAeeBAeeBeeAtX BtAtBtAtBtAt e

IX )0( . Da unicidade provada anteriormente temos que tBtAtBA eee .)( .

4 – De volta aos sistemas de equações diferenciais ordinárias.

Tendo definido Ate , o candidato à solução do sistema )(.)( txAtx é

)0(!3!2

.)0(.)( 33

22

xAtAtAtIxetx At ,

ou seja,

)0(.!3

)0(.!2

)0(..)0()( 33

22

xAtxAtxAtxtx .

Esta expressão de fato fornece a solução do sistema )(.)( txAtx , pois assumindo que a derivação termo a termo conduz à derivada )(tx teremos

)(.)0(.!2

)0(..)0(.)0(.!2

)0(..)0(.)( 22

32

2 txAxAtxAtxAxAtxAtxAtx

Embora a exponencial de matrizes forneça uma resposta bem simples para o sistema )(.)( txAtx , pode ser uma tarefa complicada calcular a exponencial de uma

Page 151: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

matriz através da sua definição como soma de uma série infinita, exceto nos casos particulares em que A é uma matriz diagonal ou uma matriz nilpotente.

( i ) Cálculo de Ate no caso em que A é uma matriz diagonal.

Sendo

n

A0

01

, então kn

k

kA0

01

.,3,2,1k

Logo,

0

1

0

0

!k kn

kk

At

kte ,

ou ainda,

0

01

!0

0!

k

kn

k

k

kk

At

kt

kt

e .

Portanto,

t

t

At

ne

ee

0

01

.

( ii ) Cálculo de Ate no caso em que A é uma matriz nilpotente.

Ser nilpotente significa que existe um numero natural r tal que 0rA . O menor inteiro r tal que 0rA é denominado índice de nilpotência de A. Exemplos de matrizes nilpotentes são as matrizes quadradas de ordem n cujas entradas são todas nulas, exceto as entradas imediatamente abaixo da diagonal principal, que são todas iguais a 1. Abaixo vemos o caso particular em que 4n .

0100001000010000

A ;

0010000100000000

2A ;

0001000000000000

3A ;

0000000000000000

4A .

Portanto esta matriz é nilpotente, com índice de nilpotência 4.

Page 152: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Para matrizes nilpotentes de índice r o cálculo da exponencial se resume à uma soma finita, precisamente,

11

22

.)!1(!2

. rr

At ArtAtAtIe ,

e esta soma sempre pode ser efetuada. Claro que se o índice r e a ordem n forem grandes, um bom computador será imprescindível.

Estamos aptos agora a resolver o sistema )(.)( txAtx no caso em que A não é necessariamente diagonalizável. Para isso será útil o seguinte Teorema:

Teorema ( Forma de Jordan ): Dada uma matriz quadrada A de ordem n, existe uma matriz inversível P de mesma ordem tal que 1.. PAP fica uma matriz composta de blocos

1J , ... ,

kJ dispostos ao longo da diagonal principal,

kJ

J

J

PAP 2

1

1..

onde k,...,1 são os autovalores de A e J é o chamado -bloco de Jordan, cuja forma é

1

11

1

J .

Ver 2 .Observação: As entradas não escritas são todas iguais a zero.

Page 153: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Note que cada bloco J pode ser decomposto na soma

NDJ ,

onde D é uma matriz diagonal e N é nilpotente, precisamente

D e

01

0101

010

N .

Chamando

kD

D

D

D 2

1

e

kN

N

N

N 2

1

Page 154: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

então

NDPAP 1.. , ou ainda PNDPA .)(.1 ,

e portanto

PePe NtDtAt ..1 ,

e como DNND .. obtemos ainda

PeePe NtDtAt ...1 .

Sendo D diagonal e N nilpotente então não é necessário realizar uma soma infinita para o cálculo de Dte e Nte , e portanto a solução )0(.)( xetx At do sistema

)(.)( txAtx pode efetivamente ser calculada.

Como o Problema de Valor Inicial

0)0()(.)(

xxtxAtx

tem solução única, então a matriz que aparece na fórmula (10) deste trabalho é exatamente a exponencial Ate , ou seja:

tAetttt

tttt

eeee

eeee

2424

2424

21

21

21

21

21

21

21

21

.

Bibliografia

[ 1 ] Neves, A. J.F. e Figueiredo, D. G. Equações Diferenciais Aplicadas – Coleção

Matemática Universitária – IMPA – RJ.

[ 2 ] Hirsch, M. e Smale, S. Differential; Equations, Dynamical Systems and Linear

Algebra. Academic Press, 1974.

Page 155: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA

Giselle Moraes Resende Pereira (PET Matemática – SESu-MEC) [email protected]

Marcos Antônio da Câmara (Tutor do PET Matemática) [email protected]

Algumas Aplicações da Teoria dos Grafos

1. INTRODUÇÃO

Ao contrário de muitos ramos da matemática, nascidos de especulações puramente teóricas, a teoria dos grafos tem sua origem no confronto de problemas práticos. A teoria dos grafos estuda objetos combinatórios -os grafos- que são um bom modelo para muitos problemas em vários ramos da matemática, da informática, da engenharia, da química, da psicologia e da indústria. Muitos dos problemas sobre grafos tornaram-se célebres porque são um interessante desafio intelectual e porque têm importantes aplicações práticas. É inevitável esbarrar em questões de complexidade computacional, pois muitos dos problemas da teoria dos grafos têm motivação algorítmica.

2. BREVE HISTÓRICO

Enquanto outros temas de matemática têm uma longa e gloriosa história, isto não acontece com a Teoria de Grafos. O primeiro problema cuja solução envolveu conceitos do que veio a ser a teoria dos grafos (séc. XVII) foi resolvido por Euler e não passava de uma especulação matemática. Acredita-se que um dos primeiros exemplos da utilização de grafos teria surgido devido as Pontes de Königsberg. Na cidade de Königsberg (atual Kaliningrado), antiga capital da Prússia Oriental, o rio Pregel circunda uma ilha e separa a cidade em quatro zonas que, no séc. XVII estavam ligadas por sete pontes como na figura 1:

Figura 1

Page 156: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

3. CONCEITOS PRELIMINARES

Um Grafo G(V, E) é uma estrutura matemática constituída pelos conjuntos: V, finito e não vazio de n vértices, e E, de m arestas, que são pares não ordenados de elementos de V.

Graficamente é representado por uma figura com Nós ou vértices, unidos por um traço denominado Aresta configurando a relação imaginária, vejam figura 2.

Figura 2: Esta figura é um desenho do grafo cujos vértices são e cujas arestas são z ,y x, w,, vu, ,t V xyyz, xu, xw,uv, vw,E e o grafos trivial.

Embora seja conveniente a representação de grafos através de diagramas de pontos ligados por linhas, tal representação é inadequada se desejamos armazenar grandes grafos em um computador.

3.1 Matriz de adjacência: Se G é um grafo com vértices {1,2,3,...,n}, sua matriz de adjacência é a matriz n X n cujo elemento ij é o número de arestas ligando o vértice i ao vértice j.

0000002002010011

4

3

2

1

4321

vvvv

vvvv

3.2 Matriz de incidência: Se G é um grafo com vértices {1,2,3,...,n} e arestas {1,2,3,...,m}, sua matriz de incidência é a matriz n X m cujo elemento ij é o número de vezes em que o vértice i é incidente à aresta j.

0000011001112001

4

3

2

1

4321

vvvv

eeee

3.3 Adjacências de vértices e arestas:

3.3.1 Dois vértices x e y são ditos adjacentes ou vizinhos se existe uma aresta unindo-os.

Page 157: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

3.3.2 Duas arestas são adjacentes se elas têm ao menos um vértice em comum.

3.4 Incidências: Os vértices x e y são ditos incidentes na aresta, se eles são extremos da aresta.

3.5 Vértices isolados: Qualquer vértice de grau zero é um vértice isolado.

3.6 Laços: Laço é uma aresta que une um par de vértices idênticos.

3.7 Arestas paralelas: Quando existe mais de uma aresta entre o mesmo par de vértices.

Exemplificando, na figura 3 está representado um grafo de e .

6,5,4,3,2,1V(5,2)(6,5),(6,1),(1,5),(2,2),(3,2),(1,2),E

5

21

6 4

3

Vértices adjacentes

Laço

Vértice isolado

Arestas paralelas

Arestas adjacentes

Figura 3

3.8 Passeio entre nós: É a seqüência alternantes de nós e arestas.

3.9 Caminho: Um caminho é qualquer grafo da forma ( nvvv ...,,, 21 nivv ii 1:1, ). Em outras palavras, um caminho é um passeio que não contém nós repetidos.

3.10 Ciclo ou Circuito: Um ciclo é um grafo da forma ( nvvv ...,,, 21 , nivv ii 1:1

) com . Em outras palavras, um ciclo é um caminho fechado sem vértices repetidos.

1vvn

Figura 4

3n

3.11 Grau de um vértice: Grau de um vértice v (g(v)) é o número de arestas que incidem em v.O grau de um vértice v também pode ser definido como o número de arestas adjacentes a v. Obs.: Um laço conta duas vezes para o grau de um vértice.

g(b) = 3 g(d) = 2 g(a) = 2 g(c) = 3

Page 158: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

3.12 Dígrafo: Um Grafo Direcionado ou Dígrafo D(V,E) é uma estrutura matemática constituída pelos conjuntos:

• V, finito e não vazio de n vértices, e • E, de m arestas, que são pares ordenados de elementos de V.

3.13 Conexidade: Um grafo é conexo se, para qualquer par {v,w} de seus vértices, existe um caminho com extremos v e w. E um grafo é não conexo se existir ao menos um par de vértices que não é unido por nenhum caminho.

Figura 5: a) grafo conexo; b) e c) grafos não conexos

3.14 Grafo Bipartido: Um grafo é dito ser bipartido quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V1 e V2, tais que toda aresta de G une um vértice de V1 a outro de V2 (figura 6).

Figura 6

3.15 Grafo Rotulado: Um grafo G(V,E) é dito ser rotulado em vértices (ou arestas) quando a cada vértice (ou aresta) estiver associado um rótulo (figura 7).

Figura 7

3.16 Grafo valorado: Um grafo G(V, E) é dito ser valorado quando existe uma ou mais funções relacionando V e/ou E com um conjunto de números (figura 8).

Figura 8

Page 159: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Teorema 1: Em todo grafo, a soma dos graus dos vértices é igual ao dobro do número de arestas. Ou seja, todo G(V, E) satisfaz a identidade AvgVv 2)(

Demonstração: Uma aresta com vértices x e y contribui uma unidade para g(x) e uma unidade

orolário 1: O número de nós de grau ímpar de um grafo é par.

para g(y). Portanto, cada aresta contribui exatamente duas unidades para a soma )(vgVv .

CDemonstração: Como a soma dos graus é igual a A2 , considere o grafo G(N, A).

Denotando por d o grau do nó i, temos: i

A2 = iii

ddd

Comoímpard

ipard

ii

A2 é par então a soma das duas parcelas também será par. ero par, devemos

. OPERAÇÕES DE ARESTAS E VÉRTICES

eja G(V, E) um grafo constituído de um conjunto V, finito e não vazio de n vértices, e um

.1 Inclusão da aresta (v,w)em pertencer a V.

Observe que para ter uma soma de parcelas ímpares resultando em um númter um número par de parcelas, o que conclui a demonstração.

4

Sconjunto E de m arestas.

4Exigência: os vértices v e w devGrafo resultante: ),( wvG definido por V e E ).(v w .

ença a G, erá pelo menos um par de arestas paralelas. Se

.2 Exclusão da aresta (v,w) pertencer a E.

(v,w)}

.2.1 Situação Problema I: Rede viária com mão direcional do trânsito

ato:

Caso (v,w) já pert o grafo resultante tv = w, há o surgimento de um laço.

4Exigência: a aresta (v,w) deve Grafo resultante: G-(v,w) definido por V e E-{

4

F Houve um rompimento na rede de fornecimento de água em uma região da cidade impedindo o trânsito nessa região. Ação: Interrupção do trânsito no trecho de rua.

Page 160: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Solucionando o problema do trânsito:Acionar o Departamento de Trânsito para alterar o tráfego local.Divulgar aos interessados as ações em andamento. Reparar a pavimentação da rua. Restabelecer o trânsito da região.

A interrupção do trânsito no trecho de rua implica na exclusão da aresta associada.

Dígrafo resultante da exclusão da aresta associada

4.3 Inclusão do vértice v Exigência: o vértice v não deve pertencer a V.

vV e E. Grafo resultante: G+v definido por

4.4 Exclusões do vértice v Exigência: o vértice v deve pertencer a V e . 1nGrafo resultante: G-v definido por V-{v} e E-{(v,u), u adjacente a v}. A restrição garante que, mesmo após a exclusão do vértice, a estrutura remanescente continue sendo um grafo.

1n

Figura 9. Exemplos de inclusão e exclusão de vértices e arestas.

4.5 Fusão dos vértices v e w Exigência: os vértices v e w devem pertencer a V.

Page 161: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

vwwvV ,( ,,(( uvEGrafo resultante: definido por vwG e u adjacente a v}) – {(w, u) u adjacente a w}) {(vw, u), u adjacente a v ou w em G}.

4.6 Explosão do vértice v Exigência: o vértice v deve pertencer a V e grau(v)>0. Grafo resultante : Para obter o grafo deve-se quebrar o vértice v em grau(v) pedaços de modo que as arestas que o têm como extremo também pertençam ao novo grafo, embora não sejam mais adjacentes.

vG*

Figura 10. Exemplos de Fusão e Explosão de vértices.

4.6.1 Situação Problema II: Rede de água de uma região.

Fato: Houve um rompimento na rede de fornecimento de água em uma região da cidade. Ação: Recompor o funcionamento da rede de água da região.

Fechar registro significa: Explodir vértices

Figura 11. Área atendida x Área Atingida

Page 162: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

5. GRAFOS EULERIANOS

Ciclo euleriano é aquele que possui todas as arestas do grafo exatamente uma vez. Um Grafo euleriano é aquele que possui um ciclo euleriano, em outras palavras, um grafo é euleriano se pudermos desenhá-lo sem tirar o lápis do papel e voltar ao ponto de partida, sem passar mais de uma vez por nenhuma aresta.

5.1 As pontes de Königsberg

Na cidade de Königsberg (atual Kaliningrado), antiga capital da Prússia Oriental, o rio Pregel circunda uma ilha e separa a cidade em quatro zonas que, no séc. XVII estavam ligadas por sete pontes como na figura 12:

Figura 12.

Acredita-se que esse foi um dos primeiros exemplos da utilização de grafos. O problema consiste em partir de uma dessas regiões e determinar um trajeto pelas pontes segundo o qual se possa retornar à região de partida após atravessar cada ponte somente uma vez.

Este problema trata-se de um grafo euleriano, no qual não é possível fazer o percurso de iniciar em uma ponte, passar por todas as outras uma só vez e retornar ao ponto de origem, pois, um grafo só pode ser percorrido de tal maneira, se o diagrama tiver somente vértices de grau par, o que não acontece com o problema citado.

Teorema (Euler 1736): Um grafo conectado G é euleriano se e somente se o grau de cada vértice de G é par.

Demonstração: Ida: Seja G um grafo euleriano. Logo, ele contém um ciclo euleriano. Por cada ocorrência de vértice desse ciclo, existe uma aresta que chega nesse vértice e associada a ela, outra que sai desse vértice. Como toda aresta faz parte do ciclo, isto é, nenhuma aresta fica fora do ciclo, necessariamente o número de arestas por cada vértice é par.Volta: Suponhamos que todos os vértices possuem grau par. Seja um vértice do grafo. Tentemos, a partir de , construir uma cadeia que não passa duas vezes pela mesma aresta, e até que não seja possível continuar. Como todos os vértices possuem um grau par, sempre será possível entrar e sair de um vértice. A única exceção é o vértice onde a cadeia vai terminar. Se essa cadeia, que chamaremos , contém todas as arestas de G, temos um ciclo euleriano. Senão, retiramos de G todas as arestas que fazem parte de . No grafo resultante G', todos os vértices também possuem grau par e necessariamente um deles faz parte de ,senão o grafo não seria conexo.

iv

iv

iv

1C

1C

1C

Recomeçamos o mesmo processo com o grafo G', partindo de um vértice comum com ,obtendo assim um novo ciclo . A figura abaixo mostra que dois ciclos que têm um vértice

1C

2C

Page 163: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

em comum podem formar um ciclo único: chegando ao vértice comum em um dos dois ciclos, continuamos o percurso no outro ciclo. Continuando esse processo, necessariamente obteremos um ciclo único que contém todas as arestas de G.

6. GRAFOS HAMILTONIANOS

Um grafo G é hamiltoniano se existe um ciclo em G que contenha todos os seus vértices, sendo que cada vértice só aparece uma vez no ciclo. Este ciclo é chamado de ciclohamiltoniano.Sendo assim, um grafo é hamiltoniano se ele contiver um ciclo hamiltoniano.

A título de exemplo, considere os grafos e da figura 14. É fácil notar que contém o ciclo que é hamiltoniano. Logo, é um grafo hamiltoniano. O mesmo não acontece com .

1G 2G 1G

154321 ,,,,, vvvvvv 1G

2G

Figura 14.

O problema do cálculo do ciclo hamiltoniano, embora semelhante ao problema do cálculo do euleriano, é muito mais complexo, pois não são conhecidas as condições necessárias e suficientes para que um grafo genérico contenha um ciclo hamiltoniano nem tampouco métodos eficientes para construir tal ciclo. Há diversos teoremas específicos para determinados tipos de grafos, fornecendo condições que são, na maior parte dos casos, suficientes – porém não necessárias.

Este problema está intimamente relacionado ao problema do caixeiro viajante, o qual consiste em encontrar um caminho que passe por todas as cidades uma única vez e retorne ao ponto de partida escolhendo para isso um caminho de custo mínimo.

6.1 Problema do Caixeiro Viajante

É um problema de grafo hamiltoniano, que consiste em passar por todos os vértices de um grafo, não repetindo nenhum, a fim de encontrar um caminho ótimo. Suponha que a área de venda de um caixeiro viajante inclua várias cidades, as quais, aos pares, estão conectadas por rodovias. O trabalho do caixeiro requer que ele visite cada cidade

Page 164: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

pessoalmente. Sob que condição seria possível para ele estabelecer uma viagem circular (que o leve ao ponto de partida) de forma que ele visite cada cidade exatamente uma vez? Este problema pode ser modelado por um grafo G(V, E), onde:

V = {c | c é uma cidade} E = {( , ) | há uma estrada que conecta as cidades e , sendo que ela não passa por nenhuma outra cidade neste trajeto}.

1c 2c 1c 2c

Modelado desta forma, a solução deste problema passa por verificar se o grafo G é hamiltoniano.

Como exemplo, considere o seguinte problema:

Um viajante deve visitar clientes instalados em sete cidades do estado de Minas Gerais - Brasil - .Procura-se determinar qual o percurso mais econômico tendo em atenção, exclusivamente, as distâncias quilométricas entre as cidades.

O estudo a seguir trata de um problema de grafos considerado complexo e de algoritmos que possam solucioná-lo. Neste sentido, são investigados o algoritmo dos mínimos sucessivos e o algoritmo da ordenação do peso das arestas.

Representa-se abaixo a respectiva rede de cidades e uma tabela das distâncias quilométricas.

Araguari Araxá UberlândiaPatos de Minas

Patrocínio Uberaba BeloHorizonte

------- 213 215 146 133 41 571Araguari213 ------ 189 116 124 186 374Araxá215 189 -------- 73 242 217 417Patos de

Minas146 116 73 ------- 173 148 426Patrocínio133 124 242 173 -------- 107 494Uberaba41 186 217 148 107 -------- 556Uberlândia

571 374 417 426 494 556 --------BeloHorizonte

Representação gráfica:

Estudamos dois algoritmos executáveis para resolução de problemas desta natureza.

Page 165: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Tarefa: Considerar os dois algoritmos (Algoritmo dos Mínimos Sucessivos e Algoritmo por Ordenação dos Pesos das Arestas) para resolver PCVs, (PCV = Problema do Caixeiro Viajante), e aplique-os à situação do caixeiro viajante que tem de visitar as sete cidades mineiras, referidas no grafo completo e valorado (distâncias em quilômetros).

- As soluções que encontrou são boas? - Seria fácil encontrar a solução ótima? - Quanto tempo demoraria a encontrar a solução ótima por um método exaustivo? Compensaria?

6.2 ALGORITMO DOS MÍNIMOS SUCESSIVOS

Começa-se por escolher uma cidade para início do circuito. A partir dessa cidade, visita-se a mais próxima e assim sucessivamente, até completar o circuito; por vezes não é possível escolher a cidade mais próxima, quer por já ter sido visitada, quer por se fechar o circuito; nesse caso escolhe-se a mais próxima ainda não visitada; terminado o circuito somam-se os quilômetros percorridos. Repete-se este procedimento de forma a obter sete circuitos hamiltonianos, cada um dos quais com início numa das cidades. O quadro obtido encontra-se representado a seguir.

Note-se que esta solução se baseia numa escolha sucessiva da melhor etapa, o que pode não conduzir à melhor solução global. No entanto, o resultado é aceitável se tivermos em conta outros critérios, nomeadamente a economia de tempo. De fato, o número de circuitos hamiltonianos possíveis é determinado pela fórmula , o que, para o caso vertente, nos conduz a hipóteses.

2)!1(n 360720(

22)!17

Page 166: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Ora, testar 360 circuitos "à unha" não é tarefa recomendável. A análise do quadro nos leva a concluir que existem dois melhores circuitos (mais econômicos). São os que se iniciam em:

• Araxá e segue por Patrocínio, Patos de Minas, Araguari Uberlândia, Uberaba, Belo Horizonte e Araxá, voltando à Araxá, num total de 1420 Km.

• Belo Horizonte e segue por Araxá, Patrocínio. Patos de Minas, Araguari, Uberlândia e Uberaba, voltando a Belo Horizonte, num total de 1420 Km.

Observe que o ciclo é o mesmo nos dois casos.

6.3 ALGORITMO DA ORDENAÇÃO DO PESO DAS ARESTAS

Ordenam-se todas as arestas por ordem crescente do respectivo peso (distância). Em seguida, tenta-se encontrar um circuito hamiltoniano que utilize as arestas de menor peso, tendo em conta o seguinte:

(1) Nunca se toma a terceira aresta incidente num mesmo vértice e (2) nunca se fecha o ciclo enquanto houver vértices não visitados.

As 5 primeiras arestas não apresentam qualquer problema. Mas, as 11 seguintes não podem ser utilizadas por não verificarem as condições enunciadas.

Uberlândia Araguari 41Patrocínio Patos de Minas 73Uberlândia Uberaba 107Patrocínio Araxá 116Uberaba Araxá 124Belo Horizonte Patos de Minas 417Belo Horizonte Araguari 571

Continuando o processo chega-se à solução acima indicada, que nos conduz a um circuito com um comprimento total de 1449 km. Logo, pior que a anterior.

Conclusões: Os algoritmos podem se mostrar eficientes para problemas complexos. Além disto, eles permitem trabalhar com problemas matematicamente complexos sem necessitar conhecimento prévio sobre o mesmo.

1449

Page 167: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações.

Otoniel Nogueira da Silva 1 e Valdair Bonfim 2

1 – Introdução:

O presente trabalho originou-se durante o desenvolvimento de um projeto do Programa Institucional de Bolsas para o Ensino de Graduação – PIBEG – da Universidade Federal de Uberlândia. Este programa visa a melhoria do ensino de graduação, e o referido projeto foi desenvolvido junto à disciplina de Álgebra Linear. Mais precisamente, quando introduzimos o conceito de exponencial de matrizes para o posterior estudo dos sistemas de equações diferenciais lineares de primeira ordem, surgiu a curiosidade de responder às perguntas:

- É possível calcular a raiz quadrada de uma matriz A de ordem n ?

- É possível calcular a raiz n-ésima de A?

- É possível definir o seno e o co-seno de tal matriz?

- Em caso afirmativo, será que vale a identidade IAAsen 22 cos ?

- Que tipo de problema prático estes conceitos ajudam a resolver?

Veremos como os resultados da Álgebra Linear podem nos ajudar no sentido de fornecer respostas elegantes para tais questões, pelo menos em alguns casos particulares.

2 – A raiz quadrada de uma matriz.

Definição 1: Denomina-se raiz quadrada real de uma matriz A qualquer matriz B com entradas reais tal que AB 2 .

Neste contexto vamos considerar apenas raízes quadradas com entradas reais, e no que segue vamos referir a elas simplesmente dizendo raízes quadradas. Introduziremos aqui duas notações para expressar a raiz quadrada de uma matriz: uma raiz quadrada de uma matriz Aserá representada por A , ou também 2/1A .

Assim como nem todo número real admite uma raiz quadrada em R, nem toda matriz admite uma raiz quadrada. Conforme veremos adiante, uma condição necessária para a

1 Bolsista do Programa de Educação Tutorial – PET; Acadêmico do Curso de Matemática da UFU. 2 Orientador; Professor da Faculdade de Matemática da UFU.

Page 168: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

existência da raiz quadrada de A é que seu determinante seja não-negativo. A proposição seguinte dá condições suficientes para a existência de raiz quadrada.

Proposição 1: Seja A uma matriz diagonal de ordem n:

A =

n..000....00.....00.....00...000..

2

1

Se 0i para ni ,,2,1 , então a matriz:

n

A

..000....00.....00.....00...000..

2

1

é uma raiz quadrada da matriz A .

Demonstração:

Basta mostrar que:

n..000....00.....00.....00...000..

2

1

.

n..000....00.....00.....00...000..

2

1

=

n..000....00.....00.....00...000..

2

1

Esta igualdade se demonstra comparando as entradas da matriz produto AA . com as entradas correspondentes da matriz A :

Page 169: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

nn ...000....00.....00.....00....000....

33

22

11

=

n..000....00.....00.....00...000..

2

1

.

