184
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA, CONSERVAÇÃO E BIOLOGIA EVOLUTIVA PPG GCBEv Influência dos contaminantes ambientais Benzo[a]pireno e Roundup ® sobre Colossoma macropomum submetida à hipóxia e mudanças climáticas: respostas genéticas, fisiológicas e histológicas GRAZYELLE SEBRENSKI DA SILVA Manaus Novembro, 2016

INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA, CONSERVAÇÃO E BIOLOGIA

EVOLUTIVA – PPG GCBEv

Influência dos contaminantes ambientais Benzo[a]pireno e Roundup®

sobre Colossoma macropomum submetida à hipóxia e mudanças climáticas: respostas genéticas, fisiológicas e histológicas

GRAZYELLE SEBRENSKI DA SILVA

Manaus

Novembro, 2016

Page 2: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

ii

GRAZYELLE SEBRENSKI DA SILVA

Influência dos contaminantes ambientais Benzo[a]pireno e Roundup®

sobre Colossoma macropomum submetida à hipóxia e mudanças climáticas: respostas genéticas, fisiológicas e histológicas Orientadora: VERA MARIA FONSECA DE ALMEIDA E VAL Agência Financiadora: INCT/ADAPTA

Tese apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Doutor em Genética, Conservação e Biologia Evolutiva.

* Pesquisa autorizada: CEUA/INPA, Protocolo Número 011/2013.

Manaus, Amazonas Novembro, 2016

Page 3: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

iii

GRAZYELLE SEBRENSKI DA SILVA

Influência dos contaminantes ambientais Benzo[a]pireno e Roundup®

sobre Colossoma macropomum submetida à hipóxia e mudanças climáticas: respostas genéticas, fisiológicas e histológicas

Tese apresentada ao Programa de Pós-

Graduação em Genética, Conservação e

Biologia Evolutiva do Instituto Nacional de

Pesquisas da Amazônia, como requisito para a

obtenção do título de Doutor em Genética,

Conservação e Biologia Evolutiva.

APROVADA EM: 23 / 11 / 2016

BANCA EXAMINADORA

____________________________________________

Profa. Dr. José Fernando Marques Barcellos-UFAM

____________________________________________

Profa. Dra. Fernanda Loureiro de Almeida O’Sullivan-EMBRAPA

____________________________________________

Profa. Dra. Luciana R. Souza-Bastos-UFPR

____________________________________________

Profa. Dra. Eliana Feldberg-INPA

____________________________________________

Profa. Dr. Wuelton Marcelo-FMT

Page 4: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

iv

FICHA CATALOGRÁFICA

S586 Silva, Grazyelle Sebrenski da

Influência dos contaminantes ambientais Benzo[a]pireno e Roundup®

sobre Colossoma macropomum submetida à hipóxia e mudanças climáticas:

respostas genéticas, fisiológicas e histológicas /Grazyelle Sebrenski da Silva . -

-- Manaus: [s.n.], 2016.

168 f.: il.

Tese (Doutorado) --- INPA, Manaus, 2016.

Orientador: Vera Maria Fonseca de Almeida e Val

Área de concentração: Genética, Conservação e Biologia evolutiva

1. Tambaqui. 2. Hipóxia. 3. Mudanças climáticas. I. Título

CDD 597.5

SINOPSE

Neste estudo foram avaliados os efeitos dos contaminantes ambientais Benzo[a]pireno e

Roundup® sobre o tambaqui (Colossoma macropomum). Primeiramente, verificou-se os

efeitos agudos do Benzo[a]pireno na expressão do oncogene ras e hif-1 e respostas

histopatológicas do fígado. A seguir, foram avaliados os efeitos do Benzo[a]pireno na

expressão do oncogene ras e do gene hif-1 em tambaquis cronicamente expostos ao

cenário extremo (A2) proposto pelo Painel Intergovernamental Sobre Mudanças Climáticas

(IPCC, 2007). Finalmente, foi avaliado o efeito agudo e conjunto da exposição ao Roundup®

mais hipóxia na expressão dos genes ras e hif-1e os efeitos histopatológicos em tambaqui.

Palavras-chave: tambaqui, Benzo[a]pireno, Roundup®, hipóxia, mudanças climáticas,

oncogene ras, hif-1 e histopatologia.

Page 5: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

v

Dedico aos meus pais Moacir Ribeiro

da Silva e Arlete Aparecida Sebrenski

da Silva pelo apoio em todos os

sentidos da minha vida e a lição de

não ter medo de conquistar tudo com

humildade.

Page 6: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

vi

AGRADECIMENTOS

A Jeová Deus por permitir que as coisas acontecessem na hora certa, pelo suporte

emocional e alegria de estar viva e com saúde para realizar tantas conquistas mesmo

na adversidade.

Aos meus pais Moacir Ribeiro da Silva e Arlete Aparecida da Silva por todo amor,

carinho e apoio em todos os momentos dessa longa jornada.

A todos os familiares (tios, tias, primos e primas) que vibraram por mais esta conquista,

por estarem ao meu lado incentivando nas horas do cansaço.

À minha querida orientadora Dra. Vera Val por acreditar no meu potencial e sempre ser

tão acessível e pronta para tirar dúvidas e corrigir meus trabalhos quando necessário.

Às minhas estudantes Carolina, Juliana e Julie que foram essenciais na realização dos

experimentos e me apoiaram nos momentos mais sobrecarregados do trabalho,

tornando-os mais leves. Juliana sempre positiva.

À amiga Lorena por ser sempre tão prestativa e disposta a ajudar.

À MSc. Nazaré Paula pelo apoio logístico e por ser sempre tão cuidadosa e prestativa

com os alunos e trabalhos no laboratório.

Ao Prof. Dr. Adalberto Val, pelas discussões sobre o trabalho, pelo suporte financeiro à

pesquisa e por abrir as portas do laboratório para que o trabalho fosse realizado.

À toda a equipe do LEEM: Dona Rai, Raquel, técnicos, Claudinha, Dona Val e Dona

Sônia, por sempre ajudarem quando necessário e contribuírem para o andamento

organizado da rotina no laboratório.

À minha amiga e colega Luciana Fé por sempre me ajudar, ensinar, tirar dúvidas e

estar disposta a contribuir com todo o trabalho realizado.

Page 7: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

vii

Aos amigos do laboratório que direta e indiretamente sempre estiveram dispostos a

participar das coletas, tirar dúvidas sobre estatística, discutir resultados e dar aquela

palavra de incentivo: Helen, Viviane, Susana, Derek, Fernanda, Samara, Alzira e Carol.

Aos amigos do Departamento de Morfologia da UFAM, Maria Inês e Fernandinho, por

dividirem as responsabilidades comigo, por abraçarem a causa do Doutorado comigo e

não permitir que eu desanimasse.

Aos amigos Karen e Marcel por estarem sempre dispostos a me ouvir e consolar nas

horas de estresse e angústia.

Aos amigos que direta e indiretamente participaram dessa grande jornada.

Obrigada!

Page 8: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

viii

“O saber a gente aprende com os

mestres e com os livros. A sabedoria

se aprende com a vida e com os

humildes.”

Cora Coralina

Page 9: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

ix

Resumo

Esse estudo objetivou compreender os efeitos (genéticos, histológicos e fisiológicos) de

diferentes estressores ambientais como: temperatura, níveis de CO2 e O2, bem como a

ação dos contaminantes benzo[a]pireno (BaP) e Roundup® (RD) em Colossoma

macropomum. No primeiro capítulo foi avaliado o efeito agudo (96 h) do BaP (4, 8, 16,

32 mol/kg) em tambaquis. Foram observadas alterações no nível de expressão do

oncogene ras e do fator de indução à hipóxia-1 (hif-1). Os danos teciduais no fígado

aumentaram nos peixes expostos ao BaP (8, 16, 32 mol/kg) quando comparados com

o controle, sendo classificados como danos irreparáveis. Verificou-se também o

aumento no índice de danos genéticos das células sanguíneas por meio do ensaio

cometa. O segundo capítulo descreve os efeitos do BaP (8 e 16mol/kg) em

tambaquis expostos ao cenário climático A2 (cenário extremo) que prevê um aumento

médio de 4.5 °C na temperatura do ar e 850 ppm de CO2, como proposto pelo IPCC

(2007). O aumento da temperatura e dos níveis de CO2 no cenário extremo induziu

modificações nos níveis de expressão do oncogene ras e do gene hif-1. Tanto o

oncogene ras como hif-1. apresentaram aumento nos níveis de expressão nos peixes

injetados com ambas as concentrações de BaP e expostos ao cenário extremo, quando

comparados aos mesmos tratamentos no cenário atual. Por outro lado, as respostas

das enzimas glutationa-S-transferase (GST) e catalase (CAT) e nível de

lipoperoxidação (LPO) foram maiores no cenário controle. A atividade da GST e CAT

diminuiu nos peixes expostos ao BaP no cenário extremo, em relação ao cenário

controle, mostrando que um possível cenário com altas temperaturas e níveis de CO2

enfraqueceriam as respostas antioxidantes do organismo. Da mesma maneira, os

níveis de LPO diminuíram. Em consequência da falha no sistema antioxidante, o

cenário extremo teve maior influência sobre as variáveis genéticas aumentando a

expressão do oncogene ras e hif-1, bem como os danos no DNA a alterações

histológicas, causando danos irreversíveis nas células hepáticas e necrose do tecido.

No terceiro capítulo foram avaliadas as repostas toxicológicas de C. macropomum

expostos simultaneamente ao RD e hipóxia. Surpreendentemente, os animais expostos

à hipóxia e à hipóxia mais RD tiveram seus níveis de expressão de hif-1 menores do

Page 10: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

x

que aqueles submetidos à normóxia e normóxia mais RD, sugerindo uma lesão celular

maior nesses grupos. O oncogene ras apresentou expressão relativa maior nos

animais contaminados com RD em normóxia, diminuindo sua expressão relativa nos

animais expostos à hipóxia e RD, o que também pôde ser explicado pelas lesões

celulares (vide abaixo). As enzimas de estresse oxidativo GST e CAT apresentaram

maior atividade em ambos os tratamentos sob hipóxia, sendo capazes de minimizar os

danos de estresse oxidativo nas membranas, o que foi evidenciado pela baixa taxa de

lipoperoxidação (LPO). As alterações histológicas do fígado de C. macropomum

expostos à normóxia mais RD, hipóxia e hipóxia mais RD foram similares, sendo que

os peixes tiveram massiva ocorrência de necrose. O tambaqui se mostrou um

excelente modelo para os estudos de genes relacionados ao câncer, complementado

pelos marcadores moleculares como o oncogene ras e o gene hif-1

Palavras-chave: Benzo[a]pireno, Roundup®, mudanças climáticas, hipóxia, tambaqui,

oncogene ras e gene hif-1

Page 11: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

xi

Abstract

This study aimed to understand the effects (genetic, histological and physiological) of

different environmental stressors such as temperature, CO2 levels and O2, as well as

the action of benzo[a]pyrene (BaP) and Roundup® (RD) in Colossoma macropomum. In

the first chapter we evaluated the acute effect (96 h) of BaP (4, 8, 16, 32 mol/kg) in

tambaqui fish. Changes were observed in the expression of the ras oncogene and

hypoxia-inducible factor-1 (hif-1). Tissue damage in the liver increased in fish

exposed to BaP (8, 16, 32 mol / kg) compared with the control, being classified as

irreparable damage. There has also been an increase in genotoxic damage index in

blood cells by the comet assay. The second chapter describes the effects of BaP (8 and

16mol/kg) in tambaquis exposed to climate scenario A2 (extreme scenario) which

provides an average increase of 4.5 °C in air temperature and CO2 levels (850 ppm), as

forecasted by IPCC (2007). The increased temperature and CO2 levels in the extreme

scenario induced changes in expression of the ras oncogene and hif-1 gene. Both ras

oncogene and hif-1 showed an increase in gene expression in fish injected with both

concentrations of BaP and exposed to the extreme scenario compared to the same

treatments in the current scenario. Moreover, the responses of detoxifying enzyme and

antioxidant defense, glutathione-S-transferase (GST), catalase (CAT) and levels of lipid

peroxidation LPO were greater in the control setting. The activity of GST and CAT

decreased in fish exposed to BaP in the extreme scenario compared to the control

scenario. Extreme scenario with high temperatures and CO₂ levels weaken the body's

antioxidant response. Likewise, the LPO levels decreased. In consequence of the

failure in the antioxidant system, the extreme scenario had a greater influence on

genetic variables increasing the expression of ras oncogene and hif-1, also DNA

strand breaks in blood cells and histological damage, causing irreversible injuries to the

liver cells and tissue necrosis. In the third chapter were evaluated toxicological

responses of C. macropomum exposed simultaneously to RD and hypoxia. Surprisingly,

animals exposed to hypoxia and hypoxia more RD had their levels of expression of hif-

Page 12: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

xii

1 smaller than those subjected to normoxic and normoxic more RD, suggesting

greater cell damage in these groups. The ras oncogene showed higher relative

expression in animals contaminated with RD in normoxic, reducing their relative

expression in animals exposed to hypoxia and RD, which could also be explained by

cellular injury (see below). The enzymes of oxidative stress GST and CAT showed

greater activity in both treatments under hypoxia, being able to minimize the damage of

oxidative stress in the membranes, which was evidenced by the low lipid peroxidation

rate (LPO). Histological changes C. macropomum liver exposed to normoxia plus RD,

hypoxia and hypoxia plus RD were similar, and the occurrence of fish had massive

necrosis. Tambaqui proved to be an excellent model for studies of genes related to

cancer, complemented by molecular markers such as ras oncogene and the hif-1

gene.

Keywords: Benzo[a]pyrene, Roundup®, climate change, hypoxia, tambaqui, ras

oncogene and hif-1 gene.

Page 13: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

xiii

SUMÁRIO

LISTA DE TABELAS ............................................................................................................................... xv

LISTA DE FIGURAS .............................................................................................................................. xvi

1. INTRODUÇÃO GERAL ...................................................................................................................... 1

1.1. Agentes Estressores ............................................................................................................ 3

1.1.1 Hidrocarbonetos Policíclicos Aromáticos: Benzo[a]pireno ................................................ 3

1.1.2 Roundup® ................................................................................................................................ 5

1.2. Indicadores moleculares ...................................................................................................... 6

1.1.2 Fator de Indução de Hipóxia ................................................................................................. 6

1.1.3 Oncogene ras .......................................................................................................................... 8

1.2. A espécie Colossoma macropomum (tambaqui) ............................................................... 9

2. OBJETIVOS ....................................................................................................................................... 10

2.1. Objetivo Geral .................................................................................................................... 10

2.2. Objetivos Específicos (por capítulo) .................................................................................. 10

3. MATERIAL E MÉTODOS ................................................................................................................ 11

3.1 Aquisição dos espécimes de C. macropomum .................................................................. 11

3.2. Delineamento experimental ............................................................................................... 11

3.2.1 Experimento 1: Exposição aguda ao Benzo[a]pireno.................................................... 11

3.2.2 Experimento 2: Cenários Climáticos- Microcosmos ...................................................... 12

3.2.3 Experimento 2: Experimento em Microcosmos ........................................................ 13

3.2.4 Variáveis ambientais dos cenários do Microcosmos ................................................. 15

3.2.5 Experimento 3: Determinação da pressão crítica de oxigênio (PO2crit) ................. 19

3.2.6 Experimento 3: Exposição aguda ao Roundup® e hipóxia .................................... 20

3.3. Procedimentos Analíticos .................................................................................................. 21

3.3.1 Análises hematológicas e plasmáticas .............................................................................. 21

3.3.2 Ensaio Cometa ..................................................................................................................... 22

3.3.3 Análises histopatológicas .................................................................................................... 23

3.3.4 Análises genéticas ............................................................................................................... 25

3.3.5 Análises bioquímicas ........................................................................................................... 30

3.4 Análise estatística ............................................................................................................... 31

Page 14: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

xiv

4. Bibliografia ........................................................................................................................................ 33

Capítulo I

Ras oncogene and Hypoxia-inducible factor-1 alpha (hif-1α) expression in Amazon fish

Colossoma macropomum Cuvier, 1818) exposed to benzo[a]pyrene. .................................... 41

Capítulo II

Toxicological responses of Amazon fish Colossoma macropomum contaminated with

Benzo[a]pyrene are magnified by climate change scenario. ................................................... 71

Capítulo III

Hypoxia magnifies the effects of Roundup® over tambaqui genotoxicity, physiology and gene

expression levels. .................................................................................................................... 124

5. Conclusões Gerais..............................................................................................................167

Page 15: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

xv

LISTA DE TABELAS

Tabela 1.........................................................................................................................16

Tabela 2.........................................................................................................................29

Capitulo I

Table 1....................................................................................................................65

Capitulo II

Table 1.................................................................................................................112

Table 2............................................................................................................. ....113

Table 3.................................................................................................................114

Table 4..................................................................................................... ............115

Capitulo III

Table 1.................................................................................................................159

Table 2.................................................................................................................160

Table 3.................................................................................................................161

Table 4.................................................................................................................162

Page 16: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

xvi

LISTA DE FIGURAS

Figura 1...........................................................................................................................17

Figura 2...........................................................................................................................18

Capitulo I

Figure 1.......................................................................................................................66

Figure 2..................................................................................................................... ..67

Figure 3..................................................................................................................... ..68

Figure 4................................................................................................................ .......69

Figure 5..................................................................................................................... ..70

Capitulo II

Figure 1.......................................................................................... ...........................116

Figure 2.....................................................................................................................117

Figure 3.....................................................................................................................118

Figure 4.....................................................................................................................119

Figure 5.....................................................................................................................120

Figure 6................................................................................................................. ....121

Figure 7.....................................................................................................................122

Figure 8.....................................................................................................................123

Capitulo III

Figure 1................................................................................................................ ......163

Figure 2..................................................................................................................... .164

Figure 3........................................................................................................ ..............165

Figure 4..................................................................................................................... ..166

Figure 5.......................................................................................................................166

Page 17: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

1

1. INTRODUÇÃO GERAL

Nos últimos anos as alterações climáticas tornaram-se motivo de debates

científicos e geraram considerável interesse público (Karol et al., 2011). Vários estudos

interdisciplinares estão sendo realizados para determinar como a vida humana será

influenciada pelas mudanças climáticas futuras (Pryor e Barthelmie, 2010). O impacto

no clima mundial de emissões antropogênicas a longo prazo de gases de efeito estufa

está agora bem estabelecido no meio científico de acordo com o relatório do Painel

Intergovernamental sobre Mudanças Climáticas (IPCC).

O Painel Intergovernamental sobre Mudancas Climáticas (IPCC) é uma

organização científica intergovernamental das Nações Unidas. Ele foi criado em 1988

pela Organização Mundial de Meterologia (OMM) e pelo Programa das Nações Unidas

para o Meio Ambiente (UNEP). O IPCC produz relatórios que apóiam a Covenção-

Quadro das Nações Unidas sobre Mudanças Climáticas (UNFCCC), que é o principal

tratado internacional sobre mudanças climáticas. Os relatórios do IPCC também

contêm um “Sumário para os elaboradores de políticas públicas”, os documentos mais

concisos e mais citados do IPCC (Radovanovic et al., 2014).

As mudanças climáticas referem-se a mudanças no estado do clima que podem

ser identificadas (por exemplo, usando testes estatísticos) por mudanças na média e /

ou na variabilidade de suas propriedades e que persistem por décadas, ou até mesmo

por um período mais longo. Refere-se a qualquer mudança no clima ao longo do

tempo, seja devido à variabilidade natural ou como resultado da atividade humana

(IPCC, 2007).

Os condutores naturais e antropogênicos das mudanças climáticas são os gases

de efeito estufa (CO2, metano (CH4), óxido nitroso (N2O) e halocarbonetos (um grupo

de gases contendo flúor, cloro ou bromo) (IPCC, 2007). De acordo com o IPCC (2007),

a concentração atmosférica mundial de CO2 aumentou durante os últimos 10 anos

(média de 1995-2005: 1,9 ppm por ano). A prospecção para o ano 2100 no cenário

Page 18: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

2

extremo (A2) proposto pelo IPCC (2007) inclui um aumento da temperatura do ar de

4,5 ° C e um aumento de 850 ppm de CO2 na atmosfera.

No contexto das mudanças climáticas diversos estudos tem sido desenvolvidos

considerando o impacto de tantas alterações ambientais na biogeografia das espécies

(Tishkov, 2012) e distribuição da vegetação (Gouveia et al., 2011). As alterações

climáticas podem ser uma das principais ameaças enfrentadas pelos ecossistemas

aquáticos e pela biodiversidade de água doce. Melhor compreensão, monitoramento e

previsão de seus efeitos são, portanto, cruciais para pesquisadores e formuladores de

políticas públicas (Comte et al., 2013).

Além das mudanças climáticas, existem outros fatores ambientais que afetam o

comportamento das espécies. Na Amazônia por exemplo, existe uma grande

variedade de habitats aquáticos, condições ambientais extremas tais como ácidez da

água, níveis elevados de sulfeto, hidrogênio e dióxido de carbono dissolvidos,

resultando em decomposição vegetal e condições hipóxicas e anóxicas, alta

temperatura, entre outros (Val et al., 2015).

Durante o período da cheia na Bacia Amazônica, surgem áreas inundadas e

cobertas por macrófitas, denominadas várzeas onde mudanças ambientais drásticas

na disponibilidade de oxigênio são observadas durante um único dia (Val e Almeida

Val, 1995). A variação sazonal na disponibilidade de oxigênio na água das áreas

alagadas pode resultar em períodos de hipoxia profunda (< 2 mgO2/L) (Val, 1995).

Para sobreviver a baixas tensões de oxigênio e alta temperatura, os peixes da

Amazônia desenvolveram diversas estratégias para lidar com esses desafios

ambientais. Fisiologicamente algumas espécies de peixe podem recorrer a um baixo

nível de atividade mantido pelo metabolismo anaeróbico, ou a supressão do

metabolismo, diminuindo a síntese e demanda de ATP (Boutilier, 2001; Lutz e Nilsson,

1997). Outra estratégia é a respiração superficial aquática (ASR), um ajuste

comportamental que permite que os peixes acessar a água oxigenada a partir da

interface água e ar (Hochachka e Somero, 2002).

Page 19: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

3

A biota aquática vem sofrendo os efeitos não somente das mudanças climáticas

e oscilações no nível de oxigênio da água, mas também a ação dos contaminantes

ambientais como os derivados do petróleo (Moore et al., 1989) e pesticidas (Cattaneo

et al., 2011).

Reconhecendo a importância da manutenção da qualidade ambiental, bem

como a preservação da biota aquática, é importante verificar os efeitos das mudanças

climáticas e alteração dos níveis de oxigênio na água, combinados com a ação de

contaminantes.

A biota aquática, principalmente os peixes, tem sido usada como modelo nos

estudos de qualidade ambiental. Peixes teleósteos provaram ser bons modelos para

avaliar a toxicidade e os efeitos de contaminantes em animais, já que suas respostas

bioquímicas são semelhantes às dos mamíferos e de outros vertebrados (Sancho et al.,

2000). Adicionalmente, os peixes são os primeiros vertebrados a terem contato com os

poluentes aquáticos que podem vir a causar danos permanentes às características

genéticas.

1.1 . Agentes Estressores

1.1.1 Hidrocarbonetos Policíclicos Aromáticos: Benzo[a]pireno

Os hidrocarbonetos policíclicos aromáticos (HPAs) constituem uma classe de

compostos orgânicos com dois ou mais anéis benzênicos formados por átomos de

carbono e hidrogênio (Arey et al., 2003). HPAs constituídos por até seis anéis

aromáticos são denominados “pequenos” HPAs, e os que contêm mais de seis anéis

são classificados como “grandes” HPAs (IARC, 2010).

A maioria dos HPAs apresentam propriedades mutagênicas e carcinogênicas.

Estes compostos são considerados muito lipossolúveis e podem ser efetivamente

absorvidos pelo trato gastrointestinal em mamíferos. HPAs são rapidamente

distribuídos em uma grande variedade de tecidos, com tendência a serem depositados

no tecido adiposo (Abdel-Shafy e Mansour, 2016).

Page 20: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

4

Os HPAs são contaminantes ambientais amplamente distribuídos no ambiente

aquático. Eles afetam a biota aquática por se depositar no sedimento ou através da

ingestão de alimento contaminado. São amplamente presentes em áreas de

urbanização costeira, oriundos da exploração e queima de combustíveis fósseis,

descarte de esgoto doméstico e industrial (Perugini et al., 2007).

Para os organismos aquáticos a toxicidade dos HPAs depende do metabolismo

e foto-oxidação. Eles são geralmente mais tóxicos na presença da luz ultravioleta e

exercem um efeito tóxico agudo nos organismos aquáticos (Abdel-Shafy e Mansour,

2016). Os HPAs são moderadamente persistentes no ambiente, podendo ser

bioacumulados. De fato, a concentração de HPAs encontrada nos peixes é, em geral,

muito maior do que a concentração desses contaminantes no ambiente onde os

animais foram coletados (Tudoran e Putz, 2012, Inomata et al., 2012).

O benzo[a]pireno (BaP) é um hidrocarboneto policíclico aromático amplamente

distribuído no ambiente (Thompson et al., 2010). Ele é composto por cinco anéis

benzênicos e, entre os HPAs, é o mais estudado; é classificado como hepatotóxico,

mutagênico, carcinogênico e imunossupressor pela Agência Internacional de Pesquisa

em Câncer (IARC, 2012). Para exercer seu efeito carcinogênico, o BaP é

metabolicamente ativado via citocromo P450 a BaP diolepóxido (BPDE), podendo

interagir com macromoléculas e formar adutos com o DNA. A formação e a persistência

dos adutos de BPDE-DNA são críticas para os eventos de iniciação tumoral (Háll e

Grover, 1990, Varanasi et al., 1989).

BaP vem sendo utilizado em diversos estudos toxicológicos (Modesto e Naidu

2000, Karami et al., 2012) e os peixes têm sido utilizados como modelos para melhor

compreender os efeitos desse contaminante, principalmente na biota aquática (Oliveira

Ribeiro et al., 2007, Banni et al., 2010, Sadauskas-Henrique et al., 2016).

Page 21: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

5

1.1.2 Roundup®

Os herbicidas, assim como os derivados de petróleo, são usados

sistematicamente em ecossistemas terrestres e aquáticos para controlar ervas

daninhas indesejáveis e seu uso tem gerado sérias preocupações sobre os potenciais

efeitos adversos no meio ambiente e à saúde humana (Marchand et al., 2006).

O glifosato N-fosfometilglicina é um herbicida pós-emergente e não seletivo,

amplamente utilizado em vários tipos de culturas. Numerosas formulações comerciais

contendo glifosato como ingrediente ativo tornaram-se populares em todo o mundo

devido a eficácia e baixa toxicidade para os mamíferos (Corbera et al., 2005). A

formulação comercial mais conhecida é o Roundup® (RD), aquela em que o glifosato é

formulado como um sal de isopropilamina (IPA) e um surfactante polioxietileno amina

(POEA), que aumentam sua eficácia como herbicida (Martin e Chu, 2003). O amplo

alcance do herbicida Roundup® o torna uma das formulações comerciais mais

distribuídas e utilizadas na agricultura, jardinagem e controle de ervas daninhas

aquáticas (Giesy et al., 2000).

O uso de glifosato como um herbicida foi proposto pela primeira vez por

cientistas da Empresa Monsanto em 1970. Ele é um herbicida que inibe o crescimento

de plantas através da interferência com a produção de aminoácidos aromáticos

essenciais por meio da inibição da enzima fosfato enolpiruvil succinato sintase. Esta

enzima é responsável pela biossíntese de corismato, um intermediário na biossíntese

dos aminoácidos fenilalanina, tirosina e triptofano (Williams et al., 2000).

Houve um crescente aumento na utilização do glifosato nos últimos anos, o que

aumenta a preocupação com os impactos ambientais que o uso deste herbicida pode

causar (Kolpin et al., 2006). Devido à alta solubilidade do glifosato na água tem

ocorrido um aumento da sua presença no ambiente aquático, aumentando sua

relevância nos estudos de ecotoxicologia aquática (WHO, 1994). O glifosado tem sido

encontrado em muitos rios, tanto em áreas agrícolas como urbanas, representando

sérios riscos para os organismos aquáticos (Çavas e Konen, 2007). Recentemente, a

literatura tem demonstrado os efeitos genotóxicos do Roundup® para os peixes

Page 22: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

6

(Cavalcante et al., 2008; Çavas e Konen, 2007; Grisolia, 2002; Guilherme et al., 2010,

Braz-Mota et al., 2015).

O Roundup® é tóxico para os peixes e pode causar mudanças morfofuncionais

nesses animais (Modesto e Martinez, 2010). Braz-Mota et al. (2015) demonstraram os

efeitos agudos do RD em concentrações sub-letais na espécie de peixe amazônico

Colossoma macropomum (tambaqui), onde patologias branquiais e hepáticas foram

identificadas. Jiraungkoorskul et al. (2002) também demonstraram que a exposição ao

RD induz alterações histológicas das brânquias, fígado e rins na tilápia do Nilo

(Oreochromis niloticus).

1.2. Indicadores moleculares

1.1.2 Fator de Indução de Hipóxia

Para todos os tipos de organismos a hipóxia afeta uma complexa rede de

interações celulares e desenvolvimento. Alguns estudos sugerem que a hipóxia é

considerada a maior força fisiológica delineadora da evolução dos animais,

promovendo mudanças na abundância das espécies e alterando a composição das

comunidades (Dauer, 1993; Val e Almeida-Val, 1995; Rytkonen et al., 2007; Weisberg

et al., 2008).

Os fatores de indução de hipóxia (HIFs) são uma grande família de fatores de

transcrição altamente conservados, que agem principalmente como reguladores na

homeostase do oxigênio em respostas adaptativas a hipóxia (Semenza, 1999). Eles

são heterodímeros constituídos por duas subunidades HIF-1 e HIF- 1, este último

também conhecido como receptor nuclear translocador de aril-hidrocarboneto (ARNT),

uma família de fatores de transcrição Per-Arnt-Sim (PAS) com formato hélice-alfa-

hélice (bHLH) (Sogawa e Fujii-Kuriyam, 1997; Wang e Zhang, 1995; Wengert et al.,

1997). Em condição de normóxia, HIF-1 tem uma meia vida muito curta, sendo

rapidamente ubiquitinado e degradado via proteossomal (Wang et al., 1995). Contudo,

Page 23: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

7

em hipóxia HIF-1 é acumulado pela célula, liga-se a seu heterodímero HIF-1,

interagindo com os elementos de resposta a hipóxia (HER) na região promotora de

genes alvo no núcleo celular (Wang e Semenza, 1993).

As rotas fisiológicas sensíveis à variação nos níveis de oxigênio envolvem vias

de ativação e inibição de diversos fatores de transcrição. O fator de indução de hipóxia

(HIF-1) é um dos principais fatores de transcrição de resposta a hipóxia (Schofield e

Ratcliffe, 2004; Dunwoodie, 2009). Em hipóxia, HIF-1 é produzido e responsável pela

regulação de diversos outros genes relacionados à angiogênese, eritropoiese,

transporte de glicose e glicólise anaeróbica (Harris, 2002; Treinin et al., 2003; Soñanez-

Organis et al., 2012).

Em humanos, a maioria dos estudos envolvendo HIF-1 está relacionado ao

desenvolvimento tumoral (Passam et al., 2009, Melstrom et al., 2011). HIF-1é

superexpresso em câncer de cólon, pulmões, próstata e mama (Zhong et al., 1999;

Costa et al., 2001). HIF-1 tem maior expressão nas áreas hióxicas dos tumores,

influenciando a expressão de genes que têm relação com o processo de angiogênese

e crescimento tumoral (Maxwell et al., 1997). HIF-1 é o fator chave para o processo de

carcinogênese, desenvolvimento tumoral, invasão e metástase em condição de hipóxia

(Semenza, 2003).

Comparados com os estudos com mamíferos, as pesquisas com HIF em

vertebrados como peixes são muito escassas. A primeira sequência de RNAm de hif-

1 para peixe a ser caracterizada foi a de truta arco íris (Oncorhynchus mykiss)

(Soitamo et al., 2001). Posteriormente hif-1 já foi caracterizado para diversas outras

espécies de peixes como: Fundulus heteroclitus, Gymnocypris przewalskii,

Ctenopharyngodon idella, Danio rerio, Micropogonias undulatus e Dicentrarchus labrax

(Cao et al., 2005; Law et al., 2006; Powell e Hahn, 2002; Rahman e Thomas, 2007;

Rytkönen et al., 2007; Terova et al., 2008). Recentemente Baptista et al. (2016)

descreveram a sequência de RNAm de hif-1 para espécie de peixe da Amazônia,

Oscar (Astronotus ocellatus), a qual é tolerante a ambientes com baixas concentrações

de oxigênio. Em peixes, uma série de ajustes metabólicos é utilizada para sobreviver à

hipóxia. Estas estratégias incluem diminuição das rotas metabólicas, aumento da

Page 24: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

8

ventilação, aumento dos níveis de hematócrito e hemoglobina, bem como da

respiração anaeróbia (Dalla Via et al., 1994; Jensen et al., 1993; Virani e Rees, 2000).

Em anos recentes, por causa das atividades humanas e das mudanças no

ambiente natural, à duração, severidade e aumento da hipóxia têm resultado em um

aumento da mortalidade de organismos aquáticos como peixes, camarões e moluscos,

causando grandes perdas para a aquicultura e sistemas ecológicos (Diaz e Rosenberg,

2008). Sendo assim, o estudo dos níveis de expressão do gene hif-1em peixes irá

contribuir para o melhor entendimento do comportamento deste gene, principalmente

diante de um desafio ambiental que é a hipóxia e seu efeito combinado com a ação de

um contaminante. Também faz-se necessário a melhor compreensão das respostas do

gene hif-1em peixes adaptados a regiões com baixos níveis de oxigênio, como é o

caso das áreas de várzea na Amazônia, bem como os efeitos da ação de

contaminates, como pesticidas e derivados do petróleo.

1.1.3 Oncogene ras

Os oncogenes mais frequentes identificados em neoplasmas malignos em

humanos são os genes da família ras (Barbacid, 1987). Convencionalmente, esta

família gênica é composta pelos genes Ha-ras (Harvey sarcoma vírus), K-ras gene,

derivado do sarcoma viral Kirsten e N-ras do neuroblastoma. Suas funções estão

intimamente relacionadas aos locais em que seus produtos se ligam na membrana

interna da célula e suas rotas são GTPase dependente (Reuther e Der, 2000). As

mutações no gene ras que levam ao câncer mantém as proteínas Ras em seu estado

GTP-ligado, tornando-as constitutivamente ativas (Pratilas e Solit, 2010).

Ras genes foram identificados em diversas espécies de peixes (Rotchell et al.,

2001). A primeira sequencia para o oncogene ras a ser caracterizada em peixes foi a

do peixe dourado (Carassius auratus) (Nemoto et al., 1986). Depois, outras espécies

tiveram as sequências para os genes ras caracterizadas: truta arco-íris (Oncorhynchus

mykiss) (Mangold et al., 1991), Rivulus (Rivulus marmoratus) (Lee et al., 1998), e peixe

zebra (Danio rerio) (Cheng et al., 1997). Estudos descreveram maior incidência de

mutações do gene ras em peixes de ambientes poluídos (McMahon et al., 1988).

Page 25: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

9

Mutações nos códons 12, 13 e 61 do gene ras foram observadas em embriões de

salmão rosa expostos ao óleo cru da baia de Prudhoe, Alasca (Roy et al., 1999).

Mutações do oncogene ras também já foram descritas para peixes expostos a HPAs

(Fong et al., 1993, Vincent et al., 1998). Estas alterações são observadas tanto em

tumores espontâneos como naqueles quimicamente induzidos, em uma grande

variedade de espécies (Bos, 1989).

1.2 . A espécie Colossoma macropomum (tambaqui)

O tambaqui é uma espécie de peixe pertencente à ordem Characiformes e

família Serrasalmidae (Mirande, 2010). No Norte do Brasil, é um dos peixes de água

doce mais importantes, sendo encontrado principalmente em rios, lagos e várzeas da

Amazônia (Almeida et al., 2006). Esta espécie é normalmente exposta a oscilações da

qualidade da água e disponibilidade de nutrientes (Val e Honczaryk, 1995).

São algumas características do tambaqui: (a) alta longevidade (até 15 anos); (b)

complexo comportamento migratório sazonal para fins reprodutivos e de alimentação;

(c) tolerância relativamente alta à hipóxia (Saint-Paul, 1984). O tambaqui também é

tolerante a mudanças de pH, mostrando ausência de distúrbios iônicos em uma faixa

de pH entre 4 e 8 (Costa, 1995, Val et al., 1998). As características do tambaqui podem

torná-lo um modelo adequado para ser usado como espécie indicadora em programas

de biomonitoramento (Salazar-Lugo et al., 2011). Seu uso como espécie modelo tem

sido demonstrado em diversos estudos descritos na literatura (Marcuschi et al., 2010;

Corrêa et al., 2007; Braz-Mota et al., 2015; Sadauskas-Henrique et al., 2016).

Diante da potencialidade no uso do tambaqui como modelo para estudos de

impacto ambiental na região Amazônica e das lacunas existentes sobre os efeitos dos

contaminantes BaP e Roundup® a seguir apresentamos os objetivos da presente tese

bem como os trabalhos resultantes para atingir os mesmos.

Page 26: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

10

2. OBJETIVOS

2.1. Objetivo Geral

Avaliar os efeitos genéticos, histológicos e fisiológicos dos estressores

ambientais benzo[a]pireno e Roundup® em espécimes de Colossoma macropomum.

2.2. Objetivos Específicos (por capítulo)

Capítulo I: Verificar a relação entre a expressão do oncogene ras e do Fator de

indução de hipóxia (hif-1) e a ocorrência de alterações histológicas em C.

macropomum submetidos à ação aguda do benzo[a]pireno.

Capítulo II: Verificar o efeito conjunto da exposição ao benzo[a]pireno no cenário

extremo (A2) proposto pelo Painel Intergovernamental sobre Mudanças Climáticas

(IPCC) para 2100 na expressão dos genes ras e Fator de indução de hipóxia (hif-1),

respostas histológicas e fisiológicas do fígado de Colossoma macropomum.

Capítulo III: Investigar os efeitos agudos do herbicida Roundup® na expressão do

oncogene ras e do Fator de Indução de hipóxia (hif-1), respostas histológicas e

fisiológicas em C. macropomum expostos a normoxia e hipóxia.

Page 27: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

11

3. MATERIAL E MÉTODOS

3.1. Aquisição dos espécimes de C. macropomum

Para a realização de todos os experimentos, espécimes de Colossoma

macropomum (tambaqui) foram adquiridos em pisciculturas próximas à cidade de

Manaus. Foi adquirido para a realização dos experimentos um total de três lotes (com

1mil espécimes) de peixes sendo o lote para os experimentos 1 e 3 da fazenda Santo

Antônio (02º44'802''S; 059º28'836''W), e o lote para o experimento 2 da Secretaria de

Estado da Produção Rural (Sepror) (Estação Experimental de Balbina - Balbina,

Presidente Figueiredo, AM*1°55'54.4"S; 59°24'39.1"W). Após a aquisição, os peixes

foram transportados ao Laboratório de Ecofisiologia e Evolução Molecular (LEEM)

situado no Instituto Nacional de Pesquisas da Amazônia, onde passaram por um

período de aclimatação de 30 dias.

Durante o período de aclimatação, os peixes foram mantidos em tanques com

circulação de água e aeração constante e alimentados três vezes ao dia com ração

comercial contendo 36% de proteína bruta. Os parâmetros físico-químicos da água

foram monitorados semanalmente.

Antes do início de cada experimento, a alimentação dos peixes foi suspensa por

um período de 24 h e os animais foram dispostos nos tanques experimentais, de

acordo com as características de cada experimento.

3.2 . Delineamento experimental

3.2.1 Experimento 1: Exposição aguda ao Benzo[a]pireno

Após o período de 30 dias de aclimatação, espécimes de tambaqui foram

colocados em tanques com capacidade para 70 litros de água, circulação fechada e

aeração constante. Quinze peixes (n=15) foram colocados em cada tanque, de acordo

com seus respectivos tratamentos. A escolha dos animais foi aleatória, e os mesmos

Page 28: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

12

foram pesados e medidos (24.76 g ± 5.45; 10.50 cm ± 0.64) antes de serem

distribuídos em cada tanque.

O período de aclimatação nos tanques experimentais foi de 7 dias. Durante esse

tempo a qualidade da água dos tanques foi monitorada e as trocas de água eram

realizadas em dias alternados. No período de aclimação os peixes foram alimentados

com ração comercial de 36% de proteína bruta, uma vez ao dia e até a saciedade

aparente.

A alimentação foi suspensa 24 h antes dos animais receberem as injeções

intraperitoneais de BaP. Previamente, os animais foram anestesiados em gelo e em

seguida os espécimes receberam as injeções intraperitoneais de acordo com seus

respectivos tratamentos. Os animais do grupo controle receberam somente injeção de

óleo de milho (0,01 ml/g) de acordo com o peso do animal. Nos demais tratamentos os

animais receberam injeção intraperitoneal de óleo de milho, mais contaminante nas

concentrações de 4mol/kg, 8mol/kg, 16mol/kg e 32mol/kg de BaP.

Decorridas 96 h após as injeções, os animais foram anestesiados em gelo e

amostras de sangue foram coletadas com o auxílio de seringas previamente

heparinizadas para a avaliação das quebras do DNA das células sanguíneas, as quais

foram quantificadas por meio do ensaio cometa. Em seguida, os animais foram

sacrificados por secção da espinha dorsal e amostras de fígado foram coletadas para a

avaliação histológica e quantificação da expressão gênica.

3.2.2 Experimento 2: Cenários Climáticos- Microcosmos

O Quarto Relatório do IPCC (IPCC, 2007) descreve cenários climáticos (A1, A2,

B1 e B2) para o ano de 2100 com variações na umidade do ar, concentração de CO2 e

temperatura. Os cenários delineados pelo relatório do IPCC foram elaborados com

base em métodos alternativos de desenvolvimento, dirigidos por forças demográficas,

econômicas, tecnológicas e que envolvem as emissões de gás verde (fontes de

emissão de CO2).

Os Microcosmos construídos no LEEM são salas climatizadas que obedecem as

características de diferentes cenários propostos pelo IPCC (2007). Uma das salas do

Page 29: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

13

Microcosmos, denominada cenário atual (ou cenário controle), simula as condições

climáticas do ambiente em tempo real. As salas são ligadas a um painel de controle

automatizado, que capta as informações do ambiente externo, equilibrando as

condições climáticas dentro do Microcosmos de acordo com as características atuais.

Uma segunda sala reflete o cenário extremo (A2) proposto pelo IPCC (2007) com um

aumento de 4,5 °C na temperatura do ar e um aumento de 850 ppm de CO2. A sala

que simula o cenário extremo tem seus parâmetros acompanhando a variação da sala

que simula o cenário atual. As salas também possuem o fotoperíodo controlado, com

12 h de luz e 12 h de escuridão.

Na área externa do Microcosmos existe um painel indicador em tempo real das

características das salas. Pelo painel é possível acompanhar a temperatura,

concentração de CO2 e umidade dentro de cada sala. Todos os parâmetros são

armazenados a cada 2 minutos em um computador.

