6

Click here to load reader

FORNO ROTATIVO TUBULAR LABORATORIAL - · PDF filetransporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ =

Embed Size (px)

Citation preview

Page 1: FORNO ROTATIVO TUBULAR LABORATORIAL -  · PDF filetransporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ =

ENQUALAB-2008 – Congresso da Qualidade em Metrologia

Rede Metrológica do Estado de São Paulo - REMESP

09 a 12 de junho de 2008, São Paulo, Brasil

FORNO ROTATIVO TUBULAR LABORATORIAL - ESTUDO DE PERFIL

TÉRMICO

Manuel Antonio Pires Castanho 1, Fabiano F. Chotoli

2, Rodrigo Garcia da Costa

3,

Instituto de Pesquisas Tecnológicas do Estado de São Paulo - IPT, Av. Prof. Almeida Prado, 532, São Paulo-SP-Brasil-CEP 05508-901

1 CME/Laboratório de Metrologia Mecânica - Tel: (0xx11) 3767-4669 - [email protected] 2 CT-OBRAS/Laboratório de Materiais de Construção Civil - Tel: (0xx11) 3767-4143 - [email protected]

3 CME/Laboratório de Metrologia Mecânica - Tel: (0xx11) 3767-4669 - [email protected] Resumo: Neste trabalho são apresentados os resultados da avaliação do perfil térmico de um forno rotativo tubular de laboratório com sistema de controle microprocessado, em função de condições de calcinação pré-estabelecidas.

O forno é utilizado pelos Laboratórios de Materiais de Construção Civil (LMCC) e Metalurgia e Materiais Cerâmicos (LMMC) do IPT, para execução de calcinação de materiais (minérios e matérias-primas para fabricação de cimento, cal virgem e pozolanas) em regime contínuo de produção.

Portanto, são apresentados resultados da influência de condições de operação do forno no perfil de temperatura, por meio de variação da rotação e inclinação do tubo, da temperatura e do fluxo de gases, além de simular a calcinação com um material inerte.

A avaliação do perfil térmico do forno, conduzida pelo Laboratório de Metrologia Mecânica (LMM) do IPT, consistiu na distribuição de vários sensores de temperatura, do tipo S e B, ao longo da região em que os materiais trafegam durante o processo no tubo rotativo.

Considera-se que os resultados das medições de temperatura efetuadas foram satisfatórios para o tipo de forno tubular rotativo avaliado, possibilitando inferir uma correlação linear entre a temperatura de patamar e a indicação do controlador. Observou-se que a inserção de carga e injeção de ar em contra-fluxo alteram o perfil térmico do forno.

Palavras chave: temperatura, medição, forno rotativo tubular, processo.

1. INFORMAÇÕES BÁSICAS

No IPT são executados esporadicamente calcinações de minérios e matérias-primas industriais em regime contínuo de produção.

Particularmente, o LMCC tem aplicado o forno rotativo tubular para a produção de clínquer de cimento Portland, cal virgem e calcinação de argilas, visando simular as condições de produção industrial e obter material em quantidade suficiente para executar ensaios de caracterização.

No caso da produção de clínquer de cimento Portland, adotado como exemplo e prática para este trabalho, o aquecimento dos fornos rotativos industriais (Fig. 1) é

realizado por meio de queimadores, utilizando-se combustíveis sólidos e/ou líquidos. O combustível é atomizado sob alta pressão no bico do queimador em pequenas partículas e é injetado no forno junto com o ar primário. Os gases quentes circulam em sentido inverso ao avanço do material e o fluxo dos gases é forçado mediante sistema de aspiração, que mantém todo o forno com pressão inferior à atmosférica [1].