A próxima proposição amplia significativamente o conjunto das matrizes que admitem raiz quadrada.

Proposição 2: Se uma matriz A de ordem n for diagonalizável e todos os seus autovalores forem não-negativos, então A admite uma raiz quadrada.

Demonstração:

Sendo A diagonalizável, sabemos que existe uma matriz inversível P tal que:

DPAP 1..

n..000....00.....00.....00...000..

2

1

Logo, uma raiz quadrada da matriz A é dada por:

PDPA ..1

De fato:

PDPPDP .... 11 = PDPPDP ..... 11 = PDIDP ....1 = PDDP ...1 = PDP ..1 ,

e esta matriz é igual a A, pois sendo

DPAP 1.. PDPPPAPP .... 11.1 PDPIAI .... 1 PDPA ..1 , ou seja, PDPA ..1 .

Observação 1: Para todo número natural n e toda matriz quadrada X é fácil ver que PXPPXP nn .... 11 . Logo podemos generalizar a nossa procura inicial considerando as

raízes n-ésimas de A, que serão denotadas por n A ou nA /1 .

Proposição 3: Seja A uma matriz diagonal de ordem n:

Page 170: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A =

n..000....00.....00.....00...000..

2

1

Se 0i para i , então a matriz:

nn

n

n

..000....00.....00.....00...000..

2

1

,

a qual vamos denotar por n A ou nA /1 , é uma raiz n-ésima de A . No caso em que n é ímpar não é necessária a condição 0i , i .

Prova: É completamente análoga à feita na proposição 1.

Proposição 4: Se uma matriz A de ordem n for diagonalizável e todos os seus autovalores forem não-negativos, então A admite uma raiz n-ésima.

Demonstração: Sendo A diagonalizável existe uma matriz inversível P tal que:

DPAP 1..

n..000....00.....00.....00...000..

2

1

Logo PDP n ..1 é uma raiz n-ésima de A, pois usando a observação 1 com n DXobtemos:

APDPPDPPDPnnnn ...... 111 .

Novamente observamos que quando n é ímpar não precisamos ter 0i , i .

Observação 2: A proposição 4 fornece condições suficientes, mas não necessárias para a existência da raiz. De fato, no exemplo abaixo vemos uma matriz com autovalores negativos que admite raiz quadrada.

Page 171: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Exemplo: A matriz A =1001

possui autovalores negativos, 121 , mas admite a

raiz quadrada 1121

A , pois A1001

1121

1121

.

A próxima proposição fornece uma condição necessária para a existência de raiz n-ésima, com n par. Em particular, têm-se uma condição necessária para a existência de raiz quadrada.

Proposição 5: Se A admite raiz n-ésima, com n par, então 0ADet .

Demonstração:

Seja B uma raiz n-ésima de A, ou seja AB n . Logo nBDetADet .

Da álgebra com matrizes sabemos que:

nn BDetBDetBDetBDetBBBDetBDet )(....).(.)()......(

Portanto, ADet é a n-ésima potência do número real BDet , e como n é par, segue que 0ADet .

Corolário: Se ADet < 0 , então a matriz A não admite raiz quadrada.

Exemplo:

1001

A não admite raiz quadrada, pois 01ADet .

3 – O seno e o co-seno de uma matriz:

Sabemos do cálculo diferencial que para todo número real x tem-se

!7!5!3)!12()1(

753

0

12 xxxxkxxsen

k

kn ,

e também que

!8!6!4!21

)!2()1(cos

8642

0

2 xxxxk

xxk

kk .

Page 172: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Assim, dada uma matriz quadrada A de ordem n, todas as potências inteiras não-negativas kA estão bem definidas, e é bastante natural “arriscar” as definições abaixo:

( 1 )!7!5!3)!12(

)1(753

0

12 AAAAkAAsen

k

kk ,

e

( 2 )!8!6!4!2)!2(

)1(cos8642

0

2 AAAAIk

AAk

kk ,

em que I denota a matriz identidade.

Observe que

)!12()!12()1(

1212

kA

kA

kkk

para todo natural k, qualquer que seja a norma considerada no espaço das matrizes quadradas

de ordem n, e como 0

12

)!12(k

k

kA

é uma série convergente de números reais, segue por

comparação que a série 0

12

)!12()1(

k

kk

kA é absolutamente convergente, e portanto

convergente. De modo completamente análogo se prova que a série (2) é convergente e, portanto, estão bem definidas as operações Asen e Acos .

Note, por simples substituição, que se A é a matriz nula, então

00senAsen e IA 0coscos ,

o que está de acordo com o seno e o co-seno do número real zero.

Agora, será que vale para as matrizes a identidade IAAsen 22 cos ? É isto que nos propomos provar no caso particular em que a matriz A é diagonalizável.

Isto será feito em duas etapas.

Etapa 1: A é uma matriz diagonal.

Digamos que

n

A0

01

. Então é fácil provar por indução finita que

kn

k

kA0

01

para todo número inteiro não-negativo k. Assim:

Page 173: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

0

12

)!12()1(

k

kk

kAAsen

0

12

121

)!12()1(0

0)!12(

)1(

k

knk

kk

k

k

0

12

0

121

)!12()1(0

0)!12(

)1(

k

knk

k

kk

k

k

nsen

sen

0

01

.

Ou seja:

n

A0

01

nsen

sensenA

0

01

.

De modo completamente análogo se prova que:

n

A0

01

n

Acos0

0coscos

1

.

Logo,

AAsen 22 cos

nsen

sen

2

12

0

0

n2

12

cos0

0cos=

Page 174: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

nnsen

sen

22

12

12

cos0

0cosI

10

01.

Conclusão: a “relação fundamental” vale para as matrizes diagonais.

Etapa 2: A é uma matriz diagonalizável.

Sendo A diagonalizável, existe uma matriz inversível P tal que 1.. PAP é uma matriz diagonal D, a saber:

n

PAP

..000....00.....00.....00...000..

..

2

1

1 , cujas entradas são os autovalores de A.

Assim, PDPA ..1 , de onde segue que PDPA mm ..1 para todo natural m. Logo:

0

121

0

12

)!12(..)1(

)!12()1(

k

kk

k

kk

kPDP

kAsenA

PsenDPPk

DPk

kk ...

)!12()1(. 1

0

121

Analogamente,

PDPA .cos.cos 1 .

Portanto,

PDDsenPPDPPDsenPAAsen ).cos(..cos...cos 221212122 ,

e como a relação fundamental já foi provada para as matrizes diagonais, segue que

IPIPAAsen ..cos 122 ,

como afirmado.

Podemos agora enunciar, e dar por demonstrada, a seguinte proposição:

Proposição 6: Se A é uma matriz quadrada diagonalizável, então IAAsen 22 cos .

Page 175: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

4 – As noções introduzidas nas seções anteriores tem alguma utilidade?

Sabemos que se 0a então a função :x R R definida por

).(.).cos(.)( 21 tasenctactx

resolve a equação diferencial de segunda ordem

0)(.)( txatx ,

quaisquer que sejam as constantes reais 1c e 2c .

Esta equação diferencial e outras parecidas surgem na modelagem matemática de diversos sistemas mecânicos, de onde segue sua importância.

É natural, portanto, a seguinte pergunta:

Dada uma matriz A de ordem n que admite raiz quadrada e dadas constantes vetoriais arbitrárias 21 , CC Rn , será que a função :X R Rn definida por

( ) 21 ....cos)( CAtsenCAttX

resolve o sistema de equações diferenciais 0)(.)( tXAtX ?

Observe que este sistema é de ordem 2 , e quando escrito por extenso fica na forma:

( )

)(.)(.)()(

)(.)(.)(

11

11111

txatxtatx

txatxatx

nnnnn

nn

,

com equações que se apresentam acopladas umas às outras. Não dá para determinar, digamos, a função escalar )(1 tx a partir da primeira equação, pois nela aparecem as demais funções incógnitas: )(2 tx , ... , )(txn . E ocorre o mesmo com as demais equações. Se a pergunta acima for respondida positivamente, temos uma resposta bastante limpa e elegante para o sistema ( ). Resumindo, o tratamento vetorial é bastante apropriado, e acreditamos ter convencido o leitor de que nem toda “brincadeira” que se produz em Matemática está livre de servir para alguma coisa de interesse prático. O leitor é convidado a provar que a pergunta acima tem resposta positiva, e para isso basta derivar, com relação a t, as séries que definem

1..cos CAt e 2.. CAtsen .

Não há ramo da Matemática, por mais abstrato que seja, que não possa um dia ser aplicado aos fenômenos do mundo real.

Lobatchevsky.

Page 176: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A melhor solução foi encontrada pelo Algoritmo dos Mínimos Sucessivos, que nos permitiu determinar o melhor percurso para o caixeiro viajante. Sendo considerada ótima, pois, para ter a certeza desta afirmação teríamos de encontrar todas as soluções pelo Método Exaustivo, o que implica na análise de 360 percursos, tarefa pouco aconselhável.

7. CONSIDERAÇÕES FINAIS

A teoria dos grafos é essencial para resolução de problemas, desde os mais simples aos elaborados. São problemas que justificam atenção devido ao fato de aparecerem diversas aplicações e serem considerados difícil solução. Grafos são uma inesgotável fonte de problemas com enunciado simples, mas que escondem, muitas vezes, uma sofisticada estrutura matemática.

8. BIBLIOGRAFIA

[1] BARROSO, M. M. A., Operações Elementares em Grafos e Aplicações, VII SEMAT, Uberlândia, 2007.

[2] BOAVENTURA NETTO, P. O., Teoria e Modelos de Grafos, E. Blucher, São Paulo, 1979.

[3] LUCCHESI, C. L., Introdução à Teoria dos Grafos, IMPA-CNPq, Rio de Janeiro,1979.

[4] OYNSTEIN O., Graphs and Their Uses, The Mathematical Association of America, Editorial Committee, England, 1990.

[5] www.guiaquatrorodas.com.br

Page 177: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

Problemas e Soluções

���

Page 178: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção Problemas e Soluções

do Número 10 da FAMAT EM REVISTA:

Luiz Alberto Duran Salomão (coordenador da seção) Ednaldo Carvalho Guimarães Marcos Antônio da Câmara

Page 179: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

37. Para todo número primo p, demonstre que os números

pppp 11são ambos irracionais.

38. Demonstre que o polinômio 12 nn XX é divisível pelo polinômio 12 XX

se, e somente se, n não é múltiplo de 3.

39. Seja ABC um triângulo que tem inraio (raio do círculo inscrito) r e circunraio (raio do círculo circunscrito) R. Demonstre que R 2r.

40. Seja P um ponto interior ao triângulo ABC cujos lados medem a, b e c e cuja área vale S. Demonstre que o produto das distâncias de P aos lados do triângulo é menor do

que ou igual a abcS

278 3

, sendo que a igualdade ocorre somente se P for o baricentro do

triângulo.

Page 180: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

33. Demonstre que a soma dos cubos de três números inteiros consecutivos é divisível por 9. 1a Resolução: Veja que 9159321 23333 nnnnnn . Portanto, basta-nos mostrar que 53153 23 nnnn é divisível por 9. Para kn 3 , para algum inteiro k, é claro que 53 2nn é múltiplo de 9. Caso 13kn , 6695 22 kkn .Por fim, caso 23kn , 91295 22 kkn . Assim, nos dois últimos casos, 52né, claramente, múltiplo de 3. Portanto, concluímos que 53 2nn é múltiplo de 9 em ambos os casos. 2a Resolução (enviada pelo leitor Otoniel Nogueira da Silva): Observe que

333 21 nnn =3(n³ - n) + 9( n² + 2n +1). Portanto, é suficiente mostrar que nn3 é múltiplo de 3, para todo inteiro n. Ora, pelo Pequeno Teorema de Fermat,

3mod3 nn , o que quer dizer que nn3 é, de fato, divisível por 3, para todo inteiro n.

34. Em um tetraedro regular tomam-se seções paralelas a duas de suas arestas que não se intersectam. Determine a seção de área máxima. Resolução: Seja ABCD o tetraedro dado. O quadrilátero MNKL, obtido ao se intersectar o tetraedro com o plano, é um paralelogramo, com LK paralelo a MN e LM paralelo a NK. A área desse paralelogramo é dada pelo produto senKLKN , onde

NKL ˆângulodomedidaaé . Portanto, a área da seção depende apenas do produto KLKN já que sen é uma constante para todas as seções em questão. Representando

por x o comprimento do segmento AK, teremos, como conseqüência da semelhança dos

triângulos envolvidos que ADx

CDKL

ADxAD

ABKN e . Multiplicando essas duas

igualdades termo a termo, obtemos xxADAD

CDABKLKN 2 . Daí, como o fator

2ADCDAB é constante, o produto KLKN será máximo quando o fator xxAD o for.

Porém, esse fator pode ser reescrito como 22

22ADADx e, assim, é fácil ver

que seu valor máximo é alcançado quando 2

ADx , o que conclui o problema.

35. A função xxf cos)( , definida para 0x , é periódica? Justifique sua resposta. Resolução: Suponha que a resposta seja afirmativa. Assim, existe T 0 tal que

0 todopara,coscos xxTx . Nessa última igualdade, façamos primeiramente 0x e, a seguir, Tx e obteremos, respectivamente,

1cos2cose1cos TTT . Daí, teremos simultaneamente que lTkT 22e2 , para determinados inteiros positivos k e l. Dessas duas

últimas igualdades, dividindo uma pela outra, tiraremos que kl2 , o que é uma

contradição. Portanto, a função xxf cos)( , definida para 0x , não é periódica.

Page 181: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

36. De quantas maneiras 2n, sendo n um natural, pode ser expresso como a soma de quatro quadrados de números naturais? Justifique sua resposta. Resolução: Suponha que ndcba 22222 . Vamos representar por p2 a maior potência de 2 que divide os quatro inteiros a, b, c e d. Dividindo ambos os membros da equação acima por pp 22 22 , obtemos ,2 22

12

12

12

1pndcba onde pelo menos

um dos quatro inteiros 1111 e,, dcba é ímpar. Se exatamente um ou exatamente três dos inteiros 1111 e,, dcba forem ímpares, então 2

12

12

12

1 dcba é ímpar e, portanto, nesses casos a igualdade inicial é impossível. Se dois desses inteiros são ímpares, digamos 12e12 11 lbka , e os outros dois são pares, digamos

ndmc 2e2 11 , então podemos escrever12244144144 222222222

12

12

12

1 nmllkknmllkkdcbao que é uma contradição, pois pn 22 não pode ter um fator ímpar. Por fim, se todos os quatro inteiros forem ímpares, digamos ,12e12,12,12 1111 ndmclbkateremos

144144144144 222221

21

21

21 nnmmllkkdcba

= 111114 nnmmllkk .Note que a expressão acima, interior aos colchetes, é ímpar; ainda, seu valor só pode

.120 Isso acarreta que .2,1,0e,22,22 1111

pdcbadcbanmlkpnpnConcluindo, se n é ímpar, então n2 não pode ser escrito como soma de quatro quadrados; se n é par, n = 2p, então 2n pode ser expresso como soma de quatro quadrados somente da seguinte maneira:

.22222 212121212 ppppp

Page 182: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 183: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

Eventos

��

Page 184: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção Eventos

do Número 10 da FAMAT EM REVISTA:

Maria Luisa Maes (coordenadora da seção) Marcos Antônio da Câmara

Ednaldo Carvalho Guimarães

Page 185: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Eventos

VIII Semana Da Matemática da Universidade Federal de Uberlândia –

UFU e VII Encontro Regional de Matemática Aplicada e

Computacional – ERMAC Período: 28 a 31 de outubro de 2008

Informações: www.famat.ufu.br (Em construção)

53ª Reunião Anual da Região Brasileira da Sociedade Internacional de

Biometria – RBras Período: 14 a 16 de maio de 2008

Informações: http://www.dex.ufla.br/53rbras/page.php?2

XXXI Congresso Nacional de Matemática Aplicada e Computacional –

CNMAC Na sua trigésima primeira edição, o congresso será sediado em Belém – PA.

Período: 8 a 11 de setembro de 2008.

Informações: http://www.congresscentral.com.br/cnmac2008/

IV Bienal da Sociedade Brasileira de Matemática A IV Bienal da SBM realizar-se-á no Departamento de Matemática da Universidade

Estadual de Maringá - UEM.

Período: 29 de setembro a 03 de outubro de 2008.

Informações: http://www.dma.uem.br/bienalsbm/

Page 186: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

XV Escola Brasileira de Geometria Diferencial Período: 14/07 até 18/07

Informações: http://www.impa.br/opencms/pt/eventos/store/evento_0029

"Around Hilbert's 16th Problem" Conference in honor of Jean

Jacques Risler Período: 04/08 até 08/08

Informações:

http://www.impa.br/opencms/pt/eventos/store/xAround_Hilbertxs_16th_Problemx_

XX Escola de Álgebra Período: 11/08 até 15/08

Informações: http://www.impa.br/opencms/pt/eventos/store/evento_0024

IV Simpósio Nacional / Jornadas de Iniciação CientíficaPeríodo: 10/11 até 14/11.

Informações: http://www.impa.br/opencms/pt/eventos/store/evento_0025

Terceiro Congresso Brasileiro de Etnomatemática - CBEm3 Período: 26 a 29 de março de 2008

Informações: http://www.uff.br/cbem3/

XIV Encontro Nacional de Didática e Prática de Ensino Período: 27 a 30 de abril

Informações: http://www.pucrs.br/eventos/endipe/

Page 187: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

II Jornada Nacional de Educação Matemática e XV Jornada Regional

de Educação Matemática Período: 06 a 09 de maio de 2008

Informações: http://www.upf.br/jem/2007/

IV Colóquio sobre História e Tecnologia no Ensino da MatemáticaPeríodo: 05 a 10 de maio de 2008.

Informações: http://www.limc.ufrj.br/htem/index.php/HTEM

Symposium on the Occasion of the 100th Anniversary of ICMI Período: 05 a 08 de março de 2008

Informações: http://www.unige.ch/math/EnsMath/Rome2008/

I Seminário Hispano-Brasileiro de Avaliação das Atividades

Relacionadas com Ciência, Tecnologia e Sociedade

( PIEARCTS )

II Jornada Internacional de Ensino de Ciências e Matemática Período: 27/04 a 29/04 de 2008

Informações: http://200.136.79.4/sem_cts/

IV Semana da Matemática da UFF Período: 13 a 17 de maio de 2008

Informações: http://www.uff.br/semanadamatematica/

Page 188: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 189: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

Reflexões Sobre oCurso de Matemática

��

Page 190: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção Reflexões sobre o Curso de Matemática do Número 10 da FAMAT EM REVISTA:

Ednaldo Carvalho Guimarães (coordenador da seção) Marcos Antônio da Câmara

Valdair Bonfim

Page 191: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A BELEZA DA MATEMÁTICA II

Luís Antonio Benedetti

As concepções filosóficas de Verdadeiro, Bom e Belo não se encontram separadas no

conjunto do conhecimento humano. Muito embora a ciência se ocupe da investigação da

verdade, da ética e do bem e a arte se ocupe do belo, os saberes humanos se mesclam de tal

modo que a fronteira entre a arte e a ciência se torna imperceptível. A ética científica passou

a ser um tema atual principalmente em virtude das pesquisas com armamentos, transgênicos e

com o genoma humano. Alguns cientistas de vanguarda abandonaram a pesquisa por motivos

morais ou por recusarem ter suas pesquisas financiadas por organismos paramilitares.

Negligencia-se a relação entre ciência e estética em virtude da enorme explosão de

conhecimento científico utilizável do século XX, poucos são cientistas que pesquisam a fim

de obter exclusivamente satisfação intelectual de suas descobertas. Todavia o prazer derivado

de uma nova descoberta, a satisfação de uma pesquisa levada a termo com êxito continua ser

relevante no fazer científico.

Desde sua origem, no Egito e Babilônia, a geometria esteve ligada à arte da decoração,

porém foi com Platão que os conceitos de Verdade, de Bem e de Belo se fundiram, a partir daí

a matemática tornou-se o maior paradigma da união desses sustentáculos da filosofia.

Em sua obra Metafísica, Aristóteles refere-se aos matemáticos com a seguinte frase

“Do belo é sobre o que principalmente falam, e o belo é o que demonstram”.

Tanto a geometria como a teoria dos números possui um conjunto teoremas que

descrevem maravilhosas propriedades de seus objetos próprios e algumas formas do que

podemos chamar de beleza racional, distinguindo-a da beleza fundamentada unicamente no

plano sensível.

O discurso humano está repleto de concepções de belo, tais como a percepção visual

da natureza, a pintura, a poesia, a música, a harmonia musical e visual impressionam nossa

sensibilidade proporcionando-nos um prazer estético. Contudo, existe um saber bastante

específico que não está limitado à simples exibição de formas de beleza, mas principalmente

em demonstrá-las, este é o caso da matemática. O pentagrama inscrito em um círculo é uma

figura harmoniosa, perfeita, embora seja uma dentre as inúmeras figuras geométricas. Os

matemáticos não se contentam em sentir, criar ou construir concordâncias visuais ou sonoras,

que causam prazer estético, como no caso da música e da pintura, buscam uma razão

intelectual para a beleza, criando um elo entre arte e ciência, entre razão e sensibilidade. Uma

demonstração deve ser correta e elegante, mas deve também dar a razão de sua própria beleza.

Page 192: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A estética da matemática é extremamente sóbria, quase imperceptível. Expressões como

1log

)(limn

nn

ou 01ie , proporcionam um prazer intelectual a qualquer indivíduo que,

conhecendo os sentidos dos signos envolvidos, constate que é possível reuni-los em formas

aparentemente curtas, porém relacionadas a teorias matemáticas particularmente complexas.

Os pitagóricos foram os primeiros a perceber que era possível explicar a harmonia do

mundo e dos astros em termos de números, todos os fenômenos podiam ser ordenados e

normatizados, redutíveis em forma e medida à matemática. O mesmo sentimento levou

Galileu a escrever “A matemática é a linguagem na qual Deus escreveu o Universo”. No

Renascimento a teoria da perspectiva levou à criação da geometria projetiva expandindo a

relação entre matemática e beleza, o domínio da perspectiva ampliou a concepção estética e

construiu novas formas.

O mesmo se deu com o advento do cálculo diferencial, que permitiu técnicas

arquitetônicas inimagináveis como as estruturas aéreas, abóbadas de extraordinária beleza e

obras de sustentação leve. No século XVII a matemática já era suficientemente complexa;

novas curvas, figuras e estruturas matemáticas eram descobertas, a ciência contemporânea

estava sendo criada, não se limitando a descrever e dispor a natureza nestes termos, mas

também transformando-a, concebendo novas formas e fenômenos. A emergência da ciência

moderna ampliou o domínio estético com a criação de novas formas de arte, como a

fotografia, o cinema, a televisão e a simulação computacional. Devemos ter em mente que as

diversas manifestações artísticas que temos nos dias de hoje, somente foram possíveis a partir

do desenvolvimento da ótica, eletricidade e da acústica. Algumas concepções estéticas apenas

são factíveis em virtude da imensa evolução no campo da topologia, geometria e tantas outras

teorias matemáticas acompanhadas pelo desenvolvimento tecnológico, tal é o caso dos

fractais e sua realização computacional.

Leibniz imaginava construir uma característica universal, um sistema de símbolos

universais e ideogramas associados a um pequeno número de conceitos fundamentais que

serviriam de alfabeto para o pensamento humano, inteligível em todas as línguas e culturas.

Novas descobertas e idéias poderiam ser feitas por operações rotineiras segundo as regras do

cálculo lógico nesse sistema. A verdade e o erro seriam apenas questões de cálculo correto ou

errado, terminariam de uma vez por todas as controvérsias filosóficas. Essas idéias

possivelmente foram consideradas um tanto metafísicas na época, contudo o progresso do

século XX caminhou nessa direção, introduzindo profunda modificação na relação entre

membros de diversas culturas. Nada se adapta mais a característica universal de Leibniz sobre

Page 193: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

representações simbólicas e artificiais dos objetos e idéias do que a fotografia, o cinema e a

televisão. São escritas tecnológicas e universais, igualmente perceptíveis em todas as culturas,

independentemente da língua e da distância, formam a ideografia de nosso tempo. Novas

idéias artísticas, religiosas e até mesmo políticas são criadas no interior desse sistema de

signos. O papel dá lugar à narrativa e à representação em tela, o conceito renascentista de

descoberta e conquista, aos poucos vem sendo substituído pelo de descoberta virtual de novos

mundos, a beleza tecnológica se aperfeiçoa face à beleza natural. A composição de imagens e

sons é feita por meio de sofisticados instrumentos, aumentando exponencialmente as

possibilidades de criação, impensáveis na época de Leibniz e Newton, além disso, a difusão

das informações tem um alcance e velocidade inimaginável para qualquer época anterior em

toda a civilização.

Ressalte-se que o grotesco e o sublime, o feio e o harmonioso, o gratificante e o

repugnante persistem no mundo globalizado pela ação dessas novas representações universais

artificiais, porém torna-se necessário visualizá-las sob uma perspectiva que mostre a profunda

interação entre ciência e beleza.

Até o século XVII os universos imaginários não passavam de representações do divino

e do mito. Bosch em sua tela “O Jardim das Delícias” e Goya em suas pinturas descrevem

esse tipo de reino imaginário, mas é no Carnaval com sua arte do disfarce, máscaras e

cenografias que se observa a reprodução e representação de mundos imaginários.

Escher soube expressar com genialidade e de forma perfeita as novas possibilidades

que a ciência desenvolveu, criando obras de magnífica beleza. Partindo de conceitos

topológicos e não mais geométricos, o artista pode criar espaços onde se deformam

radicalmente as estruturas do mundo físico como, por exemplo, a noção de interior e exterior.

No mundo de signos criados artificialmente o conceito de beleza se transformou

substancialmente, não há mais lugar para a ingenuidade inerente à beleza natural, os limites

artesanais são ditados pelas possibilidades que a ciência e a tecnologia desenvolveram.