3.2.3 Experimento 2: Experimento em Microcosmos

Antes dos espécimes serem transportados para os dois cenários do

microcosmos, os animais passaram por um período de aclimatação de 30 dias em uma

piscina com circulação aberta e aeração constante. Após este período os peixes foram

transferidos para tanques com capacidade de 70 litros de água, onde passaram por

uma segunda aclimatação de sete dias em tanques iguais aos que foram construídos

para a realização do experimento dentro do microcosmos.

Dentro de cada tanque de 70 litros, foi construído um sistema com tubos

perfurados de PVC (2,5 cm de diâmetro) dispostos no fundo do tanque e conectados a

três tubos sem perfurações, com média 35 cm de altura, os quais foram mantidos

suspensos até a superfície, como três torres. Dentro desses três tubos foram colocadas

mangueiras com pedras porosas para a aeração da água. Este sistema se mostrou

eficiente na dissipação do CO2 da atmosfera do microcosmo na água dos tanques. O

mesmo sistema já havia sido utilizado em outros trabalhos realizados por Oliveira

(2014) e Dragan (2014).

Page 30: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

14

Foi construído um sistema com nove tanques de aclimatação na área externa

do laboratório, em cada tanque foram colocados 10 peixes da espécie C. macropomum

(31.88 g ± 0.7; 10.03 cm ± 0.08). Os nove tanques foram organizados em três baterias

experimentais, sendo cada bateria constituída por três tratamentos diferentes. Os

tratamentos foram constituídos por um grupo controle, onde os peixes receberam

injeção intraperitoneal com óleo de milho de acordo com o peso (0.01 ml/g), mais dois

grupos experimentais onde os peixes receberam injeção intraperitoneal de óleo de

milho e contaminante nas concentrações de 8 mol/kg de BaP por quilo de peixe e 16

mol/kg de BaP por quilo de peixe, cada tratamento foi realizado em triplicata.

Após o período de sete dias de aclimatação externa, a alimentação foi

suspensa, os animais foram anestesiados em gelo e cada grupo experimental recebeu

injeções intraperitoneais de acordo com seus respectivos tratamentos. Decorridas 96 h

após a realização das injeções os animais foram transportados e divididos de forma

aleatória entre as duas salas do microcosmos (cenário atual e cenário extremo).

Em cada cenário do microcosmos foram construídos tanques iguais aos

tanques utilizados para o sistema de aclimatação externa. Nove tanques foram

montados dentro de cada cenário e os tratamentos foram mantidos em triplicata (grupo

controle: óleo de milho, tratamento 1 (8 mol/kg de B[a]P) e tratamento 2 (16 mol/kg

de BaP). Em cada tanque foram colocados 5 peixes, ou seja, o total de peixes para

cada tratamento por sala foi de 15 peixes distribuídos em três tanques. Os animais

permaneceram dentro dos cenários do microcosmos por um período de 30 dias.

Durante o período experimental, os peixes foram alimentados uma vez ao dia com

ração comercial contendo 36% de proteína bruta até a saciedade aparente. A

alimentação dos peixes foi realizada sempre no mesmo horário.

Após os 30 dias do período experimental dentro do microcosmos, os

espécimes de cada tanque foram coletados. Assim que um espécime era retirado do

tanque, uma amostra de sangue era coletada utilizando uma seringa previamente

heparinizada. As amostras de sangue foram coletadas para as análises hematológicas

e teste de genotoxicidade por meio do Ensaio Cometa.

Após a coleta do sangue os peixes foram anestesiados em gelo, medidos e

pesados. Em seguida os animais foram sacrificados por secção da espinha dorsal e

Page 31: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

15

amostras de fígado foram coletadas, alíquotadas e devidamente armazenadas para as

análises histopatológicas, genéticas e fisiológicas.

3.2.4 Variáveis ambientais dos cenários do Microcosmos

Durante o andamento do experimento a água de cada tanque foi trocada em

dias alternados em ambos os cenários. Os parâmetros da água foram monitorados três

vezes por semana em cada tanque experimental; foram monitorados o pH, a

temperatura, o oxigênio dissolvido e o CO2 dissolvido na água, sempre nos mesmos

horários.

Os valores de pH foram obtidos com auxílio de um pHmetro UltraBASIC UB-10

(Denver Instrument, EUA), as medidas de temperatura e de oxigênio dissolvido na

água foram realizadas com o auxílio de um oxímetro 5512-FT (YSI, EUA) e os níveis de

CO2 foram determinados por meio de ensaio colorimétrico segundo Juhasz e e Tucker

(1992) (Tabela 1 e Figura 1).

As variáveis como temperatura e níveis de CO2 dentro das salas também foram

monitoradas para manter as características dos cenários conforme proposto pelo IPCC

(2007). Todo o monitoramento foi realizado com uma central computacional que

registra e controla a entrada de CO2 e calor dentro das salas. Na sala controle (cenário

atual) um sensor instalado dentro da sala foi conectado a um segundo sensor

construído dentro da floresta do INPA para fazer o controle das condições dentro da

sala em tempo real. A captação das informações das variáveis ambientais foi realizada

a cada dois minutos emitindo os dados para o sistema eletrônico, que se encarrega de

liberar ou retirar a quantidade de gás carbônico e calor necessários para a manutenção

das características do cenário extremo (A2). Todos os valores captados e os valores de

cada sala corrigidos para manter as simulações são armazenados em um computador

exclusivo para esta finalidade (Figura 2).

Page 32: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

16

Tabela 1. Parâmetros físico químicos da água e do ambiente dos cenários atual e extremo do

microcosmos, onde os espécimes de tambaqui foram mantidos por 30 dias. Os dados estão

expressos em média e ± erro padrão da média.

Cenários Climáticos

Tratamentos [O2] na água

(mg.L-1

)

[CO2] na água (ppm)

Temperatura da água (°C)

pH ToC do

ambiente CO2 do

ambiente (ppm)

Atual

Controle

6.6 ± 0.06 7.1 ± 0.28 26.3 ± 0.20 6.7 ± 0.07

8mol/kg BaP

6.7 ± 0.07 6.8 ± 0.20 26.2 ± 0.21 6.9 ± 0.03 30.6 ± 0.39 510.1 ± 5.80

16mol/kg BaP

6.7 ± 0.06 6.8 ± 0.20 26.2 ± 0.20 6.9 ± 0.03

Extremo

Controle

6.3 ± 0.07 11.7 ± 0.31 28.4 ± 0.16 7.0 ± 0.02

8mol/kg BaP

6.3 ± 0.06 11.6 ± 0.30 28.5 ± 0.16 7.0 ± 0.03 34.1 ± 0.38 1349.2 ± 7.01

16mol/kg Bap

6.3 ± 0.07 11.5 ± 0.27 28.5 ± 0.16 7.0 ± 0.03

Page 33: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

17

Figura 1. Níveis de CO2 (A) e temperatura (B) da água dos tanques experimentais

expostos ao cenário atual e cenário extremo (A2) proposto pelo IPCC (2007). Os dados

estão expressos em média e ± desvio padrão

A

B

Page 34: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

18

Figura 2. Níveis de CO2 (A) e temperatura (B) do ambiente dentro do cenário atual e

cenário extremo (A2) proposto pelo IPCC (2007). Os dados estão expressos em média

e ± desvio padrão.

Page 35: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

19

3.2.5 Experimento 3: Determinação da pressão crítica de oxigênio (PO2 crit)

A PO2 crit é definida como pressão parcial de O2, abaixo da qual a taxa de

respiração do animal diminui à medida que a pressão de O2 diminui. A determinação da

pressão critica de oxigênio foi necessária para a realização do experimento com

Roundup® e hipóxia, pois com a obtenção a PO2 crit, foi determinada a concentração

de oxigênio utilizada para a condição de hipóxia para C. macropomum.

Para a determinação do PO2 crit, seis espécimes de tambaquis foram

colocados individualmente em aquários de vidro com capacidade para cinco litros de

água, circulação fechada e aeração constante. Os animais passaram por um período

de aclimatação de 24 h e a alimentação foi suspensa durante todo o experimento. A

qualidade da água foi monitorada durante todo o experimento.

Após a aclimatação, os peixes foram divididos em dois grupos experimentais;

o grupo controle (n=3) sem contaminante e o grupo experimental (n=3) com Roundup®,

na concentração nominal de 15 mg L-1, que corresponde a 75% da CL50 estabelecida

por Miyasaki et al. (2004) para C. macropomum expostos por 96 h. Os peixes foram

expostos às condições experimentais por 96 h e, em seguida, foram colocados em

câmaras individuais de respirometria para a determinação do PO2 crit.

Os peixes permanecem dentro das câmaras por um período de três horas

com a água circulando abertamente dentro de cada câmara. Após este período, a

circulação de água foi fechada e a concentração de oxigênio foi diminuindo dentro da

câmara devido à hipóxia e à respiração do peixe; como consequência a PO2 também

diminuiu. A quantidade de oxigênio dentro das câmaras foi mensurada por meio de

sensores localizados em seu interior; cabos de fibra óptica são conectados aos

sensores e aos oxímetros (OXY-4 ou Witrox 4 Loligo Systems) que captam as

informações que são armazenadas em um computador em tempo real.

O consumo de oxigênio dentro das câmaras foi calculado e a PO2 crit foi

determinada como sendo a PO2 onde a linha de regressão da taxa metabólica basal

cruza com a linha de início da supressão da taxa metabólica por regressão linear

segmentada usando o software SegReg program (www.waterlog.info) (De Boeck et al.,

Page 36: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

20

2013). Após o estabelecimento dos valores da PO2 crit, foi realizado o experimento

com Roundup® e hipóxia.

3.2.6 Experimento 3: Exposição aguda ao Roundup® e hipóxia

Para realização do experimento com Roundup® (RD), primeiramente 40

peixes (81.10 g ± 11.8; 15.11 cm ± 0.30) foram retirados dos tanques de manutenção

onde passaram por um período de aclimação de um mês (30 dias) após aquisição da

piscicultura. Antes da troca de tanques, a alimentação foi suspensa até o término do

experimento. Em seguida, os peixes foram colocados em tanques de vidro individuais

com capacidade para 5 litros de água, em um sistema fechado e aeração constante.

Os animais passaram por um período de aclimatação de 24 h nos tanques

experimentais, antes do início do experimento.

Após o período de aclimatação, os peixes foram divididos em quatro grupos

experimentais de 10 indivíduos (n=10). A toxicidade do RD (i.e. 360 g de glifosato L-1)

foi avaliada usando uma concentração sub-letal que corresponde a 75% da CL50

(concentração nominal: 15 mg L-1), em 96 h para C. macropomum, estabelecida por

Miyasaki et al. (2004). No primeiro tratamento, os animais foram mantidos em normóxia

sem contaminante. No segundo tratamento, os animais foram mantidos em normóxia

na presença do contaminante RD (concentração nominal: 15 mg L-1). No terceiro

tratamento, os animais foram expostos à hipóxia (6 h) sem RD. No quarto tratamento,

os peixes foram expostos à hipóxia (6 h) na presença do contaminante RD

(concentração nominal: 15 mg L-1). O experimento teve duração de 96h, sendo que

nos tratamentos com hipóxia, do total de horas experimentais, 6h foram em baixa

concentração de oxigênio.

Durante o experimento, os parâmetros da água (pH, oxigênio e temperatura)

foram mensurados. Diariamente, dois litros de água de cada tanque eram trocados, e

as concentrações de RD reestabelecidas.

Ao término do experimento, todos os peixes foram retirados individualmente

dos aquários e amostras de sangue foram coletadas com auxílio de seringas

heparinizadas para as análises hematológicas e genotóxicas (Ensaio Cometa). Em

Page 37: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

21

seguida, os peixes foram anestesiados em gelo, pesados, medidos e eutanasiados por

secção da espinha dorsal. Após a eutanásia, amostras de fígado foram coletadas para

as análises histológicas, genéticas e enzimáticas.

3.3. Procedimentos Analíticos

3.3.1 Análises hematológicas e plasmáticas

As amostras de sangue foram obtidas por punção da veia caudal, com o

auxílio de seringas heparinizadas. Os parâmetros hematológicos e plasmáticos

avaliados foram: níveis de hematócrito (Ht), hemoglobina (Hb), número de eritrócitos

circulantes (RBC), constantes corpusculares (hemoglobina corpuscular média (HCM),

volume corpuscular médio (VCM), concentração de hemoglobina corpuscular média

(CHCM) e glicose.

As técnicas utilizadas para as análises hematológicas estão descritas a

seguir:

a) Hematócrito (Ht): Para determinar o hematócrito, amostras de sangue

foram transferidas para tubos de microhematócrito e centrifugadas durante 10

minutos sendo a leitura do porcentual (%) de sedimentação feita com o auxílio de

uma escala padronizada (Navarro e Pachaly, 1994).

b) Concentração de hemoglobina (Hb): Os níveis de hemoglobina foram

mensurados utilizando-se 10µl de sangue diluído em dois ml do reagente Drabkin

segundo protocolo estabelecido por Kampen e Zijlstra (1964).

c) Contagem do número de eritrócitos (RBC): O número de eritrócito foi

estimado por meio da diluição de 10 µl de sangue em 2 ml da solução de formol

citrato. A contagem das células foi realizada em câmera de Neubauer, em

microscópio óptico aumentado em 40x (Navarro e Pachaly, 1994).

d) Determinação das constantes corpusculares: As constantes

corpusculares, volume corpuscular médio (VCM), hemoglobina corpuscular média

Page 38: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

22

(HCM), e a concentração de hemoglobina corpuscular média (CHCM) foram

determinadas a partir dos valores correspondentes ao número de eritrócitos

circulantes, ao hematócrito e à concentração de hemoglobina, de acordo com as

fórmulas estabelecidas por Brow (1976).

e) Níveis de glicose: Os níveis de glicose foram mensurados por meio do

método enzimático colorimétrico sem desproteinização (GOD-PAP), kit InVitro®.

Nesse método a glicose é determinada após a oxidação enzimática na presença de

glicose oxidada. O peróxido de hidrogênio formado reage sob a catálise da

peroxidase com o fenol e 4-aminofenazona originando a quinoneimina que é um

cromógeno vermelho violeta. A leitura foi realizada em espectrofotômetro no

comprimento de onda de 500 nm.

3.3.2 Ensaio Cometa

Para verificação dos danos no DNA das células sanguíneas das amostras de

sangue coletadas, seguiu-se o protocolo desenvolvido por de Singh et al. (1988),

adaptado por Silva et al. (2000).

Previamente, lâminas foram cobertas com uma solução de agarose (1.5% de

agarose normal em tampão fosfato) 12 h antes da realização do experimento. No

momento da coleta, 5 l de amostra de sangue de cada peixe foram misturados em

0.75% de agarose (low melting agarose), 5% (Gibco BRL) a 37 oC e imediatamente

dispostos sobre as lâminas pré cobertas com agarose. Uma lamínula de vidro foi

utilizada para espalhar e cobrir o sangue sobre a lâmina. Após a secagem da agarose

as lamínulas foram retiradas, e as lâminas foram dispostas em uma cubeta de vidro

contendo solução de lise (2,5 M NaCl, 100 mM EDTA, 10 mM Tis: pH 10-10.5; 1% de

Triton X- 100 e 10% de DMSO). As lâminas permaneceram em solução de lise por, no

mínimo, 48h até a realização da corrida eletroforética.

Para a realização da corrida eletroforética as lâminas foram dispostas em

uma cuba de eletroforese e incubadas por 20 minutos em tampão alcalino de hidróxido

de sódio e EDTA (300 mM NaOH e 1 mM EDTA, pH>13). Posteriormente, a corrida

Page 39: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

23

eletroforética em tampão alcalino foi realizada por um período de 20 minutos a 300 mA,

25 V a 4 oC para a formação da cauda do cometa dos eritrócitos.

Após a eletroforese, as lâminas foram lavadas três vezes em tampão Tris

(0.4 M Tris, pH 7.5) para neutralização do gel. Finalmente, as lâminas foram coradas

em uma solução de nitrato de prata (5% de carbonato de sódio, 0,1% de nitrato de

amônia, 0,1% de nitrato de prata, 0,25% de ácido tungstosilícico e 0,15% de

formaldeído). A análise das lâminas foi realizada com o auxílio de um microscópio de

luz (Leica DM2015) na objetiva de 40x de aumento. As células foram aleatoriamente

selecionadas durante a análise. Foram contadas 100 células por lâmina, sendo duas

lâminas para cada peixe.

Durante a contagem, foi utilizado o tamanho da cauda formada no eritrócito

devido ao grau de fragmentação do DNA para a classificação dos danos genéticos.

Foram utilizadas cinco classes (scores) de acordo com a caracterização do tamanho da

cauda do DNA e sua porcentagem em relação ao número total de células analisadas,

sendo o dano zero: <5%; 1: 5-20% - baixo índice de danos; o dano 2: 20-40% - índice

de danos intermediário; o dano 3: 40-75% - alto índice de danos, e dano 4: >75% -

danos extremos.

Para o cálculo do índice de danos genéticos (IDG) das células sanguíneas de

cada peixe, a soma de cada classe de dano foi multiplicada pelo valor de cada

respectiva classe de dano. Assim, a somatória do IDG pode variar de zero (100 x 0,

100 células sem danos) a 400 (100 x 4, 100 células com o máximo de danos)

(Kobayashi et al., 1995).

3.3.3 Análises histopatológicas

Amostras de fígado de todos os experimentos foram coletadas para a

avaliação histopatológica. Após a coleta, as mostras foram imediatamente fixadas em

fixador ALFAC (Etanol 80%, Formol 37% e Ácido acético) por um período de 15 h.

Depois do período de fixação, as amostras foram lavadas e mantidas em Etanol 70%

até a preparação do material histológico.

Page 40: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

24

Para o preparo histológico, as amostras passaram por uma bateria crescente

de desidratação em etanol e xilol, com posterior diafanização, impregnação e inclusão

do material em parafina ou paraplast, seguida da preparação dos cortes histológicos.

Os cortes histológicos foram realizados em micrótomo na espessura de 5

m. Foram preparadas de 2 a 3 lâminas histológicas para cada peixe. Os cortes

histológicos foram corados com Hematoxilina de Harris & Eosina (HE) para

visualização geral da estrutura do órgão e análise histopatológica (Michalani, 1980). As

análises foram realizadas em microscópio de luz.

Os danos no fígado foram mensurados semiquantitativamente por meio do

índice de alterações histológicas (IAH). O índice não leva em consideração a

frequência de ocorrência das alterações, mas sim o grau de severidade das lesões de

acordo com seu estágio (Estágio I, II ou III). No estágio I as alterações não são

consideradas muito severas, não afetando o funcionamento do órgão. No estágio II as

alterações são moderadas comprometendo o funcionamento do órgão, mas as

alterações ainda são lesões reparáveis e se mantidas em exposição crônica podem

levar a alterações graves. No estágio III as alterações são severas comprometendo o

funcionamento do órgão sendo irreparáveis.

Os danos de estágio I para fígado são: hipertrofia nuclear, hipertrofia celular,

vacuolização citoplasmática, infiltração leucocitária, dilatação dos sinusoides e

deformação do contorno celular. Os danos de estágio II para o fígado são obstrução

dos sinusoides, vacuolização nuclear, degeneração nuclear, degeneração

citoplasmática, núcleos picnóticos e rompimento celular. O dano de estágio III é a

necrose focal.

O cálculo do IAH é realizado com base na fórmula IAH: 100 x ƩI + 101 x ƩIƩII +

102x ƩIƩIII. Onde 10 é elevado a 0 vezes a somatória de quantas alterações de estágio

I foram encontradas, mais 10 elevado a 1 vez a somatória das alterações de estágio II

encontradas, mais 10 elevado a 2 vezes (ao quadrado) a somatória das alterações de

estágio III encontradas.

Page 41: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

25

O índice de alterações histológicas permite classificar o comprometimento do

órgão de acordo com o valor do cálculo, de maneira que um IAH de:

0 a 10 = funcionamento normal do órgão.

11 a 20 = danos leves a moderados no órgão.

21 a 50 = alterações moderadas a severas no órgão.

50 a 100 = alterações severas no órgão.

Maior que 100 danos irreparáveis no órgão.

Toda a metodologia descrita para o cálculo do IAH seguiu os protocolos estabelecidos

por Poleksic e Mitrovic-Tutundzic (1994) e Silva (2004).

3.3.4 Análises genéticas

Isolamento do RNA total

O isolamento do RNA das amostras de fígado coletadas em todos os

experimentos foi realizado utilizando protocolo Trizol®reagent (InvitrogenTM, Cat. No

15596-018) de acordo com as instruções do fabricante que segue três etapas

principais: na primeira foi realizada a lise celular, a dissolução das nucleoproteínas,

inativação das RNases e retirada dos debris celulares; na segunda etapa foi feita a

limpeza da solução, com a retirada dos solventes orgânicos e separação da fase

aquosa; e por último, a precipitação e ressuspensão do RNA total em água livre de

RNases. Após a extração, o DNA contaminante das amostras de RNA foi extraído com

DNase I (InvitrogenTM).

Avaliação quantitativa e qualitativa do RNA

A quantificação do RNA extraído, bem como a avaliação do grau de pureza de

cada amostra foram realizadas utilizando o espectrofotômetro NanoDrop®, modelo

2000 (Thermo Scientific), conforme orientações no manual do usuário (NanoDrop

Page 42: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

26

2000/2000c Spectrophotometer, V1.0 user manual, 2009). Por meio do

espectrofotômetro foi possível determinar a concentração de RNA total presente em

cada amostra, bem como possíveis contaminações por proteínas e fenol. As análises

foram realizadas com a leitura da absorbância da luz das amostras entre os

comprimentos de onda de 260 e 280 nm.

A integridade do RNA extraído de todas as amostras foi verificada por meio de

corrida eletroforética a 4 Voltz por centímetro (V/cm) em gel de agarose 1,0% em peso

por volume (p/v). A visualização do gel ocorreu por meio do sistema de

fotodocumentação digital L.PIX (Loccus Biotecnologia).

As amostras de RNA que não apresentaram contaminação por proteína e/ou

fenol, e que possuíam as bandas de RNA ribossomal bem visíveis após a corrida

eletroforética, foram validadas e armazenadas em freezer -80oC.

Síntese de cDNA

A síntese do cDNA (RNA de fita simples) das amostras de RNA validadas foi

realizada utilizando o Kit de síntese de cDNA RevertAid H Minus First Strand cDNA

Synthesis kit (Fermentas®), seguindo as instruções do fabricante. O Tratamento

enzimático com transcriptase reversa (MMLV Reverse Transcriptase) (200U/L, USB)

foi realizado, em seguida foram misturados em um microtubo de 1,5 mL

aproximadamente 25 μg de RNA, 1,0 μL de oligonucleotídeo dT(18) (1 μg), 1,0 μL de

dNTP mix (10 mM), tampão 5X MMLV e água deionizada (q.s.p.) para um volume final

de 50 mL. Em seguida, o tubo foi incubado a 37 °C por uma hora para a conversão e

70 °C por 10 minutos para inativação da enzima. A confirmação da síntese de cDNA foi

realizada por eletroforese em gel de agarose 1% (m/v).

Determinação das sequências dos genes ras e hif-1

Primeiramente foi feita a pesquisa das sequências gênicas para os genes alvo

(ras e hif-1) existentes para diferentes espécies de peixe no NCBI

(http://www.ncbi.nlm.nih.gov). Após a busca, sequências consenso para os genes alvo

Page 43: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

27

foram obtidas a partir de regiões preservadas das sequências do NCBI, utilizando o

software BioEdit Sequence Alignment Editor versão 7.0.5.3. A partir das sequências

consenso foram desenhados primers degenerados para os genes ras e hif-1com o

auxílio do programa Oligo Explorer 1.2 ™.

Os primers degenerados foram testados por meio de gradientes de temperaturas

em PCR (Reação em cadeia da Polimerase), utilizando o PCR master mix (Promega).

Os produtos da PCR obtidos foram sequenciados no sequenciador automático ABI

3130XL, utilizando o Kit ABI PRISM® Big DyeTM Terminator Cycle Sequencing Ready

Reaction (Applied Biosystems), para a obtenção das sequências gênicas específicas

dos genes ras e hif-1 para C. macropomum.

Confecção dos oligonucleotídeos específicos para RT-PCR dos genes ras e hif-1

As sequências para os genes ras e hif-1obtidas no sequenciamento foram

validadas utilizando o programa BLAST do NCBI. Após a validação, as sequências

foram alinhadas no programa ClustalW, disponível no Software BioEdit Sequence

Alignment Editor versão 7.0.5.3 e os oligonucleotídeos específicos de C. macropomum

para q-PCR para os genes ras e hif-1 desenhados através do Software Oligo Explorer

1.2 ™.

Além dos genes alvo (ras e hif-1) utilizados no presente trabalho, também

foram utilizados genes de referência 28S (Vasquez, 2009) e ef-1 (Brandão, 2015),

obtidos com a mesma técnica. As características do primers específicos obtidos para

C. macropomum estão descritos na Tabela 2.

Real Time RT-PCR (Transcrição Reversa seguida por Reação em Cadeia da

Polimerase em Tempo Real)

Amostras de cDNA dos fígados de C. macropomum foram utilizadas para a

quantificação dos genes transcritos por real-time PCR, utilizando o equipamento Viia7

Dx da Life Technologies (Applied Biosystems). As análises foram realizadas em placas

Page 44: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

28

de 96 poços, onde cada amostra foi lida em triplicata. As reações foram desenvolvidas

utilizando-se 1,0 μL de cDNA, 5,0 μL de SYBR® Green PCR Master Mix (Applied

Biosystems), 1,0 μL do primer forward, 1,0 μL do primer reverse e 2,0 μL de água livre

de nucleases 192 (Ambion, Life Technologies) com um volume final de 10 μL. As

condições da reação foram: um passo inicial de 95 °C por 10 minutos, seguidos por 40

ciclos de 95 °C por 15 segundos e 60 °C por 60 segundos. As reações foram realizadas

em triplicata para a detecção de possíveis erros.

A presença de um único produto específico na temperatura de “melting” foi

confirmada utilizando a curva de melting de cada primer conforme descrito na tabela 3.

A eficiência de cada primer foi calculada em uma curva de diluição seriada obtida a

partir de um pool de amostras de cDNA de C. macropomum (com concentração entre

1000 e 1 ng de cDNA; n=4). Todos os primers apresentaram eficiência de amplificação

para PCR satisfatória (entre 98 e 105%) (Tabela 2). A eficiência de amplificação de

cada primer foi calculada de acordo com Pfaffl (2001).

Quantificação relativa da expressão gênica

Para a detecção da diferença nos níveis de expressão dos genes ras e hif-1

entre as diferentes condições experimentais que os peixes foram submetidos nos

diferentes experimentos, foi utilizado o método de quantificação relativa (Pfaffl, 2001).

Este método é uma modificação do método Ct comparativo (∆Ct) baseado na

quantificação do gene de interesse em relação a genes constitutivos denominados

genes de referência e a eficiência na transcrição reversa. A razão de expressão relativa

é baseada na eficiência de amplificação e na variação do Ct do grupo controle ou

calibrador e os outros grupos de interesse em relação ao gene constitutivo denominado

gene de referência.

Page 45: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

29

Tabela 2. Características de cada primer específico obtido para a realização dos

experimentos. Primers para os genes endógenos (28S e ef-1) e primers para os

genes alvo (ras e hif-1).

Gene

Sequência do primer (5`-3`) forward/reverse

Comprimento (bp)

Tamanho do amplicon(bp)

Tm Ef(%)*

28S-F

CGGGTTCGTTTGCGTTAC

18 150 54.5 98.19

28S-R

AAAGGGTGTCGGGTTCAGAT

20 150 56.3 98.19

ef-1F

GTTGGTGAGTTTGAGGCTGG

20 78 60.7 99.09

ef-1R

CACTCCCAGGGTGAAAGC

18 78 60.9 99.09

Ras-F

CCAGTACATGAGGACAGGAG

20 134 60.3 99.31

Ras-R

CAAGCACCATTGGCACATCG

20 134 60.3 99.31

HIF-1F a

CTTCTGAGCTCTGATGAGGC

20 98 60.1 105.24

HIF-1R a

GAAAGCACCATCAGGAAGCC

20 98 61.2 105.24

HIF-1F b

ATCAGCTACCTGCGCATG 18 133 59.3 100.69

HIF-1R b

CTCCATCCTCAGAAAGCAC 19 133 57.3 100.69

*Eficiência do primer.

(a) Par 1 para o gene Hif-1utilizado no primeiro experimento.

(b) Par 2 para o gene Hif-1utilizado no segundo e terceiro experimento.

Page 46: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

30

3.3.5 Análises bioquímicas

Antes de todas as análises enzimáticas as amostras de fígado que estavam

mantidas em freezer -80 oC foram alíquotadas, pesadas e homogeneizadas em tampão

com pH 7,6 (20 mM de tris-base, 1 mM de EDTA, 1 mM de dithiothreitol, 500 mM de

Sucrose e150 mM de KCL) na proporção 1: 2 massa:volume para Lipoperoxidação

Lipídica (LPO), e 1:10 massa: volume para as enzimas Glutationa-S-Transferase (GST)

e Catalase (CAT).

Após a homogeneização as amostras foram centrifugadas de acordo com os

protocolos para cada enzima, sendo que para GST e CAT a centrifugação ocorreu a

9.000 rcf, por 30 min a 4 oC e para LPO 10.000 rpm, por 10 min a 4 oC. Os

sobrenadantes foram retirados e alíquotas para cada enzima foram separadas e

analisadas conforme os protocolos descritos a seguir.

Enzima de Biotransformação: Glutationa-S-Transferase

A atividade da GST no fígado foi determinada de acordo com o método descrito

por Keen et al. (1976), que utiliza o 1-cloro-2,4-dinitrobenzeno (CDNB) como substrato.

Mudanças na absorbância foram verificadas em espectrofotômetro a 340 nm e a

atividade da enzima foi expressa em nmol de CDNB conjugado. min-1. mg proteína-1

utilizando-se o coeficiente de extinção molar de 9,6 mM cm -1.

Enzima antioxidante: Catalase

A atividade da enzima catalase foi determinada pelo método estabelecido por

Beutler (1975), onde a taxa de inibição da decomposição do H2O2 foi medida na

absorbância de 240 nm em espectrofotômetro. A atividade da CAT foi expressa como

μmol H2O2. min-1 .mg proteína-1.

Page 47: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

31

Peroxidação Lipídica das membranas (LPO)

A determinação da peroxidação lipídica foi realizada pelo método conhecido

como ensaio FOX, estabelecido por Jiang et al. (1991). O ensaio FOX corresponde à

reação química de auto oxidação de lipídios (LH) que conduz a lipoperoxidação

(LOOH). O método está baseado na oxidação do Fe (II) por LOOH em pH ácido na

presença de um pigmento complexador de Fe (III), o xilenol laranja. A formação deste

complexo foi quantificada pelo aumento da absorção em 560 nm e expressa em μM

CHP (hidroperóxido de cumeno) por mg de proteína hepática.

Quantificação da proteína hepática

A proteína total de cada amostra de fígado foi mensurada de acordo com

Bradford (1976) por espectrometria, e albumina bovina (BSA) foi utilizada como padrão.

A leitura foi realizada em 595 nm.

3.4 Análise estatística

Capítulo I

Todos os dados estão apresentados como média e ± erro padrão da média

(SEM). A expressão gênica, histopatologia e o ensaio cometa foram analisados por

meio da análise de variância, ANOVA de um fator para determinar as diferenças entre

os diferentes tratamentos com benzo[a]pireno e o controle. Quando os dados violaram

as premissas do teste ANOVA de um fator (normalidade e variância), o teste não

paramétrico de Kruskal-Wallis foi aplicado. A significância estatística foi considerada

para valores de P< 0.05. A análise estatística foi realizada utilizando o programa Sigma

Stat 3.5.

Capítulo II

Os dados estão expressos como média e ± erro padrão da média. Previamente

a distribuição e a homogeneidade dos dados foram verificadas. Os danos

apresentaram distribuição normal e passaram no teste de variância, sendo aplicado o

teste estatístico ANOVA de dois fatores seguido do teste de Tukey para múltiplas

Page 48: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

32

comparações. Os fatores considerados foram os diferentes cenários dos microcosmos

(cenário atual e cenário extremo proposto pelo IPCC, 2007), e os diferentes

tratamentos (controle (óleo de milho), 8 e 16 mol/kg de BaP). A diferença estatística

foi considerada para valores de P< 0.05. As análises foram realizadas utilizando o

programa estatístico Sigma Stat 3.5. Outro teste estatístico realizado foi à análise dos

componentes principais (PCA) utilizando o programa Statistica.

Capitulo III

Os dados estão descritos como média ± erro padrão da média (SEM). Antes dos

testes comparativos a distribuição e homogeneidade dos dados foram verificadas.

Todos os dados foram analisados por meio to teste estatístico ANOVA de dois fatores,

seguido do teste Tukey tendo como fatores a concentração de oxigênio (normóxia e

hipóxia) e a contaminação da água ou não com Roundup®. A significância estatística

foi considerada para valores de P< 0.05. A análise estatística foi realizada utilizando o

programa Sigma Stat 3.5.

Page 49: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

33

4. Bibliografia

Abdel-Shafy, H.I. e Mansour, M.S.M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Petroleum Research Institute Egyptian Journal of Petroleum. Egyptian Journal of Petroleum, 25: 107-123. Almeida, L.C., Lundstedt, L.M., & Moraes,G. (2006). Digestive enzyme responses of tambaqui (Colossoma macropomum) fed on different levels of protein and lipid. Aquaculture Nutrition, 12(6): 443-450. Arey, J.,e Atkinson, R. (2003). Photochemical reactions of PAHs in the atmosphere. PAHs: An Ecotoxicological Perspective, 47-63. Barbacid, M. (1987). Ras genes. Annual review of biochemistry, 56(1): 779-827. Banni, M., Negri, A., Dagnino, A., Jebali, J., Ameur, S., Boussetta, F. (2010). Acute effects of benzo[a]pyrene on digestive glande nzymatic biomarkers and DNA damage on mussel Mytilus galloprovincialis. Ecotoxicology and Environmental Safety, 73: 842-848.

Baptista, R. B., Souza-Castro, N., & Almeida-Val, V. M. F. (2016). Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus). Fish Physiology and Biochemistry, 1-12.

Beutler, E. (1975). Red Cell Metabolism: A manual of biochemical methods. Grune & Straton, New York.

Bos, J.L. (1989). Ras oncogenes in human cancer: a review. Cancer Research, 49: 4682-4689.

Boyd, C.E. e Tucker, C.S. (1992). Water quality and pond soil analysis for aquaculture. Auburn: Auburn

University. 183p.

Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of

protein utilizing the protein-dye binding. Analytical Biochemistry, 72:248-254.

Brandão, R.M.L. Efeitos do hormônio do crescimento recombinante bovino (rbgh lactotropin

®) na

expressão do gene igf-i e parâmetros fisiológicos em juvenis de tambaqui (Colossoma macropomum)/ Rúbia Maielli Lima Brandão. Dissertação (mestrado) Newton Lins, Manaus, 2015. Orientador: Dra.Vera Maria Fonseca de Almeida e Val. Área de concentração: Aquicultura. Braz-Mota, S., Sadauskas-Henrique, H., Duarte, R. M., Val, A. L., & Almeida-Val, V. M. (2015). Roundup

®

exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere, 135: 53-60. Boutilier, R. G. (2001). Mechanisms of cell survival in hypoxia and hypothermia. Journal of Experimental Biology, 204(18): 3171-3181. Brow, B.A. (1976). Hematology: principles and procedures. 2ª ed. Philadelphia. Lea & Febiger.

Cao, Y.B., Chen, X.Q., Du, J Z., & Wang, Y.X. (2005). Molecular cloning of hypoxia-inducible factor 1 alpha from brain of scale-less carp (Gymnocypris przewalskii) in Lake Qinghai of China. Comparative Biochemichal and Physiology A, 140: 257-273.

Page 50: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

34

Cattaneo, R., Clasen, B., Loro, V.L., de Menezes, C.C., Pretto, A., Baldisserotto, B., & de Avila, L.A. (2011). Toxicological responses of Cyprinus carpio exposed to a commercial formulation containing glyphosate. Bulletin of Environmental Contamination and Toxicology, 87(6): 597-602.

Cavalcante, D.G.S.M., Martinez, C.B.R., & Sofia, S.H. (2008). Genotoxic effects of Roundup

® on the fish

Prochilodus lineatus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 655(1): 41-46. Çavaş, T., e Könen, S. (2007). Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis, 22(4): 263-268. Cheng, R., Bradford, S., Barnes, D., Williams, D., Hendricks, J., & Bailey, G. (1997). Cloning, sequencing, and embryonic expression of an N-ras proto-oncogene isolated from an enriched zebrafish (Danio rerio) cDNA library. Molecular Marine Biology and Biotechnology, 6(1): 40-47.

Comte, L., Buisson, L., Daufresne, M., & Grenouillet, G. (2013). Climate‐induced changes in the

distribution of freshwater fish: observed and predicted trends. Freshwater Biology, 58(4): 625-639. Corbera, M., Hidalgo, M., Salvado, V., & Wieczorek, P. P. (2005). Determination of glyphosate and aminomethylphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Analytica Chimica Acta, 540(1): 3-7. Corrêa, C.F., Aguiar, L.H., Lundstedt, L.M., Moraes, G. (2007). Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology, Part A, 147: 857-862. Costa, A., Coradini, D., Carrassi, A., Erdas, R., Sardella, A., & Daidone, M. G. (2001). Re: Levels of Hypoxia-Inducible Factor-1α During Breast Carcinogenesis. Journal of the National Cancer Institute, 93(15): 1175-1177. Costa, O.T.F. Efeito do pH da água sobre os parâmetros hematológicos, eletrólitos e equilíbrio ácido-base do sangue arterial de Colossoma macropomum (Characiformes, Serrasalmidae). Master Thesis, INPA: FUA, Manaus, 1995. Dalla Via, J., Thillart, G.V.D., Cattani, O., de Zwaan, A., (1994). Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver, and muscle. Marine Ecology Progress Series, 111: 17-27. Dauer, D.M. (1993). Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin, 26(5): 249-257. De Boeck, G.,C.M. Wood, F.I. Iftikar, V. Matey, G.R. Scott, K. A. Sloman, M.N. Paula-Silva, V.M.F. Almeida-Val & A.L. Val. (2013). Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus. Journal of Experimental Biology, 216: 4590–4600. Diaz, R.J. e Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 21: 926-929. Dragan, F.G. Respostas fisiológicas e metabólicas do tambaqui (Colossoma macropomum, Cuvier 1818) às alterações climáticas previstas pelos diferentes cenários do IPCC para o ano de 2100 / Fernanda Garcia Dragan. --- Manaus : [s.n], 2014. xiv, 82 p. Dissertação (Mestrado) INPA, Manaus, 2015.

Page 51: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

35

Orientador : Vera Maria Fonseca de Almeida e Val. Área de concentração: Biologia de Água Doce e Pesca Interior. Dunwoodie, S. L. (2009). The role of hypoxia in development of the Mammalian embryo. Developmental cell, 17(6): 755-773. Fong, A.T., Dashwood, R.H., Cheng, R., Mathews, C., Ford, B., Hendricks, J.D., Bailey, G.S. (1993). Carcinogenicity, metabolism and Ki-ras proto-oncogene activation by 7,12-dimethylbenz[a]anthracene in rainbow trout embryos. Carcinogenesis, 14(4): 629-635. Giesy, J.P., Dobson, S., & Solomon, K.R. (2000). Ecotoxicological risk assessment for Roundup

®

herbicide. In Reviews of Environmental Contamination and Toxicology (pp. 35-120). Springer New York. Gouveia, C., Liberato, M.L.R., DaCamara, C.C., Trigo, R.M., & Ramos, A. M. (2011). Modelling past and future wine production in the Portuguese Douro Valley. Climate Research, 48(2-3): 349-362. Grisolia, C. K. (2002). A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 518(2): 145-150. Guilherme, S., Gaivão, I., Santos, M.A., Pacheco, M. (2010) European eel (Anguilla anguilla) genotoxic and pro-oxidant responses following short-term exposure to Roundup

®: a glyphosate-based herbicide.

Mutagenesis, 25(5): 523-530. Hall, M. e Grover, P.L. (1990). Polycyclic aromatic hydrocarbons: metabolism, activation and tumour initiation, in: Cooper, C.S., Grover, P.L. (Eds.), Chemical Carcinogenesis and Mutagenesis, Springer, Heidelberg, Germany, pp. 327-372. Harris, A. L. (2002). Hypoxia-a key regulatory factor in tumour growth. Nature Reviews Cancer, 2(1): 38-47. Hochachka, P.W., e Somero, G.N. (2002). Biochemical Adaptation, Mechanism and Process in Physiological Evolution. Oxford University Press. USA, New York, 480pp. Inomata, Y., Kajino, M., Sato, K., Ohara, T., Kurokawa, J.I., Ueda, H., & Akimoto, H. (2012). Emission and atmospheric transport of particulate PAHs in Northeast Asia. Environmental science & technology, 46(9): 4941-4949. Intergovernmental Panel on Climate Change (IPCC). (2007). Summary for Policymakers. In: Solomon, S.;

Qin, D.; Manning, M., Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds). Climate Change 2007: The 117 Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, United States of America. p. 1-17. International Agency for Research on Cancer (IARC), (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, Monogr Eval Carcinog Risks Hum 92: 765-771. International Agency for Research on Cancer (IARC), (2012) .Chemical Agent sand Related Occupations: A Review of Human Carcinogens .IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 100F,111-138. Jensen, F.B., Nikinmaa, M., Weber, R.E., (1993). Environmental, perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In: Rankin, J.D., Jensen, F.B. (Eds.), Fish Ecophysiology. Chapman and Hall, London, pp. 161-179.

Page 52: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

36

Jiang, Z.Y., Woolland, A.C.S., Wolf, S.P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange-comparison with TBA assay and on iodometric method. Lipids, 26:777-860.

Jiraungkoorskul, W., Upatham, E. S., Kruatrachue, M., Sahaphong, S., Vichasri-Grams, S., & Pokethitiyook, P. (2002). Histopathological effects of Roundup, a glyphosate herbicide, on Nile tilapia (Oreochromis niloticus). Science Asia, 28: 121-127. Juhasz, A.L., e Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene. International Biodeterioration & Biodegradation, 45(1): 57-88. Kampen, E.J.; Zijlstra, W.G. 1964. Standartization of haemoglobinometry. In: Boroviczény, C. G. (Ed.) Erythrocytometric Methods and their standardization. Bibliotheca Haematologica, p.68-72.

Karami, A., Christianus, A., Ishak, Z., Shamsuddin, Z.H., Masoumian, M., & Courtenay, S.C. (2012). Use of intestinal Pseudomonas aeruginosa in fish to detect the environmental pollutant benzo [a] pyrene. Journal of Hazardous Materials, 215: 108-114.

Karol, I.L., Kiselev, A.A. and Frolkis, V.A. (2011). Indices of the Factors that Form Climate Changes of Different Scales. Atmospheric and Oceanic Physics, 47(4): 415–429.