Fig.1. Exemplo do perfil térmico de forno rotativo industrial: reações de fase do clínquer em sistema forno c/ pré-aquecedor [1]

O próprio processo termodinâmico permite que o material seja transportado e aquecido a velocidades variáveis e revoluções constantes, pelas várias zonas térmicas ao longo de sua extensão, a saber:

• zona de calcinação, a qual depende da existência ou não de pré-aquecedor e pré-calcinador no sistema (Fig. 1 – final de A e B);

• zona de transição, na qual começa a se formar a fase liquida (Fig. 1 – B);

• zona da fase líquida, na qual ocorre a nodulização e inicia-se a formação da alita (C3S) (Fig. 1 – C);

• zona de queima, no interior da chama, na qual se intensifica a formação e crescimento das partículas individuais de alita (C3S) e sua sinterização (Fig. 1 – D), e;

A

B C D

E

Page 2: FORNO ROTATIVO TUBULAR LABORATORIAL -  · PDF filetransporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ =

• zona de resfriamento, na qual o material perde calor e se aglomera devido à solidificação da fase líquida (Fig. 1 – E).

O forno rotativo laboratorial, apesar da escala ser diferente, pode ser utilizado de forma semelhante, se aplicadas modificações e as adaptações necessárias.

No processo de operação de fornos rotativos é importante que se estabeleçam parâmetros operacionais e de controle. Dentre os parâmetros operacionais destacam-se:

• comprimento do forno (L), em m;

• constante do formato do tubo (Θ), em graus (º);

• inclinação (p), em graus (º) ou %;

• diâmetro do tubo (d), em m;

• rotação (r), em rpm;

• Fator de estrangulamento do forno (F), adimensional.

A partir desses parâmetros é possível estimar tempo de residência (t) do material dentro do forno, pela seguinte equação [2]:

rdp

FLt

..

...77,1 Θ= (1)

Quanto ao regime de temperatura, no caso do clínquer Portland produzido em laboratório, procura-se calcinar o material cru controlando os seguintes parâmetros: • taxa de pré-aquecimento e/ou pré-calcinação (Vi) de temperatura ambiente até 900ºC, em ºC/min;

• taxa de aquecimento (Va) de 900ºC até a temperatura máxima (de patamar), em ºC/min;

• temperatura máxima ou de patamar (Tp), em ºC;

• tempo de patamar (tp), em min;

• taxa de primeiro resfriamento (VR 1), entre a temperatura máxima e 1300ºC, em ºC;

• taxa de segundo resfriamento (VR 2), entre 1300ºC e ambiente, em ºC.

De acordo com resultados obtidos em estudos de produção em forno estático [3] e forno piloto e, segundo medidas de temperatura realizadas ao longo do comprimento do tubo, constatou-se que ocorre variação do perfil térmico de acordo com os parâmetros de processo adotados.

Portanto, para atender os objetivos propostos, estabeleceu-se um plano experimental junto ao Laboratório de Metrologia Mecânica (LMM) do IPT, que utilizou diversos sensores dispostos dentro do tubo, capazes de suportar o movimento e a inclinação do tubo, além da injeção de ar em contra-fluxo aplicado durante o processo.

2. METODOLOGIA EXPERIMENTAL

O meio térmico avaliado refere-se a um forno tubular rotativo (Fig. 2), constituído de um tubo de alumina com 7 cm de diâmetro, 150 cm de comprimento e com

capacidade de girar a uma rotação de até 5rpm. O corpo principal do forno está apoiado sobre uma mesa, cuja inclinação pode ser regulada até 10º (aproximadamente 17%, em relação ao eixo horizontal) por meio de um elevador de rosca. A câmara de aquecimento promove a elevação de temperatura na porção do tubo situada entre 20 cm e 120 cm, sendo a zona quente (trecho do tubo onde a temperatura mínima corresponde pelo menos 90% da temperatura máxima) programável para até 1650ºC e situada entre 40 cm e 100 cm, dependendo da temperatura máxima.

Fig.2. Forno tubular rotativo piloto

A avaliação do perfil térmico do forno tubular rotativo foi conduzida pelo LMM do IPT, monitorando a temperatura do interior do tubo, por meio da distribuição de sete (07) sensores de temperatura de 25 em 25 cm, sendo seis (06) termopares tipo S e um (01) tipo B, ao longo do tubo conforme a Figura 3.