Na matemática, a partir da análise de seus fundamentos no início do século XX as

demonstrações construtivas tornaram-se preferíveis, reativando o que seria sua principal

peculiaridade: a demonstração da beleza, ampliando o clássico conceito platônico do belo.

Assim como os produtores de arte na atualidade utilizam-se de várias tecnologias,

construindo novas formas de beleza, cada vez mais a descoberta científica torna-se um

trabalho de equipe. A obra adquire conotações industriais, a coletivização da beleza não se dá

apenas na difusão de informações, mas na produção. O gênio individual isolado do

Renascimento vai sendo substituído pelo coletivo que busca o êxito final da obra.

Page 194: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

No limiar do século XXI as concepções de Verdadeiro e Belo não são mais

transcendentais, pois são investigados e expressos através de artifícios tanto teóricos como

tecnológicos, cuja criação requer a colaboração de um número grande de indivíduos.

A beleza racional da matemática clássica ainda persiste, mas assim como a

tecnológica, deixou de ser individual para ser coletiva.

O presente texto baseia-se no trabalho de Javier Schevernia publicado na revista “El

Paseante, n.4 – 1989 ”, editada pela Universidade do País Basco.

Referências adicionais:

1. Schevernia, J. “Sobre o Jogo Leibniz e Sua Obra” –U. Madrid, 1986.

2. Davis, P.J., Reuben,H., “O Sonho de Descartes” – F Alves, Rio de Janeiro, 1988.

3. – , “A Experiência Matemática” – 3e, F. Alves, Rio de Janeiro, 1986

Page 195: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

Em Sala de Aula

���

Page 196: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção Em Sala de Aula

do Número 10 da FAMAT EM REVISTA:

Ednaldo Carvalho Guimarães (coordenador da seção) Marcos Antônio da Câmara

Page 197: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Indice de Trabalhos

A assistencia estudantil no curso de Ciencias Sociais da UFU 198

Renata Goncalves Silva, Bruna de Azevedo Barbieri, Gabriel PonteBatista, Edimar de Freitas Costa e Aurelia Aparecida de Araujo Rodrigues

A intervencao Pedagogica e a utilizacao de jogos noEnsino e Matematica 204

Sheila Maria Fernandes Carrijo e Fabiana Fiorezi de Marco Matos

A construcao de uma maquete: uma ferramenta parao Ensino da Matematica 216

Loren Grace Kellen Maia Amorim, Mariana Martins Pereira e MariaTeresa Menezes Freitas

O Uso de Modelagem Matematica na Construcao de uma Piscina 229

Stela Zumerle Soares, Karla Barbosa de Freitas e Rosana Sueli daMotta Jafelice

Modelagem Matematica das Pistas de Skate 244

Danilo A. Marques, Rafael H. A. de Oliveira e Rosana S. M. Jafelice

Page 198: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A assistência estudantil no curso de Ciências Sociais da UFU

Renata Gonçalves Silva1

[email protected] de Azevedo Barbieri1

[email protected] Gabriel Ponte Batista1

[email protected]

Edimar de Freitas Costa2

[email protected] Aurélia Aparecida de Araújo

Rodrigues3

[email protected]

Resumo:Na política de Educação Superior, a assistência estudantil tem como finalidade

fornecer os recursos que facilitem o bom desempenho acadêmico. Assim sendo, a assistência estudantil é responsável pelo provimento dos recursos mínimos para a sobrevivência do estudante tais como moradia, alimentação, transporte e recursos financeiros. Neste contexto, o objetivo deste trabalho é avaliar a situação dos alunos do curso de Ciências Sociais da Universidade Federal de Uberlândia (UFU) em relação ao recebimento de auxílio alimentação e moradia. Adicionalmente, traçou-se o perfil dos estudantes entrevistados.

Palavras-chave: assistência estudantil, ensino superior.

1. INTRODUÇÃO No segundo semestre de 2007, ocasião em que este trabalho foi desenvolvido por alunos da disciplina Introdução à Estatística do curso de Ciências Sociais, a Universidade Federal de Uberlândia (UFU), contava com uma comunidade universitária constituída de cerca de 14.500 estudantes de graduação e pós-graduação, 1.318 professores (sendo 1.080 efetivos), com 1.172 vinculados ao ensino superior (972 efetivos) e 146 às unidades especiais de ensino e 3.300 servidores técnico-administrativos em seus 35 cursos de graduação presenciais, 1 à distancia(Administração) e 24 programas pós-graduação stricto sensu (mestrado e doutorado). A estrutura acadêmica da instituição encontra-se subdividida em 27 unidades, distribuídas pelas diversas áreas do conhecimento e formação. A UFU possui três campus na cidade de Uberlândia, sendo um campus no bairro Umuarama, outro no bairro Santa Mônica, e mais um terceiro campus, especifico do curso de Educação Física, localizado no bairro Aparecida; e um quarto campus na cidade de Ituiutaba-MG, chamado Campus Pontal, o qual foi inaugurado no 1º semestre de 2007.

O curso de Ciências Sociais na Universidade Federal de Uberlândia foi aprovado pelo Conselho Universitário através da Resolução 04/96 de abril de 1996 e reconhecido pela comissão de especialistas do MEC, em 29 de maio de 2000, com o propósito de capacitar o profissional em Ciências Sociais, proporcionando-lhe a aquisição de conhecimentos teóricos fundamentais nas áreas de Antropologia, Sociologia e Ciência Política, no exercício de pesquisa, e do saber aplicado no ensino em qualquer das áreas especificas.

1 Aluno de graduação em Ciências Sociais da UFU. 2 Colaborador. Aluno de graduação em Engenharia Civil da UFU. 3 Orientadora. Professora Adjunto da Faculdade de Matemática da Universidade Federal de Uberlândia (UFU).

Page 199: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Todos os campus da UFU possuem restaurantes universitários (RU) que atendem à comunidade universitária. No entanto, a UFU não conta com moradia universitária em nenhum de seus campus. A DIASE (Divisão de Assistência ao Estudante) da UFU, é responsável pela política de distribuição de bolsas alimentação e moradia. Segundo a DIASE, as bolsas alimentação são dos tipos A, B e C, as quais são distribuídas de acordo com a situação sócio-econômica do aluno beneficiado; e o valor da bolsa moradia é de cem reais. O aluno que possui bolsa do tipo A tem oferta de uma refeição de segunda a sexta-feira; do tipo B, tem de duas refeições de segunda a sexta-feira e a bolsa tipo C, tem duas refeições de segunda a domingo. Essas bolsas são concedidas após uma criteriosa análise da situação sócio-econômica dos alunos que solicitam auxílio.

O objetivo deste trabalho é avaliar a situação dos alunos do curso de Ciências Sociais da UFU em relação ao recebimento de bolsas alimentação e moradia. Adicionalmente, traçou-se o perfil dos estudantes entrevistados.

2. METODOLOGIA Temos aqui um estudo de caso, para o qual foram entrevistados 63 alunos

matriculados no curso de Ciências Sociais da UFU, sendo que o número total de alunos matriculados era de aproximadamente 130. A entrevista foi feita por meio do questionário abaixo:

Questionário nº

1) Sexo: ( ) masculino ( ) feminino 2) Idade: ___________ 3) Você mora em Uberlândia? ( ) sim ( ) não 4) Você exerce algum trabalho fora do horário do Curso de Ciências Sociais? ( ) sim ( )não 5) Você possui Bolsa-Alimentação? ( )sim ( ) não . Qual?__________ 6) Você possui Bolsa-Moradia? ( )sim ( )não 7) Você faz algum estagio? ( )remunerado ( ) não remunerado ( ) nenhum 8) Você mora de: ( ) aluguel ( ) casa própria Outros_____________

Os questionários foram numerados para preservar a identidade dos entrevistados. O software Excel foi usado na tabulação dos dados e na construção dos gráficos da seção seguinte.

3. ANÁLISE DOS DADOS 3.1. Perfil dos estudantes entrevistados

O questionário aplicado permite analisar o perfil dos alunos entrevistados.O gráfico 1 mostra que dos 63 alunos que participaram da pesquisa realizada, 52% são

do sexo masculino e 48% são do sexo feminino.

Page 200: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Gráfico 1: Sexo dos alunos entrevistados

Com relação à idade, observa-se no gráfico 2 que a idade mais freqüente foi de 20 anos. Além disso, obteve-se que a idade média dos alunos foi igual a 20,97 anos.

1

6

11

20

10

3 3 32 1 1 1 1

0

5

10

15

20

25

17 18 19 20 21 22 23 24 25 26 28 31 35

Gráfico 2: Idade dos alunos entrevistados

Em relação ao local de moradia, conforme mostrado no gráfico 3, dentre os alunos entrevistados, 95% afirmam que moram na cidade de Uberlândia, sendo que o restante dos alunos moram em cidades vizinhas.

95%

5%

Sim

Não

Gráfico 3: Alunos entrevistados que moram em Uberlândia Sobre o tipo de moradia dos alunos entrevistados, o gráfico 4 mostra que os que 48%

deles moram em casa própria, 47% afirmam que moram de aluguel e os 5% restantes residem em outro tipo de moradia, por exemplo, moram em pensionatos ou em residência de amigos ou em residência de parentes.

Page 201: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

47%

48%

5%

Aluguel

Casa própria

Outros

Gráfico 4: Tipo de moradia dos alunos entrevistados

Os gráficos seguintes são referentes às atividades realizadas pelos alunos fora do horário das aulas do curso de Ciências Sociais. O gráfico 5 mostra que 59% dos entrevistados não trabalham fora do horário das aulas. Sendo que outros 41% afirmam trabalhar fora do horário das aulas.

41%

59%

Sim

Não

Gráfico 5: Alunos entrevistados que exercem algum trabalho fora do horário das aulas

Já o gráfico 6 mostra a porcentagem de alunos que participam de estágios, sendo esse remunerado ou não. Observou-se, 76% dos entrevistados não participam de nenhum tipo de estagio, 13% afirmam que exercem estágio remunerado, e outros 11% participam de estágios sem remuneração.

13%

11%

76%

Remunerado

Não Remunerado

Nenhum

Gráfico 6: Estágio dos alunos entrevistados

Page 202: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

3.2. Assistência Estudantil O questionário aplicado permite analisar a situação da distribuição de bolsas

alimentação e moradia distribuídas aos alunos entrevistados. No gráfico 7, observa-se que 95% dos alunos entrevistados não recebem bolsa alimentação e que apenas 5% dos entrevistados (3 alunos) são beneficiados com esse tipo de auxílio. No questionário, dois alunos entrevistados informaram que possuem bolsa alimentação do tipo C e um informou que possui a bolsa do tipo A.

5%

95%

Sim

Não

Gráfico 7: Alunos entrevistados que possuem Bolsa-alimentação

O gráfico 8 mostra que apenas 2% dos alunos recebem o beneficio de bolsa moradia, sendo que 98% afirmam não receber este tipo de auxilio.

2%

98%

Sim

Não

Gráfico 8: Alunos entrevistados que possuem Bolsa-moradia

4. CONCLUSÃO Esse trabalho analisou a situação dos alunos do curso de Ciências Sociais da UFU em

relação ao recebimento de bolsas alimentação e moradia. Dos 63 estudantes do curso de Ciências Sociais entrevistados, apenas 5% possuem bolsa alimentação e 2% bolsa moradia.

O resultado desta pesquisa é preocupante, pois, a dificuldades financeira associada ao baixo índice de assistência estudantil, pode fazer com que muitos alunos de baixa renda desistam do curso universitário.

Page 203: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A criação, manutenção e ampliação de programas que garantam a alimentação e a moradia para os alunos de baixa renda, principalmente dos restaurantes universitários e alojamentos estudantis, respectivamente, são formas de garantir a permanência dos estudantes no campus; dando-lhes oportunidade para otimizar seu tempo de vida acadêmica e contribuindo para o seu melhor desempenho e formação integral.

Como extensão deste trabalho, propõe-se estudar as políticas de assistência estudantil na UFU e investigar a situação de recebimento de bolsas alimentação e moradia em todos os cursos dessa Universidade.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ALVES, J. A. A assistência estudantil no âmbito da política de educação superior pública.Disponível em http://www.ssrevista.uel.br/c_v5n1_Jo.htm. Acesso em 14/04/2008.

ARAUJO, J de O. O elo assistência e educação: o elo assistência/desempenho no programa de residência universitária alagoana. Tese de doutorado. Universidade Federal de Pernambuco, 2003.

SILVIA, M. G. Movimento Estudantil na Universidade Federal de Uberlândia – UFU: Um estudo na Visão de seus Sujeitos. Dissertação de mestrado, PUC-São Paulo, 1994.

MORETTIN, P. A.; BUSSAB, W. O. Estatística Básica. Saraiva: São Paulo, 2002.

Page 204: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A INTERVENÇÃO PEDAGÓGICA E A UTILIZAÇÃO DE JOGOS NO ENSINO DE MATEMÁTICA

Universidade Federal de Uberlândia Faculdade de Matemática

Sheila Maria Fernandes Carrijo Fabiana Fiorezi de Marco Matos [email protected] [email protected]

INTRODUÇÃO

A situação da educação em nosso país tem demonstrado grande desinteresse de

crianças, jovens e adultos pela escola, pois os métodos tradicionais utilizados por muitos

professores não estimula os alunos para o aprendizado.

Algumas pesquisas1 têm mostrado que o trabalho em sala de aula desenvolvido de

forma lúdica desperta o interesse dos alunos, promovendo um ensino e um aprendizado de

qualidade. Além disso, nos últimos anos, a preocupação com um trabalho pedagógico por

meio de jogos no ensino de Matemática tem atraído a atenção de pesquisadores, pois sendo

ele uma atividade fundamental para o desenvolvimento da criança (LANNER DE MOURA,

1995), essa, por meio do lúdico, é capaz de elaborar processos de pensamento relacionados à

resolução de problemas.

No contexto da Educação Matemática, encontramos pesquisas como a de Grando

(1995) e de Moura (1992) que se referem ao jogo como um gerador de situação-problema e

desencadeador da aprendizagem do aluno. Moura (1992) aborda o jogo como um problema

em movimento, pois solicita do jogador a elaboração de procedimentos pessoais eficazes na

resolução de uma situação-problema de jogo e que define jogo pedagógico “como aquele

adotado intencionalmente de modo a permitir tanto o desenvolvimento de um conceito

matemático novo como a aplicação de outro já dominado pela criança” (p.53) (grifo nosso).

Ressaltamos que o jogo na sala de aula não pode ser aplicado como um “passa

tempo”, onde os alunos jogam apenas por jogar e não desenvolvem sua capacidade de buscar

novas estratégias, soluções e questionamentos da situação apresentada pelo jogo. Nenhum

jogo é educativo por si só; para que se tenha essa conotação é preciso ser intencionalmente

planejado pelo professor para ser usado em um contexto educativo.

Os jogos têm suas vantagens no ensino da Matemática desde que o professor tenha

objetivos claros do que pretende atingir com a atividade proposta. Entendemos que as

1 Entre elas: Lanner de Moura (1995), Brenelli (1996), Grando (1995 e 2000), Marco (2004).

Page 205: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

situações vivenciadas durante a partida podem levar o jogador a planejar as próximas jogadas

para que tenha um melhor aproveitamento. Ressaltamos que isso só ocorrerá se houver

intervenções pedagógicas por parte do professor (MARCO, 2004).

Sobre o papel do professor, Kamii e Housman (2002), destacam que este

é crucial para maximizar o valor dos jogos matemáticos. Por exemplo, se o professor corrige papéis em sua própria mesa enquanto as crianças estão jogando, as crianças rapidamente captam a mensagem de que os jogos não são suficientemente importantes para o professor se incomodar com eles (p.237).

Manter sempre um diálogo com os alunos ajuda o professor a avaliar a forma que eles

estão aprendendo e qual a melhor maneira de se trabalhar um conteúdo de modo que possa

haver a participação de todos e o interesse em aprender.

Segundo Grando (2000), a inserção do jogo no contexto de ensino de Matemática

representa

uma atividade lúdica, que envolve o desejo e o interesse do jogador pela própria ação do jogo, e mais, envolve a competição e o desafio que motivam o jogador a conhecer seus limites e suas possibilidades de superação de tais limites, na busca da vitória, adquirindo confiança e coragem para se arriscar (p.32).

Para o aluno, o jogo constitui-se como um elemento de diversão. O professor, ao levar

um jogo para a sala de aula, precisa ter objetivos e conteúdos claros a serem trabalhados,

problemas a serem propostos e questões a serem exploradas para alcançar resultados

esperados no trabalho a ser desenvolvido.

No Brasil, os Parâmetros Curriculares Nacionais de Matemática (PCN´s, 1998), do

Ministério de Educação e Cultura (MEC), em relação à inserção de jogos no ensino de

Matemática, pontuam que estes

constituem uma forma interessante de propor problemas, pois permitem que estes sejam apresentados de modo atrativo e favorecem a criatividade na elaboração de estratégias de resolução de problemas e busca de soluções. Propiciam a simulação de situações-problema que exigem soluções vivas e imediatas, o que estimula o planejamento das ações (p. 46).

Apesar de os PCN´s orientarem para a utilização de jogos no ensino de Matemática,

não orientam em relação a como deve ser encaminhado o trabalho pedagógico após “o jogo

pelo jogo”. Fica a sensação de que o jogo por si mesmo estará trabalhando análises,

desencadeamentos ou formalizações de conceitos matemáticos.

Juntamente com Marco (2004) entendemos que

Page 206: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Ao jogar e discutir partidas, muitos conceitos são reavaliados bem como diferentes aspectos do conhecimento são ampliados e aprofundados. Jogar favorece e enriquece o processo de aprendizagem, na medida em que o sujeito é levado a refletir, fazer previsões e inter-relacionar objetos e eventos (p.28).

Frente a estas considerações, é importante ressaltarmos que a intervenção pedagógica

intencional que deve ser feita é necessária para que haja a construção e formalização de

conceitos explorados no contexto educacional. Além disso, os jogos são recursos com os

quais a criança pode produzir e compreender textos, significados e situações escolares e

cotidianas, além de criar estratégias para resolver a situação-problema enfrentada para atingir

seu objetivo (ganhar o jogo).

É importante lembrarmos também que na prática pedagógica com jogos, a construção

e aquisição de conhecimentos por parte dos alunos acontecem de forma mais lenta, pois estes

necessitam de tempo para se familiarizar, aprofundar e analisar o jogo. Dos professores, exige

maior dedicação na preparação de materiais, atentando para as diferentes fases do jogo e suas

possibilidades, sendo ele o mediador da construção do conhecimento pelos alunos,

proporcionando a estes ambientes de aprendizagem nos quais possam criar, ousar, comprovar.

As intervenções pedagógicas do professor são de extrema importância para o

aprendizado dos alunos, pois permitem a exploração de conceitos matemáticos e a busca pelo

desenvolvimento da capacidade de pensar.

Em relação à intervenção pedagógica com jogos nas aulas de Matemática, Grando

(2000) propõe sete momentos distintos:

1. Familiarização com o material do jogo

Neste momento, os alunos entram em contato com o material, realizando construções

e experimentações com o mesmo através de simulações de possíveis jogadas.

2. Reconhecimento das regras

Este momento acontece mediante a explicação das regras pelo professor ou, pela

leitura das regras pelos alunos ou ainda, pela identificação das mesmas a partir de várias

jogadas entre o professor e um aluno que tenha aprendido o jogo anteriormente.

3. Jogar para garantir regras

Este é o momento do jogo pelo jogo, momento em que os alunos jogam

espontaneamente e podem perceber alguma relação com a Matemática.

Page 207: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

4. Intervenção pedagógica verbal

Este momento caracteriza-se pelos questionamentos e observações realizadas pelo

professor a fim de provocar os alunos para análises de suas jogadas. Trata-se de atentar para

os procedimentos de resolução de problemas de jogo dos alunos, relacionando-os a

conceitualização matemática.

5. Registro do jogo

Este pode ocorrer dependendo de sua natureza e dos objetivos que se têm com o

registro, podendo ser considerado uma forma de sistematização e formalização de conceitos

por meio da linguagem matemática.

6. Intervenção escrita

O professor e/ou os alunos elaboram situações-problema sobre o jogo realizado para

que os próprios alunos as resolvam.

7. Jogar com competência

Após toda a intervenção feita, neste momento acontece o retorno à situação real do

jogo onde os alunos podem executar estratégias definidas e analisadas durante a resolução dos

problemas, tendo um novo olhar para cada jogada a ser realizada.

Pensando nestes sete momentos é que procuramos desenvolver nosso estudo que

passamos a apresentá-lo.

O TRABALHO......

Conforme discutido anteriormente, uma melhor relação com a Matemática pode

ocorrer mediante a utilização de jogos na sala de aula. Porém, é necessário haver a reflexão

sobre seu aspecto pedagógico. Uma forma de valorizar esse aspecto relaciona-se à perspicácia

do professor para, após uma jogada que não deu certo, incentivar o aluno a refletir sobre o

processo utilizado e o mesmo ao tomar consciência deste, busque novos processos e

investigue os conceitos envolvidos.

Com estas idéias, neste estudo, investigamos como os momentos de intervenção

pedagógica podem auxiliar no trabalho com jogos matemáticos em sala de aula. Acreditamos

que uma boa forma de estudar a Matemática, por muitos considerada uma disciplina sisuda e

Page 208: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

abstrata é por meio da exploração de conceitos de maneira lúdica, de forma que o prazer, a

criatividade e a satisfação pessoal estejam presentes.

Para responder a este problema de investigação buscamos explorar as potencialidades

de alguns jogos no ensino de matemática, auxiliar na formação profissional quando se utiliza

jogos matemáticos em sala de aula e analisar o desempenho de alunos ao vivenciarem

situações de jogo com intervenções pedagógicas.

Para atender aos nossos objetivos e problema de pesquisa, realizamos um estudo

exploratório de vários jogos que podem ser utilizados no ensino de Matemática. O objetivo

desta ação era conhecer o jogo que selecionaríamos para podermos melhor realizar

intervenções pedagógicas no momento da aplicação em sala de aula.

Como seqüência de nossa pesquisa, procuramos estabelecer uma parceria com uma

professora da rede estadual de ensino na cidade de Araguari que pretendia aperfeiçoar sua

prática pedagógica e trabalhar com jogos no ensino de Matemática. Cabe destacarmos que

tanto a professora quanto seus alunos mostraram-se muito entusiasmados com a proposta e

houve uma participação total de toda a turma durante o desenvolver da atividade.

O interesse da professora em relação ao trabalho com jogos trouxe um grande auxilio

à realização de nossa pesquisa, pois vendo o interesse desta, os alunos também se envolveram

totalmente possibilitando que o aprender pudesse, de fato, acontecer de forma envolvente e

significativa.

Para esta pesquisa selecionamos o jogo Contig 60®1. Este jogo propicia o

desenvolvimento de habilidades e procedimentos de cálculo mental com as quatro operações

básicas (adição, subtração, multiplicação e divisão) (GRANDO, 2004).

As intervenções pedagógicas com este jogo podem possibilitar nos alunos, o

desenvolvimento de habilidades como: antecipação e previsão de situações de jogo, análise de

possibilidades, reflexão sobre jogadas “erradas” e estímulo ao cálculo mental. Para procurar

desenvolver estas habilidades, o professor pode, no momento da intervenção verbal, lançar

questões como: que números você precisa tirar nos dados para obter o valor desejado? qual

outra forma de você conseguir esse valor? será que você fez uma boa jogada? qual o

maior/menor resultado que você consegue com esses números dos dados? (GRANDO, 2004).

Trabalhamos com alunos da 5ª, 6ª e 7ª séries pertencentes a uma escola pública da

cidade de Araguari durante o primeiro semestre de 2007, para auxiliá-los no aprendizado de

1 Jogo criado por Dr. John C. Del Regato – Copyright 1980, 1986; by Pentathlon Institute, Inc. e adaptado pela Profª Drª Regina Célia Grando.

Page 209: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

operar com as quatro operações básicas. Esta opção ocorreu devido a professora-parceira nos

relatar quais eram as reais dificuldades da maioria dos alunos destas turmas.

Em todas as turmas propusemos que os alunos formassem duplas para jogar dois

contra dois, pois dessa forma, há a necessidade de organização de pensamento e verbalização

deste para convencer o colega de dupla de que a sua estratégia é a melhor. Depois dos grupos

formados apresentamos o jogo para que eles pudessem reconhecer o material do qual este é

constituído, concretizando o primeiro momento de intervenção pedagógica proposto por

Grando (2000). Abaixo reproduzimos o tabuleiro do jogo para melhor compreensão do leitor

(figura 1).

0 1 2 3 4 5 6 7

27 28 29 30 31 32 33 8

26 54 55 60 64 66 34 9

25 50 120 125 144 72 35 10

24 48 108 180 150 75 36 11

23 45 100 96 90 80 37 12

22 44 42 41 40 39 38 13

21 20 19 18 17 16 15 14Fig. 1 - Tabuleiro do jogo CONTIG 60®

Em todas as turmas, procurando atender ao segundo momento de intervenção

pedagógica (GRANDO, 2000), explicamos aos alunos que o jogo consiste em jogar três dados

e, a partir das quatro operações (adição, subtração, multiplicação e divisão), fazer operações

com os valores obtidos. Esclarecemos que só marcaria pontos a dupla que conseguisse colocar

uma ‘ficha’ perto da outra independente da cor. Se marcasse perto de uma peça que já estava

marcada ganhava-se 1 ponto, se encostasse em duas peças marcadas, obtinha-se 2 pontos, em

três peças marcadas, 3 pontos e assim sucessivamente.

Para nossa análise, selecionamos as informações obtidas nas turmas de 6ª séries, por

termos um maior tempo de contato com estes alunos. Realizamos o trabalho em três aulas,

para que pudéssemos obter um maior retorno dos alunos em relação à aprendizagem

utilizando jogos matemáticos.

Page 210: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

AS AULAS....