Keen, J.H.,Habig, W.H., Jakoby, W.B. 1976. Mechanism for the several activities of the glutathione S-transferase. The Journal of Biological Chemistry, 251:6183-6188.

Kobayashi, S.C., Morikawa, Y., Hayashi, M., Sofuni, T. (1995). A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis assay MMS Community, 2 pp. 103-115. Kolpin, D.W., Thurman, E.M., Lee, E.A., Meyer, M.T., Furlong, E.T., Glassmeyer, S.T., (2006). Urban contributions of glyphosate and its degradate AMPA to streams in the United States. Science of the Total Environment, 354: 191-197. Law, S. H., Wu, R. S., Ng, P. K., Richard, M. K., & Kong, R. Y. (2006). Cloning and expression analysis of two distinct HIF-alpha isoforms–gcHIF-1alpha and gcHIF-4alpha–from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Molecular Biology, 7(1): 1. Lee, J. S., Park, E. H., & Choe, J. (1998). Nucleotide Sequence of Exon 2 to 4 of the R-ras Gene in the Hermaphroditic Fish Rivulus marmoratus. DNA Sequence, 8(4): 229-234. Lutz, P. L. and Nilsson, G. E. (1997). Contrasting strategies for anoxic brain survival – glycolysis up or down. Journal of Experimental Biology, 200: 411-419. Mangold, K., Chang, Y. J., Mathews, C., Marien, K., Hendricks, J., & Bailey, G. (1991). Expression of ras genes in rainbow trout liver. Molecular Carcinogenesis, 4(2): 97-102. Marchand, J., Tanguy, A., Charrier, G., Quiniou, L., Plee-Gauthier, E., & Laroche, J. (2006). Molecular identification and expression of differentially regulated genes of the European flounder, Platichthys flesus, submitted to pesticide exposure. Marine Biotechnology, 8(3): 275-294. Marcuschi, M., Espósito, T.S., Machado, M. F., Hirata, I.Y., Machado, M. F., Silva, M.V., ... & Bezerra, R. S. (2010). Purification, characterization and substrate specificity of a trypsin from the Amazonian fish

Page 53: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

37

tambaqui (Colossoma macropomum). Biochemical and Biophysical Research Communications, 396(3): 667-673. Martin, T.K. e Tsui, L.M. Chu. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52: 1189–1197. Maxwell, P.H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., ... & Ratcliffe, P. J. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proceedings of the National Academy of Sciences, 94(15): 8104-8109. McMahon, G., Huber, L. J., Stegeman, J. J., & Wogan, G. N. (1988). Identification of a c-Ki-ras oncogene in a neoplasm isolated from winter flounder. Marine Environmental Research, 24(1): 345-350.

Melstrom, L.G., Salabat, M. R., Ding, X.Z., Strouch, M.J., Grippo, P. J., Mirzoeva, S., ... & Bentrem, D. J. (2011). Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. Journal of Surgical Research, 167(2): 173-181.

Michalani, Y.J. (1980). Técnica histológica em Anatomia Patológica, com instruções para o cirurgião, enfermeira e citotécnico. São Paulo: EPU. 277.

Mirande, J.M. (2010). Phylogeny of the family Characidae (Teleostei: Characiformes): from characters to taxonomy. Neotropical Ichthyology, 8(3): 385-568. Miyazaki, D.M.Y., Machado Neto, J.G., Castagnolli, N., (2004). Toxicidade aguda de triclorfon, partion metílico e glifosato para alevinos de tambaqui (Colossoma macropormum) e tambacu (C. macropormum X Piaractus mesopotamicus). In: Anais Encontro Brasileiro de Patologistas de Organismos Aquáticos (ENBRAPOA), Laguna. Maringá: Biblioteca Setorial da UEM. 8, 203. Modesto, K.A. e Martinez, C.B.R. (2010). Roundup

® causes oxidative stress in liver and inhibits

acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere, 78: 294–299. Moore, M. J., Smolowitz, R., Stegeman, J. J. (1989). Cellular alterations preceding neoplasia in Pseudopleuronectes americanus from Boston Harbor. Marine Environmental Research, 28(1-4): 425-429. Navarro, C.E.K.G. e Pachaly, J.R. 1994. Manual de hematologia veterinária. São Paulo: Varela. p. 74-75.

Nemoto, N., Kodama, K., Tazawa, A., Prince Masahito, Ishikawa, T. (1986). Extensive sequence homology of the goldfish ras gene to mammalian ras genes. Differentiation, 32: 17-23. Oliveira Ribeiro, C.A., Padrós, J., Valdez Domingos, F.X. , Akaishi, F.M., Pelletier, É. (2007). Histopathological evidence of antagonistic effects of tributyltin on benzo[a]pyrene toxicity in the Arctic charr (Salvelinus alpinus). Science of the Total Environment, 372: 549-553. Oliveira, A. M. Influência da temperatura ambiental e dos cenários climáticos futuros sobre os ácidos graxos ω-3 e ω-6 e desempenho zootécnico do tambaqui (Colossoma macropomum)/Alzira Miranda de Oliveira. Manaus: AM, 2014. xi+127p. Tese (doutorado) INPA, Manaus, 2014.Orientador: Dr. Adalberto Luís Val Área de concentração: Biologia de Água Doce e Pesca Interior. Passam, F. H., Alexandrakis, M. G., Kafousi, M., Fotinou, M., Darivianaki, K., Tsirakis, G., ... & Siafakas, N. M. (2009). Histological expression of angiogenic factors: VEGF, PDGFRα, and HIF-1α in Hodgkin lymphoma. Pathology-Research and Practice, 205(1): 11-20. Perugini, M., Visciano, P., Giammarino, A., Manera, M., Di Nardo, W., Amorena, M., (2007). Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea, Italy. Chemosphere, 66: 1904-1910.

Page 54: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

38

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT PCR. Nucleic Acids Research, 29(9): 2003-2007.

Poleksic, V. e Mitrovic-Tutundžic V. (1994). Fish gills as a monitor of sublethal and chronic effects of pollution. IN: Müller, R.; Lloyd, R. Sublethal and chronic effects of pollutants on freshwater fish. Oxford: Fishing News Books. 30: 339-352.

Powell, W. H., & Hahn, M. E. (2002). Identification and functional characterization of hypoxia‐inducible

factor 2α from the estuarine teleost, Fundulus heteroclitus: Interaction of HIF‐2α with two ARNT2 splice

variants. Journal of Experimental Zoology, 294(1): 17-29. Pratilas, C. A. e Solit, D.B. (2010). Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clinical Cancer Research, 16(13): 3329-3334. Pryor, S.C., e Barthelmie, R.J. (2010). Climate change impacts on wind energy: a review. Renewable and Sustainable Energy Reviews, 14(1): 430-437.

Rahman, M.S. e Thomas, P. (2007). Molecular cloning, characterization and expression of two hypoxia inducible factor alpha subunits, HIF-1a and HIF-2a, in a hypoxia tolerant marine teleost, Atlantic croaker (Micropogonias undulates). Gene, 396: 273-282. Reuther, G.W. e Der, C.J. (2000). The Ras branch of small GTPases: Ras family members don’t fall far from the tree. Current Opinion in Cell Biology, 12(2): 157-165. Radovanović, M.M., Ducić, V., & Mukherjee, S. (2014). Climate changes instead of global warming. Thermal Science, 18(3): 1055-1061. Rotchell, M.J., Lee J., Chipman, J.K. a Ostrander GK (2001) Structure, expression and activation of fish ras genes. Aquatic Toxicololy, 55:1-21.

Roy, N. K., Stabile, J., Seeb, J. E., Habicht, C., & Wirgin, I. (1999). High frequency of K‐ras mutations in

pink salmon embryos experimentally exposed to Exxon valdez oil. Environmental Toxicology and Chemistry, 18(7): 1521-1528. Rytkönen, K.T., Vuori, K. A., Primmer, C.R., & Nikinmaa, M. (2007). Comparison of hypoxia-inducible factor-1 alpha in hypoxia-sensitive and hypoxia-tolerant fish species. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2(2): 177-186. Sadauskas-Henrique, H., Duarte, R.M., Gagnon, M.M., & Almeida-Val, V.M.F. (2017). Validation of a suite of biomarkers of fish health in the tropical bioindicator species, tambaqui (Colossoma macropomum). Ecological Indicators, 73: 443-451. Saint-Paul, U. (1984). Physiological adaptation to hypoxia of a neotropical characoid fish Colossoma macropomum, Serrasalmidae. Environmental Biology of Fishes, 11(1): 53-62. Salazar-Lugo, R., Mata, C., Oliveros, A., Rojas, L.M., Lemus, M., Rojas-Villarroel, E. (2011). Histopathological changes in gill, liver and kidney of neotropical fish Colossoma macropomum exposed to paraquat at different temperatures. Environment Toxicology Pharmacology, 3: 490-495. Sancho, E., Cerón, J.J., Ferrando, M.D. (2000). Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicology Environment Saffety, 46: 81-86.

Page 55: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

39

Schofield, C. J., e Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology, 5(5): 343-354. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3(10): 721-732. Semenza, G.L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology, 15(1): 551-578. Silva, A.G. (2004). Alterações histopatológicas de peixes como biomarcadores da contaminação aquática. Dissertação de Mestrado. Universidade Estadual de Londrina, Paraná.

Silva, J., Freitas, T.R.O., Marinho, J.R., Speit, G., Erdtmann, B. (2000). An alkaline single-cell gel electrophoresis (comet) assay for environmental biomonitoring with native rodents. Genetic and Molecula Biology, 23(1): 241-245.

Singh, N.P.; Mccoy, M.T., Tice, R.R. & Schneider, E.L.. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175:184-191.

Sogawa, K. e Fujii-Kuriyama, Y. (1997). Ah receptor, a novel ligand-activated transcription factor. Journal of Biochemistry, 122(6): 1075-1079. Soitamo, A.J., Råbergh, C.M., Gassmann, M., Sistonen, L., & Nikinmaa, M. (2001). Characterization of a Hypoxia-inducible Factor (HIF-1α) from Rainbow Trout accumulation of protein occurs at normal venous oxygen tension. Journal of Biological Chemistry, 276(23): 19699-19705. Soñanez-Organis, J.G., Rodriguez-Armenta, M., Leal-Rubio, B., Peregrino-Uriarte, A.B., Gómez-Jiménez, S., & Yepiz-Plascencia, G. (2012). Alternative splicing generates two lactate dehydrogenase subunits differentially expressed during hypoxia via HIF-1 in the shrimp Litopenaeus vannamei. Biochimie, 94(5): 1250-1260. Terova, G., Rimoldi, S., Cora, S., Bernardini, G., Gornati, R., Saroglia, M. (2008). Acute and chronic hypoxia affects HIF-1a mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture, 279: 150-159. Tishkov, A. A. (2012). Biogeographical consequences of natural and anthropogenic climate changes. Biology Bulletin Reviews, 2(2), 132-140. Treinin, M., Shliar, J., Jiang, H., Powell-Coffman, J. A., Bromberg, Z., & Horowitz, M. (2003). HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiological Genomics, 14(1): 17-24. Thompson, E. D., Burwinkel, K. E., Chava, A. K., Notch, E. G., & Mayer, G. D. (2010). Activity of Phase I and Phase II enzymes of the benzo [a] pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 152(3): 371-378. Tudoran, M.A. e Putz, M.V. 2012. Chem Bull ‘‘Politehnica” Univ (Timisoara) 57 (71): 1 Val, A.L., Gomes, K.R.M., & de Almeida-Val, V.M.F. (2015). Rapid regulation of blood parameters under acute hypoxia in the Amazonian fish Prochilodus nigricans. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 184: 125-131. Val, A.L. e Honczaryk, A. (1995). Criando peixes na Amazônia. Manaus: INPA (Editor), Manaus, Brasil. p.160. Val, A.L. and Almeida-Val, V.M.F. (1995). Fishes of the Amazon and their environment: physiological and biochemical features. Heidelberg: Springer-Verlag. 244pp.

Page 56: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

40

Val, A.L., Wood, C.M., Wilson, R.W., Gonzalez, R.J., Patrick, M.L., Bergman, H.L., & Narahara, A. (1998). Responses of an Amazonian teleost, the tambaqui (Colossoma macropomum), to low pH in extremely soft water. Physiological and Biochemical Zoology, 71(6): 658-670. Val, A.L., (1995). Oxygen transfer in fish: morphological and molecular adjustments. Brazilian Journal of Medical and Biological Research, 28: 1119-1127. Varanasi, U., Stein, J.E., Nishimoto, M., 1989. Biotransformation and disposition of polycyclic aromatic hydrocarbons (PAH) in fish, in: Varanasi, U. (Ed.), Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment, CRC, Boca Raton, FL, pp. 94-149. Vásquez, K.L. Ontogenia das enzimas digestivas do tambaqui, Colossoma macropomum (CUVIER, 1818): subsídios para a aquicultura/Katherine López Vásquez. Manaus: AM, 2009. Tese (doutorado), Manaus, 2009.Orientador: Dr. Adalberto Luís Val Área de concentração: Biotecnologia. Vincent, F., Boer, J., Pfohl-Leszkowicz, A., Cherrel, Y., Galgani, F., (1998). Two cases of ras mutation are associated with liver hyperplasia in Callionymus lyra exposed to polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Molecular Carcinogenesis, 21: 121–127. Virani, N.A., Rees, B.B. (2000). Oxygen consumption, blood lactate and inter- individual variation in the gulf killifish, Fundulus grandis, during hypoxia and recovery. Comparative Biochemical and Physiology A, 126: 397-405. Wang, C.D., Zhang, F.S. (1995). Effect of enviromental oxygen deficiency on embryos and larvae of bay scallop Argopecten irradians. Chinise Journal of Oceanolgy and Limnology, 13: 362-369. Wang, G.L., Jiang, B.H., Rue, E.A., Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Science, 92: 5510-5514. Wang, G.L., Semenza, G. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. Journal of Biological Chemistry, 268: 21513-21518. Weisberg, S. B., Thompson, B., Ranasinghe, J. A., Montagne, D. E., Cadien, D. B., Dauer, D. M., …& Word, J. Q. (2008). The level of agreement among experts applying best professional judgment to assess the condition of benthic infaunal communities. Ecological Indicators, 8(4): 389-394. Wenger, R.H., Kvietikova, I., Rolfs, A., Gassmann, M., Marti, H.H. (1997). Hypoxia inducible factor-1 alpha is regulated at the post-mRNA level. Kidney International, 51: 560-563. WHO – International Programme on Chemical Safety Glyphosate, 1994. Environmental Health Criteria 159 – Glyphosate. Williams, G.M., Kroes, R., Munro, I.C. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology, 31: 11-165. Zhong, H., De Marzo, A.M., Laughner, E., et al. (1999). Over expression of hypoxia-inducible factor 1a in common human cancers and their metastasis. Cancer Research. 59: 5830-5835.

Page 57: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

41

Capítulo I

Ras oncogene and Hypoxia-inducible factor-1 alpha (hif-1α) expression in Amazon fish

Colossoma macropomum (Cuvier, 1818) exposed to benzo[a]pyrene.

Artigo aceito pela revista Genetics and Molecular Biology

Page 58: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

42

Title

Ras oncogene and Hypoxia-inducible factor-1 alpha (hif-1α) expression in Amazon fish

Colossoma macropomum Cuvier, 1818 exposed to benzo[a]pyrene.

Running title

Ras hif-1α gene expression in fish

Author names and affiliations

Grazyelle Sebrenski da Silva1,2, Luciana Mara Lopes Fé1, Maria de Nazaré Paula da

Silva1, Vera Maria Fonseca de Almeida e Val1

1Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National

Institute for Research in the Amazon (INPA). 69067-375 André Araújo Avenue, 2936,

Petrópolis. Manaus, AM, Brazil.

2Institute of Biological Science (ICB) in Amazon Federal University (UFAM), General

Rodrigo Octávio Ave, 6200, Coroado I. AM, Brazil

E-mail address:; L.M.L. Fé ([email protected]); M.N.P. da Silva

([email protected]); V.M.F. de Almeida e Val ([email protected]).

Corresponding author: G.S. Sebrenski

Phone number: +55 92 3643 3188

E-mail address: [email protected]

Postal address: André Araújo Avenue, 2936, Petrópolis, 69067-375. Manaus, AM,

Brazil

Page 59: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

43

Abstract

Benzo[a]pyrene (B[a]P) is a petroleum derivate, who is capable to induce cancer

in human and animals. In this work, under laboratory conditions, we analyzed the

responses of Colossoma macropomum to benzo[a]pyrene acute exposure through

intraperitoneal injection of corn oil (control group) and four different B[a]P

concentrations (4 mol/kg, 8 mol/kg, 16 mol/kg and 32mol/kg). We aimed to

describe the changes in expression of ras oncogene and Hypoxia-inducible factor-1

alpha (hif-1α) gene. We assessed ras and hif-1α gene expression trough quantitative

real-time PCR (RT-PCR). Additionally, we obtained the liver histopathological changes

and genotoxic effects through Comet Assay. Ras gene was overexpressed in fish

exposed to 4 mol/kg, 8 mol/kg of 16 mol/kg of B[a]P, showing 4.96-fold, 7.10-fold

and 6.78-fold increases, respectively. Also, overexpression occurred in hif-1α in fish

injected with 4 mol/kg and 8mol/kg of B[a]P showing 8.82-fold, 4.64-fold increase,

respectively. Histopathological damage on the fish liver were classified as irreparable in

fish exposed to 8mol/kg, 16mol/kg and 32mol/kg μM of B[a]P. The genotoxic

damage increased in fish injected with 8mol/kg and 16mol/kg in comparison with the

control group. In acute exposure, B[a]P was capable to disrupt the expression of ras

oncogene and hif-1α, increase the DNA breaks and tissue damage.

Key words: Ras oncogene, hif-1, Colossoma macropomum, benzo[a]pyrene (B[a]P).

Page 60: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

44

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) belong to a class of petroleum derivates

with high carcinogenic, mutagenic, and genotoxic potential (Buhler and Williams, 1989,

Vienneau et al., 1995, Tsukatani et al., 2003). PAHs are considered relevant threats to

aquatic environments and are common contaminants in industrialized areas, mainly

affecting inland and coastal water bodies, where organically enriched sediments or

suspended particles may occur (Harris et al., 1985, Meador et al., 1995). PAHs

contaminants can arise from natural sources, such as oil seeps, volcanoes, and forest

fires, or from anthropogenic sources as burning fuel, power generation, and oil spill

(Latimer and Zheng, 2003).

Benzo[a]pyrene (B[a]P) is the most dangerous PAH, classified as Group 1

substance by the International Agency for Research on Cancer (IARC) (IARC, 2012).

BaP is an immunosuppressive and pro-inflammatory agent, known as one of the most

potent carcinogen (Pryor et al., 1993, Jaakkola et al., 1997). To accomplish its

carcinogenic action, B[a]P breaks into reactive intermediates that covalently bind to

DNA and cause a guanine (G)-thymine (T) transversion (Conney et al., 1994).

The effects of benzo[a]pyrene contamination have been studied in different groups

of organisms such as fish (Padrós et al., 2003), snail (Sánches-Arguello et al., 2012),

and mouse (Gao et al., 2008). Fish absorb PAHs from water via their body surface or

gills, and also ingesting contaminated food or sediment (Varanasi et al., 1989). In fish,

exposure to PAHs results in the induction of enzymatic systems involved in the

metabolism of xenobiotic compounds to detoxify the organism (Buhler and

Williams1989). Additionally, histological alterations in the liver of fish exposed to B[a]P

occurred too. Oliveira-Ribeiro and co-workers (2007) described degenerative lesions,

nuclear pleomorphism, pre-neoplastic proliferative conditions and necrosis as typical

lesions in the fish liver. Due to strikingly similar histopathological features between fish

and human tumors, fish have been used as models in cancer research (Lam et al.,

2006).

Page 61: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

45

Recently, gene expression profiling has attracted researchers as a mean of

comparing the molecular features of tumors among different vertebrate species

(Grabher and Thomas, 2006). For instance, rainbow trout (Oncorhynchus mykiss) has

many advantages as study model to access human carcinogenesis. These

characteristics include the effects of polycyclic aromatic hydrocarbons (PAHs) (Bailay et

al., 1987, Bailay et al., 1996) and the responses of some genes as ras oncogenes

(Rotchell et al., 2001).

Ras genes encode proteins that play a central role in cell growth signaling

cascades. To date, several ras genes are characterized in fish, and have a high degree

of similarity with mammals nucleotide and deduced amino acid sequences. In fact,

some species of fish have been used as models to understand ras genes behavior and

their homology with human genes (Rotchell et al., 2001). Goldfish (Carassius auratus)

was the first fish to have its ras gene studied (Nemoto et al., 1986). After the goldfish,

other fish species were investigated such as rainbow trout (Mangold et al., 1991),

zebrafish (Danio rerio) (Cheng et al., 1997), and medaka (Oryzias latipes) (Rotchell et

al., 2001).

Another gene related to cancer development is the Hypoxia-inducible factor-1

alpha (hif-1α), which produces the protein (HIF-1) that is the major regulator of oxygen-

dependent gene expression (Maxwell et al., 1997, Rytkönen et al., 2008, Fraga et al.,

2009, Maxwell, 2005). The levels of hif-1α expression are associated with tumor

genesis and angiogenesis (Zhong et al., 1999). Although hif-1α has been mostly

associated with hypoxic responses in fish, tumor cells hypoxia is also a well-studied

system (Geng et al., 2014). Tumor investigation is now seen as an integral part of the

basic biological approach to elucidate the common mechanisms of cancer at different

phylogenetic levels (Van Beneden et al., 1990).

In Brazil, one of the largest freshwater fish species is the tambaqui (Colossoma

macropomum). This species belongs to the Serrasalmidae family and is endemic to the

Amazon basin. It is found mainly in rivers, and in floodplain lakes (Várzea Lakes)

(Marcuschi et al., 2010). In Amazon Basin, tambaqui is one of the most important

Page 62: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

46

commercial fish (Val and Honczaryk, 1995); it presents many characteristics that make

it an appropriate bioindicator species in biomonitoring programs (Salasar-Lugo et al.,

2011).

Herein, we report the acute effects of B[a]P injections in tambaqui on ras oncogene

expression as well as on hif-1α gene expression. We used fish liver to investigate gene

expression and tissue histopathology damages, and peripheral blood to investigate the

genotoxic effects of B[a]P throughout the DNA damages.

2. Material an Methods

2.1 Animals

Juveniles of C. macropomum (24.76 g ± 5.45; 10.50 cm ± 0.64) were purchased

from a local fish farm nearby Manaus city (Santo Antônio Farm: 02º44'802''S;

059º28'836''W), Amazon State (Brazil). Fish were transported to the Laboratory of

Ecophysiology and Molecular Evolution at the Brazilian National Institute for Amazon

Research (LEEM - INPA). Fish were held indoors in fish tanks supplied with

recirculating aerated INPA’s groundwater ([Na+], 0.83; [K+], 0.45; [Ca2+], 0.10; [Mg2+],

0.040; [Cl-], 0.90 mgl-1; [Cu2+], 7.0 g l-1; hardness=1.33 mg CaCO3 l-1; pH= 6.80); and

fed once a day with commercial feed containing 36% protein. Fish were monitored daily

during the acclimation period (7 days).

2.2 Experimental Design

After the first acclimation period, 15 animals were transferred to each of the six

plastic tanks (70 L capacity) containing water with constant aeration. Fish were, then,

allowed to acclimate in these tanks for, at least, seven days before beginning the tests.

Physicochemical parameters were measured over the course of the experiment using a

digital oxygen meter YSI (Yellow Springs Instruments) model 55/12-155 for temperature

(26.05 oC ±0.23) and dissolved oxygen (7.45 mg/l ± 0.21). A digital pH-meter

UltraBASIC UB-10 (Denver 156 Instrument) was used to measure the pH (5.75 ± 0.16).

Page 63: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

47

After one-week acclimation, feeding was suspended, and fish starved 24 h

before starting the acute experiment (96 h). Before the acclimation period, each fish

was weighed and measured, to calculate the amount of pollutant intraperitoneally

injected. Each fish received the volume of injection, in accordance with the weight.

Independent of the treatment, the volume of the vehicle (corn oil) injected was the same

in the fish with de same weight (0,01 ml/g). We followed the recommended protocols

described at the Brazilian Guides of Animal Care and Use, and as required by the

Ethics Committee on Animal Use of the National Institute for Research in the Amazon

(CEUA – INPA) (Protocol Number 011/2013). We used five treatments for the whole

experiment: (1) control group, where fish was injected with corn oil; and other four

treatments, where fish was injected with the solution containing corn oil as vehicle and

four concentrations of B[a]P as follows: (2) 4mol/kg B[a]P, (3) 8mol/kg B[a]P, (4)

16mol/kg B[a]P, and (5) 32mol/kg B[a]P. Before receiving the injection, animals

were anesthetized on ice, and after recover, fish were kept in the tanks for 96 h after the

injection. After this period, blood was sampled with a heparinized syringe from the

caudal vein, and then each fish was euthanized through cerebral concussion followed

by severing the anterior spinal cord. After death, the fish liver was dissected, and one

portion was snap-frozen in liquid nitrogen and stored at −80 °C. The other liver part was

fixed in Alfac solution as described below, for histopathology analysis through light

microscopy.

2.3 Histopathology analysis of liver

To prepare the samples for analyzes at light microscopy, six liver samples from

each treatment were immediately fixed in Alfac solution (70% ethanol, 5% glacial acetic

acid, and 4% formaldehyde) for 15 h, dehydrated in a graded series of ethanol, and

embedded in Paraplast Plus® (Sigma). Sections of 5 μm were obtained, stained with

Hematoxylin/Eosin and observed under the bright field microscope. Samples were

analyzed at 40x in the optical microscope.

Histopathological alterations index (HAI) were semi-quantitatively evaluated

using the method described by Poleksic and Mitrovic-Tutundsic (1994). Indexes based

Page 64: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

48

on the severity of lesions were used to asses liver tissue changes: I = ∑ I + 10 ∑ II +

100 ∑ III, where stages I, II, and III correspond to the degree of the lesion, respectively.

The final Index was described as follows: the normal function of the organ (I = 0-10),

the mild to moderate damage (I = 11-20), the moderate to the severe (I = 21-50), severe

(I = 51-100), and irreparable damage (I >100).

2.4 Comet assay in blood cells

We quantified the DNA damage in blood cells using the comet assay as

described by Singh et al. (1988), and modified by Silva et al., (2000). Two comet

microscope slides for ten fish from each treatment were prepared with standard melting

agarose (1.5% normal melting agarose prepared in phosphate-buffer saline (PBS)) and

dried overnight. Five microliters of whole fish blood were mixed with 0.75% low melting

point agarose at 5% ratio (Gibco BRL) at 37 ºC and immediately poured on pre-covered

slides. Each slide was covered with a coverslip until the agarose solidified. After the

agarose gel has solidified the coverslip was gently removed, and the slides were placed

in a lyses solution consisting of high salts and detergents (2.5 M NaCl, 100 mM EDTA,

10 mM Tris, pH 10-10.5; 1% Triton X-100 and 10% DMSO). Before electrophoresis, the

slides were incubated for 20 min in alkaline electrophoresis buffer (300 mM NaOH and

1 mM EDTA, pH >13) to produce single stranded DNA. After alkali unwinding, the

single-stranded DNA was electrophoresed in the gels in a dark place under alkaline

conditions for 20 min at 300 mA and 25 V at 4 °C to produce the comets. After

electrophoresis, we rinsed the slides with a suitable buffer (0.4 M Tris buffer, pH 7.5) to

neutralize the alkalis in the gels. Finally, the DNA staining was revealed with silver

solution (5% sodium carbonate, 0.1% ammonia nitrate, 0.1% silver nitrate 0.25%

tungstosilicic acid and 0.15% formaldehyde). Slides were examined using an optical

microscope (Leica DM2015) at 400X of magnification. Randomly selected cells (100

cells from each of two replicate slides) were analyzed for each animal. We used the tail

sizes to score the comet assay into five classes (from undamaged (zero) to maximally

damage (four)). An overall score was obtained by summation of all cell scores from

Page 65: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

49

completely undamaged (sum zero) to maximum damage (sum 400) according to

Kobayashi et al. (1995).

2.5 Isolation of total RNA and cDNA synthesis

Isolation of total RNA from four tambaqui liver of each treatment followed the

TRIzol® reagent protocol (InvitrogenTM, Cat. No 15596-018) according to the

manufacturer’s instructions. Contaminating genomic DNA was removed using DNase I

(Invitrogen™).

First strand cDNA was reverse-transcribed from the total RNA using RevertAid H

Minus First Strand cDNA Synthesis kit (Fermentas®), and following the manufacturer's

instructions. Enzymatic treatment with reverse transcriptase (MMLV Reverse

Transcriptase) (200 U/μL, USB) was first done and, then, mixed in a 1.5 mL microtube

with approximately 25 μg RNA, 1,0 μL oligonucleotide dT(18) (1 μg), 1,0 μL dNTP mix

(10 mM), buffer 5X MMLV, and deionized for a 50 mL final volume. This solution was

incubated at 37 °C for 1 hour for conversion and 70 °C for 10 minutes to inactivate the

enzyme.

2.6 Determination of ras and hif-1sequences

Degenerate primers were designed based on the conserved regions of 28S, ef-

1α hif-1α and ras genes described in NCBI for other fish species

(http://www.ncbi.nlm.nih.gov). We used these primers to obtain partial fragments of

tambaqui hif-1α and ras cDNAs. The PCR (Polymerase Chain Reaction) was performed

using PCR master mix (Promega). All PCR products were sequenced with Kit ABI

PRISM® Big DyeTM Terminator Cycle Sequencing Ready Reaction (Applied

Biosystems) and run on an ABI 3130XL automatic DNA sequencer (Applied

Biosystems). The acquired sequences were analyzed using the BLAST program from

NCBI and then used to generate the specific primers for Colossoma macropomum q-

PCR, ras, hif-1α (target primers), 28S, and ef-1α (reference primers) showed in Table1.

Page 66: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

50

2.6 Quantitative real-time PCR

We used the equipment Viia7 Dx from Life Technologies (Applied Biosystems) to

quantify the gene transcripts by real-time PCR. We analysed samples of four C.

macropomum liver from each treatment. We added 1.0 μL of cDNA as template, in

triplicate, to the wells of a 96-well thin-wall PCR plate. Additionally, we added to each

well 1.0 μL of each primer (concentration of ras, 2.0 pmol; hif-1α, 2.0 pmol, 28S, 2.5

pmol and ef-1α, 1.5 pmol), 2.0 μL of nuclease-free water 192 (Ambion, Life

Technologies) and 5 μL SYBR Green PCR Master Mix (Applied Biosystems) in a total

volume of 10 μL. The PCR plate was heated for 2 min at 50 °C, plus 95 °C for 10 min;

followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min (annealing temperature of all

primers). The presence of a single product-specific melting temperature was confirmed

using melting curve analysis, as follows: 28S (slope -3.36/ R2 0.99), ef-1α (slope -.3.34/

R2 0.99), ras (slope -3.33/ R2 0.97) and hif-1α (slope -3.20/ R2 0.99). In addition, PCR

amplification efficiency for each primer set was calculated by serial dilution curve

obtained from a pool of experimental samples (1000 to 1 ng cDNA concentration; n=4).

All primer pairs showed high PCR efficiency (between 98-105%). The efficiency of

primer amplification was calculated. Serial dilutions of a cDNA standard were amplified

in each run to determine amplification efficiency according to Pfaffl (2001).

2.7 Statistic analysis

All data is presented as mean ± S.E.M. (Standard Errors of Means); gene

expression, histopathology and Comet Assay were analyzed by one-way analysis of

variance (ANOVA) to determine the differences between the treatments and control

group. When the data violated the premises of one-way ANOVA test, Kruskal-Wallis

One Way Analysis of Variance on Ranks test was applied. Statistical significance was

accepted at the level of P< 0.05. Statistic analysis was performed using the statistical

program Sigma Stat 3.5.

Page 67: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

51

3. Results

The liver of C. macropomum has similar morphological structure presented by

other fish species, as observed in liver slides of fish from the group control. This group

exhibited mild to moderate damage as the classification in histopathological analyses

recommends (Figure 1A) (Poleksic and Mitrovic-Tutundsic, 1994). A healthy liver

presents polygonal hepatocytes with very prominent central nuclei. Hepatocytes are

arranged into two cells thick cords surrounded by sinusoidal epithelial cells (Figure 1 B)

(Genten et al., 2009). Damage classes of all fish groups exposed to 8, 16, and 32

mol/kg of BaP were irreparable, HAI (Poleksic and Mitrovic-Tutundsic, 1994).

We observed cytoplasm vacuolization, cell hypertrophy, nuclei hypertrophy, and

parenchyma disorganization in all treatments with B[a]P (Figure 1). Severe cytoplasm

vacuolization occurred in the liver of fish exposed to 32mol/kg of B[a]P; small

vacuoles appeared in the cellular cytoplasm and subsequently fused to form a larger

vacuole. As a consequence, the cell vacuoles forced cytoplasm and nuclei to the

periphery of the cell. We also observed infiltration of leucocytes as an inflammatory sign

in all exposed fish. Altered hepatocytes presented cytoplasm degeneration

accompanied by an alteration in shape and size, losing their characteristic polyhedric

shape and frequently showing hypertrophy (Figure 1F). Plasmatic membrane rupture

was common in fish submitted to B[a]P injection. This was evident in fish exposed to 8,

16, and 32mol/kg of B[a]P. These groups also presented focal necrosis in almost all

animals (Figure 1D).

Observing the HAI (Histopathological Alteration Index) described by Poleksic and

Mitrovic-Tutundsic (1994), the occurrence of tissue liver damage was evident in fish

exposed to the higher B[a]P concentrations; 8, 16, and 32mol/kg of B[a]P (HAI=

142.80 ± 2.6, 146.16± 3.09, and 102.16 ± 20.89, respectively) (Figure 2).

Genetic Damage Index (GDI), measured throughout the Comet Assay, was

induced in the acute experiment (96 h) with B[a]P. Exposure to B[a]P caused a

significant genotoxic effect in C. macropomum exposed to 8mol/kg (GDI = 264% ±

5.66 ) and 16mol/kg (GDI = 266% ± 27.31), in comparison with control. No difference

Page 68: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

52

occurred in fish exposed to 32mol/kg of B[a]P (112.35%± 12.16) compared to the

control group (Figure 3).

We observed an increase in the gene expression of ras oncogene in C.

macropomum exposed 96h to 4mol/kg, 8mol/kg, and 16mol/kg B[a]P in

comparison to the control (Figure 4). Ras oncogene was overexpressed approximately

4.96-fold in fish exposed to 4mol/kg of B[a]P, 7.10-fold in fish exposed to 8mol/kg

and 6.78-fold in fish exposed to 16mol/kg of B[a]P. No difference was observed in the

expression of ras in 32mol/kg of B[a]P.

The expression of hif-1α increased in the lowest concentrations of the

contaminant, approximately 8.82-fold in fish injected with 4mol/kg of B[a]P and

approximately 4.64-fold in fish injected with mol/kg of B[a]P in comparison with the

control group (Figure 5). However in the higher concentration of B[a]P (16 mol/kg and

32mol/kg), the expression of hif-1 was similar with the control group.

3. Discussion

Histopathological liver damage caused by exposure to B[a]P and petroleum

derivates are largely described in the literature (Costa et al., 2010, Moller et al., 2014).

In this context, liver is one of the most important organ to be addressed, since it is

responsible for the detoxification process in the organism, and it is the primary organ of

biotransformation of organic xenobiotics (Health, 1995, Hinton et al., 2001, Rojo-Nieto

et al., 2014).

The liver histopathology of C. macropomum fish exposed to different

concentrations of B[a]P shows an increase of tissue injuries in fish according with the

rise of the levels of the pollutant (8mol/kg 16mol/kg and 32mol/kg of B[a]P). In all

treatments was observed cellular vacuolization , and these damage were also observed

in the liver of the juvenile rabbit fish (Siganus canaliculatus) exposed to water soluble

fraction (WAF) of light Arabian crude oil (Agamy, 2012). Many investigations have

showed that focal, multifocal and diffuse vacuolar degeneration of hepatocytes can be a

result of fish exposure to a variety of different carcinogenic agents (Couch, 1975,

Page 69: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

53

Mathur, 1975, Stehr et al., 1998, Nero et al., 2006, Stendiford et al., 2014). We also

detected cell hypertrophy, followed by the loss of polyedric shape, inflammatory focus

with leucocytes infiltration, cytoplasmic degeneration, and parenchyma disorganization

in these fish. Agamy (2012) described hepatocytes with marked nuclear enlargement

and moderate cellular enlargement, accompanied by an alteration in shape and size,

losing their common polyedric shape and frequently presenting hypertrophy in the liver

of juvenile rabbit fish exposed to the oil water accommodated fraction (WAF).

Malmstrom et al. (2004) verified a massive infiltration with inflammatory cells in rainbow

trout (Oncorhynchus mykiss) and cytoplasmic vacuolization in flounder (Platichthys

flesus) injected intraperitoneally with B[a]P. Multifocal inflammatory lesions on the liver

were recognized in other two teleosts, Atlantic cod (Gadus morhua) and flounder

(Platichthys flesus), caged for three months on contaminated sediments in a Norwegian

fjord (Husoy et al., 1996).

Liver hepatic parenchyma disorganization observed appears to be correlated with

the majority of PAHs (Rojo-Nieto et al., 2014). In our study, the lesions observed in C.

macropomum liver were, once more, associated with PAH injection, indicating the

extreme toxic potential of this compound to aquatic animals. This is more evident with

the hepatocytes focal necrosis observed in most of C. macropomum livers after

treatments with B[a]P. Agamy and colleagues (2012), studying rabbit fish (Siganus

canaliculatus) exposed to dispersed oil for six days found hepatocyte necrosis and

cellular swelling on the fish liver, which became larger with increased time of exposure.

In another study with eelpout (Zoarces viviparus) collected in different polluted areas,

necrosis and degeneration were observed and the cellular structure was no longer

maintained, with eosinophilic cytoplasm elements and free pyknotic nuclei being visible

within the liver section (Fricke et al., 2012). As observed in the present work, Albedel-

Moneim et al. (2012) also described the foci of local hepatic tissue necrosis

characterized by entirely destroyed hepatic tubules and, in most cases, no hepatic

cellular structure. Concerning this study, we observed that some fish also contained

lysed hepatocytes remnants. Thus, we can suggest that acute exposure to this pollutant

induced liver damages impairing liver normal function in these animals.

Page 70: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

54

The analysis of DNA damage in aquatic organisms has been considered a highly

suitable method for evaluating the genotoxic contamination of environments. In general,

this method is considered advantageous because it detects and quantifies the genotoxic

impact without requiring a detailed knowledge of the identity or the physical/chemical

properties of the contaminants (Frenzilli et al., 2009). Numerous studies show DNA

strand break using the Comet Assay in different animals models (Lemiere et al., 2005,

Lacaze et al., 2010, Michel et al., 2013). In this study, the Comet Assay indicates DNA

damage (Genetic Damage Index –GDI) in C. macropomum blood cells in fish injected

with 8mol/kg and 16mol/kg of B[a]P in comparison with the control. No significant

differences were found among groups injected with corn oil, 4mol/kg, and 32mol/kg

B[a]P. This less of difference between the highest dose of B[a]P in comparison with the

control group can be explained by the release of new erythrocyte cells due to the high

concentration of the pollutant, which is a more costly defense for the body. Also,

mechanisms of DNA repair in erythrocyte may have been activated. Our results are in

accordance with those of Jeong et al. (2015). These authors examined the degree of

DNA damage caused by three fractions (aliphatic hydrocarbons, aromatic

hydrocarbons, and polar compounds) of the organic extract of sediments taken from

Taean (Korea) in beakfish (Oplegnathus fasciatus). The DNA damage level was the

highest in cells exposed to 1.00 mg/g dry weight (dw) followed by the 1.09 mg/g dw and

0.72 mg/g dw to PAH. Studying DNA damage in gill and liver of carp and rainbow trout,

Kim and Hyun (2006) observed similar results. In their study the level of damage was

very low during the initial 24 h exposure to B[a]P and increased dramatically during the

next 24 h and, then, gradually decreased until 96h. The same results were observed by

Curtis et al (2011) in rainbow trout exposed to B[a]P, where damage to blood cell DNA

increased in fish fed a diet contaminated with BaP after 14 and 28 days compared to

controls. In our study the DNA damage in fish injected with intermediary concentration

of B[a]P was higher, so future investigation concerning gene repair mechanisms will

help to understand the decrease in DNA damage in fish injected with higher amounts of

B[a]P.

Another way to evaluate the effects of some pollutants as carcinogenic inducers

is through the alteration on the expression of some genes or mutation (Ostrander and

Page 71: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

55

Rotchell, 2005). The oncogene ras is considered one of the most important genes

involved in carcinogenesis. Such gene was characterized in several fish species, and

the presence of ras mutations has already been described in fish populations inhabiting

hydrocarbon contaminated areas, and following experimental exposure to specific

contaminants (Nogueira et al., 2006). In the present study, the changes in the

expression of ras oncogene transcripts in C. macropomum revealed an overexpression

of the gene in livers of fish treated with 4, 8, and 16mol/kg of B[a]P. When we

compare these data with DNA damage in erytrocytes, we observed significant

differences in the DNA damage only at concentrations of 8mol/kg and 16 mol/kg of

B[a]P. This suggests that the oncogene ras is expressed even at low concentration of

the contaminant and the DNA damage are more significant only when animals are

subjected to higher concentrations. However, at concentrations of 8 and 16 mol/kg

DNA damage and oncogene ras respond similarly to the presence of the contaminant.

Nogueira et al. (2010), studying Dicentrarchus labrax and Liza aurata in a contaminated

coastal lagoon polluted by PAH, observed no differences in the expression levels of ras

oncogene among fish from different sites. Similar results were found in Anguilla anguilla

exposed to 0.1 and 0.3 μM of B[a]P, where the analysis of ras oncogene in the same

samples revealed no differences in levels of expression between control and exposed

fish (Nogueira et al., 2006). In another study with mussels (Mytilus galloprovencialis)

collected in sites with different levels of petrochemical contamination along the NW

coast of Portugal, the expression of ras oncogene in digestive gland and gonads

decreased in PAH-contaminated animals. These authors also found similar results in

fish exposed to 100% water accommodated fraction (WAF) (Lima et al., 2008).

According to Rotchell et al. (2001), the pattern and incidence of ras oncogene mutations

in environmentally induced tumors also appear to be species-specific in fish. Tumors

wasn`t observed in tissue liver analyzes in this study, but we described in

histopathology analizes characteristics that with longer exposure may lead to tumor

formation as inflammatory focus (Grivennikov et al., 2010). Moreover, overexpression of

the ongene ras is one of the mechanisms that implicates carcinogenesis (Nogueira et

al., 2006).