Os sensores foram introduzidos no interior do tubo do forno rotativo através de orifícios já existentes nas suas extremidades.

Fig. 3: Vistas lateral e superior do forno tubular, ilustrando a disposição dos termopares (representados por pontos negros)

Os sensores foram interligados a um sistema de aquisição que armazenou automaticamente todos os dados durante as medições. O sistema de medição foi calibrado no LMM do IPT, que é acreditado pela RBC. O controlador do forno foi regulado para cada temperatura de ensaio. As medições foram realizadas nas condições conforme a Tabela 1.

Saída Entrada

0 25 50 75 100 125 150 Posição dos termopares (cm)

Page 3: FORNO ROTATIVO TUBULAR LABORATORIAL -  · PDF filetransporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ =

Tabela 1. Parâmetros e condições de ensaio

Condição Temperatura (ºC)

Rotação (rpm)

Inclinação (º)

Fluxo de ar

(l/min)

1 1350 0,7 0 0

2 1400 0,7 0 0

3 1450 0,7 0 0

4 1450 0,7 0 12

5 1450 0,7 1º 34´ 0

6 1450 5 0 0

7 1450 5 1º 34´ 12

Excepcionalmente, a condição 7 foi executada alimentando-se o forno tubular com alumina granulada, por meio de um alimentador vibratório regulado para taxa de alimentação em torno de 0,6 kg/h. Nessas condições, estima-se que: o transporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ = 40º [2]; a velocidade do material (adotando condição ideal de não-aderência do material no interior do tubo) é de 4,9 cm/min.

Neste experimento não foi possível utilizar materiais convencionais de produção de clínquer, por danificarem os termopares nas temperaturas adotadas.

3. RESULTADOS E DISCUSSÃO

A Tabela 2 apresenta os valores médios de temperaturas e respectivas incertezas, obtidos nas medições do forno tubular em períodos de aquisição de dados de 120 min (para as condições de 1 a 6) e 60 min (para a condição 7), adotando-se taxa de aquisição de 2 medições/min. Tabela 2. Valores de temperatura e incerteza em função da posição

dos termopares e das condições de ensaio

Posição dos termopares (cm)

0 25 50 75 100 125 150

Con

diçã

o

Temperatura (Incerteza), em °C

1 154 (4)

682 (7)

1295 (6)

1327 (4)

1294 (5)

790 (5)

140 (5)

2 163 (4)

732 (7)

1345 (5)

1377 (4)

1348 (4)

852 (5)

152 (5)

3 203 (10)

812 (18)

1393 (6)

1425 (5)

1394 (7)

889 (7)

161 (5)

4 338 (17)

879 (4)

1369 (10)

1412 (5)

1366 (4)

834 (7)

150 (5)

5 217 (13)

820 (19)

1390 (7)

1422 (5)

1386 (5)

906 (6)

163 (5)

6 201 (4)

814 (5)

1391 (5)

1424 (4)

1383 (4)

879 (4)

158 (4)

7 168 (9)

458 (35)

1354 (6)

1404 (4)

1394 (5)

963 (11)

166 (7)

Analisando os resultados das medições (Tabelas 2), verificou-se que o perfil da temperatura no interior do tubo possui comportamento bem diferente de uma distribuição

gaussiana, o que era esperado devido à característica de construção do forno (distância, posição, tipo, potência e gradiente de dissipação térmica da resistência) além de outras características correlatas a isolação térmica. Para efeito prático da aplicação, tornou-se necessário: • determinar o segmento do tubo que reflete uma condição de "patamar isotérmico", estimando-se a temperatura de patamar e sua incerteza pela média dos três pontos centrais (50, 75 e 100) cm e a soma quadrática das suas incertezas; • adotar tendência parabólica para os seguintes conjuntos de pontos: (0, 25 e 50) cm; (50, 75 e 100) cm; (100, 125 e 150) cm. A Figura 4 apresenta a comparação entre as temperaturas indicadas pelo controlador e as respectivas temperaturas de patamar, demonstrando a satisfatória correlação entre ambas.