Quando os alunos começaram a jogar foi necessário lançarmos mão do quarto

momento de intervenção pedagógica proposto por Grando (2000), o momento de intervenção

pedagógica verbal, auxiliando os grupos para que o jogo pudesse ser entendido pelos alunos

que até então estavam confusos em relação às operações a serem feitas e dos pontos.

Ao passar pelos grupos e pelo registro abaixo, percebíamos que os alunos só faziam

operações utilizando a soma. Porém, com o intuito de sempre marcar pontos eles perceberam

que apenas utilizando a operação de adição não conseguiriam obter grande quantidade de

pontos em cada jogada. Com nossa intervenção, os levamos a perceber tal fato e,

posteriormente, os alunos começaram a utilizar a multiplicação e depois as duas operações

juntas (adição e multiplicação) (figura 2).

Fig. 2 – Registro das operações realizadas inicialmente

A cada jogada os alunos buscavam obter mais e mais pontos e, com isso, sentiam a

necessidade de utilizar as quatro operações, mas percebíamos grandes dificuldades em usar a

operação de divisão em suas jogadas.

Como havíamos pedido que os alunos fizessem os registros de suas operações, o

quinto momento de intervenção, constatamos, ao passarmos pelos grupos, que praticamente

todos os alunos não representavam corretamente suas operações de acordo com a linguagem

matemática universalmente aceita. Precisávamos encontrar uma forma para que os alunos

sentissem necessidade de pensar na maneira correta de representar as divisões. Íamos de

grupo em grupo auxiliar e avaliar como os alunos estavam realizando os seus registros a partir

dos resultados obtidos nos dados.

No intuito de encontrarmos a melhor forma de levar os alunos a pensarem em uma

maneira correta matematicamente de efetuar seus registros, desenvolvemos o seguinte diálogo

com um dos grupos:

A1: Professora, o que eu faço agora? Tenho que 3x3+2=11 e o 11 já está marcado. P: Vocês só podem realizar as operações com os números nessa ordem? A1: Ah! Então eu posso trocar a ordem dos números?

Page 211: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

P: Sim, você coloca os números de forma a realizar uma operação que te ajude a obter mais pontos. A1: Hum!... Então... Ah! Posso fazer 3+2x3=15 e ganhar 1 ponto. P: Espere aí, repita para mim o cálculo que você fez. A1: 3+2x3=15 P: Você está somando 3+2 e multiplicando o resultado por 3? A1: Com isso eu consigo 15 e ganho 1 ponto. P: Olhe bem para esta expressão. É assim que eu resolvo? A1: Como assim professora? Não estou entendendo. P: Quando você vai resolver uma expressão desse tipo é assim que você resolve? A1: É... Ah sim! Primeiro devemos fazer a multiplicação. P: Então se eu tenho 3+2x3, fazendo primeiro 2x3 e somando o resultado com 3 obtemos 15? A1: Não professora temos 9. Então a minha conta está errada. P: Desse jeito está errada sim, mas, para que eu possa realizar essa operação da forma como você está planejando, o que eu devo fazer? A1: Hum! Não sei professora P: Pense só um pouquinho. O que eu devo fazer para poder realizar a soma primeiro? A1: É... É... A2: Colocar parênteses. P: Muito bem! Assim eu posso fazer (3+2)x3=15.

Em todos os grupos percebemos que ao registrar as operações, os alunos não

utilizavam o parêntese quando realizavam uma soma e depois uma multiplicação. Para eles,

fazer 3 + 2 x 3 era a mesma coisa que fazer (3 + 2) x 3. Não havia, nos alunos, a percepção da

utilização do parêntese para a realização correta de suas operações.

O diálogo a seguir mostra como os alunos perceberam a importância de utilizar o

parêntese.

P: Veja só esta operação: 6+6x4=48. Você está realizando primeiro a soma e depois a multiplicação? A1: Sim, professora, eu quero marcar o 48. P: Mas tem certeza que esta operação esta correta? A1: Claro que sim, pois, 6+6 é 12 e 12x4 é 48. P: Bom, quando você tem uma expressão que operação se deve fazer primeiro? A1: A multiplicação ou a divisão. P: Então 6x4=24 e 24+6=30. Logo não dá 48. O que eu preciso fazer para tornar a minha operação correta? A1: Hum... A2: Colocar parênteses. P: Muito bem, mas onde? A2: No 6+6.

Nesta primeira aula, constatamos uma participação dos alunos que até então não havia

acontecido em aulas “tradicionais”, segundo a professora da turma. A cada jogada realizada,

percebíamos que eles estavam mais envolvidos com o jogo, buscando realizar jogadas que

lhes proporcionassem mais pontos, o que os forçava a pensar em várias possibilidades de

cálculos.

Page 212: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A intervenção pedagógica verbal foi de fundamental importância no processo de

aprendizagem dos alunos, pois estes, além de se habituarem a realizar operações envolvendo

adição, subtração, multiplicação e divisão, aprenderam a escrita matemática de forma correta

(figura 3).

Fig. 3 – Registro de cálculos utilizando parêntese

Em jogadas seguintes, grande parte dos alunos representava corretamente suas

operações, colocando o parêntese onde fosse necessário. O diálogo abaixo nos mostra a

representação correta de uma operação com uso adequado do parêntese e o registro que

comprova nossa análise (figura 4).

P: Olhe para esta operação: (5+1)x2 = 12. Vocês podem me dizer por que usaram o parêntese? A4: Por que primeiro queremos somar 5 com 1 e depois multiplicar com 2. P: E se eu não colocar o parêntese? A4: Teria, então, que fazer primeiro a multiplicação e não a soma.

Fig. 4 – Registro de operações com parênteses

Para o momento de intervenção escrita, as questões escolhidas para trabalhar com os

alunos foram retiradas do livro O jogo e Matemática no Contexto da Sala de Aula

(GRANDO, 2004). Para este texto apresentaremos duas das questões propostas e suas

análises:

Page 213: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Situação 1: Temos a seguinte situação de jogo: Peças colocadas nas casas 29, 31, 54,

125, 66 e 72 (figura 5).

a) Quantas possibilidades o próximo jogador tem de ganhar 3 pontos?

b) E 2 pontos?

0 1 2 3 4 5 6 7

27 28 29 30 31 32 33 8

26 54 55 60 64 66 34 9

25 50 120 125 144 72 35 10

24 48 108 180 150 75 36 11

23 45 100 96 90 80 37 12

22 44 42 41 40 39 38 13

21 20 19 18 17 16 15 14

Fig. 5 – Distribuição depeças pelo tabuleiro

Os alunos se empenharam bastante resolver as questões propostas. No item a, a

maioria dos alunos estava encontrando 2 possibilidades de se ganhar 2 pontos. Um grupo de

alunos havia encontrado 6 possibilidades. Outro grupo próximo sentiu-se desafiado a

encontrar as outras possibilidades.

Logo na primeira situação, verificamos o empenho e o total envolvimento dos alunos

na busca pela solução correta do problema proposto. Ressaltamos, também, a importância do

trabalho em grupo, onde os alunos faziam suas análises e questionavam as respostas uns dos

outros, permitindo assim, se chegar ao resultado correto e, o diálogo dos alunos entre si e dos

alunos com o professor, que é de fundamental importância para que aconteça o aprendizado

da melhor maneira possível.

Situação 2: Um jogador tirou 5 em um dos dados. Quanto ele precisa tirar nos outros

dois dados e quais operações precisa fazer para que possa colocar sua peça na casa 28?

Indique uma solução possível (números e operações).

Na situação 2 os alunos não tiveram muita dificuldade de encontrar números que

juntamente ao número 5 dado, desse o resultado 28. A maioria optou por 5x5+3, e 5x6-2. Foi

possível verificar uma grande melhora dos mesmos (alunos) em resolver operações, pois,

Page 214: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

demonstravam mais facilidade em não só resolver as operações, mas, em escrevê-las

matematicamente.

Apesar de apenas apresentarmos duas situações de intervenção escrita, pelas nossas

observações e análises pudemos constatar que os alunos empenharam-se bastante para

resolver as questões propostas. Segundo a professora da turma este fato não costuma ocorrer

em situações de resolução de problemas nas aulas do dia-a-dia. Acreditamos que o trabalho

diferenciado do que ocorre normalmente promoveu o desejo dos alunos em aprender

matemática.

CONCLUSÃO

Ao optar levar um jogo, uma brincadeira ou uma atividade lúdica para a sala de aula

seria importante que o professor tivesse como um de seus objetivos a promoção da

aprendizagem dos alunos e a interação dos mesmos nas aulas de Matemática despertando-os

para o aprendizado.

Sem as tradicionais aulas de giz e quadro, os alunos se mostram mais participativos e

acabam por estar totalmente envolvidos no conteúdo a ser trabalhado pelo professor. Dessa

forma, o aprendizado acontece sem mesmo que eles percebam e o desenvolvimento de suas

habilidades é trabalhado à medida que eles começam a buscar novas formas de resolução das

atividades propostas.

Em um jogo, a cada jogada realizada, o professor, por meio de intervenções, é capaz

de avaliar se o aprendizado de seus alunos em relação aos conceitos matemáticos ensinados

está acontecendo e, se eles são capazes de construir seu raciocínio buscando novas

alternativas e estratégias de jogo.

O trabalho com jogos interfere, positivamente, na relação aluno-professor

proporcionando mais diálogo e mais proximidade entre ambos. Assim, é importante o

professor planejar com clareza as atividades com jogos, combinar com os alunos as regras e

administrar o horário que tenha à sua disposição.

Este trabalho nos proporcionou uma visão renovada para a escola sobre a Matemática,

pois com os jogos confeccionados e aplicados, o tradicional não seria mais a única forma de

trabalho, visto que há outras maneiras de se ensinar e despertar o interesse dos alunos.

Page 215: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

REFERÊNCIAS BIBLIOGRÁFICAS

BRENELLI, R. P. O jogo como espaço para pensar: a construção de noções lógicas e

aritméticas. Campinas: Papirus, 1996.

GRANDO, R. C. O conhecimento matemático e o uso de jogos na sala de aula. Tese de

Doutorado. Campinas, SP. Faculdade de Educação, UNICAMP, 2000.

GRANDO, R. C. O Jogo e a Matemática no Contexto da Sala de Aula. São Paulo: Paulus,

2004.

______________. O jogo e suas possibilidades metodológicas no processo ensino-

aprendizagem da matemática. Dissertação de Mestrado. Campinas, SP, Faculdade de

Educação, UNICAMP, 1995.

KAMII, C. HOUSMAN, L. B. Crianças pequenas reinventam a Aritmética: implicações da

teoria de Piaget. Porto Alegre: Artmed Editora, 2002.

LANNER DE MOURA, A. R. A criança e a medida pré-escolar. Tese de Doutorado.

Campinas, SP, Faculdade de Educação, UNICAMP, 1995.

MACEDO, L.; PETTY, A. L. S.; PASSOS, N. C. Aprender com jogos e situações problemas.

Porto Alegre: Artes Médicas Sul, 2000.

MARCO, F. F. Estudo dos processos de resolução de problema mediante a construção de

jogos computacionais de matemática no ensino fundamental. Dissertação de Mestrado.

Faculdade de Educação, UNICAMP, Campinas, SP, 2004.

PCN’s: Parâmetros Curriculares Nacionais. MEC - Ministério da Educação - Secretaria de

Educação Fundamental - Brasília: MEC/SEF, 1998.

Page 216: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A CONSTRUÇÃO DE UMA MAQUETE: UMA FERRAMENTA PARA O

ENSINO DA MATEMÁTICA

Lóren Grace Kellen Maia Amorim -UFU - [email protected] Mariana Martins Pereira –UFU - [email protected]

Maria Teresa Menezes Freitas - UFU – [email protected]

RESUMO:

Este artigo resultou de uma experiência realizada na Universidade Federal de

Uberlândia, no curso de Licenciatura Plena em Matemática. Enfatiza a importância do

uso dos materiais concretos e relata a construção de uma maquete explorando conteúdos

matemáticos. Conclui-se que este tipo de abordagem, quando cuidadosamente

preparada, se apresenta como um recurso pedagógico eficaz para a construção do

conhecimento matemático.

PALAVRAS-CHAVE: material concreto; maquete de uma casa; formação de professores.

INTRODUÇÃO

Este trabalho vincula-se ao desenvolvimento de um projeto realizado na

disciplina intitulada “Instrumentação para o Ensino de Matemática”, que teve

repercussão e inter-relação com outras disciplinas no Curso de Licenciatura em

Matemática.

A preocupação inicial era compreender as dificuldades enfrentadas pelos

professores de Matemática quando estes decidem propor uma aula diferente, ou seja,

mais dinâmica e interativa. Conscientes de que uma proposta com um formato inovador

e que atente para a garantia da motivação do aluno exigiria uma preparação meticulosa,

partimos para enfrentar o desafio.

Assim, nos deixamos levar por uma experiência que se mostrou eminentemente

formativa, na perspectiva de Larrosa, citado por Freitas (2006), em que as aventuras

não planejadas e não traçadas antecipadamente propiciam a criação de uma força

suficiente para uma reflexão (p. 56). As dificuldades encontradas pelos alunos/futuros

professores no desenvolvimento da atividade requisitaram a revisão e a reflexão sobre

os objetivos e sobre os conteúdos Matemáticos possíveis de serem trabalhados e, nessa

Page 217: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

perspectiva, vislumbrou-se o aproveitamento da mesma atividade para exploração de

diversos conceitos em diferentes contextos.

As primeiras autoras deste artigo, nesta época alunas do 8° período do Curso de

Licenciatura Plena em Matemática da Universidade Federal de Uberlândia, tiveram

como intenção, ao propor o projeto, proporcionar ao aluno um ambiente diferente para

que o mesmo desenvolvesse sua aprendizagem de uma forma compreensiva e

significativa. A disciplina em questão, ministrada pela professora Dra. Maria Teresa

Menezes Freitas, propiciou um espaço de aprendizagem para o desenvolvimento deste

projeto que fora intitulado A construção de uma maquete: uma ferramenta para o

ensino da matemática.

Nesse artigo trataremos do relato da experiência de elaboração do referido

projeto, bem como, da reflexão sobre os saberes movimentados e os desdobramentos

decorrente destes.

Para a realização do projeto o desafio era o de elaborar uma proposta de uma

atividade para alunos do ensino fundamental ou médio, envolvendo o ensino de

Matemática. Muito tempo foi necessário para se chegar à decisão de que havia no grupo

o desejo e a necessidade de desenvolver algo que pudesse ser trabalhado com o aluno,

deste nível de ensino, de uma maneira fácil, prática, prazerosa. O material concreto se

despontou como propício para explorar os conceitos de “Geometria Plana, Espacial e

Trigonometria” e, além disso, despertar o interesse dos alunos. Acreditava-se que este

conteúdo abriria um leque enorme de possibilidades para a realização de um trabalho

interessante e estimulador. Mas que material seria esse? Após a dedicação de várias

horas discutindo e realizando leituras e pesquisas, em diferentes textos e sites, optou-se

pela construção de uma maquete de uma casa, na tentativa de tornar real à proposta

imaginada.

Pensávamos que a construção da maquete seria fácil, porém quando começamos

a desenvolver o trabalho, tivemos algumas surpresas, pois não foi tão trivial a sua

construção. Durante a elaboração da mesma descobrimos o quanto é importante o

professor desenvolver uma atividade antes de propô-la a seus alunos, pois alguns

aspectos precisam ser levados em conta e que nem sempre recebem atenção antecipada.

Destacamos os seguintes itens: aprender a lidar com os tijolos nem sempre

confeccionado do mesmo tamanho; estabelecer a área da casa, calcular a quantidade de

tijolos a serem produzidos; calcular a altura da parede da casa; calcular o tamanho das

Page 218: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

portas e janelas e, acima de tudo, identificar e reconhecer que conteúdo Matemático é

possível ser explorado.

A solicitação da professora da disciplina de que houvesse um registro escrito de

todo o processo de desenvolvimento do projeto e, que este não se ativesse apenas ao

mero relatório, mas apresentasse uma reflexão sobre os caminhos trilhados, nos

impulsionou a pensar e repensar sobre o que estávamos a planejar, identificando e

questionando os objetivos e apontando possíveis caminhos de solução para atender as

expectativas.

Outro ponto relevante na produção da maquete se relaciona a descoberta,

durante sua construção, sobre os vários conteúdos de Matemática possíveis de serem

explorados além daqueles pensados inicialmente. A idéia inicial proposta evidenciava

apenas a trigonometria e a geometria - plana e espacial. Entretanto, a experiência nos

levou a descobrir que outros conteúdos estavam relacionados e poderiam ser também

explorados, tais como: sistemas de medidas (linear, superfície, volume, capacidade e

massa); porcentagem, proporcionalidade e matemática financeira. Sistemas de medidas

e porcentagens podem ser abordados na construção da planta da casa, na discussão

sobre o tamanho e o modelo do terreno. Matemática financeira pode ser tratada no

cálculo da quantidade de material a ser gasto para a construção da maquete.

Neste texto destacaremos apenas os aspectos relacionados à geometria e a

trigonometria.

O USO DO MATERIAL CONCRETO

Diante da grande dificuldade dos alunos em compreender a Matemática e, além

disso, a concepção de muitos alunos de diferentes níveis como sendo esta área um

‘bicho-de-sete-cabeças’, consideramos interessante que o aluno tenha a oportunidade de

aprender interagindo e refletindo, evitando assim, um aprender mecânico, repetitivo e

aquele fazer sem saber o que faz e por que faz. Nesse sentido, optamos por desenvolver

um trabalho sobre o uso do material concreto, por acreditarmos que com essa

ferramenta as aulas de Matemática poderão ser mais interativas, despertando a

curiosidade e estimulando os alunos a fazerem perguntas, a descobrirem semelhanças e

diferenças, a criarem hipóteses e a chegarem às próprias soluções.

A experiência nos levou a acreditar e ressaltar a importância do professor

planejar suas aulas atentando para prática pedagógica e para os objetivos a serem

Page 219: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

alcançados. O uso pelo o uso do material concreto, certamente não levará aprendizagem

significativa. Vale lembrar, conforme afirma Grando (2004) ao tratar do aspecto

mediador do professor na atividade jogo, que

o professor é o mediador da ação do aluno [...], objetivando resgatar conceitos matemáticos do nível da ação para uma posterior compreensão e sistematização (p.14).

Além disso, sem a mediação do professor, a experiência no campo de estágio

desenvolvida concomitantemente a essa disciplina nos evidenciava que os alunos, por si

só, não entendem o conteúdo que se pretende explorar e não compreendem o porquê de

se estar utilizando determinado material.

Em discussão com os colegas de turma - parceiros de diálogo deste trabalho -

destacou-se o papel fundamental da intervenção do professor quando se pretende

explorar conteúdos Matemáticos fazendo uso de material concreto, ou seja, o professor

mediando os diálogos entre e com os alunos, fazendo indagações aos mesmos, assume a

posição de um meio acessível que auxilia a esclarecer as dúvidas, motivando a

expressão (oral ou escrita) da compreensão a respeito do conteúdo de cada um.

O material concreto pode ser um grande aliado nas aulas de matemática, mas

pensamos que esse não vem para substituir o professor e sim para complementar as

aulas e, além disso, observamos a necessidade do professor encontrar um aporte teórico

para substanciar seu planejamento, além de buscar recursos como softwares, jogos entre

outros. Chegamos a essa conclusão porque vivenciamos, nas disciplinas pedagógicas,

situações que nos levaram a refletir e sentir tal necessidade. As atividades desenvolvidas

nessas disciplinas também eram acompanhadas por leituras de textos e por isso, cada

vez mais sentíamos que não poderíamos abrir mão das informações e dos diálogos com

diferentes autores, que acontecem por meio da leitura.

Concordamos com Magina e Spinillo (2004) quando dizem que

o material concreto não é o único e nem o mais importante recurso na compreensão matemática, como usualmente se supõe. Não se deseja dizer com isso que tal recurso deva ser abolido da sala de aula, mas que seu uso seja analisado de forma crítica, avaliando-se sua efetiva contribuição para a compreensão matemática (p.11).

Percebemos que alguns professores consideram desvantagem trabalhar com o

material concreto, pois durante esse tipo de atividade os alunos ficam agitados e

Page 220: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

conversam mais que o normal, mas seria aconselhável que o professor interpretasse essa

"bagunça saudável" como um momento de troca. Quando dizemos troca, queremos

enfatizar que em diversos momentos da elaboração da maquete tivemos que tomar

decisões e colocar em prática as decisões tomadas. Para se chegar a um denominador

comum das idéias movimentadas aconteceram várias discussões até que se chegasse a

um consenso decidindo os caminhos a seguir. Fundamentando nossas afirmações na

experiência vivida e refletida acreditamos que em uma sala de aula o diálogo entre

alunos e professor se apresenta como uma peça chave da aprendizagem. Nesse sentido,

evidencia-se uma vez mais o papel do planejamento para garantir uma mediação segura,

pois do estabelecimento de objetivos claros e do reconhecimento da importância dos

momentos de troca dependem a aprendizagem com significado e a construção do

conhecimento.

UMA BREVE CONTEXTUALIZAÇÃO DO USO DE MATERIAIS MANIPULÁVEIS NAS AULAS DE MATEMÁTICA

Segundo Nacarato (2005), “o uso de materiais manipuláveis no ensino foi

destacado pela primeira vez por Pestalozzi, no século XIX, ao defender que a Educação

deveria começar pela percepção de objetos concretos, com a realização de ações

concretas e experimentações. Essa autora destaca que no Brasil o discurso em defesa da

utilização de recursos didáticos nas aulas de Matemática surgiu na década de 1920. Esse

período foi marcado pelo surgimento de uma tendência no ensino da Matemática que

ficou conhecida como empírico-ativista decorrente dos ideais escolanovistas que se

contrapunham ao modelo tradicional de ensino, no qual o professor era tido como

elemento central do processo de ensino. Para Fiorentini (1995), na concepção empírico-

ativista o aluno passa a ser considerado o centro do processo e os métodos de ensino –

tendo como pressupostos a descoberta e o princípio de que “aprende-se a fazer fazendo”

– se pautavam em atividades, valorizando a ação, a manipulação e a experimentação. O

ensino seria baseado em atividades desencadeadas pelo uso de jogos, matérias

manipuláveis e situações lúdicas e experimentais”.

O artigo “Uma reflexão sobre o uso de materiais concretos e jogos no Ensino

da Matemática” de Dario Fiorentini e Maria Ângela Miorim, docentes da Faculdade de

Educação da UNICAMP, publicado no Boletim SBEM-SP, mostra que muitos

Page 221: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

professores buscam encontrar nos materiais concretos a solução para os problemas que

enfrentam no dia-a-dia da sala de aula, mas nem sempre sabem o momento e como

devem introduzir estas ferramentas. Os alunos não compreendem a Matemática que é

ensinada na escola e não sabem aplicá-la no seu cotidiano. Esse é um fato que acontece

com freqüência no ensino da matemática nas escolas. Por isso, os materiais concretos

são utilizados, entre outras razões, para motivar os alunos a gostarem de Matemática.

Ao depararmos com a pergunta “Será que podemos afirmar que o material

concreto ou jogos pedagógicos são realmente indispensáveis para que ocorra uma

efetiva aprendizagem da matemática?”, nossa resposta seria que dependendo da maneira

de como o professor vai utilizar o material ou o jogo este pode ser dispensável, porque a

mediação do professor é que faz a diferença no processo ensino-aprendizagem. Por

exemplo, poderíamos simplesmente propor a construção da maquete, na qual conceitos

de Matemática poderiam ser explorados, sem especificá-los. Mas pensamos ser

importante destacar a Matemática presente em todo o processo de construção. Pensamos

que a construção pela construção pode ser dispensável, mas se aproveitarmos todas as

potencialidades que o material oferece e o planejamento escrito de mediações, bem

como das intervenções necessárias, poderemos aumentar o efeito da proposta e os

alunos poderão compreender e verificar que a Matemática está presente a sua volta.

Carraher & Schilemann (apud Fiorentini e Miorim, 1993) afirmam que

não precisamos de objetos na sala de aula, mas de objetivos na sala de aula, mas de situações em que a resolução de um problema implique a utilização dos princípios lógico-matemáticos a serem ensinados (p.179).

Respaldados por essa afirmação e pela nossa experiência na elaboração e

apresentação do referido projeto percebemos a necessidade de se ter clareza dos

objetivos no desenvolvimento da atividade e ser esta desenvolvida de modo a valorizar

a reflexão e discussão antes da tomada de decisões.

Segundo Fiorentini (1993), cada material pedagógico possui uma proposta

pedagógica que o justifica. Muitas transformações aconteceram com o passar dos anos

em relação aos objetivos da utilização de materiais concretos. Antigamente, os materiais

concretos eram utilizados de maneira puramente demonstrativa, servindo apenas para

auxiliar a exposição, a visualização e memorização do aluno. A partir do séc. XVII este

tipo de ensino passou a ser questionado. Uma didática ativa para a matemática passou a

ser defendida: A recomendação vigente assim expressava: “Nada deve ser dado a

Page 222: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

criança, no campo da matemática, sem primeiro apresentar-se a ela uma situação

concreta que a leve a agir, a pensar, a experimentar, a descobrir, e daí, a mergulhar na

abstração” (AZEVEDO, p.27).

Segundo Castelnuovo (apud Fiorentini e Miorim, 1993) o concreto deve ter

uma dupla finalidade: “exercitar as faculdades sintéticas e analíticas da criança, sintética

no sentido de permitir ao aluno construir o conceito a partir do concreto; analítica

porque, nesse processo, a criança deve discernir no objeto aqueles elementos que

constituem a globalização”. (p.4). Sabemos que antes de optar por um material ou um

jogo, ao professor cabe refletir sobre que tipo de matemática que acredita ser importante

para o aluno. Nesse sentido, acreditamos que o material por si só não faz efeito nenhum,

não garante uma melhor aprendizagem da matemática, mas com a mediação do

professor essa aprendizagem pode se tornar possível. E foi com essa visão que optamos

por construir esse material concreto.