Page 72: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

56

Another gene related with cancer is the hypoxia-inducible factor 1 alpha (hif-1α),

which has been identified as a key regulator of angiogenesis, inflammation, and

anaerobic metabolism (Dehne and Brune, 2009). Importantly in the past few years, hif-

1α has been implicated in the development of a range of liver pathologies such as liver

fibrosis, activation of the immune system, hepatocellular carcinoma, and others in

humans, as well as in rodents (Semenza et al., 2012, Nath et al., 2012). In humans,

many studies have emphasized the metastasis process in solid tumors induced by the

expression of hif-1α (Schweiki et al., 1992, Melstrom et al., 2011). Most hypoxia studies

have been focused on mammalian systems (Taylor and Sivakumar, 2005). However,

hypoxia is a common phenomenon for fish. In fish, the majority of the studies describe

the behavior of hif-1α in hypoxic environmental condition, not considering the combined

effect of hypoxia and pollution (Terova et al., 2008).

In the present study, the hypoxia would not be an extra challenge to C.

macropomum, but the challenge was the contaminant (B[a]P). We observed that hif-1α

expression increased 8.82-fold and 4.62-fold in fish exposed to 4mol/kg and 8mol/kg

of B[a]P, respectively, in comparison with fish injected with corn oil. The greatest

expression of hif-1α was in the lowest concentration of B[a]P, showing that the

hepatocytes was capable to activate the transcription of this gene, helping to maintain

cell survival machinery, one evidence of this is that the literature relate hif-1α involved

in cell proliferation and survival (Siddiq et., 2007). At the highest concentration of B[a]P

the cellular machinery was already compromised with the cell damage, not being able to

increase the expression of hif-1, since the normal functioning of the liver was

committed by necroses. Yu et al. (2008) suggested that the application of xenobiotics

such as B[a]P to hypoxia-stressed fish induces the increase in HIF-1-mediated

transcription, particularly in xenobiotic-metabolizing organs such as liver. The orange-

spotted grouper (Epinephelus coioides) was examined upon single and combined

exposures to hypoxia and benzo[a]pyrene (BaP). The responses for the four hypoxia-

responsive (HIF-1-mediated) genes – igfbp (insulin-like growth factor binding protein),

epo (erythropoietin), ldh-a (lactate dehydrogenase a isoform) and vegf (vascular

endothelial growth factor) – in fish liver tissues were monitored at four different time

intervals using real-time qPCR. The authors showed that B[a]P did not alter the

Page 73: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

57

expression of these four genes throughout the course of the exposure to normoxic

conditions, although when combined with hypoxia, the pollutant caused the activation of

these genes in some concentrations. Under hypoxia, these genes were very

responsive. In fact, hif-1α gene is the transcription factor of more than 100 genes,

including genes responsible for immune processes and inflammation of cells (Yu et al.,

2008).

This is the first time that one study combines the one oncogene ras and hif-1α

gene, in a neotropical freshwater fish (C. macropomum) under acute exposure to B[a]P

at normoxic conditions. In gene expression and Comet Assay analyzes the results

showed a full bell shape dose-response, where we observed an increase of the gene

expression and DNA breaks in erytrocytes in 4mol/kg, 8mol/kg and 16mol/kg of

B[a]P, and a decrease of this responses in the higher concentration (32mol/kg of

B[a]P). This response to PAHs was showed by Bosveld and collaborators (2002) in their

study with ethoxy resorufin dealkylase (EROD) activity measured in the H4IIE rat

hepatoma in vitro bioassay. This authors observed a category of compounds

(indeno[1,2,3-cd]pyrene (IP), benz[a]anthracene (BaA), benzo[a]pyrene (B[a]P),

chrysene (Chr) and benzo[k]fluoranthene (BkF) who consists of strong responders that

show a full bell shaped dose–response relationship over a wide dose-range and with a

strong increase of EROD activity. Lu et al. (2009) also observed a bell-shape dose

response in their study with Carassius auratus in response to PAH, indeno[1,2,3-

cd]pyrene via intraperitoneal injection at dosages of 0.1, 1.0, 2.0, 5.0 and 10.0 (or 8.0)

mg/kg. The EROD activity at the highest dosage of indeno[1,2,3-cd]pyrene (10,0mg/kg)

resulted a decrease of fold induction, and glutathione S-transferase (GST) activity had

the same behavior. Bell-shaped curves have been reported for various in vitro and in

vivo systems after exposure to PAHs (Kennedy et al., 1996, Delesclue et al., 1997).

The majority of the works with ras genes is described for human (Maertens and

Cichowski, 2014). The studies with hif-1α are not different, they describe the expression

of the gene in human solid tumors, and in metastasis (Fraga and Medeiros, 2009), or

when they study this gene in fish species they explain its behavior in hypoxia condition

without a pollutant (Rissanen et al., 2006, Rimoldi et al., 2012). Ongoing studies in our

Page 74: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

58

laboratory combining pollutants and hypoxia exposure, and exposure to different climate

scenarios will help to respond how these genes will behave under synergistic effects.

4. Conclusion

Amazonian fish have proven to be versatile as bioindicators of environmental

pollution, using both toxicology and genotoxicity markers. In the present work, we could

observe that the species C. macropomum is sensible to the B[a]P under acute

exposure. However, further studies are necessary to understand better the behavior of

the genes ras and hif-1α on the effects of contaminant as B[a]P. Thus, the exposure of

this species to this pollutant for a longer time and along with other environmental threats

is under development. This work contributed to essential data to further understand

these genes play a significant role in cell machinery especially when a contaminant is

involved. The mechanisms related in the overexpression of ras and hif-1α genes on the

intermediary concentration of B[a]P needs further explanation.

Acknowledgments

FAPEAM and CNPq supported this study through INCT-ADAPTA. We thank

Carolina Dultra Abrahim for her assistance in comet assay analyses. Thanks are also

due to the personnel of the Functional Histology Laboratory of the Federal University of

Amazonas for their support with the preparation of histological material.

Page 75: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

59

References

Abdel-Moneim AM, Al-Kahtani MA and Elmenshawy OM (2012) Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere 88: 1028–1035.

Agamy E (2012) Histopathological liver alterations in juvenile rabbit fish (Siganus canaliculatus) exposed to light Arabian crude oil, dispersed oil and dispersant. Ecotoxicol Environ Saf 75:171-179.

Bailey GS Selivonchick D and Hendricks J (1987) Initiation, promotion, and inhibition of carcinogenesis in rainbow trout. Environ Health Persp 71: 147–153. Bailey GS, Williams DE and Hendricks JD (1996). Fish models for environmental carcinogenesis. Environ Health Persp 104 (Suppl 1): 5–21. Bosveld ATC, de Bie PAF, van den Brink NW, Jongepier H, Klomp AV (2002) In vitro EROD induction equivalency factors for the 10 PAHs generally monitored in risk assessment studies in The Netherlands. Chemosphere 49:75–83.

Buhler DR and Williams DE (1989) Enzymes involved in metabolism of PAH by fish and other aquatic animals: oxidative enzymes (or phase I enzymes). In: Varanasi, U. (Ed.), Metabolism of Polyciclic Aromatic Hidrocarbons in the Aquatic Environment. CRC Press, Boca Raton, pp. 151–184. Cheng R, Bradford S, Barnes D, Williams D, Hendricks J and Bailey G (1997) Cloning, sequencing and embryonic expression of an N-ras proto-oncogene isolated from an enriched zebrafish (Danio rerio) cDNA library. Mol Mar Biol Biotechnol 6; 40–47. Costa PM, Chicano-Gálvez E, López Barea J, DelValls TA and Costa MH (2010) Alterations to proteome and tissue recovery responses in fish liver caused by a short term combination treatment with cadmium and benzo[a]pyrene. Environ Pollut 158: 3338-3346. Conney, A.H., Chang, R.L. , Jerina, D.M. Wei, , S.J. (1994). Studies on the metabolism of benzo[a]pyrene and dose-dependent differences in the mutagenic profile of its ultimate carcinogenic metabolite. Drugs Metabolism Reviews. 26 ,125–163. Couch JA (1975) Histopathological effects of pesticides and related chemicals on the livers of fishes. In: Ribelin, W.E., Migaki, G. (Eds.), The Pathology of Fishes. The University of Wisconsin Press, Madison, Wisconsin, pp. 559–584. Curtis LR, Garzon CB, Arkoosh M, Collier T, Myers MS Buzitis J and Hahn ME (2011) Reduced cytochrome P4501A activity and recovery from oxidative stress during subchronic benzo[a]pyrene and benzo[e]pyrene treatment of rainbow trout. Toxicol Appl Pharmacol 254: 1–7. Dehne N and Brüne B (2009). HIF-1 in the inflammatory microenvironment. Exp Cell Biol 315:1791 – 1797. Delesclue C, Ledirac N, de Sousa G, Pralvorio M, Botta-Fridlund D, Letreut Y, Rahmani R (1997) Comparative study of CYP1A1 induction by 3-methylcholanthrene in various human hepatic and epidermal cell types. Toxicol In Vitro 11:443–450.

Fraga A, Ribeiro R and Medeiros R (2009) Revisión – OncologíaHipoxia tumoral. Papel del factor inducible por hipoxia. Actas Urol Esp 33(9): 941-951. Frenzilli G, Nigro M and Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681: 80–92.

Page 76: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

60

Fricke NF, Stentiford G, Feist SW and Lang T (2012) Liver histopathology in Baltic eelpout (Zoarces viviparus) A baseline study for use in marine environmental monitoring. Mar Environ Res 82:1-14. Gao M, Li Y, Sun Y, Long J, Kong Y, Yang S and Wang Y (2011) A common carcinogen benzo[a]pyrene causes p53 overexpression in mouse cervix via DNA damage. Mutat Res 724: 69–75 Geng X, Feng J, Liu S, Wang Y, Arias C, Liu Z (2014) Transcriptional regulation of hypoxia inducible factors alpha (HIF-α) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comp Biochem Physiol Part B 169: 38–50. Genten F, Terwinghe E and Dangy A (2009) Atlas of fish histology. Published by Science Publishers, Enfi eld, NH, USA, pp 92-98. Grivennikov SI, Greten FR, and Karin M (2010) Immunity, Inflammation, and Cancer. Cell 140: 883–899. Grabher C and Thomas AL (2006) Fishing for cancer models. Nat Biotechnol 24: 45 – 46. Harris CC, Vahakangas K, Newman MJ, Trivers GT, Shamsuddin A, Sinopoli N, Mann DL and Wright WE (1985). Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers. Proceedings of the National Academy of Sciences of the USA 82: pp. 6672 - 6676. Health AG (1995) Water Pollution and Fish Physiology, vol. 2. CRC Lewis Publishers, Boca Raton, pp. 125–140. Hinton DE and Lauren OJ (1990) Liver Structural Alterations Accompanying Chronic Toxicity in Fishes: Potential Biomarkers of Exposure. Biomarkers of Environ- mental Contamination. Lewis Publishers, MI, pp. 12–68. Hinton DE, Segner H and Braunbeck T (2001) Toxic responses of the liver. In: Schlenk, D., Benson, W.H. (Eds.), Target Organ Toxicity in Marine and Fresh- water Teleosts, Taylor and Francis, London, pp. 224–268. Husøy A., Myers MS, and Goksøyr, A. (1996) Cellular localization of cytochrome P450 (CYP1A) induction and histology in Atlantic cod (Gadus morhua L.) and European flounder (Platichthys flesus) after environmental exposure to contaminants by caging in Sørfjorden, Norway. Aquat Toxicol 36(1): 53-74. IARC, International Agency for Research on Cancer (2012) A review of human carcinogens: chemical agents and related occupations. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100 F, pp. 111-114. http:// monographs.iarc.fr/ENG/Monographs/vol100F/. Jaakkola MS and Jaakkola JJ (1997) Assessment of exposure to environmental tobacco smoke. Eur Respir J 10: 2384–2397. Jeong HJ, Lee HJ, Hong S, Khim JS, Shim WJ and Kim GB (2015) DNA damage caused by organic extracts of contaminated sediment, crude, and weathered oil and their fractions recovered up to 5 years after the 2007 Hebei Spirit oil spill off Korea. Mar Pollut Bull 95(1):452-7. Kennedy SW, Lorenzen A, Jones SP, Hahn ME, Stegeman JJ (1996) Cytochrome P4501A induction in avian hepatocyte cultures: a promising approach for predicting the sensitivity of avian species to toxic effects of halogenated aromatic hydrocarbons. Toxicol Appl Pharmacol 141:214–230. Kim II-Y and Hyun CH (2006) Comparative evaluation of the alkaline comet assay with the micronucleus test for genotoxicity monitoring using aquatic organisms. Ecotoxicol Environ Saf 64: 288–297.

Page 77: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

61

Kobayashi, Sugiyama C, Morikawa Y, Hayashi M and T. Sofuni (1995) A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis assay MMS Community, 2 pp. 103–115. Lacaze E, Geffard O, Bony S, and Devaux, A. (2010) Genotoxicity assessment in the amphipod Gammarus fossarum by use of the alkaline Comet assay. Mut Res/Gen Toxicol Environ Mut 700(1): 32-38.

Lam SH et al. (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24: 73–75.

Latimer JS and Zheng J, (2003) The sources, transport, and fate of PAHs in the marine environment. In: Peter, E.T.D. (Ed.), Pahs: An Ecotoxicological Perspective, pp. 7–33. Lemiere S, Cossu-Leguille C, Bispo A, Jourdain M-J, Lanhers M-C, Burnel D and Vasseur P (2005) DNA damage measured by the single-cell gel electrophoresis (Comet) assay in mammals fed with mussels contaminated by the ‘Erika’ oil-spill. Mutat Res 581:11–21. Lima I, Peck MR, Rendón-Von Osten J, Soares AMVM, Guilhermino L and Rotchell JM 2008) Ras gene in marine mussels: A molecular level response to petrochemical exposure. Mar Pollut Bull 56: 633–640. Lu GE, Wang E-C, Zhu Z (2009) The Dose–Response Relationships for EROD and GST Induced by Polyaromatic Hydrocarbons in Carassius auratus Bull Environ Contam Toxicol 82:194–199. Maertens O and Cichowski K (2014) An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Adv Biol Regul 55:1–14. Malmstrom CM, Koponen K, Lindstrom-Seppa P and Bylund G (2004) Induction and localization of hepatic CYP4501A in flounder and rainbow trout exposed to benzo[a]pyrene. Ecotoxicol Environ Saf 58: 365–372.

Mangold K, Chang, YJ, Mathews C, Marien K, Hendricks J, and Bailey G (1991) Expression of ras genes in rainbow trout liver. Mol Carcin 4(2): 97-102.

Marcuschi M et al. (2010) Purification, characterization and substrate specificity of a trypsin from the Amazonian fish tambaqui (Colossoma macropomum). Biochem Biophys Res Commun 396: 667–673 Mathur DS (1975) Histopathological changes in the liver of fishes resulting from exposure to dieldrin and lindane. Toxicology 13: 109–110. Maxwell PH (2005) The HIF pathway in cancer Seminars. Cell Dev Biol 16: 523–530. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW and Ratcliffe PJ (1997) Hypoxiainducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth, Proc. Natl. Acad. Meador JP, Stein, JE Reichert WL, and Varanas, U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165. Melstrom LG, Salabat MR, Ding X-Z, Strouch MJ, Grippo PJ, Mirzoeva S, Pelling JC, David J and Bentrem M (2011) Association for academic surgery Apigenin Down-Regulates the Hypoxia Response Genes: HIF-1a, GLUT-1, and VEGF in Human Pancreatic Cancer Cells. J Surg Res 167: 173–181.

Page 78: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

62

Michel C, Bourgeault A, Palais F, Geffard A and Vincent-Hubert F (2013) Seasonal and PAH impacton DNA strand-break levels in gill softransplanted zebra mussels. Ecotoxicol Environ Saf 92: 18–26.

Moller AM, KorytarˇT, Kollner B, Schmidt-Posthaus H and Segner H (2014) The teleostean liver as an immunological organ: Intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 46: 518–529. Nath B and Szabo G (2012) Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatol 55: 622–633. Nemoto N, Kodama K, Tazawa A, Masahito P and Ishikawa T (1986) Extensive sequence homology of the goldfish ras gene to mammalian ras genes Differentiation 32: 17-23. Nero V, Farwell A, Lister A, Van Der Kraak G, Lee LEJ Van Meer T MacKinnon MD and Dixon DG (2006) Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water. Ecotoxicol Environ Saf 63: 365–377. Nogueira P, Pacheco M, Pereira ML, Mendo S and Rotchell JM (2010) Anchoring novel molecular biomarker responses to traditional responses in fish exposed to environmental contamination. Environ Pollut 158: 1783–1790. Nogueira PR, Lourenço J, Mendo S and Rotchell JM (2006) Mutation analysis of ras gene in the liver of European eel(Anguilla anguilla L.) exposed to benzo[a]pyrene. Mar Pollut Bull 52:1611–1616.

Oliveira Ribeiro CA, Padrós J, Valdez Domingos FX, Akaishi FM and Pelletier É (2007) Histopathological evidence of antagonistic effects of tributyltin on benzo[a]pyrene toxicity in the Arctic charr (Salvelinus alpinus). Sci Total Environ 372: 549–553. Ostrander GK and Rotchell JM (2005) Fish models of carcinogenesis. Biochemistry and Molecular Biology of Fishes. Elsevier B.V vol. 6, pp 255-288.

Padrós J, Pelletier É and Ciro Oliveira Ribeiro CA (2006) Metabolic interactions between low doses of benzo[a]pyrene and tributyltin in arctic charr (Salvelinus alpinus): a long-term in vivo study. Toxicol Appl Pharmacol 192:45–55

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT PCR. Nucleic Acids Res 29(9): 2003-2007.

Poleksic V and Mitrovic-Tutundžic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. IN: Müller, R.; Lloyd, R. Sublethal and chronic effects of pollutants on freshwater fish. Oxford: Fishing News Books. 30: 339-352.

Pryor WA and Stone K (1993). Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. NY Acad. Sci. 68: 12–27. Rimoldi S, Terova G, Ceccuzzi P, Marelli S, Antonini M and Saroglia M (2012) HIF-1a mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia Mol Biol Rep 39:4009–4015. Rissanen E, Tranberg HK, Sollid J, Nilsson GE and Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 209: 994-1003. Rojo-Nieto E, Oliva, M, Sales D and Perales JA (2014) Feral finfish, and their relationships with sediments and seawater, as a tool for risk assessment of PAHs in chronically polluted environments. Sci Total Environ 470–47/ 1030–1039.

Page 79: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

63

Rotchell MJ, Lee J, Chipman JK and Ostrander GK (2001) Structure, expression and activation of fish ras genes. Aquat Toxicol 55:1–21. Rytkönen TK, Ryynänen HJ, Nikinmaa M and Primmer CR (2008) Variable patterns in the molecular evolution of the hypoxia-inducible factor-1 alpha (HIF-1α) gene in teleost fishes and mammals. Gene 420: 1–10. Salazar-Lugo R, Mata C, Oliveros A, Rojas LM, Lemus M and Rojas-Villarroel E (2011) Histopathological changes in gill, liver and kidney of neotropical fish Colossoma macropomum exposed to paraquat at different temperatures. Environ Toxicol Pharmacol 3: 490–495. Sanchez-Arguello P, Aparicio N and Fernández C (2012) Linking embryo toxicity with genotoxic responses in the freshwater snail Physa acuta: Single exposure to benzo(a)pyrene, fluoxetine, bisphenolA, vinclozolin and exposure to binary mixtures with benzo(a)pyrene. Ecotoxicol Environ Saf 80: 152–160. Schweiki D, Itan A, Soffer D and Keshet E (1992) Vascular endothelial growth factor may mediate hypoxia-initiated angiogenesis. Nat 359: 843– 845. Semenza G L (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148: 399–408. Siddiq A, Aminova LR, Ratan RR (2007) Hypoxia Inducible Factor Prolyl 4-Hydroxylase Enzymes: Center Stage in the Battle Against Hypoxia, Metabolic Compromise and Oxidative Stress Neurochem Res 32:931–946. Silva J, Freitas TRO, Marinho JR, Speit G and Erdtmann B (2000) An alkaline single-cell gel electrophoresis (comet) assay for environmental biomonitoring with native rodents. Gen Mol Biol 23(1): 241-245.

Singh NP, McCoy MT, Tice RR and Schneider EL (1988) A Simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191.

Stehr CM, Johnson LL and Myers MS (1998) Hydropic vacuolation in the liver of three species of fish from the US West Coast: lesion description and risk assessment associated with contaminant exposure. Dis Aquat Org 32:119–135. Stentiford GD, Massoud MS, Al-Mudhhi S, Al-Sarawi M, Al-Enezi M and Lyons BP (2014) Histopathological survey of potential biomarkers for the assessment of contaminant related biological effects in species of fish and shellfish collected from Kuwait Bay, Arabian Gulf. Mar Environ Res 98: 60-67 Taylor PC and Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17:293–298. Terova G, Rimoldi S, Corà S, Bernardini G, Gornati R and Saroglia M (2008) Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279: 150–159. Tintos A, Gesto M, Miguez JM and Soengas JL (2008) b-Naphthoflavone and benzo(a)pyrene treatment affect liver intermediary metabolism and plasma cortisol levels in rainbow trout Oncorhynchus mykiss. Ecotoxicol Environ Saf 69:180–186. Tsukatani H, Tanaka Y, Sera N, Shimizu N, Kitamori S, Inoue N (2003) Validity of mutagenic activity as an indicator of river water pollution. Environ Health Prev Med 8: 133-138.

Page 80: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

64

Val AL and Honczaryk A (1995). Criando peixes na Amazônia. Manaus: INPA (Editor), Manaus, Brasil. pp160. Van Beneden R J, Henderson KW, Blair DG, Papas TS and Gardner HS (1990) Oncogenes in hematopoietic and hepatic fish neoplasms. Cancer Res, 50(17 Supplement):5671s-5674s.

Varanasi U, Stein JE and Nishimoto (1989) Biotransformation and disposition of PAH in fish. In: Varanasi, U. (Ed.), Metabolism of Polycyclic Aromatic Hydrocarbon in the Aquatic Environment. CRC Press, Boca Raton, Florida, pp. 93–150. Vienneau DS, DeBoni U and Wells PG (1995) Initiation of micronuclei by benzo(a)pyrene and benzo(e)pyrene in UDP-glucuronosyltransferase-deficient cultured rat skin fibroblasts. Cancer Res 55: 1045-1051.

Yu RMK, Ng PKS, Tan T, Chu DLH, SunWu RS and Kong RYC (2008) Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP). Aquat Toxicol 90: 235–242.

Zhong H, De Marzo AM, Laughner E, et al. (1999) Over expression of hypoxia-inducible factor 1 in common human cancers and their metastasis. Cancer Res. 59: 5830– 5835.

Page 81: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

65

Table 1. Details of each primer designed for candidate reference genes (28S and ef-1) and the two

target genes (ras and hif-1).

Gene

Symbol

Primer sequence (5`-3`) forward/reverse Length (bp)

Amplicon length(bp)

Tm Eff(%)a

28S-F

CGGGTTCGTTTGCGTTAC

18 150 54.5 98.19

28S-R

AAAGGGTGTCGGGTTCAGAT

20 150 56.3 98.19

ef-1F

GTTGGTGAGTTTGAGGCTGG

20 78 60.7 99.09

ef-1R

CACTCCCAGGGTGAAAGC

18 78 60.9 99.09

Ras-F

CCAGTACATGAGGACAGGAG

20 134 60.3 99.31

Ras-R

CAAGCACCATTGGCACATCG

20 134 60.3 99.31

HIF-1F

CTTCTGAGCTCTGATGAGGC

20 98 60.1 105.24

HIF-1R

GAAAGCACCATCAGGAAGCC

20 98 61.2 105.24

a. Primer efficiency

Page 82: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

66

Figure 1. C. macropomum liver exposed to corn oil (control group). (A) Hepatocytes are organized in one

or two layers surrounded by sinusoides (black arrows). (B) Normal liver parenchyma, highlighting a vase

with red blood cells (asterisk). (C) Image of liver exposed to 8 mol/kg B[a]P evidencing the

hepatopancreas (asterisk) and sinusoide obstruction (white arrow). (D) Image of fish liver exposed to 8

mol/kg B[a]P, showing necrotic area (asterisk). (E) Image of liver exposed to 16mol/kg B[a]P showing

some hepatocytes without nucleus (white asterisk), sinusoidal dilatation (black arrows) and hemosiderin

(white arrow). (F) Image of vacuolated hepatocytes of fish exposed to 32 mol/kg B[a]P; the cytoplasm

degeneration (black asterisks) and picnoti nucleous (black arrow) are evident. Slides were stained with

Hematoxylin and Eosin.

Page 83: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

67

Figure 2. Histopathological Alteration Index (HAI) of C. macropomum liver after exposure to different

injections of B[a]P. Indexes are in accordance with Poleksic and Mitrovic-Tutundsic (1994). *Indicates

significant differences compared to control group (corn oil) (P< 0.05).

Page 84: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

68

Figure 3. Genetic Damage Index (GDI) in erythrocytes of C. macropomum after 96h of injection of

different concentrations of B[a]P. *Indicates significant differences compared to control group (corn oil)

(P< 0.05).

Page 85: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

69

Figure 4. Relative expression of the oncogene ras in liver of C. macropomum after 96h of injection of

different concentrations of B[a]P. *Indicates significant difference in comparison to control group (P<0.05).

Page 86: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

70

Figure 5. Relative expression of gene hif-1 gene in C. macropomum after 96h of injection of different

concentrations of B[a]P. *Indicates significant difference in comparison to control group (corn oil)

(P<0.05).

Page 87: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

71

Capítulo II

Toxicological responses of Amazon fish Colossoma macropomum contaminated with

Benzo[a]pyrene are magnified by climate change scenario.

Page 88: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

72

Title

Toxicological responses of Amazon fish Colossoma macropomum contaminated with

Benzo[a]pyrene are magnified by climate change scenario.

Running title

Climate Change, C. macropomum, Benzo[a]pyrene

Author names and affiliations

Grazyelle Sebrenski da Silva1,2, Luciana Mara Lopes Fé1, Lorena V. de Matos2,

Adalberto L. Val2 and Vera Maria Fonseca de Almeida e Val1

1Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National

Institute for Research in the Amazon (INPA). 69067-375 André Araújo Avenue, 2936,

Petrópolis. Manaus, AM, Brazil.

2Institute of Biological Science (ICB) in Amazon Federal University (UFAM), General

Rodrigo Octávio Ave, 6200, Coroado I. AM, Brazil

E-mail address:; L.M.L. Fé ([email protected]); A.L. Val ([email protected]),

V.M.F. de Almeida e Val ([email protected]).

Corresponding author: G.S. Sebrenski

Phone number: +55 92 3643 3188

E-mail address: [email protected]

Postal address: André Araújo Avenue, 2936, Petrópolis, 69067-375. Manaus, AM,

Brazil

Page 89: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

73

Abstract

The Intergovernmental Climate Change (IPCC, 2007) forecasted for A2 scenario an

increase of 4.5 °C in the air temperature and an increase of 850 ppm CO2 in

atmosphere. Given the effects of these changes, as well as the action of the

carcinogenic contaminant benzo[a]pyrene (BaP), the present work main goal was to

verify the effects of a climate change scenario (A2 - as proposed by the IPCC)

combined to the action of BaP on the expression of ras oncogene and hif-1gene,

histopatological damages, anti-oxidant enzymes, DNA damage, and hematological

parameters in the species Colossoma macropomum. For that, animals were divided into

three different treatments and received injection of corn oil (control) 8 and 16 mol/kg of

BaP and were, then, separated and exposed to two scenarios: the current scenario that

simulates the current temperature and CO2 levels, and the extreme scenario that

simulate the A2 scenario forecasted by IPCC, during 30 days. After the exposure, fish

were bleed to evaluate hematological parameters and DNA strand breaks (by Comet

Assay) and liver was sampled for histopathology analysis (light microscopy), ras

oncogene and hif-1 gene expression (by PCR: RT-PCR), as well as enzymatic

analizes of glutathione-S-transferase (GST), catalase (CAT) and lipid peroxidation

(LPO). Ras oncogene was overexpressed 2.86-fold in fish exposed to 8mol/kg of BaP

and 2.46-fold in fish exposed to 16mol/kg of BaP in extreme scenario, compared to

fish kept in the current scenario. Hif-1was overexpressed 11.82-fold (8 mol/kg) and

9.81-fold (16 mol/kg) in the extreme scenario, in comparison with the same treatments

in the current scenario. No differences were observed in liver histopathological

damages comparing the two scenarios. However, all fish exposed to BaP presented

irreparable tissue damage compared to control fish injected with corn oil. GST and CAT

activities decreased, and LPO levels were lower in fish exposed to the extreme scenario

in all treatments. DNA strand breaks were higher in fish injected with BaP in both

scenarios compared to control fish injected with corn oil. Erythrocytic DNA damages

increase in BaP injected fish in extreme scenario in comparison with the control. There

No alteration was detected in hematological parameters (Hb, Ht, RBC, MCV, MCHM

and glucose) in any fish, excepted by MCH, which increased in fish injected with

Page 90: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

74

16mol/kg of BaP and exposed to the extreme scenario. We concluded that the effects

of the contaminant (BaP) were magnified by the climate change scenario, what is an

alert for global change effects in fish under threat of polluted waters.

Key-words: Climate change, Benzo[a]pyrene, and Colossoma macropomum.

Page 91: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

75

1. Introduction

Climate change is a critical issue that raised heated scientific debates and

generated considerable public interest. Numerous interdisciplinary studies are being

carried out to determine how human life will be influenced by future climate changes

(Karol et al., 2011, Pryor and Barthelmie, 2010). In this context, the Intergovernmental

Panel on Climate Change (IPCC) summarizes the observed changes in climate and

their effects on natural and human systems and presents projections of future climate

change and related impacts under different scenarios (IPCC, 2007). According to IPCC

(2007) the global atmospheric concentration of CO2 increased during the last 10 year

(1995-2005 average: 1.9 ppm per year). The prospection for the year 2100 in the

extreme scenario (A2) proposed by IPCC (2007) includes an increase in the air

temperature of 4.5 °C and an increase of 850 ppm CO2 in atmosphere.

Climate change has influenced the studies involving the impacts of climate

variability and changes on vegetation dynamics, agricultural production (Gouveia et al.,

2008, Gouveia et al., 2011), and so on. Other studies have focused on understanding

the biogeographical (biotic) zoning based on the actual differentiating characteristics of

biotic complexes and biotic regions, which are formed under the influence of rapid

climate changes (Tishkov 1994, Tishkov, 2005). New methodologies have improved our

ability to forecast how species will respond to climate change, and this includes

freshwater fish species. Climate change might be one of the main threats faced by

aquatic ecosystems and freshwater in the near future (Elith et al., 2010, Comte et al.,

2013).

In addition to the effects of climate change, the advanced technologies and

human development have also increased the release of pollutant products in the nature,

contaminating many ecosystems, including air, ground and water pollution. Today’s

industrialized society is threating the water, releasing a vast amount of harmful

xenobiotics, including heavy metals, pesticides, petroleum derivates, and industrial

chemicals, which bio-accumulate in organisms and cause toxicity to aquatic fauna and

flora. Freshwater ecosystems are under the pressure of multiple stressors, such as

organic and inorganic pollutants, geomorphological alterations, land use changes, water

Page 92: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

76

abstraction, invasive species, and pathogens (Vörösmarty et al., 2010). A group of

environmental contaminants that has been widely studied in the aquatic environment is

the polycyclic aromatic hydrocarbons (PAHs) (González-Doncel et al., 2008; Hong et

al., 2016; Lucas et al., 2016).

Polycyclic aromatic hydrocarbons (PAHs) are defined as a group of aromatic

hydrocarbons with two or more fused benzene rings, which are one of the most

important classes of hydrophobic organic contaminants (Lotufo and Fleeger, 1997). One

of the most toxic PAH is the Benzo[a]pyrene (BaP) (IARC, 2012). BaP has its principal

source from man-made activities involving the combustion of coal, oil, wood, diesel and

petroleum (Maria and Bebianno 2011). BaP is a potent carcinogen and mutagen and is

considered as a model substance for contaminant studies (Shaw and Connel, 1994,

Manoli and Samara 1999). BaP adducts are considered to be among the leading

causes of occurence of DNA strand breaks, leading in failure of DNA- repair

mechanisms, causing either cell death due to changes in expression of critical survival

genes or transformation due to somatic mutations (Shackelford et al., 1999). The

literature has registered studies about fish from PAHs polluted areas where

approximately 33% of the fish presented hepatocellular carcinoma (Moore et al., 1989;

Vogelbein et al., 1990; Myers et al., 1992). In fish, the PAH benzo[a]pyrene (BaP) was

found to cause mutations in the oncogene ras (Rotchell et al., 2001). PAH also affected

the expression of some genes in fish, such as CYP1A and LDH (Gárcia-Tavera et al.,

2013) and AKR1A1 gene (Osorio-Yáñez et al., 2012).

Two genes related to cancer development have drawn attention in the literature:

the oncogene ras (Kolch, 2000), and the hypoxia inducible factor (hif-1) (Cui et al.,

2012). Ras are a superfamily of molecular switches that regulate a diverse range of

functions, including cell proliferation, differentiation, motility and apoptosis, in response

to extracellular signals (Kolch, 2000). Hypoxia-inducible factor-1 (HIF-1) monitors the

cellular response to the oxygen levels in solid tumors. Under hypoxic conditions, HIF-1

protein is stabilized and forms a heterodimer with the HIF-1β subunit. The HIF-1

complex activates the transcription of numerous target genes to adapt to the hypoxic

environment in human cancer cells (Kitajima and Miyasaki 2013). Both genes have

Page 93: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

77

been studied in fish species, contributing to understand how these genes behave in the

presence of a contaminant (Nogueira et al., 2006, Yu et al., 2008).

Fish are sensitive to climate changes as temperature disturbances and CO2

concentration increases in the water. It is also sensitive to aquatic contaminants that

may compromise their health and resilience (Ficke et al., 2007, Strobel et al., 2015).

Multiple stressors (primarily organic and inorganic pollutants) can have an influence on

the DNA integrity in aquatic organisms (Jha et al., 2008). Organisms cope with and

rapidly adapt to changing conditions by modifying their physiological functions to

achieve cellular homeostasis (Hofmann and Todgham, 2010). Moreover, most

organisms adjust their gene expression patterns by switching on and off some genes

(Voolstra et al., 2009).

Colossoma macropomum (tambaqui) is an Amazonian freshwater fish with

considerable economic importance in the region (Golding and Carvalho, 1982). This

species is usually exposed to water quality oscillations and variable nutrient availability

in its environment (Val and Honczaryk, 1995). Tambaqui presents a high tolerance for

environmental changes in dissolved oxygen, temperature, and pH (Val and Almeida-

Val, 1995; Val and Kapoor, 2003).

Considering the ongoing climate changes, and considering the increase of the

freshwater pollution, it is necessary to understand how these stressors can influence the

expression of genes related with cancer development, such as the oncogene ras and

the hypoxia inducible factor (hif-1 Fish became one of the most suitable models for

estimating possible threats in the aquatic environment due to their ability to efficiently

metabolize and accumulate chemical pollutants (Cavas, 2011).

Therefore, the aim of this study was to evaluate the effects of the A2 scenario

forecasted by the Intergovernmental Panel on Climate Change (IPCC) for the year 2100

in the expression of oncogene ras and hypoxia inducible factor (hif-1) gene in

tambaqui exposed to the PAH benzo[a]pyrene, as well as to assess the histopatologic,

genotoxicity and metabolic changes.

Page 94: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

78

2. Material and Methods

2.1 Animals acquisition

Juveniles of Colossoma macropomum (31.88 g ± 0.7; 10.03 cm ± 0.08) were

purchased from Aquaculture Production Training Center CRTPA in the Balbina fish farm

(Balbina, Presidente Figueiredo, AM*1°55'54.4"S; 59°24'39.1"W) and properly

transported by truck to Manaus town for approximately two hours drive to the facilities of

the Laboratory of Ecophysiology and Molecular Evolution (LEEM), located at Campus I

of the National Institute of Amazonian Research (INPA), Amazonas-Brazil. Once in the

lab facility, fish were held outdoors in pools with recirculating and aerated INPA’s

groundwater ([Na+], 0.83; [K+], 0.45; [Ca2+], 0.10; [Mg2+], 0.040; [Cl-], 0.90mgl-1; [Cu2+],

7.0 g l-1; hardness=1.33mg CaCO3 l-1; pH= 6.80), where they spent 30 days for

acclimatization. During this period, fish were constantly monitored and fed three times a

day with commercial food containing 36% protein. Feeding was suspended one day

prior the experimental procedure.

2.2 Climate Scenario Exposition

After 30 days acclimatization, fish (n=10) were randomly distributed in nine

indoor tanks (70L capacity) at a closed system with constant aeration, and kept there for

seven days before the experiment. Fish were, then, distributed in three experimental

groups with three different treatments; at the first treatment (control group), fish received

intraperitoneal vehicle injection (corn oil) according to animal weight (0,1ml/g); at the

second treatment, fish received intraperitoneal injection with vehicle (corn oil) plus

8mol/kg of BaP; and at the third group, injection with vehicle (corn oil) and 16mol/kg

of BaP. Fish received the injections after seven days acclimatization. Following 96h

after injection the tanks were transported to the current and extreme scenarios, feeding

was suspended one day before the injections and resumed after one day post-injection.

During the whole experimental period 50% of tank water was renewed every other day

Page 95: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

79

to maintain the water quality; water characteristics were monitored (pH, CO2,

temperature).

After 96h of injection, fish was randomly distributed to the Climate Scenarios.

One Climate scenario was the control scenario (Current Scenario) with the current real-

time temperatures and CO2 levels, in the forest nearby the laboratory area. The other

scenario was de A2 (Extreme Scenario) as forecasted by the Fourth Assessment

Report of the IPCC for the year 2100. This extreme scenario has 4.5oC and 850 ppm

CO2 above the current scenario levels. The automatic sensors measure these

parameters every two minutes and transmit the data to the laboratory computers that

control the environmental rooms according to the respective scenario.

Nine tanks were placed in each scenario (current and extreme) and divided into

three experimental groups with three different treatments (control (corn oil), 8mol/kg,

and 16mol/kg of BaP, respectively). Fishes were distributed in each tank (final n=5) for

each treatment and Climate scenario. During the experimental time, the water quality

was monitored, and 50% of water tank was replaced in alternate days. Fish was fed

once a day ‘ad libitum’ with commercial feed containing 36% protein. After 30 days at

the Climate scenario, fish were bleed with a heparinized syringe from the caudal vein,

and then each fish was weighed, measured, and euthanized through cerebral

concussion followed by severing the anterior spinal cord. After death, the fish liver was

dissected, and one portion was snap-frozen in liquid nitrogen and stored at −80°C. The

other liver porption was fixed in Alfac solution as described below, for histopathology

analysis through light microscopy. All procedures followed the protocols described at

the Brazilian Guides of Animal Care and Use, as required by the Ethics Committee on

Animal Use of the National Institute for Research in the Amazon (CEUA – INPA)

(Protocol Number 011/2013).

Page 96: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

80

2.3 Analytical Methods

2.3.1. Environmental Variables

Water parameters (temperature, CO2, oxygen, and pH) were monitored three

times a week in each experimental tank in both scenarios (current and extreme).

Temperature and oxygen were measured using an oximeter 5512-FT (YSI, EUA), pH

was measured with a pHmetro UltraBASIC UB-10 (Denver Instrument, EUA), and the

CO2 levels were measured by the Boyde and Tucker (1992) method (Table 2).

Environmental condition inside the scenarios (current and extreme) was

monitored and controlled by an automatic system connected with a computer whose

archives the atmospheric temperature and CO2 every two minutes. The climatic

conditions within the scenarios are kept in accordance to the characteristics described

by IPCC (2007). The current scenario has an internal sensor that is connected to an

external sensor (in INPA’s forest) and keeps the climatic conditions within the real-time.

An automatic system is responsible for balancing the temperature within the scenarios

and CO2 levels (Table 1).

2.3.2. Blood and plasma analyzes

Blood aliquots were centrifuged in microcapillary tubes and hematocrit (Ht) was

read using an appropriate card (Navarro and Pachaly, 1994). Hemoglobin concentration

[Hb] was determined using 10μl of diluted blood in 2 ml of Drabkin reagent, according to

the protocol established by (Kampen and Zijlstra, 1964). Total erythrocyte counts (RBC)

were read on a Neubauer chamber throuth a light microscopy (Leica DM2015) using

blood diluted with formaldehyde citrate. The [Hb], RBC, and Ht values were used to

calculate corpuscular parameters: mean corpuscular volume (MCV), mean corpuscular

hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH). Glucose

was measured using the colorimetric method without deproteinization (GOD-PAP) using

the kit InVitro®. The reading was performed in a spectrophotometer at 500nm.

Page 97: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

81

2.3.3. Comet Assay

Comet assay was used to quantify the DNA in blood cells damage following the

protocol described by Singh et al. (1988), and modified by Silva et al. (2000). Slides

were covered with standard melting agarose (1.5% normal melting agarose prepared in

phosphate-buffer saline - PBS) and dried overnight. Blood sample (5l) were mixed with

0.75% low melting point agarose at 5% ratio (Gibco BRL) at 37oC and immediately

poured on pre-covered slides and covered with a coverslip. The coverslip was removed

after the agarose solidification, and slides were placed in a lysis solution (2.5M NaCl,

100mM EDTA, 10mM Tris, pH 10-10.5; 1% Triton X-100 and 10% DMSO). Before

electrophoresis, the slides were incubated for 20 min in alkaline electrophoresis buffer

(300mM NaOH and 1mM EDTA, pH >13). Samples were then electrophoresed in a dark

place under an alkaline condition for 20 min at 300mA and 25V at 4°C to produce the

comets. After the electrophoresis, the slides were washed with an appropriate buffer

(0.4M Tris buffer, pH 7.5) to neutralize the alkalis in the gels. A silver solution (5%

sodium carbonate, 0.1% ammonia nitrate, 0.1% silver nitrate, 0.25% tungstosilicic acid,

and 0.15% formaldehyde) was used to stain the stranded DNA. Two slides were stained

for each fish (n=3 and N=15 for each treatment). At last, the slides were examined using

an optical microscope (Leica DM2015) at 400X magnification. Randomly selected cells

(100 cells from each of two replicate slides) were analyzed for each animal. We used

the tail sizes to score the comet assay into five classes (from undamaged (zero) to

maximally damage (four)). An overall score was obtained by summation of all cell

scores from completely undamaged (sum zero) to maximum damage (sum 400)

according to Kobayashi et al. (1995).

2.3.4. Histopathological analyses

Liver samples were immediately fixed in Alfac solution (70% ethanol, 5% glacial

acetic acid, and 4% formaldehyde) for 16 h. Afterwards, samples were dehydrated in a

graded series of ethanol, and embedded in paraffin. Serial sections of 5m thickness

were prepared on glass slides using a semi-automatic microtome. Slides of eight fish

Page 98: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

82

from each treatment were made. Liver sections were stained with Hematoxylin/ Eosin

and PAS (Shiff Periodic Ácid) and observed under the bright field microscope (Leica

DM2015) at 40x.

Histopathological Damage Index (HDI) were semi-quantitatively and qualitatively

evaluated using the method described by Poleksic and Mitrovic-Tutundsic (1994) and

Silva (2004). Indexes were based on the severity of lesions and used to asses liver

tissue damages: I = ∑ I + 10 ∑ II + 100 ∑ III, where stages I, II, and III correspond to the

degree of the lesion, respectively. The final Indexes were described as follows: normal

function of the organ (I = 0-10), mild to moderate damage (I = 11-20), moderate to

severe damage (I = 21-50), severe damage (I = 51-100), and irreparable damage (I

>100).