y = 0,99x - 30,667

R2 = 0,9992

1250

1300

1350

1400

1450

1500

1250 1300 1350 1400 1450 1500

Indicação do controlador (ºC)

Tem

pera

tura

do

pata

mar

(ºC

)

Fig. 4. Correlação entre as temperaturas indicadas no controlador e

as respectivas temperaturas de patamar Com isso tornou-se possível cruzar as curvas e limites dos patamares para estimar, por meio das equações, os pontos do tubo que estão a 900ºC (P900) durante o aquecimento, que iniciam (Pe) e terminam (Ps) o "patamar isotérmico" e que estão a 1300ºC (P1300) durante o resfriamento. As Tabelas 3 e 4 apresentam os resultados estimados.

Tabela 3. Posição geométrica no tubo, para cada condição de ensaio

Posição geométrica, em cm

Temperatura de patamar (incerteza),

em ºC

Con

diçã

o

P900 Pe Ps P1300 Tp Up

1 34,3 50,3 99,0 99,5 1305 11

2 32,0 51,0 100,0 102,8 1357 10

3 28,5 50,8 99,5 105,5 1404 11

4 26,0 50,0 99,0 103,5 1382 16

5 28,3 49,8 98,8 105,5 1399 12

6 28,5 49,0 98,3 104,8 1399 12

7 39,3 55,8 102,3 107,5 1384 11

Legenda: P900: posição a 900ºC; Pe: posição de início do patamar; Ps: posição de término do patamar; P1300: posição a 1300ºC; Tp: temp. média do patamar; Up: incerteza da temp. patamar.

Page 4: FORNO ROTATIVO TUBULAR LABORATORIAL -  · PDF filetransporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ =

Adotando o extremo de alimentação do forno como comprimento de tubo igual à zero, constata-se por meio dos dados da Tabela 3 que: • condições 1, 2 e 3: o aumento da temperatura no forno provoca um deslocamento negativo da região do tubo a 900ºC, a partir do qual o material começa sofrer a taxa de aquecimento (Va) e um deslocamento positivo da região do tubo a 1300ºC, ou seja, discreto aumento das taxas de pré-calcinação (Vi), de primeiro (VR 1) e segundo (VR 2) resfriamento, com diminuição da taxa de aquecimento (Va) (Figura 5).

1 2 3 4 5 6 70

500

1000

1500

Posição

Tem

pera

tura��C �

Fig. 5. Perfis térmicos do tubo, em função da temperatura regulada

no controlador: distribuição em linha (superior) e cor (inferior) • condições 3 e 4: a inserção de ar provocou variação significativa do perfil térmico do forno, com deslocamento negativo das regiões do tubo a 900ºC e 1300ºC (Figura 6).

1 2 3 4 5 6 70

500

1000

1500

Posição

Tem

pera

tura��C �

Fig. 6. Perfis térmicos do tubo com e sem injeção de ar em contra-

fluxo – controlador em 1450ºC

Esta ocorrência indica discreta diminuição das taxas de pré-calcinação (Vi), de aquecimento (Va) e de segundo (VR 2) resfriamento, com discreto aumento da taxa de primeiro (VR 1) resfriamento. Além disso, a injeção de ar provocou um abaixamento significativo da temperatura de patamar (Tp), devido ao provável resfriamento provocado pelo ar injetado em contra-fluxo. • condições 3 e 5: a inclinação do tubo não influencia significativamente o perfil térmico do forno, sendo a discreta alteração dos pontos devido ao provável deslocamento do tubo na direção da saída, pelo seu escorregamento até a roldana de apoio. Outro fato que pode ter influenciado é a possível alteração radial da posição dos termopares (Figura 7).