CONSTRUÇÃO DA MAQUETE

O nosso intuito ao realizar este trabalho foi o de utilizar o material concreto

como meio de auxiliar no processo de ensino-aprendizagem, mostrando a nós mesmos e

aos futuros professores - colegas de turma -, que a geometria pode ser trabalhada de

forma atrativa, construtiva, interessante e motivadora, ou seja, diferenciada do processo

atual de ensino que pudemos acompanhar na grande maioria dos nossos momentos de

estágio em escolas públicas. Também consideramos a oportunidade de discutir por meio

deste projeto a possibilidade real do professor deixar um pouco de lado o quadro negro

e as fórmulas, atuando como mediador para que o aluno construa o seu conhecimento a

partir das aplicações e manuseio do material.

Abaixo descrevemos e ilustramos os materiais utilizados, e os procedimentos em cada

etapa do trabalho.

MATERIAIS UTILIZADOS:

Papel cartão

Isopor

Palito de picolé

Espeto de churrasco

Page 223: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Cola de isopor

Cola

Tesoura

Silicone

Com o papel cartão de cor marrom, construímos paralelepípedos retangulares. A

construção destes sólidos não foi trivial, porque se cortássemos um milímetro a mais ou

a menos, faria diferença na montagem dos tijolos e isso influenciaria no tamanho dos

mesmos. Como o papel cartão é mais firme que uma folha sulfite, encontramos

dificuldade para fazer as dobraduras. A planificação deste sólido pode ser vista na

figura abaixo.

Com esta planificação montamos os paralelepípedos que seriam os tijolos da

maquete. (Obs.: Na construção dos paralelepípedos levamos em conta o que

desejávamos explorar, não dando ênfase a proporcionalidade, pois se assim fosse a

construção desse sólido mereceria um cuidado maior).

Page 224: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Após a construção dos paralelepípedos de papel cartão demarcamos no isopor a

área que pretendíamos construir a casinha. Logo, para que a parede possuísse uma altura

de mínimo três paralelepípedos retângulos, calculamos a quantidade de tijolinhos que

precisariam ser construídos (aqui também se encontra um cálculo Matemático que vale

a pena ser explorado e problematizado em sala de aula). Tomamos essa decisão, pois o

nosso intuito foi explorar a matemática envolvida na construção do paralelepípedo (área

lateral, planificação do sólido, volume, propriedade do retângulo e do paralelepípedo).

Logo padronizamos a medida para os tijolos e, em seguida, encontramos a altura da

casa. Estabelecemos a altura em função da praticidade para locomoção da casinha e,

também, pela quantidade de material que tínhamos disponível.

Em seguida, com a cola de isopor levantamos as paredes da casinha. A figura

abaixo ilustra o desenvolvimento.

A porta foi confeccionada de papel cartão e com palitinho de picolé.

Depois desta etapa, partimos para o telhado.

Page 225: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Primeiramente, com os palitos de picolé e o com os palitos de churrasco,

construímos dois triângulos isósceles de forma que a base do triângulo fosse do

comprimento da casa. Aqui registramos a possibilidade de explorar as especificidades

da escolha deste formato. A forma triangular aparece em diversas estruturas, como

portões, telhados, pontes, dentre outras. Em portões ou porteiras feitos de madeira,

costuma-se colocar uma tábua - travessa. Justifica-se esse procedimento por ser o

triângulo uma figura rígida, ao contrário de quadrados e retângulos que podem mudar

de forma, ou seja, os lados não se alteram com a variação do ângulo. Como o triângulo

possui rigidez geométrica, isto é, dados os três lados (sendo a medida de qualquer um

dos lados menor do que a medida da soma dos outros dois lados) está definido o

triângulo. Isto não acontece com os demais polígonos convexos. Por exemplo, com

quatro segmentos de mesmo comprimento é possível construir um quadrado

(eqüiângulo e eqüilátero) e muitos losangos (apenas eqüiláteros).

Desta forma, poderemos concluir e justificar que as estruturas triangulares

possuem maior resistência aos pesos nelas exercido e que se o telhado tiver a forma de

um triângulo isósceles, o suporte central dividirá o triângulo em outros dois triângulos

retângulos, fortalecendo a estrutura.

Em seguida, com os palitos de churrasco construímos as tesouras do

telhado. As tesouras são armações feitas para colocar o telhado e são construídas

dependendo do tamanho da casa e do tipo de telha que vai ser usado (Vide desenho).

E por fim, dobramos o papel cartão laranja, calculamos a área do telhado, cortamos

o papel e cobrimos a casa. (Obs.: O telhado foi construído apoiado ao isopor para

que pudéssemos fixar as tesouras e dar suporte à cobertura). Por fim, colocamos o

telhado construído, na folha de isopor, sobre a casinha. O tamanho das tesouras que

dão suporte ao telhado depende do tamanho da casa. Experimentalmente,

percebemos que o caimento das tesouras deveria ser de 20%, ou seja, a cada metro

na horizontal corresponderia 20 cm do suporte da vertical. Portanto, se a casa tiver

8m de largura, a metade tem 4m (aqui podemos explorar razão, proporções, regra de

três, porcentagem, dentre outros). Consequentemente, o suporte vertical deveria ter

80 cm.

Esta etapa seria ideal para a apresentação de algumas características dos

triângulos, tais como propriedades, semelhança, congruência e relações métricas do

triângulo retângulo.

Page 226: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Segue abaixo algumas questões que o professor poderá propor aos seus alunos com a

construção da maquete e que foi discutida com o grupo e com a turma na apresentação

do projeto.

Qual o perímetro da casa? Qual a área?

Comente e registre a respeito de algumas propriedades do paralelepípedo

retângulo. (tijolinhos da casa).

Por que os telhados têm a forma triangular?

Se o telhado tem a forma de um triângulo isósceles, em quantos triângulos

retângulos o suporte central dividirá o triângulo?

O que são as tesouras que dão suporte ao telhado? Como devem ser

confeccionadas?

Qual deve ser o caimento das tesouras, ou seja, cada metro da horizontal

corresponderá a quantos por cento do suporte vertical?

Qual o formato da casa? Qual o formato do telhado coberto?

CONSIDERAÇÕES FINAIS

A experiência relatada neste texto nos mostrou evidências da possibilidade real

de oferecer aos alunos do ensino básico uma aula mais dinâmica, em que os mesmos

participam ativamente de todo o processo de construção do conhecimento. Além disso,

se sobressaíram nessa caminhada de aprendizagem e desenvolvimento profissional, a

possibilidade e a vantagem da utilização de material concreto para proporcionar aulas de

Page 227: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Matemáticas mais interativas, que despertam curiosidades e estimulam os alunos a

fazerem perguntas, descobrirem semelhanças / diferenças, criarem hipóteses e chegarem

às próprias soluções.

Pensamos que o projeto em si tem suas potencialidades, mas se não houver a

mediação do professor o material concreto, por si só, não contribuirá para o processo de

ensino-aprendizagem. Para finalizar, acreditamos que o professor, com a mediação

adequada, poderá explorar diversos conceitos de matemática na construção de uma

maquete.

BIBLIOGRAFIA

AZEVEDO, E. D. M. Apresentação do trabalho Montessoriano. In: Ver. de Educação & Matemática nº. 3, 1979 (pp. 26 - 27);

BIEMBENGUT, M. S. Modelagem Matemática no ensino / Maria Sallet Biembengut, Nelson Hein. – 3ª ed. – São Paulo: Contexto, 2003.

CARRAHER, T. N. Na vida dez, na escola zero. São Paulo: Cortez, 1988.

CASTELNUOVO, E. Didática de la Matemática Moderna. México: Ed. Trillas, 1970.

FIORENTINI, D.; MIORIM, M.A. Uma reflexão sobre o uso de materiais concretos e jogos no ensino da matemática. Boletim SBEM, São Paulo, ano 4, n.7, 1993.

FREITAS, M. T. M. A escrita no processo de formação contínua do professor de Matemática. 2006. 299f. Tese (Doutorado em Educação: Educação Matemática) – FE, Unicamp, Campinas (SP).

GRANDO, R. C. O Jogo e a Matemática no contexto da sala de aula. São Paulo: Paulus, 2004.

MAGINA, Sandra Maria Pinto ; SPINILLO, Alina Galvão . Alguns 'mitos' sobre a Educação Matemática e suas consequências para o Ensino Fundamental. In: Regina Maria Pavanello. (Org.). Matemática nas Séries Inicias do Ensino Fundamental: A pesquisa e a sala de aula. 1 ed. São Paulo: Ed. SBEM, 2004, v. 2, p. 7-36.

NACARATO, A. M. Eu trabalho primeiro no concreto. Revista de Educação Matemática Publicação da Sociedade Brasileira de Educação Matemática, São Paulo, v. 9, n. 9 e 10, p. 1- 6, 2004-2005.

Page 228: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

RIBEIRO, R. Material concreto: um bom aliado nas aulas de Matemática, edição 184, Nova escola, 2005. Disponível em: <http://revistaescola.abril.ig.com.br/edicoes/0184/aberto/mt_82238.shtml> Acesso 23 mar. 2007.

WATANABE, R. M. Como construir um bom telhado. Disponível em: <http://www.ebanataw.com.br/roberto/telhado/tlhcur3.htm>Acesso 23 mar. 2007.

Page 229: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O Uso de Modelagem Matemática na Construção de uma Piscina

Stela Zumerle Soares Karla Barbosa de Freitas [email protected] [email protected]

Rosana Sueli da Motta Jafelice [email protected]

Universidade Federal de Uberlândia Faculdade de Matemática

Introdução e Preliminares

O objetivo deste trabalho é analisar a construção de uma piscina de azulejos e obter seu volume, área completa de azulejos, variação do nível da água quando a piscina está sendo cheia, tempo necessário para ser cheia, tempo para limpar a água poluída por certo tipo de sujeira e tempo de esgotamento considerando a vazão da piscina.

O estudo é baseado no conteúdo do livro “Modelagem Matemática”, de Rodney Carlos Bassanezi nas páginas 191 a 199, conhecimentos de geometria, cálculo, álgebra e equações diferenciais ordinárias [1].

Antes de iniciarmos o desenvolvimento de nossos objetivos, definimos alguns conceitos utilizados para a resolução dos problemas. Primeiramente definimos integral dupla.

Seja uma função real ),( yxfz definida e contínua no retângulo }|),{(],[],[ 2 dycebxaRyxdcbaR . O gráfico de z é uma superfície

situada acima do retângulo R, se yxf ,0 em R. Os quatros planos x=a, x=b, y=c e y=d , o retângulo R e a superfície z, formam a fronteira de uma região W do espaço. Definimos então a integral dupla de f sobre R como sendo o volume desta região W.

Propriedades Fundamentais da Integral Dupla: Linearidade. Sejam f e g funções num retângulo R e 21 ,cc constantes reais. Então gcfc 21 é integrável sobre R e

R R R

dydxyxgcdydxyxfcdydxyxgcyxfc ),(,,, 2121

Monotonicidade. Se f e g são integráveis num retângulo R e yxgyxf ,, ,Ryx, , então

R R

dydxyxfdydxyxg ,,

Aditividade. Se o retângulo R é subdividido em retângulos nRR ,,1 , e se f é integrável sobre cada iR , i=1,..,n, então é integrável sobre R e

R

n

i Ri

dydxyxfdydxyxf1

,,

Page 230: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Introduziremos o conceito de integral tripla. Seja zyxfw ,, uma função definida e limitada na caixa retangular R. Definimos a integral tripla de f sobre R como sendo

R

dzdydxzyxf ,,

Fórmula para mudança de variáveis na integral dupla e tripla

1) Considere g uma aplicação definida por g(u,v) = (x(u,v),y(u,v)), onde x e y são funções de classe 1C num subconjunto aberto 2RU . Seja Q um subconjunto limitado e fechado contido em U tal que g é injetora e o determinante jacobiano da aplicação g,

vy

uy

vx

ux

, nunca se anula em Q. Se f é integrável em g(Q), então

)(

)),(),,((,Qg Q

dvdujacobianovuyvuxfdxdyyxf ,

onde o jacobiano é o determinante de

vy

uy

vx

ux

.

2) Considere g uma aplicação definida por

g(u,v,s) = (x(u,v,s),y(u,v,s)),

onde x,y,z são funções com derivadas parciais contínuas no subconjunto aberto 3RU . O

determinante jacobiano da aplicação g, determinante de

sz

vz

uz

sy

vy

uy

sx

vx

ux

, nunca se anula em

Q. Se f é integrável em g(Q), então)(

,,Qg

dzdyduzyxf é igual a

Q

dsdvdujacobianosvuzsvuysvuxf )),,(),,,(),,,((

Page 231: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

onde o jacobiano é igual ao determinante de

sz

vz

uz

sy

vy

uy

sx

vx

ux

[2].

História

Uma piscina (do latim piscina, derivado de piscis "peixe") é um tanque de água próprio para natação, mergulhos, saltos ornamentais e outras práticas desportivas, como, por exemplo, pólo aquático e hidroginástica, ou simplesmente para recreação.

Remontando aos registros mais antigos podemos citar, a princípio, que foram encontradas imagens de receptáculos semelhantes aos que seriam piscinas atuais em hieróglifos dentro das pirâmides egípcias. Natação, como uma atividade organizada, remonta a 2.500 A.C., no Egito antigo, e posteriormente na Grécia, Roma e Assíria antigas. Em Roma e na Grécia, a natação era parte integrante da educação das crianças em idade escolar, e os romanos foram os primeiros a construir piscina para natação, separada da piscina para banhos. A primeira piscina aquecida foi construída em Roma por Gaius Maecenas, no século I D.C. Gaius Maecenas era um rico senhor, e é considerado o primeiro patrono das artes - ele patrocinou os famosos poetas Horácio, Virgílio e Propertius tornando possível para eles que vivessem e escrevessem sem temer a pobreza. No Japão há evidências de piscinas para natação e competições há mais de 2000 anos. Um dado curioso a respeito das piscinas é que a princípio se utilizava este termo para designar os poços (aquários) de peixes de diferentes tipos de água, e posteriormente, com o Cristianismo, para denominar a pia batismal.

Entretanto, as piscinas não se tornaram populares senão na metade do século XIX. Em 1837, seis piscinas cobertas com plataformas de mergulho foram construídas em Londres, Inglaterra. Depois que principiaram os Jogos Olímpicos Modernos, e as competições de nado fizeram parte dos eventos originais, a popularidade da natação começou a se espalhar. A competição de nado fez parte dos Jogos Olímpicos Modernos desde Atenas, Grécia, em 1896. Muitos atletas atualmente elegem a natação como meio de se exercitar e entrar em forma para competir, inclusive em outras modalidades [3].

Na próxima seção calculamos o volume da piscina da Figura 1. Considere a planta da piscina (Figura 2) e que a água entra numa velocidade de 20 l/min.

Page 232: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 1 – Foto da piscina estudada [1].

Figura 2 – Planta da piscina estudada.

Page 233: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Cálculo do Volume da Piscina

O cálculo do Volume deve ser realizado em 5 etapas distintas, (as alturas da piscina variam e seus contornos também) conforme as configurações do fundo e da borda da piscina (vide Figura 2). A simetria da piscina em relação ao eixo-x permite trabalhar somente com sua metade.

Calculamos inicialmente a equação da reta tangente que determina a configuração da borda superior:

Raio da circunferência menor r:

35.12

6.33.6r

Raio da circunferência maior: R = 1.8 Centro da circunferência menor:

95.42

6.33.66.3OB

Coordenadas dos pontos P, Q e C: Sejam P: 11 , yx , Q: 22 , yx e C: 0,3x ,o ponto onde a reta tangente às duas

circunferências corta o eixo-x. Temos que os triângulos OPC e BQC são semelhantes segundo o critério AA (ângulo-ângulo), que diz que existe semelhança entre dois triângulos se têm dois ângulos iguais, portanto,

.84.1495.435.145.0

35.195.435.18.195.435.18.1

BCBC

BCBCBC

BCBCOC

rR

Assim, 379.1984.1495.4 xBCOBOC .

Considerando o triângulo BQC podemos calcular o coeficiente angular da reta tangente às circunferências:

0909.084.1435.1

BCBQsen .

Então,

0913.0995860.0

0909.00909.01

0909.01

tan22sen

sen .

E daí, rd091.0 .Como a reta tangente é decrescente, seu coeficiente angular é negativo, ou seja,

m = -0.0913, e sua equação é obtida considerando 79.190913.00 xy

ou seja, 807.10913.0 xy .

Temos que:

707.19404.3888.179.19

778.147.21835.185.142222222

2222222

PCPCPCOPOCPC

QCQCQCBQBCQC

pois como a reta y é tangente temos que os ângulos CPOeCQB ˆˆ são retos.

Page 234: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Como os triângulos QCxePCx 21 são semelhantes (pelo critério AA da Geometria Plana), temos que (considerando igual ao ângulo formado entre BQeCB ).

.48.1091.0

2

rdOu seja, CÔP = 1.48 rd também. Daí, temos também que

158.0158.08.1

091.0cos

793.1793.18.1

996.0

068.5118.035.1

091.0cos

1111

1111

2222

xOxOxOPOxCÔP

yPxPxOP

PxsenCÔP

xBxBxBQBx

.

Calculemos o volume da piscina que deverá ser calculado dividindo a piscina em cinco partes pois as alturas variam.

Cálculo de 1V (secção de um cilindro):

.8.16.38.12158.0

8.1

22158.0

8.1

8.18.1

01

122222

dxxdxdyVx yxyx

Considerando a mudança de variável cos8.1x , temos que dsendx 8.1 e, para

483.1cos087778.0cos8.1158.0158.0,cos8.18.18.1

xparaex

,

assim obtemos que,

.664.118.18.16.38.18.16.3

8.118.18.16.3cos8.18.16.3

483.12

483.1483.122

483.1222

483.1222

1

dsendsensendsensen

dsensendV

Observe que,

.cos,cos,,2coscos2

cos1cos

coscoscoscoscos

22

22

22

dduvdsendvsenusendo

csendsensendsen

dsendsendsensen

dsendsendsensendsen

Portanto,

Page 235: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

170.10

570796.1697827.0664.11|2cos664.11664.11 483.1

483.12 sendsen

Portanto, 1V = 10.170 m3.

Cálculo de 2V :

.193.7987585.16.3285506.0001140.03491.2077149.06.3

|807.12913.06.3807.1913.06.38.12

3.1

158.0

807.10913.0

0

3.1

158.0

3..1158.0

2

2

x

xxdxxdxdyV

Portanto 2V = 7.193 m3.Observe que 807.10913.0 x é a equação da reta y obtida anteriormente.

Cálculo de 3V :

Para efetuar o cálculo devemos determinar a equação da rampa (plano do fundo da piscina) – para isto, basta determinar z* (altura do plano) somente em função de x:

3.13.14

* xhz , ou seja,

288.0222.03.17.2

2.18.1* xxz .

Portanto, a altura da piscina nesta secção será: .222.0512.1*8.1, xzyxz (diferença de alturas)

Assim,

.118.13

552.3928.10286.0712.2007.0213.02|732.22

339.03

010.02

732.2339.0010.02201.0010.0732.2138.02

807.10913.0111.0807.1913.0512.12|111.0512.12

222.0512.12),(2

43..1

23

4

3..1

4

3..1

22

4

3..1

4

3..1

807.10913.00

4

3..1

807.10913.0

0

4

3..1

807.10913.0

03

xxx

dxxxdxxxx

dxxxxdxxyy

dxdyxdxdyyxzV

x

x x

resultando 3V = 13.118 m3.

Cálculo de 4V (altura constante z = 1.2):

571.3228.7158.9730.0173.14.2

|807.12

0913.04.2807.10913.04.22.12 068.54

2068.5

4

807.10913.0

0

068.5

44

2

xxdxxdxdyVx x

trazendo 4V = 3.571 m3.

Page 236: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Cálculo de 5V (secção cilíndrica de altura constante igual a 1.2):

.179.3)325.1(4.2

95.435.14.22.123.6

068.5

35.195.495.435.1

0

4

068.5

225

22222 yxyx

dxxdxdyV

e assim, 5V = 3.179 m3.

Logo, o volume da piscina é dado por: 5

1

3 .181.37179.3571.3118.13193.7170.10i

i mVV

Quantidade de Azulejos

Da mesma forma que realizamos o cálculo do volume, a superfície a ser azulejada é composta de cinco porções distintas (lateralmente) além da base (fundo) da piscina.

Cálculo de 1A : área da parede cilíndrica que compõe a parte mais funda da piscina (vide Figura 3).

y

x

P

xi

Figura 3 – Planta referente à primeira parte da piscina.

As coordenadas do ponto 11 ,: yxP são 793.1158.0 11 yex (descobertos no início devido à semelhança dos triângulos), portanto

rdarctgadjacentecateto

opostocatetotg 087.0088.0793.1158.0

logo,.314.3087.021416.32 rd

Page 237: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O comprimento do arco da circunferência de raio R e ângulo é .965.58.1314.31 mRl

Assim, a área da parede é .937.10965.58.1 2

11 mhlA

Cálculo de 2A (2 retângulos iguais): Temos que, se .688.1807.13.10913.0'3.1' yx A distância d entre os

pontos ',', 11 yxeyx é o valor de um dos lados dos retângulos, o outro lado é igual a 1.8.

Como 146.1793.1688.1158.03.1 22d .

Então,.125.48.12 2

2 mdA

Cálculo de 3A (2 trapézios iguais):

Figura 4 – Planta referente à parte central da piscina (parte 3).

Temos a partir da Figura 4 que: S: (1.3;1.688), pois

608.1807.1)3.1(0913.0

807.10913.0

yy

xy

e T: (4;1.441), pois

44.1807.1)4(0913.0

yy

Então,723.2)688.1441.1()3.14( 22ST

Logo,2

3 169.82

723.2)8.12.1(2 mA .

Page 238: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Cálculo de 4A (2 retângulos iguais).

Temos que, se 344.1807.1068.50913.0068.5 22 yx e se 441.1807.140913.04 '''''' yyx

A distância 'd entre os pontos '''' , yx e 22 , yx é o valor de um dos lados do retângulo, o outro lado mede 1.2.

Como md 064.1009.0411.1)441.1344.1()4068.5( 22'

Então,2'

4 572.2064.14.22.12 mdA

Cálculo de .5A

Figura 5 - Planta referente à última parte da piscina.

De acordo com a Figura 5, as coordenadas do ponto ),(: 22 yxQ são 068.52x e334.12y .Portanto

rdtga 088.0334.1118.0

Logo,rdb 966.2176.01416.328'

O comprimento do arco da circunferência de raio R e ângulo b’ é: 004.435.1966.2'

2 Rbl

Page 239: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Então, 2

25 873.4004.42.1 mlhA

A área da parede lateral é2

5

5

14321 676.30873.4572.2169.8125.4937.10 mAAAAAAA i

Área da base B:

A base também é formada por 5 partes distintas, e é obtida dividindo os respectivos volumes pelas respectivas alturas:

255

244

23

222

211

649.22.1

976.22.1

654.82

766.2376.3882.2

996.38.1

65.58.1

mV

B

mVB

mB

mVB

mVB

O que resulta em 5

1

254321 926.23 mBBBBBBB i

Quantidade de azulejos: A área total a ser azulejada tem 26.54 mBA . Considerando que um azulejo

mede 215.0 m , a quantidade mínima necessária para a construção da piscina é:

36415.06,54

15.0676.30926.23

15.0AB

Na construção de uma piscina irregular como esta supõe-se que a perda de material seja, aproximadamente, de %10 , o que elevaria a quantidade acima para 400 azulejos ou

260m .A seguir calculamos o volume da piscina em função da altura.

Velocidade e Tempo Gasto para se Encher a Piscina

A altura considerada, em cada instante, é a medida do nível da água em relação à parte mais funda da piscina. V(h) é o volume da piscina em função da altura do nível da água.

Com a altura h, da base à borda, é variável devemos resolver este problema dividindo-o em duas partes:

Page 240: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Quando 6.00 hCálculo do volume em função da altura:

)()()()( 321 hVhVhVhVOnde cada 3,2,1, iVi , tem o mesmo significado dos volumes calculados

anteriormente; Na determinação de )(hVi temos:

;3.18,1 x 2222 8.18.1 xyx e hz0

Assim, hx

hdxxhdzdydxhV0

158.0

8,1

228.1

0

158.0

8,11 65.58.122)(

22

Para )(2 hV temos: 3.1158.0 x ; ** yyy e hz0 ,

Onde *y é a reta tangente determinada anteriormente, nos cálculos dos volumes exatos da piscina, antes do cálculo do volume 1. Portanto,

807.10913.0

0

3.1

158.02 974.32)(

x

hhdydxhV

Para )(3 hV , temos: hx 5.43.13.1 ; ** yyy e hzx 286.022.0 ,

Onde 286.022.0 xz é a equação do plano inclinado da base da piscina. Logo, h

x

yh

hhhdzdydxhV286.022.0

42

0

5.43.1

3.13 634.068.7016.02)(

*

Quando 8.16.0 hNeste caso, )(hV pode ser determinado, considerando-se em cada uma das 5 partes da

piscina a fórmula: )6.0()6.0()(* hBVhV iii

Onde, iB é a área da figura limitada pela borda da piscina em cada uma de suas partes, isto é, ii BB se 5,4,2,1i e 3B área da projeção vertical de 3B .

A equação do plano inclinado que compõe a base é dada por 286.022.0 xz .

Temos que 23 654.8 mB é a área da região deste plano limitada pelos planos

807.10913.0,4,3.1 xyxx e 807.10913.0 xy .

451.87.2129.3)7.2(22

441.1688.17.2765.22

7.2 33

BbaB

Onde,2

ba representa a média das larguras e 2.7 é o comprimento da piscina.