2.3.5. Isolation of total RNA and cDNA synthesis

Following the manufacturer`s instructions of the Trizol®reagent, total RNA from

four tambaqui liver samples were isolated for each treatment. Contaminating genomic

DNA was removed using DNAse (Invitrogem™). Using ReverAID Minus First Strand

cDNA Synthesis Kit (Fermentas®), first strand cDNA was reverse-transcribed following

the manufacturer`s instructions. Enzymatic treatment with reverse transcriptase (MMLV

Reverse Transcriptase) (200 U/μL, USB) was first done and, then, mixed in a 1.5 mL

microtube with approximately 25 μg RNA, 1,0 μL oligonucleotide dT (18) (1μg), 1,0 μL

dNTP mix (10 mM), buffer 5X MMLV, and deionized for a 50 mL final volume. This

solution was incubated at 37°C for one hour for conversion and 70°C for 10 minutes to

inactivate the enzyme. The quality of the total RNA and cDNA was verified using a

NanoDrop® spectrophotometer, model 2000 (Thermo Scientific) as recommended in the

user manual (NanoDrop 2000 / 2000c Spectrophotometer, V1.0 user manual, 2009).

2.3.6. Determination of ras and hif-1sequences

Degenerate sequences for genes 28S, ef-1α hif-1α and ras were screened for

other fish species in NCBI (http://www.ncbi.nlm.nih.gov). Degenerate primers were

Page 99: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

83

designed based on the conserved regions of 28S, ef-1α, hif-1α, and ras genes, using

the sequences obtained at NCBI. Partial fragments of tambaqui 28S, ef-1α, hif-1α, and

ras cDNAs were obtained based in these degenerated primers.

Degenerated primers were tested in PCR (Polymerase Chain Reaction) using

PCR master mix (Promega). All PCR products obtained were sequenced with the Kit

ABI PRISM® Big DyeTM Terminator Cycle Sequencing Ready Reaction (Applied

Biosystems) and run on an ABI 3130XL automatic DNA sequencer (Applied

Biosystems). The acquired sequences were analyzed using the BLAST program from

NCBI and then used to generate the specific primers for Colossoma macropomum q-

PCR, ras, hif-1α (target primers), 28S, and ef-1α (reference primers) showed in Table 2.

2.3.7. Quantitative real-time PCR

We used the equipment Viia7 Dx from Life Technologies (Applied Biosystems) to

quantify the gene transcripts by real-time PCR. We analysed samples of four C.

macropomum liver from each treatment. We added 1.0 μL of cDNA as template in

triplicate, to the wells of a 96-well thin-wall PCR plate. Additionally, we added to each

well 1.0 μL of each primer (concentration of ras, 2.0 pmol; hif-1α, 2.0 pmol, 28S, 2.5

pmol and ef-1α, 1.5 pmol), 2.0 μL of nuclease-free water 192 (Ambion, Life

Technologies) and 5 μL SYBR Green PCR Master Mix (Applied Biosystems) in a total

volume of 10 μL. The PCR plate was heated for 2 min at 50°C, plus 95°C for 10 min;

followed by 40 cycles of 95°C for 15 s and 60 °C for 1 min (annealing temperature of all

primers). The presence of a single product-specific melting temperature was confirmed

using melting curve analysis, as follows: 28S (slope -3.36/ R2 0.99), ef-1α (slope -.3.34/

R2 0.99), ras (slope -3.33/ R2 0.97) and hif-1α (slope -3.30/ R2 0.99). In addition, PCR

amplification efficiency for each primer set was calculated by serial dilution curve

obtained from a pool of experimental samples (1000 to 1 ng cDNA concentration; n=4).

All primer pairs showed high PCR efficiency (between 98-105%). The efficiency of

primer amplification was calculated. Serial dilutions of a cDNA standard were amplified

in each run to determine amplification efficiency according to Pfaffl (2001).

Page 100: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

84

2.3.8. Biochemical analyses

The activities of hepatic glutathione-S-transferase (GST), catalase (CAT), and

the concentration of the lipid peroxidation (LPO) were measured. For GST and CAT,

frozen (-80oC) liver samples were weighed and homogenised (1:10 w/v) in 20 mM Tris

buffer (pH 7.6), 1 mM EDTA, 1 mM dithiothreitol, 500 mM sucrose, and 150 mM KCl),

for LPO liver, we weighed and homogenized the samples at a different concentration

(1:2 w/v) in the same Tris buffer.

GST activity in liver samples was measured following the protocol established by

Keen et al. (1976), incubating, as substrates, reduced glutathione (GSH) and 1-chloro-

2,4-dinitrobenzene (CDNB) and recording the changes in the absorbance at 340 nm.

The enzyme activity was calculated as nmol of CDNB conjugate formed per min per mg

of protein, using a molar extinction coefficient of 9.6 mM cm-1.

Catalase activity was determined using the Beutler (1975) method. Tissue

homogenate was centrifuged in a refrigerated centrifuge at 9000 rcf for 30min at 4oC

and the clear supernatant was used as enzyme source. The reaction volume contained

990 ml of reaction buffer (Tris 1M, 5mM EDTA, and H2O2) and 10l of homogenate. The

decomposition of H2O2 (hydrogen peroxide) was recorded at 240nm in a

spectrophotometer. Results were expressed in μmol H2O2. min-1. mg protein-1.

LPO was assessed by Fe2+ oxidation in the presence of xylenol orange (FOX,

ferrous oxidation–xylenol orange assay) as described by Jiang et al. (1991). First, the

liver homogenate was centrifuged in a refrigerated centrifuge at 10.000 rpm for 10min at

4oC. Following, the supernatant was mixed with 12% TCA (trichloroacetic acid) 1:1 (v/v)

and centrifuged at 500 rpm for 10min at 4oC. The reaction mixture was obtained with

30l of supernatant and 270l of a reaction solution (100 M xylenol orange, 4 mM

C15H24O, 25 mM H2SO4, and 250M FeSO4 dissolved in 90% methanol). Samples plus

reaction mixture were incubated for 30 min at room temperature for color development

before colorimetric measurement at 560 nm. LPO concentration was expressed as mol

cumene hydroperoxide. mg protein-1.

Page 101: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

85

2.3.9. Protein determination

Total protein was measured according to the method described by Bradford

(1976) using a SpectraMax M2 and bovine serum albumin (BSA) as standard at 595

nm.

2.3.10. Statistical analyses

All data are presented as mean ± SEM. Prior to the comparative statistical tests, the

distribution and homogeneity of data were checked. A two-way ANOVA followed by the

Tukey test was used to determine differences in all analyzed parameters (hematology,

ras and hif-1 gene expression, DNA damage, histopathology damage indexes, GST,

CAT, and LPO) among fish exposed to Current Scenario (control) and Extreme

Scenario (A2), and different concentration of BaP (8 ml/kg and 16 mol/kg). Statistical

significance was accepted at the level of P < 0.001. The test was performed through

Sigma Stat 3.5 software.

We used STATISTICA program to perform multivariate analysis and obtain the

principal component analysis (PCA) plots. All observations and variables were used to

produce PCA-plots. Observations (exposure groups) must be independent when

investigated applying PCA, so our data was separated based scenarios (current and

extreme) and experimental groups (control, 8 mol/kg and 16 mol/kg of BaP).

3. Results

3.1. Hematological parameters and plasma glucose

Among the evaluated hematological parameters (Ht, Hb, RBC, MCV, MCHC) and

plasma glucose, only MCH presented the differences between the two scenarios (P <

0.05). There was a significant interaction between scenarios and treatments (P =

0.010). The MCH (pg) increased in fish injected with 16 mol/kg (52.1 ± 2.5) exposed to

Page 102: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

86

the extreme scenario in comparison with the same treatment (42.3 ± 1.9) exposed to

the current scenario. MCH was also higher in fish injected with 16 mol/kg in the

extreme scenario in comparison with control and fish injected with 8 mol/kg of BaP in

the same scenario (P<0.05) (Table 3).

3.2. Genotoxic parameters (Comet assay)

Genetic Damage Index (GDI), measured throughout the Comet Assay in blood

cells, increased in fish exposed to 8 and 16 mol/kg of BaP, respectively (130.0 ± 9.5

(P=0.003) and 150.5 ± 8.12 (p=0.033)), in the current scenario in comparison with the

control group (89.9 ± 5.0). In the extreme scenario, the GDI (107.0 ± 6.0 - no BaP)

showed a significant increase in DNA strand breaks in treatments with BaP in fish

injected with 8mol/kg (143.0 ± 4.4) (P<0.001) and 16 mol/kg (242.5 ± 18.2)

(P<0.001). In comparison with same treatments in different scenarios, the GDI was

magnified in fish group injected with 16 mol/kg of BaP (P< 0.001) and submitted to

extreme scenario. There was a significant interaction between scenarios and

treatments. (P = 0.002) (Figure 1).

Regarding DNA damage levels in blood cells, fish exposed to the current scenario

had the prevalence of damage class 1 in all treatments. Out of the 100 cells analyzed

for each fish in control group, 79.8% of blood cells were characterized as class 1. Class

1 also appeared in 53.3% of cells in fish injected with 8 mol/kg of BaP, and 63.7% of

cells in fish injected with 16 mol/kg of BaP. In the extreme scenario, the DNA damage

class 1 of was predominant in fish from control group (72.4%), followed by fish exposed

to 8 mol/kg of BaP (52%), in which class 2 in blood cells appeared at the level of

27.6%. DNA damage in fish exposed to 16 mol/kg in the extreme scenario was equally

distributed in the four classes: class 1 (23.29%), class 2 (24.7%), class 3 (27%), and

class 4 (22.2%) (Figure 7) suggesting that the extreme scenario caused higher DNA

damage in fish exposed to higher BaP concentration.

Page 103: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

87

3.3. Biochemical parameters

There were no differences in GST activity in the liver of fish exposed to 8 and 16

mol/kg of BaP in the current scenario. The same behavior was observed in GST

activity in the groups of fish injected with BaP and exposed to the extreme scenario.

Comparing the same treatments at the two scenarios, GST activity decreased 2.0 times

(P< 0.001) in control group, 2.77 times (P< 0.001) in fish injected with 8 mol/kg of BaP

and 1.92 times (P< 0.001) in fish injected with 16 mol/kg of BaP in the extreme

scenario, suggesting a decerase in the ability of repare oxidative damages in fish

exposed to extreme scenario. There was no significant interaction between scenarios

and treatments (P = 0.604) (Figure 2).

There was no difference in Catalase (CAT) activity in all treatments of fish

exposed to the current scenario. The same behavior occurred in the extreme scenario

(Figure 3). Comparing the scenarios (current and extreme) and the same treatments

(control group, 8 mol/kg and 16 mol/kg of BaP), CAT activity decreased in all

treatments exposed to the extreme scenario, showing the same behavior of GST. CAT

activity decreased 1.27 times in control group P = 0.027), 1.47 times (P = 0.002) in fish

injected with 8 mol/kg of BaP, and 1.57 times (P < 0.001) in fish injected with 16

mol/kg of BaP in the extreme scenario in comparison with the current scenario. There

was not a significant interaction between scenarios and tratments (P = 0.299).

Hepatic LPO levels did not change after exposure to different BaP treatments in

fish exposed to the current scenario, revealing no membrane damage in the analyzed

fish (Figure 4). We observed in fish exposed to the extreme scenario a decrease in LPO

levels of fish injected with BaP in comparison with the control. Hepatic LPO levels

dropped 1.28 times in fish injected with 8 mol/kg of BaP (P = 0.008) and 1.22 times in

fish injected with 16 mol/kg of BaP (P = 0.027). LPO levels decreased in all treatments

exposed to the extreme scenario compared with the same treatments in the current

scenario. LPO levels decreased 1.21 times (P = 0.004) in control group, 1.62 times (P <

0.001) in fish injected with 8 mol/kg of BaP, and 1.44 times (P < 0.001) in fish injected

Page 104: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

88

with 16 mol/kg of BaP (P<0.001) in the extreme scenario in comparison with the

current scenario.

3.4. Liver histology

The liver parenchyma is morphologically composed of polyhedral hepatocytes,

typically with a central nucleus, organized into two cells ticks and surrounded by

sinusoidal epithelial cells (Figure 5A and Figure 6A). Glycogen deposits and fat storage,

often dissolved during the routine histological process, produce considerable

histological variability. In the present work we observed that Colossoma macropomum

liver contains pancreatic tissue, also called “hepatopancreas”. C. macropomum from

control group exposed to current and extreme scenarios presented a typical liver

organization. The Histopathological Damage Index (HDI) (Table 4) was 36.1 ± 3.0 in the

control group from the current scenario and 36.3 ± 4.6 in the control group in the

extreme scenario. In both groups (current and extreme scenarios), no statistic

difference was observed and the HDI was classified as moderate to severe damages

according to Poleksic and Mitrovic-Tutundsic (1994). The HDI increased in fish injected

with 8 and 16mol/kg of BaP (HDI: 146.9 ± 2.11 and 144,0 ± 1.9 respectively) in the

current scenario (P<0.001). We also observed these results in fish exposed to the

extreme scenario (8 mol/kg (HDI: 147.3 ± 2.3) and 16 mol/kg (HDI: 142.6 ± 2.6)

(P<0.001). Thus, for both scenarios the fish injected with BaP had the HDI classification

as irreparable damage (Poleksic and Mitrovic-Tutundsic, 1994). No differences were

observed between fish kept at the two scenarios neither significant interation between

scenarios and treatments (Table 4).

Cellular and nuclear hypertrophies (Figure 5B) were alterations observed in low

(0+) and moderate frequency (+) for all treatments. Sinusoidal dilatation (Figure 6 B)

was frequent in fish injected with BaP (8 and 16 mol/kg). Nuclear vacuolization was

absent (0) in control group exposed in the current scenario, but appeared with low

frequence (0+) in all treatments in the extreme scenario (Figure 5C). Sinusoidal

dilatation and vessel congestion also occurred (Figure 5C and 6D). Another tissue

damage observed was pyknotic nuclei (Figure 6C). In fish injected with BaP, the

Page 105: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

89

incidence of damages was irreparable, independent of the scenarios. The occurrence of

vacuolization (Figure 5F), cellular disrupts (Figure 5E and 6C) and necrosis was more

frequent (Figures 5D and 5E and Figure 6E and 6F).

3.5. Gene expression

The oncogene ras behaved differentially between the two studied scenarios.

However, we observed no differences in ras expression when BaP doses (0, 8 and 16

mol/kg) were considered in the current scenario. In the extreme scenario, though, BaP

doses had a positive effect on ras expression in liver. In fact, the injection of BaP at 8

mol/kg overexpressed ras oncogene was by 12.26-fold, and the injection of 16 mol/kg

overexpressed this gene by 8.23-fold (Figure 7A). The comparison of the same

treatments between the different scenarios showed an increase in the relative

expression of ras oncogene in the liver of animals exposed to the extreme scenario over

the animals at the current scenario. Ras oncogene was overexpressed 2.86-fold in fish

exposed to 8 mol/kg (P<0.001) of BaP and 2.46-fold in fish exposed to 16 mol/kg

(P<0.001) of BaP in extreme scenario compared to the current scenario (Figure 7A).

There was a statistically significant interaction between scenarios and treatments (8 and

16 mol/kg of Bap) (P <0.001).

No difference was observed in the relative expression of the gene hypoxia

inducible factor-1 in the livers of fish exposed to current scenario in all treatments.

However, in fish exposed to the extreme scenario, hif-was overexpressed 2.35-fold

in fish exposed to 8 mol/kg and 2.44-fold in fish exposed to 16 mol/kg of BaP. The

relative expression of hif- increased in C. macropomum treated with BaP at the

extreme scenario compared to current scenario. There was a significant interaction

between scenarios and treatments (8 and 16 mol/kg of BaP) (P = <0.001). Hif-1 was

overexpressed 11.82-fold and 9.81-fold in fish exposed respectively to 8 mol/kg and 16

mol/kg of BaP in the extreme scenario compared to the same treatments in fish kept at

the current scenario (Figure 7B).

Page 106: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

90

3.6. Multivariate Analysis

Multivariate principal component analysis (PCA) after 30 days exposure revealed

the grouping of different variables. Distribution of PCA in biplot after 30 days exposure

(Figure 8) shows two groups: P1 is the scenarios (current scenario and extreme

scenario) and P2 is the treatments (0, 8, and 16 mol/kg of BaP) for the observed

variables. Most variables are clustered and well explained in fish exposed to the

extreme scenarios. Fish injected with 16 mol/kg of BaP explains the hematological

variables (Ht, MCH, MCV and MCHC), the liver histopathology, and the DNA damage.

Fish injected with 8 mol/kg of BaP grouped the variables Hb, RBC and glucose levels.

GST, CAT and LPO clustered together in P1, showing the influence of the current

scenario. Ras oncogene and hif-1are grouped together and are well explained by the

extreme scenario. All groups are compared and the variation among all parameters is

explained by P1=37% and P2=17%.

4. Discussion

Currently, there is a consensus that climate change is a global threat and a

challenge for the 21st century. A great deal of information is available demonstrating

how the increased temperature may affect aquatic ecosystems and living resources.

Many ecosystems are also affected by human releases of contaminants from land-

based sources or from the atmosphere, which also causes severe effects. So far, these

two significant stressors (climate change and pollutants) have been discussed

independently (Schiedek et al., 2007) and there is a lack of information about the joint

effects in ecosystems in general. Herein we analyzed the combined effect of the

carcinogenic pollutant benzo[a]pyrene adding the consequences of the increase in

atmospheric CO2 and temperature over the Amazon fish Colossoma macropomum

exposed to the extreme A2 scenario, as forecasted by IPCC (2007).

Hematological parameters are commonly used as an index to detect

physiological changes in many fish species and to assess structural and functional

health during stress conditions (Adhikari et al., 2004, Barcellos et al., 2004). In the

Page 107: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

91

present study there was no alteration in Ht, Hb, RBC, MCV, CHCV in all treatments and

scenarios during the 30 days exposure. Oliveira and Val (2016), studying the influence

of four IPCC (2007) scenarios (B1, A1B, and A2) in C. macropomum without the

presence of a pollutant, observed an increase in Ht levels after 30 days exposition in

scenario A2. Kaya et al. (2016), studying Oreochromis mossambicus exposed to two

different temperature and carbon dioxide partial pressure levels for about two weeks,

observed in the group exposed to CO2 at 25 oC changes in hematology (RBC, Hb, Ht,

MCV, MCH, MCHC), but at the end of the first week (7days), the parameters returned to

the normal values at the end of the trial (14 days), what was explained by the operation

of the adaptation mechanism (Kaya et al., 2016). Similarly, in another study conducted

by Fivelstad et al. (2003) on Atlantic salmons, fish were exposed to 16 and 24 mg/L

CO2 for 57 days and, at the end of the test, no difference was detected in hematologic

parameters (Ht, Hb, and MCH) among experimental and control fish. Studyng the

Korean rockfish Sebastes schlegeli (Hilgendorf) exposed to 7,12-

dimethylbenzo(a)anthracene, Jee et al. (2006) showed a decrease in RBC, Hb and Ht

while the levels of MCH, MCHC and MVC revealed no difference from control.

In the present work, we observed an increase in MCH in the group of fish

exposed to 16 mol/kg of BaP in the extreme scenario in comparison with the control

group. No alteration in MCH was observed in the other treatments and scenarios.

Oliveira and Val (2016) also observe an alteration in MCH cells in C. macropomum

exposed to the various scenarios (B1, A1B, and A2); significant variations of MCH (P =

0.016) occurred at the 15 and the 30-days checkpoints. At the 15 days checkpoint, the

fish exposed to extreme scenario had an increase in MCH in comparison with the

current scenario, and after the 30 days exposure, the MCH decreased in fish exposed

to extreme scenario. In our study the contrary occurred; after 30 days exposure the

MHC was higher in fish exposed to extreme scenario and injected with 16 mol/kg of

BaP in comparison with the same treatment in the current scenario. Despite the studies

with PAH as 7,12dimethylbenz(a)anthracene and phenanthrene revealing a disruptive

action of the PAH on the erythropoietin tissue compromising the viability of the maturing

cells and haematological parameters (Jee and Kang 2004, Jee et al., 2006), in the

Page 108: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

92

present work the single alteration observed was in fish treated with 16 mol/kg of BaP in

MCH parameter.

Physical, chemical and biological agents can act in the DNA, resulting in

mutation involved in cancer. Thus, genotoxic tests are required by regulatory agencies

to evaluate the potential risk of cancer. Among these tests, the Comet Assay (CA) is

commonly used (Araldi et al., 2015). CA also allows detecting breaks in DNA strands,

which can be visualized by the increased migration of free DNA segments, resulting in

images similar to comets, justifying the name of the assay (Azqueta and Collins, 2013).

The CA has been used in multiple freshwater and marine fish species as an indicator of

DNA damage (Yang et al., 2006, Winter et al., 2004, Bombail et al., 2001).

In the present study, we observed an increase of DNA strand breaks in blood

cells in fish exposed to BaP (8 and 16 mol/kg) in the current scenario, and a significant

difference between the treatments with BaP (8 and 16 mol/kg) in comparison with the

control in the extreme scenario. In comparison between the scenarios only fish injected

with 16 mol/kg of BaP and exposed to the extreme scenario presented an increase in

DNA damage. Flammarion and co-workers (2002) observed an increase of DNA

damage in chub (Leuciscus cephalus) erythrocytes from Mocella River (France)

exposed to areas contaminated with PAH. Izunza and co-workers (2006) also observed

high indices of DNA damage in Oncorhynchus mykiss erythrocytes in fish exposed to

sediment from two rivers contaminated by PAHs. They also showed that the average

comet length increased as the PAH concentration in the sediments increased. BaP is a

potent inducer of DNA damage, as demonstrated by Šrut and co-workers (2010) in

RTG-2 fish cell line after three days of exposure to a concentration range of model

genotoxic agent (BaP).

Climate changes can also affect de levels of DNA strand breaks in fish blood

cells as demonstrated by Lima (2016) in tambaqui exposed to IPCC (2007) scenarios.

Lima (2016) reported that tambaqui exposed for 30 days to both intermediate (A1B) and

extreme (A2) climate change scenarios revealed a significantly higher amount of DNA

damage in blood cells, evidenced by an average of 1.8-fold increase of GDI values, in

relation to fish in the current scenario at the same time of exposure. Our results are in

accordance with Lima (2016) since in extreme scenario fish exposed to 16 mol/kg of

Page 109: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

93

BaP presented more DNA strand breaks in comparison with the same treatment in the

current scenario. Multivariate analysis also grouped the DNA damage results in the

concentration of 16 mol/kg of BaP in the extreme scenario, showing that these two

variables had a great influence in DNA strand breaks through comet assay. We may

suggest that the increase in temperature and CO2 in the extreme scenario (A2) may

influence the genotoxic effects of BaP in the higher dose and induce more DNA

damages. Anitha and co-workers (2000) exposed fish Carassius aurata to heat shock at

34 oC, 36 oC and 38 oC and observed an increase in DNA strand breaks in the highest

temperatures. Bruschini and colleagues (2003) also described the effect of increased

temperatures (4, 18, 28 and 37 oC) in mussels’ hemocytes (Dreissena polymorpha). The

data obtained in vivo showed an increased amount of DNA damage at increasing

temperatures in cells directly withdrawn from the mussels. The same authors suggested

that water temperature could alter DNA-damage baseline levels in mussels and suggest

that mussel sensitivity towards environmental pollutants could be temperature

dependent.

Carbon dioxide can also disturb the cell metabolism increasing the reactive

oxygen species (ROS) as demonstrated by Montalto and co-workers (2013) where SH-

SY5Y cell cultures were exposed to 15 mmHg CO2 had an increasing in ROS levels. An

increase in ROS levels serves as a sensor of oxidative stress and can readily damage

biological molecules including DNA (Ray et al., 2012, Sammour et al., 2009). The main

effect of ROS on cells is the damage of nucleic acids. Oxidative DNA damage occurs in

the form of strand breaks and base and nucleotide modifications (Waris and Ahsan

2006).

In the present study, we also evaluated the enzymatic reponse in C.

macropomum; GST and CAT activities, and LPO levels were investigated in fish liver.

There was no difference in GST activity between all treatments in fish exposed to the

current scenario. In the extreme scenario, GST activity had the same behavior as the

current scenario, where no difference was observed. There was a decrease in GST

activity in fish exposed to the extreme scenario in comparison to the current scenario of

2 to 3 fold, suggesting the malfunction of this organ regarding xenobiotic process, since

Page 110: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

94

this enzyme acts in the Phase II of xenobiotic metabolism, acting in exogenous

compounds, derived or not from Phase I of biotransformation resulting in the increase of

contaminants solubility in the water and, consequently, in the increase of the removal

rate. An increase in GST activity indicates efficient disposal of such compounds in the

body (Rinaldi et al., 2002). GST activity increases are widely reported in the literature in

fish exposed to pollutants (Jeved et al., 2016, Mohanty and Samanta, 2016, Pereira et

al., 2013). Sadauskas-Henrique and co-workers (2017) observed an increase in GST

activity in C. macropomum acutely (96 h) exposed to BaP (1, 10 and 100 μmolar. Kg-1

of BaP). Conversely, Almeida and co-workers (2012) observed no differences in GST

activity of Dicentrarchus labrax L. exposed for 96h to BaP. Also, Beyer and colleagues

(1997) found no difference in GST activity of Platichthys flesus L. exposed to

benzo[a]pyrene; 2,3,3`,4,4`,5-hexachlorobiphenyl (PCB-156) and cadmium. Glutathione

S-transferase (GST) activities also remained unaffected by any of the treatments with

BaP (2, 4, 8, 16, 32, 64, 128 and 256 μg. L−1) in flatfish dab (Limanda limanda) (van

Shanke et al., 2000).

In the present work, the decrease in GST response was observed 30 days after

the injection at the extreme scenario; temperature and CO2 levels probably influenced

the decline in GST activity over the pollutant effect. Some authors suggest that there is

no involvement of GST in detoxifying the BaP (Collier and Varanasi 1991, Lemaire et

al., 1992). The increase of temperature influences parameters such as metabolic rate

and oxygen consumption, and frequently causes oxidative stress in the ectothermic

organisms (Bagnyukova et al., 2007). Thus, the induction of antioxidant defenses is an

essential part of the stress response against oxidative stress in biological systems

(Parihar et al., 1997). Our results are in accordance with Bagnyukova and co-workers

data (2007) where goldfish (Carassius aurata) were acutely moved from 3 to 23 oC,

and, as consequence, GST activities increased in the brain after 48 h exposure at the

warmest temperature, but decreased again to initial values by 120 h. Liver GST activity

was unaffected by the experimental conditions in goldfish.

Changes in environmental conditions such as thermal stress and pollution can

lead to oxidative stress in organisms by the production of Reactive Oxygen Species

(ROS) (Ahmed, 2005, Helliwel 1994). Aerobic organisms face challenges associated

Page 111: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

95

with the formation of reactive oxygen species (ROS), including superoxide (O2•–),

hydroxyl radical (–OH) and the peroxyl radical (ROO•) (Halliwell and Gutteridge, 1999).

The challenges associated to ROS include several cellular components: lipids, proteins,

free amino acids, DNA, and carbohydrates (Toyokuni, 1999; Abele and Puntarulo,

2002). To cope with oxidative stress, the cell has a nonenzymatic and enzymatic

antioxidant system involved in many cellular reactions to removal of ROS (van der Oost

et al., 2003, Fang et al., 2002).

One of these enzymatic systems involves catalase (CAT). Catalase reduces

H2O2 to water, prevents oxyradical formation, and intercepts oxidative propagation

reactions promoted by the oxyradicals (Bainy et al. 1996). We didn’t observe any

alteration in CAT activity of fish injected with BaP in fish exposed to the current and

extreme scenario. Similar to GST, CAT activity decreased in all treatments in fish

exposed to the extreme scenario.

Catalase activity in the liver was not affected in Dicentrarchus labrax exposed in

vivo to chronic hydrocarbon pollution (Danion et al., 2014). Pan and co-workers (2009)

verified that the exposure to different concentrations of benzo(a)pyrene (BaP) (0.5 μg/L,

1.0 μg/L, 10.0 μg/L and 50.0 μg/L) in scallop Chlamys farreri for 30 days in seawater

resulted in the increase of CAT activity after 6 and 3 days exposure to 0.5 and 1.0 μg/L,

respectively, presenting a decrease to control levels after the entire experimental

period. The CAT activities of fish exposed to 10.0 μg/L and 50.0 μg/L BaP decreased

during the entire experimental period. In our experiment, we verified no change of CAT

activity. It is most probable that the CAT activity dropped to the control level at the end

of the 30 days due to cellular malfunction. No difference was observed in CAT activity

o in C. macropomum exposed to intraperitoneal injection of 1000 μmolar Kg-1 BaP for

96 h, as describe by Sadauskas-Henrique and collaborators (2017). Madeira and co-

workers (2013) described the effect of temperature (24 to 32 oC) in CAT activity in

Diplodus sargus, which presented significant changes in fish exposed to increasing

temperature; and in Diplodus vulgaris the opposite occurred, with a significant decrease

in fish exposed to higher temperature (2.6-fold decrease as temperature increased).

Some reactive oxygen species possess sufficient energy to initiate lipid

peroxidation in biological membranes, self-propagating reactions with the potential to

Page 112: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

96

damage membranes by altering their physical properties and ultimately their function

(Crockett 2008). Some ROS can initiate lipid peroxidation (LPO), a self-propagating

process in which a peroxyl radical is formed when a ROS has sufficient reactivity to

abstract a hydrogen atom from an intact lipid (Halliwell and Gutteridge, 1999). The

membrane peroxidation reaction is initiated when there is a subtraction of allylic

hydrogen, carbon which is adjacent to the double bond, the ROS as ●OH, thereby

forming a lipid peroxy radical (L-OOH). Thus, a molecule ●OH can generate

propagation of the lipid peroxidation, which leads to changes in membrane fluidity and

permeability, impairing cell function and tissue of animals (Sadauskas-Henrique, 2015).

In the present work, we observed no change in hepatic LPO levels in fish

exposed to different concentration of BaP kept in the current scenario. Instead, in the

extreme scenario, fish exposed to BaP decrease LPO levels, again suggesting an

impairment of antioxidant defense of the cell. LPO levels declined in all treatments at

the extreme scenario in comparison with the same treatments of the current scenario.

Several works had related a different result for LPO levels in fish exposed to pollutants,

increasing the lipid peroxidation products (Choi and Oris 2000, Sayeed et al., 2003).

Almeida and co-workers (2012) observed high LPO levels in Dicentrarchus labrax L.

exposed to BaP for 96 h. The same was observed by Sadauskas-Henrique and

collaborators (2017) where an increase in LPO levels occurred in C. macropomum

exposed acutely to BaP Injection. Similar to our findings, some authors described low

LPO levels; Solé and co-workers (2008) reported no difference in LPO levels of 8 fish

species (Pagellus acarne, Mullus barbatus, Merluccius merluccius, Trisopterus minutus,

Micromesistius poutassou, Phycis blennoides, Trachyrhynchus scabrous and Galeus

melastomus) sampled in a polluted area in Barcelona coast (NW Mediterranean Sea).

Sagerup and co-workers (2016) verified the biological effects of marine diesel oil

exposure in red king crab (Paralithodes camtschaticus); lipid peroxidation levels in the

low and high exposure groups were significantly lower.

Our results suggest that the extreme scenario in tambaqui injected with BaP

influenced the LPO levels. Madeira and co-workers (2013) verified no alteration in LPO

levels in Diplodus vulgaris exposed to high temperatures. The same authors suggest

that the response is species specific and cannot be generalized to untested organisms

Page 113: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

97

(Madeira et al., 2013). Oliveira (2014), studying the levels of stearoyl-CoA (SCD) gene

expression in C. macropomum exposed to different IPCC (2007) scenarios, proposed

that elevation of the temperature and CO2 can alter the lipid properties of the biological

membranes. The effects of temperature and CO2 in SCD influence the physical

properties of lipid complex systems, particularly membrane phospholipids, triglycerides

and cholesterol, which can result in changes of membrane fluidity and lipid metabolism.

Histopathological indicator is a useful tool for fish health monitoring. Histological

analyses provide information about the effects of contaminants in a particular organ and

are also relevant for the assessment of fish stress (Rašković et al., 2013, van der Oost

et al., 2003, Schwaiger et al., 1997). In the present work, we observed an increase liver

damage in C. macropomum exposed to BaP in both scenarios (current and extreme),

and, in opposition of the gene expression results, there was no effect of the extreme

scenario exposure. In fact, fish from both scenarios and exposed to BaP presented

cellular vacuolization, deformation in cell shape, nuclear degeneration, cytoplasmic

degeneration and cell disruption. Leite and co-workers (2015) observed cytoplasmic

vacuolization, nucleus abnormally located in the cell periphery and changes in cell

shape in Oreochromis niloticus exposed to high doses of water-soluble fraction (WSF).

These are considered responses to stressors since they are indicative of the functional

activation of this organ. Cellular vacuolization is an alteration described after

contamination of a lot of pollutants as organophosphorus (Fanta et al., 2003), chromium

(Mishra and Mohanty 2008), paraquat (Salazar-lugo et al., 2011) and heavy oil (Pal et

al., 2011). Cytoplasmic vacuolization is usually produced by deposition of glycogen and

lipids (Myers et al., 1987), which will eventually lead to the displacement and

deformation of the nucleus (Holm et al., 1991).

The most relevant histological alterations observed in the liver of Prochilodus

lineatus exposed to WSD were biliary stagnation, nuclear and cellular degeneration

(Simonato et al., 2008). We also observed nuclear and cellular degeneration in C.

macropomum exposed to BaP. In our experiment, fish injected with BaP showed

necrosis and leucocytes infiltration. Khan (1998) found necrosis in winter flounder

(Pleuronectes americanus) sampled next to a petroleum refinery. Necrosis was

frequently recorded in the BaP-exposed rainbow trout, often accompanied by massive

Page 114: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

98

infiltration with inflammatory cells (Malmstrom et al., 2004). Herein, the observed HP in

C. macropomum indicates that this species is sensible to BaP exposure so that necrosis

occur impairing the proper function of the organ, what is evidenced by our enzyme

measurements.

Oncogenes are altered cellular genes that disrupt the control systems of cell

growth and cell differentiation and, in this way, contribute to the development of cancer

cells (Bishop, 1987). The ras oncogene is considered one of the most important genes

involved in multistep carcinogenesis (Bos, 1989). Ras genes are a ubiquitous eukaryotic

gene family identified in mammals, birds, fishes, insects, mollusks, plants, fungi, and

yeasts. Sequence analysis of these genes and their products has revealed a high

degree of conservation, which suggests that they may play a fundamental role in

cellular proliferation (Barbacid, 1987). Ras genes have been characterized in several

fish species, and they all had a high degree of nucleotide sequence and deduced amino

acid similarity with the mammalian ras gene (Rotchell et al., 2001, Vincent et al., 1998).

In the present work we observed, exposure to different BaP dosages at the

current scenario caused no difference in ras oncogene expression. Nogueira and co-

workers (2006) described similar results studying European eel (Anguilla anguilla L.)

exposed during one month to BaP; no mutations or changes in ras oncogene

expression levels occurred compared to control fish. Later, Nogueira and co-workers

(2010) also found no alteration in ras oncogene expression in the liver of Dicentrarchus

labrax and Liza aurata colected in a contaminated coastal lagoon from River Aveiro,

Portugal.

Conversely, the exposure to the future scenario caused an increase in ras

oncogene expression in C. macropomum injected with BaP (8 and 16 mol/kg)

suggesting that the extreme increase in the mean temperature and CO2 magnified the

effects of this HPA, one of the strongest pollutant derived from petroleum. Most works

with fish ras oncogene describe the hot spots for the mutation that can induce cancer

(Cronin et al., 2002, Vincent et al., 1998, Torten et al., 1996). Ras gene mutation is

considered to develop cancer, and its overexpression is the second mechanism

implicated in carcinogenesis (Nogueira et al., 2006). In a previous experiment, we

verified the overexpression of ras oncogene on the liver of C. macropomum acutely

Page 115: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

99

exposed to 8 and 16 mol/kg of BaP (96 h) (Silva et al., accepted for publication). Lee

and co-workers (2006) described the up-regulation of c-K-ras (long form) in the liver of

Rivulos mamoratus treated with a 4-nonylphenol endocrinal disruptor, but there was no

significant up-regulation of c-Ki-ras (short form). R-ras gene was also up-regulated on

the liver of Kryptolebias marmoratus after exposure to an endocrine-disrupting

chemical. The authors showed that the liver showed the highest level of expression

compared to other tissues, even though each R-ras gene showed different expression

patterns in tissues (Rhee et al., 2009).

Another gene involved in neoplasia development is the hypoxia inducible factor-

1 (hif-1). Most of the works with hif-1 expression in fish are related to environmental

hypoxia (Rimoldi et al., 2012, Shen et al., 2010). However, this gene is also related to

the development of tumor and is overexpressed in the cancer cellular environment

(Wong et al., 2003, Law et al., 2008). Herein, we observed no alteration in hif-1

expression in fish exposed to different treatments of BaP in the current scenario.

However, hif-1 was overexpressed in fish injected with BaP and exposed to extreme

scenario, both compared to fish injected with corn oil (control), and with fish with similar

treatments in the current scenario. Yu and co-workers (2008) examined the expression

of four hypoxia-responsive genes (HIF-1-mediated) – igfbp (insulin-like growth factor

binding protein), epo (erythropoietin), ldh-a (lactate dehydrogenase-a isoform) and vegf

(vascular endothelial growth factor) in the orange-spotted grouper (Epinephelus

coioides) upon single and combined exposures to BaP and hypoxia. BaP in normoxic

condition did not induce the expression of any of the above-mentioned genes. Instead,

we observed an overexpression of hif-1 on the liver of C. macropomum acutely

exposed to BaP (4, 8, 16 mol/kg) in normoxic environment (Silva et al., accepted for

publication).

In the present work, we observed an increase on the relative expression of ras

oncogene and hif-1 gene in fish injected with BaP and exposed to the extreme

scenario compared with fish exposed to BaP in the current scenario, what was

corroborated by the PCA analysis. The effect of increased temperature and CO2 is

manifested at all levels in the organism, from genes to behavior; and changes in

Page 116: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

100

temperature over diel or seasonal periods induce shifts in a variety of gene transcripts

expression levels that result in numerous metabolic and hormonal adaptations

(Hochachka and Somero, 2002). Moreover, temperature-driven gene expression

changes in fish adapted to differing thermal environments are constrained by the level

of gene pleiotropy, estimated by either the number of protein interactions or gene

biological processes (Papakostas et al., 2014). This must be the case of both genes

studied herein; oncogene ras and hif-1, which, as already mentioned, are responsible

by the control of a series of other gene transcripts.

Rissanen and co-workers (2006) verified the effect of different temperatures (8,

18 and 26 oC) over HIF-1 in crucian carp (Carassius carassius). Temperature had a

significant effect on HIF-1 protein amounts in the liver and gills of crucian. In the heart,

acclimation to cold (8 °C) increased HIF-1a protein amounts slightly, but not

significantly. Mladineo and Block (2009), studying the effects of chronic warm (23 oC)

and cold (15 oC) exposure in bluefin tuna (Thunnus sp), observed an increase in the

amount of hif-1 transcripts in liver. No information is available in the literature

regarding the effects of temperature on ras oncogene expression in fish. However it is

already known that temperature influences the patterns of gene expression (Hochachka

and Somero, 2002; Gutierrez de Paula et al., 2014). As occured with hif-1a relative

expression in C. macropomum injected with BaP, an increase in ras relative expression

was observed in fish injected with BaP and exposed to the extreme scenario, where the

temperature is 4.5 degrees higher than the current scenario. Eisenmann and Kim

(1997) described the substitution of leucine (L) by phenylalanine (F) at amino acid 19, a

conserved residue of H-Ras, after the in vivo exposure to different temperatures (15 o,

20 o, 24 o, 37 o and 42 oC); finding a temperature-dependent GTPase activity. In the

present work, the new scenario, where temperature was increased, magnified the

effects of BaP on oncogene ras and hif-1 gene expression. Temperature is generally

assumed to be positively correlated with toxic effects. This has been attributed to

increased uptake and increased accumulation of the toxicant at higher temperatures

(Holmstrup et al., 2010). Herein we evaluated the combination of increased

temperature, CO2 and pollutant, what may be a dangerous threat in the near future for

Page 117: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

101

fish of the Amazon due to both ongoing climate changes and increased pollution

activities.

In the current scenario there was not an increase in gene expression in

oncogene ras and hif-1 in fish injected with BaP in comparison with the control.

Otherwise, the GST and CAT activity and LPO levels were higher than fish under the

same treatments exposed to the extreme scenario. The activity of enzymes contributes

to cellular maintenance even in treatments where the fish received BaP injection and

tissue damage was severe.

5. Conclusions

The present work shows that climate changes as proposed by IPCC (2007) in the

extreme scenario (A2) magnifies the action of the contaminant (BaP), increasing the

expression of the ras oncogene and hif-1 gene. Overexpression of both genes in the

extreme scenario in fish injected with BaP can be explained by the increased metabolic

demands of the liver for maintaining cellular integrity since ras is involved with the

control of the cell cycle, and hif-1 participates in cell proliferation and erythropoiesis.

The increase in ras oncogene and hif-1 expression compensates for the low

responses of GST, CAT, and LPO, helping to maintain cell survivor since liver tissue in

fish injected with BaP in the extreme scenario was greatly injured. After 30 days

exposuer to climate changes, the biomarkers GST, CAT, and LPO did not present

differences in the extreme scenario, showing maladaptive responses to oxidative stress

that needs to be better understood. The blood cells DNA strand breaks were expected

in fish exposed to BaP, but the effect of the A2 (IPCC, 2007) scenario magnified the

genotoxicity in fish injected with 16mol/kg BaP. Irreparable tissue damage occurred in

both scenarios, where fish exposed to BaP presented necrosis. So, fish cellular

defenses to BaP were diminished as fish were kept in the extreme scenario due to

magnification of some damages, and impairment of antioxidant metabolism. As a

consequence, the overexpression of ras and hif-1 was the way the cells responded to

keep fish survival in such conditions. Further studies are needed to find out these

responses in a prolonged period under such extreme scenario.

Page 118: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

102

Acknowledgments: FAPEAM and CNPq supported this study through INCT-ADAPTA

grant to ALV. We thank Julie Andrez de Andrade Paredes and Juliana Freitas their

assistance in realize the experiment. Thank for SERPROR for the donation of the fish

used in the experiment. Thanks are also due to the personnel of the Functional

Histology Laboratory of the Federal University of Amazonas for their support with the

preparation of histological material.