1 2 3 4 5 6 70

500

1000

1500

Posição

Tem

pera

tura��C �

Fig. 7. Perfis térmicos do tubo com e sem inclinação – controlador

em 1450ºC • condições 3 e 6: houve uma pequena variação no perfil térmico do forno devido à rotação do tubo, contudo, acredita-se não ser significativa. Essa avaliação foi prejudicada devido à movimentação linear do tubo, causada pela inclinação do forno.

1 2 3 4 5 6 70

500

1000

1500

Posição

Tem

pera

tura��C �

Fig. 8. Perfis térmicos do tubo com baixa e alta rotação –

controlador em 1450ºC Apesar da alteração sofrida pelo perfil térmico nas condições ensaiadas, observou-se que não ocorreu alteração significativa do comprimento da zona de "patamar isotérmico", e sim o seu deslocamento linear. Para avaliar a Condição 7, que representa um processo de calcinação, adotou-se a mesma velocidade de transporte de

Per

fis

térm

icos

0 25 50 75 100 125 150 Posição geométrica no tubo

1400ºC

1350ºC

1450ºC

0 25 50 75 100 125 150

Posição geométrica no tubo (cm)

Tem

pera

tura

(ºC

)

____ 1350ºC ---- 1400ºC - - - 1450ºC

0 25 50 75 100 125 150

Posição geométrica no tubo (cm)

Tem

pera

tura

(ºC

)

____ sem ar - - - com ar

0 25 50 75 100 125 150

Posição geométrica no tubo (cm)

Tem

pera

tura

(ºC

)

____ sem inclinação - - - com inclinação

0 25 50 75 100 125 150

Posição geométrica no tubo (cm)

Tem

pera

tura

(ºC

)

____ baixa rotação - - - alta rotação

Page 5: FORNO ROTATIVO TUBULAR LABORATORIAL -  · PDF filetransporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ =

material para todas as condições realizadas com o forno a 1450ºC.

Tabela 4. Parâmetros de controle do forno

Parâmetros de controle do forno tubular

Con

diçã

o

Tc

(ºC)

Vi (ºC/ min)

Va (ºC/ min)

∆∆∆∆tp (min)

Tp (ºC)

VR 1 (ºC/ min)

VR 2 (ºC/ min)

3 119 110 10 1404 85 125

4 105 98 10 1382 89 121

5 118 113 10 1399 72 125

6 120 119 10 1399 74 123

7

1450

91 143 10 1384 79 130

Legenda: Tc: temp. indicada no controlador; Vi: taxa de pré-calcinação; Va: taxa de aquecimento; ∆tp: tempo de patamar; Tp: temp. média do patamar; VR 1: taxa de 1º resfriamento; VR 2: taxa de 2º resfriamento. Com isso constatou-se que a inserção de carga e a inserção de ar causaram forte alteração do perfil térmico do forno tubular (Tabela 4 e Figura 9). Neste caso, a inserção de carga foi predominante e causou o deslocamento positivo das regiões do tubo a 900ºC e 1300ºC, o que reflete na diminuição da taxa de pré-calcinação (Vi) e aumento da taxa de aquecimento (Va), além da diminuição da taxa de primeiro (VR 1) resfriamento e aumento da taxa de segundo (VR 2) resfriamento.

1 2 3 4 5 6 70

500

1000

1500

Posição

Tem

pera

tura��C �

Fig. 9. Perfis térmicos do tubo nas diversas condições de ensaio – controlador em 1450ºC: distribuição em linha (superior) e cor

(inferior)

Da mesma forma que na condição 4, ocorreu um abaixamento significativo da temperatura de patamar (Tp), devido a injeção do ar em contra-fluxo. Cabe ressaltar que as utilizou-se curvas com ajustes de quinto grau para representar as Figuras de 5 a 9, apenas para facilitar a visualização e representação gráfica das curvas.