Page 241: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Logo, a equação do volume em função do nível da água é dada por: 3

1

3232 634.068.764.9634.068.7016.0974.365.5)( hhhhhhhhVhV i

,se 6.00 h

.8.16.0),6.0(722.23412.8

)6.0)(649.2976.2451.8956.365.5(412.8)6.0()6.0()(5

1

hseh

hhBVhV i

Cálculo da velocidade da altura h. Usando a regra da cadeia, podemos escrever

dtdh

dhdV

dtdV

Como a vazão é constante e igual da min/20l , temos que

horamhoramldtdV /2.160/1020min/20 3133

dtdh

8.16.0/0168.072.232.1

6.00/)9.136.1564.9(2.1 12

hsehm

hsehmhh

Tempo Gasto para Encher a Piscina.

O tempo gasto para encher a piscina é a divisão entre o volume total, obtido anteriormente, e a vazão total.

horasvazão

volumeT 312.12.37

Observemos que o volume da piscina poderia ser obtido diretamente da expressão de )(hV , tomando 8.1h .

Tempo Gasto para Diminuir a Sujeira com Entrada e Saída de Água Simultânea

Considere que uma piscina semelhante à estudada que esteja cheia com uma taxa de 0.09 g/litro de sujeira inerte, após temporada de chuvas. Se tivermos uma entrada de água pura a uma taxa de 20 l/min e a saída a mesma vazão, sem considerar a ocorrência de chuvas e evaporação. Quanto tempo levará para que a piscina esteja com uma concentração de sujeira de 0.01 g/litro?

Observe que a piscina possui um volume de 37.181 m3, logo possui 37181 litros.

Seja Q(t) a quantidade de sujeira na piscina no instante t, Q(t+h) a quantidade de sujeira na piscina no tempo (t+h) e (Q(t+h)-Q(t)) a variação da quantidade de sujeira na piscina no intervalo de tempo h.

Page 242: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Quantidade de sujeira que entra em h minutos na piscina: 0 gramas.

A quantidade de sujeira que sai da piscina em um minuto: 2037181

)(tQ gramas.

Em h minutos sai: 05,1859)(20

37181)( tQhtQ gramas.

Daí, temos que

05,1859)()()(

05,1859)(0)()( tQ

htQhtQhtQtQhtQ

Assim, obtemos:

005,1859)(

05,1859)(

05,1859)()()(lim

0

tQdtdQtQ

dtdQtQ

htQhtQ

h.

Resolvendo,

,)(05,1859

1|)(|ln05,1859

1|)(|ln

05,18591|))(|(ln

05,18591

)(05,1859)(0

05,1859)(

05,18951

1 ketQcttQdttQ

dttQd

tQdtdQ

tQdtdQtQ

dtdQ

t

Em t = 0, temos que a sujeira é igual a .29,33463718109.0 sujeiradegramasAssim,

29,334629,3346)0( 0 kkeQ .Portanto,

tetQ 05,1895

1

29,3346)( .Logo, para que Q(t) seja igual a 371,81 gramas , que é uma concentração de 0,01 g/l ,

teremos que

42,416305,1895

197,229,334681,371)( 05,18951

ttetQt

Logo, gastaria aproximadamente 4163 minutos para diminuir a concentração de poluição para 0.01 g/l na piscina, ou seja, aproximadamente 69,4 horas. Portanto, será necessário, aproximadamente 2,89 dias, para diminuir a sujeira de 0,09 g/l para 0,01 g/l.

Tempo de Esgotamento Considerando a vazão de 20 l/min

Como temos que o volume é de 37181 litros e a vazão é de 20 l/min, temos que

diasutosT 29,1min05,185920

37181 .

Portanto, gastaríamos aproximadamente 1,29 dias para esvaziar a piscina. Assim, para esvaziar e encher a piscina, com a taxa de 20 l/min, levaria 2,58 dias.

Conclusão

Neste trabalho, detalhamos os cálculos para obter o volume de uma piscina irregular, vale ressaltar que na realidade, o calculo é feito, quase sempre, de maneira simplificada com uma aproximação superdimensionada.

Page 243: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Além disso, é conveniente mencionar que buscamos apoio teórico em definições matemáticas preliminares e situações históricas, curiosas e motivadoras, para que haja um complemento em relação ao assunto.

A entrada e saída simultânea de água para limpar uma piscina traz desperdício; e levaria mais tempo para diminuir a sujeira para 0,01 g/l do que esgotar e encher a piscina tornando-a totalmente limpa, caso tenha sido varrida antes de ser esgotada.

Bibliografia.[1] Bassanezi, R. C.. Ensino-Aprendizagem com Modelagem Matemática. Editora

Contexto, 2004. [2] Simmons, G. F..Cálculo com geometria analítica : volume 1. Editora McGraw-

Hill, Ltda,1987. [3] www.pt.wikipedia.org

Page 244: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Modelagem Matemática das Pistas de Skate Danilo A. Marques1 Rafael H. A. de Oliveira2 Rosana S. M. Jafelice3

Faculdade de Matemática - FAMAT Universidade Federal de Uberlândia - UFU

38408-100, Uberlândia - MG Dezembro 2007

Introdução

O objetivo deste trabalho é encontrar uma curva, para se construir uma pista

de skate, que possua o menor tempo de descida, fazendo com que o skatista tenha

mais tempo para realizar mais manobras durante a competição.

A modalidade vertical (vert) é praticada em uma pista com curvas (transições),

com 3,40m ou mais de altura, três metros de raio e quarenta centímetros de

verticalização, geralmente possuem extensões [1]. Existem várias modalidades de

skate vertical:

Skate Vertical Half Pipe - É praticado em rampas de 4 metros de altura em

formato de "U" (Figura 1). As manobras podem ser de aéreos, onde o skatista realiza

um vôo e retorna na própria pista, ou pode ser de borda, onde se desliza por cima de

uma borda metálica.

Skate Vertical Mini Ramp - O skate vertical mini ramp é praticado em rampas

de até 2 metros de altura. Nessa versão menor do skate half pipe, as manobras

podem ser de aéreos, onde o skatista realiza vôos mais baixos do que no half. Vale

lembrar que a maioria das manobras são de borda.

Skate Vertical Bowl - O Skate Vertical Bowl consiste em uma pista em

formato de piscina, geralmente acima de 3 metros de profundidade e termina em

parede de 90º, onde o skatista concentra velocidade aliado às manobras.

1 E-mail: [email protected] 2 E-mail: [email protected] 3 Professora da disciplina Modelagem Matemática – E-mail: [email protected]

Page 245: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Skate Vertical Banks - Tem formato de piscina, com o fundo mais raso do que

o bowl e não chega a ter 90º nas bordas. O skatista se concentra em linhas de

velocidade e de manobras corridas de borda. Se a pista tiver cotovelo, também se

aplicam manobras de skate aéreo.

Figura 1: Pista de Skate Vertical Half Pipe.

Nas competições de vertical, os skatistas são avaliados segundo critérios de

criatividade e grau de dificuldade das manobras, que devem ser executadas em um

intervalo de tempo pré-estabelecido. Dessa forma, quanto menos tempo o skatista

gasta percorrendo a extensão da rampa de um lado para o outro, mais tempo lhe

sobrará para executar as manobras aéreas verticais que contam pontos.

Dada a importância em fazer o percurso da rampa no menor tempo possível,

poderíamos nos perguntar se a circunferência que compõe a lateral da rampa

(Figura 2) é, de fato, a curva de tempo mínimo de descida. Em outro contexto

semelhante, poderíamos nos perguntar: qual deve ser a forma do escorregador de

um parque infantil para que o tempo de descida seja o menor possível?

Descobrir qual é a curva que possui o tempo de descida mais curto é o mesmo

que resolver o problema da braquistócrona.

Page 246: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 2: Esboço da Pista Half Pipe.

Abordagem Histórica

Johann Bernoulli em 1696 propôs o “Problema da Braquistócrona”, [5], que

consiste em encontrar uma curva que una dois pontos A e B situados num mesmo

plano vertical com a propriedade de que uma partícula inicialmente em repouso

deslize sobre essa curva levando o menor tempo possível para ir, sob a ação da

gravidade, de A até B. O ponto A é suposto estar acima do ponto B mas não na

mesma vertical (Figura 3).

Figura 3: Problema da Braquistócrona.

A origem da palavra vem do grego brakhisto (o mais curto) e chronos (tempo).

O problema começou por ser publicado Acta Eruditorum uma revista

matemática fundada por Leipzig, de Junho de 1696, onde Johann Bernoulli anunciava

possuir uma solução e desafiava os cientistas para, num prazo de seis meses

fazerem o mesmo.

Page 247: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

“Que aquele que consiga solucionar este problema conquiste o prêmio que

prometemos. Este prêmio não é ouro nem prata (...) mas antes as honras, os elogios

e os aplausos; (...) exaltaremos, pública e privadamente, por palavra e por carta, a

perspicácia do nosso grande Apollo.”

Johann Bernoulli - proclamação de 1697

Em Janeiro de 1697 publica uma nova proclamação anunciando que apenas

Leibniz lhe comunicara ter chegado à solução, mas pedia um adiamento do prazo até

à Páscoa para uma maior divulgação da questão junto do meio científico, o que terá

sido aceite.

Acabariam por ser apresentadas cinco soluções nas Actas de 1697, [2]: a do

próprio Johann Bernoulli, a do seu irmão mais velho Jacob Bernoulli, a de Leibniz, a

de L’Hôpital e uma sob anonimato (que seria a de Newton, como este veio a

reconhecer mais tarde).

Ao contrário do que nossa intuição possa sugerir, o percurso mais rápido de

uma esfera (por exemplo) ao longo de uma calha que una dois pontos a diferentes

alturas, não é uma linha reta. A curva que resolve o problema da braquistócrona é

chamada Ciclóide, nome dado por Galileu, que havia se interessado por outras de

suas propriedades no início de 1600.

Essa é, a relação desse problema com o nosso problema.

A resolução: Apresentamos duas resoluções para o problema. A primeira é

simples [6], a segunda (um pouco mais engenhosa) é a resolução do criador do

problema (Johann) [5].

Primeira Resolução

Admitamos que os pontos P0 e P1 estão, respectivamente na origem e em

(x1,y1) do primeiro quadrante, como na Figura 4:

Page 248: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 4: Formulação Geométrica do Problema.

Usando a lei da conservação da energia, teremos que, no ponto P, a energia

potencial será igual à energia cinética. Assim, denotando por v o módulo da

velocidade (velocidade escalar) da partícula no ponto P, por y o seu deslocamento

vertical, por g a força da gravidade e por m a sua massa, temos mgymv2

² e,

portanto:

gydtdsv 2

Essa expressão pode ser escrita como

gydxdxdy

gydydx

gydsdt

2)/(1

22

222

.

O tempo total T exigido para a massa deslizar pelo fio de P0 a P1 dependerá da

forma do fio, especificada por sua equação y = f(x), esse tempo é dado por:

1

0

2

2)'(1

x

dxgyydtT . (1)

O problema da braquistócrona é, então, o seguinte: determinar a curva

particular y = f(x) que passa por P0 e P1 e minimiza o valor da integral (1).

Page 249: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Testando curvas arbitrárias, concluímos que o menor valor da integral será

quando a curva escolhida for a ciclóide.

Segunda Resolução

A seguir, apresentamos como Johann Bernoulli resolveu o problema [5]:

Consideremos inicialmente um problema de ótica. A Figura 5 mostra uma

situação em que um raio de luz vai de A a P com velocidade constante v1 e depois,

entrando num meio mais denso, vai de P a B com uma velocidade menor v2.

Figura 5: Lei de Refração de Snell.

Pela lei da Refração de Snell, segue que:

2

2

1

1

vsen

vsen

Se começarmos a aumentar as camadas por onde a luz passa, temos uma

situação como na Figura 6:

Figura 6: Luz atravessando inúmeras camadas.

Page 250: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Quando o raio de luz descendente passa de camada a camada, é refratado

mais e mais em direção à vertical. Aplicando a Lei de Snell nas fronteiras entre as

camadas, obtemos:

4

4

3

3

2

2

1

1

vsen

vsen

vsen

vsen

Considerando, agora, que as camadas se tornam mais finas e mais

numerosas, então no limite a velocidade da luz decresce continuamente quando o

raio de luz desce, concluímos assim, que:

vsen = constante.

Deixando a ótica de lado, e voltando ao nosso problema, podemos construir

uma situação parecida com a que trabalhamos acima.

Dessa forma, na Figura 7, podemos usar a lei de Snell e concluir que:

vsen = constante. (2)

Figura 7: Construção geométrica do problema.

Usando a lei da conservação da energia, analogamente à primeira resolução,

temos que:

gyv 2 (3)

Page 251: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Finalmente, pela geometria da Figura 7, temos também:

22 )'(11

11

sec1cos

ytgsen (4)

Assim, combinando as equações (2), (3) e (4), obtemos:

cyy ])'(1[ 2 , (5)

que é a equação diferencial da braquistócrona, onde c é uma constante.

Agora, substituindo-se y’ por dy/dx e separando as variáveis na equação (5),

chegamos à seguinte equação:

dyyc

ydx ,

logo,

dyyc

yx .

Calculamos a integral usando a substituição algébrica u² = y/(c-y):

2

2

1 ucuy e du

ucudy 22 )1(

2 .

Então, a nova integral é:

duu

cux 22

2

)1(2 .

Page 252: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Agora utilizando a substituição trigonométrica tgu , 2secdu d , obtemos:

dtg

ctgx2)21(

2sec22

dsencdtgc 22

2

2sec

2

)22(21)2cos1( sencdc .

Dessa forma, o valor de y é:

)2cos1(21

sec2

2

2

ccsenctgy .

Escrevendo, agora, ca21 e 2 , chegamos finalmente a:

)( senax , )cos1(ay ,

são as equações paramétricas da ciclóide.

A Ciclóide

A ciclóide [4], é a trajetória descrita por um ponto de uma circunferência de raio

R quando essa “roda”, sem deslizar, sobre uma reta (Figura 8).

Figura 8: Construção da Ciclóide.

Page 253: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Em uma circunferência de Raio R, que rola sem escorregar sobre o eixo das

abscissas, marcamos um ponto P, cuja trajetória será uma ciclóide. A Figura 9 indica

a situação descrita, sendo (OA, OE) as coordenadas do ponto P.

Figura 9: Parametrização da Ciclóide.

Admitindo que, na situação inicial, P coincide com a origem do sistema de

eixos, a medida do arco PB é igual a R e coincide com a medida do segmento OB.

Do triângulo retângulo CDP, temos que RsenPC e cosRDC . Sendo

RsenROA e cosRROE , as coordenadas de P(x,y), em função do

parâmetro , são:

cos1RysenRx

Um ciclo completo da trajetória de P inicia com as coordenadas (0,0), atinge

ordenada máxima em RR 2, e termina com coordenadas 0,2 R .

Voltando à rampa de skate da Figura 2, se substituirmos os arcos de

circunferência por arcos de ciclóide, teremos uma rampa de tempo mínimo ligando

um ponto de altura 1,6 metro e outro a zero metro, melhorando a eficiência da rampa

para as competições de vertical [4].

Equacionando a nova planta de rampa em um sistema de coordenadas, com

(em radianos) no eixo das abscissas, temos:

Page 254: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 10: Os arcos nos intervalos 46,1;48,0e8,0;0 representam semi-

arcos de uma ciclóide.

Partindo de uma ciclóide, obtemos a curva de Figura 10 da seguinte forma:

a. adotando R = 0.8 , a equação paramétrica da ciclóide será:

cos18.0ye8.0 senx

b. fazendo uma reflexão dessa curva pelo eixo das abscissas, obtemos uma nova

curva de equação:

cos18.0ye8.0 senx

c. transladando a nova curva 1.6 unidades para cima, obtemos uma curva de

equação:

cos18.06.1ye8.0 senx

d. pelo eixo vertical de simetria da nova curva, translada-se apenas o semi-arco

do lado direito 4 unidades para a direita.

Em resumo, a rampa indicada na Figura 10 é modelada pela equação

paramétrica:

Para no intervalo cos18.06.1

8.08.0;0

ysenx

Para no intervalo 048.0;8.0 y

Page 255: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Para no intervalo cos18.06.1

8.0446.1;48.0

ysenx

Curiosidades sobre a Ciclóide

Interessado em investigar a área compreendida entre um arco de ciclóide e a

reta sobre a qual roda a circunferência, Galileu calculou a razão entre a massa

de um molde no formato de uma ciclóide e a de um molde do círculo gerador. O

resultado encontrado foi de aproximadamente 3, o que o fez conjecturar que a

razão entre essas áreas talvez pudesse ser igual a .

Em 1634, o matemático francês Roberval prova que a área da região limitada

pela ciclóide e pelo eixo horizontal é exatamente o triplo da área do círculo

gerador. A publicação de uma demonstração desse resultado só foi feita em

1644 por Torricelli, discípulo de Galileu.

Em 1658, o astrônomo, matemático e arquiteto inglês Cristopher Wren

(construtor da catedral de Saint Paul em 1666) publica a demonstração de que o

comprimento de um arco de ciclóide é 8 vezes o raio do círculo gerador.

A ciclóide é também a solução de um outro problema interessante, o “Problema

da Tautócrona”, ou “Tempo Igual”. Se soltarmos duas esferas simultaneamente

de duas alturas distintas em uma rampa cicloidal, ambas chegarão no ponto

mais baixo da rampa ao mesmo tempo.

Abordagens Tecnológicas e Experimentais

Tendo modelado o problema da rampa de skate através de equações,

utilizamos um programa de computador para construir o gráfico da curva e, com isso,

gerar uma planta para a construção de modelos experimentais da rampa [3].

Alguns programas que podem ser usados com essa finalidade são: Winplot

Graphmatica (ambos com distribuição gratuita), Cabri-Géomètre (distribuição

comercial).

Page 256: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Utilizando o Winplot, vamos modelar curvas no formato de circunferência, reta,

parábola e ciclóide para a construção de rampas, em modelos de madeira

(Figura 11), que permitam a investigação experimental da braquistócrona e da

tautócrona na ciclóide.

Figura 11: Modelos de Rampas de Madeiras.

A proposta é modelar rampas de altura 2 unidades, a proposta é modelar, em

um sistema de coordenadas, curvas com as seguintes características:

a. Ciclóide: gerada pela circunferência de raio 1, com máximo em (0,2) e mínimo

em 0, ;

b. Reta: passando pelos pontos (0,2) e 0, ;

c. Parábola: com vértice em 0, e passando por (0,2);

d. Circunferência: com centro 0, yC e passando pelos pontos 0,P e

Q = (0,2).

Assim, temos:

Ciclóide:cos12y

senx

Reta: 022010120det yxzyx

Page 257: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Parábola: Seja, cbxaxy 2 , 0a , a parábola procurada. Como a

parábola passa pelo ponto (0,2), temos que c=2 e como o vértice da parábola é o

ponto 0, , temos:

604

8

522

4,

20,

4,

2 2

aab

abab

aab

aabPV

Substituindo (5) em (6), temos:

22222 2ou008484082 aaaaaaaa

Como 0a , temos que:

4e22 ba

E, portanto 242 22 xxy é a parábola procurada.

Circunferência: Seja 220

20 ryyxx , onde c ),( 00 yx é o centro e r o

raio desta circunferência.

Como a distância do centro (c) a qualquer ponto da circunferência é igual,

temos:

44

442002

0

200

20

220

220

2,,

y

yyyyydd QCPC

Calculando o raio:

440

2

002

02 yryryr

Portanto, temos a seguinte circunferência:

22222

44

44yx

Page 258: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O gráfico dessas curvas feitas no Winplot, mostra que a ciclóide é a curva de

maior comprimento entre as quatro comparadas, o que reforça ainda mais a

curiosidade por uma verificação experimental de que ela, ainda assim, seja a curva

do “tempo mínimo”.

A ciclóide, representada pela cor azul na Figura 12, é de fato a curva com

maior comprimento, entre as seguintes curvas: reta, parábola e circunferência.

Figura 12: Esboço do gráfico das curvas estudadas.

Apresentamos nas Figuras 13, 14, 15 e 16 uma seqüência de gráficos que

mostra experimentalmente a descida de uma bola, podemos observar que a ciclóide é

uma curva que tem tempo mínimo de descida em relação às outras curvas dadas. É

interessante destacar que a reta apesar de ser a curva de menor comprimento é a de

maior tempo de descida.

Page 259: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Figura 13 Figura 14

Figura 15 Figura 16

Conclusão

Neste trabalho, verificamos analiticamente, geometricamente e

experimentalmente que a ciclóide mesmo sendo a curva de maior comprimento

dentre as estudadas (reta, parábola, circunferência) é a curva de menor tempo de

descida possível, ou seja, a rampa de skate ideal para as competições deveria ser

construída no formato de uma ciclóide.

Page 260: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Bibliografia

[1] http://oradical.uol.com.br/skate/modalidades_skate_vertical.asp.

[2] http://pt.wikipedia.org/wiki/Braquist%C3%B3crona.

[3] http://www.icmc.sc.usp.br/~szani/bra/node6.html.

[4] Revista do Professor de Matemática nº 59, 2006.

[5] Simmons, G. F. Cálculo com Geometria Analítica, Volume 1, Editora McGraw-

Hill, 1987.

[6] Simmons, G. F. Cálculo com Geometria Analítica, Volume 2, Editora McGraw-

Hill,1987.

Page 261: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

Iniciação Científicaem Números

���

Page 262: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção Iniciação Científica em Números

do Número 10 da FAMAT EM REVISTA:

Maria Luisa Maes (coordenador da seção) Ednaldo Carvalho Guimarães

Page 263: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Projetos de Iniciação Científica Que Se Realizam Durante o Período de Abril de 2008 a Fevereiro de 2009

Orientador: Antonio Carlos Nogueira

Orientando: Izabela Rodrigues de Sousa

Título: Estudo de progressões

Início: Setembro de 2007

Fim: Agosto de 2008

Orientador: Antonio Carlos Nogueira

Orientando: Rafael Afonso Barbosa

Título: Números especiais: um estudo sobre alguns tópicos da teoria de números

Inicio: Março de 2008

Fim: Fevereiro de 2009

Orientador: Antonio Carlos Nogueira

Orientando: Luis Armando dos Santos Junior

Título: Introdução à criptografia

Inicio: Abril de 2008

Fim: Março de 2009

Orientador: Arlindo José de Souza Junior

Orientando: Diogo Antônio Cardoso

Título: Integração de Mídias na Educação Matemática: WebQuest e Sistemas de

Gerenciamento de Cursos

Inicio: Agosto de 2007

Fim: Julho de 2008

Page 264: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Orientador: Aurélia Aparecida de Araújo Rodrigues

Orientado: Giácomo Grandi Bombonato e Vinícius Teixeira Martins Vilela de

Carvalho

Título: Análise estatística de escores para estimação da área atingida por infarto

agudo do miocárdio

Início: Março de 2008

Fim: Fevereiro de 2009

Orientador: Aurélia Aparecida de Araújo Rodrigues

Orientado: Guilherme Barros Ameloti

Título: A construção de gráficos de controle utilizando o Software Minitab

Início: Março de 2008

Fim: Fevereiro de 2009

Orientador: Aurélia Aparecida de Araújo Rodrigues

Orientado: Edimar de Freitas Costa

Título: Medidas de desempenho do gráfico de controle CUSUM para tempo

Entre eventos

Início: Março de 2008

Fim: Fevereiro de 2009

Orientador: César Guilherme de Almeida

Orientado: Ernani Magno de Freitas Júnior

Título: Técnica de Decomposição de Domínio e de Pré-Condicionamento de

Matriz no Cálculo da Velocidade de Darcy em Escoamentos em Meios

Porosos/Matemática Aplicada

Início: Outubro de 2006

Fim: Fevereiro de 2008

Page 265: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Orientadores: César Guilherme de Almeida e Rosana Sueli da Motta Jafelice

Orientado: Mariana (PETMAT)

Título: O Estudo de Modelos Biológicos p-Fuzzy

Início: Fevereiro de 2008

Fim: Fevereiro de 2009

Orientadores: César Guilherme de Almeida e Qu Fanyao (prof. Física)

Orientado: Rene Felipe Keidel Spada

Título: Aumento de Coerência do spin em computação quântica através da

redução de interação hiperfina

Início: Março de 2008

Fim: Março de 2009

Orientador: César Guilherme de Almeida

Orientado: Sarah Arvelos

Título: Estudo de Meios Porosos Heterogêneos, com ênfase no tensor de

permeabilidade e na equação de Darcy.

Início: Outubro de 2007

Fim: Outubro de 2008

Orientador: César Guilherme de Almeida

Orientado: Warlisson Inácio de Miranda

Título: Aperfeiçoamento das técnicas de ensino-aprendizagem da disciplina

Cálculo Numérico

Início: Setembro de 2007

Fim: Setembro de 2008

Page 266: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Orientador: Edmilson Rodrigues Pinto

Orientado: Matheus Bartolo Guerrero

Título: Estudo de Modelos Lineares Generalizados

Início: Março de 2008

Fim: Dezembro de 2008

Orientador: Edmilson Rodrigues Pinto

Orientado: Denise Nunes Melo

Título: Um estudo sobre o nível de conhecimento em probabilidade e

Estatística dos alunos concluintes do ensino médio

Início: Abril de 2007

Fim: Março de 2008

Orientador: Ednaldo Carvalho Guimarães

Orientado: Katia Alessandra de Souza Caetano

Título: Análise Quantitativa do Desempenho do PAIES/UFU

Início: Agosto de 2007

Fim: Julho de 2008

Orientador: Ednaldo Carvalho Guimarães

Orientado: Renata Carvalho Macedo Leite

Título: Estimativas de Probabilidade de Qualidade do Ar Atmosférico de

Uberlândia-MG por Meio de Modelo de Regressão Logística

Início: Março de 2008

Fim: Fevereiro de 2009

Page 267: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Orientador: Fabiana Fiorezi de Marco Matos

Orientado: Sheila Maria Fernandes Carrijo

Título: A utilização de jogos no ensino de matemática: a intervenção

pedagógica

Início: Abril de 2007

Final: Março de 2008

Orientador: Luiz Alberto Duran Salomão

Orientado: Daniel Augusto Alves de Oliveira

Título: Cálculo de Probabilidades

Início: Abril de 2007

Final: Março de 2008

Orientador: Marcelo Tavares

Orientado: Maria Luiza Maes

Título: Avaliação do Comportamento de Aspectos Gerenciais de Micro e

Pequenas Empresas de Uberlândia por Meio de Técnicas Uni e Multivariadas.