6. References

Abele, D., Heise, K., Pörtner, H. O., & Puntarulo, S. (2002). Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. Journal of Experimental Biology, 205(13), 1831-1841. Adhikari, S., Sarkar, B., Chatterjee, A., Mahapatra, C. T., & Ayyappan, S. (2004). Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicology and Environmental Safety, 58(2), 220-226. Ahmed, R.G., 2005. Is there a balance between oxidative stress and antioxidant defense system during development? MJIAS 15 (2), 55–63. Almeida J.R.; Gravato C. and Guilhermino L. (2012). Biological parameters towards polycyclic aromatic hydrocarbons pollution: A Study with Dicentrarchus labrax L. Exposed to the Model Compound Benzo(a)pyrene. Water Air and Soil Pollution, 223(8):4709-4722. Anitha, B., Chandra, N., Gopinath, P. M., & Durairaj, G. (2000). Genotoxicity evaluation of heat shock in gold fish (Carassius auratus). Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 469(1), 1-8.

Araldi, R.P., de Melo, T.C., Mendes, T.B., de Sa Junior, P.L., Nozima, B.H.N., Ito, E.T., de Cassia Stocco, R. (2015). Using the comet and micronucleus assays for genotoxicity studies: a review. Biomedicine & Pharmacotherapy, 72: 74-82.

Azqueta, A. and Collins, A.R. (2013). The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Archives of toxicology, 87(6): 949-968.

Bagnyukova, T.V., Lushchak, O.V., Storey, K.B., & Lushchak, V.I. (2007). Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23 C. Journal of Thermal Biology, 32(4), 227-234. Bainy, A., Saito, E., Carvalho, P., Junqueira, V. (1996) Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology. 34:151–162. Barbacid, M. (1987). Ras genes. Annual review of biochemistry, 56(1), 779-827.

Barcellos, L.J.G., Kreutz, L.C., Souza, C., Rodriguez, L.B., Fioreze, I., Quevedo, R.M., Cericato, L., Soso, A.B., Fagundes, M., Conrad, J., Lacerda, L.A., Terra, S. (2004). Haematological changes in Jundia

Page 119: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

103

(Rhamdia quelen) after acute and chronic stress caused by usual aquacultural management, with emphasis on immunosuppressive effects. Aquaculture, 237: 229–236.

Beutler, E. (1975). Red Cell Metabolism: A manual of biochemical methods. Grune & Straton, New York.

Bos, J.L., 1989. Ras oncogenes in human cancer: a review. Cancer Research, 49: 4682–4689. Beyer, J., Sandvik, M., Skare, J. U., Egaas, E., Hylland, K., Waagbo, R., & Goksoyr, A. (1997). Time-and dose-dependent biom arker responses in flounder (Platichthys flesus L.) exposed to benzo [a] pyrene, 2, 3, 3′, 4, 4′, 5-hexachlorobiphenyl (PCB-156) and cadmium. Biomarkers, 2(1), 35-44. Bishop, J.M. (1987) The molecular genetics of cancer, Science. 235: 305-311. Bombail, V., Aw, D., Gordon, E., Batty,J. (2001) .Application of the comet and micronucleus assay to butter fish (Pholis gunnellus) erythrocytes from the Firth of Forth, Scotland. Chemosphere, 44: 383–392.

Bos, J.L. (1988). The ras gene family and human carcinogenesis. Mutation Research/Reviews in Genetic Toxicology, 195(3), 255-271. Boyd, C.E.; Tucker, C.S. (1992). Water quality and pond soil analysis for aquaculture. Auburn: Auburn University. 183p.

Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of

protein utilizing the protein-dye binding. Analytical Biochemistry, 72:248-254.

Brandão, R.M.L. Efeitos do hormônio do crescimento recombinante bovino (rbgh lactotropin

®) na

expressão do gene igf-i e parâmetros fisiológicos em juvenis de tambaqui (Colossoma macropomum)/ Rúbia Maielli Lima Brandão. Dissertação (mestrado) Newton Lins, Manaus, 2015. Orientador: Dra.Vera Maria Fonseca de Almeida e Val. Área de concentração: Aquicultura. Brow, B.A. 1976. Hematology: principles and procedures. 2ª ed. Philadelphia. Lea & Febiger.

Buschini, A., Carboni, P., Martino, A., Poli, P., & Rossi, C. (2003). Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(1), 81-92. Cavas, T. (2011). In vivo genotoxicity evaluation of atrazine and atrazine–based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food and Chemical Toxicology, 49(6), 1431-1435.

Choi, J., and Oris, J. T. (2000). Anthracene photoinduced toxicity to plhc‐1 cell line (Poeciliopsis lucida)

and the role of lipid peroxidation in toxicity. Environmental toxicology and chemistry, 19(11), 2699-2706. Collier T.K. & Varanasi U. (1991). Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole (Parophrys vetulus) exposed to environmental contaminants. Archives of Environmental Contamination Toxicology, 20:462–73.

Comte, L., Buisson, L., Daufresne, M., & Grenouillet, G. (2013). Climate‐induced changes in the

distribution of freshwater fish: observed and predicted trends. Freshwater Biology, 58(4), 625-639. Crockett, E.L. (2008). The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review. Journal of Comparative Physiology B, 178(7), 795-809.

Page 120: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

104

Cronin, M.A., Wickliffe, J.K., Dunina, Y., Baker, R.J. (2002). K-ras oncogene DNA sequences in pink salmon in streams impacted by the Exxon Valdez oil spill: no evidence of oil-induced heritable mutations. Ecotoxicology, 11: 233–241. Cui, H., Grosso, S., Schelter, F., Mari, B., and Krüger, A. (2012). On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation between TIMP-1, HIF-1α, and miR-210. Frontiers in pharmacology.3: 134. Danion, M., Le Floch, S., Lamour, F., & Quentel, C. (2014). EROD activity and antioxidant defenses of sea bass (Dicentrarchus labrax) after an in vivo chronic hydrocarbon pollution followed by a post-exposure period. Environmental Science and Pollution Research, 21(24), 13769-13778.

Eisenmann, D.M., & Kim, S.K. (1997). Mechanism of activation of the Caenorhabditis elegans ras homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics, 146(2), 553-565. Elith J., Kearney M. & Phillips S. (2010) The art of modeling range-shifting species. Methods in Ecology and Evolution. 1: 330–342. Fang, Y. Z., Yang, S., & Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18(10), 872-879. Fanta, E., Rios, F. S. A., Romão, S., Vianna, A. C. C., & Freiberger, S. (2003). Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicology and environmental safety, 54(2), 119-130. Ficke, A.D., Myrick, C.A., & Hansen, L.J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581-613. Fivelstad, S., Waagbø, R., Zeitz, S.F., Hosfeld, A.C.D., Olsen, A B., & Stefansson, S. (2003). A major water quality problem in smolt farms: combined effects of carbon dioxide, reduced pH and aluminium on Atlantic salmon (Salmo salar L.) smolts: physiology and growth. Aquaculture, 215(1): 339-357. Flammarion, P., Devaux, A., Nehls, S., Migeon, B., Noury, P., & Garric, J. (2002). Multibiomarker responses in fish from the Moselle River (France). Ecotoxicology and environmental safety, 51(2), 145-153. García-Tavera, J.L., Valdés-Lozano, D., Poblete-Naredo, I., Albores-Medina, A., & Zapata-Pérez, O. (2013). Bile benzo [a] pyrene concentration and hepatic CYP1A induction in hypoxic adult tilapia (Oreochromis niloticus). Chemosphere, 92(1), 16-23. González-Doncel, M., González, L., Fernández-Torija, C., Navas, J. M., & Tarazona, J. V. (2008). Toxic effects of an oil spill on fish early life stages may not be exclusively associated to PAHs: studies with Prestige oil and medaka (Oryzias latipes). Aquatic Toxicology. 87(4): 280-288.

Goulding, M., & Carvalho, M. L. (1982). Life history and management of the tambaqui (Colossoma macropomum, Characidae): an important Amazonian food fish. Revista Brasileira de Zoologia, 1(2), 107-133. Gouveia, C., Liberato, M.L.R., DaCamara, C.C., Trigo, R.M., & Ramos, A.M. (2011). Modelling past and future wine production in the Portuguese Douro Valley. Climate Research, 48(2-3), 349-362. Gouveia, C., Trigo, R.M., DaCamara, C. C., Libonati, R., & Pereira, J. (2008). The North Atlantic oscillation and European vegetation dynamics. International Journal of Climatology, 28(14), 1835-1847.

Page 121: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

105

Gutierrez de Paula, T. de Almeida, F. L. A., Carani, F. R., Vechetti-Junior, I. J., Padovani, C. R., Salomão, R. A. S., ... & Dal-Pai-Silva, M. (2014). Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 169, 31-37. Halliwell, B. (1994). Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. The lancet, 344(8924), 721-724. Hochachka, P. W., & Somero, G.N. (2002). Biochemical Adaptation, Mechanism and Process in Physiological Evolution Oxford University Press. USA, New York. Hofmann, G.E. & Todgham, A.E. (2010). Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology, 72: 127–145.

Holm, G., Norrgren, L., & Lindén, O. (1991). Reproductive and histopathological effects of long‐term

experimental exposure to bis (tributyltin) oxide (TBTO) on the three‐spined stickleback, Gasterosteus

aculeatus Linnaeus. Journal of fish biology, 38(3), 373-386.

Holmstrup, M., Bindesbøl. A-M., Oostingh, G.J., Duschl A., Scheil V., et al. (2010) Interactions between effects of environmental chemicals and natural stressors: A review. Science of The Total Environment, 408: 3746–3762. Hong, W.J., Jia, H., Li, Y.F., Sun,Y., Liu, X., & Wang, L. (2016). Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China. Ecotoxicology and environmental safety, 128: 11-20.

International Agency for Research on Cancer, (IARC). (2012). A review of human carcinogens: chemical agents and related occupations. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100 F, pp. 111-114. http:// monographs.iarc.fr/ENG/Monographs/vol100F/. Intergovernmental Panel on Climate Change (IPCC). 2007. Summary for Policymakers. In: Solomon, S.; Qin, D.; Manning, M., Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds). Climate Change 2007: The 117 Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, United States of America. p. 1-17. Inzunza, B., Orrego, R., Peñalosa, M., Gavilán, J. F., & Barra, R. (2006). Analysis of CYP4501A1, PAHs metabolites in bile, and genotoxic damage in Oncorhynchus mykiss exposed to Biobio River sediments, Central Chile. Ecotoxicology and environmental safety, 65(2): 242-251. Javed, M., Ahmad, I., Usmani, N., & Ahmad, M. (2016). Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent. Ecotoxicology and environmental safety, 127, 163-169. Jee, J. H., & Kang, J. C. (2004). Effect of phenanthrene on haematological parameters in olive flounder, Paralichthys olivaceus (Temminch et Schlegel). Aquaculture Research, 35(14): 1310-1317.

Jee, J. H., Park, K. H., Keum, Y. H., & Kang, J. C. (2006). Effects of 7, 12‐dimethylbenz (a) anthracene on

growth and haematological parameters in Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquaculture Research. 37(5): 431-442.

Jha, A.N. (2008). Ecotoxicological application and significance of the comet assay. Mutagenesis. 23: 207–221.

Page 122: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

106

Jiang, Z.Y., Woolland, A.C.S., Wolf, S.P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange-comparison with TBA assay and on iodometric method. Lipids 26:777-860. Kampen, E.J. & Zijlstra, W.G. 1964. Standartization of haemoglobinometry. In: Boroviczény, C. G. (Ed.) Erythrocytometric Methods and their standardization. Blibliotheca Haematologica, p.68-72. Karol, I.L., Kiselev, A.A. and Frolkis, V.A. (2011). Indices of the Factors that Form Climate Changes of Different Scales. Atmospheric and Oceanic Physics, 47(4): 415–429. Kitajima, Y., & Miyazaki, K. (2013). The critical impact of HIF-1a on gastric cancer biology. Cancers, 5(1), 15-26. Kaya, H., Hisar, O., Yılmaz, S., Gürkan, M., & Hisar, Ş. A. (2016). The effects of elevated carbon dioxide and temperature levels on tilapia (Oreochromis mossambicus): Respiratory enzymes, blood pH and hematological parameters. Environmental toxicology and pharmacology, 44, 114-119.

Keen, J.H., Habig, W.H., Jakoby, W.B. 1976. Mechanism for the several activities of the glutathione S-transferase. The Journal of Bbiological Chemistry, 251:6183-6188. Khan, R. A. (1998). Influence of petroleum at a refinery terminal on feral winter flounder, Pleuronectes americanus. Bulletin of Environmental Contamination and Toxicology, 61(6), 770-777. Kobayashi, S.C., Morikawa, Y., Hayashi, M., Sofuni, T. (1995). A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis assay MMS Community, 2 pp. 103–115. Kolch, W. (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochemical Journal, 351(2), 289-305. Law, A. Y., Lai, K. P., Ip, C. K., Wong, A. S., Wagner, G. F., & Wong, C. K. (2008). Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Experimental Cell Research, 314(8), 1823-1830. Lee, Y. M., Jung, S. O., Seo, J. S., Yoon, Y. D., & Lee, J. S. (2006). Cloning of Ki-ras and Ha-ras cDNAs from the hermaphroditic fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and its expression after exposure to 4-nonylphenol. Marine environmental research, 62, S136-S140. Leite, M.B.N.L., da Cruz, A.L., Rodrigues, L.E.A., Yamashita, S.R., Carqueija, C.R.G., & Nascimento, I. A. (2015). Comparing the Toxicity of Water-Soluble Fractions of Biodiesel, Diesel and 5% Biodiesel/Diesel Blend on Oreochromis niloticus Using Histological Biomarkers. Bulletin of Environmental Contamination and Toxicology, 95(5), 574-581. Lemaire, P., Mathieu, A., Carrière, S., Narbonne, J.F., Lafaurie, M., & Giudicelli, J. (1992). Hepatic biotransformation enzymes in aquaculture European sea bass (Dicentrarchus labrax): kinetic parameters and induction with benzo (a) pyrene. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(4), 847-853. Lima, M.P. Efeitos das mudanças climáticas sobre a expressão gênica e fisiologia do tambaqui (Colossoma macropomum Cuvier, 1818)/ Marcos Prado Lima. Manaus: AM, 2014. xvii+152p. Tese (doutorado) INPA, Manaus, 2016.Orientador: Dr. Adalberto Luís Val Área de concentração: Genética, Conservação e Biologia Evolutiva. Lotufo, G. R., and Fleeger, J. W. (1997). Effects of sediment-associated phenanthrene on survival, development and reproduction of two species of meiobenthic copepods. Marine Ecology Progress Series, 151: 91-102.

Page 123: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

107

Lucas, J., Percelay, I., Larcher, T., & Lefrançois, C. (2016). Effects of pyrolytic and petrogenic polycyclic aromatic hydrocarbons on swimming and metabolic performance of zebrafish contaminated by ingestion. Ecotoxicology and Environmental Safety, 132: 145-152. Madeira, D., Narciso, L., Cabral, H. N., Vinagre, C., & Diniz, M. S. (2013). Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166(2), 237-243. Malmström, C. M., Koponen, K., Lindström-Seppä, P., & Bylund, G. (2004). Induction and localization of hepatic CYP4501A in flounder and rainbow trout exposed to benzo [a] pyrene. Ecotoxicology and environmental safety, 58(3), 365-372.

Manoli, E., & Samara, C. (1999). Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC Trends in Analytical Chemistry, 18(6), 417-428.

Maria, V.L., & Bebianno, M. J. (2011). Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo (a) pyrene and copper. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 154(1): 56-63.

Mishra, A.K., & Mohanty, B. (2008). Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environmental Toxicology and Pharmacology, 26(2), 136-141. Mladineo, I., & Block, B.A. (2009). Expression of Hsp70, Na+/K+ ATP-ase, HIF-1α, IL-1β and TNF-α in captive Pacific bluefin tuna (Thunnus orientalis) after chronic warm and cold exposure. Journal of Experimental Marine Biology and Ecology, 374(1), 51-57. Mohanty, D., and Samanta, L. (2016). Multivariate analysis of potential biomarkers of oxidative stress in Notopterus notopterus tissues from Mahanadi River as a function of concentration of heavy metals. Chemosphere. 155: 28-38. Montalto, A. S., Currò, M., Russo, T., Visalli, G., Impellizzeri, P., Antonuccio, P., ... & Romeo, C. (2013). In vitro CO2-induced ROS production impairs cell cycle in SH-SY5Y neuroblastoma cells. Pediatric surgery international, 29(1), 51-59. Moore, M.J., Smolowitz, R., and Stegeman, J.J. (1989). Cellular alterations preceding neoplasia in Pseudopleuronectes americanus from Boston Harbor. Marine Environmental Research, 28(1-4), 425-429. Myers, M.S., Olson, O.P., Johnson, L.L., Stehr, C.S., Hom, T., & Varanasi, U. (1992). Hepatic lesions other than neoplasms in subadult flatfish from Puget Sound, Washington: relationships with indices of contaminant exposure. Marine Environmental Research, 34(1-4), 45-51.

Myers, M.S., Rhodes, L.D., & McCain, B.B. (1987). Pathologic anatomy and patterns of occurrence of hepatic neoplasms, putative preneoplastic lesions, and other idiopathic hepatic conditions in English sole (Parophrys vetulus) from Puget Sound, Washington. Journal of the National Cancer Institute, 78(2), 333-363. Navarro, C.E.K.G.; Pachaly, J.R. 1994. Manual de hematologia veterinária. São Paulo: Varela. p. 74–75.

Nogueira, P., Pacheco, M., Pereira, M. L., Mendo, S., & Rotchell, J. M. (2010). Anchoring novel molecular biomarker responses to traditional responses in fish exposed to environmental contamination. Environmental Pollution, 158(5), 1783-1790. Nogueira, P. R., Lourenço, J., Mendo, S., & Rotchell, J. M. (2006). Mutation analysis of ras gene in the liver of European eel (Anguilla anguilla L.) exposed to benzo [a] pyrene. Marine pollution bulletin. 52(12): 1611-1616.

Page 124: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

108

Oliveira, A.M. Influência da temperatura ambiental e dos cenários climáticos futuros sobre os ácidos graxos ω-3 e ω-6 e desempenho zootécnico do tambaqui (Colossoma macropomum)/Alzira Miranda de Oliveira. Manaus: AM, 2014. xi+127p. Tese (doutorado) INPA, Manaus, 2014. Orientador: Dr. Adalberto Luís Val. Área de concentração: Biologia de Água Doce e Pesca Interior. Oliveira, A.M. & Val, A.L. (2016). Effects of climate scenarios on the growth and physiology of the Amazonian fish tambaqui (Colossoma macropomum) (Characiformes: Serrasalmidae). Hydrobiologia. DOI 10.1007/s10750-016-2926-0 Osorio-Yáñez, C., García-Tavera, J.L., Pérez-Núñez, M.P.,Poblete-Naredo, I., Muñoz, B., Barron-Vivanco, B.S., Rothenberg, S.J., Omar Zapata-Pérez, O., and Albores, A. (2012). Benzo (a) pyrene induces hepatic AKR1A1 mRNA expression in tilapia fish (Oreochromis niloticus). Toxicology Mechanisms and Methods, 22(6), 438-444. Pal, S., Kokushi, E., Cheikyula, J. O., Koyama, J., & Uno, S. (2011). Histopathological effects and EROD induction in common carp exposed to dietary heavy oil. Ecotoxicology and Environmental Safety, 74(3), 307-314.

Pan, L., Ren, J., & Zheng, D. (2009). Effects of benzo (a) pyrene exposure on the antioxidant enzyme activity of scallop Chlamys farreri. Chinese Journal of Oceanology and Limnology, 27, 43-53. Papakostas, S., Vøllestad, L. A., Bruneaux, M., Aykanat, T., Vanoverbeke, J., Ning, M., ... & Leder, E. H. (2014). Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions. Nature Communications, 5. Parihar, M.S., Javeri, T., Hemnani, T., Dubey, A.K., & Prakash, P. (1997). Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology, 22(2), 151-156. Pereira, S., Pinto, A.L., Cortes, R., Fontaínhas-Fernandes, A., Coimbra, A.M., & Monteiro, S.M. (2013). Gill histopathological and oxidative stress evaluation in native fish captured in Portuguese northwestern rivers. Ecotoxicology and Environmental Safety, 90, 157-166.

Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT PCR. Nucleic Acids Research, 29(9): 2003-2007. Poleksic, V. & Mitrovic-Tutundžic V. 1994. Fish gills as a monitor of sublethal and chronic effects of pollution. IN: Müller, R.; Lloyd, R. Sublethal and chronic effects of pollutants on freshwater fish. Oxford: Fishing News Books. 30: 339-352.

Pryor, S.C., & Barthelmie, R.J. (2010). Climate change impacts on wind energy: a review. Renewable and Sustainable Energy Reviews, 14(1), 430-437.

Rašković, B., Jarić, I., Koko, V., Spasić, M., Dulić, Z., Marković, Z., & Poleksić, V. (2013). Histopathological indicators: a useful fish health monitoring tool in common carp (Cyprinus carpio Linnaeus, 1758) culture. Open Life Sciences, 8(10), 975-985 Ray, P.D., Huang, B.W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990.

Rhee, J. S., Lee, Y.M., Raisuddin, S., & Lee, J.S. (2009). Expression of R-ras oncogenes in the hermaphroditic fish Kryptolebias marmoratus, exposed to endocrine disrupting chemicals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(3), 433-439.

Page 125: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

109

Rimoldi, S., Terova, G., Ceccuzzi, P., Marelli, S., Antonini, M., & Saroglia, M. (2012). HIF-1α mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Molecular Biology Reports, 39(4), 4009-4015. Rinaldi, R., Eliasson, E., Swedmark, S., & Morgenstern, R. (2002). Reactive intermediates and the dynamics of glutathione transferases. Drug Metabolism and Disposition, 30(10), 1053-1058. Rissanen E, Tranberg HK, Sollid J, Nilsson GE and Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). Journal of Experimental Biology, 209: 994-1003. Rotchell, J.M., Lee, J.S., Chipman, J.K., Ostrander, G.K. (2001). Structure, expression and activation of fish ras genes. Aquatic Toxicology, 55: 1–21. Sadauskas-Henrique, H. Efeitos subletais da poluição por petróleo e derivados sobre peixes da Amazônia (Amazonas, Brasil) /Helen Sadauskas Henrique. Manaus: AM, 2015. xv+195p. Tese (doutorado) INPA, Manaus, 2015. Orientador: Dra.Vera Maria Fonseca de Almeida e Val. Área de concentração: Biologia de Água Doce e Pesca Interior. Sadauskas-Henrique, H., Duarte, R.M., Gagnon, M.M., Almeida-Val, V.M.F. (2017). Validation of a suite of biomarkers of fish health in the tropical bioindicator species, tambaqui (Colossoma macropomum). Ecological Indicators 73, 443–451. Sagerup, K., Nahrgang, J., Frantzen, M., Larsen, L. H., & Geraudie, P. (2016). Biological effects of marine diesel oil exposure in red king crab (Paralithodes camtschaticus) assessed through a water and foodborne exposure experiment. Marine Environmental Research, 119, 126-135. Salazar-Lugo, R., Mata, C., Oliveros, A., Rojas, L. M., Lemus, M., & Rojas-Villarroel, E. (2011). Histopathological changes in gill, liver and kidney of neotropical fish Colossoma macropomum exposed to paraquat at different temperatures. Environmental Toxicology and Pharmacology, 31(3), 490-495.

Sammour, T., Mittal, A., Loveday, B.P.T., Kahokehr, A., Phillips, A.R.J., Windsor, J.A., & Hill, A.G. (2009). Systematic review of oxidative stress associated with pneumoperitoneum. British Journal of Surgery, 96(8), 836-850. Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., & Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety, 56(2), 295-301. Schiedek, D., Sundelin, B., Readman, J. W., & Macdonald, R. W. (2007). Interactions between climate change and contaminants. Marine Pollution Bulletin, 54(12), 1845-1856. Schwaiger, J., Wanke, R., Adam, S., Pawert, M., Honnen, W., & Triebskorn, R. (1997). The use of histopathological indicators to evaluate contaminant-related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6(1), 75-86. Shackelford, R.E., Kaufmann, W.K., Paules, R.S. (1999). Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ. Health Perspective. 107 (1): 5–24.

Shaw, G. R., & Connell, D. W. (1994). Prediction and monitoring of the carcinogenicity of polycyclic aromatic compounds (PACs). In Reviews of Environmental Contamination and Toxicology (pp. 1-62). Springer New York.

Shen, R.J., Jiang, X.Y., Pu, J.W., & Zou, S.M. (2010). HIF-1α and-2α genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 157(3), 273-280.

Page 126: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

110

Silva, J., Freitas, T.R.O., Marinho, J.R., Speit, G., Erdtmann, B. (2000). An alkaline single-cell gel electrophoresis (comet) assay for environmental biomonitoring with native rodents. Genetics and Molecular Biology, 23(1): 241-245.

Silva, A.G. (2004). Alterações histopatológicas de peixes como biomarcadores da contaminação aquática. Dissertação (Mestre em Ciências Biológicas). Universidade Estadual de Londrina.

Simonato, J. D., Guedes, C. L., & Martinez, C. B. (2008). Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicology and Environmental Safety, 69(1), 112-120.

Singh, N. P.; M. T. Mccoy; R.R. Tice & E. L. Schneider. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175:184-191.

Solé, M., Lobera, G., Aljinovic, B., Ríos, J., de la Parra, L. G., Maynou, F., & Cartes, J. E. (2008). Cholinesterases activities and lipid peroxidation levels in muscle from shelf and slope dwelling fish from the NW Mediterranean: Its potential use in pollution monitoring. Science of the Total Environment, 402(2), 306-317.

Šrut, M., Štambuk, A., & Klobučar, G. I. (2010). Genotoxicity and genetic changes in RTG-2 fish cell line upon exposure to benzo [a] pyrene and ethyl methanesulfonate detected by the Comet assay and AFLP marker analysis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 157, S13.

Strobel, A., Burkhardt-Holm, P., Schmid, P., & Segner, H. (2015). Benzo (a) pyrene Metabolism and EROD and GST Biotransformation Activity in the Liver of Red-and White-Blooded Antarctic Fish. Environmental science & technology. 49(13): 8022-8032. Tishkov, A.A. (1994). Geographic Patterns of Natural and Anthropogenic Successions, Extended Abstract of Doctoral (Geogr.) Dissertation, Moscow: Inst. Geogr. Ros. Akad. Nauk. Tishkov, A.A., II i Mezhdunarodnyi Simpozium “Chuzherodnye vidy v Golarktike (Borok_2)” (II Int. Symp. “Alien Species in the Holarctic” (Borok 2)), Rybinsk: Ros. Akad. Nauk, 2005, p. 31. Torten, M., Liu, Z., Okihiro, M. S., Teh, S. J., & Hinton, D. E. (1996). Induction of ras oncogene mutations and hepatocarcinogenesis in medaka (Oryzias latipes) exposed to diethylnitrosamine. Marine Environmental Research, 42(1), 93-98.

Toyokuni, S. (1999). Reactive oxygen species‐induced molecular damage and its application in

pathology. Pathology international, 49(2), 91-102. Val, A.L. & Honczaryk, A. (1995). Criando peixes na Amazônia. Manaus: INPA (Editor), Manaus, Brasil. p.160. Val, A.L. & Almeida-Val, V.M.F. (1995). Fishes of the Amazon and their environment: physiological and biochemical features. Heidelberg: Springer-Verlag. Val, A. L., Kapoor, B. G., Raschi, W. G., & Gerry, S. P. (2003). Fish adaptations.

Van der Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental toxicology and pharmacology, 13(2), 57-149. van Schanke, A., Boon, J.P., Aardoom, Y., van Leest, A., van Schooten, F.J., Maas, L., ... & Everaarts, J.M. (2000). Effect of a dioxin-like PCB (CB 126) on the biotransformation and genotoxicity of benzo [a] pyrene in the marine flatfish dab (Limanda limanda). Aquatic Toxicology, 50(4), 403-415.

Page 127: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

111

Vásquez, K.L. Ontogenia das enzimas digestivas do tambaqui, Colossoma macropomum (CUVIER, 1818): subsídios para a aquicultura/Katherine López Vásquez. Manaus: AM, 2009. Tese (doutorado), Manaus, 2009.Orientador: Dr. Adalberto Luís Val Área de concentração: Biotecnologia. Vincent, F., Boer, J., Pfohl-Leszkowicz, A., Cherrel, Y., Galgani, F. (1998). Two cases of ras mutation are associated with liver hyperplasia in Callionymus lyra exposed to polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Molecular Carcinogenesis. 21: 121–127. Vogelbein, W. K., Fournie, J. W., Van Veld, P. A., & Huggett, R. J. (1990). Hepatic neoplasms in the mummichog Fundulus heteroclitus from a creosote-contaminated site. Cancer Research, 50(18), 5978-5986. Voolstra, C., Schnetzer, J., Peshkin, L., Randall, C.J., Szmant, A.M., Medina, M. (2009) Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics.10: 627. Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Gilden, S., Bunn, S.E., Sullivan, C.A., Reidy Liermann, C., Davies, P.M. (2010). Global threats to human water security and river biodiversity. Nature. 467: 555–561. Waris, G., & Ahsan, H. (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of Carcinogenesis, 5(1), 14. Winter, M.J., Day, N., Hayes, R.A., Taylor, E.W., Butler, P.J., & Chipman, J.K. (2004). DNA strand breaks and adducts determined in feral and caged chub (Leuciscus cephalus) exposed to rivers exhibiting variable water quality around Birmingham, UK. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 552(1), 163-175.

Wong, C., Wellman, T. L., & Lounsbury, K. M. (2003). VEGF and HIF-1α expression are increased in advanced stages of epithelial ovarian cancer. Gynecologic oncology, 91(3), 513-517.

Yang, G., Mercado‐Uribe, I., Multani, A. S., Sen, S., Shih, I. M., Wong, K. K., ... & Liu, J. (2013). RAS

promotes tumorigenesis through genomic instability induced by imbalanced expression of Aurora‐A and

BRCA2 in midbody during cytokinesis. International Journal of Cancer. 133(2): 275-285.

Yang, X., Meier, J., Chang, L., Rowan, M., & Baumann, P. C. (2006). DNA damage and external lesions in brown bullheads (Ameiurus nebulosus) from contaminated habitats. Environmental toxicology and chemistry, 25(11), 3035-3038.

Yu, R.M.K., Ng, P.K.S., Tan, T., Chu, D.L.H., Sun, Wu, R.S. & Kong R.Y.C. (2008) Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP). Aquatic Toxicology. 90: 235–242.

Page 128: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

112

Tables and Figures

Table 1. Physicochemical parameters of water and air in the current and extreme scenarios where the specimens of

tambaqui were kept for 30 days. The data are reported as the mean ± standard error of the mean.

Climate Scenarios

Treatments Water

O2 (mg.L-1

)

Water CO2

(ppm)

Water temperature

(°C)

pH Environment

ToC

Environment CO2

(ppm)

Current

Control

6.6 ± 0.06 7.1 ± 0.28 26.3 ± 0.20 6.7 ± 0.07

8 mol/kg BaP

6.7 ± 0.07 6.8 ± 0.20 26.2 ± 0.21 6.9 ± 0.03 30.6 ± 0.39 510.1 ± 5.80

16 mol/kg BaP

6.7 ± 0.06 6.8 ± 0.20 26.2 ± 0.20 6.9 ± 0.03

Extreme

Control

6.3 ± 0.07 11.7 ± 0.31 28.4 ± 0.16 7.0 ± 0.02

8 mol/kg BaP

6.3 ± 0.06 11.6 ± 0.30 28.5 ± 0.16 7.0 ± 0.03 34.1 ± 0.38 1349.2 ± 7.01

16 mol/kg Bap

6.3 ± 0.07 11.5 ± 0.27 28.5 ± 0.16 7.0 ± 0.03

Page 129: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

113

Table 2. Characteristics of each specific primer obtained for the experiment. Primers for endogenous

genes (28S e ef-1) and primers for the target genes (ras e hif-1).

Gene

Primer sequence (5`-3`)

forward/reverse

Length (bp)

Amplicon length(bp)

Tm

Ef(%)

*

28S-Fa

CGGGTTCGTTTGCGTTAC

18 150 54.5 98.19

28S-Ra

AAAGGGTGTCGGGTTCAGAT

20 150 56.3 98.19

ef-1Fb

GTTGGTGAGTTTGAGGCTGG

20 78 60.7 99.09

ef-1Rb

CACTCCCAGGGTGAAAGC

18 78 60.9 99.09

Ras-F

CCAGTACATGAGGACAGGAG

20 134 60.3 99.31

Ras-R

CAAGCACCATTGGCACATCG

20 134 60.3 99.31

HIF-1F

ATCAGCTACCTGCGCATG 18 133 59.3 100.69

HIF-1R

CTCCATCCTCAGAAAGCAC 19 133 57.3 100.69

*Primer Efficience a. Vasquez (2009) b. Brandão (2015)

Page 130: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

114

Table 3. Hematological parameters and glucose levels in plasma of tambaqui (Colossoma macropomum) injected with BaP

and submitted to climate scenarios provided by the IPCC for the year 2100. The values are presented as mean ± standard

error of the mean (SEM). Lowercase letters represent significant differences (p <0.05) between the different treatments of the

same room. The asterisk represents significant difference (p <0.05) between the same treatments in different rooms.

Climate Scenary

Treatment [Hb]

(g/dL)

Ht

(%)

RBC

(106/mm

3)

MVC

(μm3)

MHC

(pg)

MCHC

(%)

Glucose

mg/dL

Current Control 6.2 ± 0.3 a

23.8 ±0.6 a 1.4 ± 0.09

a 152.0 ± 5.3

a 43.4 ± 1.8

a 28.8 ± 1.7

a 41.9 ± 1.6

a

8 μmol/kg BaP

7.2 ± 0.04 a

24.5 ± 0.6 a 1.5 ± 0.05

a 162.8 ± 5.8

a 44.4 ± 2.3

a 29.5 ± 1.1

a 46.4 ± 0.2

a

16 μmol/kg BaP

6.8 ± 0.4 a

25.6 ±0.3

a 1.5 ± 0.09

a 156.8 ±7.5

a 42.3 ± 1.9

a 28.5 ± 1.1

a 44.0 ± 1.8

a

Extreme Control 7.0 ± 0.1 a

24.5 ± 0.5

a 1.5 ± 0.13

a 163.6 ± 9.6

a 40.5 ± 1.6

a 28.2 ± 1.2

a 48.4± 1.5

a

8 μmol/kg BaP

7.5 ± 0.1a

25.1 ± 0.4

a 1.8 ± 0.07

a 153.6 ±7.5

a 40.1 ± 2.1

a 29.5 ± 1.3

a 47.5 ± 1.9

a

16 μmol/kg Bap

7.0 ± 0.4 a

26.4 ± 0.8

a 1.4 ± 0.06

a 170.4 ± 5.7

a 52.1 ± 2.5

b* 28.5 ±0.8

a 43.5 ± 2.1

a

Page 131: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

115

Table 4. Histopathology and Indexes (HDI) of Tissue Damage and occurrence intensity (0 absente, 0+ low frequency, +

moderate frequency, ++ frequent and +++ high frequency) on the liver of C. macropomum after 30 days exposure to

climate scenarios (current and extreme) and treatments. Values indicate the stages of damage as modified by Poleksic

and Mitrovic-Tutundzic (1994). Data are means ± SEM, N= 10 (n=3).

Lesion Type

Current Scenario

Extreme Scenario

Stage Control 8 mol/kg of BaP

16mol/kg of BaP

Control 8 mol/kg of BaP

16 mol/kg of BaP

Nuclei Hypertrophy

I 0+ + + 0+ 0+ 0+

Cell Hypertrophy

I 0+ + ++ 0+ 0+ +

Nuclei in cell periphery

I + ++ ++ + + +

Cytoplasm Vacuolization

I + +++ ++ ++ ++ ++

Leukocyte infiltration

I 0+ ++ ++ 0+ 0+ +

Sinusoid Dilation

I 0 ++ ++ 0+ ++ ++

Cellular deformation

I + + + 0+ 0+ +

Derangement of hepatic cords

I 0 0+ 0+ 0+ 0+ 0+

Vessel congestion

II

0+ ++ ++ + + +

Nuclei vacuolization

II

0 0+ 0+ 0+ 0+ 0+

Nuclei degeneration

II

0+ ++ ++ + ++ ++

Cytoplasm degeneration

II

+ ++ ++ + ++ ++

Pyknotic nuclei

II

0+ + ++ 0+ + +

Cell disruption

II

0+ + + + + ++

Focal Necrosis

III

0+ ++ ++ + ++ ++

Histopathological Damage Index (HDI)

36.1 ±3.0 146.9 ± 2.1 144.1 ± 1.9 36.3 ±4.6 147.3 ± 2.3 142.3 ± 3.6

Effects

Moderate to severe alteration

Irreparable damage

Irreparable damage

Moderate to severe alteration

Irreparable damage

Irreparable damage

Page 132: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

116

GDI: Genetic damage index (0-400)

Figure 1. Distribution of the number of erythrocytes classified in each class of DNA damage in C.

macropomum exposed to the current and extreme scenarios and their respective treatments (control, 8

and 16mol/kg of BaP). The Genetic Damage Index (0-400) is identified in each treatment. Lowercase

letters represent significant differences (P <0.001) in GDI between the different treatments in the same

scenario. The asterisk represents significant difference (P <0.001) in GDI between the same treatments in

different scenarios.

Page 133: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

117

Figure 2. Liver glutathione-S-transferase (GST) of C. macropomum after 30 days exposure to current and

extreme scenarios and their respective treatments (control 8 and 16 mol/kg of BaP). Columns represent

means and vertical lines represent SEM. Lowercase letters represent significant differences (P <0.001)

between the different treatments in the same scenario. The asterisk represents significant difference (P

<0.001) between the same treatments in different scenarios.

Page 134: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

118

Figure 3. Liver catalase (CAT) activity of C. macropomum after 30 days exposure to current and extreme

scenarios and their respective treatments (control 8 and 16 mol/kg of BaP). Columns represent means

and vertical lines represent SEM. Lowercase letters represent significant differences (P <0.001) between

the different treatments in the same scenario. The asterisk represents significant difference (P <0.001)

between the same treatments in different scenarios.

Page 135: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

119

Figure 4. Liver lipid peroxidation (LPO) of C. macropomum after 30 days exposure to current and

extreme scenarios and their respective treatments (control 8 and 16 mol/kg of BaP). Columns represent

means and vertical lines represent SEM. Lowercase letters represent significant differences (P <0.001)

between the different treatments in the same scenario. The asterisk represents significant difference (P

<0.001) between the same treatments in different scenarios.

Page 136: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

120

Figure 5. Liver of C. macropomum exposed to the current scenario for 30 days and their respective

treatments (control, 8 and 16 mol/kg of BaP). A: Liver of C. macropomum exposed to control group.

Asterisk show blood vessel. B, C and D: C. macropomum exposed to 8mol/kg of BaP. B: Head arrows

indicate pyknotic nuclei. Big arrows show nuclear hypertrophy. Thin arrow indicates cellular hypertrophy.

C: Asterisk indicates a vessel congestion and thin arrow point to a nuclear vacuolization. D. Asterisk

indicates a big necrotic area with leukocyte infiltration (arrows). E and F C. macropomum exposed to

16mol/kg of BaP. E. Asterisk shows a hepatopancreas necrotic area and thin arrow indicates cell

disruption. F. Completely parenchyma vacuolization. Hematoxylin and Eosin stain.

Page 137: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

121

Figure 6. Liver of C. macropomum exposed to the extreme scenario for 30 days and their respective

treatments (control, 8 and 16 mol/kg of BaP). A: Liver of C. macropomum exposed to control group. B

and C: C. macropomum exposed to 8mol/kg of BaP. B: Thin arrows indicate a big area with sinusoidal

dilatation. C. Head arrows indicate pyknotic nuclei and thin arrows cellular disruption. D, E and F C.

macropomum exposed to 16mol/kg of BaP. D. Arrows indicate vessel congestion with blood stagnation

and vessel dilatation. E. Necrotic area (arrows) adjacent to hepatopancreas (asterisk). F. Necrotic

parenchyma. Arrows point to leukocyte infiltration. Hematoxylin and Eosin stain.

Page 138: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

122

Figure 7. Ras relative expression (A) and hif-1 relative expression (B) on the liver of C. macropomum

exposed to current scenario and extreme scenario and their respective treatments (Control, 8 and 16

mo/kg of BaP). Lowercase letters represent significant differences (P <0.001) between the different

treatments in the same scenario. The asterisk represents significant difference (P <0.001) between the

same treatments in different scenarios.

Page 139: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

123

Figure 8. Bioplots showing the distribution of PCA values for the variables analyzed in C. macropomum

exposed to the current scenario and extreme scenario (A2 proposed by IPCC (2007)). All groups are

compared and variation between variables is explained by P1=37.0% and P2=17.0%.

Page 140: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

124

Capítulo III

Hypoxia magnifies the effects of Roundup® over tambaqui genotoxicity, physiology and

gene expression levels.

Page 141: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

125

Title

Hypoxia magnifies the effects of Roundup® over tambaqui genotoxicity, physiology and

gene expression levels.

Running title

Tambaqui, Roundup®, hypoxia

Author names and affiliations

Grazyelle Sebrenski da Silva1,2, Carolina D. Abrahim1, Juliana O. S. Freitas1, Derek

Campos1 and Vera Maria Fonseca de Almeida e Val1

1Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National

Institute for Research in the Amazon (INPA). 69067-375 André Araújo Avenue, 2936,

Petrópolis. Manaus, AM, Brazil.

2Institute of Biological Science (ICB) in Amazon Federal University (UFAM), General

Rodrigo Octávio Ave, 6200, Coroado I. AM, Brazil

E-mail address: C.D. Abrahim ([email protected]), J.O.S. Freitas

([email protected]), D. campos ([email protected]) and V.M.F.

de Almeida e Val ([email protected])

Corresponding author: G.S. Sebrenski

Phone number: +55 92 3643 3188

E-mail address: [email protected]

Postal address: André Araújo Avenue, 2936, Petrópolis, 69067-375. Manaus, AM,

Brazil

Page 142: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

126

Abstract

Roundup® (RD) is a non-selective herbicide used to control the weeds around fish farm tanks,

threatening aquatic biota. Otherwise, among the natural challenges faced by fish in Amazon, is

the oscillation in dissolved oxygen in the water, resulting in periodic and intermittent episodes of

hypoxia. Considering the possibility of roundup® contamination in hypoxic environments, we

decided to evaluate the effects of hypoxia in fish exposed to this herbicide. Herein, we analysed

the physiological responses, including hematology, antioxidant defenses, gene expression and

histopatology of Colossoma macropomum affected by hypoxia and RD. Moreover, we assessed

bood cells nuclear damages to find out the genotoxicity of the combination of these two threats

causes in tambaqui as well as histopatological damages. To reach these objectives, fish were

placed in individual aquaria (n=10) and exposed to four different treatments; normoxia (N),

hypoxia (H), normoxia plus RD (75% of LC50% - nominal concentration 15 mg.L-1) (NRD); and

hypoxia plus RD (same dosage) (HRD). After 96 h, fish were anesthetized and bleed for

hematological analysis and genotoxicity effects. Fish were, then, euthanized and liver was

sampled for enzymatic analysis, gene expression, and histopatological damages observation.