4. CONCLUSÕES

Consideramos que os resultados das medições de temperatura efetuadas foram satisfatórios para o tipo de forno tubular rotativo avaliado, apesar das condições adversas (do ponto de vista metrológico) em que foram realizadas as medições, tais como rotação e inclinação do tubo, bem como o carregamento com material.

Com relação à indicação do controlador do forno constatamos que se pode inferir uma correlação linear com a temperatura de patamar, desde que a condição de operação do forno seja previamente estabelecida. Dessa forma, torna-se possível controlar a operação do forno, aplicando-se as correções necessárias ao controlador, facilitando sua operação.

Conclui-se que a inserção de material e injeção de ar em contra-fluxo alteram o perfil térmico do forno, o que aponta a necessidade de controlá-los criteriosamente durante o processo. Por sua vez, a rotação e a inclinação afetam indiretamente o transporte de material no forno e, portanto, devem ser pré-definidos antes de adotar a taxa de alimentação.

Finalmente, recomenda-se que se avalie o perfil térmico de fornos tubulares rotativos antes de se fazer seu uso, para que, quando associá-lo às componentes de processo tornar possível seu controle e obter o produto calcinado com as características desejadas. Além disso, esta prática possibilita adequar o forno tubular rotativo às condições desejadas, por meio de sua eventual adequação, tanto em nível de projeto construtivo quanto de processo e controle.

AGRADECIMENTOS

Agradecemos ao IPT pela oportunidade e disponibilização da infra-estrutura laboratorial necessária para a realização do prcesente trabalho. Em especial ao Dr. Valdecir A. Quarcioni, do LMCC/IPT, pela leitura crítica e sugestões.

REFERÊNCIAS

[1] MARINGOLO, V. Clínquer co-processado: produto de tecnologia integrada para sustentabilidade e competitividade da indústria de cimento. 2001. 188f. Tese (Doutorado) – Instituto de Geociências, Universidade de São Paulo, 2001.

[2] DUDA, W. H. Cement-data book. 3.ed. Westbaden: Bauverlag, 1985. v.1.

[3] CHOTOLI, F.F. Obtenção de clínquer de cimento a partir de escória de aciaria a oxigênio: estudo em escala laboratorial. Dissertação (Mestre em Habitação: Planejamento e Tecnologia) – IPT – Instituto de Pesquisas Tecnológicas, 2006.

0 25 50 75 100 125 150

Posição geométrica no tubo (cm)

Tem

pera

tura

(ºC

)

___ sem ar/sem material - - - com ar/sem material --- com ar/com material

Per

fis

térm

icos

0 25 50 75 100 125 150 Posição geométrica no tubo

Condição 3 – referência

Condição 4 – com ar

Condição 5 – com inclinação

Condição 6 – com alta rotação

Condição 7 – c/ ar, alta rotação, inclinação e material

Page 6: FORNO ROTATIVO TUBULAR LABORATORIAL -  · PDF filetransporte do material no forno foi de 31 minutos, dado que na equação (1) F = 1 (diâmetro constante), e, portanto, Θ =

[4] Castanho M.A.P., Ávila P.U., Lombardi Jr.A.B., et. al - Calibração de sensores de temperatura com comprimento reduzido em banho de leito fluidizado. In: ENQUALAB 2006 – CONGRESSO DE QUALIDADE EM METROLOGIA. São Paulo. Anais. São Paulo: 2006.

[5] Chotoli, F.F.; Aleixo, D.M.; Costa, R.G.; Castanho, M.A.P. Avaliação do Perfil Térmico de banho-maria com agitação tipo "Dubnoff". In: ENQUALAB 2007 – CONGRESSO DE QUALIDADE EM METROLOGIA. São Paulo. Anais. São Paulo: 2007.

[6] CEMBUREAU. European Cement Association. Best available techniques for the cement industry, D/1999/5457/December 1999. Disponível em:<http://www.cembureau.be>. Acesso em: jun. 2000.