Início: Agosto de 2007

Fim: Julho de 2008

Orientador: Márcio José H. Dantas

Orientado: Rafael Alves de Figueiredo

Título: Uma Introdução à Mecânica Analítica e à Dinâmica Não Linear e o

Problema do Vibrador Centrífugo

Início: Agosto de 2007

Fim: Julho de 2008

Page 268: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Orientador: Marcos Antônio da Câmara

Orientado: Maksuel Andrade Costa

Título: Programação Inteira

Início: Março de 2007

Fim: Agosto de 2008

Orientador: Marcos Antônio da Câmara

Orientado: Otoniel Nogueira da Silva

Título: Somas de Quadrados de Inteiros

Início: Março de 2008

Fim: Fevereiro de 2009

Orientador: Marcos Antônio da Câmara

Orientado: Gustavo F. M. Domingues e Claiton José Santos

Título: Teoria dos Jogos

Início: Abril de 2008

Fim: Fevereiro de 2009

Orientador: Maria Teresa Menezes Freitas

Orientado: Igor Alberto de Melo Souza

Título: A utilização de um ambiente virtual como recurso didático-pedagógico

complementar em disciplina presencial no Curso de Matemática

Início: Agosto de 2007 (?)

Fim: Julho de 2008 (?)

Orientador: Rogério de Melo Costa Pinto

Orientado: Rafael de Oliveira

Título: Avaliação da Qualidade de Vida em Estudantes do Curso de Medicina da

Faculdade de Medicina da Universidade Federal de Uberlândia

Início: Agosto de 2007

Fim: Julho de 2008

Page 269: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Orientador: Rogério de Melo Costa Pinto

Orientado: Mariana Montiel Coelho

Título: Avaliação da Qualidade de Vida de Cuidadores de Crianças e

Adolescentes Portadores de Síndrome de Down

Início: Fevereiro de 2008

Fim: Março de 2009

Orientador: Rosana Sueli da Motta Jafelice

Orientado: Karla Barbosa de Freitas

Título: O Estudo de Modelos Biológicos p-Fuzzy

Início: Setembro de 2007

Fim: Fevereiro de 2008

Orientador: Sezimária F. P. Saramago

Orientado: Lúcio Aurélio Purcina (doutorado)

Título: Técnicas de Otimização Aplicadas à Solução de Grandes Sistemas

Lineares

Início: Agosto de 2005

Fim: Agosto de 2009

Orientador: Sezimária F. P. Saramago

Orientado: Giovana Trindade S. Oliveira (doutorado)

Título: Estudo da Topologia do Espaço de Trabalho de Robôs Manipuladores 3R

Início: Março de 2007

Fim: Março de 2011

Page 270: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Orientador: Sezimária F. P. Saramago

Orientado: Camilla Carrara (doutorado)

Título: Aplicação de Modelos De Simulação em Problemas do Sistema de

Transportes

Início: Março de 2008

Fim: Março de 2012

Orientador: Sezimária F. P. Saramago

Orientado: Thiago Alves de Queiroz (mestrado)

Título: Projeto ótimo de uma coluna parcialmente enterrada

Início: Agosto de 2008

Fim: Agosto de 2010

Orientador: Sezimária F. P. Saramago

Orientado: Alencar Soares Bravo

Título: Técnicas de Realidade Virtual aplicadas à Robótica

Início: Agosto de 2007

Fim: Julho de 2008

Orientador: Sezimária F. P. Saramago

Orientado: Kuang Hongyu

Título: Curvas de Singularidades de Robôs Manipuladores 3R Ortogonais

Início: Março de 2008

Fim: Fevereiro de 2009

Orientador: Sezimária F. P. Saramago

Orientado: Karla Barbosa de Freitas

Título: Estudo dos Métodos Clássicos de Otimização Não-Linear

Início: Fevereiro de 2008

Fim: Dezembro de 2008

Page 271: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

E o Meu Futuro Profissional?

���

Page 272: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção E o Meu Futuro Profissional?

do Número 10 da FAMAT EM REVISTA:

Ednaldo Carvalho Guimarães (coordenador da seção) Maria Luisa Maes

Page 273: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O MERCADO DA ESTATÍSTICA EMPRESARIAL

Entrevista com José Eduardo Ferreira Lopes.

José Eduardo foi acadêmico do I Curso de Especialização em Estatística Aplicada da FAMAT/UFU e tem grande experiência no mercado de trabalho de Uberlândia. Ele atuou como Professor Convidado no I Curso de Especialização em Estatística Empresarial que está sendo oferecido pela FAMAT/UFU. Ele irá nos falar sobre a demanda de profissionais especializados na análise de dados em empresas.

1. Nos fale sobre a sua formação e a sua atuação profissional.

Sou graduado em Informática pela UFV (1990-1994), graduado em Administração pela UFU (1995-2000), especialista em Estatística pela UFU (2003), MBA em Marketing pela UFU (2004) e Mestre em Administração pela UFU (2005-2007).

Quanto à atuação profissional, quando terminei o curso de Informática, vim para Uberlândia trabalhar como Analista de Sistemas em uma rede de lojas de varejo. Após um ano, fui trabalhar no Grupo Martins, também como Analista de Sistemas. Mais três anos, tive uma passagem muito rápida pela Rezende Alimentos e me transferi para a CTBC Telecom. Trabalhei lá por oito anos, dois como analista de sistemas e seis como analista de Marketing. Há um ano estou trabalhando no Tribanco. Em 2006 dei início também à carreira de docente. Sou professor da Uniube, ministrando disciplinas relacionadas a Marketing e Estratégia. Ministro também alguns módulos em cursos de Pós Graduação na UFU, na UNIUBE e na UNIMINAS.

Nos últimos oito anos venho trabalhando com a estatística aplicada a bases de dados para subsidiar a tomada de decisões. Na CTBC, usávamos a estatística aplicada principalmente a marketing, na formação de preços, desenvolvimento de novos produtos, segmentação de mercado, estimativa de demanda, desenho de ofertas, detecção de fraudes, entre outras aplicações. Já, no Tribanco, trabalhamos com a estatística e a inteligência artificial aplicados, principalmente, à análise e concessão de crédito para clientes – desenvolvemos os modelos conhecidos por credit score e behavior score.

2. Como você analisa o atual cenário empresarial? Como está o nível de competição? Como a estatística se insere neste contexto?

Nos últimos anos a competição entre as empresas se tornou muito acirrada. No Brasil especialmente, desde o governo Collor e com a contribuição efetiva do governo Fernando Henrique, houve uma significativa abertura da economia, um volume enorme de privatizações,

Page 274: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

fusões e aquisições. Vivemos em um ambiente efetivamente global. Os competidores são globais, as empresas, cada vez mais, se profissionalizam e, como conseqüência, precisam de profissionais qualificados. Citamos como exemplo o setor de Telecom, que viveu um boom, especialmente em função da privatização do segmento. Na área de telefonia fixa, novas operadoras surgiram, além de novas regras que beneficiaram o usuário. Por outro lado, a telefonia móvel cresceu exponencialmente, passando de 8 milhões de aparelhos comercializados em 2003 para mais de 120 milhões em janeiro de 2008, segundo dados da Agência Nacional de Telecomunicações (Anatel). Esse cenário ampliou a concorrência e a briga por fatias de mercado entre as operadoras.

É neste contexto que a estatística empresarial ganha fundamental importância. As empresas precisam manter-se competitivas, as margens de lucro diminuem, os concorrentes manobram para conseguir maior participação de mercado. Assim, os decisores não podem mais acreditar apenas no feeling. É necessário tomar decisões acertadas, com o menor risco possível, e com a maior rentabilidade. A estatística pode contribuir de forma ímpar neste processo de decisão.

Normalmente, as empresas armazenam grandes volumes de dados sobre as suas operações. Estas grandes bases de dados e a aplicação de técnicas estatísticas e de mineração de dados geram informações relevantes para a tomada de decisão. Continuando o exemplo em Telecom, um dos problemas crônicos, recorrente e preocupante é o churn. Trata-se de um termo emprestado do inglês e que significa abandono do serviço pelo cliente. O esforço das operadoras é sempre no sentido de reduzir ou eliminar o churn. A grande questão é evitar que o usuário tome essa decisão e não apenas tentar retê-lo quando já não há mais volta. Para tanto, as operadoras armazenam consideráveis volumes de dados sobre o uso e o cancelamento dos seus serviços pelos clientes. Logo, o trabalho é processar estes dados e utilizar alguma técnica estatística, como regressão logística, por exemplo, e encontrar o padrão dos clientes que cancelam a assinatura. Identificado o padrão, a operadora verifica na sua base de clientes ativos aqueles clientes que tem o padrão dos clientes que cancelam e, então, elaboram ofertas para retê-los ativamente.

3. Qual é o perfil do profissional para trabalhar com a estatística empresarial? Quais são as características essenciais? Como está o mercado de trabalho?

O mercado de trabalho para este profissional está totalmente aquecido. A demanda é muito grande e não se encontra profissionais disponíveis.

Page 275: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Aqui em Uberlândia, por exemplo, as empresas estão buscando por estes profissionais em São Paulo ou Belo Horizonte. Mesmo assim, leva-se tempo. Os bons profissionais estão todos colocados em grandes empresas e trazê-los para Uberlândia é muito difícil.

O perfil de profissional que as empresas estão buscando é de um profissional que seja dinâmico, proativo, que tenha noções gerais de gestão, de finanças, de marketing e, principalmente, que tenha uma boa dose de raciocínio lógico e analítico. É fundamental que este profissional seja capaz de traduzir os problemas empresariais em problemas matemáticos e, depois, transformar as soluções matemáticas em soluções empresariais. O dilema que as empresas têm vivido é que, quando encontram bons analistas de negócio, eles são deficientes na dimensão quantitativa. Quando encontram bons profissionais quantitativos, eles são deficientes na análise de negócio. O segredo é encontrar o equilíbrio entre as dimensões quantitativa e analítica. Aqui, quero ressaltar um ponto: O matemático tem uma enorme vantagem que é a formação quantitativa. Basta a ele procurar pela formação em gestão de negócios. É mais fácil formar um matemático em negócios do que formar um administrador em métodos quantitativos.

Porém, alguns requisitos básicos são exigidos de quem se pretenda enveredar pela estatística empresarial: 1) é fundamental que se tenha domínio sobre o conceito de bancos de dados e SQL. Extração, e transformação de dados. Conforme já falamos anteriormente, grandes bases de dados são os insumos básicos que as empresas têm. Porém, até chegar ao ponto de aplicar a estatística nestas bases de dados, um árduo caminho de extração e tratamento dos dados deve ser percorrido. Espera-se que o estatístico empresarial realize este trabalho; 2) também relacionado ao item anterior, é imprescindível que este profissional domine uma ferramenta estatística de grande porte, normalmente o SPSS ou SAS. Todas as grandes empresas estão utilizando uma destas duas ferramentas.

4. Alguma outra consideração?

O uso da estatística empresarial é um caminho sem volta. Tanto as empresas que ainda não a utilizam, deverão começar a pensar e planejar o seu uso rapidamente, assim como os profissionais deverão se preparar para ocupar esta enorme lacuna existente no mercado.

Page 276: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de
Page 277: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

FAMAT em Revista

Revista Científica Eletrônica daFaculdade de Matemática - FAMAT

Universidade Federal de Uberlândia - UFU - MG

Número 10 - Abril de 2008www.famat.ufu.br

Merece Registro

���

Page 278: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Comitê Editorial da Seção Merece Registro

do Número 10 da FAMAT EM REVISTA:

Marcos Antônio da Câmara (coordenador da seção)

Page 279: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

MERECE REGISTRO

A) MESTRADO EM MATEMÁTICA NA UFU

De 07 de janeiro de 2008 a 26 de fevereiro de 2008 aconteceu o curso de Análise na Reta, que faz parte do processo de seleção de alunos para o curso de Mestrado. Vinte e oito alunos estavam inscritos e após o curso foram selecionados oito alunos para comporem a turma de 2008. Os alunos selecionados foram:

Alessandra Ribeiro da Silva Carolina Fernandes Molina Sanches Danilo Adrian MarquesLaís Bássame Rodrigues Marcelo Ferreira Marcelo Lopes VieiraMarta Helena de Oliveira Milena Almeida Leite Brandão

A aluna melhor colocada, Laís Bássame Rodrigues, obteve uma bolsa do projeto REUNI e o programa ainda aguarda uma decisão final da Capes a respeito de novas bolsas.

Dia 15 de janeiro de 2008 teve início a primeira Escola de Verão do Programa de Pós-graduação em Matemática. Esse é um evento no qual pesquisadores visitantes, bem como o Prof. Geraldo Botelho, apresentaram diversas palestras e minicursos, mostrando resultados de diversas áreas de pesquisa em Matemática.

O evento foi aberto a todos os professores e alunos da UFU, bem como à comunidade científica local. PROGRAMAÇÃO

Todas as atividades foram no Anfiteatro da Biblioteca do Campus Santa Mônica

Page 280: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

15 de janeiro

9:00 às 10:00hPalestra "Controle de Feedback para Sistemas Impulsivos"Prof. Dr. Geraldo Nunes SilvaDepartamento de Ciências da Computação e EstatísticaUNESP - Universidade Estadual PaulistaSão José do Rio Preto, SP.

10:30 às 12:00hMinicurso "A Mágica das Inversões"Prof. Dr. Ruy Tojeiro de Figueiredo JúniorDepartamento de MatemáticaUFSCar - Universidade Federal de São CarlosSão Carlos,SP

------------------------------------------------------

16 de janeiro

9:00 às 10:00hPalestra "Polinômios Ortogonais e Similares: Algumas Propriedades e Aplicações"Prof. Dr. Alagacone Sri RangaDepartamento de Ciências da Computação e EstatísticaUNESP - Universidade Estadual PaulistaSão José do Rio Preto, SP.

10:30 às 12:00hMinicurso "A Mágica das Inversões"Prof. Dr. Ruy Tojeiro de Figueiredo JúniorDepartamento de MatemáticaUFSCar - Universidade Federal de São CarlosSão Carlos,SP

------------------------------------------------------

Page 281: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

17 de janeiro

9:00 às 10:00hPalestra "Pesquisas e desenvolvimentos recentes do LCAD(Laboratório de Computação de Alto Desempenho)".Prof. Dr. Antônio Castelo FilhoInstituto de Ciências Matemáticas e de ComputaçãoUSP - Universidade de São PauloSão Carlos, SP.

10:30 às 12:00hMinicurso "Formas quadráticas e teoria de Galois"Prof. Dr. Michel SpiraDepartamento de Matemática - Instituto de Ciências ExatasUFMG - Universidade Federal de Minas GeraisBelo Horizonte, MG.

****CONFERÊNCIA EXTRA VOLTADA PARA ALUNOS DE GRADUAÇÃO E PÚBLICO EM GERAL: ****

15:00 às 16:30hPalestra "O Número de Ouro".Prof. Dr. Michel SpiraDepartamento de Matemática - Instituto de Ciências ExatasUFMG - Universidade Federal de Minas GeraisBelo Horizonte, MG.

------------------------------------------------------

18 de janeiro

9:00 às 10:00hPalestra "O Axioma da Escolha: Por que e para que?"Prof. Dr. Geraldo Márcio de Azevedo BotelhoFaculdade de MatemáticaUFU - Universidade Federal de UberlândiaUberlândia, MG.

Page 282: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

10:30 às 12:00hMinicurso "Formas quadráticas e teoria de Galois"Prof. Dr. Michel SpiraDepartamento de Matemática - Instituto de Ciências ExatasUFMG - Universidade Federal de Minas GeraisBelo Horizonte, MG.

------------------------------------------------------

23 de janeiro

10:30 às 12:00hMinicurso "Equações Diferenciais Elípticas: uma introdução ao método variacional"Prof. Dr. Olimpio Hiroshi MiyagakiDepartamento de MatemáticaUFV Universidade Federal de Viçosa, MG.

------------------------------------------------------

24 de janeiro

10:30 às 12:00hMinicurso "Equações Diferenciais Elípticas: uma introdução ao método variacional"Prof. Dr. Olimpio Hiroshi MiyagakiDepartamento de MatemáticaUFV Universidade Federal de Viçosa, MG.

Foram programadas duas palestras para o mês de fevereiro,uma do professor Dimitar Kolev Dimitrov da UNESP, Campus de São José do Rio Preto, e outra do professor Marcio Gomes Soares, representante da área de Matemática/Estatística na Capes.

O título da palestra do prof. Dimitar foi "Pesquisa matemática: rigor ou intuição e imaginação?" e foi voltada para o público em geral. Ela foi realizada no dia 15/02/2008, na sala 1F 119 das 11:00 às 12:00h. Além de falar de pesquisa matemática, ele falou também de olimpíadas de matemática. Vale ressaltar que ele é líder da equipe brasileira em

Page 283: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

competições matemáticas no exterior. A palestra do prof. Marcio Soares foi realizada no dia 20/02/2008, das 9:00 às 10:00h.

B) OBMEP

A OLIMPÍADA BRASILEIRA DE MATEMÁTICA DAS ESCOLAS PÚBLICAS – OBMEP – acontece desde 2005 e podem participar todas as escolas públicas do país. Seus principais objetivos são estimular e promover o estudo da Matemática entre alunos das escolas públicas, contribuir para a melhoria da qualidade da Educação Básica, identificar jovens talentos e incentivar seu ingresso nas áreas científicas e tecnológicas, incentivar o aperfeiçoamento dos professores das escolas públicas, contribuindo para a sua valorização profissional, contribuir para a integração das escolas públicas com as universidades públicas, os institutos de pesquisa e sociedades científicas e promover a inclusão social por meio da difusão do conhecimento.

A Olimpíada Brasileira de Matemática das Escolas Públicas de 2007 recebeu inscrições de mais de 17 milhões de alunos. O número preciso é 17.341.732 alunos de 38450 escolas federais, estaduais e municipais em 98,13% dos municípios brasileiros. Pudemos notar nestes três anos um considerável aumento do número de inscritos (veja a tabela abaixo).

OBMEP 2005 OBMEP 2006 OBMEP 2007

Escolas 31.030 32.655 38.450Inscrições 10.520.830 14.181.705 17.341.732Municípios 93,50% 94.50% 98.13%

Com estes números a OBMEP já é a maior Olimpíada de Matemática do planeta.

Em Minas Gerais participaram da 1ª fase 1.916.170 alunos que corresponde a pouco mais de 11% do total de alunos inscritos. Na regional MG-02 (coordenada pela FAMAT) participaram 250300 alunos de 513 escolas dos 86 municípios compreendidos pela regional.

Page 284: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Minas Gerais também tem se destacado não só pelo número de inscrições mas, principalmente, pelas premiações que tem recebido. Cerca de 24% dos alunos premiados são mineiros. Em 2007 Minas foi o estado com maior número de medalhas de ouro. Na MG-02 foram premiados no total 77 alunos: 8 com medalhas de ouro, 12 com medalhas de prata e 57 com medalhas de bronze. Todos os alunos premiados ainda receberão, durante um ano, uma bolsa de Iniciação Científica Jr. do CNPq e participarão, durante este período, de um treinamento ministrado por professores da FAMAT. Destacamos ainda o desempenho do aluno ISLAM ELOIRRANO CARVALHO, da ESCOLA ESTADUAL DE UBERLÂNDIA (Museu), que ficou em PRIMEIRO LUGAR NACIONAL no nível 2 (que compreende a alunos de 7ª e 8ª série do Ensino Fundamental).

C) VII SEMANA DA MATEMÁTICA

A Comissão Organizadora da VII SEMAT da FAMAT/UFU - VII Semana da Matemática da Faculdade de Matemática da Universidade Federal de Uberlândia, realizada de 27 a 30 de novembro de 2007 (veja programação), considera que o evento cumpriu plenamente com os objetivos propostos: divulgar e difundir a matemática como ciência, promovendo uma reflexão acerca de atividades de ensino, pesquisa e enriquecimento curricular realizadas no âmbito da Universidade Federal de Uberlândia e propiciando interação entre os discentes dos cursos de Matemática e áreas afins da região de Uberlândia e docentes de Instituições de Ensino Superior no país.

Durante aquela semana, tivemos a honrosa oportunidade de participarmos de palestras e mini-cursos desenvolvidos por professores altamente qualificados, muitos deles representantes internacionais da boa matemática feita no Brasil. Alguns deles com formação acadêmica obtida em Universidades renomadas, tais como: University of Oxford, New York University, University of Michigan, University of California – Berkeley e Université Joseph Fourier. Dois deles, Prof. Geraldo Severo de Souza Ávila e Prof. Vincenzo Bongiovanni, autores de livros didáticos agraciados com o Prêmio Jabuti da Câmara Brasileira do Livro.

A presença do convidado ilustre, Prof. Geraldo Ávila, membro titular da Academia Brasileira de Ciências, abrilhantou o evento. Sua palestra de abertura intitulada “Euler, sua obra e seu tempo”, proferida em homenagem aos 300 anos do nascimento desse importante matemático nascido na Suíça, nos proporcionou um momento de indescritível emoção.

Page 285: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

E para fazer jus ao alto nível acadêmico-científico das palestras proferidas no evento, não podemos deixar de mencionar a magnífica palestra de encerramento “Possibilidades do software CABRI 3D”, proferida pelo Prof. Vincenzo Bongiovanni, nascido em Alexandria, na Grécia; um matemático altamente credenciado a abordar esse tema, visto que, doutorou-se sobre esse assunto na Université Joseph Fourier em Grenoble na França, berço da tecnologia Cabri.

Igual brilhantismo pode ser atribuído à paletra “A gloriosa história da geometria”, proferida pelo Prof. Claudio Gorodski, com Ph. D. em Geometria Diferencial pela University of California - Berkeley, que nos brindou com uma incursão histórica pelos alicerces dessa maravilhosa Ciência, começando com Euclides de Alexandria por volta de 300 a.C., passando pelo surgimento da Geometria Diferencial, prosseguindo com as descobertas das Geometrias não-Euclidianas por Gauss, Lobachevski e Bolyai, continuando com a unificação da Geometria Euclidiana e das Gometrias não-Euclidianas realizada por Riemann e a influência desse trabalho sobre as Ciências Físicas resultando na celebrada Teoria da Relatividade de Einstein e, finalizando com a vasta extensão da geometria em diversas direções.

Não sem menos importância, a palestra com temática em Estatística, “Introdução à modelagem de risco em finanças”, proferida com muito entusiasmo, eloqüência e jovialidade pela Profª Sabrina Luzia Caetano, que atendeu prontamente nosso convite de última hora, em substituição à desistência, por motivos de força maior, do seu orientador de doutorado Prof. Francisco Louzada Neto, muito nos impressionou e deixou-nos a certeza de que o acaso nos favoreceu e enviou-nos uma substituta a altura do seu mestre. Os quatro mini-cursos técnicos ministrados durante o evento, versaram sobre os seguintes temas:

Triangulações regulares: aspectos teóricos e computacionais, mini-curso da área de Computação Gráfica, ministrado pelo Prof. Luis Gustavo Nonato;

Introdução à Mecânica Quântica, uma mistura de Física e Probabilidade, ministrado pelo Prof. Mauro F. S. Ribeiro Jr.;

Polinômios sobre corpos p-ádicos: uma breve introdução, mini-curso da área de Álgebra, ministrado pelo Prof. Hemar Teixeira Godinho;

Episódios recentes da geometria Euclidiana, mini-curso de Geometria Plana, ministrado pelo Prof. Sergio Alves, que abordou diversos elementos notáveis

Page 286: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

associados a um triângulo, descobertos principalmente a partir do século XIX, e que são, via de regra, totalmente desconhecidos dos estudantes.

Temas que embora não elementares, foram trabalhados por mãos hábeis e competentes com uma maestria tal que superaram as expectativas dessa Comissão Organizadora e nos proporcionaram a grata satisfação do dever impecavelmente cumprido.

É importante citar também a contribuição dos alunos do Grupo PETMAT, representados pelas alunas Patrícia Borges dos Santos e Flávia Cristina Martins Queiroz, sob a coordenação do tutor do grupo, Prof. Marcos Antônio da Câmara, através do mini-curso “Introdução à teoria dos jogos”. Assim como, a realização de atividades de divulgação de trabalhos de Iniciação Científica, nas modalidades: comunicação oral e pôster.

A mesa redonda “FAMAT em ações extracurriculares”, uma novidade nesta edição do evento, contou com a participação dos professores: Antônio Carlos Nogueira (Coordenador Regional da OBMEP e da OBM), Arlindo José de Souza Jr. (Representante do Programa de Formação Continuada - Proext), Cícero Fernandes de Carvalho (Coordenador Regional do Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio - via videoconferência), Jocelino Sato (Sub-coordenador do Centro Virtual de Desenvolvimento - Milênio - AGIMB), Rosana Sueli da Motta Jafelice (Coordenadora da Regional 07 da SBMAC) e Sezimária de Fátima Pereira Saramago (Diretora da FAMAT e coordenadora da mesa), os quais puderam, dentro de um espaço específico na programação do evento, divulgar as atividades acima citadas.

A programação cultural do evento, realizada na abertura por integrantes do Grupo de Choro: Brincando de Chorar, alunos do Departamento de Música e Artes Cênicas da UFU, e no encerramento pelo pianista Beto Machado, propiciou aos participantes do evento momentos de prazeroso deleite.

A Comissão Organizadora da VII SEMAT da FAMAT-UFU gostaria de enfatizar que, o resultado do trabalho realizado durante os dez meses de organização e aqui apresentado, é apenas uma contribuição simbólica, um simples tijolinho na construção da história das Semanas da Matemática da FAMAT-UFU, a qual vem ganhando solidez a cada ano.