Hif-1 and ras oncogene were down regulated in HRD. However, ras oncogene was

overexpressed in NRD (3.68-fold), and there was no difference in hif-1 gene expression

between N and NRD. The glutathione-S-transferase (GST) and catalase (CAT) activities

increased in fish exposed to HRD fish compared to fish exposed to NRD. Moreover, there was

no difference in lipoperoxidation (LPO) in the treatments normoxia N and NRD compared to

hypoxia conditions (H and HRD). On the other hand, comet assay DNA strand breaks increased

in NRD compared to N, but no difference was observed between H and HRD. Liver histological

injuries were higher in H and HRD groups, showing an increase in the incidence of necrosis. An

increase in blood hemoglobin, hematocrit, erythrocytes, corpuscular constants (MVC and MHC)

was observed in fish under H compared to N. Thus, C. macropomum may be considered more

sensitive to RD under hypoxic environment; notwithstanding the increase of antioxidant

defenses in hepatocytes, the damage on fish liver was irreparable under these severe

conditions.

Key-words: Roundup, Colossoma macropomum, hypoxia, ras oncogene and hif-1

Page 143: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

127

1. Introduction

Pesticides constitute a large group of chemicals, which are essential to control pests

in agriculture. Their application is still the most effective and accepted ways for

protection of plants from pests, contributing to the increase of agricultural productivity

(Tomita and Beyruth, 2002, Bolognesi, 2003, Cavalcante et al., 2008). The glyphosate-

based herbicide, Roundup® (RD), is among the most used pesticides worldwide

(Guilherme et al., 2010). Roundup® is formulated as isopropylamine salt and contains

the surfactant polyethoxylene amine (POEA), which is added to improve the efficacy of

the herbicide (Tsui and Chu, 2004, Relyea, 2005). RD is applied in crop fields to

unwanted weeds, and also surrounding fishponds, lakes and canals to control or

removal of herbaceous plants (Bolognesi, 2003, Neškovic et al., 1996). The presence of

herbicides in aquatic systems will directly and indirectly contaminate fish, other animals

and plants (Cattaneo et al., 2011). The exposure of non-target aquatic organisms to this

herbicide is a concern especially because changes in the chemical composition of

natural aquatic environments can affect them, particularly fish. Fish have been largely

used to evaluate the quality of aquatic systems as bioindicators for environmental

pollutants (Tsui and Chu, 2003). There are many studies describing the effects of RD in

fish (Gholami-Seyedkolaei et al., 2013, Cavalcante et al, 2008, Langiano and Martinez,

2008, Glusczak et al., 2006). A recent work has addressed the effects of RD in the

Amazon fish Colossoma macropomum; Braz-Mota and co-workers (2015) described gill

histopathological changes, hematological and DNA damage in C. macropomum acutely

exposed (96 h) to sub-lethal concentration of RD (50% and 75%, LC50). RD is

commonly used in the Amazonas state to control weeds in fish farms (Araújo et al.,

2008). The use of herbicides to control weeds around fish tanks in the fish farms in the

Amazon is very worrying, since aquaculture is an economic area in constant

development in the region.

Besides the presence of contaminants such as herbicides, other challenges fish

must cope with in the Amazon region are the changes in physical and chemical

parameters of the water, particularly dissolved oxygen levels. Water dissolved oxygen

levels oscillate on a seasonal and diel basis in the Amazonian waters (Junk, 1980; Val

Page 144: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

128

and Almeida-Val, 1995). The oscillation in the water results in low levels of oxygen,

resulting in intermittent or cronic periods of profound hypoxia (< 2 mg O2. L-1) (Val et

al.,1995). In flooded areas, varzea and igapós, drastic environmental changes in

oxygen availability are observed in a single day. To survive low oxygen tensions at high

temperature, Amazon fish have developed many respiratory strategies (Val and

Almeida-Val, 1995). One strategy is the maintenance of low levels of activity depressing

the metabolism, which is predominantly powered by anaerobic metabolism, decreasing

the ATP demands (Boutilier, 2001; Lutz and Nilsson, 1997). Fish may down regulate

metabolism to decrease the oxygen demand during hypoxia exposure. The critical

oxygen tension (PO2crit) is the minimum oxygen level required to sustain the routine

oxygen consumption rate (MO2rout). PO2crit is thought to reflect the ability of an organism

to extract oxygen from the environment to maintain MO2rout as oxygen tension

decreases; a lower PO2crit is associated with higher hypoxia tolerance (He et al., 2015,

Pörtner and Grieshaber, 1993). In addition to down regulation of the metabolism,

tambaqui presents aquatic surface respiration (ASR), a behavioral adjustment that

allows fish to access oxygenated water from the water–air interface (Hochachka and

Somero, 2002).

Several authors reported the adaptive mechanisms of Amazon fish to hypoxia

(De Boeck et al., 2013, Baldisserottto et al., 2008, Muusze et al., 1998, Kochhann et al.,

2015; Chabot and Claireaux, 2008), but just a few have discussed the issue from a

molecular or transcriptional point of view (Baptista et al., 2016). Moreover, many studies

about hypoxia did not associate the effects of this condition when fish is exposed to

contaminants. It is worth, thus, consider the effects of hypoxia in fish exposed to a

contaminant, and, to understand the responses some important genes such as hypoxia

inducible factor-1(hif-1) and ras oncogene will present under these conditions.

Animals can often remain in low oxygen by increasing specific oxygen-dependent

regulatory transcriptional proteins known as hypoxia-inducible factors (HIFs) (Bracken

et al., 2003). HIF-1 contains two subunits of HIF-1 and HIF-1 (Semenza, 2001).

Under hypoxic conditions, HIF-1α accumulates and forms a heterodimeric DNA-binding

complex with HIF-1β, and interacts with the hypoxia response element (HRE), 5′-

RCGTG-3′ on the promoter region of target genes (Wang and Semenza, 1993). HIF is a

Page 145: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

129

master regulator of many physiological responses to hypoxia, controlling the

transcription of more than 100 genes regulating diverse functions, such as

angiogenesis, erythropoiesis, glucose metabolism, vasodilation, apoptosis, cell growth,

and cell proliferation (Wu, 2009). Hif-1 is also related as involved in cancer

development (Quintero et al., 2004).

A wide range of other physiological and pathological pathways activates the HIF

system. Growth promoters including insulin, insulin-like growth factor and epidermal

growth factor amplify the system together with the oncogenes Ras and Myc (Quintero et

al., 2004). Ras plays an important role in normal cellular proliferation (Barbacid, 1987).

Ras is also involved in grow control, cell division, differentiation and programmed cell

death (apoptosis) (Smith 1986, Rotchell et all., 2001). Ras related sequences have

been described for several fish species such as Goldfish (Carassius auratus) (Nemoto

et al., 1986), Rainbow trout (Oncorhynchus mykiss) (Mangold et al., 1991), and Oryzias

latipes (Torten et al., 1996).

The species Colossoma macropomum (tambaqui) is native to the Amazon region

and is the most native cultivated fish in Brazil (Val and Honczaryk, 1995). This

serrasalmid can populate habitats with a temporary deficiency or even absence of

oxygen. They employ a great variety of mechanisms to adapt to the strongly fluctuating

O2 concentration, particularly Aquatic Surface Respiration. Additionaly, tambaqui is also

capable of expanding its lower lips to explore the water surface (water–air-interface)

when exposed to hypoxia (Val and Almeida-Val, 1999).

Despite the fact that Roundup® is widely used in Brazil, only a limited amount of

information is available on its toxic effects to native freshwater fishes and gene

expression response. Moreover, the hypoxia is a natural phenomenon in Amazon

waters and need to be better understood, especially in areas where the aquatic biota

receives contaminant influences such as RD exposure. Herein, we aimed to assess the

potential interaction effects of the two stressors: Roundup® and hypoxia over the

species Colossoma macropomum. Initially, we established the critical oxygen tension

(PO2crit) for fish exposed to decreasing oxygen in an environment free of RD.

Afterwards, we used a oxygen concentration defined in PO2crit to expose fish to hypoxia

and to hypoxia plus RD. Our main goal was to characterize the transcriptional response

Page 146: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

130

of hif-1gene and oncogene ras expression under these conditions. An additional

objective was to evaluate the hematological changes, blood cells DNA strand breaks,

the liver histopathological alterations, and its antioxidant defenses mechanisms

throughout the measurement of glutathione-S-transferase activity (GST), catalase

activity (CAT) and lipid peroxidation level (LPO).

2. Material and Methods

2.1. Collection and maintenance of fish

Juveniles of C. macropomum (81.10 g ± 11.8; 15.11 cm ± 0.30) were purchased

from a local fish farm nearby Manaus city (Santo Antônio Farm: 02º44'802''S;

059º28'836''W), Amazon State (Brazil). Fish were transported to the Laboratory of

Ecophysiology and Molecular Evolution at the Brazilian National Institute for Amazon

Research (LEEM - INPA). Fish were held indoors in fish tanks supplied with

recirculating aerated INPA’s groundwater ([Na+], 0.83; [K+], 0.45; [Ca2+], 0.10; [Mg2+],

0.040; [Cl-], 0.90mgl-1; [Cu2+], 7.0 g l-1; hardness=1.33mg CaCO3 l-1; pH= 6.80); and

fed once a day with commercial food containing 36% protein. Fish were monitored daily

during the acclimation period (30 days).

2.2. Experimental Design

As above-mentioned, we determined the critical oxygen pressure to further

perform the experiments with Roundup® and hypoxia. After PO2crit was determined, the

hypoxic oxygen levels was fixed for the experiments. PO2crit is defined as the partial

pressure of oxygen (O2) below which the animal's metabolic rate decreases as the O2

pressure decreases.

Page 147: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

131

2.2.1. Oxygen pressure (PO2 crit) determination

After the acclimation time, feed was suspended and six fish were separated and

allocated in individual glass aquaria with five liters water capacity and constant aeration.

Fish spent one day in the aquaria before starting the experiment. Then, they were

separated into two experimental groups. One group was the control (n=3) with water

free of contaminant, and the second group (n=3) had water with addition of RD; nominal

concentration corresponded to 75% of CL50 established by Miyasaki et al. (2004). Fish

remained in those conditions during 96 h. After 96 h, fish were placed in the

respirometer chamber to measure their routine metabolic rate. Intermittent- flow

respirometry was used to determine the metabolic rate of the fish (Steffensen, 1989).

Fish were placed in a 70 ml individual chamber in two groups of 3 fish for 3 hours with

the water openly flowing inside each chamber. During the flush phase, peristaltic pumps

were used to recirculate chambers with ambient tank water. After this period, the water

circulation was closed and the PO2crit was initialized. Oxygen concentration inside the

chamber decreased due to fish breathing, so fish were exposed to a brief period of

progressive hypoxia by omitting the flush period. The oxygen measurement of the

chambers occurred through sensor spots that were stacked inside the chambers and

fiber optic cables that were connected toOXY-4 or Witrox 4 oximeters (Loligo Systems).

The oxygen consumption rates were calculated, and PO2 crit was determined as the

point where the PO2 regression line of the oxygen regulation intersected the oxygen

conforming, initiating the suppressed metabolic rate by segmented linear regression

using the SegReg program (www.waterlog.info) (De Boeck et al., 2013). After the

establishment of the values of PO2crit, the experiment was conducted with Roundup®

and hypoxia.

Page 148: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

132

2.2.2. Acute experiment with Roundup® and hypoxia

After the acclimation time and definition of the oxygen concentration to be used

as hypoxic situation, feed was suspended and fish were moved from acclimate at

individual glass tanks, with 5 liters water capacity and constant aeration, where they

spent one day before starting the experiment. To start the experiment fish were

separated in four different treatments with 10 fish each (n=10): normoxia (N), hypoxia

(H), normoxia plus RD (75% of LC50% - nominal concentration 15 mg L-1) (NRD); and

hypoxia plus RD (HRD).The RD toxicity (i.e. 360 g of gliphosate L-1) was evaluated

following the sub-lethal concentration corresponding of 75% of LC50% (nominal

concentration: 15 mg L-1) established for C. macropomum in 96 h by Miyasaki et al.,

(2004). The experiment lasted 96 hours, and in hypoxia treatments, oxygen was

decreased to hypoxic levels (1.5 mg L-1) during the last 6 hours of the total experimental

period. The low level of oxygen in the aquarium was obtained suspending the oxygen

aeration and introducing nitrogenous gas in the water. Surface of the aquarium was

covered to avoid ASR.

At the end of the experiment, all fish were individually removed from the aquaria

and bleed with the help of heparinized syringes, for haematology measurements and

genotoxic (comet assay) analyzes. Then, fish were anesthetized on ice, weighed,

measured and euthanized by spinal section. After euthanasia, liver samples were

collected for histological, genetic and enzymatic analysis.

During the experiment, the water parameters (pH, oxygen, and temperature)

were measured. Two liters of water from each tank were changed daily, and the

concentrations of RD reestablished.

2.3. Analytical procedures

2.3.1. Water variables

Water parameters (pH, oxygen, and temperature) were monitored every day in

each experimental tank in all treatments. Temperature and oxygen were measured

Page 149: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

133

using an oximeter 5512-FT (YSI, EUA) and pH was measured with a pHmeter

UltraBASIC UB-10 (Denver Instrument, EUA).

2.3.2. Hematological and plasma glucose parameters

Blood parameters as hematocrit (Ht), Hemoglobin [Hb], total erythrocytes

count (RBC) and glucose was analyzed. The [Hb], RBC and Ht values were used to

calculate corpuscular parameters: medium corpuscular volume (MCV), medium

corpuscular hemoglobin concentration (MCHC) and medium corpuscular hemoglobin

(MCH).

Hemoglobin concentration ([Hb]) was determined by cyanmethemoglobin method

(Kampen and Zijlstra, 1964) in a spectrophotometer at 540 nm. Blood was centrifuged

in microcapillary tubes and then hematocrit (Ht) was read using an appropriate card

(Navarro and Pachaly, 1994). Total RBC were read on a Neubauer chamber (Leica

DM2015) using blood diluted with formaldehyde citrate. Glucose was measured using

the colorimetric method without deproteinization (GOD-PAP) using the kit InVitro®. The

reading was performed in a spectrophotometer at 500 nm.

2.3.3. Comet Assay

We quantified the DNA damage in erythrocyte cells using the comet assay as

described by Singh et al. (1988), and modified by Silva et al., (2000). Two comet

microscope slides for ten fish from each treatment were prepared with standard melting

agarose (1.5% normal melting agarose prepared in phosphate-buffer saline (PBS)) and

dried overnight. Five microliters of whole fish blood were mixed with 0.75% low melting

point agarose at 5% ratio (Gibco BRL) at 37 ºC and immediately poured on pre-covered

slides. Each slide was covered with a coverslip until the agarose solidified. After the

agarose gel has solidified the coverslip was gently removed, and the slides were placed

in a lyses solution consisting of high salts and detergents (2.5 M NaCl, 100 mM EDTA,

10 mM Tris, pH 10-10.5; 1% Triton X-100 and 10% DMSO). Before electrophoresis, the

Page 150: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

134

slides were incubated for 20 min in alkaline electrophoresis buffer (300 mM NaOH and

1 mM EDTA, pH >13) to produce single stranded DNA. After alkali unwinding, the

single-stranded DNA was electrophoresed in the gels in a dark place under alkaline

conditions for 20 min at 300 mA and 25 V at 4 °C to produce the comets. After

electrophoresis, we rinsed the slides with a suitable buffer (0.4 M Tris buffer, pH 7.5) to

neutralize the alkalis in the gels. Finally, the DNA staining was revealed with silver

solution (5% sodium carbonate, 0.1% ammonia nitrate, 0.1% silver nitrate 0.25%

tungstosilicic acid and 0.15% formaldehyde). Slides were examined using an optical

microscope (Leica DM2015) at 400X of magnification. Randomly selected cells (100

cells from each of two replicate slides) were analyzed for each animal. We used the tail

sizes to score the comet assay into five classes (from undamaged (zero) to maximally

damage (four)). An overall score was obtained by summation of all cell scores from

completely undamaged (sum zero) to maximum damage (sum 400) according to

Kobayashi et al. (1995).

2.3.4. Biochemical Analyzes

To measure the Glutathione-S-tranferase (GST), catalase (CAT) activity and

lipoperoxidation (LPO), frozen (-80 oC) fish liver samples were weighted and

homogenised in buffer solution (20 mM Tris buffer (pH 7.6), 1 mM EDTA, 1 mM

dithiothreitol, 500 mM sucrose, and 150 mM KCl). For GST and CAT liver was

homogenised (1:10 w/v) and LPO (1:2 w/v).

Estimation of GST activity on the liver samples was performed following the Keen

et al. (1976) protocol. Homogenised samples were centrifuged (9.000 rcf for 30min at

4oC), after the supernatant was incubated with reduced glutathione (GSH) and 1-chloro-

2,4-dinitrobenzene (CDNB) as substrates. Change in absorbance was recorded at 340

nm, and the enzyme activity was calculated as nmol CDNB conjugate formed per min

per mg protein using a molar extinction coefficient of 9.6 mM cm-1.

To estimate the CAT liver activity the protocol followed to prepare the supernatant as

enzyme source was the same for GST. CAT was measured in accordance with Beutler

(1975) method. The rate of inhibition of H2O2 decomposition was measured at

Page 151: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

135

absorbance of 240 nm in a spectrophotometer. CAT activity was expressed as H2O2

micromol. min-1 .mg-1 protein.

As described by Jiang et al. (1991) liver LPO was estimated by Fe2+ oxidation in

the presence of xylenol orange (FOX, ferrous oxidation–xylenol orange assay). Liver

homogenate (1:2 w/v) as describes bellow was centrifuged at 10.000 rpm for 10 min at

4oC. For the assay the supernatants were treated with 10% TCA (trichloroacetic acid)

and centrifuged at 500 rpm for 10 min at 4oC. After the treated supernatants were added

to a reaction mixture containing 100 M xylenol orange, 4 mM C15H24O, 25 mM

H2SO4, and 250 M FeSO4 dissolved in 90% methanol. Samples plus reaction mixture

were incubated for 30 min at room temperature for color development before

colorimetric measurement at 560 nm. LPO concentration was expressed as mol

cumene hydroperoxide mg protein-1.

For all assays, total protein content was determined previously using the Bradford

(1976) method adapted to the microplate reader.

2.3.5. Liver histopathological analyzes

After sampled one portion of the each fish liver were immediately separated and

fixed in ALFAC solution for 16h (ALFAC: 70% ethanol, 5% glacial acetic acid, and 4%

formaldehyde). Posteriorly tissues were washed in 70% ethanol and following a serial

crescent ethanol concentration dehydrating protocol, diafanization and inclusion in

paraffin. Using a semi-automatic microtome serial sections of the tissue (5m) were

prepared in glass slides (n=10 for treatment). Samples were stained with

Hematoxylin/Eosin and PAS (Shiff Periodic Acid) and observed under the bright field

microscope (Leica DM2015).

Liver tissue injuries were analyzed qualitatively, according to the level of the

damage classified by Poleksic and Mitrovic-Tutundsic (1994) and Silva (2004).

Page 152: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

136

2.3.6. Isolation of total RNA and cDNA synthesis

Fish liver collected were maintained in -80 oC waiting the analyses procedure.

Total RNA liver (n=4) were isolated according to Trizol®reagent manufacturer

instruction. Contaminating genomic DNA was removed using DNase (Invitrogem™).

First strand cDNA was reverse-transcribed following manufacturer`s instructions by

ReverAID Minus First Strand cDNA Synthesis Kit (Fermentas®). Enzymatic treatment

with reverse transcriptase (MMLV Reverse Transcriptase) (200 U/μL, USB) was first

done and, then, mixed in a 1.5 mL microtube with approximately 25 μg RNA, 1,0 μL

oligonucleotide dT(18) (1μg), 1,0 μL dNTP mix (10 mM), buffer 5X MMLV, and

deionized for a 50 mL final volume. This solution was incubated at 37 °C for 1 hour for

conversion and 70 °C for 10 minutes to inactivate the enzyme. The quality of the total

RNA and after cDNA was verified using NanoDrop® spectrophotometer, model 2000

(Thermo Scientific) as recommended in the user manual (NanoDrop 2000 / 2000c

Spectrophotometer, V1.0 user manual, 2009).

2.3.7. Determination of ras and hif-1sequences

A search for 28S, ef-1 hif-1α and ras genes partial sequences for fish species

were performed in http://www.ncbi.nlm.nih.gov. Obtained sequences were use to

design degenerate primers based on the conserved regions of 28S, ef-1α, ras and hif-

1α. The annealing temperature of the degenerated primers was optimized by gradient

PCR using PCR master mix (Promega). All PCR products obtained were sequenced

with Kit ABI PRISM® Big DyeTM Terminator Cycle Sequencing Ready Reaction

(Applied Biosystems) and run on an ABI 3130XL automatic DNA sequencer (Applied

Biosystems). Obtained sequences were analyzed using the BLAST program from NCBI

and then used to generate the specific primers for Colossoma macropomum q-PCR,

ras, hif-1α (target primers), 28S, and ef-1α (reference primers) showed in Table 1.

Page 153: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

137

2.3.8. Quantitative real-time PCR

Expression patterns of the C. macropomum ras oncogene and hif-1 gene were

analyzed using quantitative real-time PCR (qRT-PCR) through equipment Viia7 Dx from

Life Technologies (Applied Biosystems). We used a 96-well thin-wall PCR plate where

we added 1.0 μL of cDNA of C. macropomum in triplicate from each treatment (n=4).

After, we added to each well 1.0 μL of each primer (concentration of ras, 2.0 pmol; hif-

1α, 1.8 pmol, 28S, 2.5 pmol and ef-1α, 1.5 pmol), 2.0 μL of nuclease-free water 192

(Ambion, Life Technologies) and 5 μL SYBR Green PCR Master Mix (Applied

Biosystems) in a total volume of 10 μL. The following steps qRT-PCR reaction was

performed: the PCR plate was heated for 2 min at 50 °C, plus 95 °C for 10 min; followed

by 40 cycles of 95 °C for 15 s and 60 °C for 1 min (annealing temperature of all

primers). The relative quantification of the target and reference genes was evaluated

using standard curves. The amplification efficiency and threshold were automatically

generated by standard curves as follows: 28S (slope -3.36/ R2 0.99), ef-1α (slope -

.3.34/ R2 0.99), ras (slope -3.33/ R2 0.97) and hif-1α (slope -3.30/ R2 0.99). For PCR

efficiency, calculations of standard curves were constructed using a serial dilution curve

obtained from a pool of experimental samples (1000 to 1 ng cDNA concentration; n=4).

All primer pairs showed high PCR efficiency (between 98-100%). Serial dilutions of a

cDNA standard were amplified in each run to determine amplification efficiency

according to Pfaffl (2001).

2.3.9. Statiscal Analyses

All values are presented as mean ± SEM (Standard statistical tests, distribution

and homogeneity of data were checked. Gene expression, hematological parameters,

genotoxic test (comet assay) and enzymatic data data were analyzed by two-way

ANOVA test, with oxygen concentration (normoxia and hypoxia) and water

contamination by RD as the factors, followed by Tukey’s post hoc test for comparisons.

Statistical significance was accepted at the level of P<0.05.

Page 154: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

138

Oxygen pressure measure (PO2 crit) data from fish no contaminated and

contaminated with RD were analyzed by t test.

All statistical tests were run using SigmaStat 3.5 and the graphs were plotted

using SigmaPlot 11.0 software.

3. Results

No mortality was observed during the subletal RD exposure in normoxia group (N)

and normoxia plus RD (NRD) group. However, for the hypoxia group (H) and the

hypoxia plus RD (HRD) treatment, one and four fish died, respectively.

3.1. Oxygen pressure (PO2 crit)

No difference was detected for PO2crit values in the C. macropomum exposed to

water free of contaminant (Control) and to RD contaminated water (RD). The metabolic

rate at lower oxygen contents in the water decreased in the same way in fish from both

treatments (Control and RD) (P= 0.878/ t= 0.158). Thus, RD (nominal concentration 15

mg. L-1) did not affect C. macropomum oxygen consumption. The average critical

oxygen tensions (PO2crit) were 1.49 mg O2. L-1 ± 0.06 and 1.47 O2. L

-1 ± 0.13 for control

and RD groups, respectively (n=3) (Figure 1).

3.2. Hematological plasma glucose parameters

There was no statistical difference in Hb, Ht, RBC, MCH, MCV and CMCH blood

parameters in fish exposed to normoxia (N x NRD). The same occurred in Hb, RBC,

MCH, MCV and CMCH for fish exposed to hypoxia (H x HRD). Hb concentration was

higher in fish exposed to hypoxia (H) than in normoxia (N) (P= 0.008) (Table 2). Ht

decreased in fish exposed to HRD in comparison with H (P= 0.006), and increased in

hypoxia (H), in comparison with fish under normoxia (N) (P=0.012). RBC increased in

fish exposed to hypoxia (H) in comparison with (N) (P = 0.040), and in MCH the same

occurred (P= 0.047). Glucose levels were higher in fish exposed to NRD than in N

treatment (P= 0.005). Fish exposed to HRD presented an increase in glucose levels in

comparison with H (P< 0.001). Tambaqui under hypoxia (H) and hypoxia plus RD

Page 155: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

139

(HRD) showed an increase in glucose levels in comparison with NRD (P = 0.003) (Table

2).

3.3. Genetic damage in erythrocytes by comet assay

DNA damage in erythrocytes increased in fish exposed to NRD (GDI: 327.0 ±

7.7) in comparison with N (GDI: 234.6 ± 15.0) (P< 0.001). There was no difference in

genetic damages between tambaquis subjected to hypoxia (H) and hypoxia plus RD

(HRD). According to genetic damage index, DNA damage in erythrocytes was higher in

fish exposed to H (GDI: 317.2 ± 18.5) than in fish exposed to N (GDI: 234.6 ± 15.0) (P<

0.001) (Table 3).

3.4. Biochemical analysis

No difference was observed in liver GST activity of fish exposed to N and NRD,

neither in H and HRD. Fish exposed to hypoxia (HRD) presented an increase in GST

activity (1.89 times) in comparison with fish exposed to normoxia (NRD) (P< 0.001)

(Figure 2A) suggesting a magnification of the RD effect when combined with hypoxia.

CAT activity was higher in fish exposed to hypoxia (H [1.51 times] and HDR [1.39

times]) compared with fish exposed to normoxia (N and RD). However, there was no

difference in liver CAT activity in fish exposed to normoxia (N and RD) and hypoxia (H

and HRD) (Figure 2B).

No difference was also observed in lipoperoxidation levels (LPO) between the

groups of fish exposed to normoxia (N and NRD). However, fish exposed to hypoxia

presented a decrease in LPO levels in HRD treatment in comparison with N (P = 0.016).

There was no difference in LPO levels between the treatments and normoxia and

hypoxia condition (Figure 2C).

3.5. Liver histopathology

Normal fish liver presented a parenchyma consisting by polyedric hepatocytes

organized in cords with one or two cells, surrounded by sinusoids, as observed in

control (N) (Figure 3A). Fish liver showed also the hepatopancreas cell types (Figure

Page 156: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

140

3B). Some of the liver alteration observed in the all treatments with moderate (+) or low

frequency (0+) were sinusoidal swelling (Figure 3C) and Leukocyte infiltration (Figure

3D). Cellular vacuolization was frequent (++) in fish exposed to N and NRD treatments

and highly frequent (+++) in fish exposed to HRD (Figure 3D). Fish liver exposed to

normoxia and RD presented most of the histopathological damages classified as

moderate frequency (+). Qualitatively, the intensity of tissue damage and the level of the

damages (stage II and III) increased in the hepatic tissue of fish exposed to hypoxia and

hypoxia plus RD (HRD) (Table 4). Fish exposed to hypoxia presented higher damage

levels as the occurrence and frequence of injuries in HDR. Injuries in stage II as

cytoplasm degeneration, pyknotic nuclei (Figure 3 E) and cell disruption were classified

as frequent (++) in NRD and H groups. In HDR treatments, fish showed high frequency

(+++) of injuries in stage II. High frequency (+++) of focal necrosis (Figure 3F) was

observed in fish exposed to hypoxia and RD, the same occurred with fish exposed only

to hypoxia (H).

3.6. Hif-1 expression and ras oncogene

Relative expression of hif-1 on the liver of C. macropomum was not statistically

different between the different concentration of oxygen (normoxia and hypoxia) and

between the treatments (no RD and RD) (P = 0.113). No difference was observed

between fish exposed to normoxia (N and NRD). The same behavior was observed in

the relative expression of hif-1in fish exposed to hypoxia (H and HRD). Instead, there

was a down regulation in the expression of hif-1 in fish exposed to H (2.18-fold) and

HRD (6.81-fold) in comparison with fish exposed to normoxia (N and NRD) (Figure 4).

The relative expression of ras oncogene was statically different between the

different concentration of oxygen (normoxia and hypoxia) and the treatments (no RD

and RD) (P < 0.001). Ras oncogene was over expressed 3.68-fold in fish exposed to

RD (NRD) in comparison with fish in the absence of the contaminant in normoxia (N) (P

<0.001). There was no difference in ras relative expression between fish exposed to

hypoxia (H and HRD). Fish exposed to HRD down regulated the expression of ras

oncogene (12.20-fold) in comparison with fish exposed to NRD (P < 0.001) (Figure 5).

Page 157: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

141

4. Discussion

Glyphosate-based herbicides are considered relatively nontoxic (WHO, 1994),

and its broad application to aquatic systems and pollution of terrestrial ecosystems are

a concern for ecotoxicologists. Therefore, the increasing preoccupation results in the

need to find reliable markers reflecting RD effects in order to better understand its

potential hazards and prognose faraway perspectives (Lushchak et al., 2009).

Responses of fish to the impact of any kind of toxicant appear, first of all, as main

blood parameters changes. Hematological analysis enables to elicit latent course of the

toxicosis, warning the danger even when all other parameters indicate relative well

being (Zhydenko, 2008). Evaluating fish blood parameters might be a useful tool to

understand the impact of agrichemicals on fish health (Kreutz 2011). Herein, no

difference was observed in C. macropomum hematological parameters (Hb, Ht, RBC,

MVC, MHC and MCHC) comparing fish exposed to normoxia (N) with normoxia plus RD

(NRD). Moreover, when we compared fish submitted to hypoxia (H) and hypoxia plus

RD (HRD), no alteration was observed in Hb, RBC, MVC, MHC and MCHC parameters.

However, a decrease in Ht levels could be observed in fish in hypoxia plus RD

compared to hypoxia. Hb, Ht and RBC blood parameters decreased in common carp

(Cyprinus carpio) subjected to RD at 3.5, 7 and 14 ppm for 16 days compared to

control. On the other hand, MCV and MCH increased and MCHC decreased (Gholami-

Seyedkolaei et al., 2013). Hematocrit levels did not change in catfish (Rhamdia quelen)

following short term exposure to sublethal concentrations of glyphosate (0.730 mg/l-1)

witch corresponds to 10% of LC 50% in 96h (Kreutz et al., 2011). Piava fish (Leporinus

obtusidens) exposed to different concentration of RD (2, 6, 10 ad 20 mg/L) showed a

decrease in hematological parameter evaluated (Hb, Ht and RBC) (Glusczak et al.,

2006). Herein, hematocrit levels, hemoglobin, RBC, MVC and MHC increased in C.

macropomum exposed to hypoxia (H) when compared with fish exposed to normoxia

(N). C. macropomum is an Amazon fish with the capacity to regulate the levels of

hematocrit and hemoglobin to cope with low concentration of oxygen (Val, 1996). The

increase in Ht levels is a consequence of spleen contraction since hemoglobin

concentration also increased, leading to increased cell volume (MCV) and MCH. The

Page 158: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

142

increase observed in MCV and MCH values possibly result from the increase of

immature RBC (Saravanan et al., 2011). Concerning the influence of RD contamination

on fish blood response it is clear that it depends on the contaminant concentration, the

surfactant compounds applied in the herbicide formulation, the time of exposure, and

fish species tested.

Indeed, contaminants such as RD along with hypoxia conditions are stressful to

fish. In response to stress, the body prepares to minimize the effects of the stressor.

The release of hormones such as catecholamines and cortisol are well followed by

increased glucose, an energy reserve ready for use (Val et al., 2004). In the present

work, fish exposed to normoxia plus RD (NRD) showed high levels of glucose

compared to C. macropomum exposed to normoxia. There was an increase in glucose

levels of fish exposed to hypoxia and RD compared to hypoxia (H), and fish submitted

to HRD also showed higher glucose levels than fish exposed to NRD. The RD

contamination was stressful for C. macromopum, and the combined effect with hypoxia

was even more. Langiano and Martinez (2008) observed increased levels of plasma

glucose of P. lineatus exposed to 10 mg L−1 of RD for 24 and 96 h. Other herbicides

are also described in the literature to affect fish glucose levels. For instance, juvenile

rainbow trout (Oncorhynchus mykiss) chronically exposed to verapamil (0.5, 27 and 270

g/L) showed increase in glucose levels (Li et al., 2011); Rhandia quelen exposed to

clomazone (0.5 and 1.0 mg/L also presented elevated plasma glucose in treated fish. A

different result was described by Braz-Mota and collaborators (2015), where no

alteration in plasma glucose of C. macropomum exposed to RD occurred. According

Almeida-Val et al. (2005), most Amazonian fish species submitted to some level of

oxygen depletion show alterations in plasma glucose. The Amazon cichlid, Astronotus

crassipinnis, presented accumulation of plasma glucose at low oxygen levels, probably

due to an activation of hepatic glycogenolysis as indicated by the decreases in liver

glycogen (Chippari-Gomes et al., 2005). An increase in blood glucose levels was also

observed in Atlantic sturgeon (Acipenser oxyrinchus) and shortnose sturgeon

(Acipenser brevirustrum) exposed to hypoxia (Baker et al., 2005).

Comet assay is a technique used to detect genomic lesions, which after being

processed, may result in mutation. Different than mutations, the lesions detected with

Page 159: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

143

the comet assay can be recovered (Gontijo and Tice, 2003). Results of genotoxicity

studies on glyphosate products are contradictory depending on purity of the active

agent, nature of inert components, type of the applied test, as well as organisms tested

(Çavas and Konen, 2007). For instance, in cultured human cell line Hep-2, settled with

glyphosate at concentrations of 3.00 -7.50 mM, an increase in DNA damage was

reported as well as an extention in DNA migration compared with control (Mañas et al.,

2009). In another study, addressing microbial mutagenicity, Salmonella typhimztrium

strains TA1535, TAlOO, TA1537, TA1538, and TA98 were treated with 10 to 5000

mg/plate of glyphosate and no statistically significant induction of mutagenecity above

solvent control levels was observed as well as no significant dose-response (Li and

Long, 1988).

In the present study, fish exposed to normoxia plus RD (NRD) showed an

increase in genetic damage index (GDI) compared with fish exposed to normoxia (N).

However, fish exposed to hypoxia plus RD, when compared with fish exposed to

hypoxia (H) did not present differences. Fish exposed to hypoxia (H) showed higher

GDI values than fish exposed to normoxia (N). RD was able to induce DNA damage in

blood cells of C. macropomum. The predominant class of DNA damage in C.

macropomum erythrocytes was the class 4 in treatments of fish exposed to NRD, H and

HRD. Negreiros and collaborators (2011) observed an increase in DNA damage in

Hippocampus reidi exposed to hypoxia and petroleum. The comet scores for fish

exposed to hypoxia, oil and hypoxia plus oil were significantly higher than the respective

negative control groups. The predominant class of DNA damage in Hippocampus reidi

was class 2 in hypoxia.

Guilherme and collaborators (2014) confirmed the genotoxic effect of RD through

comet assay analyzing Anguilla anguila erythrocytes. Authors observed an increase in

DNA strand breaks in fish exposed during 3 days to 116 g L-1 of RD and the

predominant class of DNA damage was the class 3. In another work, Anguilla anguilla

fish were exposed to RD (58 and 116 g L-1) and the active ingredient, glyphosate

(17.9 and 35.7g L-1) and the surfactant polyethoxylated amine; (POEA) (9.3 and 17.3

g L-1). After one day exposure, the GDI values, with the exception of the lower

concentration of RD, displayed significantly higher values in comparison with control

Page 160: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

144

(Guilherme et al., 2012). The induction of DNA damage (Comet assay) on peripheral

erythrocytes was also observed in freshwater goldfish Carassius auratus; RD

significantly increased the DNA damage following 2 days exposure and gradual

increases in GDI values were noticed at the fourth and sixth days, indicating inhibition of

DNA repair during the exposure period (Çavas and Konen, 2007). RD is clearly toxic for

C. macropomum inducing DNA damages; hypoxia was also capable to induce DNA

strand breaks.

Contaminants such as pesticides may induce reactive oxygen species (ROS),

resulting in the imbalance between pro-oxidant and antioxidant defense mechanisms

(Glusczak et al., 2011). Enzymatic and non-enzymatic antioxidants are essential to

maintain the redox status of fish cells and serve as an important biological defense

against oxidative stress (Bainy et al., 1996). Variations in the activities of antioxidant

enzymes have been proposed as indicators of pollutant mediated oxidative stress

(Ahmad et al., 2000; Li et al., 2003). Recently, the effects of RD and glyphosate on

oxidative stress markers have been addressed in fish (Braz-Mota et al, 2015, Lushchak

et al., 2009, Glusczak et al., 2007). GSTs are detoxifying enzymes of phase II that

catalyze the conjugation of GSH with a variety of electrophilic compounds (Ferreira et

al., 2010). In the present study GST activity increased in the liver of C. macropomum

exposed to hypoxia combined with RD (HRD) in comparison with fish exposed to

normoxia combined with RD. There was no difference, though, in GST activity between

fish exposed to normoxia (N) versus normoxia plus RD (NRD). The same behavior was

observed in fish submitted to hypoxia (H) versus hypoxia plus RD (HRD). Lushchak and

collaborators (2009) observed a reduction in GST activity in goldfish exposed to RD (2.5

- 20mg L-1) for 96 h in comparison with control. On the other hand, Langiano and

Martinez (2008), studying Prochilodus lineatus exposed to RD (7.5 and 10 mg L-1) for 6,

24 and 96 h, observed no alteration in GST activity. The same authors explained the

absence of variation in GST activity as the metabolism of the compounds present in RD,

which may be processed by other biotransformation pathways. In the present study, the

increase in GST activity in C. macropomum under HRD may be explained by the

oxidative stress induced by hypoxia. Changes in environmental O2 availability can alter

Page 161: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

145

ROS production, and both hyperoxia and hypoxia are thought to increase oxidative

stress (Lushchak, 2011).

In the present work, catalase (CAT) did not present alteration between fish

exposed to normoxia versus normoxia and RD (NRD). The same occurred with fish

submitted to hypoxia compared with HRD. Menezes and collaborators (2011) observed

no alteration in CAT activity in catfish (Rhamdia quelen) exposed to RD (0.45 and 0.95

mg L-1) for 8 days. Catalase activity in the liver of Rhamdia quelen also did not change

during 96h exposure to 0.2 and 0.4 mgRD.L-1 according to Glusczak and collaborators

(2007). On the other hand, our results showed an increase in CAT activity in C.

macropomum exposed to hypoxia (H) compared with fish exposed to normoxia (N). The

same behavior was presented by fish exposed to hypoxia plus RD (HRD) compared to

fish under NRD. The hypoxia combined with RD was, again, the inducible factor of

increased oxidative stress. Zhang and collaborators (2016) evaluated the enzymatic

activities of Darkbarbel catfish, Pelteobagrus vachelli, for oxidative stress induced by

acute hypoxia. The authors observed an increase in GST and CAT activity of fish

exposed to 1.5 mg L-1 oxygen concentration in comparison with the control group. It has

been considered that the reduced dissolved O2 also affects oxidative stress in fishes,

but via mechanism that are still unclear (Chandel and Shumacker, 2000).

Lipid peroxidation is thought to be an effect of the toxic action of environmental

pollutants, leading to injuries of cellular function under oxidative stress conditions. Lipid

peroxidation takes place in the the cell membrane lipids, altering cohesion, flow,

permeability, and metabolic function, leading to cell membrane instability with

consequent cellular damage and death (Ortiz-Ordonez et al., 2011). There was no

alteration in LPO levels between fish exposed to normoxia and normoxia plus RD.

Neither in fish exposed to normoxia (N) versus fish exposed to hypoxia (H). The same

occurred between fish submitted to normoxia and RD (NRD) and hypoxia and RD

(HRD). However, fish exposed to hypoxia and RD (HRD) presented a decrease in LPO

levels in comparison with fish submitted to hypoxia (H). The lower LPO levels in hypoxia

and RD (HRD) treatment can be explained by the increased activity of antioxidant

defense enzymes, as above mentioned. We observed higher levels of GST and CAT on

liver of fish in the same conditions. The GST and CAT are able to reduce the oxidative

Page 162: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

146

stress damages in hepatic tissue caused by ROS. Different results were observed by

Modesto and Martinez (2010) with Prochilodus lineatus exposed to Roundup

Transdorb® (RDT) acutely exposed (6, 24 and 96 h) to 1 mg L-1 of RDT and 5 mg L-1 of

RDT. In their study LPO levels increased significantly in the liver of fish exposed to both

concentrations of RDT for 6 h. However, GST activity was significantly reduced in fish

exposed for 6 h to both RDT concentrations and CAT activity showed a significant

reduction in fish exposed for 6 h to the highest concentration of herbicide. Menezes and

collaborators (2011) also observed the same pattern measuring LPO levels throughout

the TBARS (thiobarbituric acid reactive species) methodology. There was a significantly

higher TBARS levels in liver of Rhamdia quelen exposed to the 0.95 mg/l compared

with control fish. Conversely, hepatic tissue exposed to RD presented no alteration of

CAT activity compared with the control group. The differences in peroxide levels have

also been attributed to the variation in antioxidant mechanisms of fish species (Radi et

al. 1985; Ahmad et al. 2000). In the present work, considering the fact that hypoxia can

induce oxidative stress, the antioxidant enzymes GST and CAT acted minimizing the

effects of reactive oxygen species in fish exposed to hypoxia combined to RD (HDR).

Exposure to xenobiotics as metals, pesticides and petroleum derivates can

induce histopathological damages in fish organs as liver and gills (Jayaseelan et al.,

2014, Leite et al., 2015, Samanta et al., 2016). The liver is the central metabolic organ

and plays a key role in biochemical transformations of the xenobiotic substances, which

inevitably reflects on its integrity by creating lesions and other histopathological

alterations in the liver parenchyma (Roberts, 1978). Histopathological changes may

affect organ function depending on the distribution and intensity of the lesions (Bernet et

al., 1999).

In the present work C. macropomum submitted to normoxia (N) and normoxia

plus RD (NRD) showed low frequency of leukocyte infiltration. On the other hand, fish

exposed to hypoxia (H) and hypoxia and RD (HRD) showed a moderate frequency of

leukocyte infiltration indicating an increase in inflammatory processes. Hued and

collaborators (2012) also observed leukocyte infiltration as signal of inflammatory

process in Jenynsia multidentata subjected to different concentration of RD (5, 10. 20

and 35 mg/l). In our work fish exposed to hypoxia and RD (HRD) showed the most

Page 163: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

147

injured hepatic liver, presenting higher frequency of cytoplasm vacuolization, nuclear

degeneration, cytoplasm degeneration, pyknotic nuclei, cell disruption and focal

necrosis. In fish exposed to hypoxia (H), most of tissue damage was classified as

frequent, and focal necrosis had high frequency, resulting in tissue damage as well.