COMISSÃO ORGANIZADORA Dulce Mary de Almeida (coordenadora) – FAMAT / UFUCícero Fernandes de Carvalho – FAMAT/UFULuís Antônio Benedetti – FAMAT/UFU

Page 287: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Marcos Antônio da Câmara – FAMAT/UFUMaria Teresa Menezes Freitas – FAMAT/UFURogério de Melo Costa Pinto – FAMAT/UFUWalter dos Santos Motta Junior – FAMAT/UFUMariana Fernandes dos Santos Villela - discente do PETMATVirgínia Helena Ribeiro Miranda - discente do DAMAT

Aproveitando este espaço de registro, a Equipe de Organizadores agradece aos palestrantes convidados, aos docentes e aos discentes pela participação no evento; a FAMAT pelo apoio e confiança na realização da VII SEMAT; aos alunos do DAMAT, do PETMAT e ao tutor do PETMAT pelo apoio nas atividades de organização da VII SEMAT; aos funcionários da FAMAT pela dedicação na organização deste encontro e a todos os patrocinadores do evento.

D) EXTENSÃO

A Faculdade de Matemática, representada pelos professores do Núcleo de Educação Matemática – NUCEM –, dando continuidade às ações desenvolvidas no âmbito da extensão universitária em 2007, estará novamente participando, em 2008, do Programa de Formação Continuada para Docentes do Ensino Básico, contemplado pelo edital PROEXT–2007 - Programa de Apóio a Extensão Universitária MEC-SESu/DEPEM. A professora Maria Teresa Menezes Freitas atua no referido programa como membro da coordenação colegiada do Eixo 1 – Linguagens e Culturas.

E) REGIONAL DA SBMAC

Algumas atividades realizadas pela 7ª Regional da SBMAC:

Mini-Curso intitulado "Resolução de Problemas de Matemática Aplicada com Auxílio do Matlab" ministrado pelo Prof. César Guilherme de Almeida na VII Semana do Curso de Matemática na FEIT/UEMG em Ituiutaba, nos dias 16 e 17 de Outubro de 2007.

Palestras proferidas no dia 27/10/07 na UNITRI em Uberlândia.

Page 288: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Modelagem Matemática Aplicada em Biologia proferida pela Profa. Rosana Sueli da Motta Jafelice.

O Número de Ouro na Naturezaproferido pela Profa. Dulce Mary de Almeida.

O mandato da professora Rosana Sueli da Mota Jafelice como coordenadora da VII Regional da SBMAC terminou no dia 31/12/2007. A SBMAC nomeou o Prof. César Guilherme de Almeida como novo coordenador da VII Regional.

A FAMAT agradece a professora Rosana Sueli da Mota Jafelice pelo brilhante trabalho efetuado como coordenadora da VII Regional da SBMAC em seu mandato e parabeniza o professor César Guilherme de Almeida. F) PIBEG

Novo Projeto PIBEG da Faculdade de Matemática.

Título: Aperfeiçoamento do ensino de probabilidade e estatística para oscursos do ciclo comum de exatas na UFU

Início: 01/10/2007 Término:30/09/2008

Membros da equipe executora do Projeto:Prof. Dr. Edmilson Rodrigues Pinto – Coordenador e Orientador - FAMATProfa. Dra. Aurélia Aparecida de Araújo Rodrigue – Orientadora - FAMATWilliam Henrique Pereira Guimarães – Bolsista – Engenharia Mecânica

Cursos beneficiados:Ciclo Comum de Exatas (Básico): Engenharia Mecânica, Engenharia Mecatrônica, Engenharia Civil, Ciência da computação, Física dos materiais e Química.Outros: Engenharia Química, Engenharia Elétrica e Engenharia Biomédica.

G) PIBIC

Page 289: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A FAMAT teve 9 projetos aprovados no PBIIC/Fapemig, conforme abaixo:

Orientador Bolsista Curso do bolsistaCésar Guilherme de Almeida Rene Felipe Keidel Spada FísicaEdnaldo Carvalho Guimarães Renata Carvalho Macedo leite Ciências BiológicasEdson Agustini Adriele Giaretta Biase MatemáticaMarcelo Tavares Eloar Correia de Lima MatemáticaMaria Teresa Menezes Freitas Igor Alberto de Melo Souza MatemáticaRogério de Melo Costa Pinto Mariana Montiel Coelho MedicinaSezimária Fátima Pereira Saramago

Kuang Hongyu Matemática

Victor Gonzalo Lopez Neumann

Cristian Cirronis Paiva Matemática

Weber Flávio Pereira Lívia Silva Rosa Matemática

Parabéns aos professores e alunos selecionados.

H) FAPEMIG

Parabéns aos professores que tiveram seus projetos aprovados no Edital Universal da Fapemig.

• Célia Aparecida Zorzo Barcelos, Recuperação De Imagens Via Análise De Conteúdo - Redes Neurais, Algoritmos Genéticos E Seleção De Características;

• Victor Gonzalo Lopez Neumann, Classes E Divisores Racionais Em Curvas Hiperelípticas;

• Weber Flávio Pereira, Campos De Vetores Descontínuos E Perturbações Singulares.

I) PARTICIPAÇÃO EM BANCAS

Page 290: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O professor Cícero Fernandes de Carvalho participou, no dia 21/02/2008, da banca de defesa de tese de doutoramento de Alonso Sepúlveda Castellanos, intitulada “Sobre códigos Hermitianos generalizados”, do Programa de Pós-Graduação em Matemática da UNICAMP, Campinas.

O professor Cícero Fernandes de Carvalho participou, no dia 03/04/2008, da banca de defesa de tese de doutoramento de Olímpio Ribeiro Gomes, intitulada “Problemas Diretos em Teoria Aditiva via Método Polinomial: generalização do teorema de Cauchy-Davenport e da Conjectura de Erdos-Heilbronn”, do Programa de Pós-Graduação em Matemática da UnB, Brasília.

O professor Cícero Fernandes de Carvalho participou dos seguintes exames de qualificação de doutorado em abril de 2008:

1. CARVALHO, C. F.; GODINHO, H. T.; SANTOS, J. P. O.. Participação em banca de Abílio Lemos Cardoso. Algebra e Teoria de Números. 2008. Exame de qualificação (Doutorando em Matemática) - Universidade de Brasília. 2. CARVALHO, C. F.; GODINHO, H. T.; SANTOS, J. P. O.. Participação em banca de Tertuliano Carneiro de Souza Neto. Algebra. 2008. Exame de qualificação (Doutorando em Matemática) - Universidade de Brasília.

O Prof. César G de Almeida e a Profa. Sezimária F P Saramago participaram, no dia 13/02/08, banca de Dissertação de Mestrado do Prof. Carlos Alberto S Júnior, do Programa de Pós-Graduação em Eng. Mecânica da UFU.

O Prof. César G de Almeida e a Profa. Sezimária F P Saramago participaram, no dia 17/01/08, da banca de qualificação de doutorado de Lúcio A. Purcina, do Programa de Pós-Graduação em Eng. Mecânica da UFU.

A Profa. Célia A Z Barcelos participou, no dia 07/04/08, da banca de doutorado de Vanessa Avancini Botta no ICMC-USP em São Carlos.

O professor Edmílson Rodrigues Pinto participou, no dia 14/12/07, do Exame de Qualificação de Doutorado do aluno Afrânio Márcio Corrêa Vieira do Programa de Pós-Graduação em Estatística e Experimentação AgronômicaTítulo: Modelagem Simultânea da Média e da Dispersão na Pesquisa Agronômica

Page 291: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

Local: Escola Superior de Agricultura Luiz de Queiroz - ESDALQ/USPMembros da Banca: Edmilson Rodrigues Pinto (UFU), Vitor Augusto Ozaki(ESALQ/USP) e Sílvio Sandoval Zocchi (ESALQ/USP)

O Prof. Ednaldo C. Guimarães participou, no dia 24/01/08, de duas bancas de Dissertação de Mestrado do Programa de Mestrado em Estatística e Experimentação Agropecuária na UFLA . Uma das bancas é de uma ex-aluna e ex-orientada de Iniciação Científica (Gabriella de Freitas Alves).

O prof. Ednaldo C. Guimarães participou, no dia 22/11/07, da banca de Dissertação de Mestrado "Gestão de custos da produção agrícola- um sistema para a tomada de decisão utilizando geoestatística", UNIOESTE - Cascavel – PR.

O Prof. Edson Agustini esteve na Unicamp participando de três bancas: dia 14 /04 às 9:00h - defesa de dissertação de Mestrado Profissional em Matemática de Inédio Arcari; dia 14 /04 às 14:00h - defesa de dissertação de Mestrado Profissional em Matemática de José Ribamar de Viana Coimbra e dia 15/04 às 9:00h - defesa de dissertação de Mestrado Profissional em Matemática de Félix Silva Costa.

O Prof. Geraldo M. A. Botelho participou de comissão julgadora de concurso público, para provimento de cargo de professor-doutor, nos dias 12, 13 e 14 de março de 2008, no Departamento de Matemática do IME-USP, São Paulo-SP.

O Prof. Márcio José Horta Dantas participou, nos dias 7, 8 e 9 de abril de uma banca de concurso para professor Livre Docente, na UNESP de São José do Rio Preto.

O Prof. Rogério M. C. Pinto participou, no dia 25/10/07, da banca de Dissertação de Mestrado de Wanessa R. Ferreira intitulada "Variabilidade de cinco espécies arbóreas da região de cerrado do planalto central para medidas de germinação e emergência", do Programa de Pós-Graduação em Agronomia da UFU.

Page 292: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O Prof. Rogério M. C. Pinto participou, no dia 15/02/2008, da banca de Dissertação de Mestrado de Marcelino Alves Rosa de Páscoa (ex-aluno da FAMAT) na Universidade Federal de Lavras.

O Prof. Rogério M. C. Pinto participou, no dia 15/02/2008, da banca de Dissertação de Mestrado de Tiago Almeida de Oliveira intitulada “Avaliação de Métodos de Estimação de Parâmetros em Modelo Linear com Erro na Covariável” na Universidade Federal de Lavras.

A Profa. Rosana S. M. Jafelice participou como membro da banca da dissertação de mestrado intitulada "Modelo de von Bertalanffy generalizado aplicado à curvas de crescimento animal" da candidata Juliana Scapim, no dia 25/03/2008 no IMECC-UNICAMP.

A Profa. Sezimária F. P. Saramago, participou, no dia 22/04, da banca de defesa de tese de doutoramento de Felipe A Chegury Filho, intitulada "Surrogate Modeling Techniques and Heuristic Optimization Methods Applied to Design and Identification Problems", do Programa de Pós-Graduação em Eng. Mecãnica - UFU.

J) PRODUÇÃO CIENTÍFICA

PERIÓDICOS

Dois artigos do Prof. Geraldo M. A. Botelho foram publicados em Revista Qualis A Internacional: 1. Spaces of absolutely summing polynomials, Mathematica Scandinavica 101 (2007), 219-237. 2. On compositon ideals of multilinear mappings and homogeneous polynomials, Publications of the Research Institute for Mathematical Sciences 43 (2007), 1139-1155.

O artigo do Prof. Marcelo Tavares, "Clinical and hematological signs associated with dogs naturally infected by Hepatozoon sp. and with other hematozoa. A retrospective study in Uberlândia, Minas Gerais, Brazil", foi

Page 293: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

aceito para publicação na revista Veterinary Parasitology e se encontra na lista de espera para publicação (Articles in Press), podendo ser acessado na página da revista.

Artigo do Prof. Márcio José Horta Dantas foi publicado em periódico internacional:

On the existence and stability of periodic orbits in non idealproblems: General resultsZ. Angew. Math. Phys. 58 (2007) 940–958

Artigos do Prof. Rogério de Melo Costa Pinto foram publicados em periódicos nacionais e internacionais:

MORALES, Nívea de Macedo Oliveira ; SILVA, Carlos Henrique Martins da ; FRONTAROLLI, Ana Cláudia ; ARAÚJO, Renata R Hoffmann de ; RANGEL, Viviane Oliveira ; PINTO, R. M. C. ; MORALES, Rogério Rizo ; GOMES, Débora Cristiane . Psychometric properties of the initial Brazilian version of the CHQ-PF50 applied to the caregivers of children and adolescents with cerebral palsy. Quality of Life Research : an International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, v. 16, p. 437-444, 2007.

LIMONGI, Jean e ; Costa, F.C. ; PAULA, Márcia Beatriz Cardoso de ; PINTO, R. M. C. ; Oliveira, M.L.A. ; P NETO, Adalberto A ; Borges, A.S. ; Ferreira, M.S. . Síndrome cardiopulmonar por hantavírus no Triângulo Mineiro e Alto Paranaíba, Minas Gerais, 1998-2005: aspectos clínico-epidemiológicos de 23 casos. Revista da Sociedade Brasileira de Medicina Tropical, v. 40, p. 295-299, 2007.

MORALES, Rogério Rizo ; MORALES, Nívea de Macedo Oliveira ; Rocha, F.C.G. ; Fenelon, S.B. ; PINTO, R. M. C. ; SILVA, Carlos H M . Qualidade de Vida em Portadores de Esclerose Múltipla. Arquivos de Neuro-Psiquiatria, v. 65, p. 454-460, 2007.

Artigos da Profa. Sezimária F. P. Saramago publicados em periódicos internacionais: SARAMAGO, S. F. P., OLIVEIRA, P.J., CARBONE, G., CARVALHO, J. C. M., CECCARELLI, M.

Page 294: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

An optimum path planning for Cassino Parallel Manipulator by using inverse dynamics. Robotica (Cambridge). , v.26, p.229 - 239, março, 2008. SANTOS, R R, STEFFEN JR, V, SARAMAGO, S. F. P. Robot Path Planning in a Constrained Workspace by using Optimal Control Techniques. Multibody System Dynamics, Vol. 19, p.159-177, fev, 2008.

EVENTOS

INTERNACIONAIS

Participação da Profa. Célia A. Z. Barcelos em eventos:1- Planck's Law Simulation using Particle Systems , (Douglas Cordeiro, Marcos Batista, Celia) European Computing Conference, publicaçao Springer - Atenas – Grecia - Setembro2- Adaptive Image Retrieval through the use of a Genetic Algorithm - IEEE International Conference on Tools with Artificial Intelligence, publicaçao IEEE - Patras- Grecia, Celia Barcelos, Sergio Silva, Marcos Batista - http://ictai07.ceid.upatras.gr/ Outubro3- High Leval Semantic based Image Characterization using artificial neural network, ISDA- International Conference on Intelligent Systems Design and Applications (ISDA) , Eduardo Ribeiro, Marcos Batista, Celia, Rio de Janeiro. Outubro http://www.isda07.eng.uerj.br/program/4-Segmentaçao de Lesões de Pele viaEquações Diferenciais Parciais, Vinicius Pires e Celia, Clei - Costa Rica - http://www.clei2007.org/index.php?id=53, Outubro

O Prof. Rogério Sales Gonçalves, participou do 19th International Congress of Mechanical Engineering, 05 a 09/11/07, Brasília, com apresentação do artigo "Optimum Workspace For Parallel Manipulators".

A Profa. Rosana S. M. Jafelice , participou do XIV Congresso Latino-Americano de Biomatemática, realizado de 13 a 16 de novembro de 2007, no IMECC-UNICAMP, apresentando o trabalho "Curvas Padrões de Tratamento do HIV".

Page 295: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

A Profa. Sezimária F. P. Saramago e Profa. Giovana T. S. Oliviera, participaram do 19th International Congress of Mechanical Engineering, 05 a 09/11/07, Brasília, com o apresentação do artigo "Optimization of the Workspace volume of 3R Manipulators Using a Hybrid Methodology".

NACIONAIS

O Prof. Arlindo J. S. Júnior participou da V Conferência Nacional sobre Modelagem na Educação Matemática, de 08 a 10/11/07, em Ouro Preto, com apresentação do artigo "Água, o seu Papel Mor no Ensino".

A Profa. Aurélia Aparecida de Araújo Rodrigues participou do III Seminário Racismo e Educação: desafios para a formação docente & II Seminário Gênero, Raça e Etnia de 22 a 25/11/2007, na Universidade Federal de Uberlândia, onde apresentou o trabalho “Ações afirmativas e classificação étnico-racial”

O Prof. César G. Almeida participou do X Encontro de Modelagem Computacional de 21 a 23/11/07 em Nova Friburgo, com apresentação do artigo "Cálculo da Velocidade de Darcy utilizando o Método dos Elementos Finitos Mistos e Hibridos".

O Prof. Edmílson Rodrigues Pinto participou do XXXIX Simpósio Brasileiro de Pesquisa Operacional – SBPO de 28 a 31 de agosto de 2007 em Fortaleza – CE, onde apresentou o trabalho “Avanços recentes em planejamento ótimo de experimentos para modelos lineares generalizados”

Os professores Ednaldo Carvalho Guimarães, Marcelo Tavares e Rogério de Melo Costa Pinto participaram da 52ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria onde apresentaram os seguintes trabalhos:

PINTO, R. M. C. ; GUIMARÃES, Ednaldo Carvalho ; TAVARES, Marcelo ; Silva, A. A. ; Carvalho, S. N. R. ; Fernandes, A. R. . MODELO DE PREVISÃO PARA A PRECIPITAÇÃO DECENDIAL DO MUNICÍPIO DE CORUMBAÍBA - GO. In: 52 Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, 2007, Santa Maria - RS. CD-room 52 Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, 2007.

Page 296: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

TAVARES, Marcelo ; GUIMARÃES, Ednaldo Carvalho ; PINTO, R. M. C. ; Carvalho, C. J. . Sazonalidade se tendências de índices de preços: um estudo comparativo. In: 52 Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, 2007, Santa Maria - RS. CD-room 52 Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, 2007.

Silva, R. T. ; TAVARES, Marcelo ; GUIMARÃES, Ednaldo Carvalho ; PINTO, R. M. C. ; Carvalho, C. J. . Modelo de previsão para produção de sucos de caju em uma indústria na região de uberlândia. In: 52 Reunião anual da região brasileira da sociedade internacional de biometria, 2007, Santa Maria - RS. CD-room 52 Reunião anual da região brasileira da sociedade internacional de biometria, 2007.

A Profa. Fabiana F. M. Matos participou do XIV ENDIPE de 27 a 30/04/08, em Porto Alegre-RS , com apresentação do artigo "Produzindo atividades de ensino em ambientes computacionais na formação de professores de Matemática".

O Prof. Geraldo M. A. Botelho participou do Encontro Nacional de Análise Matemática e Aplicações de 07 a 09/11/07 no Rio de Janeiro, com apresentação dos artigos "The Schur Property on Preduals of Spaces of Holomorphic Functions" e "When every Multilinear Mapping in Multiple Summing".

A Profa. Maria T. M. Freitas participou do XIV ENDIPE de 27 a 30/04/08, em Porto Alegre-RS, com apresentação do artigo "Ambiente virtual de aprendizagem no ensino presencial de formação de professores de Matemática".

L) PALESTRAS E EVENTOS

A Profa. Fabiana F. M. Matos proferiu a palestra “Jogos matemáticos: estratégia de ação pedagógica na Educação Matemática” para o Programa Formação Continuada para Docentes – CEMEPE, em 15/10/07.

Page 297: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

O Prof. Luiz A. D. Salomão ministrou, nos dias 25 e 26 de outubro de 2007, um minicurso na XXII Semana do IME, na Universidade Federal de Goiás.

M) NOVO DOUTOR

O Prof. Alessandro Alves Santana teve sua tese de doutoramento intitulada “Identificação de parâmetros em problemas de advecção-difusão combinando a técnica do operador adjunto e métodos de volumes finitos de alta ordem” aprovada, no dia 01/11/2007, no IME-USP - Instituto de Matemática e Estatística - Universidade de São Paulo.A Banca examinadora foi composta pelos seguintes professores: Prof. Dr. Luis Carlos de Castro Santos (orientador) IME-USPProf. Dr. Nelson Mugayar Kuhl - IME-USPProf. Dr. Ernani Vitíllo Volpe - EP-USPProf. Dr. José Alberto Cuminato - ICMC-USPProf. Dr. Hélcio Rangel Barreto Orlande - UFRJ A FAMAT cumprimenta o Dr. Alessandro, desejando que esta etapa vencida sirva de estímulo para novas conquistas. Agora, nosso corpo docente passa a contar com 27 doutores. Além disso, alcançamos a meta de 90% do corpo docente composto por doutores e mestres!

Page 298: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

UNIVERSIDADE FEDERAL

DE UBERLÂNDIA

Organização:

Av. João Naves de Ávila, 2121

Campus Santa Mônica - Bloco 1F

Uberlândia - MG

CEP: 38408-100

Fones: (34) 3239-4235

(34) 3239-4126

Sexta-Feira 30/11

FAMAT

Apoio:

Dulce Mary de Almeida

Cícero Fernandes de Carvalho

Luís Antônio Benedetti

Marcos Antônio da Câmara

Maria Teresa Menezes Freitas

Rogério de Melo Costa Pinto

Walter dos Santos Motta Junior

Mariana Fernandes dos Santos Villela - PETMAT

Virgínia Helena Ribeiro Miranda - DAMAT

(Coordenadora)8:00 às 9:20 - Mini-cursoEpisódios recentes da geometria euclidiana

Prof. Ms. Sérgio Alves

IME/USP - São Paulo - SP

9:20 às 9:50 - Café

9:50 às 11:20 - Sessão de Comunicações

11:20 às 12:00 - Mini-cursoIntrodução à teoria dos jogos

Prof. Dr. Marcos Antônio da Câmara

e grupo PETMAT

FAMAT/UFU - Uberlândia - MG

12:00 às 14:00 - Almoço

14:00 às 15:20 - Mini-cursoTriangulações regulares: aspectos teóricos

e computacionais

Prof. Dr. Luis Gustavo Nonato

ICMC/USP - São Carlos - SP

15:20 às 16:20 - PalestraPossibilidades do software CABRI 3D

Prof. Dr. Vincenzo Bongiovanni

CCE/PUC - São Paulo - SP

16:20 às 16:50 - Café

às16:50 18:00 - Encerramento

Momento Musical

Comissão Organizadora:

PROEXUFU

Semana daMatemáticaSemana da

Matemática

27 a 30 de novembro de 2007

da Universidade Federal de Uberlândia

Matemática Aplicada

Estatística

Matemática Pura

Educação Matemática

www.famat.ufu.br/semat

Imp

rensa

Univ

ers

itária

/Grá

fica

UFU

Page 299: FAMAT em Revista - portal.famat.ufu.br · problemas de Geometria Euclidiana Plana 112 Luciana Yoshie Tsuchiya, Gabriela Aparecida dos Reis e Edson Agustini Aplica¸c˜ao Normal de

7:30 - Entrega de Material

8:30 - Abertura da VII SEMAT

9:00 às 9:30 - Café

9:30 às 10:30 - PalestraEuler, sua obra e seu tempo

Prof. Dr. Geraldo Severo de Souza Ávila

Membro da Academia Brasileira de Ciências

10:40 às 12:00 - Mini-cursoIntrodução à Mecânica Quântica

Prof. Ms. Mauro F. S. Ribeiro Júnior

C.P.A. Wernher Von Braun - Campinas - SP

12:00 às 14:00 - Almoço

14:00 às 15:00 - Mesa RedondaFAMAT em ações extra-curriculares

Profa. Dra. Sezimária de Fátima Pereira Saramago

FAMAT/UFU - Uberlândia - UFU

15:00 às 16:20 - Mini-cursoIntrodução à teoria dos jogos

Prof. Dr. Marcos Antônio da Câmara

e grupo PETMAT

FAMAT/UFU - Uberlândia - MG

16:20 às 16:50 - Café

16:50 às 18:10 - Mini-cursoPolinômios sobre corpos p-ádicos: uma

breve introdução

Prof. Dr. Hemar Teixeira Godinho

IE/UnB - Brasília - DF

Terça-Feira 27/11 Quarta-Feira 28/11 Quinta-Feira 29/11

8:00 às 9:20 - Mini-cursoEpisódios recentes da geometria euclidiana

Prof. Ms. Sérgio Alves

IME/USP - São Paulo - SP

9:20 às 9:50 - Café

9:50 às 10:40 - Sessão de Comunicações

10:40 às 12:00 - Mini-curso

12:00 às 14:00 - Almoço

14:00 às 15:20 - Mini-cursoTriangulações regulares: aspectos teóricos

e computacionais

Prof. Dr. Luis Gustavo Nonato

ICMC/USP - São Carlos - SP

15:20 às 16:20 - PalestraIntrodução a modelagem de risco em finanças

Prof. Dr. Francisco Louzada Neto

CCET/UFSCar - SP

16:20 às 16:50 - Café

Introdução à Mecânica Quântica

Prof. Ms. Mauro F. S. Ribeiro Júnior

C.P.A. Wernher Von Braun - Campinas - SP

16:50 às 18:10 - Mini-cursoPolinômios sobre corpos p-ádicos: uma breve

introdução

Prof. Dr. Hemar Teixeira Godinho

IE/UnB - Brasília - DF

8:00 às 9:20 - Mini-cursoEpisódios recentes da geometria euclidiana

Prof. Ms. Sérgio Alves

IME/USP - São Paulo - SP

9:20 às 9:50 - Café

9:50 às 10:40 - Sessão de Comunicações

10:40 às 12:00 - Mini-curso

12:00 às 14:00 - Almoço

14:00 às 15:20 - Mini-cursoTriangulações regulares: aspectos teóricos

e computacionais

Prof. Dr. Luis Gustavo Nonato

ICMC/USP - São Carlos - SP

15:20 às 16:20 - PalestraA gloriosa história da geometria

Prof. Dr. Claudio Gorodski

IME/USP - São Paulo - SP

16:20 às 16:50 - Café

Introdução à Mecânica Quântica

Prof. Ms. Mauro F. S. Ribeiro Júnior

C.P.A. Wernher Von Braun - Campinas - SP

16:50 às 18:10 - Mini-cursoPolinômios sobre corpos p-ádicos: uma breve

introdução

Prof. Dr. Hemar Teixeira Godinho

IE/UnB - Brasília - DF