Necrotic focus compromises the function of the liver as it is considered irreparable

damage (Poleksic and Mitrovic-Tutundsic, 1994). Langiano and Martinez (2008)

frequently observed cellular and nuclear degeneration; cytoplasmatic vacuolization; and

pyknotic nuclei em P. lineatus exposed to RD. Cytoplasmatic vacuolization suggest

changes in liver function (Takashima and Hibiya, 1995). The vacuolization of

hepatocytes might indicate an imbalance between the rate of synthesis of substances in

the parenchymal cells and the rate of their release into the systemic circulation

(Gingerich, 1982). Necrosis were found in the liver of African catfish (Clarias gariepinus)

after exposure to glyphosate (Ayoola, 2008), and in liver of neotropical fish Piaractus

mesopotamicus necrosis was described after exposure to Roundup® Ready (RR)

(Shiogiri et al., 2012). An increase in vacuolization is related with induction of necrosis

as observed by Zhidenko and Kovalenko (2007) in the liver of carps exposed to RD for

14 days. Histological changes, which are connected with the granular and vacuolar-drop

dystrophy, lead to the death of hepatocytes and to necrotic changes and, as a

consequence, to the functional liver failure.

Hypoxia can affect the liver structure, as we observed in this work, where higher

frequency of necrosis was observed in fish under hypoxia and hypoxia plus RD

condition. Similarly, Mustafa and collaborators (2012) found lipid vacuolization and

necrosis in liver of Cyprinus carpio exposed to hypoxia and hypoxia plus copper

contamination. All these damages may have altered the gene expression and enzyme

activities as we mentioned before. Necrosis, as observed in H and HRD exposed fish,

may have lead to malfunction of the cells and impairment of molecular machinery. In

fact, DNA damages also occurred in these animals, as seen through comet assay.

To the best of our knowledge, the present work is the first to correlate gene

expression (hif-1 gene and ras oncogene) and RD contamination combined with

hypoxia in an Amazon fish species. Variation in the level of oxygen concentration in the

Amazon waters is a common phenomenon, and Amazon fish developed a series of

Page 164: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

148

strategies to cope with low oxygen levels during their evolutionary history (Almeida-Val

et al., 1999a, 1999b). The use of herbicides in the last few years have been common in

the Amazon region, specially surrounding fish farm tanks, and no information is

available about the combined effects of hypoxia and RD in fish.

Hif-1 acts as a key transcription factor in regulating metabolism, development,

cellular survival, proliferation and pathology under hypoxia condition. Compared to

mammals, fish are more vulnerable to hypoxia stress and contamination; however, the

regulation of hif-1 in fish remains obscure (Liu et al., 2013). In the present work there

was no alteration in hif-1relative expression between fish exposed to normoxia and

normoxia plus RD. The same results were observed in fish exposed to hypoxia

compared to hypoxia plus RD. However, comparing fish under normoxia and hypoxia,

we observed down regulation of hif-1 gene expression for both contamined and non-

contamined groups. Our results are different from those showed by Baptista and

collaborators (2016), where the levels of hif-1 increased on the liver of Oscar

(Astronotus ocellatus) exposed to 3h hypoxia. A slight over expression of hif-1 was

observed by Kodama and collaborators (2012) in dragonet fish (Callionymus

valenciennei) exposed to environmental hypoxia (1.7 ml l-1) in Tokyo Bay, but the

difference between non hypoxic and hypoxic sites was not significant. The hif-1 level

were significantly increased with the gradual decline of oxygen (7.2, 3.2, 2.8 and 2.2

mg/L) concentration in larval fish of Chinese sucker (Myxocyprinus asiaticus); however,

there was no significant difference among different hypoxia groups after re-oxygenation

(Chen et al., 2012). Most of the studies describe an over expression of hif-1 gene in

fish exposed to hypoxia (Terova et al., 2008, Geng et al., 2014), different from our

results for Amazon fish C. macropomum exposed to hypoxia and hypoxia plus RD. A

possible explanation for this controverse result, once this gene is responsible by the

transcription of more than 100 genes related to hypoxia, relies in a malfunction of

molecular machinery, as we shall mention further. Nevertheless, more studies must be

developed to better understand and elucidate these results.

The ras family of proto-oncogenes encodes small GTP binding proteins that

transduce mitogenic signals from tyrosine-kinase receptors (Barbacid, 1987; Cahill et

Page 165: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

149

al., 1996). Ras genes are associated with tumorigenesis and also with metastasis (Cox

et al., 1004, Saez et al., 1994, Mora et al., 2007). Mutational events at codon 12 and 13

of the ras oncogene have already been associated with tumorigenesis in rainbow trout

(Onchorhynchus mykiss) and other teleost fishes (Nemoto et al., 1986).

Another mechanism of ras-implicated carcinogenesis involves overexpression of

the gene (Nogueira et al., 2006). In the present work, C. macropomum exposed to

normoxia plus RD (NRD) presented an overexpression of ras oncogene compared to

fish submitted to normoxia. Similar to the hif-1gene, ras oncogene was down

regulated in fish exposed to HRD compared to fish exposed only to hypoxia. However,

there was no difference in ras oncogene expression between fish exposed only to

normoxia versus hypoxia. Fish submitted to HRD showed a decrease in ras oncogene

expression compared to NRD. As far as we know, there is no prior work relating the

influence of RD or hypoxia over ras oncogene expression. Nogueira and collaborators

(2010) observed no alteration in ras oncogene expression of Dicentrarchus labrax and

Liza aurata collected in a polluted area (various types and sources of contamination) in

Ria Aveiro, Portugal. Ras was also overexpressed in C. macropomum acutely exposed

to Benzo[a]pyrene (4, 8 and 16 mol/kg) (Silva et al., 2016 accepted for publication). C.

macropomum exposed to Benzo[a]pyrene in the extreme scenario (A2) proposed by

IPCC, 2007 increased the levels of ras oncogene expression on the liver in comparison

with control (Silva et al., 2016 accepted for publication). Rivululos marmonatos, after

exposure to 4-nanylphenol presented a significant overexpression (P < 0.001) in the

liver c-Ki-ras (long form) (Lee et al., 2006). Glyphosate and the kind of surfactant used

can also affect the pattern of gene expression as demonstrated by Uchida and

collaborators (2012). The authors observed no significant gene expression changes in

liver of medaka (Oryzias latipes) after exposure to glyphosate through DNA microarray

analysis. Nevertheless, 78 and 138 genes were significantly induced by fatty acid

alkanolamide surfactant (DA) and glyphosate DA mixture, respectively. RAB 27A

member of ras oncogene family and ras homologous gene family member Q were

significantly affected in medaka exposed to glyphosate DA mixture. Herein, we

demonstrated that RD induces the overexpression of ras oncogene in normoxia

condition. Fish exposed to NRD presented moderate liver tissue damage (+), including

Page 166: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

150

the damage in stage III (necrosis). It is likely that Ras oncogene was induced to

maintain the survivor and division capacity of the hepatocytes. On the other hand,

hypoxia fish downregulated the expression of ras oncogene when combined with RD

(HRD). As the histopathology analyzes revealed, the fish under HRD treatments had

their liver highly injured compared with fish under NRD. Necrotic focus appeared in a

higher frequency (+++) on the liver of those animals, and, so, the hepatocytes may have

lost their ability to induce the expression of ras oncogene and hif-1as above-described

due to hepatic tissue disruption and molecular machinery failure. As far as we know,

this is the first work describing the combined effects of hypoxia and RD. The similar

effect of these two stressors separately and combined need to be better understood.

5. Conclusion

The results obtained in this studt revealed that C. macropomum is very sensitive

species concerning RD contamination, and this sensitivity increases when combined

with hypoxia exposure. We observed that hypoxia interestingly induced a down

regulation in hif-1 expression, and this behavior could be explained by an impairment

in the molecular machinery since this was the strongest situation imposed to the fish

(HRD) and caused cellular and DNA damages. Nevertheless, further studies are

necessary to better explain those results. RD induced and overexpression of the

oncogene ras, contributing to cell survivor, but the combination with hypoxia caused a

down regulation of this oncogene ras as occurred with hif-1. Hepatic tissue injuries

increased in fish under hypoxia and hypoxia plus RD, affecting the organ function.

Despite de RD contamination, antioxidant defenses (GST and CAT) were capable to

minimize ROS stress and avoider high levels of membrane lipoperoxidation. RD is very

toxic to C. macropomum as demonstrated by genotoxic results.

Acknowledgments: FAPEAM and CNPq supported this study through INCT-ADAPTA

grant to ALV. Thanks are also due to the personnel of the Functional Histology

Laboratory of the Federal University of Amazonas for their support with the preparation

of histological material. VMFAV is the recipient of a Research Fellowship by CNPq.

Page 167: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

151

6. References

Ahmad, I., Hamid, T., Fatima, M., Chand, H. S., Jain, S. K., Athar, M., & Raisuddin, S. (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochimica et Biophysica Acta (BBA)-General Subjects, 1523(1), 37-48. Almeida-Val, V.M.F., Val, A.L. and Walker I. (1999a) Long- and short-term adaptation of amazon fishes to varying O2 levels: Intra-specific phenotypic plasticity and interspecific variation. In: Val AL and Almeida-Val VMF (eds) Biology of Tropical Fishes. Editora do INPA, Manaus, pp 185-206. Almeida-Val V.M.F., Paula-Silva M.N., Duncan W.P., Lopes N.P. and Val A.L. (1999b) Increase of anaerobic potential during growth of an Amazonian cichlid, Astronotus ocellatus. Survivorship and LDH regulation after hypoxia exposure. In: Val AL and Almeida-Val, V.M.F.(eds) Biology of Tropical Fishes. Editora do INPA, Manaus, pp 437-448. Almeida‐Val, V. M. F., Gomes, A. R. C., & Lopes, N. P. (2005). Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the Amazon. Fish physiology, 21, 443-500. Araújo, R.S., Garcia, M.V.B., Garcia, T.B., (2008). Toxicidade aguda do herbicida Glifosato (Roundup) para Danio rerio (Teleostei, Cyprinidae), em condições tropicais. In: Anais da III Jornada de Iniciação Científica da Embrapa Amazônia Ocidental. Ed. 57. ISSN 1517–3135. Ayoola, S. O. (2008). Histopathological effects of glyphosate on juvenile African catfish (Clarias gariepinus). Am Eurasian J Agric Environ Sci, 4, 362-7.

Bainy, A.C.D. (1996). Oxidative stress as biomarker of polluted aquatic sites. In: Val, A.L., Almeida-Val, V.M.F., Randall, D.J. (Eds.), Physiology and Biochemistry of the Fishes of the Amazon. INPA, Manaus, Brazil, pp. 101–110. Baker, D.W., Wood, A.M., & Kieffer, J.D. (2005). Juvenile Atlantic and short nose sturgeons (family: Acipenseridae) have different hematological responses to acute environmental hypoxia. Physiological and Biochemical Zoology, 78(6), 916-925. Baldisserotto, B., Chippari-Gomes, A.R., Lopes, N.P., Bicudo, J.E.P.W., Paula-Silva, M.N., Almeida-Val, V.M.F., & Val, A.L. (2008). Ion fluxes and hematological parameters of two teleosts from the Rio Negro, Amazon, exposed to hypoxia. Brazilian Journal of Biology, 68(3), 571-575.

Baptista, R.B., Souza-Castro, N., & Almeida-Val, V.M.F. (2016). Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus). Fish physiology and biochemistry, 1-12.

Barbacid, M. (1987). Ras genes. Annual Review Biochemistry. 56, 779–827.

Bernet, D., Schmidt, H., Meier, W., Burkhardt‐Holm, P., & Wahli, T. (1999). Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of fish diseases, 22(1), 25-34.

Beutler, E. (1975). Red Cell Metabolism: A manual of biochemical methods. Grune & Straton, New York.

Bolognesi, C. (2003). Genotoxicity of pesticides: a review of human biomonitoring studies. Mutation Research/Reviews in Mutation Research, 543(3), 251-272.. Boutilier, R.G. (2001). Mechanisms of cell survival in hypoxia and hypothermia. Journal of Experimental Biology, 204(18), 3171-3181. Bracken, C.P., Whitelaw, M. L., & Peet, D.J. (2003). The hypoxia-inducible factors: key transcriptional

Page 168: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

152

regulators of hypoxic responses. Cellular and Molecular Life Sciences CMLS, 60(7), 1376-1393.

Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the protein-dye binding. Analytical Biochemistry 72:248-254.

Brandão, R.M.L. Efeitos do hormônio do crescimento recombinante bovino (rbgh lactotropin

®) na

expressão do gene igf-i e parâmetros fisiológicos em juvenis de tambaqui (Colossoma macropomum)/ Rúbia Maielli Lima Brandão. Dissertação (mestrado) Newton Lins, Manaus, 2015. Orientador: Dra.Vera Maria Fonseca de Almeida e Val. Área de concentração: Aquicultura.

Braz-Mota, S., Sadauskas-Henrique, H., Duarte, R. M., Val, A. L., & Almeida-Val, V. M. (2015). Roundup

®

exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere, 135, 53-60.

Cahill, M.A., Janknecht, R., & Nordheim, A. (1996). Signalling pathways: jack of all cascades. Current Biology, 6(1), 16-19. Cattaneo, R., Clasen, B., Loro, V. L., de Menezes, C.C., Pretto, A., Baldisserotto, B., ... & de Avila, L. A. (2011). Toxicological responses of Cyprinus carpio exposed to a commercial formulation containing glyphosate. Bulletin of Environmental Contamination and Toxicology, 87(6), 597-602.

Cavalcante, D. G. S. M., Martinez, C. B. R., & Sofia, S. H. (2008). Genotoxic effects of Roundup® on the

fish Prochilodus lineatus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 655(1), 41-46.

Çavaş, T., & Könen, S. (2007). Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis, 22(4), 263-268. Chabot, D., & Claireaux, G. (2008). Environmental hypoxia as a metabolic constraint on fish: the case of Atlantic cod, Gadus morhua. Marine Pollution Bulletin, 57(6), 287-294. Chandel, N. S., & Schumacker, P. T. (2000). Cellular oxygen sensing by mitochondria: old questions, new insight. Journal of Applied Physiology, 88(5), 1880-1889.

Chen, N., Chen, L. P., Zhang, J., Chen, C., Wei, X. L., Gul, Y., ... & Wang, H. L. (2012). Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1α/2α/3α of the hypoxia-sensitive freshwater species, Chinese sucker. Gene, 498(1), 81-90. Chippari-Gomes, A.R., Gomes, L.C., Lopes, N.P., Val, A.L., & Almeida-Val, V.M.F. (2005). Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 141(3), 347-355. Cox, A.D., Brtva, T.R., Lowe, D.G., Der, C.J. (1994). R-ras induces malignant, but not De Boeck, G., Wood, C. M., Iftikar, F. I., Matey, V., Scott, G. R., Sloman, K. A., ... & Val, A. L. (2013). Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus. Journal of Experimental Biology, 216(24), 4590-4600.

Ferreira, D., da Motta, A. C., Kreutz, L. C., Toni, C., Loro, V. L., & Barcellos, L. J. G. (2010). Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere, 79(9), 914-921.

Page 169: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

153

Geng, X., Feng, J., Liu, S., Wang, Y., Arias, C., & Liu, Z. (2014). Transcriptional regulation of hypoxia inducible factors alpha (HIF-α) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 169, 38-50. Gholami-Seyedkolaei, S. J., Mirvaghefi, A., Farahmand, H., Kosari, A.A., Gholami-Seyedkolaei, S.J., Gholami-Seyedkolaei S. J. (2013). Optimization of recovery patterns in common carp exposed to Roundup using response surface methodology: evaluation of neurotoxicity and genotoxicity effects and biochemical parameters. Ecotoxicology and Environmental Safety, 98, 152-161.

Gingerich, W.H. (1982). Hepatic toxicology of fishes. In Aquatic Toxicology (L. J. Weber, ed.), pp. 55–105. Raven Press, New York. Glusczak, L., dos Santos Miron, D., Crestani, M., da Fonseca, M. B., de Araújo Pedron, F., Duarte, M. F., & Vieira, V. L. P. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicology and Environmental Safety, 65(2), 237-241.

Glusczak, L., dos Santos Miron, D., Moraes, B.S., Simões, R.R., Schetinger, M.R.C., Morsch, V.M., & Loro, V.L. (2007). Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(4), 519-524. Glusczak, L., Loro, V.L., Pretto, A., Moraes, B.S., Raabe, A., Duarte, M.F., ... & de Sousa Valladão, D.M. (2011). Acute exposure to glyphosate herbicide affects oxidative parameters in piava (Leporinus obtusidens). Archives of Environmental Contamination and Toxicology, 61(4), 624-630. Gontijo, A.M.M.C., & Tice, R. (2003). Teste do cometa para a detecção de dano no DNA e reparo em células individualizadas. Mutagênese ambiental. Canoas: Ulbra, 173-200. Guilherme, S., Gaivao, I., Santos, M. A., & Pacheco, M. (2010). European eel (Anguilla anguilla) genotoxic and pro-oxidant responses following short-term exposure to Roundup

®a glyphosate-based

herbicide. Mutagenesis, 25(5), 523-530. Guilherme, S., Santos, M. A., Barroso, C., Gaivão, I., & Pacheco, M. (2012). Differential genotoxicity of Roundup® formulation and its constituents in blood cells of fish (Anguilla anguilla): considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology, 21(5), 1381-1390. Guilherme, S., Santos, M.A., Gaivão, I., & Pacheco, M. (2014). Are DNA-damaging effects induced by herbicide formulations (Roundup® and Garlon®) in fish transient and reversible upon cessation of exposure. Aquatic Toxicology. 155: 213-221. He, W., Cao, Z. D., & Fu, S. J. (2015). Effect of temperature on hypoxia tolerance and its underlying biochemical mechanism in two juvenile cyprinids exhibiting distinct hypoxia sensitivities. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 232-241. Hochachka, P.W., Somero, G.N., 2002. Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press. Hued, A. C., Oberhofer, S., & de los Ángeles Bistoni, M. (2012). Exposure to a commercial glyphosate formulation (Roundup

®) alters normal gill and liver histology and affects male sexual activity of Jenynsia

multidentata (Anablepidae, Cyprinodontiformes). Archives of Environmental Contamination and Toxicology, 62(1), 107-117. Jayaseelan, C., Rahuman, A. A., Ramkumar, R., Perumal, P., Rajakumar, G., Kirthi, A. V., ... & Marimuthu, S. (2014). Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and

Page 170: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

154

histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicology and Environmental Safety, 107, 220-228.

Jiang, Z.Y., Woolland, A.C.S., Wolf, S.P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange-comparison with TBA assay and on iodometric method. Lipids 26:777-860.

Junk, W. J. (1980). Áreas inundáveis-Um desafio para limnologia. Acta Amazonica. n. 10, 775– 796.

Kampen, E.J.; Zijlstra, W.G. 1964. Standartization of haemoglobinometry. In: Boroviczény, C. G. (Ed.) Erythrocytometric Methods and their standardization. Blibliotheca Haematologica, p.68-72. Keen, J.H., Habig, W.H., Jakoby, W.B. 1976. Mechanism for the several activities of the glutathione S-transferase. The Journal of Biological Chemistry 251:6183-6188. Kobayashi, S.C., Morikawa, Y., Hayashi, M., Sofuni, T. (1995). A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis assay MMS Community, 2 pp. 103–115.

Kochhann, D., Campos, D.F., & Val, A.L. (2015). Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 190, 54-60. Kodama, K., Rahman, M.S., Horiguchi, T., & Thomas, P. (2012). Upregulation of hypoxia-inducible factor (HIF)-1α and HIF-2α mRNA levels in dragonet Callionymus valenciennei exposed to environmental hypoxia in Tokyo Bay. Marine pollution bulletin, 64(7), 1339-1347. Kreutz, L. C., Barcellos, L. J. G., de Faria Valle, S., de Oliveira Silva, T., Anziliero, D., dos Santos, E. D., ... & Zanatta, R. (2011). Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish & Shellfish Immunology, 30(1), 51-57. Langiano, C.C. & Martinez, C.B. (2008). Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 147(2), 222-231.

Lee, Y. M., Jung, S. O., Seo, J. S., Yoon, Y. D., & Lee, J. S. (2006). Cloning of Ki-ras and Ha-ras cDNAs from the hermaphroditic fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and its expression after exposure to 4-nonylphenol. Marine environmental research, 62, S136-S140. Leite, M. B. N. L., da Cruz, A. L., Rodrigues, L. E. A., Yamashita, S. R., Carqueija, C. R. G., & Nascimento, I. A. (2015). Comparing the Toxicity of Water-Soluble Fractions of Biodiesel, Diesel and 5% Biodiesel/Diesel Blend on Oreochromis niloticus Using Histological Biomarkers. Bulletin of Environmental Contamination and Toxicology, 95(5), 574-581. Li, A. P., & Long, T. J. (1988). An evaluation of the genotoxic potential of glyphosate. Toxicological Sciences, 10(3), 537-546. Li, W. M., Yin, D. Q., Zhou, Y., Hu, S. Q., & Wang, L. S. (2003). 3, 4-Dichloroaniline-induced oxidative stress in liver of crucian carp (Carassius auratus). Ecotoxicology and Environmental Safety, 56(2), 251-255. Li, Z. H., Velisek, J., Zlabek, V., Grabic, R., Machova, J., Kolarova, J., ... & Randak, T. (2011). Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. Journal of Hazardous Materials, 185(2), 870-880.

Page 171: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

155

Liu, S., Zhu, K., Chen, N., Wang, W., & Wang, H. (2013). Identification of HIF-1α promoter and expression regulation of HIF-1α gene by LPS and hypoxia in zebrafish. Fish physiology and biochemistry, 39(5), 1153-1163. Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101(1), 13-30.

Lushchak, V., Kubrak, O. I., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2009). Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere, 76(7), 932-937.

Lutz, P. L. and Nilsson, G. E. (1997). Contrasting strategies for anoxic brain survival – glycolysis up or down. Journal of Experimental Biology. 200, 411-419. Mañas, F., Peralta, L., Raviolo, J., Ovando, H. G., Weyers, A., Ugnia, L., ... & Gorla, N. (2009). Genotoxicity of glyphosate assessed by the comet assay and cytogenetic tests. Environmental Toxicology and Pharmacology, 28(1), 37-41. Mangold, K., Chang, Y. J., Mathews, C., Marien, K., Hendricks, J., & Bailey, G. (1991). Expression of ras genes in rainbow trout liver. Molecular Carcinogenesis, 4(2), 97-102. Menezes, C. C., Da Fonseca, M. B., Loro, V. L., Santi, A., Cattaneo, R., Clasen, B., ... & Morsch, V. M. (2011). Roundup effects on oxidative stress parameters and recovery pattern of Rhamdia quelen. Archives of Environmental Contamination and Toxicology, 60(4), 665-671. Miyazaki, D.M.Y., Machado Neto, J.G., Castagnolli, N., (2004). Toxicidade aguda de triclorfon, partion metílico e glifosato para alevinos de tambaqui (Colossoma macropormum) e tambacu (C. macropormum X Piaractus mesopotamicus). In: Anais Encontro Brasileiro de Patologistas de Organismos Aquáticos (ENBRAPOA), Laguna. Maringá: Biblioteca Setorial da UEM. 8, 203. Modesto, K. A., & Martinez, C. B. (2010). Effects of Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere, 81(6), 781-787. Mora, N., Rosales, R., & Rosales, C. (2007). R-Ras promotes metastasis of cervical cancer epithelial cells. Cancer Immunology, Immunotherapy, 56(4), 535-544. Mustafa, S. A., Davies, S. J., & Jha, A. N. (2012). Determination of hypoxia and dietary copper mediated sub-lethal toxicity in carp, Cyprinus carpio, at different levels of biological organisation. Chemosphere, 87(4), 413-422. Muusze, B., Marcon, J., van den Thillart, G., & Almeida-Val, V. (1998). Hypoxia tolerance of Amazon fish: respirometry and energy metabolism of the cichlid Astronotus ocellatus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 120(1), 151-156.

Navarro, C.E.K.G.; Pachaly, J.R. 1994. Manual de hematologia veterinária. São Paulo: Varela. p. 74–75.

Negreiros, L. A., Silva, B. F., Paulino, M. G., Fernandes, M. N., & Chippari-Gomes, A. R. (2011). Effects of hypoxia and petroleum on the genotoxic and morphological parameters of Hippocampus reidi. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 153(4), 408-414. Nemoto, N., Kodama, K. I., Tazawa, A., Masahito, P., & Ishikawa, T. (1986). Extensive sequence homology of the goldfish ras gene to mammalian ras genes. Differentiation, 32(1), 17-23. Neškovic, N.K., Poleksic, V., Elezovic,I., Karan,V., Budimir, M. (1996). Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L. Bulletin of Environmental Contamination and Toxicology.56: 295–302.

Page 172: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

156

Nogueira, P. R., Lourenço, J., Mendo, S., & Rotchell, J. M. (2006). Mutation analysis of ras gene in the liver of European eel (Anguilla anguilla L.) exposed to benzo [a] pyrene. Marine Pollution Bulletin, 52(12), 1. Nogueira, P., Pacheco, M., Pereira, M. L., Mendo, S., & Rotchell, J. M. (2010). Anchoring novel molecular biomarker responses to traditional responses in fish exposed to environmental contamination. Environmental Pollution, 158(5), 1783-1790. Ortiz-Ordoñez, E., Uría-Galicia, E., Ruiz-Picos, R. A., Duran, A. G. S., Trejo, Y. H., Sedeño-Díaz, J. E., & López-López, E. (2011). Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis. Archives of Environmental Contamination and Toxicology, 61(3), 443-452.

Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT PCR. Nucleic Acids Research, 29(9): 2003-2007.

Poleksic, V. e Mitrovic-Tutundžic V. 1994. Fish gills as a monitor of sublethal and chronic effects of pollution. IN: Müller, R.; Lloyd, R. Sublethal and chronic effects of pollutants on freshwater fish. Oxford: Fishing News Books. 30: 339-352.

Pörtner, H. O., & Grieshaber, M. K. (1993). Critical PO2 (s) in oxyconforming and oxyregulating animals gas exchange, metabolic rate and the mode of energy production. The vertebrate gas transport cascade adaptations to environment and mode of life (JEPW Bicudo, ed) CRC Press, Boca Raton FL, 330-357.

Quintero, M., Mackenzie, N., & Brennan, P. A. (2004). Hypoxia-inducible factor 1 (HIF-1) in cancer. European Journal of Surgical Oncology (EJSO), 30(5), 465-468. Radi, A. A. R., Matkovics, B., & Gabrielak, T. (1985). Comparative antioxidant enzyme study in freshwater fish with different types of feeding behaviour. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 81(2), 395-399. Relyea, R.A. (2005). The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications, 15(2), 618-627. Roberts RJ. Fish pathology. London: Bailliere Tindall London; 1978. pp318. Rotchell, J. M., Lee, J. S., Chipman, J. K., & Ostrander, G. K. (2001). Structure, expression and activation of fish ras genes. Aquatic Toxicology, 55(1), 1-21. Saez, R., Chan, A.M., Miki, T., Aaronson, S.A., 1994. Oncogenic activation of human R-ras by point mutations analogous to those of prototype H-ras oncogenes. Oncogene 9, 2977–2982. Samanta, P., Mukherjee, A. K., Pal, S., Kole, D., & Ghosh, A. R. (2016). Toxic effects of glyphosate-based herbicide, Excel Mera 71 on gill, liver, and kidney of Heteropneustes fossilis under laboratory and field conditions. Journal of Microscopy and Ultrastructure. Saravanan, M., Karthika, S., Malarvizhi, A., & Ramesh, M. (2011). Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: hematological, biochemical, ionoregulatory and enzymological responses. Journal of hazardous materials, 195, 188-194. Semenza, G. L. (2001). HIF-1 and mechanisms of hypoxia sensing. Current Opinion in Cell Biology, 13(2), 167-171.

Page 173: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

157

Shiogiri, N. S., Paulino, M. G., Carraschi, S. P., Baraldi, F. G., da Cruz, C., & Fernandes, M. N. (2012). Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus. Environmental Toxicology and Pharmacology, 34(2), 388-396.

Silva, A.G. 2004. Alterações histopatológicas de peixes como biomarcadores da contaminação aquática. Dissertação (Mestre em Ciências Biológicas). Universidade Estadual de Londrina.

Silva, J., Freitas, T.R.O., Marinho, J.R., Speit, G., Erdtmann, B. 2000. An alkaline single-cell gel electrophoresis (comet) assay for environmental biomonitoring with native rodents. General Molecular Biology. 23(1): 241-245.

Singh, N. P.; M. T. Mccoy; R.R. Tice & E. L. Schneider. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175:184-191.

Smith, M.R., DeGudicibus, S.J., Stacey, D.W., 1986. Requirement for c-ras proteins during viral oncogene transformation. Nature, 320, 540–543. Steffensen, J., (1989). Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish Physiology and Biochemistry 6: 49–59. Takashima, F., Hibiya, T. (1995). An Atlas of Fish Histology. Normal and Pathological Features, second ed. Kodansha Ltd., Tokyo. Terova, G., Rimoldi, S., Corà, S., Bernardini, G., Gornati, R., & Saroglia, M. (2008). Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture, 279(1), 150-159. Tomita, R. Y., & Beyruth, Z. (2002). Toxicologia de agrotóxicos em ambiente aquático. Biológico, 64(2), 135-142.

Torten, M., Liu, Z., Okihiro, M. S., Teh, S. J., & Hinton, D. E. (1996). Induction of ras oncogene mutations and hepatocarcinogenesis in medaka (Oryzias latipes) exposed to diethylnitrosamine. Marine Environmental Research, 42(1), 93-98. Tsui, M. T., & Chu, L. M. (2004). Comparative toxicity of glyphosate-based herbicides: aqueous and sediment pore water exposures. Archives of Environmental Contamination and Toxicology, 46(3), 316-323. Uchida, M., Takumi, S., Tachikawa, K., Yamauchi, R., Goto, Y., Matsusaki, H., ... & Arizono, K. (2012). Toxicity evaluation of glyphosate agrochemical components using Japanese medaka (Oryzias latipes) and DNA microarray gene expression analysis. The Journal of Toxicological Sciences, 37(2), 245-254. Val, A.L., 1995. Oxygen transfer in fish: morphological and molecular adjustments. Braziliam Jounal of Medicine and Biology Research. 28, 1119–1127. Val, A. L., & Honczaryk, A. (1995). A criação de peixes na Amazônia: um futuro promissor. Criando peixes na Amazônia, 1-5. Val AL, de Almeida-Val VMF. Fishes of the Amazon and their Environment. Physiological and Biochemical Aspects. Berlin: Springer, 1995. Val, A.L. 1996. Surviving low oxygen levels: lessons from fishes of the Amazon. In Val, AL., Almeida-Val, VMF. and Randall,DJ. (Eds.). Physiology and Biochemistry of the Fishes of the Amazon. Manaus: INPA. p. 59-73. Val, A.L. and Almeida-Val, V.M.F. Effect of crude oil on respiratory aspects of some fish species of the Amazon, Biology of Tropical Fish. 22 (1999) 277–291.

Page 174: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

158

Val, A. L., Silva, M. N. P., & Val, V. M. F. A. (2004). Estresse em peixes–ajustes fisiológicos e distúrbios orgânicos. Sanidade de organismos aquáticos. São Paulo: Varela, 75-88. Vásquez, K.L. Ontogenia das enzimas digestivas do tambaqui, Colossoma macropomum (CUVIER, 1818): subsídios para a aquicultura/Katherine López Vásquez. Manaus: AM, 2009. Tese (doutorado), Manaus, 2009.Orientador: Dr. Adalberto Luís Val Área de concentração: Biotecnologia. Wang, G. L., & Semenza, G. L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. Journal of Biological Chemistry, 268(29), 21513-21518. WHO – International Programme on Chemical Safety Glyphosate, 1994. Environmental Health Criteria 159 – Glyphosate. Wu, R.S.S. (2009). Effects of hypoxia on fish reproduction and development. In: Richards, J.G., Farrell, A.P., Brauner, C.J. (Eds.), Hypoxia. Elsevier, London, pp. 79–141. Zhang, G., Mao, J., Liang, F., Chen, J., Zhao, C., Yin, S., ... & Chen, S. (2016). Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation. Chemosphere, 151, 271-279. Zhydenko, A. O. (2008). Dynamics of the Juvenile Carps' Hematological Parameters under the Impact of Herbicides. Hydrobiological Journal, 44(5). Zhydenko, A. O., & Kovalenko, Y. M. (2007). The influence of Roundup on the dynamics of histological changes in organs of carps. Hydrobiological Journal, 43(2).

Page 175: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

159

Tables and Figures

Table 1. Characteristics of each specific primer obtained for the experiment. Primers for endogenous

genes (28S e ef-1) and primers for the target genes (ras e hif-1).

Gene

Primer sequence (5`-3`)

forward/reverse

Length (bp)

Amplicon length(bp)

Tm

Ef(%)

*

28S-Fa

CGGGTTCGTTTGCGTTAC

18 150 54.5 98.19

28S-Ra

AAAGGGTGTCGGGTTCAGAT

20 150 56.3 98.19

ef-1Fb

GTTGGTGAGTTTGAGGCTGG

20 78 60.7 99.09

ef-1Rb

CACTCCCAGGGTGAAAGC

18 78 60.9 99.09

Ras-F

CCAGTACATGAGGACAGGAG

20 134 60.3 99.31

Ras-R

CAAGCACCATTGGCACATCG

20 134 60.3 99.31

HIF-1F

ATCAGCTACCTGCGCATG 18 133 59.3 100.69

HIF-1R

CTCCATCCTCAGAAAGCAC 19 133 57.3 100.69

*Primer Efficience a. Vasquez (2009) b. Brandão (2015)

Page 176: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

160

Table 2. Hematological and glucose parameters of tambaqui (Colossoma macropomum) submitted to

different concentration of O2 and contamination by RD. The values are presented as mean ± standard

error of the mean (SEM). Lowercase letters represent significant differences (p <0.05) between the

different treatments (N x NRD and H x HRD). The asterisk represents significant difference (p <0.05)

between the treatments N x H and NRD and HRD.

Treatment [Hb]

(g/dL)

Ht

(%)

RBC

(106/mm

3)

MVC

(μm3)

MHC

(pg)

MCHC

(%)

Glucose

mg/dL

Normoxia (N)

6.41 ± 0.5a 28.3 ± 1.0

a 1.48 ± 0.07

a 187.2 ± 4.8

a 43.3 ± 2.8

a 23.0 ± 1.1

a 54.0 ± 6.4

a

Normoxia and RD (NRD)

6.80 ± 0.6a 27.3 ± 1.0

a 1.43 ± 0.03

a 187.4 ± 5.9

a 47.1 ± 3.3

a 25.1 ± 1.7

a 96.2 ± 7.5

b

Hypoxia (H)

8.27 ± 0.3a* 32.0 ± 0.9

a* 1.69 ± 0.08

a* 197.6 ± 6.9

a 50.8 ± 1.8

a* 25.7 ± 0.6

a 35.4 ± 6.8

a

Hypoxia and RD (HRD)

7.71 ± 0.2a 27.6 ± 1.0

b 1.52 ± 0.09

a 182.9 ± 8.6

a 51.0 ± 2.4

a 27.9 ± 0.7

a 144.2 ± 20.0

b*

Page 177: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

161

Table 3. Distribution of blood cells DNA damage in tambaqui according to the level of comet damage in each

treatment and Genetic Damage Index (0-400). The levels of comet damage are distributed in perceptual of cells

damage (%). The GDI values are presented as mean ± standard error of the mean (SEM). Lowercase letters

represent significant differences (p <0.05) between the different treatments (N x NRD) and (H x HRD). The asterisk

represents significant difference (p <0.05) between the same treatments N and H.

Treatments Levels of comet damage in 100 cells (%) Genetic Damage Index (GDI 0-400) 0 1 2 3 4

Normoxia (N)

6.88 20.22 27.77 21.55 23.55 234.6 ± 15.0 a

Normoxia and Roundup (NRD)

2.44 7.61 16.27 16.22 57.44 327.0 ± 7.7 b

Hypoxia (H)

0.58 10.47 18.7 15.47 54.76 317.2 ± 18.5 a*

Hypoxia and Roundup (HRD)

0 3 24.12 18.12 54.75 327.4 ± 21.31 a

Page 178: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

162

Table 4. Qualitative distribution of histopathology damage and occurrence intensity (0 absent, 0+ low frequency, +

moderate frequency, ++ frequent and +++ high frequency) on the liver of C. macropomum after 96h exposure to

normoxia (N), normoxia plus RD (NRD), hypoxia (H) and hypoxia plus RD (n=10).

Lesion Type Stage Treatments

N NRD H HRD

Nuclei Hypertrophy

I + + + +

Cell Hypertrophy

I + + ++ +

Nuclei in cell periphery

I 0+ + ++ ++

Cytoplasm Vacuolization

I ++ ++ +++ +++

Leukocyte infiltration

I 0+ 0+ + +

Sinusoid Dilation

I + + + +

Cellular deformation

I + ++ +++ ++

Derangement of hepatic cords

I 0 0+ ++ ++

Vessel congestion

II

+ + + +

Nuclei vacuolization

II

0+ + + ++

Nuclei degeneration

II

+ + ++ +++

Cytoplasm degeneration

II

+ ++ ++ +++

Pyknotic nuclei

II

++ ++ ++ +++

Cell disruption

II

+ ++ ++ +++

Focal Necrosis

III

0+ + +++ +++

Page 179: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

163

Figure 1. The effects of progressive hypoxia on MO2 in C. macropomum after 96h exposure to no

contaminated water (A) and RD contaminated water (B). The average critical oxygen tensions (PO2 crit)

that were calculated for no contaminated C.macropomum (1.49 mg l-1

± 0.06) and C. macropomum

exposed to RD (1.47 mg l-1

± 0.13).

Page 180: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

164

Figure 2. GST (A) and CAT (B) activity and LPO (C) levels in C. macromopum exposed to normoxia (N), normoxia plus RD (NRD), hypoxia (H)

and hypoxia plus RD (HRD) exposed for 96h. Lowercase letters represent significant differences (P <0.001) between the different treatments. The

asterisk represents significant difference (P <0.001) between N compared with H and NRD compared to HRD.

Page 181: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

165

Figure 3. C. macropomum liver exposed for 96h for N, NRD, H and HRD treatments. A: Normal C.

macropomum liver exposed to normoxia (N), asterisk indicate a blood vessel. B: Normal C.

macropomum liver exposed to normoxia (N), asterisk indicate liver hepatopancreas. C: Liver exposed to

NRD. Head arrows indicate sinusoids dilatation. D: Fish liver exposed to H. Black arrows indicate

leucocytes infiltration. E: Fish liver exposed to H. Head arrows indicate nuclear vacuolization, asterisks

cellular vacuolization. F: C. macropomum exposed to HRD. Asterisks showed injured bile duct. Black

arrows indicate focal necrosis of the bile duct and hepatocytes around. Hematoxylin and Eosin Stain.

Page 182: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

166

Figure 4. Hif-1 relative gene expression in C. macromopum exposed to normoxia (N), normoxia plus

RD (NRD), hypoxia (H) and hypoxia plus RD (HRD) exposed for 96h. Lowercase letters represent

significant differences (P <0.001) between the different treatments. The asterisk represents significant

difference (P <0.001) between N compared with H and NRD compared to HRD.

Figure 5. Ras oncogene relative gene expression in C. macromopum exposed to normoxia (N), normoxia

plus RD (NRD), hypoxia (H) and hypoxia plus RD (HRD) exposed for 96h. Lowercase letters represent

significant differences (P <0.001) between the different treatments. The asterisk represents significant

difference (P <0.001) between N compared with H and NRD compared to HRD.

Page 183: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

167

5. Conclusões Gerais

No primeiro capítulo verificamos que em tambaqui sob o efeito agudo do BaP o

oncogene ras e o gene hif-1 apresentaram maiores níveis de expressão nas

concentrações intermediárias do contaminante (4, 8 e 16 mol/kg de BaP). No grupo

controle e na maior concentração do contaminante (32 mol/kg de BaP) ambos os

genes apresentaram baixos níveis de expressão. Esses resultados, menores níveis de

expressão gênica para ras e gene hif-1 na maior concentração de BaP, foram

explicados pelos danos histológicos no fígado dos animais expostos, que apresentou

intensa ocorrência de necrose tecidual com comprometimento do funcionamento do

órgão.

No segundo capítulo ficou evidente que o cenário extremo (A2) proposto pelo

IPCC (2007) magnifica os efeitos do contaminante BaP em tambaqui exposto

cronicamente a este cenário. O tambaqui exposto ao cenário extremo apresentou

maiores níveis de expressão do oncogene ras e do gene hif-1 em ambas as

concentrações de BaP (8 e 16 mol/kg de BaP). A maior expressão de ambos os

genes no cenário extremo em peixes injetados com BaP pôde ser explicada por um

aumento da demanda metabólica do fígado para manter a integridade celular, já que

ras está envolvido com o controle do ciclo celular e hif-1 participa dos processos de

proliferação celular. As defesas antioxidantes (CAT e GST) e os níveis de

lipoperoxidação (LPO) do fígado não apresentaram diferença após 30 dias de

exposição, evidenciando uma diminuição das respostas adaptativas ao estresse

oxidativo. Os danos genotóxicos das células sanguíneas, verificados por meio do

ensaio cometa, e as alterações histológicas do fígado demonstraram ser excelentes

ferramentas para a análise dos efeitos de BaP em peixes expostos aos cenários do

IPCC. Portanto, as defesas celulares dos tambaquis expostos ao BaP foram

comprometidas nos peixes expostos ao cenário extremo, com o aumento dos danos

histológicos e grau de quebra de DNA nas células sanguíneas.

No terceiro capítulo verificamos que o tambaqui é uma espécie muito sensível aos

efeitos do herbicida Roundup® (RD) e que este efeito é ainda maior quando combinado

Page 184: INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA … · ras e do gene hif-1 em tambaquis cronicamente expostos ao ... Histological changes C. macropomum liver exposed to normoxia

168

com a exposição a baixas concentrações de oxigênio (hipóxia). Nos peixes

submedidos a hipóxia e RD os danos teciduais no fígado foram intensos, com aumento

da ocorrência de necroses; além disso, os danos genotóxicos também foram maiores

nas células sanguíneas onde foi observado o aumento do grau de quebra de DNA. A

hipóxia teve um feito supressor nos níveis de expressão do gene hif-1, este

comportamento pôde ser explicado pelo maior desafio imposto à maquinaria celular

para a manutenção da integridade do tecido hepático. O RD induziu uma maior

expressão do oncogene ras, contribuindo para a sobrevivência celular, mas combinado

com a hipóxia, os seus níveis de expressão caíram, assim como ocorreu com o gene

hif-1. As defesas antioxidantes (GST e CAT) foram capazes de minimizar o efeito das

espécies reativas de oxigênio evitando altos níveis de lipoperoxidação das membranas

celulares dos hepatócitos.

Em síntese, a espécie do peixe amazônico Colossoma macropomum,

demonstrou ser um excelente modelo em trabalhos toxicológicos e em trabalhos que

envolvam marcadores genotóxicos. Sugerimos que tambaqui pode e deve ser utilizado

como espécie bioindicadora da qualidade do ambiente aquático, bem como modelo

para entender o comportamento de alguns genes relacionados ao desenvolvimento de

câncer.